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STUDY OF DIATOMIC MOLECULES. II. INTENSITIES

Jean-Louis F6m4nias
Atomic and Molecular Optics Laboratory, College

of Sciences and Arts, Parc Valrose, 06034 Nice Cedex, France

I. Introduction

l
We have already had the opportunity to develop some ideas 	 /1775*

about the fine study of intensities, in the spectroscopy of dia-

tomic molecules [9,11]. The problems taken up essentially con-

cern evaluation of intensity factors in hyperfine coupling, which
Y

is complex indeed, but pure coupling. We recently became Inter-
:

ested in study of the effect of a light mixture on the intensity

factors, reduced to classical factors [12]. Spin decoupling type

perturbations were accounted for numerically, in a rigorous manner.
i

C

Everyone knows that this type of perturbation is neither the

only one nor the most important one. Herman and Wallis [14] have

shown that, even in the l E states, there are nonnegligible per-

turbations, due to rotational-vibrational interaction.

In fact, purely theoretically, any perturbation introduced

into the diatomic Hamiltonian [8b] is reflected in the intensities,

by way of modification of the basic wave functions and, therefore,

the matrix elements of the electric dipole moment.

In this article, we plan to classify the different types of

intensity perturbations and to clarify their effects, by general-

izing the calculations of the transitions between electron	 states,

of distinct multiplicity or not, and any values of A. This

*Numbers in the margin indicate pagination in the foreign text.
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work will be done by integrating the calculations in a hvmogenous,

global presentation of diatomic problems, started in the preceding

article [8b].

After a general examination of the intensity problem, justi-

fying the interest which should be given to this field of diatomic

spectroscopy (Section II), we inventory and classify the various

types of perturbations (Section III), before taking up the general

calculation of the Herman and Wallis function [14] (Section IV).

Comparison of our calculations with previous results and applica-

tion to the Sc0 molecule complete this study (Section V).

II. General Examination of the Problem

A. Basic Formula and Notations

The basic formula used in the study of spectral intensities

is given in numerous works and articles (for example Herzberg [15]

and Tatum [22], and it can be summarized by

1(1 - f) -f(V)3r(I)111(1 -S)
	

(1)

where:

f(v) is a simple function of the frequency of th^ transition

from initial state i to final state f, in the form kv4 fc p an

emission line and Ji'v for an absorption lineyk and k' being con- /1776

stants, depending on the units and experimental conditions;

,r(i) is the number of particles in initial level i; we shall

not dwell on bold problems, which require rigorous determination

[2]; it frequently is approached through a Boltzmann factor which,

in electron spectra in particular, is retained much more as a

good phenomenological.model, than as an interpreter of a mathemat-

ically established statistical distribution;

m(i^f), finally, is the square of the modulus of the matrix

element of the operator which connects the i and f levels; this

2



operator frequently is the electric dipole moment X, but it can

also be the magnetic dipole, electric quadrupole, etc., moment;

in this study, we shall reason by using jl.

B. Sensitivity of Intensities

It is well known that, when an elementary molecular level

(rotational or hyperfine) is perturbed, the greatest effect fre-

quently is concentrated on the intensity of the corresponding

spectral lines. More than that, in some cases, the continuity

of the line intensities is broken, while no displacement of the line

is detected (see, for example, Fig 3 of the study of TiN by Dunn

et al [71).

For example, we consider two transitions to the same final

level of the wave function lg>. The initial levels are perturbed,

and we shall observe a and B (a>¢), ja> and Ih> respectively,

their unperturbed energies and wave functions. Notations A and

B, IA> and 1B> designate the corresponding (actual) perturbed

energies and wave functions. The Hamiltonian of the interaction

is written

(ae
H = \

c' n !	 ( 2)

with c« a, b and, likewise, < <g-D. Therefore, we are in the case
of a slight, localized perturbation or, again, in that of a rota-

tional-vibrational type perturbation leading to the centrifugal

effect, or of a spin type decoupling which transforms an (a) coup-

ling into a (h) coupling when J increases [8b]. It is noted that

these examples correspond to very general, if not inevitable,

effects.

The problem of numerical determination of elements a, b and

c, from experimental A and B data is now readily solved in rotational

studies [1]. We sometimes turn back, in order to give the

3



expansions of A and B as a function of A,	 and g. It can be

shown that	
1LLL	

a
B = b I -	 + O(E')^h(n-- b) b

with e=c/(a-b) and where O(en) represents all the terms of order

eP, p?n.

Likewise, it can be seen that

(3)

IA> = N fI U > 4- E Ib> + O(E')Ib>l
I B> _ Nf- E IU> + Ib> + O(E')IU>J

where ij-2=1+e2+0(e4).

a

s

i
l

C

Thus, the observed line intensities are, respectively,

/A = A A KX I I Al I IA>1'	
(5 )

Ix =KnKXIIAlI JB>1'

with K integrating• factors f and V. If the theoretical unperturbed

intensities are noted

i„ =K 1 <Y IOf IIU>I'	 (6)
i,	Kh 	 I Al I Ib>1'

with

b'4 k " - b "
	

(7)

obvious, by assuming is=ib=i for simplification, the following is

obtained

c,1' 2 ^I +^_

2E + O(E')]

b



A comparison of (3) and (8) shows that the effect of the
perturbation is of the first order of a on the intensities, while

it is only second order on energies, hence, on the positions of

the lines.

C. The Experimental Counterpart

Unfortunately, this sensitivity of the intensities is not 	 /1777

confined to factor m(i+f), which expresses the internal quantum

structure of the molecule, but it also is found in statistical

factor N(t), which is subject to external effects, such as pres-

sure, temperature and mode of excitation.

We shall not dwell on these problems which are troublesome

in the framework of this study, but the source of numerous data

in study of the effects of collisions, excitation and deexcitation.

We simply say that they lead to experimental difficulties, which

explains why studies of intensity are conducted with relatively

rough precision in interactions and order of perturbation, neces-

sary to interpretation of a position spectrum [8b].

In the interpretation, when the Boltzmann distribution is

too hypothetical to preserve intar.t 	 all the physical content of

the experimental data, it often is possible to eliminate.c i).

Either, in certain very particular cases (the beginning of split-

ting), the variations are disregarded [9], or, more often, the

work is done with relative intensities (see, for example, [4,121).

Despite the mediocre precision of the data, the positive inter-

est which this means of study offers appears here.
i

Within the framework of the study we have undertaken on

diatomic molecules, we intend to examine the intensity problem,

along the line of calculation of the perturbations presented else-

where [8b].

5



III. Intensities and Perturbations

A. General

In the technique of perturbation presented in F6menias [8b],

we saw how the Hamiltonian H of a diatomic molecule could be reduced

to a block-diagonal form, each block corresponding to level J of

vibrational level v_ of electron	 state _qA, the block dimensions

being (2S+1)x(25+1), where 2S+1 is the multiplicity of state _A.

Level nAv thus constitutes Hilbert subspace *,,,in the

particular form of the projection technique of J )6rgensen [17].

This restriction is accompanied by modification of the base

functions. Thus, if !'Y(°)>=Jn(L)ASEySZ > represents one function

of type (g), which constitutes the initial base where the Hamilton-

ian is calculated, 111Y(°)> represents the corresponding function in

the base where H is a block diagonal. The expression of u is

given by expansion by orders of perturbation, the first terms of

which are [17]

order A: U o = Po

order I: u, = Q° vv„
(9)

order . z: u, = Q V Q" v _ Q° Vp„ q P'

— z 1" V. Qf VP"

V, Po, Flo /an being defined in F6menias (8b).

The last stage of the calculation is carried out by numerical

diagonalization of each block nQ .

We then have two types of perturbation of initial function

IT (0) >, external perturbations and internal perturbations of .t,.

6



B. External Perturbations
	 a

They correspond to perturbations of ITO )> by exterior

levels or states of Y,,.

1. Vibrational Perturbations

They are due to the effects of levels v',:Oy on level y in the

interior of state nA, and they originate in the anharmonicity of

the oscillator and of vibrational-rotational and anharmonic-

rotational interactions. The effect of anharmonicity and vibra-

tional-rotational interaction has been studied, in the case of

vibrational-rotational spectra, by numerous authors, the first

of whom are Herman and Wallis [14]. More particularly, the ro-

tational-vibrational interaction (centrifugal effect, Femenias

[8b]) was discussed by Bunker, in a series of articles, of which

we only give the most recent 157.

2. Electron Perturbations

They are due to the effects of the j2.!A 1 3[2 levels on the DAy

level, and they are generally disregarded in the usual intensity

study. However, we note that they are responsible for the existence

of "extra lines" in the localized perturbation zones and the "for-

bidden transitions," such as the 9 ,2 A_X2 E transition of ScG, re-

cently observed by Chalek and Gole [6].

Indirectly, they come into play in the slight difference 	 /1778

which exists between one component A and another, in the mixing

coefficients of the spin components of a 23 +1 state (A and S X 0)

[10,12], of which we shall now speak.

C. Internal Perturbations

They correspond to a mixture of different functions UST(')>

7



of the substates of a nAy mul:iplet, during the final numerical

diagonalization.

I

	

	 This type of perturb^.tion has the tremendous advantage that

it can be treated in a quasi-exact manner, by using the numerical

r	 mixing coefficients provided by the final diagonalization (of

which the actual precision is not to be emphasized) and which

takes into account the finest interact i ons, such as the spin-spin,

spin-rotation, etc., interactions. An example of the treatment

of these perturbations (of the "spin decoupling" type) is given

by Fem9nias et al [12].

It is quite clear that this decoupling is connected with the

choice of .n a ,	 If two strongly bound states Z II and 2  are

treated as a complex [8b], the concepts of external and internal

perturbations are modified, and the effect of level y on state

2 E on level y of state Z II is classed in the set of internal pertur-

bations [12].

In what follows, we obviously are only interested in external

perturbations, which alone present difficulties in theoretical

treatment.

IV. General Calculation of External Perturbations

A. Calculation Conditions

We shall not limit ourselves to study of the l E states, like

Herman and Wallis [14], but we shall consider the general case of
2LS+i A states. Besides, our calculation will concern general

transitions between two separate or nonseparate electron states

W A' and nA.	 On the other hand, we shall limit ourselves to

calculation of the first order perturbation, and we shall use as

the perturber [8b]
V = h -F A(r)LS + 8(r)(R 2 - L1=)

^"	 (10)where	 II = h ,^^^nnm — [^ N^, (] J	 '
k=J

q o r — re

8



Disregarding the spin-rotation and spin-spin terms is due to a

desire for clarity, and their introduction does not raise any

theoretical difficulty. However, we note that these interactions

are largely negligible in such a calculation. Finally, we limit

external perturbations to vibrational perturbations, which are the

only ones detectable in the present proc.lems. This explains the

y	 absence of hev [8b] in V.

To the extent that the problem of emission (or absorption) is

¢	 considered in the absence of any external field, and if there is

no interest in a particular polarization of the slit, the problem
i

is reduced to evaluation of the reduced matrix element of electric

dipole moment M, between the inital level and the final level, both

of which are perturbcl, M ( ' ) (i;f) [10]. This evaluation should

be made as a function of matrix elements rj, between pure type (a)
i
i	 wave functions.' These elements have already been calculated,

With and without nuclear spin [Be]. We use the simplest of them

as the base,of the calculation
s

bf,(o, u) _ ("'(!; )A' S'S'r's2'J' l.b1^^n(L)AS£rS^J>	 (11)
1)° -' [(2J' + 1)(21 + I)]' 	 J' I J C^i (C6V'3'^c'lµ,ls(L)ASEr>-f2'si2)

'Just like study of the Hamiltonians [8b], evaluation of "Uhe inten-

sities is done here in base _4, following the convention of Hougen

[16]. If the study concerns coupling states b, intermediate g-12 or

tendency c, the use of numerical mixing coefficients at the end of

the calculation (section III C) will permit the desired intensity
1	 factor to be obtained with the greatest precision, since, in fact,

electron states which answer to cases of pure coupling are rare,

and a mixtures of components is often unavoidable. However, the cal-

'	 culation can be done with matrix elements M, between type b :unctions,

or type a and b functions; this causes no difficulty, since the

"pure" intensity factors between the classic or hyperfine coupled
k

states a, aa , as, b, b 5,T , b B^, D BLq have been theoretically evaluated

[8a]•
it

9



where the , selection rule AE=0 of an a+a transition is taken into 	 /1779
i

account. Henceforth, we designate it MO) (i;f) or M(°)(nEys:n'

EyrJ!).

The modulus of the square of M M (nEvJ:ajE v r J r ) gives us the

desired intensity factor.

B. Evaluation of Perturbed Intensitv Factor

We designate IT (1) > or In( L )ASEv_QJM> 1 the wave function of

the initial corrected first order state. It is expressed by (9)

1n(L):1SErWM), = In(l.)ASzffljM)

+ i.	
<<'11hIv)_+ ;r,1A!r)A + Ct',IB1 )[J(J + I) - 0 2 + S(S + I) - El]

_	 hmU' - t11 (12)

• In(L)ASEvjVAl) - i,	 ^^' p^^•^- ([(S + £)(S - E +- no 4- f)L1 - n - 1)]' Z

• In(L)AS E - I r, Q - I JAO + [(S - £)(S + E 4- 1)(1 - SD(J I- Q 1- I)]' =
x In(L)AS E + I v, 4 +I J.MA

or

11nit 2.Ir) = I'l l iu. !fit-> -- i E 11(1' " r) + Nr1,1•)./(J + 1)] 1'11,11 -Mr, >

b(r i , rff(S + SYS — £ + I)CJ -t Q)(./ — 0 + 1W' `I£ — 1 0 — I r,)
(13)

+ [(S - E)(S + E + II(J - n)(J 4 n + 1)]' ' I'P""£ +- I Q 1 1 r„',

with I_I )[_S__<+ll )t l^') + <c l AIu)AE + !v, 8 v S(S + I) — S2' — £']

Am(v — v,)

We shall designate all the symbols relative to the final state.

Thus, reduced matrix element M is given b.r

^^N ' n' II AtII4„ ”) _ .l/10'(n£cJ;n'Er'J'){I •r ).	 [a('e^.r) + b(v„v)./(J + 1)] p(v„v')

t + ).	 [n'(v,', v') + h'(v,',v')J'(J' + 1)] p(v. v,')}

10



)

with

1111'1(n£riJ. 11'11",Y)
P(u„ u " ) = Al"i(n£1J;

perturbations of AE=±1 only appear in the second order in the

matrix element. We assume

n =	 '•)PO'„ 0,	 0 = S 110".1)P(11.1")
(15)

and we thus obtain the general form of the first order element

M14' rr(n£1J; n'£1'J'1 = .11 1o1Or£1J: ,i z rJ'1( I + ).x + i•x' + L(iJ(J + 1) + (16)
The intensity factor is given by

,:''+(n1r•J: "i £1'J') = mro '(n11J; rr'£1'J')( I -+ D._ + D.-i' •+- D.(9J(J + 1) +'_i.)i'J'(J' + 01	 (17)

The expression between brackets is customarily given by F(J),

replacing J' by J, J±1, according to the type of splitting (P,

Q, R) studied, and it is called the factor or function of Herman

and Wallis [14]. We note that ratios p defined in (14) do not

depend on J. In fact, by using (11),

P')(11£1,J;n'£r_'J ) 	 <n'(L)A'S'£1.'jpjn(L)AS£1$)	 (18)
;Al' n}(11£1J; n'£1'J') 	 <rr'(L')A'S'£r';p,ln(L)AS£r)

In the second order of perturbation theory, the factor of

Herman and Wallis [14] is much more complex, as can be foreseen

in the expression for U Z (9), which is comparable to the third

order of perturbation theory applied to H ^8b;. The degree of

the polynomial of J(J+1) and J'(J'+1), which gives F(J), will

increase, and the coefficients will interpose matrix elements

M between functions IT (0) E±1>, which already appear in (13). The

calculation, although tedious, offers no difficulty in principle,

but it will not be dealt with here.

/1780
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V. Applications

We propose two applications of this general calculation;

first, to find the relations of Herman and Wallis [14] in the

case of a rotational-vibrational spectrum; then, to use formula

(17) in study of an electron spectrum and more precisely verify

that the effect of Herman and Wallis is actually negligible, in

the case of the & 2 II(y=0)_g 2 E(_v=0) transition of ScO, a study of

which has been presented elsewhere [12]. These two applications

will essentially permit us to review a certain number of approxi-

mations and evaluations of coefficients in current usage.

We start by evaluating coefflcients.^, a', 12 and b', defined

in (13).

A. Expansions and Approximate Relations

Let the following be evaluated

<vjB(r•Ilc> (^ # u)
Am(r — r,)

Function B(r) is known exactly, since

	

B(r) - h - 1i Z / 1 + q	 B, - 2 ^- q + 3 P` q z — 4^3 l'`	
(19)

	

2pr •= 	 2pr^	 r^ I	 r^	 r^	 r^

with Bg =ih/2Nre 2 , g=r-re i _re is the internuclear distance at

equilibrium [16]. Therefore, we have, in the third order of g,

by using (29) in Femenias [8b]

2B,

	

h(r^•r) _ hoar - i^)	
i fhow, cr CI — 6 . r^ 	 c, = r — I

r	

JJJJJJ C =

* hwr,I11 'I + 6 ^,. Ir +- I I J	 if^ 	 r, = r t 1

(20)1_	 3
©`. c' D1r — I le i 	 if r 'i = r' -

3B,

	

2hmr =' [l r + I)Ir + 2)J	 if r,= r + 2

12
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_3t4B, ^' [rlr — I)(u — 2)]' * 	 if u, = c — 3

_ + 91-3 R V + 1)(u + 2)(c + 3 )]' z	 if	 + 3	 (20)

where

The same type of relation can be obtained in evaluation of /1781

[<y l jtbjy>]/[tw(y—y l )], by using the expansion of h (10). We some-

times note here that this expansion only begins in order 3 of 3
and that its coefficients are less easy to obtain by spectroscopic

measurements ((41) in F5menias [8b]). We will have occasion to

return to these difficulties in subsection C of this section.

By retaining only the first term w 3 9. 3 , the following is
obtained

3x'3	 , z	 if r

- 3hoi [D( ^ - 1)(`	 2)]' 
I	 if c, = r - 3

_ — 31iw Uv + I)4' 4- 20 + 3)]'' z 	 if v, = r + 3

=0	 if,, =r±2

The expansion of A(r) by powers of q is noted

	

A(r) = A (r.) 4. A i q + A zgz + A3q'	
(22)

and, hence, we obtain, for values of'a(y l ,y) (13)

tt rz
a(o -' 1 , °) _ lam 13%vj%'v' + [A, + 3.A,^'il	

-?`Irr I+6ir^[S(S+1)f	
(23)r, L

a(o+ I, u) _ - S(r 
r ug )- 1 3w , E, z ( r + 1) + [A,+ 3A 3 E, 2 (1 , + 1)]A£

-
 2B

r	 z
`r 1 + 6rz(r + 1)] [S(S + I) - n 2 - £z]^

13
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a(u – 2. u) _— 21u;i	 S A 2A£ + -r r LS(S + I) – n2 – £2].^
11	 f	 ))

a(u + 2, v) _ _ $2 [(v + 2hw + 2)] 1J$1A2AE + 3B, [S(S + 1) – fl , – E2]^

	

f	 1

a(o – 3, u) = 3tww Lr'(u – 1)(u – 2)]' n (w, + A,AE – rr` [S(S + 1) – n 2 – E2]}
llll

a(u+ 3,u) _ – l ((v + 1)(v + 2)(u + 3)]' t2 w, + A,A£ – V [S(S + 1) – 0 2 – E2]

In the ca ge of .& also, the customary spectroscopic data do

not allow coefficientsA I , A2, As o ... to be obtained easily. There-

fore, we take a simple case, to evalute the term [<v21A(r)1v->]/1L'w

(_v-v2)](v_2v). We know that the variation of A with r is expressed

by the appearance of parameters A ,7 and A° in the diatomic Hamil-

tonian [8b]. By assuming that these parameters are essentially

due to perturbations by the two closest vibrational levels-of

y, vl =y±1, and by reasoning in a similar manner for D, the fol-

lowing relations are easily obtained

	

Y 2 – X2 _'40
	 (24) /?'(,

)' 2 - .C2 -_ - Mitt)
	

(25)
} y – Xs A,IAw

with

X = <u + 1IAIr> ^ E(v + 1) 1 ' 2 (A I + 3A 3 y 2(v + 01 x = <r 4. IIBIr>
Y = <o – IjAju) x 4t, ' 2 (A, + 3A 34 2 u1	 }, _ <v – IIBit )

Parameter A° is generally unobtainable numerically, since it is

included in source energy T (8b); meanwhile, Merer [19] has

evaluated it

A° = – A, 2"D
	

(26)

The fourth equation necessary for solution of this system is obtained,

by using the matrix elements of the expansion of B (19), (20). We

note that, for the v=0 levels, y =Y=O, and system (25) is sufficient

for determination of X and x. Besides, system ( 2.5) is also suffi-

cient for v#0, if As is disregarded.

14
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It goes without saying that these last relations are only

to provide approximate values, which permit ,justification of the

working hypotheses or to theoretically confirm some observations

(see Section V C). They have the same mathematical value as the

third order expansions of q which lead to (20) and (23).
r

B. Rotational-Vibrational Spectra. The Problem of Herman and

We take the case where the initial an9 final electron states

are identical, and we evaluate the various terms which occur in

(17). For that, we use the expansions of p,(y j ,y) and j(11,y),

given in (20) and (23) but, also, the expansions of the spherical

tensor components Us(r)(s=0,±1) of M, in Oxyz molecular coordinates

[10]

(27)

Ratios P(V1,V r 2), defined in (18), are then written, retaining only

the quantum numbers of interest in this case,

-	 (nAr;'IP,InAr^) ___ Cr'i!Na^''r) 	 C r ':'IPnn + Nirl'Ir'i)	 (28)
P( V r• V 2 ') - (eAv 'IN,I nAc )	 (l''INnlr')	 CC 1p oo + Noi91v)

The arbitrary stop in expansion of the q term is explained, only

by our desire to compare our results with those of Herman and

Wallis [14]. It is evident that, a priori, no connection exists

between the orders of expansion of us, A(r), B(r) and banharm, if

it is not a power of q.

The sequence of calculation is evident, and we give no more

details of it. Application of the various relations (15), (20),

(23), (28) and (17) will permit the following result, peculiar to
to transitions viv' =v+l, to be obtained without difficulty

tilt r(11YO; nE c + 1 ./') = nr 101(rrErJ; 11E v + I J') I —	 f + Iy 
i 

(.4 Z AE + r2.
x [S(S + 1) — 0 2 — E']) µa„ + Atur^(c + 1) , '^ r + 6 I0. + I)^ [J(J + 1)— J'(J' + I)]

(29)

_ 3B 4' (r, + ^ )( r. + I) r x Po' J(.! r 1) + 3B,EZ r .(r. + i)r 2 Fror J'(J' + 1)^
Irma'	 Poo	 how,	 Pno
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where rg can be replaced by &(w/1^6)1/2 The application to the	 a

0.1.1 and 1-►2 transitions dealt with by Herman and Wallis [141, is	 z

immediate, but it will not be detailed here. On the other hand, 	 i

some remarks can be made on this subject.

Herman and Wallis [14] arranged their terms by increasing
powers of y=2Be /w, and the preceding calculation permits these

terms to be found, up to order y l ; some y 2 terms also appear	 in

the present calculation. On the other hand, beside the missing y 2 /173
terms, the total absence of terms due to anharmonicity (V 3 ) can be

noted, with a single look at expression (29), while these terms

appear in Herman and Wallis.

If the expansion of (17) is extended to the y 2 terms, some

purely centrifugal contributions of y 2 of Herman and Wallis can

be found but, obviously, no anharmonic contribution. Actually,

taking account of the A 2 terms in (17) is disputable, for these

terms are theoretically of the second order and, therefore, they

should only be taken into account, if the wave functions are ex-

panded to the second order (9). It can be verified that, in this

case, the calculation makes the anharmonic contributions of Herman

and Wallis appear.

The explanation of these phenomena is simple: in the meaning

of the calculations presented here, the initial functions used by

i-

	 Herman and Wallis are already perturbed, because the linear and

quadratic distortions of B are taken into account from the begin-

ning of their calculation (Herman and Wallis [14], Eq. 7). The

perturbation introduced by these authors is only relative to the

13 terms of hanharm and B(r). Therefore, the first order of Herman

a

	 and Wallis corresponds to a higher order of this calculation

(actually, an order intermediate between our first and second orders).

Besides, Herman and Wallis make terms analogous to our a 2 contri-

butions appear in F(m). As an example, the 0 2 y 2m2 terms of the

0^1 and 1-).2 transitions, which is justified in their calculation,

because their expansion is carried out by powers of y.

16



We conclude that it is impossible to compare our orders and

i

	

	 those of Herman and Wallis and that only a comparison of individual

terms has meaning. We simply note that expression (29), more gen-

eral than that of Herman and Wallis since it is applicable to any

i

	

	 A multiplet for an arbitrary y, permits the first terms of the

expansion of these authors to be found, without any previous know-

'

	

	 ledge of the analytical form of the wave functions. We also empha-

size that the spin-orbit correction constant is especially small,

since it makes the second coefficient of the expansion of A(r),

A Z , come into play. Finally, and above all, we stress the fact

that the effect of anharmonicity only comes into play in the second

order of perturbation theory, the essential effect of the first order

being due to centrifugal phenomena [5].
:

v

The problem then arises, of knowing if it occurs for a y->_v+2

transition, where the anharmonic effects are large [14]. A cal-

culation similar to the preceding one permits the following to be

obtained

muJ(n£cJ: n£ r + 2 J') = (2J' + 1)(23 + I)^ SiO4)'Pu1 24 [(u + I)(u + 2)]"'
(30)

X i2C(a' 3 + /1 3A£ -; -f3f [S(S + 1) - 0 2 - £ 2]) + -IB [J(J + 1) - J'(J' + I)7
it 	

E'I	 x[2	 i.T(-220 _ 1_
10)2r.N

3 Poo
]-2r.

z
'J (J+I))j

where the angular portion deduced from (11) has been explained.

The same remarks can be repeated here, for higher orders of y=2Be/w.

For the first terms, like Herman and Wallis, we find the constant

contribution of anharmonicity, which occurs here in our first order.

This order, the variation of the factor of Herman and Wallis with

S and X. is only due to centrifugal effects.

The same type of calculation could be repeated without dif-

ficulty, in the more general case, for the v->v+3, y->Y+4, etc.,

the case which happens in following the expansions of hanharm, B(z)

17



and A(r). But, there is interest here in adjusting the orders of

Herman and Wallis, since it quantitatively determines the degree

to which expansion of these quantities imposes the introduction of 	 j

a higher order of perturbation of the wave functions. The expres-

sions of an arbitrary order of the most general factors of Herman

and Wallis, therefore, can theoretically be calculated without dif-

ficulty, unless it is the somewhat less tedious nature of the

expansions.

C. Electron Spectra

1. Franck-Condon and "r-centroid" Factors

In the case of electron spectra, the problem is complicated

by the fact that the vibrational functions depend on the electron 	 '

nature of each state, by means of r... and the location and shape of /1784'

each potential energy curve. This affects the radial portion of

M(°)(nEvJ; n'EvI P) in (16), i.e., <n'(L')A'S'EXjJpsJD(L)ASEv> or

<n'(L')A'v'IusIn(.')Av_>(11). This element is written

<i' 'I(<n'(L')A'IP,(r)ItdL)A >)It'>= <r'IR,.(r)b->	 (31)

while remembering that the electron functions depend parametrically

on r [8b] and by assuming

'<n'(L')A'IP,(r)In(L)A> = R„(r) = Component s of the "electron tran- ( 32)
sition moment.”	 i

To the extent that Res(r) varies little with r, there is

<W(L')AV IN,bi(L)Av >	 R,.9„'	 ( 33 )

.qvv' being an integral of the overlap of pure vibrational functions,

called the Franck Condon factor [15].

If it is not possible to disregard the variation of R 2z with

r, it is possible to carry out a limited expansion around a value

r. Therefore, the problem is to select this value. Thus, we have
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R..(r) = R..( r) + (r — r)( ar s) +	 A!	 (	
1 + ..,	 (34)

v	 k-:

Consequently,
m	 k

C"'(E )A' v ' j Vj )dL)Av) = R..(f)9.. • + ( FIP <v'I r — rl r) + k;: R! \aa ^ :
C v 'I(r — r!klr)

(35)

It seems natural enough to select a value for r, which cancels
the first term of this expansion. Therefore, the following is

assumed

) — n	 it	 rCv 'I v>	 r-centroid of the nAr-►n A v transition (36)

This is the procedure of Halevi 1131. Therefore,

k

<r,'(L')A'u:IP	 ,.,ln (L)Av) = R .,(r)9.	 I +	
(	 OR
	 Jk	 (37)

with

Y, _	
<V'10 — - 

moment of order k

This relation, associated with formula (11) and (16), permits

the expression of MP )(n£vJ;n'Ev'J') in the general case, there-

fore, also the intensity factor mP )(n£vJ;n'Ev!J').

We note that, in the first order of perturbation theory, the

last term of (12), the J±ST term, does not come into play. There

are no first order AVO transitions. There is only a risk of these

transitions appearing in the second order, for type a states .2 In

the case of a-b or.b-b.transitions, the AE=O rule is broken, by

means of mixtures of different E functions in each state, intro-

duced by the mixing parameters.

2 D not confuse this effect, from the v_ 1 #v and v l '^Zj levels, with

the "direct" spin decoupling effect, due tc perturbations between

the levels of different E, but of the same value of _v (or v'). The

latter is accounted for directly by the mixing parameters (see

Section III C).
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Therefore, the calculation procedure is theoretically simple.

First stage: analog of the "transformation of Van Vleck" [23]

or of Jorgensen [17, 8b]: establishment of the expressions of wave
I

functions (13) and of matrix element M(i;f), perturbed in the first

or second order. The first order essentially causes centrifugal

perturbations and the second, anharmonic perturbations, as well as

"secondary" spin decoupling effects (perturbation of the Ey level

by a E'y, level, E'=E±1 and v_1 #v_).

Second stage: these expression still depend on values of M(°) /1785

(i;f) and on ratios p, in which the "r-centroids", the Franck-

Condon factors and momentsof order ji come into play. As to the

"r-centroids," an account of their general properties is found in

Schamps [20]. Besides, there are numerous articles in the liter-

ature on the "r-centroids" of individual molecules. The Franck-

Condon factors for a hundred systems of 72 diatomic molecules have

been cataloged in McCallum et al [18]. As to moments b",

they occur mainly with hydrides.

Third stage: matrix elements M(i;f) are now externally

perturbed. The calculation is ended, by introducing internal

perturbations, i.e., mixtures of components E of the y-! level under

study, due to "direct" spin decoupling. This last stage has been

illustrated by Femenias et al [12], in the case of ® 2
11-t—VE and 112

£-l.X 2 £ systems of Sc0.

t	 2. Application to ScO

We shall use the preceding theoretical expansion to verify

the hypothesis we made in a preceding study of the SeO spectrum

[12], to find out if the effects of Herman and Wallis can be dis-

regarded in the interval of values of J under study. Our calcu-

lation will be carried out for the (0,0) band of the g2n3 /2-yX2E

transition of SCO. The use of (12), (16), (21) and the notations
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t
introduced in (25) gives

Mln(A'n 3 ,; u = 0 J; X'£ u = 0 J) = Af(A'n,;; v = 0 J; X'£ I' = 0 J) 1

x 1 1 —!I, -1 aE	 + 2 —g.^^P(I.0)
I

—Hui [31c 3 F;'' C-(	 OIi' 4^P(	 )
(38)

0(I, 0

L

) J(J + I)	 1)J'(J , + 1 )^ 1
l

— lun' p(0,
rr

Useful data on ScO are presented in Table 1, and they result in

the following values
s 

^ 2.5 x 10' cm - '; s' n^ 2.4 x 10 -= cm'

X = — 1.12cm -1 (39)

Ovs ^' 1.45 x 10'' cm' i ;
-
	 '	 — 1.20 x 10 - ' cm-'

tilt) II Ill'

We draw attention to the manner in which the anharmonicity

constants have been derived. Equation (41) of Fem€nias [8b]

permits a relation among we2Ee,113 and V4 to be obtained. We have
i

disregarded w„ and extracted w3• It is quite evident that the

contribution of wp greatly risks being of the same order of magni-

tude as that of (5/2)w 3 2 /}110 2 ; consequently, the values obtained in

(39) for the anharmonic effect can only be used as simple, rather

rough orders of magnitude.

TABLE 1. NUMERICAL DATA ON
!-S O- MOLECULE 13,61 (cm-x•)

State

Parameter Afi4„ X'E

D 0.69 x 10 - " 0.59 x 10-"

A, ^.10''
^ 881.6 975.7	 .

X 5.5 4.2

Numerical application results in

mu'(A'(I^.r=0J;.1'2£1,=OJ'1=m""(A'11312r=0";.1''£r=0J)(1-(7.5p(I,0) 	 (40)
+ 7.2p(0, 1)]10-' - (5.7p(I.00J + 1) + 51)(0, I)J'(J'+ 1)]10'')

RETRODUCIBILITY OF THE
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With the lack of any supplementary information on Se t .nd based

on the appearance of our spectra [21], we increase p(i 3 O) and p

(0,1) by 1, and the (1,0) and (0,1) bands appear slightly weaker

than the (0,0) band. Under these conditions, the factor of Herman

and Wallis becomes

F(J,J') = I - 14.7 x 10	 - [5.7J(J + 1) + 5J'(J' + 1)110"6
	

(41)

When a ratio of the line to line intensity is set up, it is

seen in this expression that the difference between the Herman

and Wallis factors in the numerator and denominator is on the

order of magnitude of the coefficients of J(&+1) and J'(JI +1)

multiplied by 4J at the maximum, while retaining only the largest

terms; therefore, if J does not exceed 50, this difference is on

the order of 1% and its effect is negligible, compared with the

observed spin decoupling effect (ratio on the order of 4) which

explains why we have not previously taken account of F(_J,J') in

this type of study [12],. In a "temperature curve," i.e., ln(I(J)/

M( 0 )) vs. J(J+l), where I(J) is the measured intensity of band ,I

(without specifying the line) the correction to be applied, In F(,T,J')

is on the order of In 0.6, for 7=50, thus, 0.5 to the initial value,

which is on the order of 1 for the lines under study. This effect

is large and, accordingly, completely observable. The total lack

of deviation causes us to think that our increase of p(1,0) and p

(0,1) is essential and that it must not be expected that these ratios

ratios are greater than 0.25, such a value giving a scarcely observ-

able (but not observed) deviation, at the limit of our measurements.

The effect of Herman and Wallis [14] is, therefore, quite negligible

in our preceding study of St0 [12].

However, this latter aspect of the calculation brings out, in

a very clear way, the existing interconnection between studies of

position and intensity, and it shows how the remarkable precision

of numerical adjustments of frequencies can be used, to obtain

the advantage of the great sensitivity of the intensities. To
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a

a
minimize the intensity factor error permits the statistical data

to be made more reliable, so that intensities can be derived.

This results in a better understanding of extramolecular phenomena,

such as excitation and collision.

VI. Conclusion

Our entire study has, t`ius, permitted us to set up a method

of calculation of actual diatomic wave functions and intensity

factors, which can be developed to any precision, parallel to the

method of calculation of Hamiltonians [8b].

This method requires practically no prior knowledge, since

n	 the expansion is carried out with wave functions, the analytical

form of which is not defined. Besides, the calculation can be

	

	 ?
i

carried out for any transition between any st `,es or levels. As

to the "mixing coefficients", required for the final calculation,

they can be obtained rather simply, from constants derived from

analysis of rotation, when this analysis has not been carried out

according to actual numerical diagonalization techniques.

t
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