General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
LARGE-EDDY SIMULATION OF A TURBULENT MIXING LAYER

by

N. N. MANSOUR,
J. H. FERZIGER,
and
W. C. Reynolds

(NASA-CR-156575) LARGE-EDDY SIMULATION OF A TURBULENT MIXING LAYER (Stanford Univ.)
210 p HC A10/MF A01

Prepared from work done under Grant
NASA-NgR-05-020-622

Report No. TF-11

Thermosciences Division
Department of Mechanical Engineering
Stanford University
Stanford, California

April 1978
LARGE-EDDY SIMULATION OF A TURBULENT MIXING LAYER

by

N. N. Mansour, J. H. Ferziger, and W. C. Reynolds

Prepared from work done under Grant
NASA-NgR-05-020-622

Technical Report Number TF-11

Thermosciences Division
Department of Mechanical Engineering
Stanford University
Stanford, California

April 1978
Acknowledgments

The authors gratefully acknowledge the many useful discussions and contributions of Mr. P. Moin. We are indebted to Dr. U. B. Mehta for helping get this work started and familiarizing the senior author with the computation facility at NASA-Ames Research Center. Dr. A. Leonard made numerous suggestions and corrections to the manuscript which the authors gratefully acknowledge.

The senior author is indebted to the National Council for Scientific Research (Lebanon) for its support at the initial stages of his graduate studies.

The diligent efforts and editing of Ms. Ruth Korb resulted in a superb job of preparation of the final copy. This work was supported by NASA-Ames Research Center under Grant NASA-NgR-05-020-622.
Abstract

The three-dimensional, time-dependent (incompressible) vorticity equations have been used to simulate numerically the decay of isotropic box turbulence and time-developing mixing layers. The vorticity equations are spatially filtered to define the large-scale turbulence field, and the subgrid scale turbulence is modeled. A general method has been developed to show numerical conservation of momentum, vorticity, and energy that is much simpler than previous methods and is widely applicable. The terms that arise from filtering the equations have been treated (for both periodic boundary conditions and no-stress boundary conditions) in a fast and accurate way by using fast Fourier transforms. Use of vorticity as the principal variable is shown to produce results equivalent to those obtained by use of the primitive variable equations.

A new subgrid scale model is used in conjunction with the vorticity equations and is shown to produce results that compare well with the experimental results. The new model offers advantages both in computational speed and in storage.

The vortex-pairing mechanism, observed in the spatially developing counterpart of the time-developing mixing layer, has been simulated numerically. It is interesting to note that with simply two vortices pairing, self-similar mean velocity and mean turbulence intensity profiles are obtained. The vortex-pairing mechanism is shown to be persistent even with the presence of large-amplitude, three-dimensional background turbulence. A number of different initial fields have been studied. The presence of large organized structures, in the initial conditions, is shown to be essential in order to predict growth rates of the mixing layers comparable to those observed experimentally. The rate of growth is found to be very dependent on the initial field, a fact also observed experimentally.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xiii</td>
</tr>
<tr>
<td>Chapter 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Experimental Background</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Motivation and Objectives</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Overview</td>
<td>6</td>
</tr>
<tr>
<td>Chapter 2 THEORETICAL FOUNDATIONS</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Definitions of the Large and Subgrid Scales</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Dynamical Equations in Vorticity Form</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Subgrid Scale Models</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1 Model ω-1</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2 Model ω-2</td>
<td>12</td>
</tr>
<tr>
<td>2.4 Filtering</td>
<td>13</td>
</tr>
<tr>
<td>2.4.1 Sharp Cut-off (SCK) Filter</td>
<td>13</td>
</tr>
<tr>
<td>2.4.2 Gaussian (GS) Filter</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Computing Velocity Field from the Vorticity Field</td>
<td>14</td>
</tr>
<tr>
<td>2.6 Summary</td>
<td>15</td>
</tr>
<tr>
<td>Chapter 3 NUMERICAL METHOD</td>
<td>17</td>
</tr>
<tr>
<td>3.1 Notations</td>
<td>17</td>
</tr>
<tr>
<td>3.2 Numerical Approximation</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1 Fourth-Order Scheme</td>
<td>18</td>
</tr>
<tr>
<td>3.2.2 Pseudo-Spectral Method</td>
<td>20</td>
</tr>
<tr>
<td>3.3 Time Differencing</td>
<td>25</td>
</tr>
<tr>
<td>3.4 Conservation Properties</td>
<td>25</td>
</tr>
<tr>
<td>3.5 Differentiated Vorticity Equations</td>
<td>29</td>
</tr>
<tr>
<td>3.6 Poisson Equation</td>
<td>30</td>
</tr>
<tr>
<td>3.7 Numerical Filtering</td>
<td>31</td>
</tr>
<tr>
<td>3.8 Summary</td>
<td>34</td>
</tr>
<tr>
<td>Chapter 4 DECAY OF ISOTROPIC TURBULENCE</td>
<td>36</td>
</tr>
<tr>
<td>4.1 Background</td>
<td>36</td>
</tr>
<tr>
<td>4.2 Initial Conditions</td>
<td>36</td>
</tr>
<tr>
<td>4.3 Selection of C_v</td>
<td>37</td>
</tr>
<tr>
<td>4.4 Results</td>
<td>37</td>
</tr>
<tr>
<td>4.4.1 Fourth-Order Finite Differences</td>
<td>38</td>
</tr>
<tr>
<td>4.4.2 Pseudo-Spectral Method</td>
<td>38</td>
</tr>
<tr>
<td>4.5 Computational Details</td>
<td>39</td>
</tr>
<tr>
<td>Chapter</td>
<td>MIXING LAYER: TWO-DIMENSIONAL COMPUTATIONS</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>Preview</td>
</tr>
<tr>
<td></td>
<td>Some Experimental Results</td>
</tr>
<tr>
<td>5.3</td>
<td>Boundary Conditions</td>
</tr>
<tr>
<td>5.4</td>
<td>Initial Conditions</td>
</tr>
<tr>
<td>5.5</td>
<td>Mesh Size Selection</td>
</tr>
<tr>
<td>5.6</td>
<td>Selection of β</td>
</tr>
<tr>
<td>5.7</td>
<td>Mean Velocity Profiles</td>
</tr>
<tr>
<td>5.8</td>
<td>Mean Turbulence Intensity Profiles</td>
</tr>
<tr>
<td>5.9</td>
<td>Summary</td>
</tr>
<tr>
<td>6</td>
<td>MIXING LAYER: THREE-DIMENSIONAL COMPUTATIONS</td>
</tr>
<tr>
<td>6.1</td>
<td>Preview</td>
</tr>
<tr>
<td>6.2</td>
<td>Boundary Conditions and Mesh-Size Selection</td>
</tr>
<tr>
<td>6.3</td>
<td>Initial Conditions</td>
</tr>
<tr>
<td>6.4</td>
<td>Momentum Thickness</td>
</tr>
<tr>
<td>6.5</td>
<td>Mean Velocity Profiles</td>
</tr>
<tr>
<td>6.6</td>
<td>Mean Turbulence Intensity Profiles</td>
</tr>
<tr>
<td>6.7</td>
<td>Vorticity Contours</td>
</tr>
<tr>
<td>6.8</td>
<td>Two-Point Correlations</td>
</tr>
<tr>
<td>6.9</td>
<td>Summary and Conclusions</td>
</tr>
<tr>
<td>7</td>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
</tr>
</tbody>
</table>

References ... 63

Appendix

A	Subgrid Scale Models for the Vorticity Equations	136
B	Fast Discrete Sine Transform (FDST); Fast Discrete Cosine Transform (FDCT)	138
C	Effect of a Sinusoidal Vorticity Perturbation on a Uniform Vortex Array	140
1.	Initial Conditions	140
2.	Results	140
D	Interactions Between Streamwise and Spanwise Vorticity	142
1.	Initial Conditions	142
2.	Results	142
E	Computer Program Written to Calculate Turbulent Mixing Layers	160
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Experimental Results</td>
<td>67</td>
</tr>
<tr>
<td>4.1 Computations of the Decay of Isotropic Turbulence</td>
<td>75</td>
</tr>
<tr>
<td>6.1 Three-Dimensional Computations of Turbulent Mixing Layers</td>
<td>103</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>69</td>
</tr>
<tr>
<td>1.2</td>
<td>70</td>
</tr>
<tr>
<td>2.1</td>
<td>71</td>
</tr>
<tr>
<td>2.2</td>
<td>72</td>
</tr>
<tr>
<td>3.1</td>
<td>73</td>
</tr>
<tr>
<td>3.2</td>
<td>74</td>
</tr>
<tr>
<td>4.1</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>79</td>
</tr>
<tr>
<td>4.5</td>
<td>80</td>
</tr>
<tr>
<td>4.6</td>
<td>81</td>
</tr>
<tr>
<td>4.7</td>
<td>82</td>
</tr>
<tr>
<td>5.1</td>
<td>83</td>
</tr>
<tr>
<td>5.2</td>
<td>84</td>
</tr>
<tr>
<td>5.3</td>
<td>85</td>
</tr>
<tr>
<td>5.4</td>
<td>86</td>
</tr>
<tr>
<td>5.5</td>
<td>87</td>
</tr>
<tr>
<td>Figure</td>
<td>Contour plots of the spanwise vorticity ($\tilde{\omega}2$) for $\beta = \frac{6}{16}$, at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\tilde{\omega}{2,\text{max}} = 0.702$)</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>5.6a</td>
<td></td>
</tr>
<tr>
<td>5.6b</td>
<td>Contour plots of the spanwise vorticity ($\tilde{\omega}2$) for $\beta = \frac{5}{16}$, at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\tilde{\omega}{2,\text{max}} = 0.564$)</td>
</tr>
<tr>
<td>5.6c</td>
<td>Contour plots of the spanwise vorticity ($\tilde{\omega}2$) for $\beta = \frac{4}{16}$, at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\tilde{\omega}{2,\text{max}} = 0.444$)</td>
</tr>
<tr>
<td>5.6d</td>
<td>Contour plots of the spanwise vorticity ($\tilde{\omega}2$) for $\beta = \frac{3}{16}$, at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels ($\tilde{\omega}{2,\text{max}} = 0.421$)</td>
</tr>
<tr>
<td>5.6e</td>
<td>Contour plots of the spanwise vorticity ($\tilde{\omega}2$) for $\beta = \frac{2}{16}$, at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\tilde{\omega}{2,\text{max}} = 0.416$)</td>
</tr>
<tr>
<td>5.6f</td>
<td>Contour plots of the spanwise vorticity ($\tilde{\omega}2$) for $\beta = \frac{1}{16}$, at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\tilde{\omega}{2,\text{max}} = 0.415$)</td>
</tr>
<tr>
<td>5.7a</td>
<td>Contour plots of the spanwise vorticity ($\tilde{\omega}2$) for $\beta = \frac{6}{16}$, at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\tilde{\omega}{2,\text{max}} = 0.394$)</td>
</tr>
<tr>
<td>5.7b</td>
<td>Contour plots of the spanwise vorticity ($\tilde{\omega}2$) for $\beta = \frac{5}{16}$, at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\tilde{\omega}{2,\text{max}} = 0.358$)</td>
</tr>
<tr>
<td>5.7c</td>
<td>Contour plots of the spanwise vorticity ($\tilde{\omega}2$) for $\beta = \frac{4}{16}$, at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\tilde{\omega}{2,\text{max}} = 0.322$)</td>
</tr>
<tr>
<td>5.7d</td>
<td>Contour plots of the spanwise vorticity ($\tilde{\omega}2$) for $\beta = \frac{3}{16}$, at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\tilde{\omega}{2,\text{max}} = 0.276$)</td>
</tr>
</tbody>
</table>
List of Figures (cont.)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7e</td>
<td>Contour plots of the spanwise vorticity ($\bar{\omega}2$) for $\beta = 2/16$, at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\bar{\omega}{2,max} = 0.248$)</td>
<td>98</td>
</tr>
<tr>
<td>5.7f</td>
<td>Contour plots of the spanwise vorticity ($\bar{\omega}2$) for $\beta = 1/16$, at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\bar{\omega}{2,max} = 0.245$)</td>
<td>99</td>
</tr>
<tr>
<td>5.8</td>
<td>Mean velocity profiles. Two-dimensional computations ($\beta = 3/16$)</td>
<td>100</td>
</tr>
<tr>
<td>5.9</td>
<td>Mean turbulence intensity profiles. Two-dimensional computations ($\beta = 3/16$)</td>
<td>101</td>
</tr>
<tr>
<td>6.1</td>
<td>Three-dimensional computation box. Random velocity setup and coordinate system</td>
<td>102</td>
</tr>
<tr>
<td>6.2</td>
<td>Non-dimensional momentum thickness ($1/\theta$) as a function of time. Three-dimensional computations</td>
<td>103</td>
</tr>
<tr>
<td>6.3</td>
<td>Non-dimensional momentum thickness ($1/\theta_{in}$) as a function of time</td>
<td>104</td>
</tr>
<tr>
<td>6.4a</td>
<td>Mean velocity profiles. Three-dimensional computation (case a)</td>
<td>105</td>
</tr>
<tr>
<td>6.4b</td>
<td>Mean velocity profiles. Three-dimensional computation (case b)</td>
<td>106</td>
</tr>
<tr>
<td>6.4c</td>
<td>Mean velocity profiles. Three-dimensional computations (case c)</td>
<td>107</td>
</tr>
<tr>
<td>6.5</td>
<td>Integral of the turbulence energy as a function of time</td>
<td>108</td>
</tr>
<tr>
<td>6.6a</td>
<td>Mean turbulence intensity profiles. Three-dimensional computations (case a)</td>
<td>109</td>
</tr>
<tr>
<td>6.6b</td>
<td>Mean turbulence intensity profiles. Three-dimensional computations (case b)</td>
<td>110</td>
</tr>
<tr>
<td>6.6c</td>
<td>Mean turbulence intensity profiles. Three-dimensional computations (case c)</td>
<td>111</td>
</tr>
<tr>
<td>6.7</td>
<td>Mean turbulence intensity profiles. Three-dimensional computation ($C_v = 0$)</td>
<td>112</td>
</tr>
<tr>
<td>6.8</td>
<td>Integral of the turbulence energy as a function of time</td>
<td>113</td>
</tr>
</tbody>
</table>
List of Figures (cont.)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9a</td>
<td>Contour plots of the spanwise vorticity ($\overline{\omega}2$) in an x-z plane, at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels ($\omega{z,\text{max}} = 0.228$)</td>
</tr>
<tr>
<td>6.9b</td>
<td>Contour plots of the spanwise vorticity ($\overline{\omega}_2$) for different x-z planes, at time $T = 0$. In each plane, constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels</td>
</tr>
<tr>
<td>6.9c</td>
<td>Contour plots of the spanwise vorticity ($\overline{\omega}_2$) for different x-z planes, at time $T = 0$. In each plane, constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels</td>
</tr>
<tr>
<td>6.10a</td>
<td>Contour plots of the spanwise vorticity ($\overline{\omega}2$) in an x-z plane, at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels ($\omega{z,\text{max}} = 0.185$)</td>
</tr>
<tr>
<td>6.10b</td>
<td>Contour plots of the spanwise vorticity ($\overline{\omega}_2$) for different x-z planes, at time $T = 16.78$. In each plane, constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels</td>
</tr>
<tr>
<td>6.10c</td>
<td>Contour plots of the spanwise vorticity ($\overline{\omega}_2$) for different x-z planes, at time $T = 16.78$. In each plane, constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels</td>
</tr>
<tr>
<td>6.11a</td>
<td>Two point correlations ($z = 17$ is the center plane of the mixing layer, $\Delta z/\theta_{\text{in}} = 1.023$; case a)</td>
</tr>
<tr>
<td>6.11b</td>
<td>Two-point correlations ($z = 17$ is the center plane of the mixing layer, $\Delta z/\theta_{\text{in}} = 1.023$; case b)</td>
</tr>
<tr>
<td>6.11c</td>
<td>Two-point correlations ($z = 17$ is the center plane of the mixing layer, $\Delta z/\theta_{\text{in}} = 1.023$; case c)</td>
</tr>
<tr>
<td>7.1</td>
<td>Formation of streamwise cellular structures in a mixing layer</td>
</tr>
<tr>
<td>C.1</td>
<td>Non-dimensional momentum thickness ($\theta/\theta_{\text{in}}$) as a function of time for various C_2/C_1</td>
</tr>
<tr>
<td>C.2</td>
<td>Mean velocity profiles ($C_2/C_1 = 0.1$)</td>
</tr>
<tr>
<td>C.3</td>
<td>Mean turbulence intensity profiles ($C_2/C_1 = 0.1$)</td>
</tr>
</tbody>
</table>
List of Figures (cont.)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1</td>
<td>Contour plots of the streamwise vorticity (ω_1) at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels.</td>
<td>148</td>
</tr>
<tr>
<td>D.2</td>
<td>Non-dimensional momentum thickness (θ/θ_{in}) as a function of time.</td>
<td>149</td>
</tr>
<tr>
<td>D.3a</td>
<td>Mean velocity profiles (case a).</td>
<td>150</td>
</tr>
<tr>
<td>D.3b</td>
<td>Mean velocity profiles (case b).</td>
<td>151</td>
</tr>
<tr>
<td>D.4a</td>
<td>Mean turbulence intensity profiles (case a).</td>
<td>152</td>
</tr>
<tr>
<td>D.4b</td>
<td>Mean turbulence intensity profiles (case b).</td>
<td>153</td>
</tr>
<tr>
<td>D.5a</td>
<td>Contour plots of the spanwise vorticity (ω_2) in an x-z plane ($y/\theta_{in} = 4.09$), at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case a).</td>
<td>154</td>
</tr>
<tr>
<td>D.5b</td>
<td>Contour plots of the spanwise vorticity (ω_2) in an x-z plane ($y/\theta_{in} = 4.09$), at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case b).</td>
<td>155</td>
</tr>
<tr>
<td>D.6a</td>
<td>Contour plots of the streamwise vorticity (ω_1) in an x-z plane ($y/\theta_{in} = 4.09$), at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels (case a).</td>
<td>156</td>
</tr>
<tr>
<td>D.6b</td>
<td>Contour plots of the streamwise vorticity (ω_1) in an x-z plane ($y/\theta_{in} = 4.09$), at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels (case b).</td>
<td>157</td>
</tr>
<tr>
<td>D.7</td>
<td>Projection of the vorticity vector in an x-z plane ($y/\theta_{in} = 4.09$) at time $T = 16.78$.</td>
<td>158</td>
</tr>
<tr>
<td>D.8</td>
<td>Contour plots of the spanwise vorticity (ω_2) in a y-z plane ($x/\theta_{in} = 9.55$), at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels ($\omega_{2,max} = 0.714$).</td>
<td>159</td>
</tr>
</tbody>
</table>
Nomenclature

A Integral of the Gaussian filter

A_i Integral of the Gaussian filter in the i-direction

c_v Subgrid scale constant

$E(k)$ Filtered energy spectrum

f, g Flow variables

f, g Filtered (large-scale) components of flow variables

f', g' Subgrid scale components of flow variables

$G(x)$ Filter function

$\hat{G}(k)$ Fourier transform of the filter function

$G_d(x)$ Discretized filter in real space

$\hat{G}_d(k)$ Discretized filter in k-space.

h Mesh size in any given direction

h_i Mesh size in the i-direction

k Wave number

k_i Wave number in the i-direction

k'_i Modified wave number in the i-direction

k_c Cut-off wave number

L Length scale of large eddies

L Length of computational box in any given direction

L_i Length of computational box in the i-direction

M Size of the experimental turbulence-generating grid

N Number of mesh points in any given direction

N_i Number of mesh points in the i-direction

q r.m.s. velocity

$r \equiv \frac{u_2}{u_1}$ velocity ratio
\[R_T = \frac{\rho U^2}{\nu}, \text{ Reynolds number based on large eddy length} \]
\[R_\lambda = \frac{\rho U^2}{\nu}, \text{ Reynolds number based on Taylor micro-scale} \]
\[S \text{ Scalar} \]
\[S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right), \text{ strain rate tensor} \]
\[T = \text{Non-dimensional time} \]
\[\frac{U_o t}{M}, \text{ decay of isotropic turbulence} \]
\[\frac{\delta u_t}{\delta t}, \text{ mixing layer} \]
\[t \text{ Real time} \]
\[u_i \text{ Velocity in the i-direction} \]
\[\overline{u_i} \text{ Filtered velocity in the i-direction} \]
\[u'_i \text{ Subgrid scale velocity in the i-direction} \]
\[u_1 \text{ Velocity of high-speed side} \]
\[u_2 \text{ Velocity of low-speed side} \]
\[V \text{ General vector} \]
\[V_i \text{ Component of a general vector in the i-direction} \]
\[W_{ij} \text{ Curl of subgrid scale stress} \]
\[x \text{ Streamwise coordinate} \]
\[x_o \text{ Virtual origin of a mixing layer} \]
\[y \text{ spanwise coordinate} \]
\[z \text{ Cross-flow coordinate} \]

Greek letters

\[\Delta \text{ Filter width (= 2h) in any direction} \]
\[\Delta_i \text{ Filter width in the i-direction} \]
\[\Delta u = u_1 - u_2 \text{ velocity difference} \]
\[\varepsilon \text{ Total energy dissipation} \]
\[\varepsilon_{ijk} \text{ The completely anti-symmetric tensor of rank 3} \]
\[\eta = \frac{z}{(x-x_0)} \] self-similarity coordinate

\[\gamma \] Constant \((= 6)\) in Gaussian filter

\[\lambda \] Taylor microscale

\[\nu_T \] Eddy viscosity

\[\omega_i = \varepsilon_{pq} \frac{\partial}{\partial x_p} u_q \] vorticity component in the \(i\)-direction

\[\overline{\omega}_i \] Filtered vorticity component in the \(i\)-direction

\[\omega'_i \] Subgrid scale vorticity component in the \(i\)-direction

\[\psi_i \] Component of vector potential in the \(i\)-direction

\[\rho \] Density

\[\tau_{ij} = \frac{u'_iu'_j + u'_iu'_i + u'_j u'_j - \frac{1}{3} (u'_i u'_i + 2u'_j u'_j) \delta_{ij}}{\sigma} \] Spread parameter

\[\sigma_0 \] Spread parameter for \(r = 0\)

\[\theta \] Momentum thickness

\[< >_{xy} \] Horizontal planar average

Arguments
\((i,j,k)\) Computational mesh index for \((x,y,z)\)

Superscripts
\((n)\) Time step
Chapter 1

INTRODUCTION

1.1 Background

Turbulent flows have been the subject of experimental and theoretical investigations since the last century. Despite the formidable amount of effort invested in this field, our ability to predict flows of technical importance remains severely limited. The major difficulty encountered by the theoretical investigations arises from the nonlinear character of the equations of motion. Statistical averages of the equations of motion give rise to the so-called Reynolds stresses. The equations for the Reynolds stresses in turn give rise to higher-order statistical quantities, and so on. The usual approach to computing turbulent flows is to model the terms that arise from the nonlinear character of the equations of motion. This approach usually requires a great deal of experimental information.

We know the underlying physical principles of most fluid flows, and the quantities of interest are completely determined by known equations. With the introduction of large computers, three-dimensional, time-dependent computation of turbulent flows has become possible. However, in order to resolve all the scales of motion even in the simplest turbulent flow, namely, the isotropic homogeneous case, Kwak et al. (1975) estimated the number of mesh points needed in any given direction to be

\[N = R_T^{3/4} \]

(1.1)

where

\[R_T = \frac{q \zeta}{\nu} \]
\[\nu = \text{kinematic viscosity}, \]
\[\zeta = \text{length scale of large eddies}, \]
\[q = \text{r.m.s. velocity}. \]

Equation (1.1) shows that one can do a full simulation only at very low Reynolds number. Indeed, Clark et al. (1977), using a $64 \times 64 \times 64$ mesh system, were able to solve the isotropic homogeneous turbulence
problem for $R_\lambda = q\lambda/\nu = 38.1$, where λ is the Taylor microscale. Their predicted results compared well with the experimental results. However, turbulent flows of technical importance have much higher Reynolds numbers, and all the scales of motion cannot be resolved for these flows.

One of the more promising approaches to solving turbulence problems is "large-eddy simulation". In large-eddy simulation, one calculates the large-scale turbulent motions with a relatively coarse time-dependent, three-dimensional computation that uses some sort of model (the "subgrid scale model") for the small scales. The basic motivations for this approach are twofold. First, experimental observations of turbulent flows show that the large turbulent structures differ markedly from one flow type to another (e.g., jet vs. boundary layer), but the small-scale turbulent structures are quite similar. Thus, while there is little hope of concocting a "universal" model for the large structures, it may be possible to do so for the small-scale motions. Second, as computer capabilities grow, our capability of resolving smaller scales will grow and the effects of the subgrid scale model will diminish. Thus, while we are limited to simple flows with the present computer capabilities, large-eddy simulation is a tool that may be used on future generation computers.

Kwak et al. (1975) and Shaanan et al. (1975) have shown that homogeneous turbulent flows can be simulated reasonably well with a relatively small number of mesh points ($16 \times 16 \times 16$). Orszag and Pao (1974), using a $32 \times 32 \times 32$ mesh system, predicted the momentumless wake of a self-propelled body. Deardorff (1970) and Schuman (1973) computed the central region of a plane channel flow using the large-eddy simulation approach. While Deardorff and Schumann did not handle the wall (no slip) problem, Moin et al. (1978) have solved the channel flow problem, including the laminar sublayer. In this work we shall study the time-developing, two-stream mixing layer.

Previous works on prediction of the two-stream mixing layer have concentrated on the initial stages (roll-up) of the development of the layer. Patnaik et al. (1976), starting with an initial distribution that is an unstable eigensolution of the Taylor-Goldstein equation, predicted the two-dimensional roll-up of a stably stratified horizontal mixing layer. Another method that has been used to compute the mixing layer in two
dimensions is the vortex-tracing method used by Ashurst (1977). This method suffers from high computational costs and ad-hoc assumptions concerning the effects of viscosity. The high computational cost of the vortex-tracing method can be reduced by using the vortex-in-cell method (Wang, 1977). These works have treated two-dimensional cases, but the mixing layer exhibits three-dimensionality. This is apparent from the shadowgraph pictures of Brown and Roshko (1974) and the spanwise velocity fluctuation measurements of Spencer and Jones (1971).

1.2 Experimental Background

The two-dimensional turbulent mixing layer plays an essential role in many technological problems. For example, the initial regions of planar jets can be approximated as two independent, two-dimensional mixing layers. Flow over a backward-facing step (with a large step height) is another example of the two-dimensional mixing layer. Many other flow situations can be identified with the mixing layer. In combustion processes, fluid mechanics plays a major role in mixing the reactants, and better understanding of turbulent mixing is needed. The mixing layer is perhaps the simplest situation in which two flows come into contact; obviously the ability to analyze simple problems is necessary before one can analyze more complicated ones.

In 1947, Liepmann and Laufer studied the mixing layer and established the general features of the flow. However, the fundamental understanding of the structure of the flow is still far from complete, and many controversial questions need to be answered. We shall address some of these questions. The reader is referred to Murthy (1975) for an extensive review and interpretation of the available literature on the mixing layer. With the advancement of the techniques of hot-wire anemometry, Wygnanski and Fiedler (1970) attempted to reproduce Liepmann and Laufer data and extend it to include other measurements. However, differences in intensity levels and rate of growth of the layer emerged. These differences were attributed to the presence of a trip wire in the Wygnansky and Fiedler experiment that was not used by Liepmann and Laufer. Batt (1975) studied both configurations and showed that the differences are due to the tripping of the layer. Foss (1977) investigated the effects of the
laminar/turbulent boundary layer states on the development of a plane mixing layer. He found that the development of the layer is dependent on the initial conditions (the status of the boundary layers before the two streams merge). Figs. 1.1 and 1.2 show r.m.s. fluctuations of the streamwise velocity and the mean velocity profiles obtained by Foss. These figures show that different self-similar stages are obtained for different initial conditions. Foss argues that this is due to the sensitivity of choosing the virtual origin of the mixing layer \(x_0 \) and that the character of the (initial) disturbance, not its amplitude, is responsible for the substantial effect on the virtual origin. More recently, Oster et al. (1977) showed that by oscillating the initial conditions of the mixing layer they can more than double the growth rate of the layer. The effect depends on the frequency and amplitude of the oscillations introduced. These experimental results show that the "universality" of the self-similar stage of the mixing layer is in doubt, at least up to \(Re = 1.5 \times 10^6 \). Fiedler and Thies (1977) showed that the two-dimensional shear layer only slowly reaches a self-similar state and that every disturbance is of long influence. Table 1.1 shows tabulated results extracted from the Fiedler and Thies paper, and it can be clearly seen that different experiments predict different growth rate of the layer.

Winant and Browand (1974), using dye visualization in a mixing layer, observed that initially the fluid rolls up into discrete, two-dimensional vortical structures. These structures then interact by rolling around each other to form a single larger structure. This pairing process controls the growth of their mixing layer. Brown and Roshko (1974) also observed the amalgamation process at Reynolds number \(2.5 \times 10^5 \). Chandrsuda and Bradshaw (1975) argue that the two-dimensional, large-eddy structure observed by Brown and Roshko is unlikely to survive indefinitely if the ambient entrained fluid is weakly turbulent. They advance the argument: "It is probable that if the Brown and Roshko type of orderly structure is once formed it can last for a large number of characteristic wavelengths -- that is, up to high Reynolds numbers based on streamwise distance -- but not indefinitely. The question can be settled only by measurements in a two-stream mixing layer at a much higher Reynolds number than was used by Brown and Roshko." Dimotakis and Brown (1976) showed the existence of
large structures at Reynolds number $= 3 \times 10^6$ and attributed the growth of the mixing layer to both pairing and "tearing". Tearing is described in their paper as an event where "a large structure will occasionally find itself in the vicinity of another, or in between two others, in whose straining field it disintegrates." The tearing process was first advanced by Moore and Saffman (1975) on the basis of exact solutions for uniform vortices in straining fields.

1.3 Motivation and Objectives

In many flows of practical interest there are interactions between irrotational regions and turbulent regions. Examples of such flows are the shear layer, turbulent jets, and turbulent boundary layers with irrotational free stream flow. In such flows, the regions are separated by a very thin superlayer across which there is normally a jump in the vorticity components parallel to the layer. The dynamical equations for the vorticity seem to be suited to simulate such flows, since the vorticity is identically zero in the irrotational region. However, previous workers used the dynamical equations in the primitive variables (velocity, pressure) and there has been doubt (Orszag and Israeli, 1974) that the vorticity equations could be used to solve turbulent flow problems. Our objectives were therefore as follows:

- To explore the feasibility of using the vorticity equation to simulate turbulent flows.
- To find a subgrid scale model appropriate to the vorticity equations and to determine any constants in this model.
- To simulate a turbulent flow with interactions between turbulent regions and non-turbulent irrotational regions; we chose the mixing layer.

In order to use the three-dimensional, time-dependent vorticity equations, we need to develop a numerical approximation based on these equations that conserves mass, momentum, vorticity, and energy. We also need to assess numerical finite-difference methods and, in particular, the fourth-order and pseudo-spectral methods.
1.4 Overview

The equations of motion of the large eddies are derived by averaging (filtering) the vorticity equations in space. In Chapter 2, we describe the approach to solving turbulent flow problems that is called large-eddy simulation. We show that the use of a filter that is smooth in the real space is required to handle rotational-irrotational regions. We present a new subgrid scale model to be used in conjunction with the vorticity equations that is much simpler and faster than the one that would be obtained from the more commonly used Smagorinsky model.

In Chapter 3, we describe the numerical methods used in this work, briefly discussing the fourth-order and pseudo-spectral approximations and numerical filtering. We develop a numerical approximation to the vorticity equation that conserves mass, momentum, vorticity, and energy, and a method of deriving conservation properties that is much simpler than previous methods and is widely applicable. We present a new treatment of the filtered convective and stretching terms that is more accurate and faster than previously used methods.

In Chapter 4, the isotropic homogeneous turbulence problem is solved using both fourth-order differencing and the pseudo-spectral approximation. The numerical approximations to the partial derivatives of the subgrid scale model are discussed. We show that the use of the vorticity equation to solve turbulent flow problems is feasible and that the new model produces results equivalent to those produced by previously established models.

In Chapter 5, we discuss the two-dimensional computation of a mixing layer. An array of vortices is perturbed, and the momentum thickness growth rate is discussed as a function of the perturbation. It is interesting to note that self-similar, mean velocity and turbulence intensity profiles are obtained with vortex pairing.

In Chapter 6 a three-dimensional computation of a turbulent mixing layer is studied. It is found that the presence of large structures in the initial conditions is essential for the successful prediction of turbulent mixing layers. Our studies of different initial conditions produce different growth rates of the layer -- a fact supported experimentally. Self-similar, mean-velocity profiles are obtained with different flow structures. However, turbulence intensity profiles show a rapid decay when
large turbulent structures are not present. We show that our subgrid scale model inhibits the production of turbulent fluctuations when we start with random turbulent fluctuations added to a mean velocity profile, i.e., the model is incapable of handling transitional flows, with present computational limitations.
Chapter 2
THEORETICAL FOUNDATIONS

2.1 Definitions of the Large and Subgrid Scales

In the previous chapter it was shown that, due to computer limitations, one cannot do a full simulation of the dynamical equations of turbulent fluid motion except at extremely low Reynolds numbers. We pointed out that the large-scale turbulent structures differ markedly from one flow to another (e.g., jet vs boundary layer), while the small-scale turbulent structures are quite similar, and that large-eddy simulation is a promising approach.

In the large-eddy simulation approach, the first and most fundamental step is defining the large-scale field. A general approach that recognizes the continuous nature of the flow variables is the "filter function" approach of Leonard (1973). If \(f \) is some flow variable, we can decompose it as follows:

\[
f = \overline{f} + f'
\]

where \(\overline{f} \) is the large-scale (filtered) component and \(f' \) is the residual field. Leonard defined the filtered field by:

\[
\overline{f} = \int G(x-x') f(x') \, dx'
\]

where \(G(x-x') \) is the filter function, and the integral is extended over the whole flow field. One can think of \(\overline{f} \) as a local spatial-averaged field.

It can be shown that if \(G \) is piecewise continuously differentiable and \(G(r) \) goes to zero as \(r \to \infty \) and is integrable over an infinite domain, then

\[
\frac{\partial \overline{f}}{\partial x} = \frac{\partial f}{\partial x}
\]
Properties (2.3a) and (2.3b) will be used in deriving the dynamical equations of the large scales motion.

2.2 Dynamical Equations in Vorticity Form

In Chapter 1, we pointed out that in many flows of practical interest there are interactions between irrotational regions and rotational turbulent regions. Examples of such flows are shear layers, turbulent jets, and turbulent boundary layers with irrotational free streams. In such flows the regions are separated by a very thin superlayer across which there is normally a jump in the vorticity parallel to the layer. These flows are a challenge to the experimentalist; the difficulties arise from the fact that it is hard to determine the region of the flow in which the measurements are made. One faces a similar problem in trying to simulate such flows numerically. The difficulty arises from the fact discussed earlier, that it is impossible to capture all of the scales of motion in the turbulent region. The best we can do is to filter the dynamical equations to obtain equations that describe the behavior of the large eddies, and to model the small scales. Since in the irrotational region the vorticity is identically zero, the dynamical equations for the vorticity seem to be suited to simulate such flows.

Now let us derive the dynamical equations for the large-scale vorticity field. For an incompressible fluid with constant viscosity, the equations of motion for the primitive variables may be written:

\[
\frac{\partial u_i}{\partial t} - \varepsilon_{ijk} u_j \omega_k = - \frac{3}{\rho} \left(\frac{P}{\rho} - \frac{1}{2} u_i u_i \right) - \nu \varepsilon_{ijk} \frac{\partial}{\partial x_j} \omega_k \quad (2.4)
\]

\[
\frac{\partial u_i}{\partial x_i} = 0 \quad (2.5)
\]

The vorticity equation is obtained by taking the curl of Eqn. (2.4). Operating on it with \(\varepsilon_{pq} \frac{\partial}{\partial x_q} \) gives:
\[\frac{\partial}{\partial t} \omega_i + \frac{\partial}{\partial x_j} (u_j \omega_i - u_i \omega_j) = \nu \frac{\partial^2 \omega_i}{\partial x_i \partial x_j} \] \hspace{1cm} (2.6)

Multiplying Eqn. (2.6) by a filtering function \(G(x-x') \) and integrating over the whole flow field, we obtain:

\[\frac{\partial}{\partial t} \omega_i + \frac{\partial}{\partial x_j} (u_j \omega_i - u_i \omega_j) = \nu \frac{\partial^2 \omega_i}{\partial x_i \partial x_j} \] \hspace{1cm} (2.7)

The fact that a finite-difference approximation of Eqn. (2.7) would involve approximating higher derivatives of the velocity than would be the case with the primitive equations (Orszag and Israeli, 1974) need not worry us in this case. Since the equations are filtered, we shall be dealing with smooth functions.

As can be expected, when averaging nonlinear equations, we run into the closure problem; i.e., we need to express the quantities \(\overline{u_j \omega_i} \) and \(\overline{u_i \omega_j} \) in terms of \(\overline{u} \) and \(\overline{\omega} \). Expanding \(u \) and \(\omega \) as in Eqn. (2.1), one obtains

\[\overline{u_j \omega_i - u_i \omega_j} = \bar{u} \bar{\omega}_i - \bar{u} \bar{\omega}_j + W_{ij} \] \hspace{1cm} (2.8)

where

\[W_{ij} = \bar{u}_j \omega'_i + u'_j \omega_i - \bar{u}_i \omega'_j - u'_i \omega_j - u'_j \omega'_i + u'_i \omega'_j \] \hspace{1cm} (2.9)

We note that \(W_{ij} \) contains subgrid scale quantities and hence must be modeled.

2.3 Subgrid Scale Models

We first note that the model of \(W_{ij} \) should satisfy the following necessary conditions:

1. Antisymmetry, since \(W_{ij} \) is an antisymmetric tensor and therefore

\[\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} W_{ij} = 0 \] \hspace{1cm} (2.10)

It is important to preserve the antisymmetry property of \(W_{ij} \) in order to assure \(\partial \omega_i / \partial x_j = 0 \), since the dynamical equations for the
vorticity do not contain a pressure-like term which could be used to adjust the divergence of the vorticity.

2. It should vanish in an irrotational region, since W_{ij} vanishes in such regions.

3. It should be an energy sink, since it represents subgrid-scale effects.

2.3.1 Model $\omega - 1$

Previous workers (Kwak et al., 1975; Shaanan et al., 1975), working with the filtered dynamical equations in the primitive variables, used an eddy-viscosity model for their subgrid-scale model. They modeled the term:

$$
\tau_{ij} = \frac{1}{2} (u_i u'_j + u'_i u_j) - \frac{1}{3} (u'_i u'_k + u'_k u'_j) \delta_{ij}
$$

by setting

$$
\tau_{ij} = -2\nu_T \overline{S}_{ij}
$$

where

$$
\overline{S}_{ij} = \frac{1}{2} \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right)
$$

is the strain rate tensor of the filtered field and ν_T is an eddy viscosity associated with the subgrid-scale motions.

Smagorinsky (1963) suggested a model for ν_T

$$
\nu_T = (C_s \Lambda)^2 \left(\frac{\overline{S}_{ij} \overline{S}_{ij}}{2} \right) \frac{1}{2}
$$

where C_s is a constant and Λ is the filter width. We note that in a non-turbulent region this model of ν_T may have a non-zero value, and hence it may give rise to residual stresses. Since our main objective is to handle interactions between a turbulent region and a non-turbulent region, this model was rejected for the present work.

One way to avoid this difficulty is to relate ν_T directly to vorticity. Previous workers (Kwak et al., 1975; Donaldson, 1972) used

$$
\nu_T = (C_{\nu} \Lambda)^2 \left(\frac{\overline{\omega}_i \overline{\omega}_j}{2} \right)^{1/2}
$$

(2.14)
where C_v is a constant. Clark et al. (1977) have shown that this model is as accurate as Smagorinsky's for homogeneous isotropic turbulence.

The dynamical equations for large-scale vorticity field could have been derived by taking the curl of the filtered dynamical equations for the primitive variables. Hence the curl of Eqn. (2.11) could be used to model W_{ij}; this would give

$$W_{ij} = -\epsilon_{ijk} \frac{\partial}{\partial x_k} (2\nu T_k^l)$$ \hspace{1cm} (2.15)

where T_k^l and ν_T are defined by Eqns. (2.12) and (2.14), respectively. We shall refer to this as Model $\omega-1$.

2.3.2 Model $\omega-2$

We note that the model given by Eqn. (2.15) involves computing the strain-rate tensor T_k^l, which is an expensive process. It also uses the velocity field and hence requires storage space for the velocity fields even after the convective and stretching terms have been computed. Much computational saving could be obtained with a model that involves only the vorticity field; one such model is

$$W_{ij} = -\frac{\partial}{\partial x_j} (\nu_T \bar{w}_i) + \frac{\partial}{\partial x_i} (\nu_T \bar{w}_j)$$ \hspace{1cm} (2.16)

where ν_T is defined by Eqn. (2.14). We shall refer to this as model $\omega-2$.

Both models $\omega-1$ and $\omega-2$ can be shown to satisfy all three properties mentioned previously (see Appendix A). Model $\omega-2$ offers computational as well as storage advantages over model $\omega-1$ and will be tested in Chapter 4 (along with model $\omega-1$), for the case of isotropic homogeneous turbulence.
2.4 Filtering

2.4.1 Sharp Cut-off (SCK) Filter

Analytically, a filter that divides the large scales and the subgrid scales into two distinct regions in the Fourier sense would be convenient. Then \(\tilde{f} \) would contain all scales larger than a cut-off scale, and the subgrid scales \((f')\) would contain all scales smaller than this cut-off scale. A one-dimensional version of such a filter is

\[
G(x-x') = \frac{\sin[k_c (x-x')]}{\pi(x-x')}
\]

and its Fourier transform is

\[
H(k) = \begin{cases}
0 & \text{if } |k| > k_c \\
1 & \text{otherwise}
\end{cases}
\]

We shall refer to this as the SCK (Sharp cut-off in k-space) filter.

In inhomogeneous flows with turbulent rotational regions and irrotational regions, the two regions are separated by a sharp vorticity jump. In order to evaluate the ability of the SCK filter to smooth out jumps in the vorticity field, we apply it to a point vortex situated at the origin:

\[
\omega(x,y) = \delta(x) \delta(y)
\]

and

\[
\tilde{\omega}(x,y) = \frac{\sin[k_c x]}{\pi x} \frac{\sin[k_c y]}{\pi y}
\]

\(\tilde{\omega} \) is plotted in Fig. 2.1.

First we note that this filter creates oscillations and negative vorticity, which are undesirable from a physical point of view. Second, those oscillations decay slowly (they go as \(x^{-1} \)), so the spreading into the irrotational region is excessive.
2.4.2 Gaussian (GS) Filter

Another filter that has been used by previous workers (Kwak et al., 1975) is the Gaussian spatial (GS) filter:

\[G(x-x') = \sqrt{\frac{\gamma}{\pi}} \frac{1}{\Delta} \exp\{-\gamma(x-x')^2/\Delta^2\} \quad (2.21) \]

where \(\gamma \) is a constant and \(\Delta \) is the filter width.

Applying this filter to a point vortex situated at the origin, we get

\[w(x,y) = \frac{\gamma}{\pi} \frac{1}{\Delta^2} \exp\{-\frac{\gamma}{\Delta^2} (x^2+y^2)\} \quad (2.22) \]

\(\bar{w} \) is plotted in Fig. 2.2.

We note that in this case we have created neither oscillations nor negative vorticity. By filtering the point vortex (Eqn. (2.19)), we have created another vortex with a Gaussian core of width \(\Delta \).

We conclude that a Gaussian filter smoothes out jumps better than the sharp cut-off filter. Therefore, the GS filter was used in the cases investigated in this work.

2.5 Computing Velocity Field from the Vorticity Field

When the vorticity equation is used, the velocity becomes a diagnostic variable; i.e., the time variation of the velocity is not given explicitly by the equations but can be deduced once the vorticity is known. To do so, we shall define a vector potential \(\psi_k \) (see Lamb, 1932) such that:

\[\bar{u}_i = \varepsilon_{ijk} \frac{\partial}{\partial x_j} \psi_k \quad (2.23) \]

\(\psi_k \) can be chosen to be solenoidal; i.e.,

\[\frac{\partial}{\partial x_k} \psi_k = 0 \quad (2.24) \]

Taking the curl of (2.23) and using (2.24), we get

\[\frac{\partial^2}{\partial x_j \partial x_j} \psi_i = -\bar{w}_i \quad (2.25) \]
Solving the Poisson equation (2.25) and using (2.23), we get the velocity field from the vorticity field.

Note that the velocity field could have been deduced in another fashion by setting

\[\vec{\omega}_i = \varepsilon_{ijk} \frac{\partial}{\partial x_j} u_k \]

(2.26)

then taking the curl \(\varepsilon_{pqi} \frac{\partial}{\partial x_q} \) of Eqn. (2.26) to get:

\[\frac{\partial^2}{\partial x_j \partial x_j} \vec{u}_i = -\varepsilon_{ijk} \frac{\partial}{\partial x_j} \vec{\omega}_k \]

(2.27)

and finally, solving the Poisson equation (2.27), we get the velocity field. This approach involves differentiation of the vorticity field, followed by a double integration, whereas the first approach of (2.25) involves double integration followed by differentiation (2.23). Numerically, the first approach is usually more desirable; but in our case the two approaches are equivalent. Eqns. (2.23)-(2.25) will be used in this study.

2.6 Summary

Neglecting the molecular viscosity, the filtered dynamical equations in vorticity form become

\[\frac{\partial \vec{\omega}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\vec{u}_j \vec{\omega}_i - \vec{u}_i \vec{\omega}_j \right) = -\frac{\partial}{\partial x_j} \vec{W}_{ij} \]

(2.28)

\[\frac{\partial^2 \psi_i}{\partial x_j \partial x_j} = -\vec{\omega}_i \]

(2.25)

\[\vec{u}_i = \varepsilon_{ijk} \frac{\partial}{\partial x_j} \psi_k \]

(2.23)

where \(\vec{W}_{ij} \) is modeled as

\[\vec{W}_{ij} = -\varepsilon_{ijk} \frac{\partial}{\partial x_k} (2\nu \vec{S}_{kl}) \]

(2.15)

or
or

\[\mathbf{W}_{ij} = -\frac{3}{\partial x_j} (\nu_T \overline{\omega}_i) + \frac{3}{\partial x_i} (\nu_T \overline{\omega}_j) \] \hspace{1cm} (2.16)

where

\[\nu_T = (C_N \Delta)^2 \left(\overline{\omega_1 \omega_1} \right)^{1/2} \] \hspace{1cm} (2.14)

and

\[S_{ij} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} u_i + \frac{\partial}{\partial x_i} u_j \right) \] \hspace{1cm} (2.12)

with

\[G(x-x') = \sqrt{\left(\frac{\gamma}{\pi} \right)^3 \frac{1}{\Delta_1 \Delta_2 \Delta_3}} \exp \left\{ -\gamma \left[\frac{(x_1-x_1')^2}{\Delta_1^2} + \frac{(x_2-x_2')^2}{\Delta_2^2} + \frac{(x_3-x_3')^2}{\Delta_3^2} \right] \right\} \] \hspace{1cm} (2.29)

and

\[\Delta = \left(\Delta_1 \Delta_2 \Delta_3 \right)^{1/3} \]

It is in this form that the problem will be solved numerically.
Chapter 3
NUMERICAL METHOD

Analytical solutions of the governing equations discussed in the previous chapter can be found for only very special cases, none representing turbulence. Therefore, we propose using large computing machines to solve these equations for particular cases of interest. Numerical approximations of the governing equations require special care. In this chapter we discuss these approximations and present the methods we use to solve the difference approximation to the governing differential equations.

3.1 Notations

A region of continuous space is divided into a uniform rectangular mesh; \(h_i \) \((i=1,2,3)\) represents the mesh width in the \(i \)th direction. The mesh width need not be the same as the averaging width introduced in the previous chapters; we have used \(\Delta_i = 2h_i \) and \(\gamma = 6 \). For details on the effects of the filter width on the computational results see Kwak et al. (1975).

We then write the \(\ell \) -component of the filtered flow quantity \(f_{\ell} \) at the \(n \)th time step as

\[
f_{\ell}^{(n)}(i,j,k), \quad \ell = 1,2,3 \tag{3.1}
\]

where \((i,j,k)\) are the mesh point index for \((x,y,z)\).

We define the operator notation \(\delta / \delta \xi \) to be the numerical approximation to the continuous derivatives \(\partial / \partial \xi \).

3.2 Numerical Approximation

Once space is discretized into mesh points, it remains to approximate the partial derivatives in terms of the values of the functions at those points. We have used two different approximation schemes: a fourth-order scheme and a pseudo-spectral method.
3.2.1 Fourth-Order Scheme

Using Taylor series expansions one can easily show that the approximation to the partial derivatives,

$$\frac{\delta u}{\delta x_1} = \frac{1}{12h^4} \{u(i-2) - 8u(i-1) + 8u(i+1) - u(i+2)\} \tag{3.2}$$

is fourth-order accurate, i.e., the error in this approximation is of $O(h^4)$. (For simplicity, the arguments j and k are not shown.)

If periodic boundary conditions are to be used, \bar{u} can be represented by a discrete Fourier expansion (see next section).

$$\bar{u} = \sum_{n} \hat{u}(k) e^{i k \cdot x} \tag{3.3}$$

where, for $i = 1, 2, 3$,

$$k_i = \frac{2\pi}{N_i h_i} n_i = \text{wave number in the } x_i \text{ direction}$$

$$n_i = -\frac{N_i}{2}, \ldots, 0, \ldots, \frac{N_i}{2} - 1$$

$$N_i = \text{number of mesh points in } x_i \text{ direction}$$

$\hat{u}(k)$ is the discrete Fourier transform of \bar{u}. Taking the discrete Fourier transform of (3.2), we get

$$\frac{\delta \hat{u}}{\delta x_1} = \frac{1}{12h^4} \left\{ e^{-i h_1 k_1} - 8e^{-i h_1 k_1} + 8e^{i h_1 k_1} - e^{i 2h_1 k_1} \right\} \hat{u}$$

$$= \frac{i}{6h_1} \left\{ 8 \sin(h_1 k_1) - \sin(2h_1 k_1) \right\} \hat{u}$$

$$= ik_1' \hat{u}$$

where

$$k_1' = \frac{1}{6h_1} \left\{ 8 \sin(h_1 k_1) - \sin(2h_1 k_1) \right\} \tag{3.4}$$

is called the modified wave number.
Representation (3.4) allows us to evaluate the numerical approximation (3.2) for the range of wave numbers up to π/h_1, the highest wave number that can be represented on a grid of size h_1. The Fourier transform of the exact derivative is ik_1u, so that, by comparing the modified wave number k'_1 with k_1, we see how well the approximation works (see Fig. 3.1).

A more important consequence of representation (3.4) is that it allows us to integrate numerically in a manner consistent with our difference approximation. In order to make this point clear, suppose we know the value, f, of the numerical approximation of the differential equation

$$\frac{\delta u}{\delta x_1} = f \quad (3.5)$$

and we would like to find \overline{u}, which when fourth-order finite differenced, gives us f exactly (to machine round-off). One way to do this is to write

$$A\overline{u}(i) = f(i) \quad (3.6)$$

where

$$A = \frac{1}{12h_1} \begin{bmatrix} 0 & 8 & -1 & 0 & 0 & 1 & -8 \\ -8 & 0 & 8 & -1 & 0 & 0 & 1 \\ 1 & -8 & 0 & 8 & -1 & \cdot & \cdot \\ & & & & & & \cdot \\ & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ -1 & 0 & 0 & 0 & \cdot & \cdot & \cdot \\ 8 & -1 & 0 & \cdot & \cdot & 1 & -8 \end{bmatrix}$$

for the case of periodic boundary conditions. This system of equations can then be solved in some standard way.

Another way to handle this problem is by taking the discrete Fourier transform of (3.5) to get

$$ik'_1u = \hat{f} \quad (3.7)$$
Then, by solving for \hat{u},

$$\hat{u} = \frac{f}{ik_1}$$

(3.8)

multiplying (3.8) by $e^{ik_1x_1}$, and summing over all k, we obtain u.

In this case only the one-dimensional transform is needed. This method,
which is much more powerful than the previous one when integration in
more than one direction is needed, will be used extensively for the solution
of the Poisson equations (2.21).

3.2.2 Pseudo-Spectral Method

Periodic boundary conditions

Suppose $f(x_1)$ is periodic in the x_1 direction with period L (in
the following we shall consider the one-dimensional case) and satisfies
the "Dirichlet condition", i.e.,

- $f(x_1)$ is defined at every point of the interval $0 \leq x_1 \leq L$,
- $f(x_1)$ is everywhere single-valued, finite, and sectionally continuous,
- $f(x_1)$ is of "bounded variation", i.e., $f(x_1)$ does not have an infti-
 nite number of maxima and minima.

It can be shown (Lanczos, 1956) that a function of this type can be expanded in a convergent Fourier series.

$$f(x_1) = \sum_{n_1=-\infty}^{\infty} \hat{f}(k_1) e^{ik_1x_1}$$

(3.9)

where

$$k_1 = \frac{2\pi}{L} n_1 \quad n_1 = -\infty, \ldots, 0, 1, \ldots, \infty$$

and

$$\hat{f}(k_1) = \frac{1}{L} \int_{0}^{L} f(x_1) e^{-ik_1x_1} dx_1$$

(3.10)
Since computers cannot handle infinite series, we have to truncate (3.9). This is justifiable if \(f(k_1) \) falls off rapidly for large \(|k_1| \); this is the case of interest, since we filter the flow variables. Also, as mentioned before, we need to discretize in space. If \(N_1 \) mesh points are used in the \(x_1 \) direction, the discrete analogs of Eqns. (3.9) and (3.10) become:

\[
f(x_1) = \sum_{n_1=-N_1/2}^{N_1/2-1} \hat{f}(k_1) e^{ik_1x_1} \tag{3.11}
\]

where

\[
k_1 = \frac{2\pi}{N_1 h_1} n_1 \\
n_1 = -\frac{N_1}{2}, \ldots, 0, \ldots, \frac{N_1}{2} - 1 \\
x_1 = jh_1 \\
j = 0, \ldots, N_1 - 1 \\
h_1 = \frac{L}{N_1}
\]

Fast algorithms (for \(N_1 = 2^n; n = 1,2,\ldots \)) have been developed (Fast Fourier Transform -- FFT) by various workers (Cooley and Tukey, 1965; Singleton, 1967) to evaluate the series (3.11) and (3.12) for the inverse-transform and the forward-transform, respectively. These will not be described in this work (we used a routine developed by Singleton, 1967).

If we regard the expansion (3.11) as an interpolating formula, so that we treat \(x_1 \) as a continuous variable, and differentiate the entire equation, we obtain

\[
\frac{\delta f}{\delta x_1} = \sum_{n_1} \hat{f}(k_1) ik_1 e^{ik_1x_1} \tag{3.13}
\]

The expansion (3.13) can be considered an approximation to the partial derivatives. Thus, to compute the partial derivatives of \(\bar{u} \), for the case of periodic boundary conditions, we proceed as follows: we find the discrete Fourier transform of the function in the direction in which the partial derivative is needed, i.e., we compute \(\hat{f}(k_1) \) from \(f(x_1) \).
Multiplying $f(k_1)$ by $ik_1 e^{ik_1 x_1}$ and summing over all k_1, we obtain $\delta f/\delta x_1$. This is called the "pseudo-spectral" approach. This method has been analyzed by Lanczos (1956) and, with the development of techniques to compute the summations (3.11) rapidly, it has been proposed by Kreiss and Oliger (1973) as an approximation method and advocated by Orszag (1973) and Fox and Orszag (1973).

For the range of wave numbers that can be captured with a given spacing and number of grid points and for periodic boundary conditions, the pseudo-spectral method yields extremely accurate values of the partial derivatives (see Fig. 3.1).

The above method is limited to the case of periodic boundary conditions. However, the idea can be applied to other types of boundary conditions by using a set of orthogonal functions appropriate to the given boundary conditions.

\[f = 0 \text{ boundary conditions} \]

If $f(x_1)$ is required to vanish at the boundary, i.e., $f(x_1) = 0$ for $x_1 = 0$ and $x_1 = L$, and is twice differentiable (a physically reasonable assumption), the Hilbert-Schmidt theory shows that its Fourier sine series

\[f(x_1) = \sum_{n_1=0}^{\infty} \hat{f}^S_{n_1} \sin \left[\frac{n_1 \pi}{L} x_1 \right] \]

(3.14)

where

\[\hat{f}^S_{n_1} = \frac{2}{L} \int_0^L f(x_1) \sin \left[\frac{n_1 \pi}{L} x_1 \right] dx_1 \]

(3.15)

is absolutely and uniformly convergent. As in the previous section, we shall use the discrete analogs to (3.14) and (3.15), i.e.,

\[f(x_1) = \sum_{n_1=0}^{N_1-1} \hat{f}^S(n_1) \sin \left[\frac{n_1 \pi}{(N_1-1)^\frac{h_1}{L}} x_1 \right] \]

(3.16)

\[\hat{f}^S(n_1) = \frac{2}{(N_1-1)} \sum_{j=0}^{N_1-1} f(x_1) \sin \left[\frac{n_1 \pi}{(N_1-1)^\frac{h_1}{L}} x_1 \right] \]

(3.17)
where

\[n_1 = 0, \ldots, N_1 - 1 \]
\[h_1 = L/(N_1 - 1) \]
\[x_1 = jh_1, \quad j = 0, \ldots, N_1 - 1 \]

and \(\hat{f}_s(n_1) \) is the Fourier sine transform of \(f(x_1) \). By using the FFT routine, a technique to compute the summation in Eqns. (3.16) and (3.17) can be rapidly developed. A detailed development of the Fast Discrete Sine Transform (FDST) is given in Appendix B. Generally, the FDST requires twice as much computation (for a given number of mesh points) as does the FFT.

If we regard the expansion (3.16) as an interpolating formula, treating \(x_1 \) as a continuous variable, and differentiate, one obtains:

\[
\frac{\partial f}{\partial x_1} = \sum_{n_1=0}^{N_1-1} \hat{f}_s(n_1) k_1 \cos \left[\frac{n_1 \pi}{(N_1-1)h_1} x_1 \right]
\]

(3.18)

where \(k_1 = n_1 \pi/(N_1-1)h_1 \). In order to be able to use (3.18) as an approximation formula for the partial derivatives, we need an FDST to find \(\hat{f}_s(n_1) \); we also need a Fast Discrete Cosine Transform (FDCT). The discrete Fourier cosine series is defined in analogy to (3.16):

\[
f(x_1) = \sum_{n_1=0}^{N_1-1} \hat{f}_c(n_1) \cos \left[\frac{n_1 \pi}{(N_1-1)h_1} x_1 \right]
\]

(3.19)

and

\[
\hat{f}_c(n_1) = \frac{2}{(N_1-1)} \sum_{j=0}^{N_1-1} f'(x_1) \cos \left[\frac{n_1 \pi}{(N_1-1)h_1} x_1 \right]
\]

(3.20)

with

\[
\hat{f}_c'(n_1) = \begin{cases}
\frac{1}{2} \hat{f}_c(n_1) & n_1 = 0, N_1 - 1 \\
\hat{f}_c(n_1) & n_1 \neq 0, N_1 - 1
\end{cases}
\]

\[
f'(x_1) = \begin{cases}
\frac{1}{2} f'(x_1) & x_1 = 0, L \\
f'(x_1) & x_1 \neq 0, L
\end{cases}
\]
where \(\hat{f}^c(n_1) \) is the Fourier cosine transform of \(f(x_1) \).

Note that in (3.18) \(\hat{f}^c(0) = \hat{f}^c(N_1 - 1) = 0 \), making (3.18) exactly a discrete cosine transform of \(k_1 \hat{f}^c(n_1) \).

By using the FFT routine, a technique of computing the summations in Eqn. (3.19) and (3.20) can be rapidly developed. A detailed development of the Fast Discrete Cosine Transform (FDCT) is given in Appendix B.

Thus, to compute the partial derivatives of a function which is zero at the boundary, we find its discrete sine transform \(\hat{f}^s(n_1) \), multiply it by \(\frac{n_1 \pi}{(N_1 - 1)h_1} \) and inverse transform using an FDCT routine. This method yields an extremely accurate approximation of the partial derivative when the function vanishes at the boundary, but its use is restricted to cases with a uniform mesh.

\[\frac{\partial f}{\partial x} = 0 \] boundary conditions

If \(f(x_1) \) is our function whose partial derivative \(\frac{\partial f}{\partial x_1} \) vanishes at the boundary, i.e., \(\frac{\partial f}{\partial x_1} = 0 \) for \(x_1 = 0 \) and \(x_1 = L \), then, by using arguments similar to those used before, it can be shown that its Fourier cosine series,

\[
f(x_1) = \sum_{n_1=0}^{\infty} \hat{f}^c(n_1) \cos \left[\frac{n_1 \pi}{L} x_1 \right] \tag{3.21}
\]

where

\[
\hat{f}^c(n_1) = \frac{2}{L} \int_0^L f(x_1) \cos \left[\frac{n_1 \pi}{L} x_1 \right] dx_1 \tag{3.22}
\]

is uniformly and absolutely convergent.

Equations (3.19) and (3.20) are the discrete equivalents of the above equations. If we regard expansion (3.19) as an interpolating formula treating \(x_1 \) as a continuous variable, then differentiate, we obtain:

\[
\frac{\delta f}{\delta x_1} = \sum_{n_1=-N_1}^{N_1-1} \hat{f}^c(n_1) k_1 \sin \left[\frac{n_1 \pi}{(N_1-1)h_1} x_1 \right] \tag{3.23}
\]
Obviously (3.23) satisfies the conditions $\partial f / \partial x_1 = 0$ at $x_1 = 0$ and $x_1 = L$, and (3.23) is the discrete sine expansion of the partial derivative.

Thus, to compute the partial derivative of a function for which $\partial f / \partial x_1 = 0$ at the boundary, we find its discrete cosine transform $f(c_n)$, multiply it by $-k_1$, and take the inverse transform using an FDST routine.

The three methods described in this section will be used extensively as our approximation tools.

3.3 Time Differencing

To advance in time, a second-order Adams-Bashforth method was used. This method has been used by previous workers (Kwak et al., 1975; Shaanan et al., 1975), and use of a higher-order method was not felt necessary.

If $\partial \omega_i / \partial t = M_i$, the Adams-Bashforth formula for ω_i at time-step $n + 1$ is

$$
\omega_i^{n+1} = \omega_i^n + \Delta t \left(\frac{3}{2} M_i^{(n)} - \frac{1}{2} M_i^{(n-1)} \right) \tag{3.24}
$$

In our case,

$$
M_i = - \frac{3}{\partial x_j} (u_j \omega_i - u_i \omega_j) - \frac{3}{\partial x_j} W_{ij}
$$

Note that this is a two-step explicit method. It is started with the Euler method:

$$
\omega_i^1 = \omega_i^0 + \Delta t M_i^{(0)} \tag{3.25}
$$

3.4 Conservation Properties

As was pointed out by Phillips (1959), numerical integration of the finite-difference analog of the Navier-Stokes equations may introduce non-linear instabilities if proper care is not taken. Arakawa (1966), working with the two-dimensional vorticity equation, showed that by properly conserving vorticity, energy, and enstrophy ($\omega_i \omega_i$), these instabilities disappear. Lilly (1965), working with the primitive variables, developed a spatial-differencing scheme that conserves momentum and energy. By
conservation we mean that, in the absence of external forces and viscous dissipation, the only way that the momentum and kinetic energy in a control volume can change is by flow through the surface. This property must be retained by the numerical approximation. In the simple case of periodic boundary conditions, we have

\[
\frac{d}{dt} \int_D \frac{u_i}{2} dv = 0 \quad \text{(i.e., momentum conservation)} \tag{3.26}
\]

\[
\frac{d}{dt} \int_D \frac{1}{2} u_i u_i dv = 0 \quad \text{(i.e., energy conservation)} \tag{3.27}
\]

It is usually easy to devise a numerical approximation to the dynamical equations in primitive form that conserves momentum, i.e., summation over the flow volume of the approximate equations would give the discrete equivalent of Eqn. (3.26). However, the difficulties arise when trying to show energy conservation, since in general the identity

\[
u_i \frac{\partial}{\partial x_j} u_i = \frac{\partial}{\partial x_j} \left(\frac{1}{2} u_i u_i \right)
\tag{3.28}
\]

does not hold in finite-difference form.

Writing the equations of motion in the following form (Tennekes and Lumley, 1972):

\[
\frac{\partial}{\partial t} u_i + u_j \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right) = - \frac{\partial}{\partial x_i} \left(\frac{p}{\rho} + \frac{1}{2} u_j u_j \right) \tag{3.29}
\]

\[
\frac{\partial}{\partial x_i} u_i = 0 \tag{3.30}
\]

and integrating over the flow volume, we get

\[
\frac{\partial}{\partial t} \int u_i dv + \int u_j \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right) dv = - \int \frac{\partial}{\partial x_i} \left(\frac{p}{\rho} + \frac{1}{2} u_j u_j \right) dv \tag{3.31}
\]

For periodic boundary conditions, integration by parts yields:

\[
\int u_j \frac{\partial}{\partial x_j} u_i dv = \int u_i \frac{\partial}{\partial x_j} u_j dv = 0 \quad \text{(using (3.30))}
\]

\[
\int u_j \frac{\partial}{\partial x_i} u_i dv = \int u_j \frac{\partial}{\partial x_i} u_j dv = 0
\]
and

\[\int \frac{\partial}{\partial x_1} \left(\frac{p}{\rho} + \frac{1}{2} u_j u_j \right) dv = 0 \]

Hence Eqn. (3.31) reduces to Eqn. (3.26) and we have momentum conservation.

Now, multiplying Eqn. (3.29) by \(u_1 \), we get:

\[\frac{\partial}{\partial t} \frac{1}{2} u_1 u_1 = - u_1 \frac{\partial}{\partial x_1} \left(\frac{p}{\rho} + \frac{1}{2} u_j u_j \right) \] (3.32)

where the convective terms sum to zero by symmetry.

Integrating (3.32) over the entire domain yields:

\[\int \frac{\partial}{\partial t} \frac{1}{2} u_1 u_1 \ dv = - \int u_1 \frac{\partial}{\partial x_1} \left(\frac{p}{\rho} + \frac{1}{2} u_j u_j \right) \ dv \] (3.33)

For periodic boundary conditions, integration by parts yields:

\[\int u_1 \frac{\partial}{\partial x_1} \left(\frac{p}{\rho} + \frac{1}{2} u_j u_j \right) \ dv = - \int \left(\frac{p}{\rho} + \frac{1}{2} u_j u_j \right) \frac{\partial}{\partial x_1} u_1 \ dv \]

\[= 0 \] (using (3.30))

Hence Eqn. (3.33) reduces to Eqn. (3.27) and we have energy conservation.

We notice that, with the equations written in the form Eqn. (3.29), we did not need the identity (3.28) to show energy conservation from the dynamical equations in primitive form. The conservation properties were obtained by making use of only integration by parts and the continuity equation.

Consider the numerical approximation of Eqns. (3.29) and (3.30):

\[\frac{\partial}{\partial t} u_1 + u_j \left(\frac{\delta u_1}{\delta x_j} - \frac{\delta u_j}{\delta x_1} \right) = - \frac{\delta}{\delta x_1} \left(\frac{p}{\rho} + \frac{1}{2} u_j u_j \right) \] (3.34)

\[\frac{\delta}{\delta x_1} u_1 = 0 \] (3.35)

where we are using \(\delta / \delta x_1 \) to denote the numerical approximations to the partial derivatives \(\partial / \partial x_1 \), and the same approximations are used in both equations (3.34, 3.35) for any given independent variable. In order to
have long-term integration stability, Eqn. (3.34) should numerically conserve momentum and energy.

If we follow the steps used in deriving the conservation properties from Eqns. (3.29) and (3.30), we realize that the conservation properties will follow if we can establish numerical summation by parts. Consider the one-dimensional case, where we have, for periodic boundary conditions,

\[
\int u(x) \frac{\partial}{\partial x} f(x) \, dx = - \int f(x) \frac{\partial}{\partial x} u(x) \, dx
\]

The numerical analog of the above equation is:

\[
\sum_{j=0}^{N-1} u(j) \frac{\delta}{\delta x} f(j) = - \sum_{j=0}^{N-1} f(j) \frac{\delta}{\delta x} u(j) \tag{3.36}
\]

Expanding \(u(j) \) in Fourier series, we get:

\[
u(j) = \sum_{n=-N/2}^{N/2-1} \hat{u}(n) \exp(2\pi ijn/N) \; ; \; j = 0, 1, \ldots, N-1
\]

where the \(\hat{u}(n) \) are given by the inverse transform:

\[
\hat{u}(n) = \frac{1}{N} \sum_{j=0}^{N-1} u(j) \exp(-2\pi ijn/N) \; ; \; n = -N/2, \ldots, N/2-1
\]

Also,

\[
\frac{\delta}{\delta x} f(j) = \sum_{n=-N/2}^{N/2-1} ik'(n) \left\{ \frac{1}{N} \sum_{j'=0}^{N-1} f(j') \exp(-2\pi ij'n/N) \right\} \exp(2\pi ijn/N) \tag{3.37}
\]

where \(k'(n) \) is the modified wave number. The modified wave numbers for the numerical methods we are using are

- \(ik' = ik \) for pseudo-spectral, \(\tag{3.38} \)
- \(ik' = i \frac{1}{\delta h} [8 \sin(kh) - \sin(2kh)] \) (fourth-order approximation).

Substituting Eqn. (3.37) into the left-hand side of Eqn. (3.36) yields

\[
\sum_{j=0}^{N-1} u(j) \frac{\delta}{\delta x} f(j) = \frac{1}{N} \sum_{j=0}^{N-1} \sum_{j'=0}^{N-1} \sum_{n=-N/2}^{N/2-1} ik'(n) u(j) f(j') \cdot \exp(-2\pi ij'n/N) \exp(2\pi ijn/N)
\]
Now, changing the summation index in the last sum from n to $-n$, we see that this expression will agree with the right-hand side of Eqn. (3.36), provided that:

\[k'(n) = -k'(-n) \]
\[k' \left(-\frac{N}{2} \right) = 0 \]

Condition (3.39) is satisfied by all the methods under consideration, and $k'(-N/2) = 0$ is true for the finite-difference method. The pseudo-spectral method cannot differentiate between $f = \exp(i\eta)$ and $f = \exp(-i\eta)$, and, due to this confusion at $n = -N/2$, $k'(-N/2)$ is set equal to zero for the pseudo-spectral method. Hence, summation by parts is obtained when (3.39) and (3.40) hold. Summing Equation (3.34) over all mesh points, using the generalization of (3.36) to three dimensions and using Eqn. (3.35) yields the numerical equivalent of (3.26). Multiplying Eqn. (3.34) by u_i, the nonlinear term in the left-hand side of (3.34) will sum to zero by symmetry; then, using as before the three-dimensional generalization of (3.36) and (3.35), summing over all mesh points will yield the numerical equivalent of Eqn. (3.27).

3.5 Differenced Vorticity Equations

In order to insure that the numerical approximation to the vorticity equations are equivalent to the numerical primitive equations, we must take the numerical curl of Eqn. (3.34). Before doing so, we note that, numerically,

\[\nabla \cdot \nabla \times \mathbf{V} = \varepsilon_{ijk} \frac{\delta}{\delta x_i} \frac{\delta}{\delta x_j} V_k \]
\[\nabla \times \nabla S = \varepsilon_{ijk} \frac{\delta}{\delta x_j} \frac{\delta}{\delta x_k} S \]

where \mathbf{V} and S are any vector or scalar, respectively, the above expressions are identically zero, if for each direction the same approximation is used for all operators.
The numerical curl of (3.34) is

$$\frac{\partial}{\partial t} \omega_i + \frac{\delta}{\delta x_j} (u_j \omega_i - u_i \omega_j) = 0 \quad (3.43)$$

Equation (3.43) conserves vorticity, i.e., summing it over all space the total vorticity in any control volume (subject to periodic boundary conditions) does not change with time. Hence in the form (3.34), the primitive equations also conserve vorticity.

The numerical divergence of (3.43) is

$$\frac{\partial}{\partial t} \frac{\delta}{\delta x_i} \omega_i = 0$$

Therefore, an ω field solenoidal at time t will remain solenoidal at time $t + \Delta t$.

3.6 Poisson Equation

Having the vorticity field ω_i at time step n, we have to find the velocity field in order to be able to advance in time. To do so, we shall define a vector potential (also called the vector stream function) ψ_k, such that

$$\bar{u}_i = \epsilon_{ijk} \frac{\delta}{\delta x_j} \psi_k \quad (3.44)$$

ψ_k can be chosen to be solenoidal; i.e.,

$$\frac{\delta}{\delta x_i} \psi_i = 0 \quad (3.45)$$

Taking the curl of Eqn. (3.44) and using Eqn. (3.45), we get

$$\frac{\delta}{\delta x_j} \frac{\delta}{\delta x_i} \psi_i = -\bar{\omega}_i \quad (3.46)$$

The Poisson equations (3.46) will be integrated using the approach introduced in Section 3.2. For the case of periodic boundary condition, the discrete Fourier transform of Eqn. (3.46) is

$$-k_j^i k_j^i \hat{\psi}_i = -\hat{\omega}_i \quad (3.47)$$
where \(k'_i \) is the modified wave vector introduced in Section 3.2. Solving for \(\phi_i \), we have

\[
\phi_i = \frac{\omega_i}{k'_j k'_j} \tag{3.48}
\]

and by inverting the transform we obtain the stream vector consistent with our numerical differencing. It satisfies two conditions. First, the velocity field obtained using (3.44) will be solenoidal. We have in Fourier space:

\[
k'_j u'_i = \varepsilon_{ijk} k'_i k'_j \phi_k = 0 \tag{3.49}
\]

Second, taking the curl of (3.44), we have in Fourier space:

\[
\omega'_i = \varepsilon_{ijk} i k'_j u'_k = - \varepsilon_{ijk} \varepsilon_{k'pq} k'_i k'_p \phi_q = -k'_j k'_j \phi'_i + k'_i k'_j \phi'_j \tag{3.50}
\]

Since \(k'_j \phi'_j = 0 \), (3.50) is exactly the Poisson equation (3.47).

3.7 Numerical Filtering

Examination of Eqn. (3.24) reveals that the only numerical problem left is the numerical evaluation of the \(u'_j \omega'_i - u'_i \omega'_j \) term. Since \(u'_j \omega'_i - u'_i \omega'_j \) can be computed easily, the problem is that of numerical filtering.

Filtering is the evaluation of a convolution integral

\[
\bar{u}'_j \omega'_i = \int_{-\infty}^{+\infty} \bar{u}'_j \omega'_i G(x-x') \, dx' \tag{3.51}
\]

If this integral is evaluated using conventional integration routines, the computation cost is prohibitive. Previous workers (Leonard, 1973; Kwak et al., 1975; Shaanan et al., 1975) argued that the filtered terms \(\bar{u}'_j(x') \) and \(\bar{\omega}'_i(x') \) are smooth, and they expanded those terms in a Taylor series about \(x \). Using a Gaussian for \(G(x) \), they obtained:

\[
\bar{u}'_j \omega'_i = \bar{u}'_j \omega'_i + \frac{\Delta^2}{4\gamma} \nabla^2 (\bar{u}'_j \omega'_i) + O(\Delta^4) \tag{3.52}
\]
and the $O(\Delta^2)$ term was called the Leonard term. The above approximation will require the use of a fourth-order, finite-differencing method (Kwak et al, 1975) or a modified second-order method (Shaanan et al., 1975) that yields the Leonard term as its truncation error. However, when higher-order methods are used the expansion (3.52) needs to be extended to higher orders, and the computational expense becomes prohibitive. When periodic boundary conditions are used, we can take the Fourier transform of Eqn. (3.51) to get:

$$\hat{u}_{j\omega} = (u_{j\omega}) \hat{G}$$ \hspace{1cm} (3.53)

Thus, given \hat{u}_i and \hat{w}_i, one can compute the term $(u_{j\omega})$, multiply it by \hat{G}, then simply invert the transform to obtain $u_{j\omega}$. When $\hat{u}_{j\omega}$ vanishes at the boundaries, i.e., $\hat{u}_{j\omega} = 0$ at $x = 0$ and $x = L$, we can expand it in a Fourier sine series. Taking the one-dimensional case, for simplicity, we set

$$\hat{u}_{j\omega} = \sum_{n=0}^{\infty} (u_{j\omega}) \sin \left(\frac{n\pi}{L} x \right)$$ \hspace{1cm} (3.54)

Substituting (3.54) in (3.51), we get

$$\hat{u}_{j\omega} = \int_{-\infty}^{+\infty} \sum_{n=0}^{\infty} (u_{j\omega}) \sin \left(\frac{n\pi}{L} (x-x') \right) G(x') \, dx'$$

Since the series (3.54) is absolutely and uniformly convergent, we can take the summation outside the integration to obtain

$$\hat{u}_{j\omega} = \sum_{n=0}^{\infty} (u_{j\omega}) \left\{ \int_{-\infty}^{+\infty} \sin \left(\frac{n\pi}{L} x \right) \cos \left(\frac{n\pi}{L} x' \right) G(x') \, dx' \right\}$$

If $G(x)$ is an even function, which is the case when (2.21) is used, the second term in the bracket vanishes and one obtains

$$\hat{u}_{j\omega} = \sum_{n=0}^{\infty} (u_{j\omega}) \left\{ \int_{-\infty}^{+\infty} G(x') \cos \left(\frac{n\pi}{L} x' \right) \, dx' \right\} \sin \left(\frac{n\pi}{L} x \right)$$ \hspace{1cm} (3.55)
where

\[\hat{G}^c = \int_{-\infty}^{\infty} G(x') \cos \left(\frac{n\pi}{L} x' \right) dx' \]

is the Fourier cosine transform of the Gaussian filter.

What Eqn. (3.55) tells us is that, for the case in which \(\overline{u_j \omega_j} = 0 \) for \(x = 0 \) and \(x = L \), \(\overline{u_j \omega_j} \) can be computed by the following procedure: we first compute the Fourier sine transform \(\overline{(u_j \omega_j)} \) of \(\overline{u_j \omega_j} \), and then multiply it by the Fourier cosine transform \(\hat{G}^c \) of the filter, to obtain the Fourier sine transform \(\overline{(u_j \omega_j)} \) of \(\overline{u_j \omega_j} \). Finally, inverting the sine transform, we obtain \(\overline{u_j \omega_j} \).

Similarly, it can be shown that, for the case in which \(\frac{\partial}{\partial x} \overline{u_j \omega_j} = 0 \) at \(x = 0 \) and \(x = L \), we have

\[\overline{\overline{u_j \omega_j}} = \sum_{n=0}^{\infty} \frac{\hat{c}}{u_j \omega_j} \overline{\hat{c}} \cos \left(\frac{n\pi}{L} x \right) \quad (3.56) \]

or

\[\frac{\hat{c}}{u_j \omega_j} = \frac{\hat{c}}{\overline{u_j \omega_j}} \hat{G} \]

By the use of the FFT, FDST, and FDCT, "exact" filtering can be obtained for all boundary conditions of interest with acceptable computational speed.

An important property required of a filter is that the filtered value of a constant must be the same constant. Numerically, it is desirable to preserve this property, which is equivalent to requiring the integral of the filter function be unity or \(\hat{G}(0) = 1 \). The exact continuous Fourier transform of (2.21) is

\[\hat{G}(k) = \exp \left(-\frac{A^2}{4\gamma} k^2 \right) \quad (3.57) \]

When \(\hat{G}(k) \) is discretized, we get

\[\hat{G}_D(k) = \exp \left(-\frac{A^2}{4\gamma} \left(\frac{2\pi n}{L} \right)^2 \right), \quad n = 0, \pm 1, \pm 2, \ldots \quad (3.58) \]

Hence \(\hat{G}_D(0) = 1 \).
Another property required of a filter is that it smooth out jumps (see Section 2.4) without introducing oscillations. We have modeled the situation with a top-hat function:

\[f(x) = \begin{cases}
1 & x_1 \leq x \leq x_2 \\
0 & \text{otherwise}
\end{cases} \] (3.59)

Analytically, we have

\[\bar{f}(x) = \frac{1}{2} (\text{erf}(x_1 - x) - \text{erf}(x_2 - x)) \]

which is a smooth function with no oscillations.

When (3.59) is discretized and filtered numerically using \(\hat{G}_D(k) \), the top-hat function, Eqn. (3.59), is smoothed out (see Fig. 3.2). However, small oscillations are introduced. This is due to the fact that the discrete inverse transform of (3.58) is not smooth. For this reason we have used a discrete Gaussian in x-space,

\[G_D(x) = \frac{1}{A} \exp \left(- \frac{\gamma (hx)^2}{\Delta^2} \right) \] (3.60)

where

\[x = hn \]

\[A = \sum_n \exp \left(- \frac{\gamma (nx)^2}{\Delta^2} \right) \] (3.61)

as our filter function. The oscillations in the x-space (see Fig. 3.2) do not appear when this filter is used.

3.8 Summary

The dynamical equations in vorticity form will be solved as follows:

\[\omega_{i}^{n+1} = \omega_{i}^{n} + \Delta t \left(\frac{3}{2} M_{i}^{n} - \frac{1}{2} M_{i}^{n-1} \right) \] (3.24)

where

\[M_{i}^{n} = - \frac{\delta}{\delta x_{j}} (u_{i}^{n} \omega_{j}^{n} - u_{j}^{n} \omega_{i}^{n}) - \frac{\delta}{\delta x_{j}} W_{ij} \]
\[W_{ij} = -\varepsilon_{ijk} \frac{\delta'}{\delta x_k} (2\nu_T \overline{S}_{k\ell}) \] (3.25)

or

\[W_{ij} = -\frac{\delta'}{\delta x_j} (\nu_T \overline{\omega_i}) + \frac{\delta'}{\delta x_i} (\nu_T \overline{\omega_j}) \] (3.26)

\[\nu_T = (C_v \Delta)^2 (\overline{\omega_i \omega_j})^{1/2} \] (3.27)

and

\[\overline{S}_{ij} = \frac{1}{2} \left(\frac{\delta' u_i}{\delta x_j} + \frac{\delta' u_j}{\delta x_i} \right) \] (3.28)

The numerical differencing \(\frac{\delta'}{\delta x} \) used to compute the terms in the model \(W_{ij} \) need not be of the same order as the numerical differencing \(\frac{\delta}{\delta x} \) used to compute the terms in the momentum equation. Filtering of the terms \(u_j \overline{\omega_i} - u_i \overline{\omega_j} \) is achieved using the method described in Section 3.7.
Chapter 4

DECAY OF ISOTROPIC TURBULENCE

4.1 Background

In order to assess the feasibility of using the vorticity equations as the governing equations for turbulent flows, we applied the computational methods described in Chapter 3 to the simplest problem in turbulence, namely, the decay of homogeneous isotropic turbulence. This flow was also used to determine the value of the subgrid scale model constant for use in subsequent calculations of other flows.

The grid turbulence experiment of Comte-Bellot and Corrsin (1971) was used as the "target" for our numerical predictions. When viewed in a coordinate frame moving with the mean velocity, this experiment approximates homogeneous isotropic turbulence.

This study was presented in an earlier report (P. Moin et al., 1978) and is rediscussed in this work to support the argument that model \(\omega-2 \) used in conjunction with the vorticity equations produces similar results to those obtained using the more commonly used model \(\omega-1 \). The contributions of Mr. P. Moin are gratefully acknowledged.

4.2 Initial Conditions

We started with an initial field that is divergence-free and has a spectrum obtained by filtering the experimental spectrum at the non-dimensional experimental time \(T = U_o t/M = 42 \). \(U_o = 10 \text{ cm/sec} \) is the experimental free-stream air speed, \(M = 5.08 \text{ cm} \) is the size of the experimental turbulence-generating grid, and \(t \) is the real time in seconds. The initial field was otherwise random. The generation of such a field is discussed in detail by Kwak et al. (1975) and will be briefly outlined herein. The filtered field is generated in k-space by setting:

\[
\Delta u^1(k) = \left(\frac{2\pi}{L} \right)^3 \left(\frac{E(k)}{2\pi k^2} \right)^{1/2} (aA^1 + ibB^1)
\]

where

\[
\frac{u^1}{L} = aA^1 + ibB^1
\]
\[\overline{E}(k) = \text{filtered experimental energy spectrum at time } T = U_0 t/M = 42, \]
\[a = \cos(\theta) \]
\[b = \sin(\theta) \]

where \(\theta \) is a random angle, \(A_i \) and \(B_i \) are unit vectors picked such that \(A_i k'_i = B_i k'_i = 0 \), otherwise random.

To insure that (4.1) is the Fourier transform of a real field, we must have

\[\hat{u}_i(k) = \hat{u}_i(-k) \quad (4.2) \]

where * indicates complex conjugate. Now, by inverse transforming \(\hat{u}_i \), \(u_i \) is obtained.

Using the above initial field, we shall use the methods of Chapters 2 and 3 to predict the spectrum at \(T = 98 \). The predicted spectrum will be compared with the filtered experimental spectrum at \(T = 98 \).

4.3 Selection of \(C_v \)

The model constant was obtained by matching the computational rate of filtered energy decay to that of the experiment (Fig. 4.1). The values of the constants obtained using different numerical schemes and different models were in most cases within ten percent of each other \((C_v = 0.2 \pm 0.02, \text{ see Table 4.1}) \).

4.4 Results

Under the assumption that the computational box size is large compared to the scale of the energy-containing motions, we can use periodic boundary conditions in all three directions. A uniform cubic mesh system was used with \(N \), the mesh number in each direction, and \(h \), the mesh spacing, chosen such that the computation captures as much of the turbulence energy as possible (Kwak et al., 1975). We used the sets

\[N = 16 , \ h = 1.5 \text{ cm} , \ t = 6.25 \times 10^{-3} \text{ sec} \]

and

\[N = 32 , \ h = 1.0 \text{ cm} , \ t = 6.25 \times 10^{-3} \text{ sec} \]
When periodic boundary conditions are used, it was shown in Chapter 3 that the pseudo-spectral method is more powerful than any finite-difference method. However, when the periodic pseudo-spectral methods cannot be used, we may have to use finite-difference methods. Since one of our objectives is to determine the model constant for the vorticity equations, both the fourth-order finite differencing and the pseudo-spectral methods were applied to the case of isotropic homogeneous turbulence.

4.4.1 Fourth-Order Finite Differences

Figure 4.2 shows the energy spectrum obtained by fourth-order finite-differencing the vorticity equation, using model \(w_1 \) (Eqn. (2.1)) for the subgrid-scale model, on a \(16^3 \) mesh. Our results compare well with the experimental results up to wave number 2.5, after which the inaccuracy of fourth-order differencing begins to show. Fourth-order differencing the primitive equations (Kwak et al., 1975; Moin et al., 1978) produced good agreement with the filtered experimental results using the primitive variable version of this model. This shows that the vorticity approach is equivalent to the primitive variable method. Thus the use of the vorticity equations is definitely feasible in turbulent flow computations.

4.4.2 Pseudo-Spectral Method

Figures 4.3-4.6 show the energy spectra obtained using the pseudo-spectral method, with \(16^3 \) mesh. Fig. 4.3 shows the results obtained using model \(w_1 \) (Eqn. (2.15)). We note that for \(k \geq 1 \) the computed results are considerably lower than the experimental values. This indicates that the subgrid-scale model is draining too much energy from the small structures, and, since our total energy is equal to that of the filtered experimental value, too little energy is taken out from the large structures. In this case, we used the pseudo-spectral approximation to calculate the subgrid scale terms as well as the other terms.

Figure 4.4 shows the energy spectrum obtained using second-order central differencing to approximate the derivatives appearing in the subgrid-scale model (see Section 3.8):
\[
\frac{\delta f}{\delta x} = \frac{f(i+1) - f(i-1)}{2h}
\]

We note a considerable improvement in the spectrum, except for a small accumulation of energy at the extreme (high wave number) end of the spectrum, which was present to a lesser extent in Fig. 4.2.

Figures 4.5 and 4.6 are the results from a \(16^3\) computation using the pseudo-spectral method and model \(\omega - 2\) (Eqn. (2.16)) for the subgrid-scale model. We note the same behavior in Fig. 4.5 as in Fig. 4.3; the computed spectrum falls below the experimental spectrum, indicating that using the pseudo-spectral method to compute the spatial derivatives in the subgrid-scale model damps too much energy in the wave number range \(k \geq 1\). Using second-order finite differencing to compute the partial derivatives in the model \(\omega - 2\) (Eqn. (2.16)), we obtain a significant improvement in the computed spectrum (Fig. 4.6). These results are similar to the results obtained using model \(\omega - 1\), indicating that the two models are equally good.

Figure 4.7 shows the energy spectrum obtained from a \(32^3\) pseudo-spectral calculation, using second-order finite differencing to compute the partial derivatives in model \(\omega - 2\). The results are similar to those of the \(16^3\) computation.

It can be concluded from these results that the vorticity equations provide a satisfactory basis for the simulation of homogeneous isotropic turbulence. Both models \(\omega - 1\) and \(\omega - 2\) produce similar results. Model \(\omega - 2\), given by Eqn. (2.16), will be used in the following computations, due to the computational advantages it offers over model \(\omega - 1\) (see Section 2.3). Finally, a relatively coarse \(16^3\) mesh is sufficient to capture interesting features of the homogeneous isotropic turbulence, and no significant improvement in the energy spectrum was obtained by using a \(32^3\) mesh system.

4.5 Computational Details

The calculations described above were executed on the CDC-7600 at NASA-Ames Research Center, using programs written in Fortran. The total storage requirements (octal) were as follows:
The computing time per computational time step was approximately as follows:

16^3 Calculation

- Large Core Memory: Fourth-order 310,360
 Pseudo-spectral 230,000
- Small Core Memory: Fourth-order 104,465
 Pseudo-spectral 61,334

32^3 Calculation

- Large Core Memory: Pseudo-spectral 1,110,000
- Small Core Memory: 126,605

Fourth order = 2.5 sec CPU time
Pseudo-spectral = 4.0 sec CPU time.

Pseudo-spectral = 34 sec CPU time.
Chapter 5

MIXING LAYER: TWO-DIMENSIONAL COMPUTATION

5.1 Preview

It is well documented (Winant and Browand (W&B), 1974; Brown and Roshko (B&R), 1974; Konrad, 1976; Dimotakis and Brown (D&B), 1976) that in some cases the spatially developing mixing layer contains coherent structures (in the terminology of B&R) or discrete vortices (in the terminology of W&B). In these experiments, the mixing layer grows via the interaction of neighboring vortex-like structures that rotate around and combine with each other to form a similar but larger structure (see Fig. 5.1). This mechanism is called vortex pairing. In this chapter we study the vortex-pairing mechanism by perturbing an infinite array of vortices. The effect of the initial perturbation on the roll-up is discussed. All cases treated in this chapter are completely two-dimensional; three-dimensional cases are discussed in the next chapter.

5.2 Some Experimental Results

The mixing layer is generated in a laboratory by bringing together two streams of fluid of different streamwise velocity (see Fig. 5.2). The measured mean velocity profiles, at different streamwise positions, are self-similar and can be fitted by an error-function (Spencer and Jones (S&J), 1971):

\[\frac{u}{u_1} = r + \frac{(1-r)}{2} \left(1 - \text{erf}\left(\frac{\sigma(\eta-\eta_0)}{\eta_0}\right)\right) \]

(5.1)

where

\[r = \frac{u_2}{u_1}, \]

\[u_1 = \text{velocity of the high-speed side}, \]

\[u_2 = \text{velocity of the low-speed side}, \]

\[\eta = \frac{z}{(x-x_0)} \]

\[\sigma = \text{spread parameter} \]

\[z = \text{cross-flow coordinate}, \]
\(x = \) streamwise coordinate, and \(x_o = \) virtual origin of the layer.

Rearranging (3.1) and normalizing the velocity on \(\Delta u = u_1 - u_2 \), we get

\[
\frac{u-U}{\Delta u} = 0.5 \text{ erf}(\sigma(\eta-\eta_o))
\]

where \(U = (u_1+u_2)/2 \) is the mean velocity. The spread parameter \(\sigma \) is a function of \(r \), and the spread data can be fitted by the expression:

\[
\frac{\sigma}{\sigma_o} = \frac{1+r}{1-r}
\]

where \(\sigma_o \) is the spread parameter for \(r = 0 \). S&J report \(\sigma_o = 11 \) for other values of \(\sigma_o \); see Table 1.1.

Defining the momentum thickness, \(\theta \), to be

\[
\theta = \frac{1}{(\Delta u)^2} \int_{-\infty}^{\infty} (u-u_2)(u_1-u) \, dz
\]

\[
= \int_{-\infty}^{\infty} \left(\frac{1}{4} - \left(\frac{u-u}{\Delta u} \right)^2 \right) \, dz
\]

and substituting (5.2) in (5.4), we get

\[
\theta = \frac{x-x_o}{\sigma \sqrt{2\pi}} = \frac{\Delta u}{\sigma_o 2 \sqrt{2\pi}} \frac{\Delta u}{U}
\]

\[
\sigma = \frac{x-x_o}{\theta \sqrt{2\pi}}
\]

Since \(\sigma \) is constant, Eqn. (5.5) shows that the momentum thickness grows linearly with \(x \).

Substituting (5.6) in (5.2), we get:

\[
\frac{u-U}{\Delta u} = 0.5 \text{ erf}\left(\frac{(z-z_o)}{\theta \sqrt{2\pi}}\right)
\]

Due to computer limitations, one cannot set up a uniform grid that covers the length of the experimental set-up (1.8 m for the W&B case) and
at the same time resolves the large-eddy scale ($\sim 1-4$ cm). We propose to use a uniform grid that moves with the mean speed U. The size of the computational domain is chosen so that two vortices are captured in the initial field; i.e., we can imagine that we are following the fluid in the dashed box in Fig. 5.1 as it moves downstream.

In our frame the layer will develop in time rather than space. We shall in fact be studying a portion of a time-developing mixing layer. This layer can be thought of as being created by having two infinite counter-moving streams of velocity $\pm \Delta u/2$ brought in contact suddenly at $T = 0$. For this flow, the mean quantities will be horizontal planar-averaged quantities; for example, the mean velocity profile will be defined as

$$<\bar{u}>_{xy} = \frac{1}{A} \int_A \int u(x,y,z,t) \, dx \, dy \quad (5.8)$$

The momentum thickness, defined as

$$\theta(t) = \int \left[\frac{1}{4} - \left(<\bar{u}>_{xy} \right)^2 \right] \, dz \quad (5.9)$$

will be a function of time instead of space. According to the Taylor hypothesis, the state of the flow at the experimental streamwise distance x is the same as that of the computed layer at the computational time variable t. The variables x and t are related by the expression:

$$x = Ut \quad (5.10)$$

Substituting (5.10) in (5.5), we get an expression for the expected momentum thickness of the time-developing layer:

$$\theta(t) = \frac{t - t_o}{\sigma_o^2 \sqrt{2\pi}} \Delta u \quad (5.11)$$

Equation (5.11) shows that $\theta(t)$ should grow linearly with time, with

$$\frac{d\theta}{\Delta u dt} = \frac{1}{\sigma_o^2 \sqrt{2\pi}} \quad (5.12)$$
5.3 Boundary Conditions

The coordinate system used is shown in Fig. 5.3, where the x-direction is the streamwise direction, the y-direction is the spanwise direction, and the z-direction is the cross-flow direction. We shall use periodic boundary conditions in the x- and y-directions; this is allowed if the size of the computational box is sufficiently greater than the integral scale in a given direction. At a large enough z location the flow is essentially horizontal and uniform. We can use no stress boundary conditions in the z-direction (i.e., $\partial u/\partial z = \partial v/\partial z = w = 0$ at $z = 0$ and $z = L$) if the boundaries of our box in this direction are sufficiently far from the center of the layer. This will allow us to expand the velocity fields as follows:

\[
\bar{u} = \sum_n \sum_{k_2} \sum_{k_1} \hat{u}(k_1, k_2, n) e^{i(k_1 x + k_2 y)} \cos\left(\frac{n \pi z}{L_3}\right) \tag{5.13}
\]

\[
\bar{v} = \sum_n \sum_{k_2} \sum_{k_1} \hat{v}(k_1, k_2, n) e^{i(k_1 x + k_2 y)} \cos\left(\frac{n \pi z}{L_3}\right) \tag{5.14}
\]

\[
\bar{w} = \sum_n \sum_{k_2} \sum_{k_1} \hat{w}(k_1, k_2, n) e^{i(k_1 x + k_2 y)} \sin\left(\frac{n \pi z}{L_3}\right) \tag{5.15}
\]

and the vorticity fields as follows:

\[
\bar{\omega}_1 = \sum_n \sum_{k_2} \sum_{k_1} \hat{\omega}_1(k_1, k_2, n) e^{i(k_1 x + k_2 y)} \sin\left(\frac{n \pi z}{L_3}\right) \tag{5.16}
\]

\[
\bar{\omega}_2 = \sum_n \sum_{k_2} \sum_{k_1} \hat{\omega}_2(k_1, k_2, n) e^{i(k_1 x + k_2 y)} \sin\left(\frac{n \pi z}{L_3}\right) \tag{5.17}
\]

\[
\bar{\omega}_3 = \sum_n \sum_{k_2} \sum_{k_1} \hat{\omega}_3(k_1, k_2, n) e^{i(k_1 x + k_2 y)} \cos\left(\frac{n \pi z}{L_3}\right) \tag{5.18}
\]

The pseudo-spectral method will be used to approximate the partial derivatives. The numerical technique was discussed in Chapter 3.
5.4 Initial Conditions

We want to prescribe an initial profile that corresponds to a pair of vortices. It has been shown in Chapter 2 that filtering a line vortex produces a vortex with a Gaussian distribution of vorticity in the core. We shall use this fact to generate our initial conditions.

The initial conditions are generated by starting with two line vortices in the spanwise direction at \((x=x_1, z=L_3/2)\) and \((x=x_2, z=L_3/2)\) (see Fig. 5.4), and filtering in the \(x-z\) plane with the relatively wide Gaussian filter:

\[
G(x,z) = \frac{1}{A_1A_3} \exp\left(-\frac{x^2}{6h_1^2} - \frac{z^2}{6h_3^2}\right)
\]

where \(h_i\) is the mesh size in the \(i\)-th direction \((i = 1,3)\) and \(A_i\) \((i = 1,2)\) is defined by Eqn. (3.61). This will produce the vorticity field:

\[
\begin{align*}
\bar{\omega}_2 &= C_1 \frac{1}{A_1A_3} \left\{ \exp\left(-\frac{(x-x_1)^2}{6h_1^2}\right) + \exp\left(-\frac{(x-x_2)^2}{6h_2^2}\right) \right\} \exp\left(-\frac{(z-L_3/2)^2}{6h_3^2}\right) \\
&\quad 0 \leq x < L_1, \quad 0 \leq z < L_3 \\
\bar{\omega}_1 &= \bar{\omega}_3 = 0 \\
\bar{\omega}_2(x_1,z) &= \bar{\omega}_2(x+nL_1,z) \quad n = \pm 1, \pm 2, \ldots \text{(periodicity)}
\end{align*}
\]

where \(C_1\) is an arbitrary constant that adjusts the strength of the vortices. Note that these vortices can be elliptical; they are \(h_1/h_3\) times as long in the streamwise direction as in the cross flow direction.

Equations (5.20) correspond to a perturbed infinite array of vortices with a perturbation parameter \(\beta\) equal to:

\[
\beta = \frac{1}{2} - \frac{|x_1-x_2|}{L_1}
\]

\(\beta = 0\) corresponds to a uniform (unperturbed) vortex array, and we need to deal only with the case \(\beta > 0\).
Figures 5.6a-f show constant vorticity contours for $\beta = 6/16$, $5/16$, $4/16$, $3/16$, $2/16$, and $1/16$. Note that for large β the vorticity contours look like those for a single distorted vortex.

5.5 Mesh Size Selection

We have shown in Chapter 4 that a $16 \times 16 \times 16$ mesh system can resolve isotropic homogeneous turbulence with acceptable accuracy. For the cases considered in this chapter there are no variations in the spanwise direction. We dropped the number of meshes in the spanwise direction to $N_2 = 4$, the minimum number of meshes that our three-dimensional code was designed to handle. In the cross-flow direction the mesh number was increased to $N_3 = 33$ in order to allow the layer to grow in this direction. This gives a total number of mesh points of $N_1 \times N_2 \times N_3 = 16 \times 4 \times 33 = 2112$.

The spanwise vorticity is defined by

$$\overline{\omega}_2 = \frac{\partial}{\partial z} u - \frac{\partial}{\partial x} v$$ \hspace{1cm} (5.22)

Averaging (5.22) over x-y planes and using periodic boundary conditions, we get

$$\overline{\omega}_2 \big|_{xy} = \frac{d}{dz} \overline{u} \big|_{xy}$$ \hspace{1cm} (5.23)

If we substitute in (5.23) the vorticity distribution given by Eqn. (5.20), we get:

$$\frac{d}{dz} \overline{u} \big|_{xy} = C_1 \frac{2}{L_1 A_3} \exp \left(- \frac{(z-L_3/2)^2}{6h_3^2} \right)$$ \hspace{1cm} (5.24)

This ordinary differential equation can be solved together with the boundary condition:

$$\overline{u} \big|_{xy} = 0 \text{ at } z = L_3/2$$ \hspace{1cm} (5.25)

The solution is obtained by simple integration:
Non-dimensionalizing the velocity Δu, we get:

$$< \bar{u} >_{xy} = 0.5 \text{erf} \left(\frac{z-L_3/2}{\sqrt{6} h_3} \right)$$ (5.27)

Equating Eqns. (5.26) and (5.27) and solving for C_1, we get:

$$C_1 = 0.5 L_1$$ (5.28)

The length scales are non-dimensionalized on the momentum thickness.

The mesh size was chosen such that the initial momentum thickness is equal to unity. Substituting (5.27) in Eqn. (5.9), we get:

$$\theta_{in} = \frac{\sqrt{6}}{\sqrt{2\pi}} h_3 = 1$$

and solving for h_3, we obtain

$$h_3 = \sqrt{\frac{2\pi}{6}} = 1.023$$ (5.29)

The mesh size in the streamwise direction was set equal to:

$$h_1 = \frac{4}{3} h_3 = 1.364$$ (5.30)

The non-dimensional time step was picked up to be equal to:

$$\Delta T = \frac{\Delta u \Delta t}{\theta_{in}} = 0.0799$$ (5.31)

which yields a Courant number such that:

$$N_c = U_\infty \frac{\Delta t}{h_1} \leq 0.03$$

which is well within the stability criterion and assures that the error caused by the time advancement will be acceptably small.

The mesh size in the spanwise direction is irrelevant for the cases considered in this chapter. We have set $h_2 = h_3$.

47
5.6 Selection of β

We have shown in Section 5.2 that, to accord with the experimental observations, the momentum thickness $\theta(t)$ must grow linearly with time; and, using $\sigma_o = 11$ (S&J), we expect:

\[\frac{d\theta}{\Delta u dt} = \frac{1}{\sigma_o^2 \sqrt{2\pi}} = 0.018 \quad (5.32) \]

We have run a series of calculations for different values of β. Fig. 5.5 shows the momentum thickness θ/θ_{in} plotted vs. T for the cases run. For the highly perturbed cases, $\beta \geq 4/16$, the momentum thickness $\theta(t)$ does not grow linearly in time. However, for $\beta = 3/16, 2/16, \text{and } 1/16$, $\theta(t)$ does grow linearly in time, with $d\theta/\Delta u dt = 0.020, 0.015, \text{and } 0.009$, respectively.

Figures 5.6 and 5.7 show constant vorticity (contour) plots for the various cases at times $T = 0$ and $T = 16.78$, respectively. Figs. 5.6a-c and 5.7a-c show that for large β we have essentially one elliptical vortex which grows "fatter" in time, to become more or less circular at time $T = 16.78$. Figs. 5.6d-f show that for small β, we have initially two distinct vortices; these vortices draw closer and rotate around each other (Figs. 5.7d-f). For the case $\beta = 3/16$, the two vortices merge to form one vortex at time $T = 16.78$ (Fig. 5.7d).

The above observations indicate that case $\beta = 3/16$ gives results comparable to the experimental observations. The spread parameter σ_o obtained for $\beta = 3/16$ is equal to

\[\sigma_o = \frac{1}{\frac{d\theta}{\Delta u dt} 2 \sqrt{2\pi}} = 9.97 \]

which is within 10% of the experimental results of S&J.

5.7 Mean Velocity Profiles

The mean velocity profile $\bar{u}_{x'y'}$ defined by Eqn. (5.8) is a function of z and T. Fig. 5.8 shows $2\bar{u}_{x'y'}/\Delta u$ plotted vs. z/θ at $\Delta T = 2.4$ intervals, for $\beta = 3/16$. The profiles collapse into one, indicating self-similarity of the mean velocity profiles.
Self-similarity is also observed in the experimental data. Thus, as far as the mean profile is concerned, the data can be fit by pairing vortices with $\beta = 3/16$.

5.8 Mean Turbulent Intensity Profiles

In our computational box, the non-dimensional mean turbulence intensity is defined as

$$\frac{q^2}{2(Du)^2} = \frac{1}{2(Du)^2} < (\bar{u} - < \bar{u} > _{xy})^2 + (\bar{v} - < \bar{v} > _{xy})^2 + (\bar{w} - < \bar{w} > _{xy})^2 > _{xy}$$

where $< > _{xy}$ are planar averages defined by Eqn. (5.8).

Figure 5.9 shows the mean turbulence intensity plotted vs. z/θ, for the case $\beta = 3/16$, at $\Delta T = 2.4$ intervals. We note that the turbulence intensity decays slightly at the early stages of the pairing and then reaches a self-similar situation.

Compared with the experimental results, our peak intensity $q^2/2(Du)^2|_{max} = 2.06 \times 10^{-2}$ is substantially lower than the experimental value reported by S&J (3.5×10^{-2}). The low value of the maximum turbulence intensity is due to the fact that we did not take into account the subgrid scale contributions, and that our field is strictly two-dimensional, whereas in reality spanwise fluctuations are present in the experiment of S&J.

5.9 Summary

It is interesting to note that vortex pairing is capable of producing self-similar mean velocity and turbulence intensity profiles, and a linear growth of the momentum thickness that compare with experimental results (for $\beta = 3/16$). We note that, due to periodic boundary conditions, once the vortices have paired we get a uniform vortex array ($\beta = 0$) and the pairing and layer growth stop. If we want the pairing to continue, we would have to perturb the array by displacing the vortices in the streamwise direction. We have not done this because in the actual flow successive pairings are not clearly separated and are random.

A uniform array of vortices can be perturbed in several different ways; for example, by adding a cosine distribution of vorticity to a uniform array, we can enhance the pairing (see Appendix C) and get results similar to the
results presented in this chapter. One could also make the vortices of different strengths or use any combinations of these perturbations.

The perturbation $\beta = 3/16$ (vs. $\beta = 0$ for the unperturbed layer) needed to achieve the observed experimental growth rate of the shear layer may, at first, seem excessive. In the experiments, the downstream vortices exert a significant influence on those in the initial portions of the layer (D&B); recall that the influence of a distant vortical structure on a given point decreases inversely with distance. The cumulative effect of the downstream vortices can be considerable, and, since they tend to be highly turbulent, they may strongly perturb the vortices in the initial section of the mixing layer. Therefore, the value $\beta = 3/16$ may in fact be quite reasonable.
Chapter 6

MIXING LAYER: THREE-DIMENSIONAL COMPUTATIONS

6.1 Preview

In Chapter 5 we started with a two-dimensional initial field, and the numerical simulation of the governing equations stayed two-dimensional. However, actual flows are rarely two-dimensional, and truly turbulent flows are always three-dimensional. (Two-dimensional turbulence is approximated by certain atmospheric structures and in highly stratified fluids.) In this chapter we evaluate the importance of large structures in the development of the mixing layer, which is two-dimensional in the conventional mean sense but contains the three-dimensional structures.

6.2 Boundary Conditions and Mesh-Size Selection

The boundary conditions and coordinate system of Chapter 5 will be used. Periodic boundary conditions will be used in the streamwise (x_1) and spanwise (x_2) directions, and no-stress boundary conditions in the cross-flow (x_3) direction.

The number of meshes used for the cases discussed in this chapter is $16 \times 16 \times 33 = 8448$. The mesh sizes and time step are the same as in the previous chapter. After non-dimensionalizing all coordinates on the initial momentum thickness and the velocity on Δu, the mesh size in the cross-flow (x_3) direction is:

$$h_3 = 1.023$$

In a mixing layer the eddies are suspected of being elongated in the streamwise direction, so we have set:

$$h_1 = \frac{4}{3} h_3,$$

and

$$h_2 = h_3.$$
We note that if the mixing layer is completely coherent in the spanwise direction the size of the mesh in this direction \((h_2)\) is not critical.

The non-dimensional time step was set equal to

\[
\Delta T = \frac{\Delta u \Delta t}{\Theta_{in}} = 0.0799
\]

6.3 Initial Conditions

We begin by taking the view that the mixing layer is a superposition of a random velocity \((\tilde{u})\) and a mean velocity profile \((u/Au)\). We want the initial random profile to be solenoidal (i.e., \(\nabla \cdot \tilde{u} = 0\)), random in a region of space (see Fig. 6.1), and to decay to zero outside this region.

In Chapter 3 we showed how to generate an isotropic random velocity field \(u_I\) on a \(16^3\) grid. To generate the random part of the initial field that we need here, we start with the field of Chapter 3 and form:

\[
\psi(I,J,L) = u_I(I,J,L-9) \quad L = 14, \ldots, 20 \quad (6.1)
\]

\[
\psi(I,J,L) = 0 \quad \text{otherwise}
\]

(Where \(I, J, L\) are the mesh point indices); i.e., a random field over the middle of the shear layer that drops abruptly to zero outside. In order to smooth out the jump between the two regions, \(\psi\) is filtered in the \(z\)-direction with a Gaussian filter. We get:

\[
\bar{\psi} = \int \psi(z') G(z-z') \, dz'
\]

(6.2)

Where

\[
G(z) = \frac{1}{A_3} \exp\left(-\frac{z^2}{6h_3^2}\right)
\]

The random portion of the initial field is generated by setting

\[
\tilde{u} = \nabla \times \bar{\psi}
\]

(6.3)
The initial conditions were completed by adding to \(\tilde{u} \) an error function mean velocity:

\[
\frac{u}{\Delta u} = 0.5 \text{ erf} \left(\frac{z-L_3/2}{\sqrt{6} h_3} \right) \quad (6.4)
\]

Two cases were run:

Case a:

\[
\frac{|u_{i_{\text{max}}}|}{\Delta u} = 0.01 \quad (i = 1, 2, 3)
\]

Case b:

\[
\frac{|u_{i_{\text{max}}}|}{\Delta u} = 0.30 \quad (i = 1, 2, 3)
\]

In these two cases the large (grid) structures are assumed to be random fluctuations.

The two-dimensional cases studied in Chapter 5 could be considered as unsteady laminar flows, since there is no randomness. We emphasize that there are at least two kinds of randomness:

i) Randomness of the pairing in which the vortices vary in shape, separation distance, strength, number, etc., in a random way. In Chapter 5 we computed realizations using spacing as the perturbation.

ii) Randomness meaning noisy (random) fluctuations.

The calculations described above are designed to look into the second type of randomness. To see what the combined effect would be, we ran still another case in which the initial field contained a vortex pair (with \(\beta = 3/16 \)) and a superimposed random field. For the latter, we took the random field of case (b) described above. This case will be called (c).

Table 6.1 summarizes the cases studied in this chapter. In Appendix D we investigate the interaction between streamwise cellular structures and spanwise vortex pairing.

6.4 Momentum Thickness

In order to study the development of the mixing layer, we would need a measure of the effects of the turbulent rotational region on the non-turbulent irrotational region; the momentum thickness \(\theta(t) \) is one such measure. We note that \(\theta(t) \), as defined by Eqn. (5.4), is a measure of the momentum defect of the irrotational region. The momentum defect is due to the spreading of vorticity into the irrotational region. Since, in our computation, we have dropped the viscous terms, the growth of the momentum
thickness measures the inviscid mixing or the entrainment of irrotational fluid.

Figure 6.2 shows the non-dimensional momentum thickness θ/θ_{in} (θ_{in} is the initial momentum thickness) plotted vs. T for the three cases considered. We note that in all three cases θ grows linearly with time. The growth rates ($d\theta/dT$) for cases (a) and (b) are not very different, despite the large differences in turbulence levels. The values of 0.008 and 0.011, respectively, are also substantially lower than the growth rate (0.018) reported experimentally by S&J; they are, in fact, lower than any of the values in Table 1.1. The rate of growth of the momentum thickness is only slightly dependent on the intensity of the turbulent fluctuations in cases (a) and (b), and a higher turbulence intensity produces a higher growth rate. Furthermore, when large organized structures are present (case (c)), the momentum thickness growth rate, $\frac{d\theta}{dT} = 0.02$ is equal to what it was in the absence of random fluctuations.

Fig. 6.3 shows the non-dimensional momentum thickness θ/θ_{in} plotted vs. T, for case (c) and the two-dimensional case with $\beta = 3/16$. Only at the early stages of the development of the layer do the random fluctuations affect the growth of the momentum thickness.

6.5 Mean Velocity Profiles

An important characteristic of the experimental turbulent mixing layer is the self-similarity of the mean velocity profiles. In our computation, the mean velocity \bar{u} is defined by Eqn. (5.8).

Figures 6.4a, b, and c show $2 < \bar{u} >_{xy}/\Delta u$ plotted vs. z/θ at $\Delta T = 2.4$ intervals, for cases (a), (b), and (c), respectively. We obtain self-similar profiles in all cases. This means that self-similarity may be obtained from a wide variety of different flow structures, and does not provide much information about which initial conditions best represent physical reality.

6.6 Mean Turbulence Intensity Profiles

Experimental observations show that the mean turbulence intensity profiles are very nearly self-preserving (Townsend, 1956). This means that:
\[\frac{q^2}{2(\Delta u)^2} = f\left(\frac{z}{\theta}\right) \]

(6.5)

Defining the integral of the turbulent energy \(I_T \) at a given downstream distance to be

\[I_T = \int_{-\infty}^{+\infty} \frac{q^2}{2(\Delta u)^2} \, dz \]

(6.6)

and substituting (6.5) in (6.6), we get

\[I_T = 2 \int_{-\infty}^{+\infty} f\left(\frac{z}{\theta}\right) d\left(\frac{z}{\theta}\right) = C \theta \]

(6.7)

where

\[C = \int_{-\infty}^{+\infty} f(\eta) \, d(\eta) \]

Non-dimensionalizing on the initial integral of the turbulent energy, \(I_{T,\text{in}} \), we get

\[\frac{I_T}{I_{T,\text{in}}} = \frac{\theta}{\theta_{\text{in}}} = \frac{t-t_0}{t_{\text{in}}-t_0} \]

(6.8)

Equation (6.8) shows that \(I_T \) grows linearly with time if the profiles of \(q^2/2(\Delta u)^2 \) are self-similar. To compute \(I_T \), the mean turbulent energy defined by Eqn. (5.33) was integrated numerically in the z-direction.

Figure 6.5 shows \(I_T/I_{T,\text{in}} \) plotted vs. \(t \), for the three cases. We note that for all three cases \(I_T/I_{T,\text{in}} \) decays with time. However, only for case (c), in which large structures are present, did the decay level off.

Figures 6.6a, b, and c show \(q^2/2(\Delta u)^2 \) plotted vs. \(z/\theta \), at \(\Delta T = 2.4 \) intervals, for cases (a), (b), and (c), respectively. Consistent with the integral of the turbulence energy results, the turbulence intensity decays in time. The most significant drop of the maximum turbulence intensity occurs in the early stages of the development of the layer.

The fact that the integral of the turbulence energy decays, instead of growing linearly with time, is a clear indication that the term (Eqn. (2.16)) used in our equations (2.28) to model the subgrid scale motions,
has too much of an inhibiting effect on the growth of the turbulent fluctuations.

In order to support the above argument, we ran a case in which we started with the same initial conditions as in case (b), but set $C_v = 0$. Fig. 6.7 shows $q^2/(2\Delta u)^2$ plotted vs. z/θ, and Fig. 6.8 shows $I_T/I_{T,in}$ plotted vs. T, for this case. It is clear that the turbulence intensity grows with time, indicating that in case (b) the subgrid scale model is inhibiting the growth of the turbulence energy.

Recall that when the initial conditions contain nothing but large structures we obtain self-similar turbulent intensity profiles (see Section 5.8), even with $C_v = 0.188$. The decay of the total turbulence energy (Fig. 6.5) might suggest that the subgrid scale constant determined for the decay of the isotropic turbulence case might be too high for the mixing layer case. However, the growth rate of the momentum thickness for case (b) is much lower than the growth rate reported experimentally. With $C_v = 0$, the case (b) layer did not grow, i.e., $d\theta/\Delta u dt = 0$, at least up to $T = 9.6$, which indicates that lowering the subgrid scale constant will not give us a momentum growth comparable to the experiments. We thus surmise that it is essential that large structures be included in the initial conditions if the numerical results are to reproduce significant features of the experimental mixing layer. In principle, we could begin with a laminar shear layer and some small perturbations. The Kelvin-Helmholtz instability would then produce large vortical structures and would eventually produce a velocity field with the experimentally observed features. A computation of this type would require at least an order of magnitude more computing time. As we have noted earlier, the subgrid scale model would inhibit the growth of the perturbations and is not adequate for a computation of transitional flow. We shall need to modify the model if transitional flows are to be computed. An alternative approach would be to increase the amplitude of the perturbations and lower the constant of the subgrid scale model, or use a finer mesh.

6.7 Vorticity Contours

In order to investigate the eddy structures and their dynamics, vorticity contours in x-z planes have been plotted in Figs. 6.9 and 6.10, for the three cases considered, at times $T = 0$ and $T = 16.78$.

56
Figure 6.9a shows the spanwise vorticity contours for case (a), at time $T = 0$. The combination of a weak random velocity field and a smooth mean velocity distribution yields vorticity contours that are almost unaffected by the random fluctuations. The development at $T = 16.78$, shown in Fig. 6.10a, does not indicate any significant effect of the random fluctuations on the mean. The mean field simply masks the weak fluctuations in both the initial conditions and at $T = 16.78$.

Figures 6.9b show the spanwise vorticity contours for case (b), at different spanwise (x-z) planes. The combination of a strong random velocity field and a mean velocity yields vorticity contours that look spotty. At time $T = 16.78$, Figs. 6.10b show that the spots appear much more elongated. At some planes (e.g., plane 5), there are two vortex tubes that appear as if they might pair, while other planes show only one vortex tube. This indicates that the initially strong random fluctuations are being organized by the mean field, and that the layer is developing through a combination of diffusion (due to the subgrid scale model) and vortex pairing.

Figures 6.9c show the spanwise vorticity contours for case (c) at different spanwise (x-z) planes. Adding random fluctuations to the two spanwise vorticities causes the contour lines of the spanwise vorticity to become irregular. At time $T = 16.78$, the vortices have merged in some planes (e.g., planes 1-4) in Figs. 6.10a, whereas in other planes (e.g., planes 5-6) the vortices are still in the process of merging. This indicates that strong random fluctuations can affect the dynamics of vortex pairing.

6.8 Two-Point Correlations

In order to investigate whether or not the mixing layer shows a tendency to increased or decreased spanwise coherence, the spanwise correlation of the streamwise velocity fluctuations ($R_{uu}(r,z)$) was computed. R_{uu} is defined as

$$R_{uu}(r,z) = \frac{\int_x \int_y u''(x,y,z) u''(x,y+r,z) \, dx \, dy}{\int_x \int_y u''(x,y,z) u''(x,y,z) \, dx \, dy}$$

(6.9)
where

\[u'' = \bar{u} - \langle \bar{u} \rangle_{xy} \]

Numerically, this quantity is computed as follows. We first calculate \(u'' \), then take its discrete Fourier transform in the \(y \)-direction to yield \(\hat{u}''(x,k_2,z) \). \(\hat{R}(x,k_2,z) \) is then defined to be equal to

\[\hat{R}(x,k_2,z) = \hat{u}''(x,k_2,z) \hat{u}''^*(x,k_2,z) \] (6.10)

where \(\hat{u}''^* \) is the complex conjugate of \(\hat{u}'' \). Inverse transforming (6.10) yields the discrete equivalent of

\[R(x,r,z) = \int_y u''(x,y,z) u''(x,y+r,z) \, dy \] (6.11)

Finally, line-averaging (6.11) in the \(x \)-direction and normalizing yields the discrete equivalent to (6.9).

Figures 6.11 show \(R_{uu} \) at \(T = 0 \) and \(T = 16.78 \), plotted vs. \(r \) at various \(z \) locations. We shall define the correlation length to be the abscissa of the point where \(R_{uu} \) first crosses the \(r \)-axis.

For case (a), Figs. 6.11a show no significant changes in the correlation length between time \(T = 0 \) and \(T = 16.78 \). In some parts of the flow the correlation length seems to increase, whereas in other parts the correlation length seems to decrease. These variations are not significant.

Figures 6.11b show that when we start with a large random initial fluctuation superimposed on a mean profile (case (b)), the correlation length increases with time. This indicates that the layer is becoming more organized in the spanwise direction and is consistent with the result stated earlier that the vorticity tends to clump. Apparently there is a tendency toward the formation of two-dimensional vortices.

Figures 6.11c show that when we add a random field to coherent structures (case (c)), the correlation length decreases slightly with time. The only increase in the correlation length occurs at the center of the layer (plane 17 in our case).
If the spanwise correlation length of the streamwise velocity is taken as a measure of the coherence of the layer, our results tend to indicate that a layer that begins with a random field becomes more coherent, and one that starts with two-dimensional vortical structures loses coherence when the random fluctuations are strong.

6.9 Summary and Conclusions

We have shown that the development of the mixing layer is highly dependent on the initial conditions. This dependence is partly physical and partly numerical. Experimentally, the importance of the initial conditions on the development of the two-dimensional mixing layer has been pointed out by several workers (Bradshaw, 1966; Batt, 1975). Analytically, the subgrid scale models have been developed under the assumption that all the energy transferred by the large resolvable scales to the subgrid scales is dissipated. The decay of the turbulence intensity in cases (a) and (b) indicates that it is doubtful that we can compute transition with the present subgrid scale models. The presence of large structures in the initial conditions is essential to the computation of inhomogeneous turbulent flows.

From the above observations we can conclude that in order to predict the initial development of a shear layer one would need a subgrid scale model that allows the energy of the small scale field to build up and eventually reach equilibrium with the large eddies. However, the later development of a shear layer can be predicted with the present subgrid scale models, provided the large structures are explicitly included in the initial conditions. For other flows, it would appear that inclusion of large structures that at least approximate those of the physical flow is essential to obtain reasonable results. Bass and Orszag (1976) attempted to study the evolution of a passive scalar field in a sheared turbulent velocity field, but were unable to obtain physically realistic results. This may have been due to the omission of the large structures in their initial conditions.
Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

In this work we have developed an approach to three-dimensional, time-dependent computations of flows using the vorticity equations. A general method of deriving conservation properties that is applicable to any numerical method in incompressible fluid mechanics was given; its use simplifies the analysis of numerical schemes.

The use of a filter which is smooth in real space has been shown to be essential for the treatment of rotational-irrotational region interactions. The use of Fourier transform methods allows accurate and fast treatment of the term $\bar{u}_j \bar{w}_i - \bar{u}_i \bar{w}_j$, which arises as a consequence of filtering. This is a definite improvement over the expansion in Taylor series (Leonard, 1973) used in previous studies (Kwak et al., 1975), which we believe should be used only when the use of transform methods is not justifiable.

The vorticity equations have been shown to provide a satisfactory basis for the simulation of homogeneous isotropic turbulence. Comparison of our results with results obtained using the primitive variable equations (Mansour et al., 1977; Moin et al., 1978) shows no significant differences.

A new subgrid scale model has been developed and shown to give results comparable to those obtained using the vorticity model (Kwak et al., 1975). The new model offers advantages both in computational speed and in storage. We found that, for the calculation of isotropic homogeneous turbulence, the subgrid scale constant depends only slightly on the numerical method used. The variation is about ten percent and is not likely to have a significant effect on the computed results in shear flows. The use of Fourier spatial differencing has allowed us to look more carefully at the subgrid scale model, and it has been found that replacing exact derivatives with second-order differences (roughly equivalent to averaging the model spatially (Love and Leslie, 1977)) produces improved behavior of the spectrum.

No-stress boundary conditions in one direction and periodic boundary conditions in the other two directions have been incorporated in a three-dimensional, time-dependent code. Flows in which these boundary conditions
can be justified (e.g., two-dimensional wakes, planar jets, mixing layer) can be investigated using this code. We chose the mixing layer.

Two-dimensional computations of the turbulent mixing layer have shown that pairing vortices produce self-similar mean velocity and turbulence intensity profiles. The growth rate of the layer is strongly dependent on the initial conditions, a fact also observed experimentally.

Three-dimensional computations have shown that the presence of large, organized (i.e., not random) structures is essential if the simulation is to reproduce the essential features observed in the experiments. These computations suggest that in order to simulate the initial development of a shear layer one would need a subgrid scale model that allows the energy of the small scale field to build up with time and eventually reach equilibrium with the large eddies. However, the later development of a shear layer can be predicted with the present subgrid scale models, provided the large structures are explicitly included in the initial conditions.

Our results using different initial conditions indicate that self-similarity of the mean velocity profiles can be obtained more easily than self-similarity of the turbulence intensities. The addition of strong random fluctuations to a flow containing pairing vortices disturbs the pairing in a way that causes the vortex tubes to exhibit spanwise variations, and whether or not the merging is completed depends on the spanwise locations. This may explain the onset of three-dimensionality seen in experiments. Fig. 7.1 is a conjecture of what we think might happen. The section of the vortex tube that did not merge could interact with the vortex structure just ahead (or just behind) to form a horseshoe vortex. This horseshoe vortex may get stretched over several rollers, giving the appearance of cellular structures (B&R, Konrad).

In Appendix D we study the interaction between streamwise and spanwise vorticity. Again, the detailed results depend strongly on the initial conditions. Each free shear flow is unique, and the universality that is sought exists only at large downstream distances. This may mean that the computational "prediction" of free shear flows is feasible only to moderate accuracy; the precise behavior of an individual free shear flow may depend on physical details that are not easily controlled. This means that some experimentation will always be necessary.
Work remains to be done on the development of a subgrid scale model that incorporates flow-regime dependence. Ideally, one would like a model that can handle both transition and developed turbulence. With such a model, problems associated with the initial conditions can be studied more carefully, since the linear stability theory is well understood and the initial conditions can be chosen to be solutions of the Orr-Sommerfeld equations. This kind of computation will help understand the effect of the initial conditions on the development of the mixing layer, but will not reproduce experiments exactly.

In the case of the mixing layer, the use of periodic boundary conditions is justifiable only if we move with the mean speed of the flow. However, the size of the eddies grows linearly with the streamwise distance (in our frame linearly in time), and we reach a point at which the size of the box must be increased. In a stationary frame this problem can be avoided, but inflow-outflow boundary conditions must be used. We suggest that future work should concentrate on developing a method of treating the inflow-outflow boundary conditions.

Eventually, it may be possible to treat practical flows such as airfoils, combustion chambers, etc., by these methods. Before that can be done, much more effort should first be devoted to developing subgrid scale models, treatment of boundary conditions, mesh layout and/or mapping, numerical methods, filters, etc., which are the important building blocks of large-eddy simulation.
References

Table 1.1
EXPERIMENTAL RESULTS
(Table from Fiedler and Thies, 1977)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>u_2/u_1</th>
<th>Re_L^*</th>
<th>L^* (mm)</th>
<th>σ_o</th>
<th>$\frac{d\theta}{du_{dt}}$</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liepmann & Laufer (1947)</td>
<td>0</td>
<td>9×10^5</td>
<td>900</td>
<td>11.76</td>
<td>0.016</td>
<td>No trip</td>
</tr>
<tr>
<td>Wygnanski & Fiedler (1970)</td>
<td>0</td>
<td>5×10^5</td>
<td>600</td>
<td>8.70</td>
<td>0.022</td>
<td>Trip</td>
</tr>
<tr>
<td>Batt (1975)</td>
<td>0</td>
<td>7×10^5</td>
<td>640</td>
<td>8.89</td>
<td>0.022</td>
<td>Trip</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>7×10^5</td>
<td>640</td>
<td>11.76</td>
<td>0.016</td>
<td>No trip</td>
</tr>
<tr>
<td>Spencer & Jones (1971)</td>
<td>0</td>
<td>1×10^6</td>
<td>560</td>
<td>10.52</td>
<td>0.018</td>
<td>No trip</td>
</tr>
<tr>
<td>Champagne, Pao & Wygnanski (1976)</td>
<td>0</td>
<td>4×10^5</td>
<td>600</td>
<td>9.62</td>
<td>0.020</td>
<td>Trip (B.L. not turb.)</td>
</tr>
<tr>
<td>Patel (1973)</td>
<td>0</td>
<td>2×10^6</td>
<td>1020</td>
<td>10.53</td>
<td>0.018</td>
<td>No trip</td>
</tr>
<tr>
<td>Oster, Wygnanski & Fiedler (1976)</td>
<td>0</td>
<td>1.1×10^6</td>
<td>1100</td>
<td>9.21</td>
<td>0.021</td>
<td>Trip</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1.1×10^6</td>
<td>1100</td>
<td>11.29</td>
<td>0.017</td>
<td>No trip</td>
</tr>
<tr>
<td>Foss (1977)</td>
<td>0</td>
<td>6.7×10^5</td>
<td>510</td>
<td>9.00</td>
<td>0.021</td>
<td>Turb. B.L.</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>6.7×10^5</td>
<td>510</td>
<td>12.12</td>
<td>0.016</td>
<td>Lam. B.L.</td>
</tr>
<tr>
<td>Dimotakis & Brown (1976)</td>
<td>0.2</td>
<td>3×10^5</td>
<td>600</td>
<td>9.87</td>
<td>0.020</td>
<td>No trip</td>
</tr>
<tr>
<td>Oster, Wygnanski & Fiedler (1976)</td>
<td>0.4</td>
<td>2.8×10^5</td>
<td>470</td>
<td>12.12</td>
<td>0.016</td>
<td>Trip</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>2.8×10^5</td>
<td>470</td>
<td>10.81</td>
<td>0.018</td>
<td>No trip</td>
</tr>
<tr>
<td>Spencer & Jones (1971)</td>
<td>0.3</td>
<td>1×10^6</td>
<td>680</td>
<td>12.31</td>
<td>0.016</td>
<td>No trip</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>2.8×10^5</td>
<td>320</td>
<td>13.14</td>
<td>0.015</td>
<td>No trip</td>
</tr>
<tr>
<td>Yule (1971)</td>
<td>0.3</td>
<td>5×10^5</td>
<td>650</td>
<td>9.44</td>
<td>0.020</td>
<td>No trip</td>
</tr>
<tr>
<td></td>
<td>0.61</td>
<td>1.4×10^5</td>
<td>290</td>
<td>9.23</td>
<td>0.021</td>
<td>No trip</td>
</tr>
<tr>
<td>Thies (1977)</td>
<td>0</td>
<td>2.4×10^6</td>
<td>3600</td>
<td>10.05</td>
<td>0.019</td>
<td>No B.L. suction</td>
</tr>
<tr>
<td></td>
<td>3.8 $\times 10^6$</td>
<td>9.52</td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.1 $\times 10^6$</td>
<td>9.09</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 $\times 10^6$</td>
<td>10.31</td>
<td>0.019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2 $\times 10^6$</td>
<td>9.37</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 $\times 10^6$</td>
<td>10.24</td>
<td>0.019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.7 $\times 10^6$</td>
<td>9.57</td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.1 $\times 10^6$</td>
<td>9.15</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 $\times 10^6$</td>
<td>10.23</td>
<td>0.019</td>
<td>2 mm trip</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 mm trip</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zig-zag trip</td>
</tr>
</tbody>
</table>
Table 1.1 (cont.)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>(\frac{u_2}{u_1})</th>
<th>(\text{Re}_L^*)</th>
<th>(L^*) (mm)</th>
<th>(\sigma_o)</th>
<th>(\frac{d\theta}{\Delta u dt})</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thies (1977) (cont.)</td>
<td>0</td>
<td>8.0 (\times) 10^6</td>
<td>3600</td>
<td>9.17</td>
<td>0.021</td>
<td>B.L.-suction</td>
</tr>
<tr>
<td></td>
<td>2.5 (\times) 10^6</td>
<td>10.10</td>
<td>0.019</td>
<td></td>
<td></td>
<td>No trip</td>
</tr>
<tr>
<td></td>
<td>0.8 (\times) 10^6</td>
<td>13.13</td>
<td>0.015</td>
<td></td>
<td></td>
<td>("near" region)</td>
</tr>
<tr>
<td></td>
<td>2.4 (\times) 10^6</td>
<td>9.80</td>
<td>0.020</td>
<td></td>
<td></td>
<td>2 mm trip</td>
</tr>
<tr>
<td></td>
<td>0.8 (\times) 10^6</td>
<td>9.43</td>
<td>0.020</td>
<td></td>
<td></td>
<td>("near" region)</td>
</tr>
<tr>
<td></td>
<td>8.0 (\times) 10^6</td>
<td>8.95</td>
<td>0.022</td>
<td></td>
<td></td>
<td>4 mm trip</td>
</tr>
<tr>
<td></td>
<td>2.0 (\times) 10^6</td>
<td>9.6</td>
<td>0.020</td>
<td></td>
<td></td>
<td>8 mm trip</td>
</tr>
<tr>
<td></td>
<td>8.0 (\times) 10^6</td>
<td>9.0</td>
<td>0.021</td>
<td></td>
<td></td>
<td>8 mm trip</td>
</tr>
<tr>
<td></td>
<td>2.4 (\times) 10^6</td>
<td>10.21</td>
<td>0.019</td>
<td></td>
<td></td>
<td>Zig-zag trip</td>
</tr>
</tbody>
</table>

The following assumptions were used to reduce the data:

\[
\sigma_o = \sigma \frac{\Delta u}{\Sigma u}
\]

\[
L^* = L \frac{\Delta u}{\Sigma u}
\]

\[
\text{Re}_L^* = \frac{\Delta u L^*}{\nu}
\]

\[
L = x_{max}
\]

\[
\sigma = \frac{2}{\eta_{0.1} - \eta_{0.95}}
\]

\[
\Delta u = u_1 - u_2
\]

\[
\Sigma u = u_1 + u_2
\]

\[
\frac{d\theta}{\Delta u dt} = \frac{1}{2.07 \sigma_o \sqrt{2 \pi}}
\]

68
Fig. 1.1. r.m.s. streamwise velocity profiles for different initial conditions (experimental results from Foss, 1977).
Fig. 1.2. Mean velocity profiles for different initial conditions (experimental results from Foss, 1977).
Fig. 2.1. Filtered point vortex with an SCK (sharp cut-off in k-space) filter, $y = 0$.
Fig. 2.2. Filtered point vortex with a GS (Gaussian in real space) filter, $y = 0$.
Fig. 3.1. Comparison of modified wave numbers.
Fig. 3.2. Filtered top-hat function.
Table 4.1

Computations of the Decay of Isotropic Turbulence

<table>
<thead>
<tr>
<th>No. of Mesh Points</th>
<th>Subgrid Scale Model</th>
<th>Numerical Scheme</th>
<th>Numerical Scheme for the Subgrid Scale Model</th>
<th>Model Constant</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>$16 \times 16 \times 16$</td>
<td>Model $\omega-1$</td>
<td>Fourth-order diff.</td>
<td>Second-order diff.</td>
<td>$C_v = 0.235$</td>
<td>4.2</td>
</tr>
<tr>
<td>$16 \times 16 \times 16$</td>
<td>Model $\omega-1$</td>
<td>Pseudo-spectral</td>
<td>Pseudo-spectral</td>
<td>$C_v = 0.212$</td>
<td>4.3</td>
</tr>
<tr>
<td>$16 \times 16 \times 16$</td>
<td>Model $\omega-1$</td>
<td>Pseudo-spectral</td>
<td>Second-order diff.</td>
<td>$C_v = 0.213$</td>
<td>4.4</td>
</tr>
<tr>
<td>$16 \times 16 \times 16$</td>
<td>Model $\omega-2$</td>
<td>Pseudo-spectral</td>
<td>Pseudo-spectral</td>
<td>$C_v = 0.186$</td>
<td>4.5</td>
</tr>
<tr>
<td>$16 \times 16 \times 16$</td>
<td>Model $\omega-2$</td>
<td>Pseudo-spectral</td>
<td>Second-order diff.</td>
<td>$C_v = 0.188$</td>
<td>4.6</td>
</tr>
<tr>
<td>$32 \times 32 \times 32$</td>
<td>Model $\omega-2$</td>
<td>Pseudo-spectral</td>
<td>Second-order diff.</td>
<td>$C_v = 0.188$</td>
<td>4.7</td>
</tr>
</tbody>
</table>
Fig. 4.1. Decay of mean square filtered velocity for $16 \times 16 \times 16$ mesh. $\langle \rangle$ = average over all space.
Fig. 4.2. Filtered energy spectra. Fourth-order differencing with 16^3 mesh; model w-1, $C_v = 0.235$.
Fig. 4.3. Filtered energy spectra. Pseudo-spectral computation with 16^3 mesh; model $\omega-1$. $C_v = 0.212$.

- COMPUTED POINTS
- EXPERIMENTAL
 (FILTERED)

\[
\frac{tU_0}{M} = 98
\]
Fig. 4.4. Filtered energy spectra. Pseudo-spectral computation with 16^3 mesh; 2nd-order differencing for model $\omega-1$. $C_0 = 0.213$.
Fig. 4.5. Filtered energy spectra. Pseudo-spectral computation with 16^3 mesh; model $\omega-2$. $C_v = 0.186$.
Fig. 4.6. Filtered energy spectra. Pseudo-spectral computation with 16^3 mesh; 2nd-order differencing for model $\omega-2$. $C_v = 0.188$.
Fig. 4.7. Filtered energy spectra. Pseudo-spectral computation with \(\Delta x = 32 \) mesh; 2nd-order differencing model \(\omega-2 \). \(C_v = 0.188 \).
Fig. 5.1. Coherent structure in a mixing layer (Roshko, 1976). Dashed box: schematic of a computational box that moves approximately with the mean velocity.
Fig. 5.2. Mixing layer. Experimental setup and coordinate system.
Fig. 5.3. Computational box and coordinate system.
Fig. 5.4. Initial conditions setup \(\beta = \frac{1}{2} - \frac{|x_1 - x_2|}{L} \)
Fig. 5.5. Non-dimensional momentum thickness (θ/θ_{in}) as a function of time for various β. Two-dimensional computations.
Fig. 5.6a. Contour plots of the spanwise vorticity ($\bar{\omega}_2$) for $\beta = 6/16$, at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\bar{\omega}_{2,\text{max}} = 0.702$).
Fig. 5.6b. Contour plots of the spanwise vorticity \((\bar{\omega}_2)\) for \(\beta = 5/16\), at time \(T = 0\). Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels \((\bar{\omega}_{2,\text{max}} = 0.564)\).
Fig. 5.6c. Contour plots of the spanwise vorticity ($\bar{\omega}_2$) for $\beta = 4/16$, at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\bar{\omega}_{2,\text{max}} = 0.444$).
Fig. 5.6d. Contour plots of the spanwise vorticity ($\bar{\omega}_2$) for $\beta = 3/16$, at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels ($\omega_{2,\text{max}} = 0.421$).
Fig. 5.6e. Contour plots of the spanwise vorticity ($\bar{\omega}_2$) for $\beta = 2/16$, at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\bar{\omega}_{2,\text{max}} = 0.416$).
Fig. 5.6f. Contour plots of the spanwise vorticity ($\bar{\omega}_2$) for $\beta = 1/16$, at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\bar{\omega}_{2,\text{max}} = 0.415$).
Fig. 5.7a. Contour plots of the spanwise vorticity (ω_2) for $\beta = 6/16$, at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\omega_{2,\text{max}} = 0.394$).
Fig. 5.7b. Contour plots of the spanwise vorticity $(\bar{\omega}_2)$ for $\beta = 5/16$, at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\omega_{2,\text{max}} = 0.358$).
Fig. 5.7c. Contour plots of the spanwise vorticity (ω_2) for $\beta = 4/16$, at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels ($\omega_{2,\text{max}} = 0.322$).
Fig. 5.7d. Contour plots of the spanwise vorticity \(\bar{\omega}_2 \) for \(\beta = 3/16 \), at time \(T = 16.78 \). Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (\(\bar{\omega}_{2,\text{max}} = 0.276 \)).
Fig. 5.7e. Contour plots of the spanwise vorticity (ω_2) for $\beta = 2/16$, at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\omega_{2,\text{max}} = 0.248$).
Fig. 5.7f. Contour plots of the spanwise vorticity ($\bar{\omega}_2$) for $\beta = 1/16$, at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels ($\bar{\omega}_{2,\max} = 0.245$).
Fig. 5.8. Mean velocity profiles. Two-dimensional computations; $\beta = 3/16$.
Fig. 5.9. Mean turbulence intensity profiles. Two-dimensional computations ($\beta = 3/16$).
Fig. 6.1. Three-dimensional computation box. Random velocity setup and coordinate system.
Table 6.1

Three-Dimensional Computations of Turbulent Mixing Layers

<table>
<thead>
<tr>
<th>Case</th>
<th>Amplitude of Random Field</th>
<th>Initial Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(\frac{</td>
<td>u_i</td>
</tr>
<tr>
<td>b</td>
<td>(\frac{</td>
<td>u_i</td>
</tr>
<tr>
<td>c</td>
<td>(\frac{</td>
<td>u_i</td>
</tr>
</tbody>
</table>

Fig. 6.2. Non-dimensional momentum thickness \((\theta/\theta_{\text{in}})\) as a function of time. Three-dimensional computations.
Fig. 6.3. Non-dimensional momentum thickness (θ/θ_{in}) as a function of time.
Fig. 6.4a. Mean velocity profiles. Three-dimensional computation (case a).
Fig. 6.4b. Mean velocity profiles. Three-dimensional computation (case b).
Fig. 6.4c. Mean velocity profiles. Three-dimensional computations (case c).
Fig. 6.5. Integral of the turbulence energy as a function of time.
Fig. 6.6a. Mean turbulence intensity profiles. Three-dimensional computations (case a).
Fig. 6.6b. Mean turbulence intensity profiles. Three-dimensional computations (case b).
Fig. 6.6c. Mean turbulence intensity profiles. Three-dimensional computations (case c).
Fig. 6.7. Mean turbulence intensity profiles. Three-dimensional computation ($C_v = 0$).
Fig. 6.8. Integral of the turbulence energy as a function of time. Three-dimensional computation ($C_v = 0$).
Fig. 6.9a. Contour plots of the spanwise vorticity ($\bar{\omega}_2$) in an x-z plane, at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels ($\bar{\omega}_{2,\text{max}} = 0.228$, case a).
Figs. 6.9b. Contour plots of the spanwise vorticity \(\overline{\omega_2} \) for different x-z planes, at time \(T = 0 \). In each plane, constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels (case b).
\[
\frac{y}{\theta_{in}} = 4.092 ; \quad \bar{\omega}_{2,\text{max}} = 0.316
\]

\[
\frac{y}{\theta_{in}} = 5.115 ; \quad \bar{\omega}_{2,\text{max}} = 0.382
\]

\[
\frac{y}{\theta_{in}} = 6.138 ; \quad \bar{\omega}_{2,\text{max}} = 0.432
\]

\[
\frac{y}{\theta_{in}} = 7.161 ; \quad \bar{\omega}_{2,\text{max}} = 0.363
\]
\[\frac{y}{\theta_{in}} = 8.184 ; \quad \bar{\omega}_2,_{\text{max}} = 0.386 \]

\[\frac{y}{\theta_{in}} = 9.207 ; \quad \bar{\omega}_2,_{\text{max}} = 0.352 \]

\[\frac{y}{\theta_{in}} = 10.230 ; \quad \bar{\omega}_2,_{\text{max}} = 0.426 \]

\[\frac{y}{\theta_{in}} = 11.253 ; \quad \bar{\omega}_2,_{\text{max}} = 0.382 \]

Figs. 6.9b (continued)
\[\frac{V}{\Theta_{\text{in}}} = 12.276 ; \ \bar{\omega}_{2,\text{max}} = 0.341 \]

\[\frac{V}{\Theta_{\text{in}}} = 13.299 ; \ \bar{\omega}_{2,\text{max}} = 0.462 \]

\[\frac{V}{\Theta_{\text{in}}} = 14.322 ; \ \bar{\omega}_{2,\text{max}} = 0.427 \]

\[\frac{V}{\Theta_{\text{in}}} = 15.345 ; \ \bar{\omega}_{2,\text{max}} = 0.327 \]

Figs. 6.9b (continued)
Figs. 6.9c. Contour plots of the spanwise vorticity \(\overline{\omega_2} \) for different x-z planes, at time \(T = 0 \). In each plane, constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels (case c).
\[\frac{Y}{\theta_{in}} = 4.092; \quad \bar{\omega}_{2,\max} = 0.507 \]

\[\frac{Y}{\theta_{in}} = 5.115; \quad \bar{\omega}_{2,\max} = 0.578 \]

\[\frac{Y}{\theta_{in}} = 6.138; \quad \bar{\omega}_{2,\max} = 0.457 \]

\[\frac{Y}{\theta_{in}} = 7.161; \quad \bar{\omega}_{2,\max} = 0.529 \]

Figs. 6.9c (continued)
Figs. 6.9c (continued)
\[\frac{\gamma}{\theta_{\text{in}}} = 12.276 \ ; \ \bar{\omega}_{2,\text{max}} = 0.441 \]

\[\frac{\gamma}{\theta_{\text{in}}} = 13.299 \ ; \ \bar{\omega}_{2,\text{max}} = 0.632 \]

\[\frac{\gamma}{\theta_{\text{in}}} = 14.322 \ ; \ \bar{\omega}_{2,\text{max}} = 0.593 \]

\[\frac{\gamma}{\theta_{\text{in}}} = 15.345 \ ; \ \bar{\omega}_{2,\text{max}} = 0.422 \]

Figs. 6.9c (continued)
Fig. 6.10a. Contour plots of the spanwise vorticity ($\bar{\omega}_2$) in an x-z plane, at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels ($\omega_{2,\text{max}} = 0.185$, case a).
Fig. 6.10b. Contour plots of the spanwise vorticity (ω_2) for different x-z planes, at time $T = 16.78$. In each plane, constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case b).
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

\[\frac{\gamma}{\delta_{in}} = 4.092 \quad ; \quad \bar{\omega}_{2,max} = 0.209 \]

\[\frac{\gamma}{\delta_{in}} = 5.115 \quad ; \quad \bar{\omega}_{2,max} = 0.227 \]

\[\frac{\gamma}{\delta_{in}} = 6.138 \quad ; \quad \bar{\omega}_{2,max} = 0.228 \]

\[\frac{\gamma}{\delta_{in}} = 7.161 \quad ; \quad \bar{\omega}_{2,max} = 0.244 \]

Figs. 6.10b (continued)
Figs. 6.10b (continued)

126
\[\frac{y}{\theta_{\text{in}}} = 12.276 \quad ; \quad \bar{\omega}_{2,\text{max}} = 0.258 \]

\[\frac{y}{\theta_{\text{in}}} = 13.299 \quad ; \quad \bar{\omega}_{2,\text{max}} = 0.253 \]

\[\frac{y}{\theta_{\text{in}}} = 12.322 \quad ; \quad \bar{\omega}_{2,\text{max}} = 0.216 \]

\[\frac{y}{\theta_{\text{in}}} = 15.345 \quad ; \quad \bar{\omega}_{2,\text{max}} = 0.244 \]

Figs. 6.10b (continued)

127
Figs. 6.10c. Contour plots of the spanwise vorticity $\tilde{\omega}_2$ for different x-z planes, at time $T = 16.78$. In each plane, constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case c).
\[\frac{y}{\theta_{\text{in}}} = 4.092 \quad ; \quad \bar{\omega}_2,_{\text{max}} = 0.280 \]

\[\frac{y}{\theta_{\text{in}}} = 5.115 \quad ; \quad \bar{\omega}_2,_{\text{max}} = 0.305 \]

\[\frac{y}{\theta_{\text{in}}} = 6.138 \quad ; \quad \bar{\omega}_2,_{\text{max}} = 0.335 \]

\[\frac{y}{\theta_{\text{in}}} = 7.161 \quad ; \quad \bar{\omega}_2,_{\text{max}} = 0.344 \]

Figs. 6.10c (continued)
\[
\frac{Y}{\theta_{\text{in}}} = 8.184 \quad ; \quad \bar{\omega}_{2,\text{max}} = 0.322
\]

\[
\frac{Y}{\theta_{\text{in}}} = 9.207 \quad ; \quad \bar{\omega}_{2,\text{max}} = 0.291
\]

\[
\frac{Y}{\theta_{\text{in}}} = 10.230 \quad ; \quad \bar{\omega}_{2,\text{max}} = 0.286
\]

\[
\frac{Y}{\theta_{\text{in}}} = 11.253 \quad ; \quad \bar{\omega}_{2,\text{max}} = 0.292
\]

Figs. 6.10c (continued)

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

\[\frac{V}{\theta_{in}} = 12.276 \; ; \; \bar{\omega}_{2,\text{max}} = 0.279 \]

\[\frac{V}{\theta_{in}} = 13.299 \; ; \; \bar{\omega}_{2,\text{max}} = 0.286 \]

\[\frac{V}{\theta_{in}} = 14.322 \; ; \; \bar{\omega}_{2,\text{max}} = 0.293 \]

\[\frac{V}{\theta_{in}} = 15.345 \; ; \; \bar{\omega}_{2,\text{max}} = 0.319 \]

Figs. 6.10c (continued)

131
Fig. 6.11a. Two point correlations (z = 17 is the center plane of the mixing layer, $\Delta z/\theta_{in} = 1.023$; case a).
Fig. 6.11b. Two point correlations ($z = 17$ is the center plane of the mixing layer, $\Delta z/\theta_{in} = 1.023$; case b).
Fig. 6.11c. Two-point correlations \((z = 17\) is the center plane of the mixing layer, \(\Delta z/\theta_{in} = 1.023\); case c).
Fig. 7.1. Formation of streamwise cellular structures in a mixing layer.
Appendix A

SUBGRID SCALE MODELS FOR THE VORTICITY EQUATIONS

In Chapter 2 we propose to use the following models for \(W_{ij} \) (Eqn. (2.9)):

Model \(\omega-1 \)

\[
W_{ij} = - \varepsilon_{ijk} \frac{\partial}{\partial x_k} \left(2 \nu \overline{S}_{kl} \right)
\]
(2.15)

Model \(\omega-2 \)

\[
W_{ij} = - \frac{\partial}{\partial x_j} \left(\nu_T \overline{\omega}_i \right) + \frac{\partial}{\partial x_i} \left(\nu_T \overline{\omega}_j \right)
\]
(2.16)

where

\[
\nu_T = (C_v \Delta)^2 \left(\overline{\omega}_i \overline{\omega}_i \right)^{1/2}
\]
(2.14)

\[
\overline{S}_{ij} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} \overline{u}_i + \frac{\partial}{\partial x_i} \overline{u}_j \right)
\]
(2.12)

The models should satisfy the following necessary conditions:

1. they should be antisymmetric,
2. they should vanish in an irrotational region, and
3. they should be an energy sink.

Condition 1 is readily seen to be satisfied by these models. We note that in an irrotational region, \(\overline{\omega}_i = 0 \). Hence, \(\nu_T = (C_v \Delta)^2 \left(\overline{\omega}_i \overline{\omega}_i \right)^{1/2} = 0 \), and the model vanishes in an irrotational region; i.e., condition 2 is also satisfied.

In order to show the dissipative nature of the subgrid scale models \(\omega-1 \) and \(\omega-2 \), consider the following equation:

\[
\frac{\partial \overline{\omega}_i}{\partial t} = - \frac{\partial}{\partial x_j} W_{ij}
\]
(A.1)

where the nonlinear terms in Eqn. (2.28) have been dropped. Multiplying Eqn. (A.1) by \(\psi_i \), and integrating over the flow volume, we get:
\[
\int \psi_i \frac{\partial}{\partial t} \omega_i \, dv = - \int \psi_i \frac{\partial}{\partial x_j} W_{ij} \, dv \tag{A.2}
\]

We want to show that Eqn. (A.2) reduces to
\[
\frac{\partial}{\partial t} \int \frac{1}{2} u_i u_i \, dv = - \varepsilon \tag{A.3}
\]

where \(\varepsilon \geq 0 \).

Model \(w-1 \)

Substituting Eqn. (2.15) in Eqn. (A.2) for \(W_{ij} \), integrating by parts, and using periodic boundary conditions, we obtain
\[
\frac{\partial}{\partial t} \int \frac{1}{2} u_i u_i \, dv = -2 \int \nu_T \overline{s_{kl}} \overline{s_{kl}} \, dv \tag{A.4}
\]

and we have for this case:
\[
\varepsilon = 2 \int \nu_T \overline{s_{kl}} \overline{s_{kl}} \, dv \geq 0
\]

since \(\nu_T \geq 0 \).

Model \(w-2 \)

In a similar way, substituting Eqn. (2.16) into Eqn. (A.2) for \(W_{ij} \), we can show that
\[
\frac{\partial}{\partial t} \int \frac{1}{2} u_i u_i \, dv = - \int \nu_T \overline{\omega_i \omega_i} \, dv \tag{A.5}
\]

and we have for this case
\[
\varepsilon = \int \nu_T \overline{\omega_i \omega_i} \, dv \geq 0
\]
Appendix B

Fast Discrete Sine Transform (FDST)

The discrete analogs to the expansion in Fourier sine series (Eqns. (3.14) and (3.15)) are

\[f(x) = \sum_{n=0}^{N-1} \hat{f}^S(n) \sin \left(\frac{n\pi x}{(N-1)h} \right) \]
(3.16)

\[\hat{f}^S(n) = \frac{2}{(N-1)} \sum_{j=0}^{N-1} f(x) \sin \left(\frac{n\pi x}{(N-1)h} \right) \]
(3.17)

where \(n = 0,1,...,N-1 \),
\(h = L/(N-1) \),
\(x = jh, \quad j = 0,1,...,N-1 \),
\(N = \) number of mesh points,
\(L = \) length of the computational box.

Both the forward and inverse sine transforms involve identical sums. Eqn. (3.17) can be rewritten as:

\[\hat{f}^S(n) = -\frac{2}{(N-1)} \text{Im} \left[\frac{2(N-1)-1}{2(N-1)} \sum_{j=0}^{2(N-1)-1} F(x) \exp \left(\frac{-2\pi jnx}{2(N-1)h} \right) \right] \]
(B.1)

where

\(F(x) = f(x) \quad j = 0,1,...,N-1, \)
\(= 0 \quad j = N,N+1,...,2(N-1)-1 \)

We note that the summation

\[\sum_{j=0}^{2(N-1)-1} F(x) \exp \left(\frac{-2\pi jnx}{2(N-1)h} \right) \]
(B.2)

is equivalent to (3.12) with \(N_1 = 2(N-1) \), and an FFT routine can be used to evaluate this sum.
Fast Discrete Cosine Transform (FDCT)

The discrete analog to the expansion in Fourier cosine series (Eqns. (3.21) and (3.22)) are:

\[
f(x) = \sum_{n=0}^{(N-1)} \hat{c}_n \cos \left(\frac{n\pi x}{(N-1)h} \right) \tag{3.19}
\]

\[
\hat{c}_n = \frac{2}{(N-1)} \sum_{j=0}^{(N-1)} f'(x) \cos \left(\frac{n\pi x}{(N-1)h} \right) \tag{3.20}
\]

where

\[
\hat{c}_n = \begin{cases} \frac{1}{2} \hat{c}_n & n = 0, N-1 \\ \hat{c}_n & n = 1, \ldots, N-2 \end{cases}
\]

\[
f'(x) = \begin{cases} \frac{1}{2} f(x) & j = 0, N-1 \\ f(x) & j = 1, \ldots, N-2 \end{cases}
\]

where

- \(n = 0, \ldots, N-1 \)
- \(h = L/(N-1), \)
- \(x = jh \quad j = 0, \ldots, N-1, \)
- \(N = \) number of mesh points,
- \(L = \) length of the computational box.

Both the forward and inverse transforms involve identical sums. Eqn. (3.19) can be rewritten as:

\[
f(x) = \text{Re} \left[\sum_{n=0}^{2(N-1)-1} F(n) \exp \left(\frac{-2\pi inx}{2(N-1)h} \right) \right] \tag{B.3}
\]

where

\[
F(n) = \begin{cases} \frac{1}{2} \hat{c}_n & n = 0, N-1, \\ \hat{c}_n & n = 1, \ldots, N-2, \\ 0 & n = N, \ldots, 2(N-1)-1. \end{cases}
\]

We note that the sum in (B.3) is identical to the sum (B.2), and an FFT routine can be used to evaluate it. In fact, the sine and cosine transforms can be done simultaneously, if it is necessary to have both.
Appendix C

Effect of a Sinusoidal Vorticity Perturbation on a Uniform Vortex Array

In Chapter 5 we have studied the effect of perturbing a uniform array of vortices by offsetting the spacing of the vortices (β > 0). In this appendix we study the effect of adding a sinusoidal vorticity perturbation to a uniform array of vortices (β = 0).

1. Initial Conditions

The initial conditions studied in this appendix were generated by starting with a uniform array of point vortices on the centerline of our computational box:

\[\omega_{2u} = C_1 \left(\delta(x-L_1/4) + \delta(x-3L_1/4) \right) \delta(z-L_3/2) \]
\[\text{(C.1)} \]

We then add a cosine vorticity distribution to (C.1):

\[\omega_2 = \omega_{2u} - C_2 \cos \left(\frac{2\pi x}{L} \right) \delta(z-L_3/2) \]
\[\text{(C.2)} \]

Eqn. (C.2) is then filtered with a relatively wide Gaussian filter (Eqn. (5.19)) to yield the initial conditions. The initial velocity is then non-dimensionalized on \(Au \) and the length scales on \(\theta_{in} \). The computational details, i.e., number of mesh points, mesh size, time steps, and boundary conditions, are the same as in Chapter 5. Only the initial conditions were changed.

2. Results

The momentum thickness (θ) is defined by Eqn. (5.4). Fig. C.1 shows \(\theta/\theta_{in} \) plotted vs. T for \(C_2/C_1 = 0.1/20, 1/20, 2/20, 4/20 \). We note that the growth rate of the layer is highly dependent on the strength of the perturbation. The growth rate more than doubles from 0.016 to 0.035 when the strength of the perturbation is doubled (\(C_2/C_1 \) from 2/20 to 4/20).
We note also that for high amplitude perturbations, $C_2/C_1 = 4/20$, the growth rate starts to level off for $T > 12.0$. This saturation is also observed experimentally by Oster et al. (1978); they have oscillated the initial conditions of a two-dimensional mixing layer.

Figures C.2 and C.3 show the non-dimensional mean velocity and turbulence intensity (as in Sections 5.7 and 5.8) plotted vs. z/θ for $C_2/C_1 = 2/20$. We note that the mean velocity profiles are self-similar. This is not surprising, since self-similarity of the mean velocity profiles is easily obtained (see Section 6.5). Turbulence intensity profiles (Fig. C.3) show that self-similarity is also more or less obtained for the present case.

These results are similar to those obtained in Chapter 5 by using a spacing perturbation. Apparently the perturbation can take any of a number of forms, and the characteristics of the shear layer will be nearly the same. Under experimental conditions, the nature of the perturbation is difficult to determine. What we do note is that reproduction of the experimentally observed growth rate does require large perturbations, which are apparently created by either the inflow or outflow conditions of the experiment.
Appendix D

INTERACTIONS BETWEEN STREAMWISE AND SPANWISE VORTICITY

In Chapter 6 we studied the effect of a random fluctuation on vortex pairing. In this appendix we study the interactions between a streamwise cellular vortex structure and spanwise vortex pairing.

1. Initial Conditions

The initial conditions studied in this appendix were generated by adding to a row of spanwise vortices ($\beta = 3/16$) a row of streamwise vortices of alternating signs:

$$\bar{\omega}_1 = C_2 \sin \left(\frac{2\pi y}{L_2} \right) \exp \left(-\frac{(z-L_3/2)^2}{6h_3^2} \right)$$

(D.1)

The same computational setup described in Chapter 6 is used, i.e., the same boundary conditions, number of mesh points, mesh sizes, and time step.

Figure D.1 shows a contour map in the $y-z$ plane of the streamwise vorticity. We note that $\bar{\omega}_1$ displays a cellular structure and that $\bar{\omega}_1$ does not initially have a streamwise variation. We ran two cases:

Case a:

$$\frac{|\tilde{\omega}_1|_{\text{max}}}{|\tilde{\omega}_2|_{\text{max}}} = 0.037$$

Case b:

$$\frac{|\tilde{\omega}_1|_{\text{max}}}{|\tilde{\omega}_2|_{\text{max}}} = 0.370$$

2. Results

We first look at the development of the momentum thickness, $\theta(t)$, defined by Eqn. (5.4), in time. The non-dimensional mean velocity (Section 5.7) and mean turbulence intensity (Section 5.8) are also considered. The interaction between the spanwise vortices and the streamwise vortices is studied using contour plots. Note that we have a three-dimensional box and that contour plots in different planes for different vorticity directions will be considered.
Figure D.2 shows θ/θ_{in} plotted vs. T. The momentum thickness growth rate, $d\theta/\Delta u dt = 0.020$, for Case (a) is the same as it was in the absence of the streamwise vortices. However, the momentum thickness growth rate, $d\theta/\Delta u dt = 0.040$, doubled for Case (b).

Figures D.3a and -b show $2<u_x>/\Delta u$ plotted vs. z/θ for Cases (a) and (b), respectively, at $\Delta T = 2.4$ intervals. We note that both cases produce self-similar mean velocity profiles.

Figures D.4a and -b show $q^2/(2(\Delta u)^2$ plotted vs. z/θ for Cases (a) and (b), respectively, at $\Delta T = 2.4$ intervals. The mean turbulence intensity results for Case (a) are similar to those we obtained when the streamwise vortices were not present. As in the 2-D case (with $\beta = 3/16$), the mean turbulence intensity decays slightly, then reaches a self-similar situation. For Case (b), in which we have strong streamwise vortices, Fig. D.4b shows that the turbulence intensity grows with time, and the profiles do not show self-similarity.

(a) Contour Plots in the x-z Planes

Figures D.5 show constant vorticity contours of the spanwise ($\bar{\omega}_2$) vorticity at time $T = 16.78$. In both cases the spanwise vortices have paired. The shapes are similar, but the roller is slightly distorted for Case (b) as compared to Case (a) and to the 2-D results (see Fig. 5.7d). This indicates that the streamwise vortices did not affect the merging of the spanwise vortices, but the strong streamwise vortices (Case (b)) have affected the shape of the roller.

Figures D.6 show constant vorticity contours of the streamwise vorticity for Cases (a) and (b). These figures indicate that the streamwise vortices have been convected to the edges of the mixing layer by the spanwise vortices. There is also clear evidence of vortex stretching.

Figure D.7 shows the projection of the vorticity vector at $T = 16.78$, for Case (b). We can see clearly that the originally straight vortex lines have been convected and stretched by the spanwise vortices to assume an inverted S shape.
(b) Contour Plots in the y-z Planes

Figure D.8 shows constant vorticity contours of the spanwise vorticity for Case (b). The spanwise vortices have been convected and stretched by the strong counter-rotating streamwise vortices and exhibit spanwise waviness. This means that the contact area between the rotational fluid and the irrotational fluid has increased, which leads to an increase in the entrainment rate. This waviness also explains the increase in the turbulence intensity and high growth of the momentum thickness of the mixing layer. Note that the mean quantities are defined as horizontal planar averages and, with this definition, the wavy layer appears thicker and more turbulent than a strictly two-dimensional layer.

The above results indicate that the effect of the streamwise vorticity on the spanwise vorticity is almost independent of the effect of the spanwise vorticity on the streamwise vorticity. Indeed, a straight line of particles placed at the center of the layer in the streamwise direction would be convected to form an inverted S shape in the presence of the two-dimensional vortex pairing. A straight line of particles initially passing through the center of an array of counter-rotating vortices will be convected to assume a wavy shape.
Fig. C.1. Non-dimensional momentum thickness ($\frac{\theta}{\theta_{in}}$) as a function of time for various $\frac{C_2}{C_1}$.
Fig. C.2. Mean velocity profiles \((C_2/C_1 = 0.1)\)
Fig. C.3. Mean turbulence intensity profiles \((C_2/C_1 = 0.1)\).
Fig. D.1. Contour plots of the streamwise vorticity ($\bar{\omega}_l$) at time $T = 0$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels.
Fig. D.2. Non-dimensional momentum thickness (Θ/Θ_{in}) as a function of time.
Fig. D.3a. Mean velocity profiles (case a)
Fig. D.3b. Mean velocity profiles (case b)
Fig. D.4a. Mean turbulence intensity profiles (case a).
Fig. D.4b. Mean turbulence intensity profiles (case b).
Fig. D.5a. Contour plots of the spanwise vorticity ($\tilde{\omega}_2$) in an x-z plane ($y/\theta_{in} = 4.09$), at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case a).
Fig. D.5b. Contour plots of the spanwise vorticity ($\bar{\omega}_2$) in an x-z plane ($y/\theta_{In} = 4.09$), at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case b).
Fig. D.6a. Contour plots of the streamwise vorticity ($\bar{\omega}_1$) in an x-z plane ($y/\theta_{in} = 4.09$), at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels (case a).
Fig. D.6b. Contour plots of the streamwise vorticity $\tilde{\omega}_l$ in an $x-z$ plane ($y/\delta_{1n} = 4.09$), at time $T = 16.78$. Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher levels (case b).
Fig. D.7. Projection of the vorticity vector in an x-z plane $(y/\theta_{in} = 4.09)$ at time $T = 16.78$.
Fig. D.8. Contour plots of the spanwise vorticity \(\bar{\omega}_2 \) in a y-z plane \(x/\theta_{in} = 9.55 \), at time \(T = 16.78 \). Constant vorticity lines are plotted at eight levels. Higher numbers on these lines indicate higher vorticity levels \(\bar{\omega}_{2,\max} = 0.714 \) case b).
Appendix E

C-----COMPUTER PROGRAM WRITTEN TO CALCULATE TURBULENT MIXING LAYERS

*COMDECK AVG
COMMON/AVG/ AVG1, AVG2, AVG3, CCF

*COMDECK BLANK
COMMON DUDX(16,16,33)

*COMDECK DATA7
COMMON/DATA7/ FR(16,16), FI(16,16)

*COMDECK DATA9
COMMON/DATA9/ IMAX, JMAX, LMAX

*COMDECK DAT21
COMMON/DAT21/ XR(64), XI(64)

*COMDECK DEL
COMMON/DEL/ DELTAX, DELTAY, DELTAZ

*COMDECK DIM
COMMON/DIM/N1, N2, N3

*COMDECK FLT
COMMON/FLT/ FILT1(16), FILT2(16), FILTs(33)

*COMDECK LARGE2
COMMON/LARGE2/ U(16,16,33), V(16,16,33), W(16,16,33)
LEVEL 2, U, V, W

*COMDECK LARGE3
COMMON/LARGE3/ GU(16,16,33), GV(16,16,33), GW(16,16,33)
LEVEL 2, GU, GV, GW

*COMDECK LARGE5
COMMON/LARGE5/ O1(16,16,33), O2(16,16,33), O3(16,16,33)
LEVEL 2, O1, O2, O3

*COMDECK MEANVOR
COMMON/MEANVOR/ VOR(32,33)

*COMDECK PR
COMMON/PR/ CCPW, CCPF, CCPD

*COMDECK WV
COMMON/WV/ WAVEX(16), WAVEY(16), WAVEZ(33), WAVEXs(16), WAVEYs(16)
LEVEL 2, WAVEZs(33)

*COMDECK XL
COMMON/XL/ XPART(160), YPART(160), ZPART(160), NCHAR(160)

*DECK MAIN
PROGRAM MAIN(INPUT, OUTPUT, TAPE8, TAPE9, TAPE10)

INTEGER TIME, TSTART, TEND
COMMON/TIM/ TSTART, TEND
COMMON/LARGE4/ RU(16,16,33), RV(16,16,33), RW(16,16,33)
COMMON/NORM/ DELU, DELT, ETA
LEVEL 2, RU, RV, RW
COMMON/DATCNT/ IDATCNT

*CALL MEANVOR
*CALL XL
COMMON/CONST/C100, C101, IJK, IJ, NHP1, HALF

*CALL DAT21
*CALL LARGE2
*CALL BLANK
CALL LARGE5
CALL DEL
CALL DATA9
CALL LNY
CALL DATA7
CALL FLT
CALL LARGE3
CALL DIM
CALL AVG
C START THE READOUT OF INPUT
 CALL STREAD
C SET THE COEFFICIENT OF THE SUBGRID SCALE MODEL
 C=0.188
C SET COF = 1 FOR THE FIRST TIME STEP
 COF=1.0
 IJ=N1*N2
 IJK=N1*N2*N3
 DO 1 L=1,LMAX
 DO 1 J=1,JMAX
 DO 1 I=1,IMAX
 UI(I,J,L)=0.
 UI(I,J,L)=0.
 UI(I,J,L)=0.
 1 CONTINUE
 DO 1 CONTINUE
 RCOUNT=0
 TIME=0
 WRITE ON TAPE 9 TO BE STORED ON DISC PACK
 PRINT 1100,TIME
 WRITE(9) TIME,01,02,03,DT,DELTAX,DELTAY,DELTAZ,DELU,THETA
 IDATCNT=0
 DO 300 TIME=TSTART,TEND
 C COMPUTE THE STATISTICS OF THE INITIAL CONDITIONS
 CALL DATARED
 C SET THE FOURIER TRANSFORM OF THE GAUSSIAN FILTER
 CALL STFILT
 IDUM=30
 DO 300 TIME=TSTART,TEND
 C COMPUTE THE ADVECTIVE AND STRETCHING TERMS
 CALL CONVEC
 CALL SFILTER(GU,DUDX,N1,N2,N3)
 CALL SFILTER(GV,DUDX,N1,N2,N3)
 CALL CFILTER(GW,DUDX,N1,N2,N3)
 C COMPUTE THE EDDY VISCOSITY
 CALL EDVIS(COEF2,DUDX,N1,N2,N3)
 C COMPUTE THE SGS MODEL
 CALL SGS(U,V,W,N1,N2,N3)
 C ADVANCE IN TIME
 DO 800 L=1,LMAX
 DO 800 J=1,JMAX
 DO 800 I=1,IMAX
$O_1(I,J,L) = O_1(I,J,L) + DT \times (COF \times GU(I,J,L) - 0.5 \times RU(I,J,L))$

$O_2(I,J,L) = O_2(I,J,L) + DT \times (COF \times GV(I,J,L) - 0.5 \times RV(I,J,L))$

$O_3(I,J,L) = O_3(I,J,L) + DT \times (COF \times GW(I,J,L) - 0.5 \times RW(I,J,L))$

CONTINUE

C**STORE THE PREVIOUS TIME STEP
CALL MOVLEV(GU(1,1,1),RU(1,1,1),IJK)
CALL MOVLEV(GV(1,1,1),RV(1,1,1),IJK)
CALL MOVLEV(GW(1,1,1),RW(1,1,1),IJK)

C**THE VORTICITY AT THE NEXT TIME STEP HAS BEEN COMPUTED
C**FIND THE CORRESPONDING VELOCITY FIELD
CALL INVERS(O1,GU,DUDX,1,N1,N2,N3)
CALL INVERS(O2,GV,DUDX,2,N1,N2,N3)
CALL INVERS(O3,GW,DUDX,3,N1,N2,N3)
CALL CURLO(GU,GV,GW,U,V,W,N1,N2,N3)
C
SET COF = 1.5 FOR SUBSEQUENT TIMES (ADAMS-BASHFORTH)
COF=1.5
ICOUNT=ICOUNT+1
ICOUNT=ICOUNT-IDUM
IF (IICOUNT .NE. 0) GO TO 300
ICOUNT=0
PRINT 1100,TIME
WRITE(9)
30 CONTINUE
1100 FORMAT(1H1,5X,* TIME STEP =*,L5)
1000 FORMAT(1P8E15.7)
STOP
END

*DECK CFILTER
SUBROUTINE CFILTER(HR,H1,N1,N2,N3)
C CFILTER COMPUTES THE FILTER OF THE HR VARIABLE BY EXPANDING IN
C FOURIER SERIES IN THE X- AND Y- DIRECTIONS AND FOURIER COSINE
C SERIES IN THE Z-DIRECTION
C THIS ROUTINE USES AS EXTERNALS
C FDCT
C FFTX
C FFTY
C A CALL TO STFILT INITIATE THE VALUES OF FILT1,FILT2,AND FILT3
C
DIMENSION HR(N1,N2,N3),HI(N1,N2,N3)

CALL DATA9
CALL FLT
CALL DATA7
CALL DAT21
LEVEL 2,HR
CC=1.0/(IMAX*JMAX)
IJ=N1*I
DO 10 J=1,JMAX
DO 10 I=1,IMAX
XI=HR(I,J,L)
10 CONTINUE
CALL FDCT(1.0)
DO 30 L=1,LMAX
HI(I,J,L)=XI
30 CONTINUE
10 CONTINUE
DO 40 L=1,LMAX
CALL MOVLEV(HI(1,1,L),FR(1,1),IJ)
CALL FFTX(1.0)
CALL FFTY(1.0,1.0)
DO 50 J=1,JMAX
DO 50 I=1,IMAX
FR(I,J)=FR(I,J)*FILT1(I)*FILT2(J)*FILT3(L)
50 CONTINUE
CALL FFTX(-1.0)
CALL FFTY(-CC)
CALL MOVLEV(FR(1,1),HI(1,1,L),IJ)

162
CONTINUE
DO 60 J=1,JMAX
DO 60 I=1,IMAX
DO 70 L=1,LMAX

60 CONTINUE
RETURN

END

SUBROUTINE CONVEC

C** This subroutine computes the convective and stretching terms and stores them in GU, GV, GW
C** This routine uses as externals COSPART and PARTIAL

** This subroutine computes the convective and stretching terms and stores them in GU, GV, GW

**
** CALL LARGE2
** CALL LARGE3
** CALL LARGE5
** CALL BLANK
** CALL DATA4
** CALL DIM

IJK=N1*N2*N3

** Term for the x-direction
DO 10 L=1,LMAX
DO 10 J=1,JMAX
DO 10 I=1,IMAX
GU(I,J,L)=U(I,J,L)*02(I,J,L)-V(I,J,L)*01(I,J,L)
GV(I,J,L)=U(I,J,L)*03(I,J,L)-W(I,J,L)*01(I,J,L)

10 CONTINUE

CALL PARTIAL(2, GU, N1, N2, N3)
CALL MOVLEV(DUDX(1,1,1), GU(1,1,1), IJK)
CALL COSPART(GV, N1, N2, N3)
DO 20 L=1,LMAX
DO 20 J=1,JMAX
DO 20 I=1,IMAX
GU(I,J,L)=GU(I,J,L)+DUDX(I,J,L)

20 CONTINUE

** Term for the y-direction
DO 30 L=1,LMAX
DO 30 J=1,JMAX
DO 30 I=1,IMAX
GV(I,J,L)=V(I,J,L)*02(I,J,L)-U(I,J,L)*01(I,J,L)
GW(I,J,L)=V(I,J,L)*03(I,J,L)-W(I,J,L)*02(I,J,L)

30 CONTINUE

CALL PARTIAL(1, GV, N1, N2, N3)
CALL MOVLEV(DUDX(1,1,1), GV(1,1,1), IJK)
CALL COSPART(GW, N1, N2, N3)
DO 40 L=1,LMAX
DO 40 J=1,JMAX
DO 40 I=1,IMAX
GV(I,J,L)=GV(I,J,L)+DUDX(I,J,L)

40 CONTINUE

** Term for the z-direction
DO 50 L=1,LMAX
DO 50 J=1,JMAX
DO 50 I=1,IMAX
GW(I,J,L)=W(I,J,L)*02(I,J,L)-U(I,J,L)*01(I,J,L)
UI(I,J,L)=W(I,J,L)*03(I,J,L)-V(I,J,L)*03(I,J,L)

50 CONTINUE

CALL PARTIAL(1, GW, N1, N2, N3)
CALL MOVLEV(DUDX(1,1,1),GW(1,1,1),IJK)
CALL PARTIAL(2,U,N1,N2,N3)
DO 60 L=1,LMAX
DO 60 J=1,JMAX
DO 60 I=1,IMAX
GW(I,J,L)=GW(I,J,L)+DUDX(I,J,L)
60 CONTINUE
RETURN
END

MAKE COSPART
SUBROUTINE COSPART(U,N1,N2,N3)
!
C xx
^?fxxRlfRxRMMN^^^34RxR3f^RxRxxxxRxxxxRxxx

DIMENSION U(N1,N2,N3)

CALL BLANK
CALL DAT21
CALL WV
CALL DATA9
LEVEL 2,U
DO 10 J=1,JMAX
DO 10 I=1,IMAX
I0(I,J,L)=U(I,J,L)
10 CONTINUE
CALL FDCT(SIGN)
DO 20 L=1,LMAX
I0(L)=I0(L)*WAVEZ(L)
20 CONTINUE
SIGN=-1.0
CALL FDST(SIGN)
DO 30 L=1,LMAX
DUDX(I,J,L)=I0(L)
30 CONTINUE
10 CONTINUE
RETURN
END

MAKE CURLO
SUBROUTINE CURLO(U,V,W,01,02,03,N1,N2,N3)
!
C xx
^?fxxRlfRxRMMN^^^34RxR3f^RxRxxxxRxxxxRxxxx

DIMENSION 01(N1,N2,N3),02(N1,N2,N3),03(N1,N2,N3)

CALL BLANK
LEVEL 2,U,V,W,01,02,03
CALL DATA9
CALL PARTIAL(SINPART(U,N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),01(I,1,1),IJK)
CALL PARTIAL(V,N1,N2,N3)
DO 10 L=1,LMAX
DO 10 J=1,JMAX
DO 10 I=1,IMAX
01(I,J,L)=01(I,J,L)+DUDX(I,J,L)
10 CONTINUE
CALL SINPART(U,N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),02(I,1,1),IJK)
CALL PARTIAL(W,N1,N2,N3)
DO 20 L=1,LMAX
DO 20 J=1 ,JMAX
DO 20 I=1, IMAX
20 CONTINUE
C *** CURL IN THE Z-DIRECTION
CALL PARTIAL(V,N1,N2,N3)
CALL MOVELCVDUDX(1,1,1),03(1,1,1),IJK)
CALL PARTIAL(2,0,N1,N2,N3)
DO 30 L=1,LMAX
DO 30 J=1,JMAX
DO 30 I=1,IMAX
03(I,J,L)=03(I,J,L)- DUDX(I,J,L)
30 CONTINUE
RETURN
END

**DECK CURLU
SUBROUTINE CURL(U,V,W,01,02,03,N1,N2,N3)
DIMENSION 01(N1,N2,N3),02(N1,N2,N3),03(N1,N2,N3)
DIMENSION U(N1,N2,N3),V(N1,N2,N3),W(N1,N2,N3)
CALL DATA9
CALL BLANK
C *** 2D CURVATURE IN THE X-DIRECTION
IJK=N1XN2XN3
CALL PARTIAL(2,W,N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),01(1,1,1),IJK)
CALL COSPART(V,N1,N2,N3)
DO 10 L=1,LMAX
DO 10 J=1,JMAX
DO 10 I=1,IMAX
01(I,J,L)=01(I,J,L)- DUDX(I,J,L)
10 CONTINUE

**DECK CURLY
SUBROUTINE CURLY(U,V,W,01,02,03,N1,N2,N3)
DIMENSION 01(N1,N2,N3),02(N1,N2,N3),03(N1,N2,N3)
DIMENSION U(N1,N2,N3),V(N1,N2,N3),W(N1,N2,N3)
CALL DATA9
CALL BLANK
C *** 2D CURVATURE IN THE Y-DIRECTION
IJK=N1XN2XN3
CALL PARTIAL(1,W,N1,N2,N3)
CALL MOVELCVDUDX(1,1,1),02(1,1,1),IJK)
CALL COSPART(U,N1,N2,N3)
DO 20 L=1,LMAX
DO 20 J=1,JMAX
DO 20 I=1,IMAX
02(I,J,L)=02(I,J,L)- DUDX(I,J,L)
20 CONTINUE

**DECK CURLZ
SUBROUTINE CURLZ(U,V,W,01,02,03,N1,N2,N3)
DIMENSION 01(N1,N2,N3),02(N1,N2,N3),03(N1,N2,N3)
DIMENSION U(N1,N2,N3),V(N1,N2,N3),W(N1,N2,N3)
CALL DATA9
CALL BLANK
C *** 2D CURVATURE IN THE Z-DIRECTION
IJK=N1XN2XN3
CALL PARTIAL(1,V,N1,N2,N3)
CALL MOVELCVDUDX(1,1,1),03(1,1,1),IJK)
CALL PARTIAL(2,0,N1,N2,N3)
DO 30 L=1,LMAX
DO 30 J=1,JMAX
DO 30 I=1,IMAX
03(I,J,L)=03(I,J,L)- DUDX(I,J,L)
30 CONTINUE
RETURN
END

**DECK DATARED
SUBROUTINE DATARED
C THIS SUBROUTINE COMPUTES THE STATISTICS OF THE COMPUTATION
USUM = PLANAR AVERAGE OF THE STREAMWISE VELOCITY
VSUM = PLANAR AVERAGE OF THE SPANWISE VELOCITY
WSUM = PLANAR AVERAGE OF THE CROSSFLOW VELOCITY
01SUM = PLANAR AVERAGE OF THE STREAMWISE VORTICITY
02SUM = PLANAR AVERAGE OF THE SPANWISE VORTICITY
03SUM = PLANAR AVERAGE OF THE CROSSFLOW VORTICITY
USQ = R.M.S STREAMWISE VELOCITY

165
C VSQ = R.M.S. OF THE SPANWISE VELOCITY ETC...
C UVSTRES = PLANAR AVERAGE OF U*W
C PLOVALE = VOLUME AVERAGE OF THE TOTAL ENERGY
C ENERGY = INTEGRAL OF THE TURBULENCE ENERGY

*CALL DEL
*CALL MEANVOR
*CALL PR
*CALL LARG2
*CALL LARG3
*CALL LARG5
*CALL DAT21
*CALL DATA9
*CALL BLANK
*CALL DIM

DIMENSION USM(33),VSM(33),US(33),VS(33),WS(33),01S(33),02S(33)
1,03S(33),05(33),0(33),07S(33),09S(33)
DIMENSION DUMSP(33)
COMMON/DATCNT/IDATCNT
IDATCNT=IDATCNT+1
LMAXM1=LMAX-1
C3=1./LMAXM1
CNORM3=1./(IMAX*JMAX)
PRINT 1100
UTOT=0.
VTOT=0.
WTOT=0.
01TOT=0.
02TOT=0.
03TOT=0.
0VRALE=0.
TUTENER=0.
TOTENST=0.
DO 100 L=1,LMAX
USUM=0.
VSUM=0.
WSUM=0.
01SUM=0.
02SUM=0.
03SUM=0.
USQ=0.
VSQ=0.
WSQ=0.
01SQ=0.
02SQ=0.
03SQ=0.
ENERGY=0.
ENSTRDP=0.
UVSTRES=0.
PLOVALE=0.
DO 110 J=1,JMAX
DO 110 I=1,IMAX
USUM=USUM+U(I,J,L)
VSUM=VSUM+V(I,J,L)
WSUM=WSUM+W(I,J,L)
01SUM=01SUM+01(I,J,L)
02SUM=02SUM+02(I,J,L)
03SUM=03SUM+03(I,J,L)
110 CONTINUE
USUM=USUMCNORM3
VSUM=VSUMCNORM3
WSUM=WSUMCNORM3
01SUM=01SUMCNORM3
02SUM=02SUMCNORM3
03SUM=03SUMCNORM3
GW(1,1,L)=USUM
GW(2,1,L)=VSUM
GW(3,1,L)=WSUM
DO 160 J=1,JMAX
DO 160 I=1,IMAX
USQ = USQ + (U(I,J,L) - USUM)**2
VSQ = VSQ + (V(I,J,L) - VSUM)**2
WSQ = WSQ + (W(I,J,L) - WSUM)**2
01SQ = 01SQ + (01(I,J,L) - 01SUM)**2
02SQ = 02SQ + (02(I,J,L) - 02SUM)**2
03SQ = 03SQ + (03(I,J,L) - 03SUM)**2
UVSTRES = UVSTRES + (U(I,J,L) - USUM)*(W(I,J,L) - WSUM)
PLOVALE = PLOVALE + (U(I,J,L)**2 + V(I,J,L)**2 + W(I,J,L)**2)
160 CONTINUE
USQ = USQ * CNORM3
VSQ = VSQ * CNORM3
WSQ = WSQ * CNORM3
01SQ = 01SQ * CNORM3
02SQ = 02SQ * CNORM3
03SQ = 03SQ * CNORM3
ENERGY = (USQ + VSQ + WSQ)*0.5
ENSTROP = (01SQ + 02SQ + 03SQ)*0.5
UVSTRES = UVSTRES * CNORM3
USQ = SQRT(USQ)
VSQ = SQRT(VSQ)
WSQ = SQRT(WSQ)
01SQ = SQRT(01SQ)
02SQ = SQRT(02SQ)
03SQ = SQRT(03SQ)
US(L) = USQ
VS(L) = VSQ
WS(L) = WSQ
01SQ(L) = 01SQ
02SQ(L) = 02SQ
03SQ(L) = 03SQ
USM(L) = USUM
VSM(L) = VSUM
WSM(L) = WSUM
cS(L) = ENERGY
ENS(L) = ENSTROP
GW(4,1,L) = 01SUM
GW(5,1,L) = 02SUM
GW(6,1,L) = 03SUM
GW(1,1,L) = USQ
GV(2,1,L) = WSQ
XI(L) = UVSTRES
CC = 1.
IF(L .EQ. 1) CC = 0.5
IF(L .EQ. LMAX) CC = 0.5
OVRALE = OVRALE + PLOVALE * CC*0.5
UTOT = UTOT + USUM*CC
VTOT = VTOT + VSUM*CC
WTOT = WTOT + WSUM*CC
01TOT = 01TOT + 01SUM*CC
02TOT = 02TOT + 02SUM*CC
03TOT = 03TOT + 03SUM*CC
TOTENER = TOTENER + ENERGY*CC
TOTENST = TOTENST + ENSTROP*CC
100 CONTINUE
UTOT = UTOT * CC
VTOT = VTOT * CC
WTOT = WTOT * CC
01TOT = 01TOT * CC
02TOT = 02TOT * CC
03TOT = 03TOT * CC
TOTENER = TOTENER * CC
TOTENST = TOTENST * CC
DELU = GW(1,1,LMAX) - GW(1,1,1)
DELU = 1./DELU
THETA = (0.25 - (GW(1,1,1)*DELU)**2)*0.5
D = 0.0 L = 2, LMAX
THETA = THETA + 0.25 - (GW(1,1,L)*DELU)**2
170 CONTINUE
THETA = THETA + 0.25 - (GW(1,1,LMAX)*DELU)**2*0.5
THETA = THETA * DELTAZ
DO 300 L = 1, LMAX
300 CONTINUE
ZO(L) = (L-((LMAX-1)/2+1)) * DELTAZ/THETA
USM(L) = USM(L) * DELUX *.2
VSM(L) = VSM(L) * DELUX
GW(5,1,L) = GW(5,1,L) * DELUX/THETA
XI(L) = XI(L) * (DELUX*.2)
US(L) = US(L) * DELUX
VS(L) = VS(L) * DELUX
WS(L) = WS(L) * DELUX
O3S(L) = O3S(L) * (DELUX/THETA)
O1S(L) = O1S(L) * (DELUX/THETA)
O2S(L) = O2S(L) * (DELUX/THETA)
ES(L) = ES(L) * DELUX*.2
ENS(L) = ENS(L) * (DELUX/THETA)*.2
PRINT 3000, USM(L), VSM(L), XI(L), GW(5,1,L), US(L), VS(L), WS(L),
1 O3S(L), O2S(L), O1S(L), ES(L), ENS(L), ZO(L)
300 CONTINUE
WRITE(8) USM, VSM, XI, US, VS, WS, O1S, O2S, O3S, ES, ENS, ZO, THETA
PRINT 1700, THETA
PRINT 1200
PRINT 1000, UTOT, VTOT, WTOT, O1TOT, O2TOT, O3TOT, TOTENER, TOTENST
2400 FORMAT(1X, OVER ALL ENERGY IN COMPUTATION BOX = X, 1PE15.7)
180 CONTINUE
C0Y=1./FLOAT(JMAX)
DO 190 L=1, LMAX
DO 190 J=1, JMAX
DO 190 I=1, IMAX
GU(I,1,L) = GU(I,1,L) + O2(I,J,L) * X10Y
190 CONTINUE
DO 230 L=1, LMAX
DO 230 I=1, IMAX
GU(I,2,L) = GU(I,2,L) - GW(1,1,L)
GU(I,3,L) = GU(I,3,L) - GW(3,1,L)
230 CONTINUE
PRINT 2000
2200 FORMAT(1H1, IX, LINE AVERAGE OF VORTICITY)
PRINT 2300, (((GU(I,1,L), I= 1, IMAX), L), L=1, LMAX)
IF(CCPD .NE. 1.) GO TO 240
PRINT 2500
2500 FORMAT(1H1, Ix, LINE AVERAGE OF U-COMPONENT)
PRINT 2300, (((GU(I,2,L), I= 1, IMAX), L), L=1, LMAX)
PRINT 2500
2600 FORMAT(1H1, IX, LINE AVERAGE OF W-COMPONENT)
PRINT 2300, (((GU(I,3,L), I= 1, IMAX), L), L=1, LMAX)
PRINT 2600
2300 FORMAT(1H1, 16F8.3, I3)
2400 CONTINUE
PRINT 2000
2500 CONTINUE
2600 CONTINUE
270 CONTINUE
CALL FFT(XR, XI, IMAX, -1)
IF(IDATCNT.EQ.1) DUMSP(L) = SQRT(XR(2)**2+XI(2)**2)
IF(DUMSP(L), LT. 0.0000001) GO TO 250
DO 270 I=1, IMAX
XR(I) = SQRT(XR(I)**2+XI(I)**2)/DUMSP(L)
270 CONTINUE
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POSSIBLE

```fortran
PRINT 1800,L,(X(R(I),I=1,8))
250 CONTINUE
1800 FORMAT(1X,MV02*,I5,1P8E14.6)
1000 FORMAT(1P8E15.7)
1100 FORMAT(2X,MUSUM,6X,MVSUM,5X,MUWSTM,5X,M02SUMM,7X,MUSQ,7X,MVSQ
1,7X,MUSQ,6X,M02SUMQ,6X,M02SQ,5X,ENERGY,4X,ENSTROP,3
2X,PLANEMK)
1200 FORMAT(///,1X,* UTOT IN X-Y VTOT IN X-Y WTOT IN X-Y O1TOT
1 O2TOT IN X-Y O3TOT IN X-Y *)
1300 FORMAT(1X,* USUN IN Y-Z VSUM IN Y-Z WSUM IN Y-Z O1SUM IN Y
1-Z O2SUM IN Y-Z O3SUM IN Y-Z *)
1400 FORMAT(///,1X,* USUN IN Y-Z VSUM IN Y-Z WSUM IN Y-Z O1SUM IN Y
1-Z O2SUM IN Y-Z O3SUM IN Y-Z *)
1500 FORMAT(///,1X,* UTOT IN Z-X VTOT IN Z-X WTOT IN Z-X O1TOT
1 O2TOT IN Z-X O3TOT IN Z-X *)
1600 FORMAT(///,1X,* UTOT IN Z-X VTOT IN Z-X WTOT IN Z-X O1TOT
1 O2TOT IN Z-X O3TOT IN Z-X *)
1700 FORMAT(///,1X,* UTOT IN Z-X VTOT IN Z-X WTOT IN Z-X O1TOT
1 O2TOT IN Z-X O3TOT IN Z-X *)
1800 FORMAT(1P8E15.7)
2000 FORMAT(1H1)
3000 FORMAT(1P13E10.2)
C TEST THE SOLUTION OF THE POISSON EQUATIONS I.E. THAT
C THE DIVERGENCE OF THE VELOCITY FIELD IS EQUAL TO THE VORTICITY FIELD
CALL CURL(U,V,W,GU,GV,GW,N1,N2_,N3)
ERRMAX1=0.
ERRMAX2=0.
ERRMAX3=0.
DO 17 L=1,LMAX
DO 17 J=1,JMAX
DO 17 I=1,IMAX
GU(I,J,L)=ABS(GU(I,J,L)-O1(I,J,L))
GV(I,J,L)=ABS(GV(I,J,L)-O2(I,J,L))
GW(I,J,L)=ABS(GW(I,J,L)-O3(I,J,L))
IF (GU(I,J,L) .GT. ERRMAX1) ERRMAX1=GU(I,J,L)
IF (GV(I,J,L) .GT. ERRMAX2) ERRMAX2=GV(I,J,L)
IF (GW(I,J,L) .GT. ERRMAX3) ERRMAX3=GW(I,J,L)
17 CONTINUE
PRINT 1110,ERRMAX1,ERRMAX2,ERRMAX3
1110 FORMAT(1X,* ERRMAX1 =*,E15.7,* ERRMAX2 =*,E15.7,* ERRMAX3 =*,E15.7)
RETURN
*DECK DIV
SUBROUTINE DIV
C*****************************************************************************
C THIS ROUTINE TESTS THE DIVERGENCE OF THE VELOCITY FIELD
*****************************************************************************
*CALL LARGE2
*CALL LARGE3
*CALL LARGE5
*CALL BLANK
*CALL T9
*CALL DIM
IJK=N1*N2*N3
CALL PARTIAL(1,U,N1,N2,N3)
CALL MOVELC(DUDX(1,1,1),GU(1,1,1),IJK)
CALL PARTIAL(2,V,N1,N2,N3)
CALL MOVELC(DUDX(1,1,1),GV(1,1,1),IJK)
CALL SINPART(W,N1,N2,N3)
DIVMAX=0.
DO 1 L=1,LMAX
DO 1 J=1,JMAX
DO 1 I=1,IMAX
DUM=ABS(GU(I,J,L)+GV(I,J,L)-DUDX(I,J,L))
IF (DUM .GT. DIVMAX) DIVMAX=DUM
1 CONTINUE
PRINT 1100,DIVMAX
CALL PARTIAL(1,O1,N1,N2,N3)
CALL MOVELC(DUDX(1,1,1),GU(1,1,1),IJK)
169
```
CALL PARTIAL(2,02,N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),GV(1,1,1),IJK)
CALL COSPART(03,N1,N2,N3)
DIVMAX=0.
DO 2 L=1,LMAX
 DO 2 J=1,JMAX
 DO 3 I=1,IMAX
 DUM=ABS(GV(I,J,L)+GV(I,J,L)+DUDX(I,J,L))
 IF (DUM .GT. DIVMAX) DIVMAX=DUM
 3 CONTINUE
2 CONTINUE
PRINT 1200,DIVMAX
999 FORMAT(1X MAXIMUM VELOCITY DIVERGENCE =*,E15.7)
1200 FORMAT(1X MAXIMUM VORTICITY DIVERGENCE =*,E15.7)
RETURN
END

XDECK EDVIS
SUBROUTINE EDVIS(COEF2,E,N1,N2,N3)
DIMENSION E(N1,N2,N3)

THIS SUBROUTINE COMPUTES THE EDDY VISCOSITY AND STORES IT IN E

CALL LARGE5
CALL DATA9
LMI=LMAX-1
CC=2./FLOAT(LM1)
LL=2*XLM1
XR(1)=XR(1)/2.
XR(LMAX)=XR(LMAX)/2.
LP1=LMAX+1
DO 1 L=LP1,LL
 XR(L)=0.
1 CONTINUE
DO 3 L=1,LL
 XI(L)=0.
3 CONTINUE
ISN=-SIGN
CALL FFT(XR,XI,LL,ISN)
IF (SIGN .GT. 0.) GO TO 200
DO 100 L=1,LMAX
 XR(L)=XR(L)*CC
100 CONTINUE
200 CONTINUE
RETURN
END

XDECK FDST
SUBROUTINE FDST(SIGN)

CALL DAT21

LM1=LMAX-1
CC=2./FLOAT(LM1)
LL=2*XLM1
XR(1)=XR(1)/2.
XR(LMAX)=XR(LMAX)/2.
LP1=LMAX+1
DO 1 L=LP1,LL
 XR(L)=0.
1 CONTINUE
DO 3 L=1,LL
 XI(L)=0.
3 CONTINUE
ISN=-SIGN
CALL FFT(XR,XI,LL,ISN)
IF (SIGN .GT. 0.) GO TO 200
DO 100 L=1,LMAX
 XR(L)=XR(L)*CC
100 CONTINUE
200 CONTINUE
RETURN
END
LL=2*LMAX
XR(L)=0.
XR(LMAX)=0.
LP1=LMAX+1
DO 1 L=LP1,LL
XR(L)=0.
1 CONTINUE
DO 3 L=1,LL
XR(L)=0.
3 CONTINUE
ISN=-SIGN
CALL FFT(XR,XI,LL,ISN)
IF (SIGN .GT. 0.) GO TO 200
DO 100 L=1,LMAX
XI(L)=XI(L)*CC
100 CONTINUE
200 CONTINUE
DO 2 L=1,LMAX
XR(L)=-SIGN*XI(L)
2 CONTINUE
RETURN
END

DECK FFT

IDENT FFT (A,B,N,ISN)
ENTRY FFT
RADIX 2 COMPLEX FAST FOURIER TRANSFORM, COMPUTED IN PLACE.
SEE ON COMPUTING THE FAST FOURIER TRANSFORM, R. SINGLETON,
ARRAY A CONTAINS THE REAL COMPONENT OF THE DATA AND RESULT,
ARRAY B CONTAINS THE IMAGINARY COMPONENT.
N, THE NUMBER OF COMPLEX DATA VALUES,
MUST BE A POWER OF 2 AND GREATER THAN 1
THE SIGN OF ISN IS THE SIGN OF THE EXPONENTIAL IN THE TRANSFORM.
THE MAGNITUDE OF ISN IS THE INCREMENT SIZE FOR INDEXING
A AND B, AND IS ONE IN THE USUAL CASE.
DATA MAY ALTERNATIVELY BE STORED FORTRAN COMPLEX
IN A SINGLE ARRAY, IN WHICH CASE THE MAGNITUDE
OF ISN IS TWO AND ADDRESS B IS A(2), I.E.
CALL FFT2(A,A(2),N,2)
INSTEAD OF
CALL FFT2(A,B,N,1)
PROGRAM CONTAINS SINE TABLE FOR MAXIMUM N OF 32768
6400 TIME FOR N=1024, 220 M.SEC.
6400 TIME FOR N=2X10^4 IS 21.5XN M.MICRO-SEC.
6600 TIME FOR N=1024, 44 M.SEC.
6600 TIME FOR N=2X10^4 IS 4.3XN M.MICRO-SEC.
RMS ERROR FOR TRANSFORM-INVERSE IS LESS THAN 1.3E-13
FOR N=32768 OR SMALLER.
FORTRAN 2.3 SUBROUTINE
BY R. C. SINGLETON, STANFORD RESEARCH INSTITUTE, NOV. 1968

L100 SX0 B3 NN
 SB4 B0 KK=0
 SB5 B3-B7 NN=NN-INC
 AX0 L KSPAN=NN/2
 SB5 B0 K2=0
 SB6 X0 K2=K2
 SX1 B5 K2=K2
 EQ B6,B7,FFT
 SB4 B3-B4 IF(KSPAN .EQ. INC) RETURN
 KB5 B3-B5 KK=NN-KK
 SA2 B1+B4 K2=NN-K2
 SA3 B1+B5
 SA4 B2+B4
 HQ7 X2
 SA5 B2+B5
 NX6 X3
 SA7 A3
 SA6 A2
 NX7 X4
 NX6 X5

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
*DECK FFTX
SUBROUTINE FFTX(SIGN)

C FAST FOURIER TRANSFORM IN X-DIRECTION

*CALL DATA9
*CALL DATA7
*CALL DAT21
ISN=-SIGN
IF (SIGN .LT. 0.) GO TO 3
DO 1 J=1,JMAX
DO 1 I=1,IMAX
FI(I,J)=0.
1 CONTINUE
3 CONTINUE
DO 100 J=I,JMAX
DO 110 I=1,IMAX
XR(I)=FR(I,J)
XI(I)=FI(I,J)
110 CONTINUE
CALL FFT(XR,XI,IMAX,ISN)
DO 120 I=1,IMAX
FR(I,J)=XR(I)
FI(I,J)=XI(I)
120 CONTINUE
100 CONTINUE
RETURN
END

*DECK FFTY
SUBROUTINE FFTY(SIGN,COEF3)

C FAST FOURIER TRANSFORM IN Y-DIRECTION

*CALL DATA9
*CALL DATA7
*CALL DAT21
ISN=-SIGN
DO 100 I=1,IMAX
DO 110 J=1,JMAX
XR(J)=FR(I,J)
XI(J)=FI(I,J)
110 CONTINUE
CALL FFT(XR,XI,IMAX,ISN)
DO 120 J=1,JMAX
FR(I,J)=XR(J)
FI(I,J)=XI(J)
120 CONTINUE
100 CONTINUE
RETURN
END

*DECK FIX
SUBROUTINE FIX(IM1,I,IP1,IMAX)
IM1=I-1
IP1=I+1
IF(I .EQ. 1) IM1=IMAX
IF(I .EQ. IMAX) IP1=1
RETURN
END

*DECK INICON
SUBROUTINE INICON(C, COF, DT, UR, VR, WR, UI, VI, WI, L1, L2, L3)
REAL NDIV, N12, NSQR
DIMENSION UR(L1, L2, L3), VR(L1, L2, L3), WR(L1, L2, L3)
DIMENSION UI(L1, L2, L3), VI(L1, L2, L3), WI(L1, L2, L3)
C THIS SUBROUTINE INITIATES THE PROGRAM. FOR STARTING PROBLEM, THE INITIAL FIELD IS GENERATED. FOR CONTINUATION PROBLEM, THE DATA STORED ON TAPE AT THE END OF THE PREVIOUS RUN ARE READ IN.
C-----STARTING FROM TIME STEP=0
C-----IMAX=MAXIMUM MESH NUMBER IN X-DIRECTION
C-----JMAX=MAXIMUM MESH NUMBER IN Y-DIRECTION
C-----LMAX=MAXIMUM MESH NUMBER IN Z-DIRECTION
C-----TSTART=STARTING TIME STEP
C-----TEND=ENDING TIME STEP
C-----DELTA=MESH SIZE
C-----DT=TIME STEP
C-----C-MODEL CONSTANT
C-----NAVGETLAC(AVERAGING)/DELTA(MESH)
C-----ANISO=R IN EQUATION (5.168)
C-----GAMMA=STRAIN RATE
REAL NAVG
COMMON/LARGE1/EN(1024), EN1(1024), WN(2048)
LEVEL 2, UR, VR, WR, UI, VI, WI
LEVEL 2, EN, EN1, WN
CALL DATA?
READ 4, DELTA, DT, C, NAVG, ANISO, UTM, GAMMA
IMAX=16
JMAX=16
LMAX=16
IJK=IMAX*JMAX*LMAX
IJ=IMAX*JMAX
IMI=IMAX-1
IMI=IMAX+1
NMESH=IMAX
TDIV=1.0/(IMAX*JMAX*LMAX)
NHALF=NMESH/2
HALF=FLOAT(HHALF)
NMI=NMESH-1
RISO=3./(3.+ANISO)
TEMP=ANISO/3.
RAHISO=SQRT(TEMP)
CC=1.
TFAC=IMAX*JMAX*LMAX
FAC=SQR(TFAC)
COEF10=3.1415926535898/TFAC
COEF11=3.1415926535898/THALF
COEF12=3.1415926535898*2.
CONST=COEF10/ DELTA
COEF15=COEF12*FAC
P11=COEF10
P22=P11*2.
COF=1.0
NCONT=1
DO 2 M=1,25
Y=RGEN(X9)
2 CONTINUE
C-----ENERGY SPECTRUM DATA
C----- 0.1 INTERVAL UP TO 1.0 THEN .5 INTERVAL UP TO 6.0
C----- EN IS THE ENERGY SPECTRUM FOR THE ISOTROPIC PART. EN1 IS FOR THE ANISOTROPIC PART.
PRINT 1960
WN(1)=0.1
DO 1900 M=2,10
1900 WN(M)=WN(M-1)+WN(M-1)
DO 1950 M=11,24
1950 WN(M)=-0.5+WN(M-1),
1960 FORMAT(5X,*WAVE-NUMBER*,/)
PRINT 4, (WN(M), M=1,24)
PRINT 2000
2000 FORMAT(/5X,UNFILTERED SPECTRUMx,/)
DO 3 M=1,24,8
M7=M+7
READ 4, (EN(MM), MM=M,M7)
PRINT 702, (EN(MM), MM=M,M7)
3 CONTINUE
DO 503 M=1,24,8
M7=M+7
READ 4, (EN1(MM), MM=M,M7)
PRINT 702, (EN1(MM), MM=M,M7)
503 CONTINUE
4 FORMAT (8E10.4)
DELVG=(DELTAVG)xx2/12.0
PAI=3.1415926535898
DO 2100 M=1,24
EN(M)=EN(M)xEXPF
EN1(M)=EN1(M)xEXPF
2100 PRINT 2200
2200 FORMAT(/5X,FILTERED SPECTRUMx,/)
PRINT 702, (EN(M), M=1,24)
PRINT 702, (EN1(M), M=1,24)
DO 5 L=1,LMAX
DO 5 J=1,JMAX
DO 5 I=1,IMAX
UR(I,J,L)=0.
VR(I,J,L)=0.
WR(I,J,L)=0.
UI(I,J,L)=0.
VI(I,J,L)=0.
WII(I,J,L)=0.
5 CONTINUE
DO 40 L=1,NHALF
LL=L
N3=L-1
N5S=N3xx2
DO 30 J=1,NM1
JINDEX=J/NHALF
JJ=J+NM1-JINDEXxxJMAX
N2=J-NHALF
N2S=N2xx2
DO 20 I=1,NM1
IINDEX=I/NHALF
II=I+NM1-IINDEXxxIMAX
N1=I-NHALF
N1S=N1xx2
N5QR=N1S+N2S+N3S
IF (N5QR .LT. 0.1) GO TO 20
WAVN=SQRT(N5QR)
NDIV=1./WAVN
N12=N1S+N2S
IF (N12 .LT. 0.1) NCONT=2
IF (IABS(N1) .EQ. NHALF .AND.IABS(N2) .EQ. NHALF) NCONT=2
C----- GET FOURIER AMPLITUDE OF THE INITIAL FIELD AD DESCRIBED IN SEC 4.4
X=CONSTxxWAVN
NREG=X+.1
GO TO (310,315,315,315,315,315,315) NREG
310 M=X/0.1
YM=X-0.1xxM
M1=M+1
ED=EN(M1)-EN(M)
ENERGY=EN(M)+EDxxYMxx10.
EDA=EN1(M1)-EN1(M)
ENHASH=EN1(M)+EDAxxYMxx10.
GO TO 320
315 M=(X-1.)xx2.
YM=X-1.-0.5xxM
M=M+10
176
M1=M+1
ED=ENG(M1)-EN(M)
ENERGY=ENG(M)+ED*YM2.
EDA=ENG(M1)-ENG(M)
ENISO=ENG(M1)+EDAYM2.
320 QS=ENERGY*RIISO/(COEF15*XXM2)
QNA=SQRAT(QS)
QSA=ENISO*RIISO/(COEF15*XXM2)
QNA=SQRAT(QS)
C----CHANGE WAVE NUMBER VECTOR TO SATISFY NUMERIC SL DIV FREE
R1, R2 AND R3 ARE THE MODIFIED WAVE NUMBER
IF(NCONT.EQ.2)GO TO 340
ARG1=PI1XN1
ARG2=PI2XN1
R1=ARG1/DELTA
ARG1=PI1XN2
ARG2=PI2XN2
R2=ARG1/DELTA
ARG1=PI1XN3
ARG2=PI2XN3
R3=ARG1/DELTA
R1S=R1*2
R2S=R2*2
R3S=R3*2
R12S=R1S+R2S
RSQ=R12S+R3S
IF(NCONT.EQ.2) GO TO 340
R12=SQRT(R12S)
R12DIV=1./R12
R12=SQRT(R12S)
R12DIV=1./R12
RDIV=1./SQRT(RSQ)
C ----GET A & B VECTOR
C FIRST CHOOSE RANDOM PHI
340 CONTINUE
YY=RGEN(GX)
PHI=YY*COEF12
CPHI=COS(PHI)
SPHI=SIN(PHI)
IF(NCONT.EQ.2) GO TO 11
A1=(-R2*CPHI+R1*X3*RDIV*SPHI)*XR12DIV
A2=(R1*CPHI+R2*X3*RDIV*SPHI)*XR12DIV
A3=-R12*RDIV*SPHI
CALL RANDOM PHI
Y2=RGEN(GX)
PHI=Y2*COEF12
CPHI=COS(PHI)
SPHI=SIN(PHI)
B1=(-R2*CPHI+R1*X3*RDIV*SPHI)*XR12DIV
B2=(R1*CPHI+R2*X3*RDIV*SPHI)*XR12DIV
B3=-R12*RDIV*SPHI
GO TO 12
11 CONTINUE
INDEX=(YY+25)/4
PHI=0.7553982K(2*INDEX-1)
A1=SIN(PHI)
A2=COS(PHI)
A3=0
Y1=RGEN(GX)
INDEX=(Y1+0.25)/4
PHI=0.7553982K(2*INDEX-1)
B1=SIN(PHI)
B2=COS(PHI)
B3=0
NCONT=1
12 CONTINUE
C DETERMINE A AND B IN EQUATION (4.6)
C RANDOM THETA
Y3=RGEN(GX)
THETA=Y3*COEF12
CA=COS(THETA)
CB=SIN(THETA)
R(I1, JJ, LL)=QNxCAXA1
R(II, JJ, LL)=QN*CANA2
WR(II, JJ, LL)=QN*CBX3
WI(II, JJ, LL)=QN*CBX3
IF (N3 .NE. 0) GO TO 20
WSIGN=ABS(A3)/A3
VSIGN=ABS(B3)/B3
WRAN=QN*KAN*WRAN
WIAN=QN*KAN*WIAN
WR(II, JJ, LL)=WR(II, JJ, LL)+WRAN*WSIGN
WI(II, JJ, LL)=WI(II, JJ, LL)+WIAN*VSIGN
20 CONTINUE
30 CONTINUE
40 CONTINUE

C NOW THE UPPER HALF OF THE K-SPACE HAS BEEN DETERMINED
C GET THE TRANSFORMED VELOCITY AT THE CONJUGATE POINTS
C-----CONJUGATE FORM
C N3=1 TO 7, N1 & N2=-7 TO 7
C N3=L=-1, -N3=LM
IMP2=IMAX+2
DO 41 L=2,NHALF
LM=L+IMP2-2*L
DO 41 J=1,JMAX
M=(J+IMM1)/IMP1
JM=J+(IMP2-2*XJ)*M
DO 41 I=1,IMAX
M=(I+IMM1)/IMP1
IM=(I+IMP2-2*XJ)*M
UR(IM,JM,LM)= UR(I,J,L)
VR(IM,JM,LM)= VR(I,J,L)
WR(IM,JM,LM)= WR(I,J,L)
UI(IM,JM,LM)= UI(I,J,L)
VI(IM,JM,LM)= VI(I,J,L)
WI(IM,JM,LM)= WI(I,J,L)
41 CONTINUE

C N3=0, N1=1 TO 7, N2=-7 TO 7
C N3=0, N1=N2=-7 TO 7
DO 42 I=2,NHALF
IM=I+(IMP2-2*I)
DO 42 J'=1,JMAX
M=(J+IMM1)/IMP1
JM=J+(IMP2-2*XJ)*M
DO 42 IF(J.EQ.NHP1)
UR(IM,JM,1)= UR(I,J,1)
VR(IM,JM,1)= VR(I,J,1)
WR(IM,JM,1)= WR(I,J,1)
UI(IM,JM,1)= UI(I,J,1)
VI(IM,JM,1)= VI(I,J,1)
WI(IM,JM,1)= WI(I,J,1)
42 CONTINUE

C X AND Y TRANSFORM
SIGN=-1.
DO 50 L=1,LMAX
CALL MOVLEV(UR(1,1,L),FR(1,1),IJ)
CALL MOVLEV(UI(1,1,L),FI(1,1),IJ)

c
C REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.
CALL FFTX(SIGN)
CALL FFTY(SIGN,CC)
CALL MOVLEV(FR(1,1),UR(1,1,L),IJ)
CALL MOVLEV(FI(1,1),UI(1,1,L),IJ)
CALL MOVLEV(VR(1,1,L),FR(1,1),IJ)
CALL MOVLEV(VI(1,1,L),FI(1,1),IJ)
CALL FFTX(SIGN)
CALL FFTY(SIGN,CC)
CALL MOVLEV(FR(1,1),VR(1,1,L),IJ)
CALL MOVLEV(FI(1,1),VI(1,1,L),IJ)
CALL MOVLEV(WR(1,1,L),FR(1,1),IJ)
CALL MOVLEV(WI(1,1,L),FI(1,1),IJ)
CALL FFTX(SIGN)
CALL FFTY(SIGN,CC)
CALL MOVLEV(FR(1,1),WR(1,1,L),IJ)
CALL MOVLEV(FI(1,1),WI(1,1,L),IJ)

50 CONTINUE

C Z TRANSFORM
DO 51 I=1,IMAX
 DO 52 L=1,LMAX
 DO 52 J=1,JMAX
 FR(J,L)=UR(I,J,L)
 FI(J,L)=UI(I,J,L)
 52 CONTINUE
 51 CONTINUE
DO 54 I=1,IMAX
 DO 55 L=1,LMAX
 DO 55 J=1,JMAX
 FR(J,L)=VR(I,J,L)
 FI(J,L)=VI(I,J,L)
 55 CONTINUE
 54 CONTINUE

DO 59 L=1,LMAX
 DO 59 J=1,JMAX
 WR(I,J,L)=FR(J,L)
 59 CONTINUE

C-----THE INITIAL FIELD HAS BEEN GENERATED. THE FOLLOWING IS TO PRINT
C OUT INFORMATION ON THE GENERATED FIELD
C VELOCITIES ARE STORED IN UR, VR AND WR
C-----TURBULENT ENERGY CHECK
TKU=0.
TKV=0.
TKW=0.
DO 95 L=1,LMAX
 DO 95 J=1,JMAX
 DO 95 I=1,IMAX
 TKU=TKU+UR(I,J,L)**2
 TKV=TKV+VR(I,J,L)**2
 TKW=TKW+WR(I,J,L)**2
 95 CONTINUE
TKU=TKU*DIV
TKV=TKV*DIV
TKW=TKW*DIV
TKW = TKW + DIV
TKSUM = TKU + TKV + TKW
TKUR = TKU / TKSUM
TKVR = TKV / TKSUM
TKWR = TKW / TKSUM
PRINT 707
PRINT 706
PRINT 700, DT, DELTA, C, NAVG, ANISO, UTM, GAMMA
PRINT 702, TKU, TKV, TKW, TKSUM
PRINT 706, TKUR, TKVR, TKWR
PRINT 700
PRINT 601.
UTOT = 0.
VTOT = 0.
WTOT = 0.
DO 120 L = 1, LMAX;
PRINT 710, L
USUM = 0.
VSUM = 0.
WSUM = 0.
DO 116 J = 1, JMAX
DO 116 I = 1, IMAX
USUM = USUM + UR(I, J, L)
VSUM = VSUM + VR(I, J, L)
WSUM = WSUM + WR(I, J, L)
116 CONTINUE
PRINT 702, (UR(I, 10, L), I = 1, NHALF)
PRINT 702, (VR(I, 10, L), I = 1, NHALF)
PRINT 702, USUM, VSUM, WSUM,
120 CONTINUE
PRINT 702, UTOT, VTOT, WTOT
700 FORMAT(1X, "INITIAL CONDITION. DT=", DT, "\", DELTA=", Delta=", C=", C,
* C", 0PE7.4, 3X, "AVERAGING GRID=", F4.1, "\", DELTA=", \", 18X,
* ANISO=", E12.5, 3X, "UTM=", E12.5, 3X, "GAMMA=", E12.5)
702 FORMAT(1PE15.7)
705 FORMAT(1X, "CONTINUED AT TIME STEP=", I4, "/,")
706 FORMAT(1H0, 1X, "CONTINUED AT TIME STEP=", I4, "/,")
707 FORMAT(1I1)
710 FORMAT(1X, "PLANE=", I3)
711 FORMAT(1X, "INITIAL CONDITION", /1X, "DELTA=", Delta=", C=", C,
* C", 0PE7.4, 3X, "U0=", U0)
601 FORMAT(1X, "UM, VM, WM")
RETURN
END
*/

*DECK INIFILT
SUBROUTINE INIFILT(U, N1, N2, N3)
DIMENSION UC(N1, N2, N3)
C**
C THIS SUBROUTINE IS USED TO FILTER THE INITIAL FIELD WITH A WIDE
C FILTER ONLY IN THE Z-DIRECTION.
C**
CALL FLT
CALL DAT21
CALL DATA7
CALL DATA9
LEVEL 2, U
LMAXM1 = LMAX - 1
DO 5 L = 1, LMAX
XR(L) = EXP(-FLOAT(L - 1)**2/8.0)
5 CONTINUE
AREA = 0.5*XR(1)
DO 6 L = 2, LMAXM1
AREA = AREA + XR(L)
6 CONTINUE
AREA = AREA + 0.5 * XR(LMAX)
DO 7 L = 1, LMAX
XR(L) = XR(L) / AREA
7 CONTINUE
CALL FDCT(1.0)
DO 8 L = 1, LMAX
FILT3(L) = XR(L)
8 CONTINUE
DO 1 J = 1, JMAX
DO 1 I = 1, IMAX,
DO 2 L = 1, LMAX
XR(L) = U(I, J, L)
2 CONTINUE
CALL FDCT(1.0)
DO 3 L = 1, LMAX
XR(L) = XR(L) * FILT3(L)
3 CONTINUE
CALL FDCT(-1.0)
DO 4 L = 1, LMAX
U(I, J, L) = XR(L)
4 CONTINUE
1 CONTINUE
RETURN
END

*DECK INVERS
SUBROUTINE INVERS(G, PM, HM, IC, N1, N2, N3)
C INVERS IS A POISSON SOLVER. IC = 3 IT EXPANDS THE VARIABLE G IN COSINE SERIES IN THE Z-DIRECTION OTHERWISE IT EXPANDS G IN SINE SERIES IN THE Z-DIRECTION. IN THE OTHER TWO DIRECTIONS FOURIER SERIES ARE USED TO EXPAND G
C
DIMENSION G(N1, N2, N3), PM(N1, N2, N3), HM(N1, N2, N3)
CALL DATA9
CALL DAT21
CALL DATA?
CALL WV
LEVEL 2, G, PM
IJ = N1 * N2
CC = I / (IMAX * JMAX)
C TRANSFER G TO HM
DO 10 J = I, JMAX
DO 10 I = 1, IMAX
DO 20 L = 1, LMAX
XR(L) = G(I, J, L)
20 CONTINUE
IF (IC .EQ. 3) GO TO 100
CALL FSTD(1.0)
GO TO 200
100 CALL FDCT(1.0)
200 DO 30 L = 1, LMAX
HM(I, J, L) = XR(L)
30 CONTINUE
DO 40 L = 1, LMAX
CALL MOVLEV(HM(1, 1, L), FR(1, 1), IJ)
CALL FFTX(1.0)
CALL FFTY(1.0, 1.0)
DO 50 J = 1, JMAX
DO 50 I = 1, IMAX
WAV = WAVEXS(I) + WAVEYS(J) + WAVEZS(L)
IF (ABS(WAV) .LT. 0.00001) GO TO 500
WAV = I / WAV
FR(I, J) = FR(I, J) * WAV
FI(I, J) = FI(I, J) * WAV
GO TO 50
500 FR(I, J) = 0.
FI(I, J) = 0.
50 CONTINUE
CALL FFTY(-1.0, CC)
CALL FFTX(-1.0)
CALL MOVLEV(FR(1,1),HM(1,1,L),IJ)
40 CONTINUE
DO 60 J=1,JMAX
DO 60 I=1,IMAX
DO 70 L=1,LMAX
XR(L)=HM(I,J,L)
70 CONTINUE
IF (IC .EQ. 3) GO TO 300
CALL F DST(-1.0)
GO TO 400
300 CALL F DCT(-1.0)
400 CALL MOVLEV(FR(1,1),XM(1,1,L),IJ)
DO 80 L=1,LMAX
PM(I,J,L)=XR(L)
80 CONTINUE
60 CONTINUE
RETURN
END
DECK MEANINI
SUBROUTINE MEANINI
COMMON/NORM/ DELU,THETA
CALL DEL
C
COMMON/LARGE4/01D(16,16,33),02D(16,16,33),03D(16,16,33)
LEVEL 2,01D,02D,03D
CALL BLANK
CALL DIM
CALL LARGE2
CALL LARGE3
CALL LARGE5
CALL DATA9
C THIS ROUTINE CREATS THE MEAN INITIAL FIELD . INITIAL SPICKS
C ARE STORED IN GU THEN FILTERED TO CREATE THE GAUSIAN CORE .
DO 500 L=1,LMAX
DO 500 J=1,JMAX
GU(I,J,L)=0.
500 CONTINUE
DO 501 J=1,JMAX
GU(6,J,17)=20.
GU(11,J,17)=20.
501 CONTINUE
PRINT 1110
1110 FORMAT(1H1,5X,* INITIAL VORTEX AT PLANE 1X)
PRINT 1115,((GU(I,1,L),I=1,IMAX),(L),L=1,LMAX)
1115 FORMAT(1X,16F8.2,I3)
CALL STFILT
CALL SFILTER(GU,DUDX,N1,N2,N3)
PRINT 1113
1113 FORMAT(1H1,5X,*FILTERED VORTEX AT PLANE 1X)
PRINT 1115,((GU(I,1,L),I=1,IMAX),(L),L=1,LMAX)
DO 508 L=1,LMAX
DUDX(1,1,L)=0.0
DO 508 I=1,IMAX
DUDX(1,1,L)=DUDX(1,1,L)+GU(I,J,L)/(IMAX*LMAX)
508 CONTINUE
DO 509 L=1,LMAX
DO 509 J=1,JMAX
DO 509 I=1,IMAX
GU(I,J,L)=DUDX(1,1,L)
509 CONTINUE
DO 502 L=1,LMAX
DO 502 J=1,JMAX
DO 502 I=1,IMAX
D2(I,J,L)=D2(I,J,L)+GU(I,J,L)
502 CONTINUE
CALL INVERS(01,GU,DUDX,1,N1,N2,N3)

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.
CALL INVERS(02, GW, DUDX, 2, N1, N2, N3)
CALL INVERS(03, GW, DUDX, 3, N1, N2, N3)
CALL CURLO(GU, GW, U, V, W, N1, N2, N3)

C COMPUTE THE MEAN INITIAL VELOCITY FIELD AND NORMALIZE THE EQUATION
C WITH DELTA U (DELU) FOR THE VELOCITY SCALE AND THETA THE MOMENTUM
C THICKNESS FOR THE LENGTH SCALES.
CDUM=1./(IMAX*JMAX)
DO 506 L=1,LMAX
 DUDX(1,1,L)=0.
 DO 506 J=1,JMAX
 DO 506 I=1,IMAX
 DUDX(1,1,L)=DUDX(1,1,L)+U(I,J,L)*CDUM
 506 CONTINUE
DELU=DUDX(1,1,LMAX)—DUDX(1,1,1)
LMAXM1=LMAX-1
DO 504 L=2,LMAXM1
 THETA=THETA+(0.25—(DUDX(1,1,L)/DELU)**2)*0.5
504 CONTINUE
THETA=THETA+(0.25—(DUDX(1,1,LMAX)/DELU)**2)*0.5

C COMPUTE THE MEAN INITIAL VELOCITY FIELD AND NORMALIZE THE EQUATION
C WITH DELTA U (DELU) FOR THE VELOCITY SCALE AND THETA THE MOMENTUM
C THICKNESS FOR THE LENGTH SCALES.
CDUM=1./(IMAX*JMAX)
DO 506 L=1,LMAX
 DUDX(1,1,L)=0.
 DO 506 J=1,JMAX
 DO 506 I=1,IMAX
 DUDX(1,1,L)=DUDX(1,1,L)+U(I,J,L)*CDUM
 506 CONTINUE
DELU=DUDX(1,1,LMAX)—DUDX(1,1,1)
LMAXM1=LMAX-1
DO 504 L=2,LMAXM1
 THETA=THETA+(0.25—(DUDX(1,1,L)/DELU)**2)*0.5
504 CONTINUE
THETA=THETA+(0.25—(DUDX(1,1,LMAX)/DELU)**2)*0.5

CALL WTWV
I DO 507 L=1,LMAX
 DO 507 J=1,JMAX
 DO 507 I=1,IMAX
 IF(ABS(U(I,J,L)).GT.UDUM)
 UDUM=ABS(U(I,J,L))
 IF(ABS(V(I,J,L)).GT.UDUM)
 UDUM=ABS(V(I,J,L))
 IF(ABS(W(I,J,L)).GT.UDUM)
 UDUM=ABS(W(I,J,L))
 507 CONTINUE
 CUDUM=0.30/UDUM
 DO 507 L=1,LMAX
 DO 507 J=1,JMAX
 DO 507 I=1,IMAX
 U(I,J,L)=U(I,J,L)*CUDUM
 V(I,J,L)=V(I,J,L)*CUDUM
 W(I,J,L)=W(I,J,L)*CUDUM
507 CONTINUE
CALL CURUX(U, V, W, 01, 02, 03, N1, N2, N3)

DT=0.03125KDELU/THETA
PRINT 1116, DELU, THETA, DT
1116 FORMAT(1X, 1H*, DELU=X,E15.7, 10X, DELTAZ=X,E15.7, &
 DT=X,E15.7, 35X, 1H*)
PRINT 1117, DELTAX, DELTAY, DELTAZ
1117 FORMAT(1X, 1H*, DELTAX=X,E15.7, 10X, DELTAY=X,E15.7, &
 DELTAZ=X,E15.7, 35X, 1H*)
PRINT 708
CALL RNDDIC
UDUM=0.
DO 507 L=1,LMAX
 DO 507 J=1,JMAX
 DO 507 I=1,IMAX
 IF(ABS(U(I,J,L)).GT.UDUM)
 UDUM=ABS(U(I,J,L))
 IF(ABS(V(I,J,L)).GT.UDUM)
 UDUM=ABS(V(I,J,L))
 IF(ABS(W(I,J,L)).GT.UDUM)
 UDUM=ABS(W(I,J,L))
507 CONTINUE
 CUDUM=0.30/UDUM
 DO 507 L=1,LMAX
 DO 507 J=1,JMAX
 DO 507 I=1,IMAX
 U(I,J,L)=U(I,J,L)*CUDUM
 V(I,J,L)=V(I,J,L)*CUDUM
 W(I,J,L)=W(I,J,L)*CUDUM
507 CONTINUE
CALL CURLU(U, V, W, 01, 02, 03, N1, N2, N3)

PRINT 708
CALL RNDDIC
UDUM=0.
DO 507 L=1,LMAX
 DO 507 J=1,JMAX
 DO 507 I=1,IMAX
 IF(ABS(U(I,J,L)).GT.UDUM)
 UDUM=ABS(U(I,J,L))
 IF(ABS(V(I,J,L)).GT.UDUM)
 UDUM=ABS(V(I,J,L))
 IF(ABS(W(I,J,L)).GT.UDUM)
 UDUM=ABS(W(I,J,L))
507 CONTINUE
 CUDUM=0.30/UDUM
 DO 507 L=1,LMAX
 DO 507 J=1,JMAX
 DO 507 I=1,IMAX
 U(I,J,L)=U(I,J,L)*CUDUM
 V(I,J,L)=V(I,J,L)*CUDUM
 W(I,J,L)=W(I,J,L)*CUDUM
507 CONTINUE
CALL CURUX(U, V, W, 01, 02, 03, N1, N2, N3)

PRINT 708
CALL RNDDIC
UDUM=0.
DO 507 L=1,LMAX
 DO 507 J=1,JMAX
 DO 507 I=1,IMAX
 IF(ABS(U(I,J,L)).GT.UDUM)
 UDUM=ABS(U(I,J,L))
 IF(ABS(V(I,J,L)).GT.UDUM)
 UDUM=ABS(V(I,J,L))
 IF(ABS(W(I,J,L)).GT.UDUM)
 UDUM=ABS(W(I,J,L))
507 CONTINUE
 CUDUM=0.30/UDUM
 DO 507 L=1,LMAX
 DO 507 J=1,JMAX
 DO 507 I=1,IMAX
 U(I,J,L)=U(I,J,L)*CUDUM
 V(I,J,L)=V(I,J,L)*CUDUM
 W(I,J,L)=W(I,J,L)*CUDUM
507 CONTINUE
CALL CURLU(U, V, W, 01, 02, 03, N1, N2, N3)
CALL INVERS(01,GU,DUDX,1,N1,N2,N3)
CALL INVERS(02,GV,DUDX,2,N1,N2,N3)
CALL INVERS(03,GW,DUDX,3,N1,N2,N3)
CALL CURL(GU,GV,GW,U,V,W,N1,N2,N3)

DO 513 I=1,IMAX
DO 513 J=1,JMAX
DO 513 L=1,LMAX
01D(I,J,L)=0.
02D(I,J,L)=0.
03D(I,J,L)=0.
513 CONTINUE

DUMM1=0.
DUMM2=0.

DO 3333 I=1,IMAX
DO 3333 J=1,JMAX
DO 3333 L=1,LMAX
IF(01(I,J,L).GT.DUMM1) DUMM1=01(I,J,L)
IF(02(I,J,L).GT.DUMM2) DUMM2=02(I,J,L)
3333 CONTINUE

PRINT 3334,DUMM1,DUMM2
3334 FORMAT(1X,* DUMM1 = X,E15.7,2X,X DUMM2= *,E15.7)

RETURN
END

*DECK PARPLOT
SUBROUTINE PARPLOT
C
C THIS ROUTINE PLOTS THE PARTICLES TRACKS
C XMIN IS FIXED TO BE ZERO
C ZMIN IS FIXED TO BE ZERO
C XMAX IS FLOATING AND DEPENDS ON NUMBER OF MESHES USED AND DELTAX
C ZMAX IS FLOATING AND DEPENDS ON NUMBER OF MESHES USED AND DELTAZ
C SCX IS THE SCALING FACTOR TO ADJUST TO A PAGE LENGTH OF 8 INCHES
C SCZ IS THE SCALING FACTOR TO ADJUST TO A PAGE LENGTH OF 8 INCHES
C
*CALL DATA9
XCALL DEL
XCALL XL
DATA LB/1HX/
DATA NL/1HZ/
XMIN=0.
XMAX=(IMAX-1)*DELTAX
ZMIN=0.
ZMAX=(LMAX-1)*DELTAZ
PPXMAX=15.0
PPZMAX=10.
SCX=PPXMAX/XMAX
SCZ=PPZMAX/ZMAX
CALL LINAXS(0.,0.,PPXMAX,PPZMAX,1,-1,10,1,XMIN,XMAX,3,4,LB)
CALL LINAXS(0.,0.,PPXMAX,PPZMAX,1,+1,10,1,ZMIN,ZMAX,3,4,NL)
DO 1 N=1,140
X=XPART(N)*SCX
Z=ZPART(N)*SCZ
NC=NCHAR(N)
CALL SYMBOL(X,Z,0,0.1,0.0..-NC)
1 CONTINUE
CALL PLOT(0.,0.,6)
RETURN
*DECK PARTRAC
SUBROUTINE PARTRAC(NPART,DT)
C
C THIS SUBROUTINE COMPUTES THE PARTICLES TRACK OF A TWO DIM MEAN.
C IT USES LINEAR INTERPOLATION TO COMPUTE THE VELOCITIES BETWEEN
C THE MESHES. TIME ADVANCING IS A FIRST ORDER EULER METHOD.
C
*CALL LARGE2
*CALL DATA9
*CALL DEL
*CALL XL
\[RLX = (IMAX-1) \times DEXTA \]
\[RLY = (JMAX-1) \times DELTAY \]
\[RLZ = (LMAX-1) \times DELTAZ \]
\[DO 1 M=1,NPART \]
\[IX=XPART(M)/DEXTA+1 \]
\[IY=YPART(M)/DETYA+1 \]
\[LZ=ZPART(M)/DETLAZ+1 \]
\[IXP1=IX+1 \]
\[IYP1=IY+1 \]
\[Lzp1=LZ+1 \]
\[IF(IX.EQ.IMAX) IXP1=1 \]
\[IF(IY.EQ.JMAX) IYP1=1 \]
\[IF(LZ.EQ.LMAX) Lzp1=LZ \]
\[CCX=(XPART(M)-(IX-1)\times DEXTA)/DEXTA \]
\[CCY=(YPART(M)-(IY-1)\times DELTAY)/DETYA \]
\[CCZ=(ZPART(M)-(LZ-1)\times DELTAZ)/DETLAZ \]
\[UIPART=U(IX,IY,LZ)+U(XIP1,IY,LZ)-U(IX,IY,LZ) \times CCX \]
\[WIPART=W(IX,IY,LZ)+W(XIP1,IY,LZ)-W(IX,IY,LZ) \times CCX \]
\[VIPART=V(IX,IY,LZ)+V(XIP1,IY,LZ)-V(IX,IY,LZ) \times CCX \]
\[U2PART=U(IX,IY,LZP1)+(U(XIP1,IY,LZP1)-U(IX,IY,LZP1)) \times CCX \]
\[W2PART=W(IX,IY,LZP1)+(W(XIP1,IY,LZP1)-W(IX,IY,LZP1)) \times CCX \]
\[UIPART=UIPART+(U2PART-UIPART) \times CCZ \]
\[VIIPART=V2PART+V3PART \]
\[W2PART=W2PART+W3PART \]
\[UIPART=UIPART+DLTUIPART \]
\[ZPART=ZPART+DLTZPART \]
\[RETURN \]

\[XPART(M)=XPART(M)-RLX \]
\[YPART(M)=YPART(M)-RLY \]
\[ZPART=ZPART+RLZ \]
\[CONTINUE \]
\[END \]

\[%DECK PARTIAL \]
\[SUBROUTINE PARTIAL(M,U,N1,N2,N3) \]
\[DIMENSION U(N1,N2,N3) \]
\[CALL DATA9 \]
\[CALL BLANK \]
\[CALL WV \]
\[CALL DATA7 \]
\[LEVEL 2,U \]

\[185 \]
IJ=M*N2
IF (M .EQ. 2) GOTO 30

C**R**DERIVATIVE IN THE X-DIRECTION

DO 10 L=1,LMAX
CALL MOVLEV(U(I,I,L),FR(1,1),IJ)
CALL FFTX(1.0)
DO 15 J=1,JMAX
DO 15 I=1,IMAX
DUM=FIC(I,J)
FIC(I,J)=WAVEX(I)*FR(I,J)
FR(I,J)=-WAVEX(I)*DUM
15 CONTINUE
CALL FFTX(-1.0)
CALL MOVLEV(FR(1,1),DUDX(1,1,L),IJ)
10 CONTINUE
GO TO 300

C**NNNNDERIVATIVE IN THE Y DIRECTION

30 CONTINUE
DO 35 L=1,LMAX
CALL MOVLEV(U(1,1,L),FR(1,1),IJ)
DO 32 J=1,JMAX
DO 32 I=1,IMAX
FI(I,J)=0.0
32 CONTINUE
CALL FFTY(1.0,1.0)
DO 40 J=1,JMAX
DO 40 I=1,IMAX
DUM=FI(I,J)
FI(I,J)=WAVEY(J)*FR(I,J)
FR(I,J)=-WAVEY(J)*DUM
40 CONTINUE
CALL FFTY(-1.0,1.0)
CALL MOVLEV(FR(1,1),DUDX(1,1,L),IJ)
35 CONTINUE
300 CONTINUE
RETURN
END

*DECK RGEN
IDENT RGEN - PSEUDO RANDOM NUMBER GENERATOR

FUNCTION RGEN(D)
CALLED AS A FUNCTION WITH 1 ARGUMENT (WHICH IS IGNORED)
RETURNS IN X6 A RANDOM NUMBER GENERATED BY MULTIPLYING
1 OF 5 INTEGER CONSTANTS BY THE CORRESPONDING GENERATOR
SEE BKY USERS HANDBOOK FOR REFERENCES

SGGENCOM - USED TO STORE THE GENERATORS AND POINTER

USE /RGENCOM/
GEN DATA 1048015011D THE 5 GENERATORS
DATA 2236846573D
DATA 4216793093D
DATA 7792106907D
DATA 9630191977D
PTR DATA 1
USE *
ENTRY RGEN
IF -DEF,FTN,1
ENTRY RGEN$
COMMENT RANDOM NUMBER GENERATOR (#MODLEVEL#)
NAME VFD 42/4RGEN,18/RGEN
IF -DEF,FTN
ELSE 2
RGEN PS ENTRY / EXIT
RGEN$ EQU RGEN SINCE ARG IS IGNORED
SA1 PTR GET POINTE
SA3 RGEN GET ENTRY POINT
SA1 1
SA7 4
SA4 X1+GEN-1 GET GENERATOR
SA5 X1+CON-1 GET CONSTANT
SUBROUTINE RNDINIC

COMMON/DUM1/ UM(16,16,16), VM(16,16,16), WM(16,16,16)
COMMON/DUM2/ GUI(16,16,16), GVI(16,16,16), GWI(16,16,16)
COMMON/LARGE4/01(16,16,33),02(16,16,33),03(16,16,33)
COMMON/DATA9
COMMON/DIM
COMMON/LARGE3
COMMON/LARGE2
COMMON/INICON
COMMON/LARGE4

DO 1 L=1,16
 DO 1 J=1,MAX
 DO 1 I=1,IMAX
 UI(I,J,L)=UM(I,J,L)
 VI(I,J,L)=VM(I,J,L)
 WI(I,J,L)=WM(I,J,L)
 1 CONTINUE

DO 2 L=1,13
 DO 2 J=1,MAX
 DO 2 I=1,IMAX
 UI(I,J,L)=UM(I,J,L)
 VI(I,J,L)=VM(I,J,L)
 WI(I,J,L)=WM(I,J,L)
 2 CONTINUE

DO 3 L=21,LMAX
 DO 3 J=1,MAX
 DO 3 I=1,IMAX
 UI(I,J,L)=UM(I,J,L)
 VI(I,J,L)=VM(I,J,L)
 WI(I,J,L)=WM(I,J,L)
 3 CONTINUE
CALL INIFILT(V,N1,N2,N3)
CALL INIFILT(W,N1,N2,N3)
CALL CURLO(U,V,W,01,02,03,N1,N2,N3)
DO 16 L=1,LMAX
DO 16 J=1,JMAX
DO 16 I=1,IMAX
U(I,J,L)=01(I,J,L)
V(I,J,L)=02(I,J,L)
W(I,J,L)=03(I,J,L)
16 CONTINUE
CALL CURLO(U,V,W,01,02,03,N1,N2,N3)
CALL INVERS(01,GU,DUDX,1,Ni,N2,N3)
CALL INVERS(02,GV,DUDX,2,N1,N2,N3)
CALL INVERS(03,GW,DUDX,3,N1,N2,N3)
CALL CURLO(GU,GV,GW,U,V,W,N1,N2,N3)
RETURN
END

MDECK SINPART
SUBROUTINE SINPART(U,N1,N2,N3)
C THIS ROUTINE COMPUTES THE PARTIAL DERIVATIVE OF U IN THE Z-
C DIRECTION BY EXPANDING IN FOURIER SINE SERIES.
DIMENSION U(N1,N2,N3)
CALL BLANK
CALL WV
CALL DAT21
CALL DATA9
LEVEL 2,U
DO 10 J=1,JMAX
DO 10 I=1,IMAX
DO 20 L=1,LMAX
XR(L)=U(I,J,L)
20 CONTINUE
CALL FDST(SIGN)
DO 30 L=1,LMAX
XR(L)=XR(L)*WAVEZ(L)
30 CONTINUE
SIGN=-1.0
CALL FDCT(SIGN)
DO 40 L=1,LMAX
DUDX(I,J,L)=XR(L)
40 CONTINUE
10 CONTINUE
RETURN
END

MDECK SFILTER
SUBROUTINE SFILTER(HR,HI,N1,N2,N3)
C SFILTER FILTERS HR BY EXPANDING IT IN A FOURIER SINE SERIES IN
C THE Z/DIRECTION AND FOURIER SERIES IN THE OTHER TWO DIRECTIONS.
DIMENSION HR(N1,N2,N3),HI(N1,N2,N3)
CALL FLT
CALL DATA9
CALL DAT21
LEVEL 2,HR
CC=1.0/(IMAX*JMAX)
IJ=N1*N2
DO 10 J=1,JMAX
DO 10 I=1,IMAX
DO 20 L=1,LMAX
XR(L)=HR(I,J,L)
20 CONTINUE
CALL FDST(1.0)
DO 30 L=1,LMAX
HI(I,J,L)=XR(L)
30 CONTINUE
10 CONTINUE
RETURN
END
CONTINUE
10 CONTINUE
 DO 40 L=1,LMAX
 CALL MOVLEV(HI(1,1,L),FR(1,1),IJ)
 CALL FFTX(FR(1,1),1.0,1.0)
 CALL FFTY(FR(1,1),1.0)
 DO 50 J=1,JMAX
 CALL FFTX(FR(1,1,J),1.0)
 CALL FFTY(FR(1,1,J),1.0,CC)
 CALL MOVLEV(FR(1,1,J),HI(1,1,L),IJ)
 40 CONTINUE
 DO 60 I=1,IMAX
 CALL FIX(I-1,I,JMAX)
 CALL FIX(I,JMAX+1,IMAX)
 DO 70 L=1,LMAX
 XR(L)=HI(I,J,L)
 70 CONTINUE
 CALL FDST(FR(1,1),-1.0)
 CALL PARTIAL(U,N1,N2,N3)
 CALL MOVLEV(U,N1,N2,N3)
 60 CONTINUE
RETURN
END

SUBROUTINE SGS(U,V,E,N1,N2,N3)
DIMENSION U(N1,N2,N3),V(N1,N2,N3),E(N1,N2,N3)
C**LEVEL 2, U,V,E
C**THE SGS MODEL IS COMPUTED IN THIS ROUTINE BY SECOND ORDER DIFF*
C**AND STORED IN GU,GV,GW
C**CSGSX=1./((2.*DELTAX)
C**CSGSY=1./((2.*DELTAY)
C**CSGSZ=1./((2.*DELTAZ)
IJK=N1*N2*N3
CALL MOVLEV(DUDX(I,J,L),E(I,J,L),IJK)
DO 210 L=1,LMAX
 LM1=L-1
 LP1=L+1
 IF (L.EQ.1) LM1=LP1
 IF (L.EQ.LMAX) LP1=LM1
 DO 210 J=1,JMAX
 CALL FIX(J-1,J,JMAX)
 CALL FIX(J,JMAX+1)
 DO 210 I=1,IMAX
 CALL FIX(I-1,I,IMAX)
 CALL FIX(I,I+1)
 U(I,J,L)=E(I,J,L)+DUDX(I,J,L)
 210 CONTINUE
 CALL PARTIAL(U,N1,N2,N3)
 CALL COSPART(V,N1,N2,N3)
 CONTINUE
 DO 220 L=1,LMAX
 LM1=L-1
 LP1=L+1
 GU(I,J,L)=GU(I,J,L)+DUDX(I,J,L)
 220 CONTINUE
END
IF (L .EQ. 1) LMI=LP1
IF (L .EQ. LMAX) LP1=LM1
DO 230 J=1,JMAX
CALL FIX(JMI,J,JP1,JMAX)
DO 230 I=1,IMAX
CALL FIX(IM1,I,IP1,IMAX)
UI(J,JL)=E(IPI1,J,L)*Q2(IP1,J,L)-E(I1,J,L)*Q2(I1,J,L)*CSGSX
1 -E(I1,JPI1,L)*Q1(I1,JPI1,L)-E(I1,J,L)*Q1(I1,J,L)*CSGSY
VC(J,JL)=E(I1,J,LPI1,Q2(I1,J,LPI1)-E(I1,J,L)*Q2(I1,J,L)*CSGSZ
1 -(E(I1,JPI1,L)*Q3(I1,JPI1,L)-E(I1,J,L)*Q3(I1,J,L))*CSGSZ
230 CONTINUE
CALL PARTIAL1(U1,N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),U(1,1,1),IJK)
CALL COSPART(V1,N1,N2,N3)
DO 240 L=1,LMAX
DO 240 J=1,JMAX
DO 240 I=1,IMAX
GU(I,J,L)=GU(I,J,L)+UC(I,J,L)+DUDX(I,J,L)
240 CONTINUE
DO 250 L=1,LMAX
LPl=1+1
IF (L .EQ. 1) LMI=LP1
IF (L .EQ. LMAX) LP1=LM1
DO 250 J=1,JMAX
CALL FIX(JMI,J,JP1,JMAX)
DO 250 I=1,IMAX
CALL FIX(IM1,I,IP1,IMAX)
UI(J,JL)=E(IPI1,J,L)*Q3(IP1,J,L)-E(I1,J,L)*Q3(I1,J,L)*CSGSX
1 -E(I1,JPI1,L)*Q1(I1,JPI1,L)-E(I1,J,L)*Q1(I1,J,L)*CSGSY
VC(J,JL)=E(I1,J,LPI1,Q2(I1,J,LPI1)-E(I1,J,L)*Q2(I1,J,L)*CSGSZ
1 -(E(I1,JPI1,L)*Q3(I1,JPI1,L)-E(I1,J,L)*Q3(I1,J,L))*CSGSZ
250 CONTINUE
CALL PARTIAL2(U2,N1,N2,N3)
CALL MOVLEV(DUDX(1,1,1),U(1,1,1),IJK)
CALL COSPART(V2,N1,N2,N3)
DO 260 L=1,LMAX
DO 260 J=1,JMAX
DO 260 I=1,IMAX
GU(I,J,L)=GU(I,J,L)+UC(I,J,L)+DUDX(I,J,L)
260 CONTINUE
RETURN
END

SUBROUTINE STFILT
SUBROUTINE STFILT

C*:**
C*: THIS SUBROUTINE INITIALIZE THE TRANSFORM OF THE FILTER IN EACH
C*: DIRECTION. THE TRANSFORM IS STORED IN FILT1,FILT2,FILT3,FOR USE
C*: IN SUBROUTINE FILTER.
C*:**
MCALL AVG
MCALL FLT
MCALL DATA7
MCALL DATA21
MCALL DATA9
MCALL PR
MHPX=IMAX/2+1
MHPY=JMAX/2+1
MHPZ=MHPX+1
MHPZ=MHPY+1
LM01=LMAX-1
IF(CCF .NE. 0.) GO TO 400
C*:**
C*: THE TRANSFORM OF THE FILTER IN THE X-DIRECTION
DO 100 J=1,JMAX
DO 100 I=1,MHPX
U(I,J,J)=EXP(-6.*((FLOAT(I-1)/AVG1)**2)
100 CONTINUE
DO 110 J=1,JMAX
DO 110 I=MHPX,I+2
FR(I,J)=FR(I,J)

CONTINUE
AREA=0.0
DO 120 I=1,IMAX
AREA=AREA+FR(I,I)
120 CONTINUE

DO 130 J=1,JMAX
DO 130 I=1,IMAX
FR(I,J)=FR(I,J)/AREA
FI(I,J)=0.0
130 CONTINUE

CALL FFTX(1.0)
DO 140 I=1,IMAX
FI(I,I)=FR(I,I)
140 CONTINUE

CONTINUE

Fix the transform of the filter in the Y-direction

DO 200 J=1,NHPY
DO 200 I=1,IMAX
FR(I,J)=FR(I,J)
200 CONTINUE

DO 210 J=NHPY,JMAX
DO 210 I=1,IMAX
FR(I,J)=FR(I,J)
210 CONTINUE

AREA=0.0
DO 220 J=1,JMAX
AREA=AREA+FR(I,J)
220 CONTINUE

DO 230 J=1,JMAX
DO 230 I=1,IMAX
FR(I,J)=FR(I,J)/AREA
FI(I,J)=0.0
230 CONTINUE

CALL FFTY(1.0,1.0)
DO 240 J=1,JMAX
FIJ(J)=FR(I,J)
240 CONTINUE

Fix the transform of the filter in the Z-direction

DO 300 L=1,LMAX
XR(L)=XR(L)
300 CONTINUE

DO 310 L=2,LMAX1
AREA=AREA+XR(L)
310 CONTINUE

AREA=AREA+0.5*XR(LMAX)
DO 320 L=1,LMAX
XR(L)=XR(L)/AREA
320 CONTINUE

CALL FDCT(1.0)
DO 330 L=1,LMAX
FIJ(L)=XR(L)
330 CONTINUE

FIJ(NHPX)=0.
FIJ(NHPY)=0.
FIJ(LMAX)=0.
GO TO 410
400 IF(CECO .NE. 1.0) GO TO 410
MC=((LMAX-1)*2/3)
DO 7 L=1,LMAX
FIJ(L)=0.
7 CONTINUE
DO 8 L=1,MC
FIJ(L)=1.0
8 CONTINUE
MC=(JMAX/3+1)
DO 9 J=1,JMAX
FIJ(J)=0.
9 CONTINUE

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
DO 10 J=1,MC
 FILT2(J)=1.0
 JJ=JMAX-J+1
 FILT2(JJ)=1.0
10 CONTINUE
 MC=JMAX-MC+1
 FILT2(MC)=0.
 MC=IMAX/3+1
DO 11 I=1,IMAX
 FILTI(I)=0.
11 CONTINUE
 DO 12 I=1,MC
 FILTI(I)=1.0
 II=IMAX+I-MC+1
 FILTI(II)=1.0
12 CONTINUE
 MC=IMAX-MC+1
 FILTI(MC)=0.
410 PRINT 1119,CCF
1119 FORMAT(1X,M,C,CCF=M,1PE15.7)
 IF(CCPF .NE. 1.0) GO TO 340
 PRINT 1116,(FILT1(I),I=1,IMAX)
 PRINT 1117,(FILT2(J),J=1,JMAX)
 PRINT 1118,(FILT3(L),L=1,LMAX)
1116 FORMAHIX,*FILT1 =M,1PE15.7)
1117 FORMAT(CIX,M,FILT2 =M,1PE15.7)
1118 FORMAT(CIX,M,FILT3 =M,1PE15.7)
340 CONTINUE
RETURN
END

MDECK STPART SUBROUTINE STPART(NPART)
MCALL LARGES
MCALL XL
MCALL DATA9
MCALL DEL
YPART(1)=0.
YPART(17)=0.
YPART(1)=(6-1)*DELTA
YPART(17)=(11-1)*DELTA
ZPART(1)=(17-1)*DELTA
ZPART(17)=(17-1)*DETA
NCHAR(1)=1
NCHAR(17)=2
YPART(33)=0.
YPART(49)=0.
YPART(65)=0.
YPART(81)=0.
YPART(97)=0.
YPART(113)=0.
YPART(129)=0.
YPART(145)=0.
XPART(33)=XPART(1)+0.5*DETA
XPART(49)=XPART(1)+0.5*DETA
XPART(65)=XPART(1)
XPART(81)=XPART(1)
ZPART(33)=ZPART(1)
ZPART(49)=ZPART(1)
ZPART(65)=ZPART(1)+0.5*DETA
ZPART(81)=ZPART(1)+0.5*DETA
ZPART(97)=ZPART(17)+0.5*DETA
ZPART(97)=ZPART(17)
XPART(113)=XPART(17)-0.5*DETA
ZPART(113)=ZPART(17)
XPART(129)=XPART(17)
ZPART(129)=ZPART(17)+0.5*DETA
XPART(145)=XPART(17)
ZPART(145)=ZPART(17)-0.5*DETA
NCHAR(33)=3
NCHAR(49)=4
NCHARC 653 = 5
NCHARC 654 = 6
NCHARC 657 = 7
NCHARC 659 = 8
NCHARC 662 = 9
NCHARC 664 = 10
NPART = 160
DELX = 0.
DELZ = 0.
N = 0
DO 1 M = 1, 10
N = N + 1
DO 2 J = 2, JMAX
N = N + 1
NCHARC(N) = M
IX = 2PART(N - 1) / DELTAZ + 1
IXP1 = IX + 1
LZP1 = LZ + 1
CCX = (XPART(N - 1) - (IX - 1) * DELTAX) / DELTAX
CCZ = (ZPART(N - 1) - (LZ - 1) * DELTAZ) / DELTAZ
O1P1 = O1(IX, J, LZ) + (O1(IX, J, LZ) - O1(IXP1, J, LZ)) * CCX
O2P1 = O2(IX, J, LZ) + (O2(IX, J, LZ) - O2(IXP1, J, LZ)) * CCX
O3P1 = O3(IX, J, LZ) + (O3(IX, J, LZ) - O3(IXP1, J, LZ)) * CCX
O1P2 = O1(IX, J, LZP1) + (O1(IX, J, LZP1) - O1(IXP1, J, LZP1)) * CCX
O2P2 = O2(IX, J, LZP1) + (O2(IX, J, LZP1) - O2(IXP1, J, LZP1)) * CCX
O3P2 = O3(IX, J, LZP1) + (O3(IX, J, LZP1) - O3(IXP1, J, LZP1)) * CCX
O1P1 = O1P1 + (O1P1 - O1P2) * CCZ
O2P1 = O2P1 + (O2P1 - O2P2) * CCZ
O3P1 = O3P1 + (O3P1 - O3P2) * CCZ
DELX = O1P1 * DELTAY / O1P2
DELZ = O3P1 * DELTAY / O2P1
XPART(N) = XPART(N - 1) + DELX
YPART(N) = YPART(N - 1) + DELTAY
ZPART(N) = ZPART(N - 1) + DELZ
2 CONTINUE
1 CONTINUE
RETURN
END

*DECK STRREAD
SUBROUTINE STRREAD
C
C THIS SUBROUTINE READ THE INPUT PARAMETERS
C IMAX=NUMBER OF GRID POINTS IN THE X-DIRECTION
C JMAX=NUMBER OF GRID POINTS IN THE Y-DIRECTION
C LMAX=NUMBER OF GRID POINTS IN THE Z-DIRECTION
C AVG2=FILTERING WIDTH IN THE Y-DIRECTION
C AVG3=FILTERING WIDTH IN THE Z-DIRECTION
C AVG1=FILTERING WIDTH IN THE X-DIRECTION
C DELTAX=MESH SIZE IN THE X-DIRECTION
C DELTAY=MESH SIZE IN THE Y-DIRECTION
C DELTAZ=MESH SIZE IN THE Z-DIRECTION
C N1= ARRAY SIZE IN THE X-DIRECTION
C N2= ARRAY SIZE IN THE Y-DIRECTION
C N3= ARRAY SIZE IN THE Z-DIRECTION
C CCPW= 1 IF PRINT OUT OF WAVE IS WANTED, OTHERWISE NO PRINT OUT
C CCPF= 1 IF PRINT OUT OF FILT IS WANTED, OTHERWISE NO PRINT OUT
C CCPD= 1 IF PRINT OUT OF LINE AVERAGE OF U-COMPONENT, LINE AVERAGE OF W-COMPONENT AND ENSEMBLE AVERAGE PERTURBATIONS IS REQUIRED, OTHERWISE NO PRINT OUT
C
INTEGER TSTART, TEND
CALL DATA9
COMMON/TIM/ TSTART, TEND
CALL DEL
CALL DIM
CALL AVG
CALL PR
READ 703, IMAX, JMAX, LMAX, TSTART, TEND
READ 704, DELTAX, DELTAY, DELTAZ

193
READ 704,AVG1,AVG2,AVG3,CCF
READ 703,N1,N2,N3
READ 704,CCPW,CCPF,CCPD
PRINT 708
PRINT 705,IMAX,JMAX,LMAX,TSTART,TEND
PRINT 706,DELTAX,DELTAY,DELTAZ
PRINT 707,AVG1,AVG2,AVG3
PRINT 708
PRINT 709,N1,N2,N3
PRINT 708
703 FORMAT(10I5)
704 FORMAT(4E10.4)
705 FORMAT(1X,)(;DELTAX=*,1PE10.4,5X,* DELTAY=*,1 E10.4,5X,* DELTAZ=*,1 +PE10.4,64X,1H*)
706 FORMAT(1X,)(;DELTAX=*,1PE10.4,5X,* DELTAY=*,1 E10.4,5X,* DELTAZ=*,1 +PE10.4,64X,1H*)
707 FORMAT(1X,)(;DELTAX=*,1PE10.4,5X,* DELTAY=*,1 E10.4,5X,* DELTAZ=*,1 +PE10.4,64X,1H*)
708 FORMAT(1X,)(;DELTAX=*,1PE10.4,5X,* DELTAY=*,1 E10.4,5X,* DELTAZ=*,1 +PE10.4,64X,1H*)
709 FORMAT(1X,)(;DELTAX=*,1PE10.4,5X,* DELTAY=*,1 E10.4,5X,* DELTAZ=*,1 +PE10.4,64X,1H*)

DECK STWV
SUBROUTINE STWV
C
C STWV SETS THE WAVE NUMBERS FOR A GIVEN MESH SIZE DELTA AND
C NUMBER OF MESH POINTS NMAX. THIS ROUTINE MUST BE CALLED
C TO INITIALIZE THE WAVE NUMBERS FOR THE PARTIAL ROUTINES AND
C THE INVER ROUTINE.
C
CALL WV
CALL DATA9
CALL DEL
CALL PR
PAI=3.1415926535898
CX=2.0*PAI/(FLOAT(IMAX)*DELTAX)
CY=2.0*PAI/(FLOAT(JMAX)*DELTAY)
CZ=PAI/(FLOAT(LMAX-1)*DELTAZ)
C2X=CX/FLOAT(IMAX)
C2Y=CY/FLOAT(JMAX)
NHPIX=IMAX/2+1
NHPIY=JMAX/2+1
DO 100 L=1,LMAX
WAVEZ(L)=CZ*FLOAT(L-1)
WAVEZS(L)=—WAVEZ(L)*%2
100 CONTINUE
DO 101 J=1,JMAX
MM=J/NHPIY
M=MM*JMAX+1
WAVEY(J)=C2Y*FLOAT(J-M)
WAVEYS(J)=—(CY*FLOAT(J-M))*%2
101 CONTINUE
DO 102 I=1,IMAX
MM=I/NHPIX
M=MM*IMAX+1
WAVEX(I)=C2X*FLOAT(I-M)
WAVEXS(I)=—(CX*FLOAT(I-M))*%2
102 CONTINUE
WAVEX(NHPIX)=0.
WAVEX(NHPIY)=0.
WAVEXS(NHPIX)=0.
WAVEYS(NHPIY)=0.
WAVEZ(LMAX)=0.
WAVEZS(LMAX)=0.
IF(CCPW .NE. 1) GO TO 104
PRINT 1000,(WAVEX(I),WAVEXS(I),I=1,IMAX)
PRINT 1001,(WAVEY(J),WAVEYS(J),J=1,JMAX)
PRINT 1002,(WAVEZ(L),WAVEZS(L),L=1,LMAX)
RETURN
END
104 CONTINUE
1000 FORMAT(1X,WAVEX =x,1PE15.7,5X,WAVEX$ =x,1PE15.7)
1001 FORMAT(1X,WAVEY =x,1PE15.7,5X,WAVEY$ =x,1PE15.7)
1002 FORMAT(1X,WAVEZ =x,1PE15.7,5X,WAVEZ$ =x,1PE15.7)
RETURN
END