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STUDY OF DIATOMIC MOLECULES. II. INTENSITIES
Jean=Louis Fémé&nias

Atomle and Molecular Optlcs Laboratory, College
of Sciences and Arts, Parc Valrose, 06034 Nice Cedex, France

I. Introduction

We have already had the opportunity to develop some ldeas /1TT5%
about the fine study of intenslties, 1n the spectroscopy of dla-
tomic molecules [9,11]. The problems taken up essentially con-
cern evaluation of intenslty factors in hyperfine coupling, which

is complex indeed, but pure coupling. We recently became inter-
ested 1n study of the effect of a light mixture on the intensity
factors, reduced to classical factors [12]. Spin decoupling type
perturbations were accounted for numerically, in a rigorous manner.

Everyone knows that this type of perturbation 1s neither the
only one nor the most important one. Herman and Wallils [14] have
shown that, even in the 'I states, there are nonnegligible per-
turbations, due to rotational-vibrational interaction.

In fact, purely theoretically, any perturbation introduced
into the diatomic Hamiltonian [8b] is reflected in the intensities,
by way of meodification of the basic wave funetions and, therefore,
the matrix elements of the electric dipole moment.

In thls article, we plan to classify the different types of
intensity perturbations and to clarify their effects, by general-
izlng the calculations of the transitions between electron states,
of distincet multiplicity or not, and any values of A. This

¥Numbers in the margln indicate pagination in the forelgn text.



work will be done by integrating the calculations in a humogenous,
global presentation of diatomic problems, starfted in the preceding
article [8b].

After a general examinatlior of the intensity problem, justil-
fying the 1nterest which should be given to this field of diatomic
spectroscopy (Section II), we inventory and classify the various
types of perturbations (Section III), before taking up the general
calculation of the Herman and Wallls function [14] (Section IV).
Comparison of our calculations with previous results and applica-
tion to the ScO molecule complete this study (Section V).

II. General Examlnatlion of the Problem

A. Basle Formula and Notatlons

The baslc formula used in the study of spectral intensitles
is given in numerous works and articles (for example Herzberg [15]
and Tatum [22], and 1t can be summarized by

, _ (1)
I(i = 1) = f(V)H (Im(i ~ f)

where;
f(v) is a simple function of the frequency of th~ transition

from initial state 1 to final state f, in the form kv* fcr an

emission line and k'v for an absorption line,k and k' being con- /1776

stants, depending on the units and experimental conditions;

(1) is the number of particles in initial level 1; we shall
not dwell on bold problems, which reguire rigorous determination
[2]; 1t frequently is approached through a Boltzmann factor which,
in electron spectra in particular, Is retained much more as a
good phenomenological model, than as an interpreter of a mathemat-
1cally established statistical distribution;

m(i»f). finally, is the square of the modulus of the matrix
element of the operator which connects the 1 and f levels; this



operator frequently is the electric dipole moment M, but 1t can
also be the magnetic dipole, electric guadrupole, etc., moment;
in this study, we shall reason by using M.

B. Sensitivity of Intensities

It 1s well known that, when an elementary molecular level
(rotational or hyperfine) is perturbed, the greatest effect fre-
quently 1s concentrated on the intensity of the corresponding
spectral lines. More than that, in some cases, the continuity
of the line intensitles 1s broken, while no displacement of the line
is detected (see, for example, Fig 3 of the study of TiN by Dunn
at al [71).

For example, we conslder two transitions to the same final
level of the wave function |x>. The initlal levels are perturbed,
and we shall observe g and b (a>h), |a> and |h> respectively,
thelr unperturbed energies and wave functions. Notations A and
B, |A> and |B> designate the corresponding (actual) perturbed
energles and wave functions. The Hamiltonian of the Interaction
1s written

”“(SL) (2)
with e<<a, b and, likewise, c<<g~h. Therefore, we are in the case
of a slight, localized perturbation or, again, in that of a rota-
tional-vibrational type perturbatlon leading to the centrilifugal
effect, or of a spin type decoupling which transforms an (a) coup-
ling into a (L) coupling when J increases [8b]. It is noted that
these examples correspond to very general, 1f not inevitable,

effects.

The problem of numerical determlnation of elements g, b and
¢, from experimental A and B data 1s now readily solved in rotational
studles [1]. We sometimes turn back, in order to glve the
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expansions of A and B as a function of g3, h and ¢. It can be

shown that

A= L C o
a[l+¢:(a—b}+no(8)]

B o2 ¢ (3)
B [I " Wa -lﬁ+ -B—O(e )]

with e=g¢/(a~b) and where 0(eB) represents all the terms of order
el, pzn.

Likewlise, 1t can be seen that

‘_'|l4> = Nllad + ¢ |65 + OeY)bD]
18> = N{—celad + |6 + O@E*Mad] (4)

where N~2=1+e?+0(e").

Thus, the observed line intensitles are, respectively,

Io= Ky Kx [ M 1412

Iy = Kgl{x {1 M} 82 (5)

with KX 1nsegrating - factors f and .+. If the theoretical unperturbed
intensities are noted
iy = K TEM Had)? (6)
iv= K, [{x | M B
with
K=K, K=K, (7)

obvious, by assumlng lg=ip=l for simplification, the following is
obtained

f] \'2 I e ‘2.
=g )

~ [l + 26 + O] (8)
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A comparison of (3) and (8) shows that the effect of the
perturbation is of the first order of £ on the intensities, while

1t is only second order on energles, hence, on the positions of
the lines,

C. The Experlimental Counterpart

Unfortunately, this sensltivity of the 1ntensities 1s not /1777

confined to factor m(i+f), which expresses the internal quantum
structure of the molecule, but it also 1s found in statistical
factor N(i), which is subject to external effects, such as pres-
sure, temperature and mode of excitation.

We shall not dwell on these problems which are troublesome
in the framework of this study, but the source of numerous data
in study of the effects of collisions, excitation and deexcitation.
We simply say that they lead to experimental difficulties, which
explains why studles of intensity are conducted with relatively
rough precislon in interactions and order of perturbation, neces-
sary to interpretation of a position spectrum [8b].

In the interpretation, when the Boltzmann distribution is
too hypothetical to preserve intart all the physical content of
the experimental data, it often 1s possible to eliminate +{1).
Either, in certaln very particular cases (the beginning of split-
ting), the variations are disregarded [9], or, more often, the
work 1s done with relative intensities (see, for example, [4,12]).
Despite the medlocre precision of the data, the positive inter-
est which this means of study offers appears here.

Within the framework of the study we have undertaken on
diatomic molecules, we intend to examlne the intensity problem,
along the line of calculation of the perturbations presented elsge-
where [8b].



II1. Intensities and Perturbations
A. General

In the technique of perturbation presented in Féménias [8b],
we saw how the Hamiltonian H of a diatomlic molecule could be reduced
to a block-diagonal form, each block corresponding to level J of
vibratlional level v of electron state nA, the block dimensions
being (2S+1)x(28+1)}, where 28+1 1s the multipliecity of state nA.
Level nAy thus constitutes Hilbert subspace #,, in the

particular form of the projectlon technique of Jgrgensen [17].

This restriction is accompanied by modification of the base
funetions. Thus, 1f [#{°)>=[n(L)ASEyRIY> represents one function
of type (a), which constitutes the initial base where the Hamilton-
lan 1is calculated, u|w(°)> represents the corresponding function In
the base where H 1s g block diagonal. The expression of Y[ is
given by expansion by orders of perturbation, the first terms of
which are [17]

order :0: U, =P,
. - U H
OI‘deI‘ l'Ul_ u VP, (9)

-‘__Q.l_’l.Q_(J__Q_ﬂI ;}
order .2:U, = "{V‘]V VPOV Py

-3y Svp,

V, Po, Qo/88 being defined in Féménias (8b).

The last stage of the calculation is carrled out by numerical
diagonalization of each block nAd.

We then have two types of perturbation of initial function
IW(°)>, external perturbations and internal perturbations of #,.
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B. External Perturbations

They correspond to perturbations of |¥(°)> by exterior
levels or states of .

1. Vibrational Perturbations

They are due to the effects of levels v'#y on level y in the
interior of state nA, and they originate In the anharmonicity of
the oscillator and of vibrational~rotational and anharmonic-
rotaticnal interactions. The effect of anharmonicity and vibra-
tional-rotational interaction has been studled, in the case of
vibrational-rotational spectra, by numercus authors, the first
of whom are Herman and Wallls [14]. More particularly, the ro-
tational-vibrational interaction (centrifugal effect, Féménias
[8b]) was discussed by Bunker, in a seriles of articles, of which
we only give the most recent [5].

2. Electron Perturbations

They are due to the effects of the p'A'y! levels on the pAy
level, and they are generally disregarded in the usual intensity
study. However, we note that they are responsible for the existence
of "extra lines" in the localized perturbation zones and the "for-
bidden transitions," such as the A'%A-X2r transition of Sel, re-
cently observed by Chalek and Gole [6].

Indirectly, they come into play in the slight difference /1778
which exists between one component A and another, in the mixing
coefficients of the spin components of a 25%*! gtate (A and § # 0)
[10,12], of which we shall now speak.

C. Internal Perturbations

They correspond to a mixture of different functions Q|W(°)>



of the substates of a nAy mul-iplet, during the final numerical
diagonalization.

This type of perturbztion has the tremendous advantage that
it can be treated in a quasi-exact manner, by using the numerical
mixing coefficlents provided by the final diagonalization (of
which the actual precilsion 1is not to be emphasized) and which
takes into account the finest interacttons, such as the spin-spin,
spin-rotation, etec., interactions., An example of the treatment
of these perturbations (of the "spin decoupling" type) 1s given
by Féménias et al [12].

It 1= quite clear that this decoupling 1is connected with the
cholce of ¥, If two strongly bound states ?ll and %I are
treated as a complex [8b], the concepts of external and internal
perturbations are modified, and the effect of level y on state
2y on level y of state 2@ 1s classed in the set of internail rertur-
bations [12].

In what follows, we obvlously are only interested in external
perturbations, which alone present difficultles in theoretical
treatment.

IV. General Calculation of External Perturbations
A. Caleulatlion Condiltions

We shall not limit ourselves to study of the 1y states, like
Herman and Wallis [14], but we shall consider the general case of
28+1) states. Besides, our calculation will concern general
transitions between two separate or nonseparate electron states
n'A' and gA. On the other hand, we shall limlt ourselves to
calculation of the first order perturbation, and we shall use as
the perturber [8b]

V=t + A(r)LS + B(r}{R* - L}]

where  h= =3 wyg? (10)
k=l

§=r—r,



Disregarding the spin-rotation and spin-spin terms is due to a
degire for clarlty, and thelr Introduction does not ralse any
theoretlical difficulty. However, we note that these 1lnteractlons
are largely negligible in such a calculation. Finally, we limit
external perturbations to vibrational perturbations, which are the
only ones detectable in the present prouvlems. This explains the
absence of hey [(8b] in V.

To the extent that tne problem of emission (or absorption) is
consldered 1n the absence of any external fleld, and 1f there is
no interest in a particular polarization of the slit, the problem
is reduced to evaluation of the reduced matrix element of electric
dipole moment M, between the inital level and the final level, both
of which are perturbed, M(‘) (1;£) [10]. This evaluation should
be made as a function of matrix elements M, between pure type (a)
wave functions.! These elements have already been calculated,
with and without nuclear spin [8a]. We use the simplest of them
as the base . of the calculation

Mda, a) = (LA S'ECQ I IMI(LIASEeU (11)
= (= DU+ 12+ DY =(ﬂ ("! 1";)(rr'(l.')'\'S'Er'lgt\ln(L).\SE:-)

'Just 1like study of the Hamiltonians [8b], evaluation of the inten-
sities is done here in base a, following the convention of Hougen
[16]. If the study concerns coupling states b, intermediate a-b or
tendency ¢, the use of numerical mixing coefficlents at the end of
the calculation {section III C) willl permit the desired intensity
factor to be obtained with the greatest precision, since, 1in fact,
electron staftes which answer to cases of pure coupling are rare,

and a mixture of components is often unavoldable. However, the cal-

culation can be done with matrix elements M, hetween type b runctiens,

or type a and p functions; this causes no difflculty, since che

"pure" intensity factors between the classie or hyperfine coupled

states a, ay, ag, b, QBJ’ Dgg> bgy have been theoretically evaluated

£8a].

i
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where the selection rule AZ=0 of an a+a transition 1s taken into
account. Henceforth, we designate it M(?) (1;f) or M(®)(niyl:p'
EM)U ’

The modulus of the square of _I'Q(‘)(g!:ﬂ:g_'::g‘.]') glves us the
desired intensity factor.

B. Evaluatlon of Perturbed Intensity Factor

We designate [¥{!)> or |n{L)ASZIvQJM>, the wave function of
the inltial corrected first order state. It 1s expressed by (9)

I(LIASECQUM )| = Il LIASEQIM) -
(e HEy + e AIDAL + (e BT + 1) = 97 4 (8 + 1) = T

o ;. ‘- ST
“ll.‘ ho(r — ty) (12)
x [MLIASEr UMY =1 8 Tf(—l‘;%lrué‘-'-f‘:){[qs FENS — E & DU+ QN = @+ DI

X IMLASE = 10, @ = LJMY + (S — DS + T+ DY — W + Q + ny'e
x [HIASE + 1 v, Q +1JM})

or
f"l’“'!lQr) = WMy - }.{ Y oatrry + bleg e+ 1)1 R IR T
-2y Mr“run5»+£us-z'+luJ+-Qm:-(z+-lu“’rwms-lfl— 1,y
l“ll' (13)
+ S — NS+ £+ D =+ Q2+ NP EPETE 4+ 10+ Tyl
wlth

) = et 4 e ARDAT 4 (] BIO[S(S + 1) - 07 = £
lry b} = —— e haolr — )

oy o Sl Ble
bley ) = hote — v))

We shall deslgnat: all the symbols relative to the final state.

Thus, reduced matrix element M is given by

CHUHMIYY = M aZed i TSN ) Y. fa(v,.v) + bley, M) + 1] ple,, ')

[N

#0F [ e) + B+ D] ple. o))

10



with

ey o MO nEe i ey )
pleg,vy) = MY uZeS; n'Zv'd)

perturbations of AIZ=%1 only appear in the second order in the
matrix element. We assume

Y aley, v)pley, ), B

= = ¥ e odpleg o)
A= R 1 |
ryE v ¥ (15)
A= Y d(eplen) B g‘vw;mumnnv

and we thus obtaln the general form of the first order element

MOUERS w Sed’) = MOES e SN+ ha+ 2 W+ 1)+ 2B ) (16)

The Intensity factor is given by /1780

v nEed s W ECT) = OMECS; W BTN + s+ D’ 4+ DRST + 1) DBV D] (17)

The expression between brackets 1s customarily given by F(J),
replacing J' by J, J*1, according to the type of splitting (P,
8, R) studied, and 1t is called the factor or function of Herman
and Wallils [14]. We note that ratios p defined in (14) do not
depend on J. In fact, by using (11),
, }\'I“”(HEH,J:n'Zv:’J")m _<n'(L‘)A’S'El'z'iu,]n(L)ASEr,> (18)
PEL ) = Gl wEe sy T LIS B i IMLIASESY

In the second order of perturbation theory, the factor of
Herman and Wallis [14] is much more complex, as can be foreseen
in the expression for U, (9), which is comparable to the third
order of perturbation theory applied to H {8b]. The degree of
the polynomial of J(J+1) and J'(J'+1), which gives F(J), will
increase, and the coefficlents will interpose matrix elements
M between functions |w(°)zi1>, which already appear in (13). The
calculation, although tedious, offersno difficulty in principle,
but it will not be dealt wlth here.

11
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V. Applications

We propose two appllcations of thls general calculation:
first, to find the relations of Herman and Wallis [14] in the
case of a rotatliodonal-vibrational spectrum; then, to use formula
(17) in study of an electron spectrum and more precisely verify
that the effect of Herman and Wallis is actually negligible, in
the case of the A?M(y=0)+X2L(y=0) transition of ScO, a study of
which has been presented elsewhere [12]. These two applications
will essentially permlt us to review a certain number of approxi-
mations and evaluations of coefficients in current usage.

We start by evaluating coefflcients g2, a', b and b', defiuned
in (13).

A. Expansions and Approximate Relations

Let the following be evaluated

Coy| B(ryed
}i'ml(r"— r',f(ul # 0

Function B(r) 1s known exactly, since

B. (19)

. o2 - B: !‘; 2 A
B(ry ~ ot = T (l + ‘.‘“) = B, - 2,.—:‘! + 3,.:: q* = 4;‘::11
with §§=ﬁ/2ugg2, g=r-re, re is the internuclear distance at
equilibrium [16]. Therefore, we have, in the third order of g,
by using (25) in Femenias [8b]

1t
'

oy = o8y 3By Gé:rJ if ¢
blry. t} = hoge =) her, = re l

RE

!
+

[
S fiu-»iﬂ1[1+6::“‘*‘q if o

hwr,
R (20)
T T 1f vy = =2
- - .,’::g"_;i: [ + e + 214 ifr,=v+2

12
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where
& =/ 2uho.

The same type of relation can be obtained in evaluation of /1781
[<vi|bly>1/[hw(g-y1)], by using the expansion of  (10). We some=-
times note here that this expansion only beglns 1n order 3 of q
and that 1ts coefflcients are less easy to obtain by spectroscopic
measurements ((41) in FZménilas [8b]). We will have occasion to
return to these difficulties in subsection C of this section.

By retaining only the first term w.q®, the following is
obtained

{ethied ‘h\;E.,

e -6, ho 180 = v -1
Jw 53 , 2 o g
_...ﬁi.s.. +n Ife, = v+ (21)
= 58 Lo — e - 272 Lfe ==
3
= - —i[(t? + e + 26v + 3] 2 1y, =c+3
=0 . '." Ij.fv,:():t?.

The expansion of A(r) by powers of g is noted

Alr) = Alr) + Aq + Azqz + A;,qJ (22)

and, hence, we obtaln, for values of a(yv;,¥) (13)

1/2
alv — 1, v) = &.___{3“3; ¢4+ [A, + 3AEN]AL

- ?{’s[l +6 &—,1:1(5(5 + 1) - ~ 2’]}

(23)

1
ae o+ Loy = - L8 *h‘”) {‘m E v+ 1) + [4, + 348N + D]AZ

-1’35[1 + 6%{: + 1)][5(8 + 1) - - E‘]}

<

13
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(v - 3v) = j-iiw-[r(u - (v - 2)]”2{w3 + A,AL - %[S(S + 1) - Q% - E’]}

3
atv + 3,v) = — 3‘5;5[(1, + (e + D + ]2 {w, + AAT - 47";[5(3 + 1)~ - zq}

In the case of A also, the customary spectroscoplc data do
not allow coefflcients A;, A>, As,...to be obtained easily. There-
fore, we take a simple case, to evalute the term [<vi|A(zr)|v>1/[hw
(v-v1)1(¥1#v). We know that the variation of A with r 1s expressed
by the appearance of parameters gg and A in the diatomic Hamil-
tonian [8b]. By assuming that these parameters are essentially
due to perturbations by the two closest vibrational levels .of
v, ¥'=ytl, and by reasoning in a similar manner for D, the fol-
lowlng relations are easlly obtained

ri- xtx A0 (24) £17i

3t~ x! = — Dho (25) |

Yy — Xx = Aho ‘

with |
Y=o+ NAlE) =B + D[4, + 34,85 + D] oxo= (o + 1B |

VY=o = 1Ale) = B4, 4 34,E%) y= (e — 4Bty |

Parameter A’ is generally unobtalnable numerically, since 1t is
included in source energy T (8b); meanwhile, Merer [19] has

evaluated it
A® = — A2D (26)

The fourth equation necessary for solution of this system 1s obtalned,
by using the matrix elements of the expansion of B (19), (20). We
note that, for the y-0 levels, y=Y¥=0, and system (25) 1s sufficient
for determination of X and x. Besides, system (25) 1s also suffi-
cient for v#0, if A:; 1s disregarded.

14
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It goes without saylng that these last relations are only
to provide approximate values, which permit justification of the
working hypotheses or to theoretically conflirm some obsgervations
(see Section V C). They have the same mathematical value as the
third order expansions of q which lead to (20) and (23).

B. Rotational-Vibrational Spectra. The Problem >f Herman and

‘Wallis 1471

We take the caze where the inlitial and final electron states
are ldentical, and we evaluate the varlous terms which occur in
(17). For that, we use the expansions of a(y,,¥) and b(y,,¥),
given in (20) and (23) but, also, the expansions of the spherical
tensor components ug(r)(s=0,%1) of M, in Oxyz molecular coordinates
[10] ,

= 4 s =011

B r) ‘;yuq s (27)

Ratios p{y1,¥'2), defined in (18), are then written, retaining only
the quantum numbers of Interest in this case,

S Ay idnAe )y Koy K e Hngie:? (28)
e ) = e arin nAr) el {e'lpge + Horgley

The arbitrary stop in expansion of the g term 1s explained, only
by our desire to compare our results with those of Herman and
Wallis [14]. Tt is evident that, a priori, no connection exists
between the orders of expansion of ug, A(z), Bl(r) and hanharm, if
it 1s not a power of q.

The sequence of calculation is evident, and we give no more
details of it. Application of the various relations (15), (20),
(23), (28) and (17) will permit the following result, peculiar to
to transitions y+y'=y+l, to be obtalned without difficulty

r

- . : 28! 2 i,
mO(nEed;nE e+ 1) =" mOmEed 0l e + 1J) {i -t D (AAL + -
2 gy Mo, 48 vl &« JU+ h=JU + 1 (29)
x[S(S+1)-Q Ejﬁﬁf'mmal+” [ +6nﬂa+l)[( + = JA ]

73 3 1 1y ope ‘
- ;"_f_’_:.%} (v + 20 + N2 ﬁ:(’) J o+ 1) +-zg‘;§z'r(l' + b E:%J '+ ”:
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where re can be replaced by E(m/ﬁg)'/% The application to the
O+1 and 1+2 transitions,dealt with by Herman and Wallis [14], is
immediate, but it will not be detailed here. On the other hand,
some remarks can be made on this subject.

Tl el

Herman and Wallis [14] arranged their terms by increa:ilng
powers of y=2Bg/w, and the preceding calculation permits these
terms to be foﬁnd, up to order y!; some y? terms also appear in
the present calculation. On the other hand, beside the missing y* /1723
terms, the total absence of terms due to anharmonicity (ws) can be
noted, with a single look at expression (29), while these terms
appear in Herman and Wallis.

If the expansion of (17) is extended to the y? terms, some
rurely centrifugal contributions of y2 of Herman and Wallls can
be found but, obviously, no anharmonic contribution. Actually,
taking account of the A% terms in (17) is disputable, for these
terms are theoretically of the second order and, therefore, they
should only be taken into account, 1f the wave functions are ex-
panded to the second order (9). It can be verifled that, in this
case, the calculation makes the anharnonic contributions of Herman
and Wallis appear.

The explanation of these phenomena is simple: in the meaning
of the calculations presented here, the initial functlons used by
Herman and Wallls are already perturbed, because the linear and

quadratlce distortions of B are taken iInto account from the begin-
ning of their calculation (Herman and Wallis [14], Eq. 7). The
perturbation introduced by these authors is only relative to the

gﬂ terms of hanharm and B(r). Therefore, the first order of Herman
and Wallis corresponds to a hilgher order of thls calculation
(actually, an order intermediate between our first and second orders).

Besides, Herman and Wallis make terms analogous to our A? contri-
butions appear in F(m). As an example, the 02y?m? terms of the
0+1 and 1+2 transitions, which is Justified in their calculation,
because their expanslon 1s carrled out by powers of .

16



We conclude that it 1s impossible to compare our orders and
those of Herman and Wallis and that only a comparison of individual
terms has meaning. We simply note that expression (29), more gen-
eral than that of Herman and Wallls,since it 1s applicable to any
A multiplet for an arbitrary y, permits the first terms of the
expansion of these authors to be found, without any previous know-
ledge of the analytical form of the wave functions. We also empha-
size that the spin-orblt correction constant 1s especilally small,
since 1t makes the second coefficient of the expansion of A(r),

A>, come into play. Finally, and above all, we stress the fact

that the effeect of anharmonicity only comes into play 1n the second
crder of perturbation theory, the essential effect of the first order
belng due to centrifugal phenomena [5].

The problem then arises, of knowing 1f 1t occurs for a y+y+2
transition, where the anharmonic effects are large [14]. A cal-
culation similar to the preceding one permits the following to be
obtained _ B

mnEedinE e + 20) = Q0 + 1) + n( f'mg) oy e+ D + 27

{252(“; + AJAL - 4 -«HS(S + 1) -2 - )+ ([J(J FH-JUEN]

&‘ gg}’. 3 HU ? ¢
x [2 + ,.?( 3ot IO) ~ 5 °~] - 2%—1(.1 + l})}

(30)

< re Hoy

where the angular portion deduced from (11) has been explained.

The same remarks can be repeated here, for higher orders of y=2Bg/w.
For the first terms, like Herman and Wallis, we find the constant
contribution of anharmonicity, which occurs here in our first order.
This order, the variation of the factor of Herman and Wallis with

J and J' 1s only due to centrifugal effects.

The same type of calculation could be repeated without dif-

ficulty, in the more general case, for the y+y+3, ¥»y+4, etc.,
the case which happens in following the expansions of Danharm, B(Z)
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and A(r). But, there is interest here in adjusting the orders of
Herman and Wallls, since it quantitatively determines the degree

to which expansion of these quantities imposes the introduction of
8 hlgher order of perturhbation of the wave functions. The expres-
slons of an arbltrary order of the most general factors of Herman
and Wallis, therefore, can theoretically be calculated without dif-
ficulty, un}ess it 1is the somewhat less tedious nature of the
expansions.

C. Electron Spectra
1. Franck-Condon and "r-centroid" Factors

In the case of electron spectra, the problem 1ls complicated
by the fact that the vibrational functions depend on the electron
nature of each state, by means of rg and the location and shape of
each potentlal energy curve. This affects the radial portion of
M(®)(nzyd; n'Ty'J') in (16), i.e., <n'(L')A'S!EZy!|ug|n(L)ASEy> or
<n' (LA'Y! [usn(L)Ay>(11). This element is written

e HCHLIN ) n(EIA D) e = ') Refr)led (31)

whlle remembering that the electron functlons depend parametrically
on r [8b] and by assuming

SOPLON IOIDAY = R fr) = Component s of the "electron tran- (32)
sition moment." '

To the extent that Reg(z) varies little with r, there is
LAY LAY = Roge (33)

qyy! being an integral of the overlap of pure vibrational functions,
called the Franck Condon factor [15].

If 1t 1s not possible to disregard the variation of Reg with
r, i1t 1s possible to carry out a limited expansion around a value
r. Therefore, the problem is to select this value. Thus, we have
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R} = ,.(r)+(r—r)( ORer) + z" D (5 ) S (34) |
Consequently, . | (&R ‘ ?
AT LAY = R (Fu + (%’1)?(1!11‘ — Fley + kg A—( ) Wir = M) (35) f
It seems natural enough to select a value for I, which cancels
the first term of this expanslon. Therefore, the following is
assumed
F o= -{LF’I'IEPE = . ( 6
U "p.centrold"” of the nAr+n'A'v' transition (36)
This 1s the procedure of Halevi [13] Therefore, j
PN LA = RoPaor [ 1+ Z I (TLR"‘ s (37)
’4” Ly = ' Ill AlR (r) a';,T")F k
wilth
. e =) I)-
SFy o= SO moment of order k

This relation, associated with formula (11) and (16}, permits
the expression of M(')(nIyJ;n'tv'J') in the general case, there-
fore, also the intensity factor m(?)(nfvi;n'sv'J').

We note that, in the first order of perturbation theory, the
1ast term of (12), the J-S; term, does not come into play. There
are no first order A%#0 transitions. There 1s only a risk of these
transitions appearing in the second order, for type a states.? 1In
the case of a-b or b-b transitions, the AI=0 rule is broken, by
means of mixtures of different I functions in each state, intro-

duced by the mixing parameters.

2Do not confuse this effect, from the y,#v and y,'#y! levels, with
the "direct" spin decoupling effect, due tc perturbations between
the levels of different £, but of the same value of v (or v'). The
latter is accounted for directly by the mixing parameters (see

Section III C).
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Therefore, the calculatilon procedure 1s theoretically simple.

First stage: analog of the "transformation of Van Vleck" [23] :
or of Jgrgensen [17, 8b]: establishment of the expressions of wave §
functions (13) and of matrix element M(1i;f), perturbed in the first '
or second order. The first order essentially causes centrifugal
perturbations and the second, anharmonic perturbations, as well as
"secondary" spin decoupling effects (perturbation of the Iy level
by a £'y; level, I'=Iil and v;#v).

Second stage: these expression still depend on values of M(°) /1785
(1;f) and on ratios p, in which the "p-centroids", the Franck- :
Condon factors and moments of order kx come into play. As to the
"r-centroids,”™ an account of their general ﬁroperties'is found in
Schamps [20]. Besides, there are numerous articles in the liter-
ature on the "r-centrolds"™ of individual molecules. The Franck-

Condon factors for a hundred systems of 72 diatomic molecules have
been cataloged 1n McCallum et al [18]. As to moments g :
they oceur mailnly with bydrides. ‘

Third stage: matrix elements M(1;f) are now externally
perturbed. The calculatlon is ended, by introducing internal
perturbations, i.e., mixtures of components I of the y' level under
study, due to "direct" spin decoupling. This last stage has been
illustrated by Féménlas et al [121, in the case of A?N+X?F and B?
I+X%L systems of ScO.

2. Application to SecO

We shall use the preceding theoretical expansion to verify
the hypothesis we made in a preceding study of the Se0 spectrum
[12], to find out if the effects of Herman and Wallis can be dis-
regarded 1in the 1nterval of values of J under study. Our calcu~
lation will be carried out for the (0,0) band of the A2H3/2+£22
transition of Se0. The use of (12), (16), (21) and the notations
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introduced in (25) gives

e

hﬂ'KA;ﬂazl?— OJ A Lo = OJ)“‘AFOWAzﬂ .
X0 [ 3 -i] ©,1)
- A 0 3 o(0,
Jl_T [1\\38 3 \]p(l ) - wy'g” 3 (38)

X gt
-2 o0 J o+ 1
- h.a_). pll, 0 JJ+ D hoy' (0, N( )”

e =00 X0 =0J)

Useful data on ScO are presented in Table 1, and they result in
the following values

X = 75 % 10"2em™!; x' x~ 24 x 107% em

X~ —-1L1I2¢cm™! (39)
E%3 L 145 x 1072 em™t: S~ 120 x 107 ¢
fiw hewy'

We draw attentlon to the manner In which the anharmonicilty
constants have been derived. Equation (41) of Féménias [8b]
permits a relatlion among weXg,Ws and Y. to be obtained. We have
disregarded w, and extract;d ws. It is qulte evident that the
contribution of w, greatly risks belng of the same order of magni-
tude as that of (5/2)ws;2/uw?; consequently, the values obtained in
(39) for the anharmonic effect can only be used as simple, rather
rough orders of magnitude.

TABLE 1. NUMERICAL DATA ON
-'$-0-MOLECULE [3,6] (cm“)

State
. parameter Ay Xz
L D 0.69 x 10°*° 0.59 x 107
Az ~ 0+ ' —_
W 881.0 975.7
X, 5.8 4,2

Numerical application results 1n

m" (A, =0 \Vz*OJ)—nNWAHMZI—OI\2£|~0HU—Hﬁmlm (40)
+ 1.2p(0, DIOT? = 5. 7p(L O + 1) + 5p0, (0 + 1)H]I073)

REPRODUCIBILITY OF THE
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With the lack of any supplementary information on Sc¢i© .nd based

on the appearance of our spectra [21], we increase p(.,0) and p
(0,1) by 1, and the (1,0) and (0,1) bands appear slightly weaker
than the (0,0) band. Under these conditlons, the factor of Herman
and Wallls becomes

SO a&m«g.i,.

I .

FUJ) = 1 = 147 x 1073 — [5,70(J + 1) + 5S'(J" + 1)]I0"*

o S L ARAT WL L

(41)

- When a ratio of the line to line intensity is set up, 1t is
seen 1n thls expression that the difference between the Herman
and Wallis factors in the numerator and denominator 1s on the ! -
order of magnitude of the coefficients of J(J+1) and J'(J'+1) é
multiplied by 4J at the maximum, while retaining only the largest /1786§
terms; therefore, if J does not exceed 50, this difference is on ; |
the order of 1% and its effect is negligible, compared with the i |
observed spin decoupling effect (ratio on the order of 4) which ;
explains why we have not previously taken account of F(J,J') in '
this type of study [12]. 1In a "temperature curve," i.,e., 1n(I(J)/
m(®)) vs. J(J+1), where I(J) 1s the measured intensity of band J
(without specifying the line) the correction tobe applied, 1n F(J,J')
is on the order of 1ln 0.6, for J=50, thus, 0.5 to the initial value,
which 1s on the order of 1 for the lines under study. This effect
is large and, accordingly, completely observable. The total lack
of deviation causes us to think that our increase of p(l,0) and p
(0,1) 1s essential and that 1t must not be expected that these ratlos
ratios are greater than 0.25, such a value giving a scarcely observ- : .
able (but not observed) deviation, at the limit of our measurements.
The effect of Herman and Wallis [14] 1s, therefore, quite negligible
in our preceding study of Se0 {12]. :

7

However, this latter aspect of the calculation brings out, in
a very clear way, the existing interconnectlon between studies of
position and intensity, and 1t shows how the remarkable precision
of numerical adjustments of frequencies can be used, to obtain
the advantage of the great sensltivity of the intensities. To
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minimize the intensity factor error permits the statistical data
to be made more reliable, so that Intensitles can be derived.

This results in a better understanding of extramolecular phenomena,

such as excitation and collision.

VI. Conclusion

Our entire study has, thus, permitted us to set up a method
of calculation of actual diatomle wave functions and intensity
factors, which can be developed to any precision, parallel to the
method of calculation of Hamiltonlans [8b].

This method requires practically no prior knowledge, since
the expansion is carrled out with wave functions, the analytileal
ferm of which 1s not defined. Besldes, the calculation can be
carried out for any transition between any st “es or levels. As
to the "mixing coefficlents", required for the final calculation,
they can be obtained rather simply, from constants derived from
analysis of rotation, when this analysls has not been carrled out
according to actual numerical dlagonallzation techniques.
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