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{	 1.0 INTRODUCTION

1.1 Summary

This report documents two weeks of thermal vacuum testing conducted jointly by NASA

Crew Systems Division, Rockwell International (RI) and the Vought Corporation. The

testing was accomplished between May 3 and May 21, 1976, and was intended to verify

the design of the Space Shuttle I-tube radiator panels.

During the two weeks of testing a representative forward (two-sided) panel was

successfully operated in a variety of simulated environmental conditions. Performance
i

limits for both high and low load operations were established. Confidence in the

stable operation of the panel throughout its typical operating range was verified by the

testing, and design studies were conducted to analyze the effects of the payload bay

door, and the panel deployment angle, on performance.

Section 2.0 of this report discusses the detailed test objectives. Section 3.0 contains

a description of the test article, followed by a summary of test operations in Section 4.0.

Section 5.0 discusses results in three parts: environments, performance studies, and

special design studies. Finally, conclusions are presented in Section 6.0.

,

1	 1.2 ORBITER HEAT REJECTION SYSTEM DESIGN

!	 The operational OHRS will consist of three devices to reject the heat loads both
'r

internally generated and absorbed from the environment; namely, space radiators, water

flash evaporators, and an ammonia, boiler.	 Supplemental heat rejection capability will

be provided on the ground by a Ground Support Equipment (GSE) heat exchanger.

During on-orbit operation, heat rejection will be accomplished primarily by the space

radiators, supplemented by water evaporation through the FES (Figure 1-1). The orbiter

radiator configuration consists of 6 or 8 panels to be mounted to the payload bay doors

as shown in Figure 1-2. The two forward panels on each side are to be deployed away from

the doors to increase the heat rejection capacity. Freon Flow to the panels will be regulated

by two downstream temperature co tiul valves (one per loop). The valves will bypass a portion

J



r.

FIGURE 1-1...._

- -	 -	 -- ORBITER HEAT REJEftION SYSTEM _

Z-TUBE RAO1itTOR

.^..OF	 ORF3 F' WELS)

lAJAt_ SET ?O A NT T'EMPI ERATORE COtJTR OL '011-Vi 
$3 / EaST CCYEPEtiSltihlC ON V/AT'£R T^K QUANI7Y^	 - {,-__-.__

GSC kE^^
CXCHAPtGER

^REar=°'S Pvt^a

ro

t+ilEt_ CELL LANKAUNCN

WATER Sur PLY R=_ ^r.1TFxY
^vF,s-tsR^Tati

No% - ARDPULStv4r
^H(^U57 'i^TS

F^	 - - - -	 _ - - - - 

WfiTEt UVt1P

^f
[. PIAYDAt 4TOR

.,._
..

B

'
CJNT k°.X- C

tt04NT

EC.LSS SAT oRD .^

1 O^ Z 1 tDUSibANT f9COtA 2C	 COa+- r r	 LpOrs CONVERGING-

VVER64NG

NOZZLE -



I TUBE PANEL

i

7

l

~^I

1^ z

PANEL 1R

1 +̂	 PAliEL 2R

•	 f

	IPA14EL IL	 `	 RADIATOR

..JV/`"' t t PA14EL 2L	 " 	 PANEL 3R

PArfEL 4R
ANEL 3L	 f ,

	 (OPTIONAL)	

_. .

k

FF 	
PANEL 4L

	

+'?s	 h'' (OPTIONAL)

FLOW CONTROL ASSEMBLY

SPACE SHUTTLE ORBITER RADIATOR COIIFIGLTMTIO14



fi

j.

of the flow to regulate the radiator outlet temperature to either of two temperature set

points (38°F and 58 0F). The set point temperature will depend upon the quantity

of water in the fuel cell water storage system. As excessive water accumulates in

the holding tank the set point will be increased to 58°F, thereby reducing the

amount of heat rejection from the radiators. Water evaporated in the flash evaporator

top-off section will lower the freon temperature to 37+2°F until the holding tank level

decreases, at which time the control valve will be reset to 38°F. Should on-orbit

heat loads increase such that the radiator outlet temperature cannot be maintained

at 38+2 °F with total freon flow (no bypass flow), the flash evaporator will activate

as necessary to control the temperature of the freon supplied to the vehicle at

37°F.	 The water is ejected from the flash evaporator through a set of non-propulsive

sonic nozzles to minimize the particle and gas contamination of the space environment

surrounding the orbiter.

In addition to providing supplemental heat rejection capacity during on-orbit operation,

the FES will provide the sole means of heat rejection for the orbiter above an altitude

of 140,000 feet during ascent and above 100,000 feet during reentry. Below 100,000 feet

the ammonia boiler is activated to provide cooling during reentry and through the post

landing phase.

1.3 Previous Test History

Two series of development tests have been conducted in support of the Shuttle program.

The first testing was accomplished in 1973 and consisted of a set of eight flat

"U-tube" panels operative together with a flash evaporator, and regulated via a

single control valve. Impulse signals sent to the control valve were generated by a

water tank level sensor which simulated a typical fuel cell water generation profile.

Thp Lest verified the overall validity of an integrated heat rejection system.

4
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The second series was initiated in March 1975 and encompasses six different tests,

M

F

tabulated in Table 1-1.	 The .Final test in this series is the subject of this report.

Initial testing in this series concentrated on panel-to-PBD cavity characteristics.	 A full-

size cavity simulator was constructed and covered with flight-type silver/teflon coating.

I The test article was exposed to solar and IR environments and exchange factors and
I

absorbed heats were calculated.	 Subsequent testing measured thermal performance of a

two-panel contoured flowing b-tube radiator system, including a PBD simulator installed.

to create a 38 degree cavity angle with the forward panel. 	 The thermal performance

testing was expanded to include cavity angles of 50 and 70 degrees. 	 The later testing

was conducted in parallel with the Self-Contained Heat Rejection Module (SHPM) test.

i
4
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CHAMBER TEST DESCRIPTION REMRI:S
(Date)

B Cavity Assessment Won-f1wing panel and PBD simulator
Solar Tests tested in solar environnent. 	 Script

(Mar 75) F's,	 cavity effective absorbtivity,
and total	 absorbed Feat loads measured
experimentally.

A Cavity Assessment Pion-flowing panel	 and	 PBD simulator
IR Test tested	 in quartz lar-p environment. 	 IR

(May 75) lamps calibrated,	 and cavity effective
emissivity and total	 absorbed feat

_ loads measured experimentally.

A 38 Degree Cavity Aft and forward flowing L-tube radi-

(Aug 75)
Thermal Performance for panels	 tested	 in series•	 Panel-

Test to -Puu cavity angle set at 33 degrees.
Instrumented to measure thermal 	 Der-
formance and thermally induced struc-
tural	 distortion and strain.	 (Addi-
tional	 non-flowing panel	 tested to
assess	 coating suitability.)

A Wide	 Cavity Forward flowing radiator L-tube panel
Thermal	 Per- test.	 Panel-to-P50 cavity angles set

(Oct 75) formance Test to 50 and 70 degrees.	 Instrumented
to measure thermal 	 performance and
thermally	 induced strain.

rVOUGHT
I-Tube Flow Prototype forward I-tube panel without
Stability payload bay door, Cold-wall(LN2 ) environ-

(Feb 76)- ment only.

Prototype forward I-tube panel with
payload bay door simulator. Two values

B
I-Tube Performance of panel deployment angle tested. Solar
Test simulation at 77	 sun angle. Quartz lamp

(May 76), array for IR flux simulation.

I 
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2.0 TEST OBJECTIVES

The purpose of this test was to establish the thermal performance

characteristics of the	 forward I-tube	 radiator panel over a wide

range of operational flowrate and temperature conditions while subjected

to both solar and IR environments.

Of prime importance is establishing the effects of the payload bay door (PBD)

on 1-tube radiator performance.	 The thermal interaction between the panel

and PBD could result in flow stability problems under extreme environment

conditions.	 Also, the specular characteristics of the panel and PBD

coating material will result in high localized temperature 	 peaking that could

adversely affect the radiator heat rejection capacity.

The test was conducted in two phases; the first phase subjecting the test

article cavity to solar radiation while simultaneously applying IR energy

to the top surface of the radiator panel to simulate on-orbit absorbed

flux, and the second phase subjecting the test article to controlled IR	 j

environments only.	 The specific test objectives include the following:

a.	 Determine cavity specularity and skewed environment effects on
1

*radiator thermal performance
i

b.	 Investigate fluid flow stability with radiator panel mated
-y

to PBD

c.	 Determine radiator high heat load performance

d.	 Determine radiator low heat load performance

e. Evaluate silver teflon coating performance, and

f Provide data for analytical model verification

qW a

_	 7	
_
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2.1	 CAVITY SPECULARITY AND SKEWED ENVIRONMENT EFFECTS

The specular reflecting characteristics of the silver Teflon coating

result in a focusing effect in the cavity formed by the panel and PBD.

The area, along the length of the panel, to which the radiant energy is

concentrated will experience substantially higher temperatures than

surrounding areas of the panel, thus possibly reducing the overall

panel heat rejection capability.

The location of the "hot spot" produced by focusing is a function of the

incident sun angle at the cavity plane. Previous testing has established 	
j

the sun-to-cavity angle which causes the worst case hot spot, an angle which

would occur in space at the following orbital conditions.

a. S = 90°, X on V, earth oriented, roll = 167°

b. = 90°, X on V, earth oriented, roll 13°

The following diagrams illustrate these orbital situations. In both cases

shown, the angle between the sun and the cavity plane is the same --- only

the IR and aibedo flux is different between the two cases.

J
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Other inertial orbits are possible which provide maximum solar trapping.

The two cases pictured represent high (167' roll) and low (13° roll)

levels of IR flux due to the position of the earth relative to the

radiator.

The .first on-orbit attitude listed above approximates a worst hot case

environment in which there is solar flux in the cavity and a high IR heat,

load from the earth on the radiator top surface. The second on-orbit

attitude results in solar lux in the cavity while the radiator top surface

views deep space, thus producing a condition that should yield near maximum

thermal gradients from top to bottom surface of the panel.

These on--orbit conditions have been analytically evaluated to determine

the solar and IR absorbed flux to be applied to the radiator top surface

simultaneously with the solar flux. Once the environments are I.-noum for

each attitude, the appropriate radiator inlet temperatures and flowrates

can be analytically determined for bath 6 and 8 panel configurations to

define the test point conditions. The test results should be indicative

of I-tube performance under realistic skewed environment conditions which

include the cavity specular effects.

2.2	 FLUID FLOW STABILITY (WITH PBD MATED TO PANEL)

Parallel, tube Mow systems such as the 1--tube panel can possibly
i

experience fluid flow stability problems under certain extreme operating

conditions. The identical I-tube radiator panel, was used in a flog stability

test at Vought/Dallas (Reference J) `prior to shipment to JSC. During test
r

buildup at JSC, the panel was mated with a PBD simulator (used in previous

L-tuba radiator testing, Red`	 Radiator perfonitance Vas monitored throughout	 l

a

f
i t

l)
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the I-tube test (both solar and IR environments) to detect any measurable	 )

influence of the PBD on fluid flow stability.

	

2.3	 HIGH HEAT LOAD THERMAL PERFORMANCE

The Shuttle operational radiator system will be required to reject high

heat loads under certain on-orbit conditions. The I-tube panel was tested

over a wide range of simulated heat loads and external environment conditions

to permit parametric evaluation of the panel performance and to establish

the maximum heat load capacity. During the high load test sequence,

selected test conditions were imposed on the I-tube panel to duplicate

conditions provided for the L-tube panel in a previous test (Reference 2)

for radiator configutation performance comparison.

A secondary objective during the high load performance mapping was to

monitor the temperature differential between the transport tube and panel

facesheets (six locations).	 This data will aid in verifying that the

thermal resistance of the adhesive layer between the tubes and facesheets

for a full size panel is comparable to smaller specimen test results.

	

2.4	 LOW HEAT LOAD THERMAL PERFORMANCE
s.

iAs the internal heat rejectionrequirement for the Shuttle decreases,

the radiator flow control system is designed to divert increased amounts

of the freon flow from the radiators to the system bypass lines. Radiator
i

temperatures decrease sharply as a result of the lower flowrates. Low
r

load performance mapping is necessary to determine the lowest possible

heat load that can be accommodated without freezing of the fluid in the

panels

;.4
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2.5 RADIATOR COATING PERFORMANCE

i t The radiator panel and PBD surfaces will have silver tenon coatings

that provide the low solar absorptance/IR emittance ratio required for

high heat rejection performance.	 The coating adhesive on the I-tube panel

was cured by a different process than was used on previous test panels.. 	 The

' cure process involves temperature and pressures greater than atmosphere in

an autoclave.	 Also, a portion of coating was pre-outgassed before applica-

i
tion,	 The test article was visually monitored throughout the test to assess

coating performance under test environment conditions.

i

2.6 ANALYTICAL MODES VERIFICATION

Nought and Rockwell International have recently developed detailed

thermal models for the analytical assessment of the OHRS performance with

I-tube radiators. 	 One of the - key test objectives was data gathering

suitable for establishment of reasonable confidence levels in analytical'

model predictions.
4

I
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3.0 TEST ARTICLE DESCRIPTION
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3.1 CHAMBER LAYOUT

The test article is a Shuttle representative I-tube forward radiator panel

which was subjected to a thermal vacuum environment and selected operating

conditions expected during earth orbital flight. A PBD simulator was

incorporated into the test setup to define the cavity formed by the door

and panel. IR flux on the radiator top surface was simulated by a quartz

lamp array. Simulated solar flux was directed into the cavity at a 77

degree angle by means of a mirror. Figure 3-1 is a diagram of the test

setup, while Figures 3-2 through 3-5 are photographs taken in the cham-

ber prior to testing. A cluster of three liquid nitrogen panels were in-

stalled above the quartz lamps to provide thermal isolation between the

panel and an independent heat pipe test article, being tested separately.

A flow bench provided the desired Freon-21 flow rates and inlet temperatures

to the panel. The system was designed to allow the freon to enter and

exit thrpanel through either the end or the middle manifold connections,

although only the end feed was used in the current testing.

TEST PANEL

The test panel is thermally representative of the anticipated flight

hardware. The panel consists of an aluminum honeycomb core bonded between

aluminum facesheets with a contour approximating the shape of the number 2

(mid forward) panel on the Orbiter configuration (see Figure 1-2). Round

tubes are bonded to the inside surface of both facesheets. The tubes

are embedded in the honeycomb core to provide a smooth external surface

for applying the silver teflon coating. Figure 3_6 summarizes the panel design.

Vought drawing 224GTO100 conains additional details.
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FIGURE 3-6

REPRESENTATIVE PANEL DESIGN

"I" TUBE PANEL

HONEYCOMB PANEL
0.012 in. 2024 T81 ALUM FACE SHEET
5056 H39, 3.1 LB/FT' ALUM H/C CORE

FORWARD PANEL
68 TUBES ATTACHED TO ALTERNATE FACE SHEETS

co	 3.8 in. TUBE SPACING, TUBE I.D. = O. 1315 in.
0.90in. H/C THICKNESS

TUBES BONDED TO FACE SHEETS

  PANEL

LLU--
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3.3	 PBD SIMULATOR

AM
The PBD simulator provided thermal radiation characteristics only. 	 No

structural, simulation of the door is required. 	 The PBD is constructed

of 18 separate electrical heater panels, coated with silver teflon, to

provide localized heating for the desired environmental profile.. 	 The

back side of the door i:s insulated to prevent heat loss and insure that

all impressed heat will be "seen" by the panel.

3.4	 FLOW CONTROL SYSTEM

The Freon-21 fluid flow system is a modular component design containing

a finned heat exchanger, finned calrod heaters, a liquid nitrogen heat

exchanger and a refrigerated trichlorethylene heat exchanger. 	 Flow will

be controlled and monitored by a flow meter network with range capability

adequate for the test requirements.	 Figure 3 -7 shows a simplified

schematic of the freon flow system.	 The system has the capability of

providing conditioning requirements to control radiator inlet temperatures

from -180°F to +140°F with a temperature transient of ±60°P per hour.

	3.5	 ENVIRONMENTAL SIMULATION

Simulated solar flux was provided by the SF.SL Chamber B Xenon lamps,

The flux was directed into the test article cavity at a 77 0 angle by a

mirror. IR flux on the radiator panel was simulated by an array of quartz

lamps which have been calibrated to provide selected flux levels at

pre-determined power settings. In addition, the 18 PBD heater elements

provided simulated absorbed flux, as required, on the door.

	

3.6	 INSTRUMENTATION

The test article was instrumented with the thermocouples on the PBD

i
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simulator and on both exterior sides of the radiator panel. 	 Thermocople

locations for the panel are shown in Figures 3-8 and 3-9.. 	 PBD thermocouple

locations are shown in Figure 3-10. The Freon-21 supply and return lines

(see Figure 3-7 were fitted with redunaant immersion thermocouples.

A temperature reading at each immersion thermocouple location allowed

{ calculation of panel performance. 	 Pressure drop across the radiator,

{ from inlet manifold to outlet manifold, was recorded and displayed. 	 For
l

purposes of this test the transducer on the mid port of the inlet manifold

was connected to both transducers on the outlet manifold. 	 Similarly,

the transducer on the end port of the inlet manifold was wired to both

d
outlet transducers (see Figure 3- 71•

p

t
a Redundant flow metering devices were used to determine flow rates to the

f
? radiator panel.	 The outiet flow of the radiator was reconditioned to

near ambient temperature before measurement to reduce density variation

effects on the flow meter readings.

The amp meters on the 12050 power modules, furnished by SESL, were used to 	 g

determine the power supplied to the PBD heaters. 	 These readings were displayed

on the CRT real time.
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4.0	 TEST DESCRIPTION

	

4.1	 SUMMARY

A total of 63 test points were run during the two week test, encompassing

approximately 188 hours of thermal vacuum testing. All test objectives

were satisfactorily achieved during the test and no retest requirements

have been identified.

Tables 4-1 and 4-2 summarize the test points accomplished during the

first and second week, respectively.

	

4.2	 TEST NARRATIVE/FACILITY SUMMARY

The testing was accomplished through the joint efforts of Crew Systems

Division/Rockwell/Vought as planners and analysts; and Space Environment

Test Division/Vought Laboratories with test facility and hardware

responsibility. The primary facility functions of high vacuum, deep

space simulation, environment simulation, and instrumentation and

display were accomplished with very few anomalies.

The SETD personnel were also responsible for designing and constructing

all special test equipment, which included quartz lamp array (QLA),

quartz lamp support stand, solar mirror support, radiometers, and door

actuator. With the possible exception of the radiometers, all special

test equipment provided by SETD worked well and met all requirements.

The radiometer problems will be discussed in Section 5.2.

Prior to first week chamber door closing, the radiometer and door positions
I

were verified. The two position door was controlled by air actuated

f

I

R
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cylinders with cables whose length determined the door position. The

"nominal" cavity opening was set such that the distance from the outboard
1	 s

j	 edge of the door was 78±1 inches from the outboard edge of the radiator''

panel. This represented a deployment angle of 35.5 degrees.

The wide cavity setting was restricted the first week by the width of

the solar beam. The widest door opening that provided full sun in the

cavity resulted in an edge-to-edge length of 96" or approximately a 46

degree deployment angle.

Before chamber closeout, it was necessary to attach bundles of gold kapton

at the top of the solar mirror to diffuse a portion of the solar beam

that was imagining on the top side of the radiator. The necessary environment

on the top of the panel was provided by the quartz lamps, and the irregular

solar spillover was not desirable.

With the previously mentioned final arrangements completed, the chamber

pumpdown was initiated at 0620 on May 3. Chamber pressure was reduced

to test condition (<10 -5 Corr)	 and test point 101 was initiated.

Mirror background test points were accomplished and the solar simulators

were activated at approximately 2100 on May 3.

During the mirror background points, the top-mounted radiometers were

observed to indicate a larger-than-anticipated flux reading, causing

a modification in the timeline to allow study of the problem before the

quartz lamps were turned on. Thus, the four model correlation test

points were accomplished with the sun on, quartz lamps off, with various 	 G

flow rates and inlet temperatures. These points (118-121) were completed at

1030 on May 4.

F
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It was next determined to run a QLA calibration point to verify the lamp

0

	

	
settings. This test point (103) was accomplished, followed by a test

point (103A) intended to identify the radiometer readings under cold

conditions. The purpose of this test point was to ensure that the radio-

meters did indeed read close to zero for cold conditions. Thus, the sun

and QLA were turned off at 1345 allowing the panel to soak to a cold

condition.

Following this, low load, high environment test points were accomplished

for both nominal (T.P. 113) and wide (T.P. 127) cavity angles, demonstrating

stability under these conditions. Following this, a uniform environment

(80 Btu/hr ft 2 ) mapping sequence was accomplished, completed at 0700 of

May 5.

The original test profile was resumed with a mapping sequence tending. 	
q

to duplicate a 0 = 90°, roll = 167° flight condition. This sequence was 	 F
modified to include alternating nominal and wide cavity cases, to

conserve test time. These test points were completed at 2130 on May 6.
u

Data was gathered as the solar modules were turned off (T.P. 128) and
1

	

	 6
a test point was run to check repeatability of thermocouple readings.

Following this, a test point (101B) was accomplished to exactly duplicate

an L-tube flow and inlet condition.. A final sequence was added to gather

radiometer data during _an_extended cold soak (T.P. 130, 132, 133) and

1 the first week of testing was terminated at 1400 on May 8.+

The major modifications made between the first and second week of testing

were as follows:

!
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mirror removed, solar modules blanketed

thermocouples added to QLA support structure

.'	 cavity radiometer relocated to top side of panel

panel tilted such that outboard edge was 7.5" below inboard edge

flow bench modifications made to allow lower inlet temperatures

`	 door cables adjusted to give cavity heights of 78" (nominal) and

ia<	 102" (wide)

h The second week of testing was initiated on May 17. 	 The first series of test t

points (201,202) were completed at 1545, providing a check on the contribution

due to the mirror in the chamber the first week.

k'

Three test points (203, 203A, 204) were then accomplished to gain data for

determination of radiation exchange factors between panel and door. 	 These

points utilized the door heaters to maintain isothermal conditions on the

k4 door as panel conditions were changed.

Following this, two test points (215, 214) were run to compare performance
P

with that observed in Vought/Dallas testing of the same panel without
r

the PBD.	 These points were completed 1015 on May 18, and the low load

stability sequence was begun.

The purpose of the low load star",lity sequence was to identify the lowest

system load that could be rejected without freezing the forward panel.

This sequence involved the real time correlation of a radiator thermal

system model (T.P. 211) and subsequent prediction of low load flow rates and

inlet temperatures. 	 This was accomplished under conditions representing both

fi
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forward and mid-forward panel configurations (Section 5.2.3). These points

were completed at 1400 on May 19. A similar, although shorter, sequence

followed with the door dropped to the 50 0 position.

At the beginning of the next sequence, an electrical malfunction of the

QLA required an unscheduled repressurization of the chamber. This delay

of approximately 9 hours required a review of the priorities of the

remaining test points, and the eventual deletion of two low priority

points.

Following chamber pumpdown a sequence was run to compare to L-tube test

results (see Sct. 5.4.3 ) with uniform fluxes of 40 and 80 Btu/hr ft 

applied to the top of the panel via the QLA. Both nominal and wide door

positions were tested alternately. The sequence included 8 test points

t	
(301-304, 301A-304A) and was completed at 0445 on May 21.

The next test sequence was run in an attempt to increase confidence in the

use of the QLA for total flux simulation, including solar. Multi-panel

qualification testing will be of necessity conducted in chambers without

solar capability. Three test points {308, 308A, 308B) to accomplish this

objective were completed at 1345•

Another exchange factor determination sequence was accomplished (test

points 402, 402A, 401), followed by a skewed flux comparison with

August 1975 L-tube testing, and the second week testing was terminated

at 2000 on May 22.,

The following sections of this report describe the test data and major

results from the test program.



5.0	 TEST RESULTS

5.1	 TEST DATA INDEX

The data gathered during the two weeks of testing is in four basic

formats, described as follows:

a.	 Compressed	 data, stored on the compressed data tapes (CDT) '+

which were continuously updated throughout the testing.

b.	 Computer plots of specific data from CDT.

c.	 Computer printouts ("SCOOPS") of all data; generated every 15

minutes throughout the test and more often for specific purposes.

d.	 Continuous real time hand plots of key data, prepared by the

test team.	 These plots included Freon-21 flow and temperature, environ-

ment parameters, heat rejected, and various structure temperatures. 	 In

'addition, special purpose temperature maps and profiles were prepared
p^

after each test point.

:i

Categories a and c above are available b	 contacting^	 g	 y	 g Mr. W. E. Ellis at

NASA-JSC, telephone (713) 483-4941.	 Category b is included in Appendix A
a

'

of this report.	 Category d is included in Appendix B of this report.
4

Appendices A and B are separately-bound volumes of this report. Table L

i	 5-1 summarizes the data presented in each of these two appendices..

I

,1

j

t	 1

j

1
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TABLE 5-1

TEST DATA INDEX
^i

Data Presented in
Appendix Description

Continuous Computer Plots of:

(a)	 Payload Bay Door Average Temps
(b)	 Mirror Average Temps
(c)	 Radiometer Raw Data and Averages

A (d)	 Calculated Heat Rejection

(VOLUME. 11)
Freon 21Inlet/Outlet Temps
f	 Isolation Panel Temps 

(e

(g)	 Freon 21 Conditioning System Flows
(h)	 Structure Temps ( second week only)

i
Y

Continuous Hand Plots of:

f
(a) Average Door Temp
(b)	 Average Mirror Temp
(c)	 Average Panel Temp
(d)	 Average Isolation Panel Temp
(e)	 Average Radiometer Readings
( f)	 Freon 21 Inlet /Outlet Temps

B
(g)	 Calculated Heat Rejection
(h)	 Freon 21 Flowrate to Panel

(VOLUME III)
End-of-Test-Point ,Plots of;

(a)	 Panel Temperature Profile
(b)	 Specific Tube Temperature Profiles

j (c)	 Tube Inlet/Outlet Temp Profiles
j

i

(d)	 Payload Bay Door Zone Averages

i
_i

t
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5.2	 RADIANT ENVIRONMENT

I
The total heat absorbed by the test panel from various heat sources

;q

in the chamber is a key parameter in the description of radiator

performance. Ideally, the test panel is placed in a controlled
i

environment which represents deep space (0 Btu/hr/ft 2 absorbed) at

the low end, and various skewed environment distributions representative

of typical orbiter situations. Since the silver-Teflon coating
i.r

properties are a highly sensitive function of the wavelength of the

incident radiation, the spectral distribution of the environment is

i

t
as important a variable as is its intensity.

f

Numerous compromises must be made in the selection of

test environments, and the exact value of the environment was a

source of continuing uncertainty throughout the test. This uncertainty

was due to the limited number of radiometers available for measurement,

the questionable accuracy of the radiometers, and the unknown effect
y

of the background radiation due to the considerable amount of support

structure needed to accommodate the test article, the quartz lamp

array, and the heat pipe test article. i

3	 The purpose of this section is to resolve as many of these uncertainties

as possible and reconcile the probable environment with panel performance

aand model correlation information.

}	 5.2.1	 Radiometer Location/Calibration	
a

A total of 26 Hy-cal water-cooled radiometers were used during the

testing. During the first week, 15 of these were located in the plane

of the cavity, 8 were located on the top side of the panel, and 3 were

positioned on the door edge. After the first ,week, 10 of the 15 cavity
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^M

radiometers Tvere repositioned to locations on top of the panel and

above the panel. Table 5- 2 and Figure 5-1 describe and display the

radiometers.

Three different radiometer faces were used: (1) Standard black face

with absorptivity approximately equal to 1 for all wavelengths, (2)

quartz windows which were intended to reflect IR wavelengths and measure

only solar-wavelength-environment, and (S) silver-Teflon coated

faces for the measurement of absorbed flux on the panel independent

of spectral distribution. Of these catagories, data from the quartz-

windowed radiometers was generally unusable due to incorrect calibration.

In addition, quartz windows were inadvertently placed on three

radiometers during the first week which caused loss of this data.

The calibration of the radiometers involved ascertaining the sensitivity

factor which related the millivolt output of each thermopile to a

displayed reading in Btu/hr/ft 2 . A heat balance on the radiometer

face reveals that the actual incident flux is the sum of two terms,

an absorbed term which provides a potential across the thermopile,

and a reemitted term.

Q -MS + oT4

This equation shows that the device is expected to respond linearly

to the absorbed term (sensitivity S times millivolt reading M).

The purpose of the water cooling is to maintain the base of the

device at a known temperature such that the reemitted term (oT 4) is

held approximately constant.

i
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TABLE 5-2 DESCRIPTION OF RADIOMETERS

^oJ

ri

k
9

k

NUMBER WINDOW L„ ^ij
OF INSTRUMENT OR oa

WEEK RADIOMETERS NUMBERS COATING LOCATION/VIEW

12 ZF6069-72, black plane of cavity, 0
74,75,77,78, window normal to cavity
80-83

3 ZF6073,76, quartz* plane of cavity,
79 window normal to solar

1 beam

8 ZF6061 silver- topside of panel,
thru Teflon looking at QLA O

ZF6068 coated

3 ZF6084,85, quartz** edge of payload bay
86 window door, looking up-

ward at bottom of
panel

5 ZF6074 black plane of cavity, 0
thru window mormal to cavity
ZF6078

8 ZF6061 silver topside of panel,
thru Teflon looking at QLA, O
ZF6068 coated as in week 1

2 5 ZF6069 black topside of panel, 0
thru window looking at QLA
ZF6073

3 ZF6079 black on LN2 isolation
ZF6080 window panel, looking D
ZF6081 downward at test

fixture
2 ZF6082 black on QLA structure,

L7ZF6083 window looking up at LN2
isolation panel

3 ZF6084 black edge of PBD, look-
ZF6085 window ing upward at O

ZF6086 bottom of	 anel
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In calibration tests, each radiometer is placed in a small chamber

and subjected to an incident flux near zero (Q=Qo).	 The above equation

is then solved for S yielding
i

S = - o+aT4
Mo

With a radiometer maintained at 700F, and an environment kept small

i by the use of LN2 through the black walls of the small chamber, the

term Qo can be neglected with respect to the 	 T	 term, yielding
:j

S = aTo4
^Mo

The sensitivities thus determined are used in the computer program

which converts millivolt readings to flux readings during the test.

With 'a silver-Teflon coating on the face of the radiometer, the

sensitivity values are determined by the equation

S = eaTo4
MG

1
The ultimate equation relating millivolt reading to flux for silver-

Teflon coated radiometers is thus

i Q = -SM + eaT4 _Ê  + eaT4

The silver-Teflon radiometers were calibrated without consideration

i	 readingsof the	 emissivity of the Teflon, resulting in test data  	 which

were a constant factor of a too high.	 Thus, all test data was

multiplied by .76 post-test to reduce the data to its proper value.
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5.2.2 Radiometer Corrections

j
11

1

In addition to the calibration error mentioned in the previous
t;

section, three other corrections were found necessary to reduce the

4 radiometer readings to usable data. 	 These corrections will be discussed

in the following paragraphs.
r

The ultimate use of flux readings is to determine the total absorbed

heat on the panel, a value that can be used in the overall heat

balance for the panel.	 Since there is not perfect uniformity between

the environment seen at the centerline of the panel (where the majority

of the radiometers were located) and the ends of the panel, a

}
correction was applied to the flux readings before a total absorbed

heat is calculated.	 The background flux due to the structure, for
_

example, would be expected to be less at the ends of the panel, where

the view of the structure is lass than at the center.

A TRASYS model was created to measure this effect by comparing the

form factors between elements at the center of the panel and elements

at the end of the panel, with the LN 2 panel.

In particular, the form factor between the LN2 panel and an element in

the center of the panel is .64, while the same factor between the LN2

panel an entire end-to-end strip is .58.	 Assuming that all flux originates

at the LN2 panel (i.e., through reflections from the panel) at an effective

temperature, To, the respective fluxes are

9-
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eLoTo 4 qA) L-C
Flux at center qc	 A

c

e QTo4 (fA)
Flux on strip q = L
	 L

_
 S

s	 A

The ratio of these fluxes is then

q  a *L-C/Ac = .866/1.35 = 1.099
qs T^ 11.85/20.29

Since we are measuring q c , and seek to calculate qs , the average

over the entire strip, the equation for correction of the center

radiometer readings is thus

q 
is	 1.099 = .91 q 

Another correction to the radiometer reading was made to compensate

for an apparent discrepancy between the-millivolt reading used in

calibration (measured directly with a small voltmeter), and the

millivolt signal as processed during the test by the on-line computers.

h
The nature of this discrepancy can be seen by reference to Figure 	 5 - 2

in which	 raw radiometer data is plotted against a measure of panel heat

' rejection, given by n-T4 .,	 The basic linearity of this functional

relationship is obviously demonstrated by these curves, leading to

the conclusion that the environment seen by the top-side of the panel

was basically determined by reflections from the LN2'panel and structure.

When all radiometers are plotted as in the format of Figure 5-2, it be-

comes obvious that the vertical intercepts are more-or-less randomly

distributed about zero, as likely to be negative as positive. Table 5-3

` displays the observed vertical intercepts for the important radiometers,

4o
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and the shift applied to the data to adjust the curve such that its

intercept becomes the analytically-estimated value of absorbed flux

due to emission from surrounding structure. Those values are 3 BTU/hr/

ft
2
 for topside radiometers, and 2 BTU/hr/ft 2

 for cavity radiometers,

calculated using assumptions as to the amount of aluminum structure, and

temperature observations from week 2.

TABLE 5-3

RADIOMETER CORRECTIONS

Radiometer Number Intercept Required Shift

ZF6061 + 3 0
ZF6062 + 1 +
ZF6063TOP + 7 - 4
ZF6064OF

7 +10
ZF6065 - 2 + 5PANEL
ZF6066 - 6 + 9
ZF6067 - 2 + 5
ZF6068 + 4

ZF6074 +:3

PLANE	 ZF6075 - 1 + 3 J

ZF6076 - 1 + 3OF
ZF6077 + 5 - 3CAVITY
ZF6078 - 7 - 5

ON	 ZF6079 -32 +35
ISOLATION	 ZF6080 -13 +16
PANEL	 ZF6081 +24 -21

ABOVE	 ZF6082 - 6 + 9
QLA	 ZF6083 - 2 + 5

Figure 5-3 shows test a cool-down test point whichdata plotted during

supports,the conclusion that the measured environment was much more

strongly a function of reflected flux than true "background" radiation

being emitted from surrounding structure. As , can be seen from the temp-

erature profiles, 	 the radiometer response matches the panel temperature

2
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response for the majority of its variation. Similar data was observed. .

during the second week when thermocouples were installed on the structure

above the panel. The conclusion to be drawn is that the emitted flux

was a small part of the overall environmental heating experienced by the

test article, and cannot be used to explain abnormally high radiometer'

readings.

The third correction involves the flux readings on each radiometer

due to their direct view of the panel itself. While this flux is

"real" it is not considered a part of the external environment, but

rather is energy leaving the system which is immediately reabsorbed.

1

A TRASYS model produced exchange factors from each element of the panel
1

to the remainder of the panel, and was used to calculate this direct	 t

component, which must be subtracted.from the actual reading to

determine net external flux. The direct component is obviously

directly proportional to the panel average temperature, and was

recalculated for each panel condition.

Tables 5-4 and 5-5 summarize the corrected environment data for each
1

test point in week 1 and week 2, respectively.
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Chamber Reflections

Figure 5-4 displays the results of plotting corrected radiometer

readings against a measure of total cavity emission. For this

purpose, cavity emission is expressed by O'T4CAV
where 

TCAV

(T PANEL + T 
DOOR )/2. The basic linearity of the relationship

supports the conclusion that the flux incident on the cavity membrane

is primarily due to reflections from the chamber wall. A perfectly

absorbing chamber would cause radiometer readings at the membrane to

respond independent of the cavity temperature.

This data indicates that at high load conditions, approximately

9-11 BTU/Hr/ft 
2
is reflected into the cavity. For a cavity opening

area of 170 ft  (including ends), this translates to a flux load on

the cavity of 1530 - 1870 BTU/Hr. Approximately 75% of this load

is ultimately absorbed by the panel through direct and reflected

paths, and through absorption and reemission by the door.

Figure 5-4 also demonstrates that by turning on the quartz lamps an

additional 4 BTU/Hr/ft2 is incident on the cavity.

5.2.4	 Structure/LN2 Panel Reflections

Figure 5-5 displays average readings for the eight radiometers

mounted on the top-side of the radiator panel. As with the cavity

radiometer data, the flux is approximately a 'linear function of

panel emission (measured by a'Tp 4 ), indicating an environment controlled

primarily by reflections from the QLA structure and LN 2 panel.

Several second week test points (401, 402, 402A) were conducted

immediately after the QLA had been on for an extended period. The
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effect of the warm structure can be seen to be approximately a, 1.5 - 2.0

BTU/Hr/ft2 increase in recorded flux. Reference to the following table

and Figure 5-5 demonstrates the small effect that the structure

temperature has on environment.

STRUCTURE
TEMPERATURE

WARM STRUCTURE COLD STRUCTURE
401 402 402A 203	 203A 204

STo81l -19 -9 6 -75	 -77 -75

STo812 -50 -43 -34 -90	 -90 -91

ST0813 -13 -3 14 -71	 -71 -71

ST0814 1 11 27 -72	 -71 -66

ST0815 -1 11 26 -25	 -25 -21

STo816 -26 -12 2 -8o	 -79 -83

The top side environment measured for the high heat rejection test points

is in the range of 17-20 BTU/hr/ft 2 . This data has already been corrected

such that it represents average absorbed flux over the entire panel (see

Section 5.2.2). Thus for the 160 ft 2 panel the total absorbed heat is

estimated to be 2750-32+0 BTU/hr, significantly higher than had been

,l
	 expected.

iG

Figure 5-5 also demonstrates that the mirror in the chamber during the

t	 k	 d	 2firs wee cause an increase in top-side flux of 2.5 BTU/Hr/ft or a

total additional top-side load of 400 BTU/Hr.

5.2.5	 Quartz Lamp Environment

Figure 5-6 displays an estimation of the flux due to turning on the

quartz lamp system above the panel. Note that this estimation is not

necessary, since the radiometer array always measures total absorbed

I
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section is an attempt to verify the various approximations made to

radiometer data by checking the corrected data against anticipated results.
i

Figure 5-6 concludes that the nominal setting of 40 BTU/Hr/ft2 actually

produced an average absorbed flux of 36 BTU/Hr/ft 2,, while the nominal

80 setting resulting in an additional flux of 74.	 These results are

deemed entirely consistent with the degree of accuracy with which the

original lamp settings were calibrated, and with the accuracy of the

radiometers.

The incremental flux due to the lamps is due to direct and multiple

ii
bounces between the panel and the lamp structure. 	 The lamp flux

{

causes the panel to heat up and thus contribute more to the reflected

environment, but this effect is accounted for in Figure 5 --6 by

4
plotting vs. panel emission O-Tand measuring the incremental -.

distance between the plots after fitting parallel lines to the lamps-on

data points.	 Since a wide range of panel temperatures was not tested

? with the lamps set to predetermined flux levels, a large amount of

interpolation is necessary to interpret the data.

j
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Mirror Effect

The mirror used during the first week to reflect simulated sunlight into

the cavity also caused an additional IR load due to reflections

and emissions. This effect can be approximated by comparing radio-

meter readings from the first and second week. Only sun-off test

points can be used for this purpose since the high solar flux

overwhelms the IR effect when the solar simulators are on.

Figure 5-7 compares radiometer averages from week 1 data with the

linear response noted in week 2 and discussed in section 5.2.3.

The upper curve approximates the flux due -to reflections and was

*used in the energy balance of section 5.2.8.

As expected, the presence of the mirror causes a larger amount of

emitted flux to be reflected back into the cavity. The approximate

amount of this flux is 35 BTU/hr/ft2 at high load conditions

vs. only 9 BTU/Hr/ft2 in the absence of the mirror. For the 96 ft2

cavity opening, this flux represents approximately 3360 BTU/Hr at high
3i

loads, of which roughly 75% is ultimately absorbed by the panel. The low load

flux load on the cavity due to the mirrors is approximately 860 BTU/Hr.
t

Since the cavity radiometers measure total absorbed flux when the

l suns are on, the approximate value of IR flux must be subtracted from the

r total radiometer reading to determine solar load. The next section dis-

cusses this in greater detail.

}

.	 -	
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5.2.7	 Solar Load

The solar absorptance of a 380 cavity with a 77 0 sun has been previously

studied during the cavity assessment test program (Reference 3). It was

determined that 4680 BTU/hr was absorbed by the radiator panel (both di-

rectly, and through reflection from the door). The present test

differs from the earlier test in the following ways: (1) there is a

mirror which attenuates the solar beam in the current test, (2) the

current test article has a 35.50 deployment vs. 38 0 previously, and

(3) the door is the same piece of equipment but is one year older and

thus is expected to have altered absorptance and specularity.

The effect of mirror is evaluated by comparing the radiometer data

at the cavity with radiometers above the mirror. The average

radiometer reading at the cavity was on the order of 380 BTU/Hr/ft2

and from Figure 5- 7, approximately 35 BTU/Hr/ft 2 of this was due to
7

mirror IR (see section 5.2.6). Thus 345 BTU/Hr/ft` is attributable

to solar flux. The fact that the radiometers were tilted 26 0 with

respect to the solar beam indicates that the solar flux was

Qs	 COS
345 

(26u)	
384 BTU/Hr/ft2

Assuming 1 sun (442 BTU/hr/ft 2 ) above the mirror results in an attenuation

of 13% by the mirror, a value consistent with expectations. Analyses have

indicated that the 350 cavity has a greater trapping effect on solar energy

incident on the cavity (Reference 4). The effective cavity solar absorptivity

is 22% greater for the 35 0 cavity than for the 38° cavity for a 77 0 sun angle.

Since a flux of 442 BTU/hr/ft2 was shown to produce a total, panel absorption

of 4680 BTU/hr for a 380 cavity with an incident area of 105 ft 2 (Ref. 3), it

is 'expected that a flux of 384 BTU/hr/ft2 will produce an absorption of 4535

r	
BTU/hr for the 35 0 cavity with a 96 ft2 area. This is calculated as follows.

55	 3
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Qs = 4680	 X	
X	

x 1.22 = 4535 BTU/hr
442	 105

Thus the previously determined absorption was ratioed by the area difference,

the absorption difference and by the incident flux difference between the

two tests.	 The resultant solar absorbed load is a gross approximation which

can be tested in an energy balance.

5.2.8	 Verification of Environment Data

An energy balance can be written for the radiator panel and tested

for its ability to predict total heat rejection as measured experi-

mentally by freon temperature and flowrate observations.	 The testing

of the assumptions and corrections on environment data can be done

sequentially to isolate questionable data. 	 In particular, the simplest

test points to check are those with (1) no solar, (2) no mirrors, and

(3) quartz lamps off.	 By contrast, test points with solar and

quartz lamp environment involve the use of considerable assumptions

on environment.
s

i

f	
The energy balance for the panel can be wris_ten as follows;

	

QREJ	
Exchange with chamber + exchange with door

i
- absorbed load from mirror (week 1) - absorbed

i'
'	 load from solar lamps (week 1) - absorbed load from

quartz lamps and reflections

r
4	 =	 T4

	 4
T+ FA 	T4

QREJ	 [FA)P-W ^( 	p	
W 	 ( )p-D 	p

T4	
D 

1r
QM	 4S	 AP	 qc (FA) P-C , 	 (Eq. 1)	 ^ }

r,

F

{
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Where subscripts P, W, D, M, S, C refer to panel, wall, door,

mirror, solar, and cavity respectively.

t	
Is heat flux as measured by radiometers, BTU/Hr/ft2

AP 	Is area of one side of panel, ft 

T	 Is average temperature, °R

Q	 Is total load, BTU/Hr

I
Is fin efficiency

(FA)	 Is exchange factor, ft 

The terms Wp and YC are the corrected flux values on the panel-

mounted and cavity-mounted radiometers, respectively.

The terms QM and QS are the absorbed heat terms due to the mirror

and solar lamps, respectively.

For second week test points, QM=	 QS = 0, and since the contribution

from the walls will be measured by the radiometers, TW must be set

_ 0 to avoid double consideration of that component.	 Equation 1

i^	 I
n thus reduces to

â 4REJ - (FA)P-W Ur-TP4	
+ (FA)P_D	p^i^ (	 TP4 - TD4 )	 (Eq 2)

t1p AP	 1,Cj&)P-C

s

a_
The relevant exchange factors are as follows:

r
35.50 Cavity *	 500 Cavity

Panel-To-Wall	 184	 Ft. 2	 190	 Ft2

Panel-To-Door	 54	 48

Panel-To-Cavity	 33	 42

Y

^.`
- *Reference 4
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f Tables 5-6 and 5-7 present the results of the heat balance (EgiIation 2)

applied to data gathered during week 1 and 2, respectively. 	 Figures 5-8

and 5-8A show plots of the calculated heat rejection versus that which was

observed (wCpAT).	 The week one results for the 35 0 cavity test points

(Figure 5-8) indicate a good agreement, generally confirming assumptions

made and corrections to radiometer readings.	 Figure 5-8A reveals that the

calculated heat rejection is higher than the observed when the quartz lamp

array is on (shaded symbols on Figure 5-8A). 	 The other test conditions,

including when the door heaters only were on, again confirm the assumptions

and corrections made to the radiometer readings.
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TABLE 5-6

HEAT BALANCE RESULTS - WEEK l

_	
FIN EFF .96
AREA TOPSIDE 160.28
SCRIPT FA PANEL-WALL 184
SCRIPT FA PANEL-[BOOR 54
SCRIPT FA PANEL-MEMB 33
MIRROR IN CHAMBER

************HEAT BALANCE TERMS************* HEAT REJECTION
TESL' PT TO WALLS TO DOOR FROM QLA FROM CAV FROM SUN CALCULATED OBSERVED

101 25138 2793 3385 1045 0 21725 22545
101 A 25o64 2681 3077 1203 t) 23465 23530
1018 ' 24822 2696 3077 1203 0 23238 23285
102 19288 1997 2615 982 0 17688 17533
130 13532 1285 2154 728 0 11935 116,36
132 5153 293 1384 380 0 3682 3516
103 20530 - 781 6924 121S 4535 5048 4479
105 30095 510 `7231 1573 4535 17239 16764
105A 29860 - 221 6616 1622 4535 16839 17004
106 24840 - 187 7539 1376 4535 11.;78 12343
106A 24878 - 847 6924 1431 4535 11114 11445
107 20642 -1474 "7231 1274 4535 6101 5063
108 20385 -1411 6616 1257 4535 6539 5792
1013 24434 - 947 6924 1418 4535 10583 10843
110 23655 -1070 6924 1389 4535 8379 9558
111 19926 -1573 7077 1247 4535 5467 5922
112 14988 -2058 4000 1041 4535 3327 _1170
118 20115 - 749 3077 1102 4535 10535 11143

r	 119 25954 44 3535 1411 4535 16487 1681 C1
120 25251 -	 44 3632 1384 4535 15569 15647
121 19675 - 722 2923 1169 4535 10249 1OE,25

l '

r.,
k

I.
r

1

j
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TABLE 5-7

HEAT BALANCE RESULTS - WEEK 2

FIN EFF .96
AREA TOPSIDE	 160.28
SCRIPT FA PANEL--WALL 184
SCRIPT FA PANEL-DOOR 54
SCRIPT FA PANEL-MEMB 33
NO MIRROR IN CHAMBER

************HEAT BALANCE TERMS************* HEAT REJECTION
„ TEST PT TO WALLS TO DOOR FROM COLA FROM CAV FROM SUN CALCULATED OBSERVE

201 25101	 3187 2923 348 0 25017 2393G)
202 _ 19089	 2335 2461 285 O 18678 18311
203 19442	 165 2461 285 0 16861 16768
203 22136	 956 2615 265 O 20192 1'36,46
204 25101	 1822 276,3 348 0 23806 23043
207 5262	 701 769 95 0 5099 4336
208 2455	 193 615 95 0 1938 1644
2013 1509	 29 461 63 0 1014 668
210 1654	 26 615 E•3 0 1002 823
211 1795	 53 615 95 0 1138 '904
212 2 839	 315 615 95 0 2444 2067
213 3559	 364 615 95 O 3213 2410
214 2016	 32 769 95 0 1184 1OS9
215 9277	 926 1384 190 O 8629 788'3
301 27104	 2940 Er'324 443 O 20677 19929
302 22913	 2227 86;16 411 0 16113 15583
303 2;120	 765 14463 475 0 10947 8576
304 27065	 1726 14617 505 0 13668 12117
306 27704	 -803 16310 411 0 10180 7106
308 30656	 - 995 13386 443 U 1 8325 12227
308 29796	 -214 '9232 443 0 19907 17232

i

308 30009	 -152 9232 443 0 20182 16167

1{

FIN EFF .96 
AREA `(-OPSIUE 160.28
SCRIPT FA PANEL-WALL 190
SCRIPTFA PANEL-DOOR 48
SCRIPT FA PANEL-MEMB 42
MIRROR IN CHAMBER

************HEAT BALANCE TERMS************-M,• HEAT REJECTION
TEST PT TO WALLS TO DOOR FROM GLA FROM CAV FROM SUN CAL...CUL_ATED OBSERVED

t 301A _27988	 2613 8924 564	 O 21113 20418
302A 23750	 1550 8516 524	 0 16160 161L7	 t
30-)n , 2 j6_31	 1173 14403 604	 0 11737 10 361
304A 27683	 733 14771 604	 0 13o41 10654
401A 19949	 115 2615 403	 O 17046 17089

t 402A 25785	 1565 2923 443	 0 23984	 _ 23573
3

a
402A 22665	 80x3 3231 322	 0 19921 20243

1
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5.3	 PERFORMANCE STUDIES

5.3.1	 Maximum Heat Rejection

For any given environment, the heat rejection is maximized as

inlet temperature and flow rate is increased. A sequence of test

points was conducted to map panel heat rejection as a function of

environmental and inlet conditions. Ultimately, such testing

should result in extrapolated performance predictions for a full

Shuttle 6 and 8 panel system. Only after such extrapolation can a

comparison be made with Shuttle spec values, since these values are

not given for an individual panel.

Table 5-8 summarizes high load test data for several test points.

The difference between "desired' and "actual" absorbed environment

was caused by unanticipated reflections off the LN 2 panels, as

previously discussed. The actual environment is an estimate made

using techniquesdiscussed in previous sections.

^ 'A

Figure 5-9 displays the heat rejection for the test panel plotted

VS. inlet temperature with absorbed environment as a parameter,

and a cross plot of rejected heat vs. environmental load. The latter

plot enables extrapolation of performance to spec environments.
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DESIRED DESIRED
TOTAL TOTAL

QLA ABSORBED ABSORBED
Ti

T
NOMINAL LOAD LOAD n out FLOW REJ

TEST POINT SETTING BTU/HR BTU/HR OF OF PPH BTU HR

201 0 0 3271 100.1 65.2 2759 23,935

202 0 0 2746 6o.1 32.3 2699 18,311

301 4o 64-8-0 9367 110.1 80.o 2507 18,808

302 40 6480 9027 82.3 58.8 2513 14,594

303 80 1296o 14,938 88.4 74 .6 2500 8,576

,04 80 1296o 15,123 102.6 85.8 2540 10,654

101 0 0 4430 100.8 --77—.2 2699 22,545

102 0 0 3597 60.9 34.3 2699 17,533

TABLE 5-8

HIGH LOAD PERFORMANCE RESULTS
B/L CAVITY DEPLOYMENT
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Fig 5-10 gives similar high load results for a wide cavity deployment

6
	

angle.

5.3.2	 -orbital Case Simulation

i
	

The difficulties encountered in maintaining a given orbital

environment have been discussed in a previous section of this report.

In particular, the unanticipated reflections from the LN 2 panel and

the questionable radiometer readings during the test rendered the

real-time adjustment of the environment extremely difficult.

Fig 5-11 displays the environment desired to simulate a flight
i

condition of 5=90% roll=167°, a situation which results in a 770

sun and the maximum hot environment on the panel. This desired

environment was determined with a TRASYS simulation of earth-shine

and albedo, and cavity assessment test results for sun on the top

side of the panel. It is the solar impingement on the top side of

the panel that causes the sharp inboard.-.edge peaking to occur.

Fig 5-11 also demonstrates the approximate actual environment that

was achieved. It is obvious that (1) exact simulation of orbital

environment was notachieved, but that (2) quantitative simulation

of flight representative skew was accomplished. Thus, actual flight

performance predictions are unavailable from the current testing,

although confidence in the ability of the panel to stabily operate

under several inboard-to-outboard environment skews was enhanced.

Flight environments will, of course, not be steady. Thus, results

from the current testing can be integrated into digital computer

models to obtain transient profiles of system operating parameters.'

m .
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5.3.3 Minimum Load Testing

A sequence of low load test points were conducted at both baseline

35.5 degree and 50 degree cavity orientations.	 Shuttle representative

flows and inlet temperatures were determined real time through the

4 use of a small system model programmed for the Hewlett-Packard desk

top computer available in the Chamber B control room.

The environment estimated for the low load testing was in the

range of 500 Btu/hr total absorbed by the panel.	 This is higher than

the actual estimated Shuttle flight environment, due to the reflected

energy from the chamber, as previously described. 	 However, results

should provide an estimate of typical Shuttle low load rejection

capability.

Figures 5-12 and 5-13 display test results as outlet temperature vs.

inlet temperature, for baseline and wide cavity, respectively. Flow

rate varied from 140 lb/hr to 390 lb/hr and is a parameter of the two

i
	

curves.i

The right hand side of the two figures shows cross-plots of outlet

temperature vs. flow rate with parametric variation in inlet temperature.

Once inlet conditions to the two sided panels are known, these curves

may be used iteratively to determine mid-forward and forward panel

outlet temperatures. Once the forward panel outlet temperature is

known, the mixed outlet temperature can be calculated, and the results

compared with the desired (and controlled) mixed outlet temperature

of 38°F. Differences are then fed back to the inlet as a change in

i
	

flow rate, and the process is repeated.

1
1
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Alternatively, a system model can be correlated using the data shown,

and then extended to predict system inlet conditions resulting in the

desired minimum outlet temperature from the forward panel. The following

table displays this type of system prediction for nominal and wide

cavity angles, based on test data.

FORWARD.PANEL OUTLET NOF

BASELINE CAVITY WIDE CAVITY

SYSTEM 500 BTU/HR 0 BTU/HR 500 BTU/HR 0 BTU/HR
INLET N O F ENVIRONMENT ENVIRONMENT ENVIRONMENT ENVIRONMENT

70 -136 -148 -114 -155

65 -152 -166 -16o -173

6o -170 -185 -177 -192

55 -190 -208 -196 -216

50	 -211	 -238	 -217	 -242

These predictions assume a mixed outlet of 37°F, 2700 lb /hr total flow
i

rate through the system, and equal environment on each panel of a 4-panel
'I

L	 series system.	 ff

The situation of 0 absorbed environment represents the "worst case"

for potential panel freezing. By extrapolation of the tabulated data,

it can be seen that to ensure a panel outlet greater than -196°F
f

(which would represent a 15°F margin for error), the minimum system

inlet temperature should be 58°F. This represents a heat load of 13,000

4

for the 4-panel system or 26,000 BTUH, for the 8-panel system.
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5.3.4	 Stability Considerations

The ability of the radiator panel to operate in a stable wode over

a wide range of conditions was clearly demonstrated. Figure 5-14

displays outlet temperature profiles for various test points, showing

no unstable tendencies. The effect of gravity in disturbing a

stable flow pattern (not a problem on-orbit, only in ground testing)

was minimal as will be discussed in section 5.4.1.

The sole unresolved stability question relates to gravity effects

on a one-sided panel tested in its proper orientation with respect

to a horizontal two-sided panel. In the event that the panel

qualification test is designed in such a way as to require the

determination of a forward panel effect on an aft panel (and vice versa)

by deploying them side by side at the proper relative orientation;

the gravity instability question may still be relevant. However,

all other questions relating to stable panel operation have been

as
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5.4

5.4.1

M	 a

DESIGN STUDIES

Effect of Payload Bay Door

The PBD generally causes an increase in the radiant flux incident

on the panel. As expected the presence of the concave PBD results

in a sharp focusing of solar radiation along the sixth and seventh

tubes from the inboard edge. Fig. 5-15shows this behavior. For

t
certain test points with low inlet temperatures, these tubes were

observed to exhibit a net absorption of heat, although for more

typical high load conditions, these tubes did reject a small amount

of heat.

The location of the "spike" at the 7th tube was somewhat unexpected

based on cavity assessment test (CAT) results. In the earlier test,

higher fluxes were measured further inboard. The cavity test was

capable of distinguishing only average flux over an entire zone and

thus, no exact maximum flux location could have been identified.

It seems likely that very small variations in sun angle and deployment

angle could have shifted the spike from a position slightly inboard

of the CAT zone boundary, to a position slightly outboard of the

boundary, where it was observed during I-tube testing.

With the sun off, the payload pay door caused the temperature profile

on the panel to increase toward the hinge line. This characteristic is

representative of the fact that inboard tubes have smaller views to

space than do outboard tubes, and is augmented by the effect of the mani-

I
	 fold on flow distribution. The characteristic slope of the tube outlet

1	 profile is due to both of these factors.
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certain test points with low inlet temperatures, these tubes were

observed to exhibit a net absorption of heat, although for more

typical high load conditions, these tubes did reject a small amount

of heat.
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based on cavity assessment test (CAT) results. In the earlier test,

higher fluxes were measured further inboard. The cavity test was

capable of distinguishing only average flux over an entire zone and

thus, no exact maximum flux location could have been identified.

It seems likely that very small variations in sun angle and deployment

angle could have shifted the spike from a position slightly inboard

of the CAT zone boundary, to a position slightly outboard of the

boundary, where it was observed during I-tube testing.

With the sun off, the payload pay door caused the temperature profile

on the panel to increase toward the hinge line. This characteristic is

representative of the fact that inboard tubes have smaller views to

! ^	 space than do outboard tubes, and is augmented by the effect of the mani-

fold on flow distribution. The characteristic slope of the tube outlet

profile is due to both of these factors.

^ #t
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The outboard-to-inboard increase in outlet temperature obscures

the gravity effect observed in Dallas testing. This effect, although

slight at high flow rates, caused lower temperatures at the outlet

of the middle tubes, due to their lower position in the gravity field.

Test point 215 was intended to duplicate the Dallas test point 7,

which was the most dramatic demonstration of a gravity effect.

Fig 5-16	 compares these two test points.	 Again the effect of the j
9

payload ;bay door was to lessen the effect of the gravity skew.

Since gravity skew is "driven" by the temPerature difference
i

between the inlet side and the outlet side of the panel, the door

I; and the additional environment it generates, 	 tends to reduce the

driving force.

Fig 5-17 displays a comparison between the mixed panel outlet

temperature and the coldest tube outlet temperature for a variety 	 s°

test points recorded both at Nought and at SESL. 	 A relationship	
z

of this type will become important inflight since only mixed outlet

will be available through telemetry data. 	 With the door in place,

• no more than 3`'F separated the coldest and mixed temperatures:,

4
{ less than the 1O*F difference recorded without the door, 	 't

:. x
5.4.2	 Fin Efficiency Determination

The determination of fin efficiency was made by using Leiblein's

analysis technique and the 4 sets of intertube thermocouples installed

for this purpose.	 Table 5-9 and Fig 5-18 show- the results of this

,analysis, demonstrating that accurate determination of this parameter

l,

is difficult.	 A value of n=.94 was chosen by inspection of the

data and is recommended for use in theoretical panel performance
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TABLE 5-9

FIN EFFICIENCY CALCULATION

TEST
POINT

Tbase
('R)

Tlow
(°R)

Tsink
('R)

Te-Ts
Tb-Ts

Ts
To

L n

201	 inlet 547.5 538 369 .948 .67 .20 .944

201 outlet 517.5 509 369 .943 .71 .195 .946

101	 inlet 548 539.5 385 .948 .70 .195 .946

101 outlet 519 510 385 .933 .74 .22 .935

118 outlet 495 489 445 .88 .90 .25 .92

208 314 310.5 250 .945 .80 .18 .955

207 374 370.5 255 .971 .68 .14 .968

207 347 343 255 .95E .73 .17 .955
120 inlet 547 540 444 .93 .81 .21 .94
120 outlet 315.5 508.5 444 .90 .86 .25 .92

105 outlet 546 539 474 .90 .87 .24 .925

108 512 505 450 .89 .88 .24 .925

113 429.5 426 397 .89 .92 .245 922
130 476 469 340 .95 .71 .195 .945

w 9c

Z

o S E IL U57  DATA

Ya"itT TEST--DATA;
i

coo	 0

00

coo	 ^

0 0 o e

0	 0
0 0

i

3150	 400	 950	 500	 550

r
	

BASE TEMP OP,
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predictions.	 All calculated values fell within ±3% of .94, and are

thus acceptable with respect to experimental capability.a

'I 5.4.3 Comparison with L-Tube Design

By comparing test results with comparable test points run in August

1975 with a panel of L-tube design, it is concluded that there

are',no significant high load performance differences between the
i

two designs.	 This result matches computer results generated by comparing

ti
I

SINDA models of I-tube and L-tube panels under identical environmental

conditions.

A comparison of raw test data initially indicated a possible advantage

y
for the L-tube over the I-tube panel.	 Figure 5-19 displays this

comparison.	 However, by analyzing the amount of additional reflected

ti energy caused by the LN 2 panel which was mounted above the I-tube panel

(the L-tube panel "saw" only the quartz lamp structure and the top of

Chamber A) the performance descrepancy was attributed to additional

environment.	 Figure 5-20 displays data recorded by radiometers on

the LN2 panel looking toward the radiator, and by the two radiometers

on the QLA looking	 upward toward the LN 2 panel.	 In Figure 5-21,

f
the upper end of the radiometer response curve (for the radiometers

on the QLA) is replotted, along with test data representing the

i difference between L-tube and 1-tube results for 5 different test

E_ point pairs.

ti

t The results show that the performance difference is generally less

than the absorbed radiation indicated by radiometers seeing reflections-

from the LN2 panel.	 This reflectionis the component of environment

l that was present in the I-tube test but absent in the L-tube test.

r,
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The conclusion to be drawn is that there is no performance difference
between I and L-tube designs at high load conditions.

5.4.4.	 Effect of Wide Cavity

An estimation of the effect of increasing the cavity deployment angle

was derived from the high and low load data presented in sections 5.3.1

and 5.3.3. These results are presented in Figure 5-22•

In the high load case, the important variable is the environment,

and the desired result is stated to terms of performance improvement.

. Typical results show performance is improved by 1,000 to 1,500 Btu/hr

by increasing the cavity angle from its baseline 35.5 degree deployment

to a 50 degree deployment.	 These results are slightly misleading when

it is recognized that changing the cavity angle will result in a slight

change of environment.	 The proper method of making performance

improvement predictions is thus to compare the 35 degree performance at

4
the original environment to the 50 degree performance at the new

b

environment.	 This task is best done with digital computer simulation
i

after proper correlation with test results.

In the case of low load testing, environment is small and relatively 	 i
i

constant, while flow rate is the important variable. 	 At low load, outlet

I temperature rather than heat rejection is the key observable, due to

the requirement that freezing be prevented. 	 As can be .seen, a 	
2oF

decrease in outlet temperature is representative of probable performance

r	
i'

is

over a range of possible inlet temperature and flow rates.

r

4
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6.0 CONCLUSIONS jmco ImDmon

Two weeks of themal vacuum performance testing demonstrated that the

I-tube panel can be expected to perform adequately on the Orbiter ve-

hicle. From a mechanical standpoint, including silver-Teflon coating

performance, the test panel was operated with no anomalies.

Confidence in the stable operation of the panel was enhanced by per-

formance observations conducted throughout the range of likely environ-

mental conditions. These included high and low, uniform and skewed,

and solar and IR environmental simulation." The presence of the pay-

load bay door induced a change in the panel temperature profile and

generally masked the effect of gravity-induced instability, except

in those test points specifically designed to exagerate these effects.

In all cases, the panel operated in stable flow regimes.

The only remaining ins -LRL lity question concerns a situation in which

froward and aft panels are required to be ground-tested in their proper

relative locations, Analytic simulation of gravity _effects under these

extreme conditions will be required before the full extent of this po-

tential problem will be known.

Data was collected demonstrating that the high load capacity of the panel

is consistent with pre-test predictions and panel design criteria, although

a fin efficiency of .94 is recommended for future design studies. The

I-tube panel performed equally with the L-tube panel at high loads, with-

in the range of discrimination of the data-gathering apparatus and other
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test constraints.

Sufficient data was collected to allow correlation of analytic models

of the parcel so that system performance can be predicted with added con-

fidence. Such predictions will extend the „ •°tinge of environmental sim-

ulation to true orbital(transient) situations.

The minimum required low load for an 8-panel system was extrapolated to

be 26,000 BTU/hr assuming evaporator off and 15 0F safety factor in mixed

outlet temperature. Increasing the cavity deployment angle to 50 0 in-

creases this minimum low load to 27,300 BTU/hr. Sufficient data is avail-

able to allow extrapolation of these results to other situations, such

as 6-panel configurations, and higher mixing valve set-point.

At high loads, increasing the cavity deplo ,,rment angle from 35 .5 to 500

was shown to increase heat rejection by 1,000 to 1,500 BTU/hr, depending

on conditions. With the sun in the cavity, these results should be con-

sidered only tentative, and an effort made to confirm them with correlated

analytic models. The total system advantage of an increased deployment

angle cannot be directly extrapolated from test data, but test data

should improve the predictive power of the models.

It is recommended that further testing of this type be characterized by

	

^h I

	 an increased emphasis on a thorough understanding of chamber environment

	

I	 and environmental measuring techniques. The uncertainty in the environ-

ment was satisfactorily resolved post-test, but the real-time confusion

caused a preoccupation by the test team on this problem and probably pre-
i

vented other opportunities for additional data.
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