General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Contract No. NAS8-31906
Report No. IITRI D6118-24(TAR)

SPACE STABLE THERMAL CONTROL COATINGS
for
National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center
Alabama 35812

Attention: Mr. D.R. Wilkes/ES33

Prepared by: Y. Harada
IIT Research Institute
10 West 35th Street
Chicago, Illinois 60616

For the Period: 1 November 1977 to 28 February 1978

March, 1977 1978
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 PROGRAM PLAN</td>
<td>2</td>
</tr>
<tr>
<td>3.0 PAINT STUDIES</td>
<td>2</td>
</tr>
<tr>
<td>3.1 Water Content Studies</td>
<td>4</td>
</tr>
<tr>
<td>3.2 PBR Studies</td>
<td>7</td>
</tr>
<tr>
<td>3.3 UV-Vacuum Studies</td>
<td>7</td>
</tr>
<tr>
<td>3.4 Potential Hardware Applications</td>
<td>9</td>
</tr>
<tr>
<td>4.0 SUMMARY</td>
<td>9</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>10</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

FIGURE No.	PAGE
1 | PROPOSED PROGRAM PLAN | 3 |
2 | COATING THICKNESS VS. WEIGHT FOR ZINC ORTHOTITANATE-SILICATE PAINTS. | 6 |

LIST OF TABLES

I	PAINT COMPOSITIONS* FOR WATER CONTENT STUDIES
II | STABILITY OF Zn2TiO4- SILICATE PAINTS | 8 |

IIT RESEARCH INSTITUTE
SPACE STABLE THERMAL CONTROL COATINGS

1.0 INTRODUCTION

The potential that zinc orthotitanate possesses as a pigment for spacecraft thermal control applications has been thoroughly demonstrated in past studies at IITRI (Reference 1-3). The practical realization of this potential hinges most importantly on pigment stoichiometry and also on the production process and optimized preparative conditions associated with it. The "MOX" method, i.e., the use of zinc and titanium oxalate precursors, has the distinct advantages of simple and rapid processing, and of controlled pigment particle size.

The primary goals of this program for obtaining a specification quality zinc orthotitanate are:

1) Determination of the chemical identity of TiOX ("titanium oxalate").
2) Effect of Zn/Ti ratio for Zn$_2$TiO$_4$ on the reflectance spectra and stability to ultraviolet irradiation in vacuum.
3) Optimized processing parameters for reproducibly obtaining a pigment of the most desirable optical properties and behavior.

The ultimate goal of obtaining a specification thermal control coating appears well within achievable reality. The studies discussed in this report are designed to yield a Zn$_2$TiO$_4$ paint as an engineering material for use on future spacecraft.

During this reporting period, study plans were formulated for the final portions of this program. In pursuit of these plans, Zn$_2$TiO$_4$ pigment powders have been synthesized and paint studies have been performed. These are described in the following sections.

IIT RESEARCH INSTITUTE
2.0 PROGRAM PLAN

A steering committee meeting on the subject program was held on December 20, 1977 at the Marshall Space Flight Center. Attendees at this meeting were D.R. Wilkes and D.W. Gates of MSFC, and J.E. Gilligan and Y. Harada of IITRI.

The Proposed Program Plan is shown in Figure 1. It was agreed by the participants in the meeting that this basic outline would be followed. In view of the earlier findings on this program that acid washing of the pigment did not enhance stability to a UV-vacuum environment (see Report No. IITRI D6118-12) such experiments will receive lesser emphasis.

The schedule of studies is to be as follows:

1. Acid wash studies (Dec-Jan)
2. Pigment preparation (Jan)
3. PBR studies (Jan-Feb)
4. Thickness studies (Jan-Feb)
5. Long term test (Feb-Mar. start)
6. Specifications and final report preparation (Mar-June)

The tentative list of samples to be included in the long term test is:

1. Zn/Ti = 1.95, PBR = 7.09
2. Zn/Ti = 2.00, PBR = 7.09
3. Zn/Ti = 1.95, PBR = x (to be determined)
4. Zn/Ti = 2.00, PBR = x (to be determined)
5. Z-93
6. S136-L0
7. Zn2TiO4/602-L0

Others will be added as their potential become evident.

3.0 PAINT STUDIES

The purpose of the paint studies during this period was to examine composition from the standpoint of water content and
FIGURE 1

PROPOSED PROGRAM PLAN

1. Pigment Preparation
 a. \(\text{Zn}_2\left(\text{C}_2\text{O}_4\right) \) and "TiOX" precipitation
 b. Mixing, Zn/Ti = 1.95 and 2.00
 c. Precalcine and calcine
 d. Evaluation: x-ray analysis, reflectance

2. Paint Studies
 a. Composition
 (1) Maximize water content
 (2) Maximize PFR (pigment to binder ratio)
 b. Application
 (1) Maximize thickness
 (2) Optimize technique
 c. Evaluation
 (1) Physical integrity
 (2) Reflectance

3. Paints For Long Term Tests
 a. Calcination: 900°C/8 hr.
 b. Zn/Ti Ratio: 1.95 and 2.00
 c. PBR: 7.09 and x (to be determined in 2.a (2) above)
PBR. Paint formulations were prepared by ball-milling of pigment-PS7 potassium silicate-distilled water mixtures of varying PBR for 6 hours. Coatings were applied by conventional spray painting techniques and cured in air at room temperature. The effect of the compositional variables on paint sprayability and on resultant coatings was determined.

3.1 Water Content Studies

Previous work with Zn$_2$TiO$_4$-silicate paints had shown a very "wet" application during spraying, indicating a need for decreased water content. Based on 100 grams of pigment, the PS7 + water amounted to 96 cc H$_2$O for the original compositions. Reduction of this amount to 76 cc H$_2$O yielded a formulation of higher viscosity with better spraying characteristics.

In the current studies, even greater reduction in water content was investigated. Compositions which were examined are listed in Table I. In the spraying of these paints, compositions "A" and "B" showed good spraying characteristics while "C" went on very dry. The glossy appearance, which signals the end of a spray cycle with silicate paints, could only be achieved for "C" by a combination of opening of the spray nozzle with contraction of the gun-to-substrate distance by about 50%.

Subsequent examination of cured coatings showed Series "A" and "B" to be uniform and smooth in appearance. In contrast, some of the "C" samples exhibited a very rough appearance which often results in "dry" spraying. Weight and thickness measurements showed that a heavier coating was achieved with fewer spray cycles for "C". A plot of coating thickness vs. weight (Figure 2) for various paints showed that "C" samples with the most uneven surface texture tended to be thicker for the same weight as compared to the other samples.

From these results, it would appear that a water content of about 66 cc per 100 gms pigment is ideal for good sprayability along with achieving a good coating. This contrasts with Z93
<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn₂TiO₄</td>
<td>20 gms</td>
<td>20 gms</td>
<td>20 gms</td>
</tr>
<tr>
<td>PS7</td>
<td>6 cc</td>
<td>6 cc</td>
<td>6 cc</td>
</tr>
<tr>
<td>H₂O</td>
<td>10 cc</td>
<td>8 cc</td>
<td>6 cc</td>
</tr>
<tr>
<td>Water Content</td>
<td>76</td>
<td>66</td>
<td>56</td>
</tr>
</tbody>
</table>

*PBR = 7.09, Zn/Ti ratio = 1.95

*Based on 100 gms pigment
FIGURE 2. COATING THICKNESS VS. WEIGHT FOR ZINC ORTHOTITANATE-SILICATE PAINTS.
(silicate-bonded ZnO) for which 96 cc of total water is required for 100 gms pigment, and can be attributed to the coarser particle size of Zn₂TiO₄ requiring lesser amounts of liquid for good wetting.

3.2 PBR Studies

The PBR experiments consisted of increasing the pigment loadings beyond the previous high of 7.09, to 8.51 and 10.64. Sprayability of these pigment-rich formulations was quite good. Examination of the cured coatings showed them to be somewhat softer than the 7.09 PBR samples. However, the integrity of these coatings appeared to be adequate; good bonding to the aluminum substrate was achieved.

Samples from these PBR studies along with those from the water content studies are now being measured for reflectance.

3.3 UV-Vacuum Studies

The results of a 1000 ESH test for various silicate-bonded Zn₂TiO₄ coatings are shown in Table II. These data were generated by MSFC in the latter part of 1977 and are being presented in this report for documentation. The following sample variables were examined in this test:

2. Pigment calcination temperatures of 900° and 1050°C.
3. Zn/Ti ratios for the pigment of 1.95 and 2.00.

As the data show, all samples exhibited excellent stability. Changes in were all less than 0.01. In view of these very limited Δ's, behavioral trends as a function of the above listed variables are not evident.
<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>Zn/Ti RATIO</th>
<th>TEMP, °C</th>
<th>PBR</th>
<th>α_{INITIAL}</th>
<th>Δα_{1000 ESH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>1.95</td>
<td>900</td>
<td>4.26</td>
<td>.192</td>
<td>.006</td>
</tr>
<tr>
<td>M6</td>
<td>1.95</td>
<td>900</td>
<td>5.32</td>
<td>.169</td>
<td>.006</td>
</tr>
<tr>
<td>M10</td>
<td>1.95</td>
<td>900</td>
<td>7.09</td>
<td>.153</td>
<td>.004</td>
</tr>
<tr>
<td>M4</td>
<td>1.95</td>
<td>1050</td>
<td>4.26</td>
<td>.228</td>
<td>.004</td>
</tr>
<tr>
<td>M8</td>
<td>1.95</td>
<td>1050</td>
<td>5.32</td>
<td>.203</td>
<td>.003</td>
</tr>
<tr>
<td>M12</td>
<td>1.95</td>
<td>1050</td>
<td>7.09</td>
<td>.205</td>
<td>.005</td>
</tr>
<tr>
<td>M17</td>
<td>2.00</td>
<td>900</td>
<td>4.26</td>
<td>.190</td>
<td>.006</td>
</tr>
<tr>
<td>M14</td>
<td>2.00</td>
<td>900</td>
<td>5.32</td>
<td>.183</td>
<td>.003</td>
</tr>
<tr>
<td>M22</td>
<td>2.00</td>
<td>900</td>
<td>7.09</td>
<td>.154</td>
<td>.003</td>
</tr>
<tr>
<td>M20</td>
<td>2.00</td>
<td>1050</td>
<td>4.26</td>
<td>.230</td>
<td>.008</td>
</tr>
<tr>
<td>M16</td>
<td>2.00</td>
<td>1050</td>
<td>5.32</td>
<td>.225</td>
<td>.004</td>
</tr>
<tr>
<td>M23</td>
<td>2.00</td>
<td>1050</td>
<td>7.09</td>
<td>.198</td>
<td>.006</td>
</tr>
</tbody>
</table>
3.4 Potential Hardware Applications

Interest in silicate-bonded Zn_2TiO_4 paints appears to be growing in sectors outside of NASA. As reported in IITRI D6118-17 (MLR), samples were submitted to Mr. Carl Maag of Aerojet Electrosystems Company. Aerojet tests revealed good mechanical properties for this paint.

More recent communication has been with M. Schellhase of Sandia Laboratories, G. Borson and R. Champetier of Aerospace Corporation, and A. Rubin of Aerojet, as well as with Mr. Maag. Paint samples were prepared on Kevlar composite substrates supplied by Sandia. Good bonding was achieved on this polymeric material which was abraded with #60 cloth, washed with an alkaline detergent, dried, and primed with PS7 prior to paint application.

There is a good possibility that IITRI's Zn_2TiO_4-silicate coating may be specified for flight hardware with which the aforementioned people are involved. It is recognized by the parties involved that the paint is still developmental and has not reached an engineering specification stage.

4.0 SUMMARY

We are now in the final portions of this program. The last major item will be a long term UV-vacuum test involving the best paint candidates in terms of ease of applicability, mechanical properties, and high reflectance. These samples are now being prepared.

Respectfully submitted,
IIT RESEARCH INSTITUTE

Y. Harada
Senior Research Engineer
Mechanics of Materials Division

S. A. Bortz
Director of Research
Mechanics of Materials Division

IIT RESEARCH INSTITUTE
REFERENCES

