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ABSTRACT

Properties of a transformation method which has been developed for

solving fluid dynamic problems on general two-dimensional regions are

discussed. These include the error in the construction of-the trans-

formation and applications to mesh generation. An error and stability

analysis for the numerical solution of a model parabolic problem is
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I. Introduction

In solving boundary value problems in two-dimensional regions, the

treatment of curved boundaries has hindered the implementation of finite

difference methods. Some have overcome this obstacle by using finite

element methods at the expense of greater programming complexity and

computation time. Another alternative is to transform the problem to

a region where finite difference methods are more suitable. The expense

of a desirable computational region is often a more complicated equation,

or system of equations, to be solved.

This report will examine the transformations developed by Chu L11 and

Thompson et al. [5] and [6] for solving fluid flow problems. The aim

here is to examine the basic transformation method and its construction

and not the application to any physical problem. In this way an indivi-

dual with a particular problem may be better equipped to ascertain if

this method is well suited for the solution of his problem. The sta-

bility analysis for a model parabolic problem is presented in the same

spirit.

II. The Elliptic Systems

Many of the desirable features of these mappings over others which

can be constructed derive from the fact that the mapping is obtained

as the solution of an elliptic system of partial differential equations.

In particular, the mapping will be differentiable at interior points

of the region.

Let D be a bounded region whose boundary, denoted by 8D, is the union

of a finite number of disjoint closed contours CIs ... ,C n. Now D is of



connectivity n and a simply-connected region can be constructed from

D by removing n-1 curves connecting different boundary components.

These curves will be called branch cute. On removing the branch cuts,

the resulting region can be mapped by a one-to-ore continuous function

onto the interior of a rectangle. The mapping can be extended continuous-

ly to the closure of D, D, such that the extension is one-to-one except

on the branch cuts where the mapping is two-to-one. A typical boundary

correspondence for a multiply-connected region is given in Figure 1.

With the boundary correspondence specified, the following boundary

value problem can be stated. Determine functions E and n which sat-

isfy the semilinear system

02 9-f (9, n)

02 n - g (C, n) on D
	 (1)

and the boundary conditions

C - ^ (x. Y)

n - * (x,y) on 8D.	 (2)

The functions t and n are solutions of (1) in the following sense.

They are to be treated as branches of solutions of (1) defined on a

Rieman surface. Thus the endpoints of the branch cuts are given by

the boundary correspondence, but the interior points of the cuts are

determined by the solution of (1). The questions of existence and

uniqueness of solutions of (1) and (2) will not be dealt with here.

-2-



Semilinear systems have been studied extensively for regions in the

plane. Since the regions of a Riemann surface that appear in this re-

port can be mapped conformally onto a region of the plane, many of the

results on semilinear systems are still valid. It will be assumed that

3D and the functions f, g, m, and * possess sufficient smoothness so that

a solution of (1) and (2) exists which is differentiable at all but a

finite number of boundary points. In addition, the functions f and g

will be chosen so that the image of any (x,y) in D belongs to R . This

is true if f 2 g = 0 by the Maximum Principle and, in general, restric-

tions on the sign of f and g outside of R are sufficient for D

to map into R.

In order that a transformation method be applicable to the solution

of systems of partial differential equations, it is necessary that the

Jacobian of the transformation be nonzero on D. This is the case, as

will be shown next, for harmonic mappings of simply and doubly-connected

regions.

Let D be the simply-connected region bounded by the closed con-

tour C. Decompose C into four arcs K1 , K2 , K3 , K4 havlug only

endpoints in common. The ordering and orientation of the arcs is in a

counterclockwise fashion around C. Let a and b be real numbers with

a <b.

Theorem 1. If & is a harmonic function on the simply -connected

region D and ^ . a on Kl , C e b on K3 , C is increasing on K 2 , and

is decreasing on K4 , then the gradient 0t f 0 on D.
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Proof: The proof is based on the Argument Principle. Suppose

V^ 0 at (xo , yo) - zo in D. Since D is simply-connected, the har-

monic function t will have a single-valued harmonic conjugate g*.

The analytic function

W(z) - E (x.y) + i E* N.Y)

will have W'(zo) - 0. Let

WW - W(z) - W(z o ) .

The function w has a zero of multiplicity at least two at z - z o. By

the Argument Principle, the change in the argument of w around C

(or a curve in D arbitrarily close to C in case w has a zero on C)

must be at least 41T. This contradicts the boundary values of E since

EN DO - &(xo . yo) assumes the value zero only twice on C.

If D is mapped to a rectangular region R by harmonic functions

and n with K1 , K2 , K3 , K4 mapping to the edges of the rectangle

in a one-to-one manner, then both VC and Vn will be nonzero on D

by Theorem 1. The fact that the Jacobian is nonvanishing for simply-

connected regions was mentioned by Godunov and Prokopov [2]. The validity

of their argument requires Theorem 1 although this is not stated. There

is also the question as to whether their argument, which uses conformal

mappings, can be generalized to multiply-connected regions. An alternate

proof is given here which can be used for simply and doubly-connected

regions. It is clear that the same reasoning can be used to prove that

transformations of many regions of higher connectivity have nonvanlehing



Jacobians. Vowsver, no proof has been attempted for region* of arbi-

trary connectivity due to the maaerous ways of assigning boundary

correspondences and branch cuts.

Theorem 2. If the simply -connected region D is mapped to a

rectangular region R by the harmonic functions g and n, then the

transformation has a nonvauishing Jacobian on D.

Proof: Let z  - (xo , yo) be an arbitrary point of D. Then VC f 0

at z  and the curve

{(X $Y)IE(x oy) - Mo , Yo))

determines local orthogonal coordinates (s,n) where s is the arc length

parameter and n is the normal in the direction of decreasing E. In

terms of these local variables, the Jacobian at any point of D is

-Cnns. Now ^n and na are harmonic on D and En < 0 since V9 f 0.

The function n assumes its minimum and maximum values on two arcs of

D, say K2 and K4 . On K1 and K3 , n is an increasirg function of

s. Therefore, except at a finite number of points, n  > 0 on 3D which

implies n  > 0 on D. This proves that the Jacobian is positive in D.

Interchanging K2 and K4 would result izi a negative value.

Let D be a doubly-connected region interior to the contour C1

and exterior to C2 . Let n be the harmonic function on D which

assumes the boundary values n a a on C2 and n - b on C 1 with a < b.

Let the boundary values of ^ be prescribed such that 	 increases

from same value c to a larger value d as C 1 and C 2 are circum-

scribed in the counterclockwise direction beginning at points z l and

z2 on C1 and C2 , respectively. Let g be harmonic except on a
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branch cut from al to a 2 where there is a jump of d - c in the value

of the function.

Theorem 3. The transformation of the doubly-connected region D

onto the rectan,;alar region R has a nonvanishing Jacobian on D.

Proof: The function rl is constant on C l and C2 . A simple

relation between T) and the conformal mapping of D onto an annular

region shows that the gradient of n is nonzero in D (aee Ohtsuka

D. pp. 44-47]). The rest of the proof is similar to the proof of

Theorem 2. Local coordinates (s,n) are introduced so that the Jacobian

takes the form -Csno . Now na < 0 on D and C. is a single-valued

harmonic function on D which is nonnegative on DD. Thus C. > 0

on D and -{enn > 0.

The transformations of the simply and doubly-connected regions have

nonvanishing Jacobfans which together with the prescribed boundary

correspondence guarantees that the mapping of D to R is one-to-one

and onto except on the branch cuts. A direct proof that the harmonic

mapping of the doubly-connected region is one-to-one and onto has been

given by P. D. Lax (private communication).

The Theorems in this Section are not true for all transformations

generated by the system (1). Nevertheless, the scope of our investi-

gation will be broadened to include solutions of (1) and (2) with the

additional hypothesis that the Jacobian of the transformation is non-

zero on D. A first step in that direction is a remark on the effect

of the functions f and g on the transformation. If f is increased

from 0 to a positive function, C becomes subharnonic. Its values

in D are decreased resulting in a transformation with higher resolu-

tion near those boundary components where C assumes its maximum and a
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movement of the branch cuts of E in the direction of increasing E.

If f is decreased from 0 to a negative function, higher resolution

occurs near boundary components where E assumes its minimum and the

branch cuts move in the direction of decreasing E. Similar statements

hold for n and g. This concept has been refined by Thompson et al.

(6] to produce transformations with high resolution in various subsets

of the region.

The inverse transformation from the rectangular region R to the

region D is also the solution of a system of partial differential

equations. In fact, the system (1) is equivalent to the quasilinear

elliptic system

a 
x  - 

20 xEn + 
Y xnn + J 2 [f(E,n) x

E + W.N xn l . o

(3)

a 
YEE - 

28 yEn + Y Ynn + J2 [f(E.n) YE + g (E,n) Yn ] - 0

where

a - x n 2 + y n 2

B e X  xfi + YE Yn

Y - xE2 + YE2

J - xEyn - xnyE .

Boundary conditions are obtained from (2) in the form
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x - W'n)

y - T(C,n) for (x.y) on DD.

Note that no boundary conditions are imposed on the image of the branch

cuts. The values of the functions x and y are set equal on any two

subsets of DR corresponding to the same branch cut. V-1i there is

a Dirichlet condition on part of DR and a periodicity condition on

the remainder.

The first application of solutions of (3) was in the construction

of irregula- curvilinear meshes. The system (3), with f =- g E 0,

was solved numerically by Winslow [7] to create a mesh for finite

difference calculations. If a square mesh is constructed on R, the

image in D will be a curvilinear mesh. All boundary components

and branch cuts lie on mesh lines. The curves of the mesh, on which

either E or n is constant, is said to generate a curvilinear

coordinate system for D. The following list contains various pro-

perties of the curvilinear coordinate system and indicates how they

are related to the coefficients in (3).

A. Curvature of ^ = constant: a-3/2 
Ixnnyn xnynnl

S. Curvature of n = constant: Y
-3/2 

Ix,,y, - x,y,,I

C. Angle of intersection of Jconstant and n constant: Arctan (S)

D. Metric along	 constant: ^a__ Idnj

E. Metric along n	 constant: N ' jd^j

When creating a mesh for either finite difference or finite element
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calculations, the values in C, D, and E often have an effect on the

accuracy of the calculations.

III. Nr.rerical Transformation

In the numerical construction of the transformation, the system (3)

is discretized and solved on a rectangular or triangular mesh using non-

linear SOR. Assuming that one desired to solve some partial differen-

tial equation, or system of equations, an D, those equations would

also be written in terms of the variables x and y. When the equa-

ticas (1) are used in this conversion, which has been the case in

previous applications, any error in taa numerical solution of (3)

could produce additional error in the numerical solution of the trans-

forme,' equations. &-a mples will now be presented where the error in the

construction of the transformation can be analyzed.

Consider the harmonic mapping of the unit disc

D - {(x , y) I x2 + y2 < 1 )

onto the interior of the square

R° {(E,n) 1 1<^<21, 1<n<21}

In order co construct the mapping, suppose the system (3) is dis-

cretized on a square mesh of width 1. The resulting difference

equations are solved at the interior mesh points of R by SOR iteration.

The mesh points or. 2R were assumed to map to equally spaced points

on 3D. The generated curvilinear mesh is exhibited in Figure 2.
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At the mesh points of D, the c , act solutions of the equations in (1),

E and n, would have Integer values 1, ..., 21 whenever the solu-

tion of (3) is exact. For comparison, the values of C, and hence

n by symmetry, were computed from the Poisson integral Formula at

the interior mesh points obtained from the solution of the difference

equations. The values of g beginning at the lower left point of

the mesh are given in the Table. Due to symmetry, only values in

the left half plane are listed. Note that the maximum absolute error

occurs near the boundary points where the Jacobian vanishes; that is,

the points which map to the vertices of the square. The error given

in Figure 2 is normalized by dl-iding all function values by the

width of the square to compare with the following example.

For a second example, a conformal mapping is constructed. Let

D be the annular region

D - { (x , y) I 1 < x2 + y2 < a2ir} .

A conformal mapping of D onto

R-{(^,n) 1 0<t<1, 0<n<1}

is given by the equations

C(x , y) - 2'lrt log (x2 + y2)

n(x, y) - 2n 
arctan (X)  .
	 (4)

The transformation was constructed numerically as in the previous

example resulting in the mesh of Figure 3. The coordinates of each

mesh point in D were substituCc^i in (4) and these values were com-

pared with the coordinates of the mesh points on R. It was found
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that the greatest error was in the construction of the function tj
F	 t

which has a jump across the branch cut. In all cases the constructed

values of E at the mesh points of D were accurate to five signi-

ficant.digits.

It is hoped that these examples will be of some value to anyone

planning to use this transformation method to solve a certain problem.

At least some estimate of the magnitude of error in the construction

of the transformation can be conjectured as well as the effect of branch

cuts and boundary points where the Jacobian vanishes.

IV. Stability and Discretization Error

The solution of a time dependent system of partial differential

equations by an explicit finite difference scheme requires a sta-

bility restriction on the size of the. time step. If the system of

equations is transformed to a rectangular region, the stability analy-

sis must be carried out on the finite difference analogs of the

transformed equations. This will be illustrated by outlining the

von Neumann stability analysis of the linearized vorticity trans-

port equation with the forward time - central space differencing

scheme. Except for the transformation aspect, the following remarks

parallel those in Roache [4, pp. 51-53]. Boundary conditions are

neglected.

Let w be a function oi-'x, y, and t which is a solution

of the partial differential equation

2wt _-u 
x vw

y +u0w	 (5)
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for t > 0 and (x,y) in D where u,v, and V are constants. Under

the transformation (1), the equation (5) becomes

Wt	 J (U w + V wn) +- (a w^ - 2 R win + Y wrn)

for (C,q) on R where

U uyn - vxn +V J f

V vx&-u y^ +yJ9

and a, R, y, and J are as defined in (3). Suppose a first order

forward difference oa a mesh of width At is used for the time deriva-

tive and second order central differencing on a square mesh of width

h is used for the spatial derivatives. The value of w at the

point (jh, kh) at time step n is denoted by wj 
k	

The value

at time step n+l would be given by the difference equation as

w3. k s wj,k	 2tJ 
[U (wJ+l,k - wj

-1,k) + V (wi.k+l - wj,k-1))

+ h2h2 J [a (wj+l , k + 
wj-1,k - 2 wJ^ k) - 20 (wj+l,k+l + wj-1,k-1

wj+l,k-1 wj-l,k+l) + Y (wj,k+l + wj,k-1 - 
2 wj,k)).

The functions U, V, a, R, y are evaluated at (jh, kh) with the

derivatives replaced by the appropriate difference expressions.
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Applying the standard von Neumann Fourier analysis to the above

difference eque.tion, necessary stability criteria are

At 5	 U +h VI

and

J2 h2
At	 2 11ij (a+Y)

Note that unlike the usual stability criteria in Roache (4), the value

of u in (5) appears in both stability conditions since it appears

in the expressions for U and V. Also, the quantities on the

right of the inequalities depend on the point (jh, kh) and the in-

equalities should be satisfied at each mesh point if the same size

time step is used throughout R. In the case D - R and the trans-

formation is the identity mapping, the inequalities reduce to the

usual conditions for stability of the forward time - central space

difference method of solving (5).

A few straightforward observatioLs will now be made concerning

the formal discretization error in solving (5). In the expressions

for the aarivatives

1
wx 

J (YT)
	 - YE wn)

wy a 1 (xE wn - xn WE)

the difference approximation is of order h 2 if there are positive

constants K, M, and N such that

I
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IJI > x

a < MJ2

Y < NJ 
	

(6)

for all h > 0. Since 02 < aY, the inequalities (6) also imply that

the difference approximation for

V2  - I (a w ^ - 2 
OW 

+ Ymnn) + fWE + g W 

Is of order h2 . Therefore, the above method for solving the linearized

vorticity transport equation (5) is first order in time and second order

in space whenever (6) holds.
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C4

C2	 R	 I C3

E	 C1

C4

C1

Lx

REPROj)ucIj3ILITy OF THE
u I(IChq ^. P,1GL IS POOR

C,

Figure 1. Transformation of a multiply-connected region onto a rectangular

region.
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Hash size	 Error
21 x 21	 0.004

I
T,

S	 r..;

Figure 2. Curvilinear mesh on a disc and maximum absolute error in

mapping to a square of unit width.
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Mesh size Error
21 x 21	 0.01252
42 x 42	 0.00290
84 x 84	 0.00067

Figure 3. Curvilinear mesh on an ar.mular region rind maximum absolute

error in mapping to a square of unit width.
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