
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

t	
(NASA-CR-151709) KU-BAND S:IGNAI, DESIGN	 N78-22270

j	 STUDY Final Report (1inCom Corp., Pasadena,

jj
	 Calif.)	 206 p HC A10/MF A01 	 _CSCL 17B

	

•,^ ,i ^	 Unclas
G3/32 16653

z

>s

i

.,	 r

r ''

r

i

P.O, Box 2793D; Pasadena,	 Calif.	 91105,	 z^s

{

3

jj

S	 1 `

y"

zincom

l

FINAL REPORT 3

KU-BAND SIGNAL DESIGN STUDY
l

i

Pr^pared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
{ JOHNSON SPACE CENTER

Houston, Texas 77058

;R±I
Technical Monitor:	 W	 Teasdale

Prepared Under Contract No. NAS 9-14846

'by:Prepared

Izhak Rubin
W.	 C.	 Lindsey

LINCOM CORPORATION

^j
P.O.Box 2793D

Pasadena, CA 91105

April 15, 197$

°
TR-7804-0476

C

WE

1 i2 ^Oi'Yl

,

oCc'n^om
 1

i TABLE OF CONTENTS

Page

THE ORGANIZATION OF THE REPORT AND SUMMARY 	 1

9
d	 I	 EVALUATION OF DATA PROCESSING SYSTEM QUEUEING AND
x	 SYNCHRONIZATION	 5

I.1 The Structure of the Data Processing Network	 5

I'.1.1 System and Network Configuration and
Operation

I.1.2 Characteristics of the Computer System	 11

jI.2 Traffic, Task and Subsystem Models and Parameters 	 16

r I2.1 The Network Components 	 16

I,2.2 The Computer Subsystem	 16

I.,2.3 Terminal, Task and User Traffic	 19
C

I.2.4 Task and Application Process Parameters 	 23.

I.2.5 The Communication Subnetwork 	 M

I.3 Performance Measures	 31

I.3.1 Computer Oriented Performance	 31

1.3.2 User Oriented Performance Measures 	 33

I.3.3 System and Network Related Performance Indices 36

I,4 Time-Sharing Queueing Models 	 39

I.4.1 Time-Shared Single Processor Systems 	 39

I.4.2 Traffic and Performance Parameters	 40

I.4.3' Batch Processing; First-tone First-Served	 42
j

I.4.4 Round-Robin Processing 	 45

I.4.5 Round-Robin with Priorities	 47

I.4.6 A Round-Robin Scheme with Time-Varying
.,	 Priorities

	
49

I.4.7 Foreground-Background Processing Schemes 	 51

LJ__1 a 	,

11	 i

icri^oin
t	

z s

TABLE OF CONTENTS (Cont'd)

Page

I.4.8 Multilevel Processor Sharing Schemes	 53

I.4.9 Comparing the Performance of the Time-Sharing 	
54	 iSchemes

I.5 Priority Queueing Model 	 56
'i

I.5.1 On Service Disciplines	 56	
1

I.5.2 Scheduling Algorithms for Time-Shared Processing
Systems	 56

1.5.3 Service Disciplines for Messages in Different
Priority Classes	 59

I.5.4 Analysis of a Priority Queueing System 	 60

I.Si .5 The Earliest Due Date Scheduling Scheme	 65

I.6 The Computer System:p 	 y	 Queueing Models and Performance 74
	

I'
Analysis

I.6.1 Operating Systems 	 74	 !°'

I.6.2 Memory Management

	

76	

^ 1

I.6.3 On Computer Scheduling Procedures 	 80

3
I.6.4 A Markovian Queueing Model: Finite Bufferf	

Facility	 82

I.6.5 A Finite Task Source Queueing Model 	 86
j,

I.6.6 A Multi Processor Queueing Model 	 89*

I.6.7 Queueing Models Involving Input/Output and
CPU Interactions	 92

I.6.8 An Analytical Model fo the Computer System	 f"*
Performance Prediction	 96

I.7 Queueing Modeling and Analysis Procedures for the
Space Shuttle Orbiter Avionics System	 103

I.7.1 The Queueing Model	 103

{	 I.7.2 A Time frame Model for the Computer System	 104
9

ioi in

1

•

TABLE OF CONTENTS (Cont'd)

Page

1.7.3 Queueing Analysis for Cyclic Tasks:
Model	 I 107

I.7.4 Queueing Analysis for Cyclic Tasks:
Model	 II 112

I.7.5 Queueing Analysis for Cyclic Tasks:
Model	 III 115

I.7.6 Queueing Analysis for Acyclic Tasks:
Priority Model	 I 117

I.7.7 Queueing Analysis for Acyclic Tasks:
Models II 121

I.7.8 point Queueing Analysis 122

I.7.9 Queueing Analysis for User Terminals:	 Output
Traffic 124

I.7.10 Queueing Analysis for User Terminals:	 Input
Traffic 127

I.8 Synchronization Methods for the Data Processing
S t	 130

i

i

i

N Ihe.- 1
tI

I

j k!

4 o^

i,

i

i^
Ii

J,

I' 1
i;
r

S

i

1

r

ys, em

1 I.8.1	 Synchronization Considerations for the Data
Processing System 130

1.8.2	 A Queueing Model 135

1.8.3	 Clock Synchronization Procedures 136

II.	 SYSTEM RELIABILITY MEASURES AND COMMUNICATION PATH FAILURE
ANALYSIS 147

f II.1	 Reliability Features of the Data Processing Network 147

II.2 F=ailure Parameters and Reliability Performance 149
Measures for the Computer Compl ex

i II.3 Failure Analysis for the Computer System: 	 The Simplex
156

Mode

II.3.1	 Single GPC Failure Analysis 156

' II.3.2 Failure Analysis for the Siinplex'Computer
System 158

1^	 I

t

	

 1	 r	 I.	
.i

c^^c^z^afn

1
TABLE OF CONTENTS (Cont'd)

i
f

II.3.3 Restoration Analysis for the Simplex
Computer System

II.4 Failure Analysis for the Computer System: The
Redundant Mode

LI.5 Failure Analysis for an Application Subsystem

	

0,
	 Failure Analysis for the Data Processing Network

Pa ge

159

162

174

179

II.6.1 Reliability Performance Measures for the Data
Processing Network	 179

II.6.2 Failure Analysis for the Data Processing
Network: The Redundant Mode 	 183

II.6.3 Network Invulnerability: Alternate Routing
and Congestion Effects	 185

r

F

f

Ii
i E

I

r

^^^	

^.	 ^	

it	

{	

r	 {	 ^ 	 _ ^-

1	

tlq	 "'	 `7	
1

THE ORGANIZATION OF THE REPORT AND SUMMARY

This study provides analytical tools, methods and techniques

for assessing the design and performance of the Space Shuttle

Orbiter data processing system (DPS). The computer data processing

network is evaluated in the following three key areas:

Queueing Behavior;

Synchronization;

Network Reliabili ty.

The report is divided into two main parts. Part I consists of

detailed modeling and analyses of queueing and synchronization

!
s

aspects of the DPS.	 Part IL'involVes the evaluation of the overall

network reliability in the presence of various fail ure modes.	 The

j	 w
detailed models, techniques, performance measures and results

presented here fully satisfy all the study objectives outlined in the

j

h
associated technical	 proposal.

The structure of the data processing network is presented in

Section I.l.	 System operation principles and the network configuration

- are described.	 The characteristics of the computer systems are
k,
fp indicated.

Traffic, task and subsystem models and parameters are derived

and described in Section I.2. 	 Process parameters and models are

presented for the following network elements:	 the computer subsystem;

the terminal, task and user traffic; task and application process

parameters; and the communication subnetwork.

- The system performance measures are derived, presented and

.: discussed in Section I.3.	 We differentiate between computer

LILW

it
t

'^	 f

X	 ,k

{

x 4

A

jrtt

l
r

6.ie3n ^. u...

oriented performance measures, user oriented performance measures

and system and network related performance indices.

General important queueing models are described, analyzed

and compared in Sections I.4-I.5. Computer system queueing

models are presented in Section I.6. Queueing modeling and analysis

methods for the orbiter DPS are described in Section I.7.

Time-sharing queueing models are described and analyzed in

Section I.4. Included are: time-shared single processor systems;

batch processing systems; round-robin processing; round-robin

with priorities; a round-robin scheme with time-varying priorities;

foreground-background processing shcemes; and multilevel processor

sharing scheme. The performance characteristics of the various

time-shared schemes are then compared.

Priority queueing models are described and analyzed in

Section I.5. While time-sharing schemes increase the operational

efficiency of the orbiter computer complex, priority service

procedures allow the incorporation of task priorities in providing

the proper grade-of-service for critical tasks.

In Section ̀I.6,-we present queueing models and demonstrate

the performance analysis for the computer system. Operating

systems and memory management techniques are discussed. Computer

scheduling proceduresare outlined. The following analytical queueing

models are then presented, for studying the queueing behavior of

the computer system: > a Markovian queueing model with finite buffer

facility; a finite task source queueing model; a multi-processor

queueing model; and goeueing models involving input/output (I,/0)

and CPU interactions.	
j
1

t
I	 I

^a

I

f

Queueing modeling and analysis procedures for the Space Shuttle

•

i
1

r ^E

14

,rt l

P

orbiter avionics system are presented in Section I.7. The underlying

queueing model is described. A time frame model for the computer

system is then chosen. Tasks are divided as being cyclic or acyclic.

Proper computer task service times are subsequently allocated.

Queueing models are then chosen and analyzed for cyclic and acyclic

tasks. Subsequently, the results are integrated to yield a joint

queueing model. The latter is analyzed, and the system performance

functions are derived, studied and discussed. We then choose proper

queueing models for describing message delay and buffer characteristics

at the userterminals, considering both input and output traffic.

The synchronization problem is discussed in Section I.8.

Synchronization considerations for the data processing system are

outlined. A queueing model is presented to relate time offset

para ►meters with message delay and buffer queue-size functions	 Clock

synchronization procedures are then presented, discussed, compared

and analyzed.

In Part II of the report, system reliability measures are defined

and studied. System and network invulnerability measures are computed.

A communication path and network failure analysis techniques are

presented. The reliability features of the data processing network

are outlined in Section II.1. In Section II.2 we define failure
i

parameters and reliability performance measures for the computer

complex. The failure analysis for the computer system, when operati ng

i n the simplex mode, is carried out in Sectionll.3. The corresponding

failure analysis for the redundant computer system is presented in

Section I1.4. The invulnerability characteristics and failure

4i	 a
a

rf

1	
n	

.1 -^	 c s	 I	 i.	 1

a g	 4^

c^G.4/2^Off2

properties of an application subsystem are derived in SectionII.S.

These results are integrated and combined in Section I1.6, resulting

IN
with the failure analysis of the data processing network.

K	
1

The techniques, methods and results presented in this study
r '

	

f	 aare of prime importance as tools in assessing the performance of

y
the orbiter DPS. Furthermore, the models developed and presented 	 d i

here ire of general fundamental nature, involving the key aspects

of system reliability, queueing (delay-throughput, grade-of-

service and system utilizationmeasures) and synchronization.

Subsequently, they can be used in studying the performance of

the system under a variety of operational conditions,

including future modifications and expansion situations.

F	 `

A	 y	 , s	 2.

`.	 Y$.a""G"..4^.:.t C' S«k .:..:._s_a.=.=.^ 	 • 2 -	 r..::_:_._.:,^...._...._r,^. 	 ..	 :	 - ._._.:c_.,....:._.^.:.-_mow
rl

I.1	 THE STRUCTURE OF THE DATA PROCESSING NETWORK

i
Eli

I.1.1	 System and Network Configuration and Operation

The space Shuttle avionics system contains five general

purpose computers (GPCs) communicating with the avionic sub-

.1 Fri
systems over serial data buses. 	 A block diagram of the Space

Shuttle Avionics system is shown in Fig.	 I.I.I.	 Four of the

five GPcs are identically programmed to perform flight-critical

functions, such as guidance, navigation and control. 	 The fifth

computer is programmed to perform non-flight-critical avionic

E
I functions. A block diagram of the data processing and software

subsystem is shown in Fig. 	 I.1.2.

A GPC consists of an IBM AP-101 central processing unit

i (CPU) and an input/output	 (I/0) processor (IOP).	 Each IOP 'is

transformer-coupled to the buses, and can transmit or receive at

I
a rate of 1 MHz serial digital data over each of 24 bus channels.

The data buses, on the other side, are transformer-coupled to

multiplexer/demul ti pl exer units (MDMs) and digital 	 subsystems.

The MDMs contain analog-to-digital and digital-to-analog

i converters.	 They interface with analog subsystems, such as

} I^- flight control	 sensors andeffectors	 (see Fig.	 I.1.2).

! Subsystems that perform similar functions are assigned to

the same data-bus group.	 There are seven such groups (see

f

Fig.	 I.1.1).	 The subsystems have varying levels of redundancy

at the unit level, depending on their criticality. 	 Each unit

is addressed by a command word over the bus.	 To prevent the

loss of more than one redundant unit when one data bus fails,

no two redundant units interface with the same bus.

I ;;

^P

E

t

zilzC0111

During time-critical mission phases (i.e., recovery time

less than one second), such as boost, reentry and landing, four

of the five GPCs operate as a redundant set, receiving the same

input data, performing the same flight-critical computations

and transmitting the same output commands. In this mode of

operation, efficient detectionand identification of two flight-

n

}

E

i

f ^€f

5

1	 ^	
4

G^

^.r	 y2 .{
t

i

is

^l

(._1

r	 .

^ r

critical computer failures is provided by comparing the output

commands and "voting" on the results. This involves the voting

subsystem. After two failures, the remaining two computers in

the set use comparison and self--test techniques to provide

tolerance of r . third fault. The voting mechanism thus allows a

computer to transmit incorrect commands to critical subsystems

for an indefinite number of cycles without having adverse effects

on system operation.

The system operates as follows. Each bus within a data-bus

group is assigned, under software control, to operate in either

a command or a listen diode.. In the command mode, data requests

and commands are issued to the subsystems over the bus and data

are received over the same bus. In the listen mode, data are

only received on the bus.

In the flight critical sensor and control-data-bus group

(two subgroups of four buses), one bus in each subgroup is

assigned to operate in the command mode (in each redundant-set

computer) and the remaining three are assigned to operate in the

listen mode. In the inter-computer channel (ICC) data-bus group,

containing five buses, one bus (in each computer) is in the command

z
z

F

^t

I

l

k: <t

i

r

T

I

k

mode and the remaining four are in the listen mode.
4

Data Collection. Each of the redundant subsystems is

connected to a different bus. Thus, a different computer requests

data from each of the subsystems and the returned data are

available to all other computers in the set. The listening

computers are informed that the subsystem data are available

by receiving a listen command, which is issued by the command

computer just prior to issuing the data request comiliand to the

subsystem.' In this way, identical input data are available to

each computer in the redundant set.

In noncritical phases of the mission, each of the GPCs is

associated with a proper dedicated subset of subsystems. This

a

non-redundant configuration is termed the sim plex mode.

Data Output. Consider the redundant mode. Each channel of

the (voting) effector subsystem is connected to a different

bus of the group. 1hus, a different computer transmits command

data to each of the voter-effector channels. Hence, a voter-effector

subsystem requires four inputs which it receives from four different

computers. Since buses are interconnected to all computers, each

computer can listen to the command data sent out by each of the

other computers.

_	 For inter-computer communication transfer, each computer f

communicates with all other computers. A computer can thus
{

t	 pass data to all others, request data from the other computers	 }

and perform any set of integrated tasks. No subsystem is connected

to the ICC buses.
{

l

C/Z Ol3Z

1

x	 r
^	 I

r
.:`^.__-^`'	 ^+! ^^* _^. ^ _:,^•-:sa._---•.^^i._°---•-,,.,,^-.:u..,. ^,,._.., x....-rte, 	 w.^._,1...	 _	 -_____. _..	 _ ^_ .__.

r----c!.&ZCoI	 ----

The main characteristics of the Space Shuttle orbiter

avionics data processing system are summarized as follows

(see Figs. I.1.1-I.1.2).

I.	 The avionics system provides data processing capabilities

for guidance, navigation and control (GN&C); communications

and tracking (C&T); displays and controls (D&C); system

performance monitoring; payload management; payload

handling; subsystem sequencing; and selected ground functions.

2. The system accepts input commands and/or data from the crew,

on-board sensors, and external sources.

3. The system performs computations and processing. it generates

output commands and data as necessary to accomplish the

requi"rements specified for the above mentioned tasks, as

well as for any required internal purposes.

4. The system is topologically structured around a central

set of five general-purpose computers (GPCs) which are

interconnected to the subsystems so that they may be

operated in redundant groups to provide critical sources.

Each computer has a memory capacity of 65,000 32-bit words

Additional storage of programs and fixed data is provided

by two mass memory units, each having a data capacity of

134 megabits.

5. Data transfer between the computer center and the data users

i s through a data bus network. This network is composed

of serial, half-duplex data channels operating at a rate

of _1 megabit/sec.

{

y

7

cJinCom

7	 ^

I

^	
t

;

i

r— 1h• ,y +tc n^•,t.,md rril'N, mi"llee II'.. t+mnul I'.,roh.. tn, l tn.n. u,rmrnr.
t(C„ou„I

GPl I	 (d'i	 ;	 l,l'{ t	 t,l'l r	 {,PC S	
land,

lu(' J	 •	 lul' 4IQI I	 II

;E
i^t,^, on^nmct I^t

nwillorN 121

	

Ut,j lat rt,lt m 141	 29
1•s1tllr

^	 PatG,ad itpernnw l21 	 u•n.,l
d.ur

I. ancb funct). , n 121	 hu,m
12t .,hared,

j	 > dtdte:ucdl
H,yht in,trumenl IS. I dedrcaled Pct	 I l+Pk 1

IL
1• l,ghl• nitad ,cn+ttrtnd c m i d txl

f r	 n	 ^”

	

y i	 (iN('scn,on	 I'tsh,ad-

	

`	 Main engine intcrfatt	
LMrmn^\rtnGct ho„uan

Aero,urfacc •retuaturn 	 Idrnku)	 d,+ lat,	
(nnutd umhoti emen

Ihrust-veunr control acivalom
	 Sll 	 mtJ•u nn r to f P- 	 I f

t'	 Primary fLght displ^}^ 	
uldutl

WI sittn sent controllers
ti .	.\taster umc	 -

Figure I.1.1

F	 ;	
4>L

1 I.. ,

	

I j	 REPRODUCIBILITY OF TH
ORIGINAL PAGE IS POOR E

i

1.. l •,

-9

IL IL

OPERATIONALINSTRUMENTATION-.i_.
SYSTEM

MASS	 PMS7PAYLOAD	
HDH	

PAYLOAD
MEMORY	 MAN IPULATOR

GENERAL
CONTROLLER	 PURPOSEMANIPULATOR

ROL	 MANIPULATOR	 COMPUTERS	 DEDICATEDCONT
INSTRUMENTATION	 DISPLAYS

r	 UNIT

MANUAL--	 FLIGHT

CONTROLS	 CONTROL	 s- r

GNLC	
MDM	 MDM	 SYSTEMS_.

SENSOR
DATA

MENGINE	 AIN

INTERFACE	 ENGINE

DISPLAY	 UNIT	 SYSTEMS	 --^

CRT	 ELECTRONICS

DISPLAY	 UNIT
MOM GROUND	 _.
CHECKOUT	 AF7 b FORWARD

EVENTS	 SUBSYSTEMS
^.

CONTROLLER,
KEYBOARDS	

i

S'RBs	 GSE

Figure I.1'.2 A Block Diagram of the Data Processing and Software Subsystem.

^1-jl CO "I
s

i	 t	 ,x	 ,

111col32
a

6.	 Interface adaptation between the data bus network and the

}
	 orbiter subsystems is accomplished by multiplexer/de- 	

a

multiplexer (MDM) units. These units provide signal 	 j

*	 conversion capability, digital-to-analog (D/ A) as well

as analog-to-digital (A/D), and multi pl exi ng/demul ti pl exi ng

Fit,

functions.

	

7.	 Engine interface units provide operational control of the

main engines from GN&C commands. The units also provide

main engine data for recording, telemetry or GSE.

	

8:	 Incorporated in the system are also dispaly electronics

units, CRT displays, keyboards, manual controls and controller

manipulator instrumentation units.

ti

1.1.2	 Characteristics of the Computer System

We have indicated in the previous section that the heart of

the Space Shuttle avionics processing system is a set of five general-

1

purpose computers (GPCs). 	 Four of these computers can _operate in a
,

j parallel	 redundent mode during flight critical	 phases of a mission.

We summarize in this section the major characteristics of these

computers,on board the Space Shuttle orbiter.

The following are the principal characteristics of the on-

board GPCs.

.*` 1.	 The GPCs are designed as adaptation of the IBM AP-101

. computer.

2.	 Computer size is 0.87 cu.ft., and weight 57.9 lbs. 	 Input

power is 350 watts.

! 3.	 The computer uses transistor-transistor logic, medium and

;l
large scale integration, and multilayer interconnection boards.

j	 T

!	 a

4	 Mrt,^a

i
`.0

I	 Y

t

I
{

4. Data flow is in parallel.

5. Both fixed point and floating point arithmetic can be

used

6. Data word length (fixed point) is equal to 16 or 32 bits.

Data word length (floating point) is equal to 32 or 64 bits.

Instruction word lengths are equal to 16 and 32 bits.

7. There are 154 instructions in the computer instruction

repertoire.

! 8. The computing speed is equal to:	 480 x 10 3 operations/sec,

under fixed-point; 325 x 10 3 operations/sec, under floating-point.

t
9. The computer incorporates as special architectural features:

microprogramming, a higher order language, 24 general	 registers
f
j and 19-level	 interrupt structure.	 As support software it
1

contains:	 an assembler, a linkage editor, a simulator, a

i self-test program, a functional set and a compiler.

(10. Memory is in the form of plugg'able ferrite core modules.

f Memos	 c apacityY	 P	 Y = 1310720 bits
{ rR

= 40960 32-bit words

I
Memory access time = 0.375 usec

The main characteristics of 	 computer systemt	 con p	 ron-board

Li the Space Shuttle orbiter are summarized by the following.

{ 1. Multiple high_ performance computers a.re used to provide the
{

total	 computing capacity, and system flexibility and reliability.

During critical	 phases, four of the computers operate

f in parallel, and "voting" 	 is used. - During non-critical 	 phases,

a simplex mode is implemented.	 One computer is then used for

GNC tasks andone for system management tasks.

ot.0/2	 OfUi
-12-

i

sR

r

it

F
r
i

hs

} a

2. Separate input/output (I/0) processors (IOPs) are used for

information transfer and control.	 Each GPC consists of two

separate processing units: -a central processing unit (CPU),

which provides the central computational capability, and an

input/output processor (IOP), which performs and controls

the I/O operations for the CPU.

i 3. Time-shared serial digital date buses are used to accomodate

'.I

the data traffic among the computers and between the computers

and other subsystems.

There are 24 data buses, organized into 7 groups. The

data'transfer is time-division multiplexed (TDM) using pulse

code modulation (PCM). Each bus operates at &clock rate of l Mbit/sec.

4. Microprogramming is used for both the CPU and the IOP. This

allows the implementation of a comprehensive instruction

repertoire.

5. Both floating-point and fixed-point arithmetic operations are

provided in the CPU for easier programming and program validation.

6. A higher order language is used in the programming of the CPI

to reduce software effort and yield better control. This

language is designated here as HAL/S.

7	 As main memory, random-access non-volatile destructive-read-

out ferrite cores are used 	 They provide maximum reliability.

Also, high capacity mass memories are used for permanent

on-board off-line bulk storage to supplement the on-line

random-access computer main memory. The mass memories are

two identical tape units.

	

1	 ^

	

^i	 •

'i

Ej

f

jr

i^	 t

1

I	 1
a

!I	 k	 ^	 t

e

F

f

i

A functional block diagram of the CPC, showing theinter-

i

I°

s•.

r	 ^^

,t

I

y1

f

connection between tine CPU and the associated IOP is shown in

Fig. I.1.3. Concerning the CPU-TOP system, the following chat,-

acteristics are noted..

The primary communication interface between the CPU and its

IOP is provided by a 36-bit bi-directional data channel.

The main properties of the CPU have already been indicated

above. We further note that the computer has a 9G" fault detection

capability, achieved by built-in test equipment and self-testing

programs.

All data transmission among CFCs and between GPCs and the

anionic subsystems is performed by 'the IOPs under CPU control. One

IOP is associated with each CPU to provide direct and passive

monitoring of data traffic.

Each IOP interfaces wi th the other IOPs and with the interfacing

subsystems over the 24 separate serial data buses. The IOP contains

a set of .24 independent processors, called Bus Control Element

(BCE) processors. A 25th processor, the Master Sequence Controller

(MSC) controls the operation of the 24 BCEs. These 25 processors

act, in effect, as 25 digital computers and operate from software

programs; stored in main memory. The IOP data processing programs,

are independent of the CPU programs and have their own unique

instruction set. Each BCE controls a Multiplexer Interface

Adapter (MIA), which is connected 'to the serial data bus via bus

computers (see Fig. 1.1.3). The MIA transmits and receives inform-

ation, encodes and decodes bus data, and tests for parity and pco'per

_	 synchronization of bits

i

i

1 '

i

_11	 }

LI
.i

!./T	 CJf?l

^	 1 I	 a	 ... sK..	 ^ »., ^	 t	 t	 r	 }	 r t^ ^ ^

REPRODUCIBILPl'Y OF THEORIGINAL PAGE f<.

r^
IS POpR

it

,

^;r	 ^ ^ j)i,urm
)1rr 4^1.ts	 manor)

^
i
^	 Nt"Ivtrrt	 ^ntlrn^U ^

t ,,1111.1	 1	 t)	 I
1

!	 -	 1	 I 1i.,..,rut„t
Inter 10f

-'} ^ I)t.pl^^ conanlo '
l`

1	 1) s h.nu,rl 1	 11
1 th hu p.u.tticl

^
i	 lin, (,rutn,l	 \11 \

it

I

, ^	 ^ i hr hn	 t,	 n rl 1	 i Irtnrnt	 I	 1	 ,
1•

J ^ ,trYd ,1.u.nr r ^ ^	 1
^ 1 1 I

hilntal

d•oa bus;.

t

1 I \1ru„uc .akin•, 1
1 1 ! Pu,riL : f octuurt. I

Cnnu„1 La„ j	 \hrlet \	 to bout

unu 1
rp,:n','	 I{('I	 \fl\

1	 „mm^{' r
mtonrc,
,uh,ucros1 and tither }'1 t „Haut. 1	 a GPCs

1
H„Irtnde11.,	 I}iatrcte	 ^ (4) Other GPCs

', f ant^nt ~	 --	 1 O Other GPCs
(S))bispls}k 1 conwlt

Mcnion

Main morn+,n 1 hu, \1.1111 mcntr„^
j 40 9hn 36•h,t word. 1 :4 5.h zh•h,t

1- ------	 ------ - -^ ---- -------•----- 	
fop]

^-------------------
r	 ,

-	 --	 - -
--

I:
4
t _^

Figure	 I.1.3
t

n4incom

e

0

0

Ll

{

i

°I

•
^ IZ^.fO fT^.

I.2 TRAFFIC, TASK AND SUBSYSTEM MODELS AND PARAMETERS

I.2.1 The Network Components

In this section we present the main system parameters and

statistical distribution functions necessary to construct an

analytical model for the space Shuttle data processing system.

In particular, our interest here is to construct proper queueing'

models that will enable the system engineer to predict and evaluate

the delay-throughput performance of this computer network. The

relevant set of performance measures will be presented in the next

section.

In providing the parameterized models for the system

components, we classify them into three categories.

1	 The general purpose computers (GPCs) and the computer

subsystem (complex).

'	 2.	 Terminals, tasks, users and peripheral equipment.

3.	 The communication subnetwork.

We now consider each of these categories.

I.2.2 The Computer Subsystem

The main characteristics of the computer subsystem have already

been presented in section I.1. For obtaining a global network

model, we choose the following model and parameters.

The model is shown in Fig. I.2.1. The model enables us to

I s i

	 statistically describe theprocessing services provided by the CPU

and IOP, the task 'queueing delay characteristics, buffer overflow

properties and the CPU-IOP interactions. Data and requests for

service arriving at the GPC subsystem are stored in the IOP

E`4	
queue. Any required IOP processing is granted to the tasks

1
	

L.	 / s7 rn t'Wy

t
A

rim;

ri

Ell

t	 4

I
•

waiting at the IOP queue in accordance with the specified service

ordering discipline. The latter incorporates fixed (static)

priorities as well as dynamically assigned priority functions.

Subsequently, upon terminationof the desired IOP service

portion, the task (or job, or message), or a request associated

with it, is stored at the main queue waiting to be granted

service by the CPU. The desired CPU service can involve a

certain computational effort as well as memory extraction and

accessing duties. The requests or data stored in the main queue

are served in accordance with the underlying priority service

discipline. Between various CPU service periods, the processing

of the underlying task can stop so that certain IOP services

or memory accesses could be completed . 	 This is introduced into

the model	 (see Fig.	 I.2.1) by allowing a CPU-IOP-CPU'cycle as

well as a CPU-Memoty-CPU cycle. 	 Upon termination of its service

the task data output is stored at the output buffer. 	 It is

' transmitted to its destination (properly controlled, as well as

{

i
time-division-multiplexed by the computer IOP controls) at the

' proper output times.

Major parameters of interest are denoted as follows.
_.

A	 = memory access time [sec]

I C	 = TOP service rate [bits,/sec]I

a C C ,= CPU service rate [bi ts/sec]

.	 ` MC = Size of amin CPU memory [bits]
t	 ^	 ^

F
MI = Size of input buffer facility [bits]

Ma = Size of output buffer facility [bits)

k

jE

•	 (^^^coln

x

t'	 _I

i

t

y

]

C

E..3

ome of these parameters can be random in which case we

are interested in their probability distribution functions, or

just their means and variances.

The processing times requried at the CPU and IOP levels

depend on the task under consideration. Considering a task of

class k, distinguished by its proprity and desired response time

and criticality, we are interested in the following parameters.

Henceforth we identify memory processing, accessing and interruptions

as 1/0 duties.
3

SI (k) = IOP total service time requried by a class k task

(request, message), including memory service time [sec].

TI(k)	 IOP continuous service portion required by a class k

task,including memory service time [sec].

S
C
(k) = CPU total service time requried by a class k task

1

[Sec]	 a

TC (k)	 CPU continuous service portion required by a class k

task [sec].

K(k)	 Number of tines that a class k task required interruption	 i

in CPU processing for IOP or memory processing.

The parameters mentioned above are random variables. We are

interested in their probability distributions, their means E(=)

and variances Var(•)	 The associated means (average values) of these

parameters are denoted as follows.

E[S I (k)]	 SI(k)	 TI(k) [sec]	 (1.2. 2-1)`

E[T I (k)]	 TI(k) _ 'PI (k) [sec]	 (1.2,2-2)

E[S C (k)] _ fC(k)	 TC(k) [sec]	 (1.2.2-3)
F,

U-1,

T

^oCCr^ ^^^^z.

I
LI

1-4

E[T
C

(k)] = TC(k)u
C 1 (k) [sec]	 (1.2.2-4)

We then obtain the following relations:

K(k)	
TC(k)	

(1.2.2-- 5)
P- I (k)
C

TI(k) = K(k)p I I (k) = P
I
l(k)TC(k)/p

C
l (k)	 (1.2.2-6)

1-2.3 Terminal, Task and User Traffic

Data traffic distribution within the Space Shuttle avionics

data processing network can be associated with a number of

classified "processes" or tasks. Tasks are divided into task

(or message) classes in accordance with their:

proprity;

scheduled/unscheduled status

message characteristics, such as message lengths and

desired response time.

Tasks can be assigned priorities on a fixed static level.

Then class 1 tasks have higher priority over class 2 tasks.

Priorities can also be assigned on a dynamic basis (see sections

1.4-1.5 for classification of priority disciplines and the

associated queueing analysis). For example, a dynamic Earlier

Due Date dyanmic queueing priority discipline can also be used.

Then, each task (or job, or message) is associated with dynamically

changing priority level expressing the criticality of the job as

well as its desired due date (response time). (See Section 1.5

for details.) As a particular case, the following priority classes

can be defined.

F;

Class 1 tasks = highest priority tasks, critical.

a	
Class 2 tasks = timely, become critical after a delay

ofS2 sec.

Class 3 tasks	 timely, but become noncritical after a

delay of s
3

sec.

Class 4 tasks	 timely, discarded after a delay of S 4 sec.

Class 5 tasks = noncritical.

To implement a dynamic queueing priority service discipline,,

the network controller, is designed to administer demand-assignment

assessing and service ordering procedures.

f^

lea,

I!

f

Gild

1

Jobs, or tasks are also classified in nature as being

cyclic or acyclic (not cyclic) Cyclic jobs require service on

a periodic basis. Acyclic tasks use the processors on an

aperiodic basis.

One also distinguishes between scheduled and unscheduled

tasks. Scheduled tasks can be cyclic or acyclic. They cover the

following four areas.

.User interface tasks.

.System control tasks,

-Guidance, navigation and control tasks.

?System management tasks

Tasks (jobs, or processes) are activated by either internal

or external stimuli. The computer processor and the data

network are assigned to tasks on a priority basis, as

indicated above. Service of a task, or process, can be

preempted (interrupted) by higher priority tasks. Certain

tasks can be served on a non-preemptive basis. Each task is

I

assigned to a "service class" and given priority within the class.

In addition to representing "processes requiring service

by the Avionic DPS as tasks, one also identifies the information-

bearing units called routines and messages. Routines serve as

modules executed in performing a task. They can be included

or shared among several different tasks. Messages are defined

to be groups of data handled and transmitted within the data

processing network. Messages can be declared as elements of

certain tasks.

The devices associated with the Space Shuttle orbiter

Avionics DPS are described as follows

•15 MDS (Multiplexer/Demultiplexer Units). Max. record size

= 1024 bytes.

Input/Output rates = 120 bytes/cosec

Can be shared among tasks.

• 4 DEUs (Display Electrical Units). Can be shared among tasks.

Max. record size = 8192 bytes.

Input rate	 120 bytes/msec.

Output rate	 62 bytes/msec_.

93 DDUs (Dispaly Driver Units). CAn be shared among tasks.

Can hold an unlimited record size.

I/O rate	 120 bytes/nisec.

•3 KBUs (Keyboard Units).

Output rate	 1 byte/msec.

Associated delay of 1 msec.

I

C
E

^r

L1

G
01

a

{

I;

Y

i	

t^

t

Wit:.<- ^.x ,.:^__.^^,•- .-. 	 ^.. ^.^.:=:a.:.	 1	 _	 _._	 _

F—cX.i121. om

2 PCMMus (Pulse Code Modulation Master Units).

Can be used by all tasks.

Max. record size for each unit = 2048 bytes.

I/O rate	 120 bytes/msec.

Display data can be classified as follows.

Time critical display data. Memory resident, accessible

within n l sec. Typically, nl	 1 sec.

Sequence critical data. Accessible within n2 sec. Typically,

n2 = 2 sec.	 Can be resident in memory, if requried.

Noncritical data. Accessed as soon as possible. Access-time

can be minimized by tape head positioning and file ordering.

In the keyboard subnetwork, a message is composed of a key-

stroke or a series of keystrokes sent to the GPC system by a DEU.

The DEUs are up lled by the GPCs. Polling frequency is

f(DEU) polling times/sec

For example, in certain operational modes one sets

5 times/sec < f(DEU) < 10 times/sec

A given DEU receives commands from only one GPC on its bus.

DEU transacti-ons can be very long. It is subsequently
{

important to evaluate the probability of overflow of the

associated I/O buffer.

Update data from GPCs to DEUs is transmitted at one of a

number of possible rates. Typically, the rate is 2 Hz for

analog data, and is equal to anyone of l Hz 0.5 Hz, 0.25 Hz,

0.125 Hz for digital data.

Ii	 4i2^Oi^2
fl

Dedicated displays are updated regularly by the GPCs.

Dedicated control inputs are polled by the GPCs at proper

polling rates.

The role of process mana eg ment is to supervise the allocation

of the internal computer resources and control the execution of the

application processes. For that purpose, use is made of dynamic

queues and tables containing the state of the internal resources.

Process control is responsible for allocation of the GPCs

to application processes. This is accomplished according to (the

above-mentioned) preassigned process (task) priorities, controlled

by the demands of the crew, scheduled duties and conditions polled

in the avionics equipment.

Scheduled processes in queues are noted to be in one of three

states:

Acti•	 've state; the process controls the CPU.

I *Ready state; the process is ready to utilize the CPU, but
f

has not attained control yet.

.^ &Wait state; time must pass until a certain event occurs or

} an I/O operation is completed:

I.2.4	 Task and Application Process Parameters

According to the descriptions of the nature of the application

processes and tasks in the previous section, the following parameters

'	 j	 x

jperformance

are defined.	 These are the major parameters used in a macroscopic

analysis of the avionics data processing system.

Different tasks make different service demands upon the data

processing network. 	 Tasks are divided into priority (or service)

L/Z	 Of/2

I
j
;

ii.

r,

{

^.

e

r
r-^

['I

ZhIC0172

I

El f,

El
I

y^

a ,
f 	 ^

E

L

f1

f
f

I

i

1

classes. GPC service times required by a class-k task have

been defined in Section I.2.2. In particular,we have:

E [S(k)] = EESI(k)+Sr(k)]

= T(k) = T I (k) + T C (k) = average total GPC service

time required by a class k

message;	 (I.2:4-1)

Var[S(k)]	 = Var[SI(k)+SC(k)]

= VW = variance of the total GPC service time

	

required by a class k message; 	 (I.2.4-2)

where

S(k)	 = SI(k) + S
C
(k)	 total_ GPC service time required by a

class k message.	 1	 (I.2.4-3)

In addition to using GPC resources, a class k message

might require various network and device resources. The above

service times describe the overall time required by a task in

directly utilizing the CPU (through Sc(k)) or in requiring any 1/0

processing (through S I (W . The local behavior and buffer overflow

characteristics of each device will also be modelled.

In addition to characterizing the task service times, one

also needs to statistically describe the stochastic process of

task request times

The stochastic arrival process {tn(k),n=l,2,...} is described

as follows. The time tn (k) denotes the instant of time at which

the n-th task (or, job message) of class-k signals its request for

-24-

,0 /*^)

(=4illCom

ri
service - This si final ing can be rokilizod by the ntual arrival

Of request fOl' Service Lit 'the GPC, actual arrival of tho proper

d a, taL	 (01- 11IQS_q aqQ) , 01 • CUl ► SLIC11 schedul ed arrival

The intorarrival times	 are defined by

T
11
(k)	 = ttl(k) - t-m-l(k)l 	 11 -	 (1. 2.

a random variable denoti iq thotok)	 0, Thus, T,,(Q is in ganural z -, 	 I

time between tho, arrivnl of the n•th class k messap, and the arrival

OF '00 P)'eCULNHII^j	 class k MOSS090. WO LISLIally aSSU1110

TTII (k)l to be a sequence Of independent identically distributod

set:ariabl C!S,. We 'then'thenrandom VL

Yk,(k) = ECT(k)]	 avorago interarrival time for class

K. messag es

var[T(Q] Z! Varianco Of tho intoro prival timo,

for class k messsages.	
.4•6)

T 	 ari-,ivol traffic ^issodated With	 aTh e	 c tasksK, Cn further,

be characteri-zed as follows. Tho starts of the requests for

sorvice Of a class k cyclic; 'task- aro zigoin governed by tho stodint -ic

	to 	 -arrival stm",am C ,t (01 and the assoda ,d it iti: rarrival timos (T k0l.

Howove • , Once sesrvicL, his	 for a cortain cyclic task, the

service reqUilf• L'MfIt
is

specific-!d by:

Tr (k)	 between rQquired services of a class k C>tclic task

time period associated with a class k cyclic tosk;	 (L2.4-7)

r
C
(k)	 asorvico time of	 cyclic class k, tnsk witjjitj a si t, gi

associntod Period,	 1 *12 4-8)

t
Il

i

TG(k) = E[T
C
(k)] = mean of T0(k)

variance of TO (k)Var[T(k)] 	 .

(I.2.4-9)

(I.2.4-10)

Fig. 1.2.4.1 illustrates the evaluation of service times

required by a class-k cyclic task.

T0 (k)	 T0(k)	 T0(k)

tfthfN
r'r ^Yk)	 T0(k) ^	 ^ T0(k)

e Fig.	 I.2.4.1.

t
We note that we can allow the periodic tithes T

0
(k), dedicated

to servicing a cyclic class k task, to be identical or of random

c 3

} varying durations.

The arrival times Itn Ml and associated interarrival times

ITn(k)} for scheduled tasks can be regarded to be fixed deterministic

r
values.	 This is observed by noting that the signals indicating

request-for-service by scheduled tasks are issued at a priori

t^
j known fixed instants of time.

Arrival times It n Ml and interarrival times IT Ml of requests

{

t

for service of non-scheduled tasks are regarded as random variables.	 i

F	 ! The mean and variance of the interarrival	 times, T(k)_and V(k)have

E

T

been defined by(I.2.4-5) &(T.2.4-6),respectively. 	 It can be beneficial

{ for the advanced performance analysis to also have the interarrival
i

time distribution function F(,^), assuming IT (k)} to be aT , k	 n

f

(S)

(ZilIC0122.

k

G

{ „

Ee,

r,.l

ki
t-

i LI

sequence of i.i.d. random variables, thus,

FT,k
(x) 	P{Tn(k) <, x)	 x > 0
	

(I.2.4-11)

Unscheduled tasks are many times assumed to arrive according

to a Poisson process at a rate of x(k) [mess./sec.]. Then,we have

FT,k (x) = 1 - e -a(k)x , x > 0 ,	 (I.2.4-12)

so that the interarrival times are exponentially distributed. Mote

that

a(k)	 {E[T(k)])-1
	 [T(k)]-1

average number of class k task a--rivals

per unit time (sec)

Cyclic tasks are statistically characterized by {TC(k),TC(k))

within each activity period. For unscheduled cyclic tasks, one can

assume requests for an activity period to start at random times

distributed according to a Poisson stream with intensity TC(k)

[requests/:,.c].

When considering the buffer beahvior at a device, the following

statistical characterizations are required.

MM = storage capacity of the buffer associated with device i .

T(1)	 interarrival times of tasks (message) at device i.

FIM (x) = P{TI')<(x)), T(') , Var(T (4))	 distribution, mean

and _variance of Ti

y T (') = interdeparture times of tasks (messages) out of the

buffer of device i

FO') (x), T(') , Var(T ('))	 ndistribution, mean and variance of T(i)

H

i^

^I

f:

u
1	

11

I

I	 ^

I

I
	

ZinCoin

SM = processing time at device i.
I

MFS W, Tj (') , Var(S(')) = distribution, mean and

variance of Ski}

Note that task polling processes can be modelled as cyclic

processes, using the characterizations presented above.

1.2.5 The Communication Subnetwork

The 	 4C communi ca ti on sub ne twork s composed of the SUUSYSLeM that

provided for the transmission of information between the GPCs and

the users, terminal and application devices.

For the Space Shuttle DPS, the Avionics communication sub-

network is composed of a network of bus lines. A bus line connects

all computers to a certain device. The lines are used in either a

command or a listen mode. In a command mode the line'use is supervised

and controlled by a commanding GPC to transmit or, receive information.

The other computers can listen. In the listen mode, a computer can

only receive data over the line.

The rate of transmission of data over each bus line is 1 MHz.

10 study the u ti li zation o f each bus line,ne, we set:

f(i)	 rate of transmission of information over bus line
(i) [bps]	 (1.2.5-1)
N

f	 f(i) = average rate of data transmission over a

	

F '^
	

bus line[bps]	 (1.2.5-2)

where

N	 number of bus lines (connecting GPCs and devices). 	 (1.2.5-3)

	

A	 In addition, one is interested in the utilization of the ICC
d

(inter-computer communication)lines. For which we set:

I —-,,Llh^ "J 11-1

.^^

zil"LCOM "

f I	average rate of data transmission over an ICC line [bps]

(1.2.5-4)

Each bus line serves as a half-duplex communication channel

It can also be modelled as a multiplexed set of half-duplex sub-

channels.
Y

We set:

d'
I.

C
L
 (i) = transmission rate over the i-th bus line Ebps]	 (1.2.5-5)

AL
 (i) = bit time lag over the i-th bus line Esec]	 (1.2.5-6)

PE (i)	 probability of a bit error (due to noise,

bursts, interruptions) on the i--th
bus

line.	 (1.2.5-7)

The topological structure of the cOMMUnicationsubnetwork is

specified by a connectivity matrix	 i
i
i

where
3

1 if node i is connected to node j
cif

Q, otherwise

The nodes in our network are the application devices and the

processing GPCs	 r.

In particular, we have

d i	 zcij = degree of node i

J-
r

number of lines connected to node i. 	 (1.2.5'-g)	 j

The degree d i of node i represents the number of lines connected
i

to node i. For certain nodes, this number~ is limited by physical,

performance and reliability constraints.	 ^(

r-2; 11 C-n112	 ^^ `

r

r

ZinCoin

A routing procedure	 (or algorithm) needs to be specified

4

for directing the information between the GPCs and the application

devices.	 Involved in this algorithm is the selection of the trans-

?. mission path.	 Related to it are the tasks of performing memory

allocation, task scheduling, unit selection, element loading and

I/O services.

In the Space Shuttle orbiter avionics communication subnetwor!.

there are 27 data link buses.	 There are also 11	 half-duplex links

for interdevice communications.	 The data links are divided as

follows.

.5 data buses for ICC, max. transmission rate = C = 	 MHz.

*4 data buses for display system communication, C = 1MHz.

.8 data buses for flight critical	 communication, C = 1	 MHz.

•2 data buses for mission control communication, C = 1	 MHz.

02 data buses for mass	 communication, C = 1 MHz.memory

.2 ground interface buses, C = 1	 MHz. j
t

44 PCMMU communication buses, C = 1 MHz.

•4 data links for communication between DEUs and DUs.

i
C = 800 Kbps.

I	 f
•5 data links between DEUs and KBUs, C = 800 bps.

ri

} .2 data links between PCMMUs and Instruments. iIT C = 800 Kbps.

i
A

t

Y

T

E

M

I

is
i

'K

U11

{
4

i

f,

1	 j

i

1

r

t i

per;	 w	 ^	 E	 „.	 xw _

I

t	 •

I.3 PERFORMANCE MEASURES

I.3.1 Computer Oriented Performance Measures

The computer complex in the Space Shuttle arbiter avionics

system is the most crucial subsystem i_n the network, in determining

the network performance. We will define this seciton the major

computer oriented performance measures. In the following sections

we will define user (or task) oriented and subsystem (or network)

oriented performance measures.

It is important to know the extent to which we utilize the

computing, processing and storing capabilities of the computer

system. The following performance indices will refer to any

arbitrary GPC. This is also equivalent to considering the

4 GPCs as a single computing machine for the modes in which the

4 computers are used in parallel as a redundant set.

The index of utilization of a GPC, U C , is defined by

U
	 = relative time during which a GPC is used

= P(a GPC is busy)..
	

(I.3.1-1)

Note that

0 < U
C

<1

Similarly, the index of utilization of an IOP (Input/Output)

processor is defined by

Ulop = relative time during which an IOP is used

= Pfa TOP is busy}	 (I.3.1-2)

Note that 0 <
U IOP < 1

The index of utilization of a CPU is given as

-31-	 o^L1^1.0s2

I

R _ 	 r

1
UCPU -

relative time during which a CPU is used

= P(a CPU is busy).	 (1.3.1-3)

Also,	 0 c U	 < 1.CPU --

The overall GPC system is composed of the CPU, SOP and

associated memory and storage facilities.	 One can thus define a

GPC tobe busy if either its CPU or its lo p, or both, are busy
(s:

(i.e., used for processing, computing or active storing).	 Then,

E we will	 have

1	 - U 	 =	 (1-U
IOP)(l	 UCPU)	

(L.3.1-4)

E

so that

E,
UC	 1	

(l-UIOP)(l-UCPU)

U
CPU	 TOP	 IOR CPU

+ U	 - U	 U	 (5.3.1-5)

It is also many times of interest to find the statistical

Ell

characteristics :governing the use of GPC.	 We identify alternating

idle periods and bum periods in observing the use of CPU, Iop

G and the GPC buffets.	 We then define:

t _

B CPU' Var(BCPU)	
mean and variance of the busy-period

duration
GCPU

for the CPU	 (1.3.1-6)

I ^PU ,Var(I
CPU')	

= mean and variance of the idle-period
4

duration	
ICPU

for the CPU	 (1.3.1-7)

{ BIop, Var(sIOP)	
mean and variance of the TOP busy-

period	 (I.3.1-8)

1 1OP'
Var(I

IOP) -
mean and variance of the IOP idle-

t
period

B
C

, Var(B C) - mean and variance of the GPC busy-period 	 (I.3.1-10)

. , -32-

t

iE

0

'so

,o

^' e

i	 } ;	 r-•
t i	 s	 ;

IC, Var(I C) - mean and variance of the GPC idle-

period

It is important to also measure the utilization of the

memory and stora e devices. For that purpose, the following

performance indices are defined.

UM = index of utilization of the GPC

memory average fractional part of the GPC memory

which is not used.	 (I.3.1-12)

UM = index of utilization of the GPC inpRut buffer 	 (I.3.1-13)

POF I	probability of overflow of the GPC input buffer	 (I.3.1-14)

UM 	 index of utilization of the GPC output buffer	 (1.3.1-15)

POFO = probability of overflow of the GPC output buffer 	 (I.3.1-16)

The GPC throughput index is used to assess the average amount

of data processed, and tasks performed, by the GPC per unit time.

Thus

THE	 the GPC throughput

average number of bits per sec served by the GPC	 (L.3.1-17)

We can also consider the number of tasks per unit time performed

by the computer

TTHC = the GPC task (job, message) throughput

average number of tasks (jobs, messages) processed

by the GPC (or computer, complex)_ per sec 	 (I.3.1-18)

I.3.2 User Oriented Performance Measures

The major index of performance associated with a user or a-

task (job, message) is the associated task time delay.

l

s

{

rcn4inCom

r

Tasks (jobs or messages) are classified into classes (asI	 detailed in Section I.2) in accordance with their priorities,
criticality and required time delays.

The response-time or time delay of a class-k task is denoted

by

D(k)	 time-delay, response-time of a class k task

(message, job)	 (I.3.2-1)

The response-time D(k) is the period of time measured from the

instant of the class-k task records its request for service to the

f
instant its service has been completed.

We also set:

G!

E^

W(k) = waiting-time of a class k task

I! = time from the instant the task request is recorded

<< to the instant its service starts (I.3.2-2)
f

Thus, W(k) denotes the time duration that a class task is delayed

until	 its processing has started.

The processing time required by a class k task has been

defined	 (see (I.2.4.3)) as S(k). 	 We then have that

{

k
#4

D(k)	 _	 W(k) + S(k)	 [sec] (I.3.2-3)

i The time-delay-and waiting-time functions are random variables.

1
i We are generally _interested _in their distributions;

FD,k (x)	 =	 P{D(k)	 < x}	 x > 0 (I.3.2-4)

t FW,k(x)	 =	 P{W(k) < x}	 x > 0 (I.3.2-5)

In particular, it is of interest to use as a performance measure
lot

4

the user average time-delay, 	 We set:

f	 =t'

D(k)	 -	 E [D(k)] = average task k time-delay (response
time) (1.3.2-6)

j
W(k) = E[W(k)]	 average task k waiting time (I.3.2-7)

' Since

^ S(k) =average processing time required by a class k task,

we have

D(k)	 W(k)	 + S(k)	 . (I.3.2-8)

It is also important in many cases to evaluate the variances
r

of the task delay and waiting times;

f Var[W(k)],	 Var[D(k)]a (I.3.2-9)

Var[D(k)] = Var[W(k)] + Var[S(k)] (I.3.2-10)

The standard deviation of the class-k task response-time is

then given by
w

r
a(k)	 _' filar D(k) (1.3.2-11)

In measuring the Beale task response-time, one is interested in the

T probability
t ^

P{(D(k)	 -	 D(k))> oc	 , (I.3.2-12)

expressing the probability (fraction of time) that the response

time deviates from its average value by a.	 By Chebychev's
4

3 inequality, we conclude that

P{I D (k)	 - D(k)j	 a 3a(k))	 z	 9	
11 (I.3.2-13)

r o

^t Therefore, we can est i mate the	 Bak de	 ka^ of a class k task bh	 ^	 n	 e	 P	 __-_l ,.^.	 Y
S

{ setting

t Liu

ibmw AM

d!

^	 r

i

:

}

^`:`^	 lf2	 Of^2

P(k)	 D(k) + 3Q(k)	 (I.3.2-14)

Relation (I.3.2-13) indicates that more than 89% of the time

'	 the delay D(k) will be lower than this O p value.

Other user related performance measures can be defined in

relation to specific modes of operation.: In certain . cases, some

tasks are rejected for processing. We then set:
t

f fir	 PR(k) = probability that a class k task is rejected. 	 (I.3.2-15)	 i

Certain devices, or terminals (users) experience local

queueing phenomena. Considering device i, one then defines:
is

UD(i)	 index of utilization of the device i buffer;	 (I.3.2-16)

MD (i) = average occupancy of the device i buffer; 	 (I.3.2-17)

x

POF(i) = probability of overflow of the device i buffer; 	 (I.3.2-18)

User related reliability measures are of prime importance as

well. These will be detailed in the section on network reliability.
9

In particular, it is of interest to specify and compute the following;.

measures:

LM	 probability of loss of a class k message 	 (I.3.2-19)

LD (k)	 probability that class k message (job, task)

does not receive service within 'D sec. 	 (I.3.2-20)

I.3.3 System and Network Related Performance Indices f,

The reliability issue of the topological structure of the
i

network gives rise to a number of invulnerability measures.

In particular, one defines:

E
l

a.
i

-36-	 L f2 C-0 M,

^	 s

_	 , ,...	 ,.... :.._—..._. _....... ...e.,-.^-.>_....^_.,.....:..._.x.n.^B .>:-.r.i-,..-,._.X..:...___ d ...:,:mow.+.. 	 . .:,	 s..	 ^:	 ,..	 ..	 -s.....

zilteolll

K(i) = minimal number of line failures that disconnect

device i (or application process i) from the

computes complex;	 (1.3. 3-1)

P K() = probability that device i, or application

process i, will be disconnected from the processing

resources (due to line failures, terminal failures

or GPC failures).	 (I.3.3-2)

An overall network . throughput measure is

TTH = average number of tasks processed by the

system per unit time.	 (1.3.3-3)

We can then write

TTH	 TTH(k),	 (1.3.3-4)

k

The network delay measures are specified by the values {D(k)),

{D(k)+3d(k)1. Indices of utilization of the GPC memory and buffer

and the device buffers have been defined above.

Performance indices indicati ng the sensi tivity of the network

operation to fluctuations in traffic are important. for that purpose,

we set

oD(k)	 change in the average class k message delay as 1
result of the increase of the overall traffic rite

according to Cap (k) Cmess./secjl.

ATTH = change in 'the network throughput with the A increase

of intensity of task ,demands

Also of importance are measures indicating the rg owls 	 j

capability of the network. In particular, we set:

Z11. Coilt
-37-

^p	
^,,.'^ '^4E..,?►,mac	 :,^.^,.__r...:._.._ .._.^.___.,.....;^...^^_.^ —.^....,..^..,^.,^...,.w,_ '	 ^	 ._	 . _	 >.	 ..

 i c^L,40Z•l...Ol9^

oMg(Dk),oMC (D k) = average growth allowed in occupancy of

computer buffer (B), or memory (C), attaining

average task delays not higher than fD}.
k

d U C (D),oU(i,D k)	 average growth allowed in index of utilization

x ' of GPC elements	 (UPC,	 IOP, buffers), or

device i elements, causing message delays

not higher than	 (D }.k

The following sections will present proper queueing models

to be employed in analyzing the Space Shuttle DPS.	 We will also

present performance analysis results for such models. 	 The

network and computer complex designer will then be able to apply

the proper model to the underlying subsystem he is analyzing. 	 He

ri will subsequently be able to compute the set of relevant performance

measures indicated above.	 In particular, note the following main

families of performance indices that we defined above, and will

Ell
compute in the following sections.

*Task (job, message) response times 	 (queueing and service

time delays).

i •!System Throughput.

System indices of utilization.

i

•Reliability measures

•Performance sensitivity measures.
4

•Network growth measures.

^I
J.

in,	 01r^

I

T,

T
"I„

4

kLI

i

I.4 TIME-SHARING - QUEUEING MODELS

I.4.1 Time-Shared Single Processor Systems

We consider a queueing model for a system wheren the serving

resource is modelled as a single server queue. This resource

can model the GPC of the Shuttle orbiter avionics systems. The

service provided by the latter includes the relevant GPC CPU

and TOP processing functions. Demands are made upon this single

server processor by the arriving messages or requests. Due to

the finite resources available to the server, and its finite

processing rates, arriving messages will have to be queued at a

buffer before they can be processed. A scheduling algorithm needs

then to be devised to control the assignment of service resources

to the arriving messages and demands.

We consider in this section.such scheduling algorithms that

' use the service facility on time-shared basis.

The general structure of the queueing model 	 is shown in

Fig.	 I.4	 1

CYCLED MESSAGES

ARRIVALS OF STORAGE- PROCESSOR MESSAGES
MESSAGES QUEUEING DEPARTURES
AND REQUESTS SYSTEM (CPU+IOP)

Figure I.4 1

In the typical time-shared system, one generally wishes

! to attain a message average queueing delay (response time) which

t is proportional to the average message length.	 Thus, short

1

F

tE

^'	 t

}

r

f

s

j

bl Co 72

messages expect to experience short waiting-times, while long

1 4

	 messages are prescribed longer time delays 	 This is achieved by

Y
	 the feedback queueing model shown in Fig. I.4.1-1.

In this time-sharing system, the server (GPC) allows a

x
	 message to stay in service (be processed) only for a certain

time period, called qUantum. The quantum duration may vary, and

i	 it can depend upon the state of the system, the message priority

E
ij

d

r
f ^}

f

a
E

t

4E

^r
1

i

r -^

f

vq and the message past processing record. If the processing time

required by the message or request is not satisfied by the end of

the quantum service period, the message is returned to the queueing

(storage) system, where it joins the queue of messages waiting

for service. Otherwise, the processing required by the message

has terminated and it leaves the GPC to its destination.

I.4.2 Traffic and Performance Parameters

We need to statistically describe the stream of message

arrivals at the server, and the service (processing) demands made

by each message.

For that purpose, we generally assume message interarrival

times to be independent identically distributed random variables.

The message interarrival time distribution is set equal to

AM	 P{interarrival time < t} 	 (I.4.2-1)

Message service times, or required overall GPC (processor) times,

are generally assumed to be independent identically distributed

random variables, for any specific class (or priority group) of

message. We then set the message service time distribution to be

B(t)	 P{message service time < t}	 (I.4.2-2)

•4/1^Of7'L

s

1	 ^,
oL.^/Z^Ofr2

It is common to assume that messages arrive according to a

Poisson process with intensity a [mess./sec] 	 This amounts to

assuming an exponential distribution for the interarrival time:

A(t)	 1	 e	 t > 0	 (I.4.2-3)

A Poisson arrival streams models a complete random stream of 	 n

t arrivals (in that the interarrival durations follow a memoryless

i
r distr;bution).

It is also many times convenient, to simplify analytical

` studies, to assume the required message service time to be

distributed.exponentially	 Then

° g(t)	 _	 1	 - e- Pt	t > 0	 (L.4.2-4)

and we set the

Average Message Service Time = u l	 [sec/mess.]	 (1.4.2-5)

1
In _a time-sharing system, the quantum service provided by the

processor is usually set equal 	 to a constant o, or is defined as opn

to depend upon the message priority class p and upon its number (n)

of prior entries into service. 	 Also included in this 	 durationquantum

is the swap time period, spent in transferring messages between the

queueing and service facilities.-

llfiT

The main performance measure used in this section is the

message average time delay (response time) D. 	 It represents the

average_ overall time spent in the queueing system by the server.

The average time spent by a message is waiting at the queueing

!fit
facility is denoted by W.	 The average message service time is S.

We clearly have

j^

l	 I4	 ^

_A

j _s	
f	 r

1	 ^

I

i ,

D = W + S	 (L.4.2-6)	
I

As a major objective of this feedback system is to attain a

message time delay proportional to the message length T,DaT, we

can represent explicitly the delay and waiting time measures for

a message as functions of its required service time T,and denote

then by D(T) and W(T), respectively.	 We have
r_

D(T)	 =	 W(T) + T	 (I.4.2-7)

In the following, we describe certain useful scheduling

algorithms for time-sharing systems, and indicate their performance

characteristics.

We assume messages to arrive according to a Poisson process

with intensity ^ [mess./sec].

I.4.3	 Batch Processing:	 First-Come First-Served

The structure of the basic queueing system, where no feedback

is employed is shown in Fig. 	 I.4-2,

ARRIVALS
PROCESSING DEPARTURE,

d

QUEUE
FACILITY

Fig.	 I.4-2.

Messages arriving at the system are stored in a queue.	 They

 server (processor) on a first-comeare served by the single	 (p) ^
y

first-served basis. 	 Once-a message is accepted into service,

it is allowed to	 s complete-it	 p rocessing.	 The quantum is thus_	 P	 9	 (q ^

of infinite duration.)	 The average message response time D(S) z

is given by the well-known Pollaczeck-•Khintchine formula:

LJ

S.

oL^n^orn

_R	 0(T)	 -2-(—, sp	 + T, for p < 1,

where

p AS = traffic intensity parameter;

a	 '

(1.4.3-1)

(I.4.3-2)

m
	

S	
J	

tdB(t) = average message processing time;
	

(1.4.3-3)

0

S2 =	 r	 t'dB(t) _ second moment of message processing

0	 time. (I.4.3-4)
j,

f Note that

j S2	 =	 Q2 + S2 (1.4.3- 5)

F
' where	 Q is the standard deviation of the message service time.

t

The traffic intensity parameter p yields the ratio

average message processing time
average message interarrival time

It is a measure of congestion in the system.	 We obtain

i
W = D =	 if p > 1 (I.4.3-7)

so that arbitrarily high time delays are experienced, as the system

evolves in time, by messages if p > 1. 	 Hence, we are interested in

operating the system such that 0 < p <	 1, and finite queueing

-delays result.

We note that the average message response time depends only

on the first two moments of the required message processing time,

and not on its distribution.

The message average waiting time W(T) _ D(T)-T, is given by

r

i

E
(

k	

^i

ii 4

f
f

i

w

L -
1

i

i

{

Ir

f

t	 i eel

4
^ Y.

Y

f

t
Sa

}

L ^Z ^Q f7Z
i

I

I

W(T) - Z l S 2
-(1 -pj	 for p < 1	 (I.4.3-8)

I
I

For the special case, where message processing times follow
i

exponential distribution (2.4), we have

l

S = 1S = 2(1/u) 2 	(I.4.3-9)	 J

j

so that the message waiting time is given by
i
i

W9 where p = — < 1	 (I.4.3-10)a/u	 a	 I

1 - p	 u

Thus, for this (FCFs) model, the waiting time W is independent

of the message required processing time T.

As noted in Fig. I.4-3, the message waiting time function W

becomes a very sensitive function of p as p approaches 1. Thus,

the messsage queueing delay increases very fast as the system's

congestion approaches its saturation value. One should therefore

design the system so that it avoids the traffic intensity region

close to saturation, i.e., close to -p=1.

W,U
_	

o

11^15.^1

?cep	 I

S^^`

Traffic Intensity (p
1

Figure I.4-3.

The average queue-size parameter X, describing the average

number of messages in the system, is given for the latter queueing

system by

i

a

mJ

X = P
	

for p < 1	 (I.4.3-11)

^I

Note that for - 0.8, only an average-of 4 messages are in the_	 p -g
C

a	

^'
i

i!

4

E

i^
it

4

€j

R

processing system (queued or being processed), while for p = 0.9

and 0.99, the average queue sizeis equal to 9 and 99, respectively..

We also have that

P{system is empty}	 1-p	 for p < 1	 (I.4. 3-12)

so that

U	 P{system is busy} = p	 for p< 1	 (1.4. 3-13)

Thus, p serves as,a measure of system utilization. For p < 1, the

processing system is kept busy a fraction p of time. For p = 0.8

and 0.9 the processor is busy 80% and 90% of the time, respectively.

Clearly, one must compromise between having high enough a

processor utilization factor and low enough message response times.

The system utilization index U = p i_s also shown in Fig. I.4-3.

L.4.4 Round-Robin Processing

In a Round-Robin (RR) processing, the processing (GPC) facility

serves each message for a fixed quantum period A. Newly arrived

messages join the end of the queue, When they arrive at the end

of the queue they are sent into the processing facility where they	 1

are served for a period of d sec. Then, if their service demand

is fully satisfied, they leave the system. Otherwise they are cycled

back to the end of the queue, starting again the same queueing-service

process. A RR system struct u reructure is illustrated by Fig. I,4-4.

i^

,E

i
"

1

}

r^

r

t f

CYCLED

PROCESSING
NEW	 DEPARTUR

ARRIVALS	
QUEUE)

FACILITY

The RR service discipline can also be regarded as a processor

sharing service procedure. To explain, this notion, we note that

when there are n messages in the system, and if o is small, each

message is in fact processed (served) by the processing facility

at a rate of n sec/sec. Thus, we can regard the processor as

shared among the various messages on an equal basis.

For a round-robin system with arbitrarily small A value, the

average message delay D(T) is given by

D(T) = 1Tp	 for p = AS < 1,	 (I.4.4-1)

where T is the required message processing time. The average

message waiting tine is then equal to

LLI

W(T) =	
PT	 fore = aS < 1	 (I.4.4-2)l - P

Thus, the RR system yields a message response time which

is linearly dependent on the required message processing time T.

For exponentially distributed message service times, we can

note that messages requiring shorter (longer) processing9 	 q	 9	 er{	 g) P	 9 times than

^t	 the average one will experience shorter (longer) response times in
^h

I
^.p

lv

(is

r
i

1..

t.i

4.^

r

^u

rn

F{

<.L

e
a round-robin system than in a first-come

I.4.5 Round-Robin with Priorities

We divide the arriving messages into

p-priority message is a message which beli

where p is an integer in {l,2,...,P}. A

considered to have higher priority than a

first-served system.

P priority classes. A

mgs to priority group p,

p-priority message is

q-priority message if

p<q•

We assume P streams of message arrivals at the single server

queueing system. The stream of p-priority messages is taken to

be a Poisson process with intensity ,N p [mess./sec].

Assume p-priority messages to have exponentially distributed

processing (service) times with mean u1 [sec/mess.].

P
A p-priori y 'message is assigned an r 	 fraction of the

processing time. We can choose r as desired, setting higher r

values for higher priority (lower p) messages.

For example, let f be an arbitrarily chosen function that

sets higher values to higher priority (lower p) messages. When

'there are x i messages at the system from the i-th group, i=1,2,...,P,,

we set the fraction r of processing time dedicated to the p-priority

customer to be

f
rp	 P

fix
i=1

Thus, we have specified a processor sharing system where the share

of the processor assigned to each message depends upon its priority

group.

i ^F	 ^.

r	 i

i
L

4

i	 k

^	 i

ZhICOM{

` e avera ge del	 D T	 o a- r'o . t

	

Thay p () for	 p p i ri y message is then

	

T	 R	 fi

DP (T)	 l-P	 1 +	 ^f	 -1) P.^	 (I.4.5-2)

	

=7	 p

where

	Pi = u	 < 1, P =	 Pi	 (I.4.5-3)

Thus, the message response time again depends linearly upon the

message service time T, as for the round-robin system. But, in

addition, we obtain the message response time to depend upon

the message priority class.

By properly choosing the discrimination function fp, we can
s

separate, as we wish between the response-time vs P curves of the

 various priority classes. Typical curves for the message waiting

1.	
time functions Wp are shown in Fig. I.4-5.

W
!F	 P

j	 p=4	 p=3	 p=2
ii

p=1

t
i

i

t

t	 (
1	

P

4	 :,t

M	 Figure I.4-5.

t

f
,

I
I.4.6 A Round-Robin Scheme with Time-Varying Priorities

We can assign a time-varying priority index to each message,

depending on whether he is being in processing or stored in the

queue. Thus, the priority of a message is set to increase linearly

at a rate a whenever it is waiting in the queueing facility.

His priority is, on the other hand, set to increase at a lower

rate s, where

a > R > 0 ,

when it is in the service (processing) facility.

Service is provided to all messages in the system which

presently have the highest priority. When more than one message

have the present highest priority value, all the latter are

served in a round-robin fashion, thus sharing the processor

resrouces.

An entering message will then increase its priority at

a higher rate than those currently served. Eventually, this

message catches-up with those being processed. Then it is

entered into the service facility and remains there until its

service demand is satisfied.

The average message delay D(T) in this system is given by

1T - —
D(T)	

1
^P	

+	 u	
(I.4.6-1)

1 - P(1- a]
where

I

P	 = a/>J < 1	 (1.4. 6 -2)

A is the intensity of the Poisson message arrivals, and message

service times are exponentially distributed with an average

message processing time of

^	 o^cnt_.om

n

,

4

I'

;i

f. -

,t

F

f:
r

t	
j.	 .. f
a{JL	 -li	

—'il	

` y	

i.

S1r

	
1

7	 V	 I	 t	 ;	
^	 ,	 I I

.
I

^t	

tt

S = j [sec/mess.]

The average message waiting time is

W(T) = D(T) - T	 (I.4.6-3)

J

j

i
The dependence of the message waiting time W(T) on the requried

processing time T is shown in Fig. I.4-6, where the ratio R/a

if	
is a parameter.

0
W (T)

- 1/8

1/2

FCFS	 1

VIR
1	

T4	 T = l/t,
Figure I.4-6.

UJI,
We note that a message which requires a processing time T

.	 Y
equal to the average one, T = 1/u, will experience the same

response time under any ^/a value.

When a/a = 1, the oldest message in the system captures

the processor and uses it for itself alone. Hence, we obtain

a FCFS queueing scheme.

When a=D, we obtain a round robin scheme, since a message

Udoes not gain priority while being processes.

Changing	 /a between 0 and 1 we obtain response time curves'

that vary continuously between those of a FCFS system and a RR

^J	 scheme.

i
i

r

i

l

i

1

i

E)

i	 oC.c,nC^oin

I.4.7 Foreground-Background Processing Schemes

In a foreground-background service scheme, we have two

queues. A newly arrived message joints the first queue. It

receives there its first quantum of service o l , being served on

a FCFS basis. Thereafter, the message joins the end of a second

queue. From then on the message can join only the second queue.

The processing facility always serves first the messages in the

first queue_, called also the foreground messages (or jobs, tasks).

When the first queue is empty, the processor turns to serve the

background messages queued in the second queue.

The generalized foreground-background (FB) scheduling

scheme described next is structured so that service is always

given to that message which has so far received the least service

of all.

A new message which finds the system empty is given the full

attention of the processor. It is served at a rate of 1 sec/sec.

f	 If, prior to thetermination of its service, a new message arrives, the4i

processor gives its full service to the second message. This

tAq
continues until the second message has received the same service

time as the first one. Subsequently, if there are no new arrivals

i	 and these messages have not yet departed, the processor is shared
f

among these messages, yielding each service ;rate of 112 sec/sec;

	

t	
and so on. Thus, the processor always serves those messages

that have so far received the least service.- 3

The average message response time D(T) is given by
3

D(T) =
 A(T)

- p+ T	 (I.4.7-1)	 1

	

„a	
,

i

._
t	 ,

k

^/2 Ohl	 i

where

A(T) = aS_T 2
	

(I.4.7-2)
20-P T

S(T)2 = f Tl X2dB(x) + T2 [1-B(T)]	 (I.4.7-3)
J
0

T

STTT	 r	 xdB(x) + T[1-B(T)]	 (I.4.7-4)

0

PT
	 aS T < 1	 ,	 (I.4.7-5)

where B(x) is the distribution function of the message processing

time. We note that

S	 S, S(-)2-	 = S I P. `= P 9	 (I.4.7-6)

and

_	 A(-) = W(FCFS)	 (I.4..7-7)

where W(FCFS) is the message waiting time in a FCFS queueing system.

A typical curve of D(T), for exponential service times, is

shown in Fig. I.4-7.

D(T)

T

Figure I.4-7

r
E

t
{

f

E

i

a

I

4.

x

One computes the slop of D(T) to be equal to L at T =0 and

	

4 l	 to 1/1-P at T	 Thus, a message with a very short required
gipp.

processing time is given here a service rate close to unity. On 	 l

	

r	
the other hand, messages requiring very ton

	

^	 9	 q	 9	 Y	 9 Processing. times

f

	

}	 has to wait until all the messages arriving during its requried

	

i	 service time are first processes; thus experiencing a services:

	

{	 rate equal to that given to it in a RR scheme.
i'

1.4.8 Multilevel Processor Sharing Schemes

A fami ly of multilevel processor sharing service disciplines

can be defined by dividing the message (or job, task, process) 	
7

processing time into the
{ai}

values:

Y 0 = a0 < al < a2 <...< aN < a
N+l = co.

We now define N+1 scheduling procedure. The i-th procedure (SP)i,

	

1	 is applied when the message has been received the service value
i

rt	 ...	 of x in the interval

k
{	

ai l ` x < a i	 = 1,29..,,N+1

	

1	

- —

iA

	

{	 We can set (SP) i to be either FCFS, FB or RR. Also,

	

#	 between these intervals messages are treated as foreground-

background jobs, so that the processor gives its complete	 }

attention to messages in the lowest level nonempty queue.

ri As a FB discipline is used between level, one can observe 	 t'`

that the message response time depends only on the discipline	
t

used when it departs from the system, after receiving its complete
,t

	

i (processing requirement.

Subsequently when a message departs at the i-th level,

wa R
	

^ -

i

P

m

l

pp

	 ^	

S	 j
	 i

t	 1

r
receiving there FCFS service, his delay time is given by

A(a i) + T
D(T)	 1-p

ai-1

where A(x) is given by (I.4.7-2) and p by (I.4.7-5).

When the message last level i uses an FB discipline, D(T)

is given by the FB formulas, assuming the entire level below

to use FB procedure.

For exponentially distributed message processing times, one

can note the response curves D(T) for FCFS multilevels or RR

multilevels to be close to the response curve obtained when a

single FB service discipline is used.

One can properly choose the various levels and associated

disciplines so that a D(T) curve with certain desired characteristics

are obtained for the underlying processing system

I.4.9	 Comparing the Performances of the Time-Sharing Schemes

irk

L_0
The message delays experienced under the various time-sharing

schemes presented above can be compared as follows.

For messages that require very short processingtimes the

foreground-background (FB) service discipline yields the shortest

' response times.. 	 Comparable performance is exhibited then also bP	 P	 P	 Y
t

E a round-robin (RR) scheme.

`1f

For messages that require long processing times, the first-

first-(FCFS)	 disciplines	 the lowestcome	 served	 service	 yields

response time values.	 This is also the case when medium-valued

required service times are involved.

r} The round-robin scheme with time varying priorit i es, also

I

f called Selfish Round Robin(SRR) scheme, as well as the Multi-level	 (ML)

scheme, yield D(T) curves that are between those of the FCFS and

FB ones. Figure I.4-8 illustrates the typical situation.

E
W(T)

E

FB

NfC	 RR

SRR

	

4	 (FCFS

r
T

Figure L.4-8

In designing the time-shared processing part of our computer

	

J ;;	 system, we can thus attain the proper response time D(T) vs requried
^l

processing time (T) curve, by choosing the proper multi-level (ML)

scheme, or jsut a, FCFS, RR, SRR or FB scheme. The optimal choice

can be made based on the presented results, for each traffic-

message environment under consideration.

•

T

5

.j

{
t	 '

I

,

i

!

-i
I

i

UA

{

a

i
f

t	 i

I

,f

1, !

w.	 ^	
!	 s	

t
	

yer ^^ •...	 1	
v

1	 1	

Si

Zincol".

I.5 PRIORITY QUEUEING MODELS

1.5.1 On Service Disciplines

Messages or requests for service arriving at the central

processing (GPC) system are queued (stored) in a buffer until

the processor is ready to serve them. These messages need to be

properly ordered for service. This ordering follows the service

discipline, or scheduling algorithm, governing the operation of

the underlying queueing system.

A multitude of service disciplines can be defined and imple-

mented in our data processing system. Different disciplines will be

required at different times, while different jobs and tasks require

service. It is thus of importance to implement a d ynamic (flexible)

schedulin q rule.

In this section we classify and discuss some of the priority

service models of importance and relevance to the Space Shuttle

orbiter avionics system under consideration.

In designing a scheduling algorithm, one can assume the a priori'

distribution of priorities among the various messages (or tasks),

according to their desired response time and measure of importance

or urgency. In turn, one wishes to dynamically modify the order of service

of messages in the system in accordance with the state of the

system, so that a proper performance measure is optimized. Such

a performance measure involves the satisfaction of the required

response times by the various messages, in accordance with their

class, urgency and statistical characteristics.

I.5.2 Scheduling Algroithms for Time-Shared Processing Systems

We have described in Section I.4 a multitude of scheduling

^^2^fz2

.. r 	 z

CL-1COm

algorithms for time shared processing systems. We have also given

there the associated response time functions and compared the

performance characteristics of the various schemes.

In these time- sharing systems, the processing center has

been time-shared among the messages. A single processing unit has

been assumed. The following disciplines have been noted.

First-come first-served (FSFS) service discipline. Messages

are served in order of arrival. Thus, messages are queued at

the storage facility in the order of their arrival. When the

processor becomes free, the message at the head of the queue is

accepted for processing,

Round-robin (RR) service discipline. The processing system

is time-shared among the messages in the system on an equal

basis	 Thus, if n messages (tasks) are in the system (requiring

processing), each message is processed at a rate of 1/n sec/sec.

Round-Robin with Priorities	 The processor service time i-s

shared among the messages (jobs) in the system in accordance with
fi
rf

(the message priority class. Thus, messages which belong to a

j	 _higher priority class are assigned a higher service rate.

'j

	

	 Round Robin with Time-Varying- Priorities. Messages that are

currently being processed are assigned a lower shared processing

rate than messages that have just arrived..

$	 Foregi,ound-background (F6) Processing Schemes. Messages are

stored at two different queues. Newly arrived messages are assigned

to the first queue which is always given the higher priority for

{{
	 service. They are then given a fixed amount of service time and

t	 subsequently entered into the second queue. The latter is
}

a

MWi
4

i

if

1

1

I

I_
i

j

rh

{ (__ l i com

served only when the first queue is empty. Differentiation is thus

made between foreground and background service processes.

Multilevel Processor Sharing. The service discipline assigns

a proper mode of scheduling rule to the message in the system

according to the amount of service already given to the message.

In this way a set of service discipline level is set up, so that

the different levels are controlled between them by an FB algorithm.

We have noted the response time experienced by a message using

the RR, FB and other related time-sharing schemes mentioned above, to

be proportional to the required message processing time. To obtain

this property, the various schemes utilized a feedback service

procedure. In this way, a quantum of service is given to each

message at a time. Such a procedure needs to be adopted when we

have no , prior knowledge concerning the message (or job, task)

required processing time. The feedback scheme estimates this

time through quantization.

However, if prior information is available concerning the

required message service time, a much simpler'nonfeedback structured

scheme can be devised, incorporating this information, to yield the

same message delay characteristics. This is many 'times the case

'in our system. Such priority service disciplines will be presented

in this section.

We also note that the FCFS service discipline yields a message

waiting-time which is independent of the message required processing

time.

We can also consider a; data processing system with a set of

processors available to serve the messages. The queueing scheme

P. AL.%

i

I^

f

i

^	 I:1

i

^	 R

{	

r	
i 	

s

i^

•	 fCAIC0/)z

then involves multiple service channels. The resulting queueing

characteristics are similar to those mentioned in Section 1.4.

except that the number of messages can be processed simultaneously,

so that the multi-processor yields a higher service rate.

Another service discipline that could have been mentioned is

the last-come first-served scheduling procedure. This discipline is

noted to yield a response time vs required service time D(T) function

which is identical to that obtained by a round-robin scheme. The

schemes however yield different message delay variances.

We thus note, as will be observed again later, that to

compare various priority service disciplines one needs to compute

and compare also the variances associated with the message delays.

I.5.3 Service Disciplines for Messages in Different Priority Glasses

Messages are many times classified into different priority

classes. This classificationis affected by the message index of

urgency and importance and by the message required response time.

Priority- 1 (or class -1) messages have higher priority than

priority-2 (or class-2) messages. In general, if there are P

priority classes, we assign a higher priority to service class-k

messages over class-j messages, whenever k < j. Messages

belonging to the same priority class can be served according to

sny pre-assigned priority procedure. In particular, we assume,

unless stated otherwise, that a FCFS service discipline controls

the service of messages belonging to the same priority class.

In considering the service of messages belonging to different

priority classes by a single processing center-, we can distinguish

between the ;following disciplines.

10
L/2C54	 fi .^U _ t

-59-

s}

C

i

r	
z	

. ,l	 ^^^ ^	 ^	
i	

_ E

	

x	

r

	

^-..._ .._.._._.^.	 :5;.;..-.at .., .: _. s.	 _	 a:....	 ^»a.._,^_v . _,._.tea ^	_..a.::^.:..::__._.^:.:^:..t ^..-_.-;to.....-.-......c-....:..:...-*r ,Fw+..;r+.4 	 1....,P.	 _ :..,	 -	 _;ate.	 tom...	 ^.`..L_......._.. '^	 ••;
fj

+	 1.

I , oG.l^/2CO"I

Nonpreemptive Priority Discipline.	 Messages are ordered for

i	 service in accordance with their priority class. When the processor

becomes available for service it accepts the message of highest

priority. A FCFS ordering is used among messages of the same.

priority class. If, however, a higher priority message arrives

at the system while a lower priority one is being processed, the

latter is not preempted and its processing is allowed to be

carried to completion.

Preemptive Resume Priority Discipline. The scheduling

algorithm is as above except that if a newly arrived message

belongs to a higher priority class than that presently in service,

it is allowed to preempt the currently served message. The pre -

empted message joins the queue, and when accepted for service its
k	 .

service resumes from the point it has been interrupted.

Preemptive Repeat Service Discipline.	 This scheduling
'j

procedure operates as the preemptive resume one except that

E the service of a message that has been previously preempted starts

#	 ,! from the beginning.	 Thus, all	 the processing provided to a message

`
,s

is assumed lost if this message gets preempted by a higher priority

message.-

;j I.5.4	 Analysis of a Priority Queueing System

{ Consider a system where messages are classified into 2 priority

classes.	 Class l messages require high priority, while class 2

messages are of low priori ty .

f Messages of class I arrive at random at the system according

to the statistics of a Poisson process, with an arrival 	 intensity of

a [mess./sec].	 Class-2 messages arrive independently, also according

...,...	_......^.,....o.....'fn..o.^,..n.^._,,....-,..,. ,.. ..^e,...m_ .,^_.. 	 _....__.^.^...n._	 _.	 _	 .r	 ,._ _.	 ^ LrI. ^A.IM

z

z'.

3

i

E
i

I

4

7

1	 ,.	 r	 ry

ttt

1	 ^	

11

1

to a Poisson stream, with intensity X2 [mess./sec].

The system is assumed to provide a single server; i.e., a

single processing facility. Messages of class 1 and 2 may require

different (random) processing times. Thus, we set:

S 1 = average processing time required by a priority-1

message	 (I.5.4-1)

S2 = average processing time required by a priority-2

message	 (I.5.4-2)

The corresponding second moments of the required message processing

times are denoted as

Sl	
E(S2)	 S2 = E(S2)	 (I.5.4-3)

The average waiting time experienced by a randomly chosen

message is denoted byW. Its average time delay (response-time)

in the system is denoted by D. The average waiting time and time

delay of a priority-1 message is W and D 1 , respectively. Similarly

the average waiting time and time delay of a priority-2 message is

W2 and D2 , respectively.

We can write.

D = W '+ S	 (1.5.4-4)

Dl	W1 + S	 (I.5.4-5)

D2 = W2 + S2	(I.5.4-6)

where S is 'the average service time of a message chosen at random.

Also, since a message chosen at random will belong to class L with

probability a
l
/a, where a = A

l + a2, and to class 2 with probability
	

l

a21a = 1 - A l /,, 'the following relationships hold

a

10
c^1f2^Ol12

t

^1
1

^2
W	 = a W + — W1	 2 (I.5.4-7)

al
X2

F.

S	 =	 a S1 +	 S2	 ' (L.5.4-8)

X1.	 •
p	 = D

1
+ 2

	D2 (1.5. 4-9)

The traffic intensities of the lower priority and higher

priority schemes, p2 and p l , are given by

pl = a1 S 1 (I.5.4-10)

P	 =
2 aS22

(I.5.4-11)

The traffic intensity p associated with the combined stream of arrivals

i	 L
is equal	 to

P 	 p l + p2	 =	 a 1 S 1 + X 2 S2
(I.5.4-12)

F

We assume the processor to employ a non-preemptive priority

j service discipline.

If p l	 > 1, then high and low priority messages will experience

f
i arbitrarily long time delays as the system evolves in time. Thus, '

`= =	 if	 l.i W1 W2	 p l	 >

) If however p,	 < 1, the higher prio, , ity message experiences a

a
finite waiting time given by

1 T2

t W l 	 2(1-p a	 for	 pl - X1 5 1	 ` l
{L.5.4-13)

t

l 1

Also, we have

PIX =0) _ =	 P(W 1 =0)	 =	 1-pi,	 for pl	 < l (I.5.4-14)

„

x

3 ^4

c^C.t^i^v^fz
k
I

i where X 1 denotes the (queue-size) number of class l messages in
i

the system. Thus, with probability 1-p 1 there will be no higher

priority messages in the system. The average delay of a priority

message is given by (Pollaczek-Khintchine equation)

151 + X2 2
w	 D^	 W l + S1	

721-P i)	

+ S1,	 for p 1 < 1	 (I.5,4-15)
 ?

The average number of priority messages in the system, denoted

as X1 , is equal (by Little's Theorem) to

X
I
 = a 1 W 1 + pl = a1Dl

XIS + X 1 a2 2
-	

2
1_pl	

+ pl	
(1.5.4-16)

	

where pl	 a 1S < 1

L,4	 if

	

p= PI + p2
	 l

class-2 messages will experience arbitrarily long queueing delays,

t
tx	 so that

D2	
W2 =	 for p > 1	 (I.5.4-17)

Vt	
For p < 1, the average waiting time for a lower priority message is

given by ^ _T

W2	 211	 1_2	 for p < 1	 (I.5.4-18)^j^P

The responsetime of a lower priority message is thus equal to

a ^S +_a2S2
D	 + S	 for p = a S +a S< 1	 (I.5.4-19)2	 2 1 _

pl 1 -p	 2	 1 1 2 2
I

1-1

E

{

zincoln

The average overall queue-size, i.e., average number of

both.class messages queueing in the system, is equal to

XL:^ 1 S^ + a2S2]
X=	

2(1 -p
	+ p, for p< 1	 (I.5.4-20)

The probabilty P(X=0) that the system will be totally empty is given

by

P(X=0) = 1- p = '- a 1 Sl_ X2S2 ,	 (I.5.4-21)

for p < 1. Therefore, the system index of utilization U, is

expressed as

U = P(X > 0)	 p = a 1 SI + k2S2 .	 (I.5.4-22)

t
Thus, the central pr,oc,,essor is kept busy in serving (processing)

both priority and regular messages a portion U 	 p of the time,

1	 when p < 1. (For p > 1, clearly U=1).

s
:!	 The average waiting time W of a message chosen at random is

'I

1	 ^^
given as

' ?	 —2-2	 ^1
a l	 a2	 a1S^ + ^2S2	 1 _	 p

!	
W	

a W1 + a w2	 2(1-p	 1_	 (I.4.5-23)

.i	 p 1

for p < 1	
I

It can be noted that if_S 1 =S2 , the waiting time W is

L
identical to that.obtained under a FCFS service discipline. The

 variance of the message waiting time, when considering a message

chosen at random, is however lower when a FCFS scheme is used rather

than a priority scheme. Of course, the priority scheme yields

I	 average waiting time values lower than W for higher priority

jobs, while corresponding higher waiting time values are
i

-64-	 aG.^iZI,l^fa2

j

^E

r

a

5 EPP

t

ZhICOM

experienced by lower priority tasks.

I.5.5 The Earliest Due Date Schedulin g Discipline

It is necessary in a number of operation modes of the Space

Shuttle avionics system to implement a dynamic priority queueing

discipline. Subsequently, the computer and network resources are

assigned to the users on a dynamic basis, based upon the current

state of the network, the current queue sizes and experienced job

delays and the current requirements for service. The job currently

in the queue is chosen to be processed by the computer system in

accordance with its spent waiting time in -the system, priority,

required response time, required service duration and the

similar characteristics of the other jobs presently queued for

_service.

X, A general model of such a dynamic priority service discipline,

which is particular important for the proper operation of the Space
y^

Shuttle data network in high traffic and critical 	 phases, is

.;U described in the following.	 It is described as an Earliest Due
z

i Date (EDD) service discipline.

Jobs (or task, or messages) arriving at the processor are

I classified W ,) k classes.	 A class i, job _is associated with an

urgency number u i ,	 i = 1,2,...,k.	 Let

u^	 <	 u2	 <	
...	 <	

u k	 (I.5.5-1)

Ul The lower the urgency number, the more urgent is the requiredg	 9

service.	 If a class i job arrives at the system at time t i , he is

assigned a real number

di	 =	 t i , + u 	 (I.5.5-2)

w

COCpl 11	 1;2

^^ttt

t M	 I

L

]1

r	 ,

r

ZinCom

s

{
i

s ^^

^	 r

{)

i

f

This number d-1 can be regarded as a dynamic priority number.
i

Under an associated head of the line discipline, the processor

admits into service the job with the minimum value of {d i =t i +u i I -

Ties can be broken by choosing the job with the minimum urgency

number. If preemption of a job (from service) is allowed, the

scheduling procedure is modified so that the system is continuously

monitored, and the job that is being processed has the minimum

value of {t
i
 +u i }out of all jobs in the system.

In comparing this dynamic priority scheduling rule with the

static priority discipline presented in Sections I.5.3-I.5.4, we

note the following. In applying the dynamic queueing rule, the ui's

serve the purpose of distinguishing between static priority classes.

Thus, a class 1 job is of highest static priority and a class k

job has the lowest static priority. But in addition a job that

has been waiting for service as reflected by its arrival time ti'

gains in priority dynamically over time.

For our purposes, it is generally convenient to let the ui's

correspond to t,he interval until the due date is reached. Thus,

a class ijob arriving at time t i has a due date t i +u i desired for

receiving service. Subsequently, we can choose u to reflect the

desired response time and priority of class i jobs, in relation to

the other jobs.

As such, this priority scheme is noted to realize scheduling

by the earliest due date (EDD) rule in the processing queueing

system.

As special cases, if we set u. =0 for each i, this service

discipline becomes a_FCFS scheduling rule, while if u 2 -u 1 = +cc

^i

=9

s

I

i

R

'j
;f' Y

^J

b

i
1

4

•

1^4

I

1

•^/tcom

we have a static priority service procedure where class 1 jobs

are always processed ahead of class 2 jobs present at the same

1

j

s time. Thus, by changing tine difference in urgency numbers

from 0 to + , the discipline evolves from a FCFS one to a

static priority one.

We indicate now a few performance characteristics associated

with the EDD discipline. Assume k=2, so that we have only 2

classes of jobs. Class 1 jobs are higher priority jobs with an

urgency number u l -u h	Class-2 jobs have lowerriorit and anR	 J'	 I

urgency number u 2 = u 	 We let W h (t) denote the waiting time

(in the queue, prior• to initiation of service) of a higher-

priority (class 1) job arriving (virtually) at time t. Similarly,

we let W,m be the waiting time of a class-2 Lower priority job

at time 't. We can also consider a non-preemptive or'preemptive-

resume service discipline. The waiting time at t of a higher

	

 and non-preemptive 	 linereem tive discid ^preemptive- resumePriority fob un er	 p	 p	 p

is denoted as Wh ^p(t) and WhoM, respectively. The waiting

time W,(t) of the lower priority job is clearly independent of

whether a preemptive or non-preemptive procedure is employed.

We find that for t e u9,

W
k
(t-u A)-u t c Wh,p(t-uf1)-uh :S 	 (I.5.5-3)

To demonstrate further these inequalities we define the lateness

of a lower priority job L t (t) and higher priority job Lh,rr(t),

L 11,P (t), at t, by

L z (t) = W (t) _ u^

t

t

p	 !
wr	 ^	

1	
!	 ^	 ^	

r.j....,r	 ^	 i

4

cn4 iCQM

Lh,n M = Wh,n (t) - uh ,
	

(I.5.5-4b)

Lh,PM = W h,p (t) - up	 (I.5.5-4c)

t

Thus the lateness L(t) of a job at time t describes the difference

between the job waiting time in the queue and its urgency value.

If the urgency value corresponds to a desired expected job waiting

time, then the lateness variable describes the deviation of the jub

waiting time from its desired expected value. We then have, for

t > UQ,

Lk(t_u^) < L h,p (t-u h) < Lh,n (t-uh)	 (I.5.5-5)

Thus, a lower priority job arriving at time t-u Q will be served no

hater than a higher priority job arriving at time t-u h > t-uQ.	 If the

class-2 (lower priority) job waits at least u
C

u
h

units of time,

his due date becomes the same as that of a class-h _job arriving

u R-uh units later, and the jobs are then of equivalent priority.
-

Subsequently, equality occurs above and the above mentioned class-1
Y

f and class-2 jobs experience the same lateness values.

Thus, note that lower priority (class 2) jobs increase their

dynamic queueing 'priority index after waiting in the queue u -uh

units of time so that at this time they attaindynamic priority_

equivalent to that of higher priori ty (class 1_) jobs

To indicate explicit analytical 	 results, we assume class-h

and class-k jobs to arrive according to Poisson streams with

intensities a h [jobs/sec] and a	 [jobs/sec], respectively.	 Also

assume required processing times of Sh [sec/job] and S R [sec/job]

`bLL^fZ^O^IZ

1	 r -w

x

zill

for high priority and low priority jobs, respectively. The related

i

{
1

a

}

sF

S

ffi

tp

moments of the required processing times are denoted as E(Sh),

E(S^), E(S2)	 and E(SQ). The traffic intensities are

Ph
= ah E(S h), Pt 	 ^E(SQ)	 (I.5.5-6)

If

Ph + pt < l
	 (I.5..5-7)

as we assume henceforth, the system will enter steady-state where

finite job waiting-times are experienced.

Let

u = u - u 	
(I.5.5-8)

We denote by 6h(W) the busy-period duration spent in servicing

only newly arriving class-h jobs, starting with an initial service

load of W sec. Then the (steady-state) mean waiting , times of

higher priority jobs under a non-preeemptive rule, E(W h,n), and

of low priority jobs, E(W.), are given as follows.

u

E(W h
,n

) = E(W)	 p, f	
KBh (W) > y)dy	 (I.5.5-9)

0

u
E(WR)	 E(W) + Ph f

o
	P{Bh(W) > y}dy ,	 (I.5.5-10)

_

where E(W) is the 'mean waiting-time of an arbitrary job in the

combined-traffic queueing system, given by the Pollaczek-Khintchine

formula as

A E(S2) + AQE(S)
E(W) =	

20-P CPO	
(I.5.5-11)

I	 The distribution of the busy-period Bh (W) can be calculated

by considering the associated (high priority) M/G/l queueing

I

system.	 In particular, the mean busy-period duration is equal	 to

J	
P {B h (W) > y}dy	 =	 E[g h (W)]	 =	

1-gypf
0	

h
(I.5.5-12)

We can thus write for each u > 0,

r	 P {B h (W) > y)dy	 =	
g(u) E(W)

_
J	 h

0

(I.5.5-13)

The function g(u) is defined by the above equation, and is clearly a'

continuous monotone increasing function of u assuming values in	 [0,1]:

0 < g(u)	 < 1, 9(0) = 0,	 g H = 1. (1.5.5-14)

Substituting	 in	 (I.5.5-9)-(I.5.5-10), we obtain

E(W h n) 	 E(W)	 1-9(u)	
lP^

C	 P
(I.5.5-15)

h

E(WY)	 =	 E(W)
C

1	 + g(u) (I.5.5-15)

'-Phh

In particular, we observe that

_	 E(W)	 -	 E(W)	 = E(W)g(u)	
'-Ph

2	 h,n	 Ph
 (I.5.5-17)

yielding the difference in average waiting times between loweryielding

priority and higher priority jobs, using an EDO service discipline

with u = u,-uh'

Consider now the two extreme special cases. 	 If u u
91
-u h = 0,

we have a FCFS service discipline, and then g(u) = g(0) =-0 so that

(I.5.5-18)

e	 ^

t, t

'	 Off`/Z^^/'1"Z

}
E(W h,n) = E(W

h
)E(W) .

M

w
j

I	 ^^

Thus, no priority classes are being distinguished, and the average

waiting time of any job is given by

If u = uR-uh-+-, then g(u)-+g(-)	 1, and we obtain

A E(S2) + X E(S2

E (Wh,n)	2)	
(L.5.5-19)

h

a hE(S2) + X E(S2
E(WQ)	

2(l 	

91

1-ph —pR
	(I.5.5-20)

These are the same equations as noted in a previous section for the

average waiting-times of high and low priority jobs in a system

with two stationary priority classes.

It is obvious b (T 5 5-17) that by choosin the ur encyJ	 g	 9	
i.

difference number u	 u Q- u h , we can obtain _a desired difference

E(W R)-E(Wh,n) between the average waiting-times of low and high

priority jobs. This difference is 0 when u=0, g(0)=O, and FCFS

procedure is used. The difference attains its maximal- value at

u=-, g(-) =1, when stationary priorities are used.

For example, if p
h
=0.5, p Q =0.4,p = ph +p k = 0.9, E(W) is 	 -

relatively high and when 2 stationary priorities are used,

u=., g (-)=I , we have

E(W)	 E(W
n
) = 1.8E(W)

This difference can be high for certain applications. By using an

EDD scheduling rule we can choose 0 < g(u) < 1 to lower the latter'

difference. For example, we can set u = u P-uh to yield g(u)	 0.2<,

and then it

.^
\ ^^

=

Ub

E y W ^ ~ ^/^	 \ = 1.8E(W)0.2 = ^ 0.36E(W)^ ^/	 ^ h,n/^	 ` /

Which can be acceptable.

It should be noted that although class-1 jobs experience

shorter waiting times than class-2 jobs, the same 13 not true

regarding the corresponding lateness Vd]USS. In fact, the lateness

variable L	 ~&	 ~ of d low priority '0b is stochastically smaller than/
the lateness variable L (representing 	 or L	 \ of a high

priority job. Thus,

^ ` -	 _^,p	 h,^'

'	
p{L ^ ^^ « p {L > ^}~	 /?.^.^-2l\Y, — 	 — -k —	 `'	 '

Hence,
`

F(L) ^ E(i'l = E[ki l - u < E/W^ - u 	 (1.5.5-22)`-^' -- '-^'	 `'h'	 h -- ' '	 h	 ~
'

This property that jobs from the class with the earliest due date

' have the maximum mean lateness, though having the shortest waiting
`

times, is desirable from the system's point Of view in meeting the

most urgent needs ofthe jobs.
`'

In designing an earliest due date rule we can properly optimize

_	 the choice of the urgency (dV8 date) parameters {u }, as illustrated
..

by the foll0wing. Assume 2 priority classes, and non-preemptive EOD

service disciplines. Let c, »U, co > O represent costs per unit of
^- `

~ wait1ng time for class l and class - jobs, respectively. An overall

.	 !cost value C is chosen then as

C =	 `/W l + CvE(W) ^	 (1.5.5-23)^ 	 ~l^^ l^	 ^ `~2, `	 `	 .

^^ wish to choose ' u to ^inin^^^|^ ' Rv^ — above vV	 ,	 ^]" 7 -	 C. '-^ ^»e	 - e expressions,	 ^ _,
we conclude that We need t3 minimize

`

r^^_^11 rf)

s
-t

t

Lit OM
u2-u1

(c2pl - c l p2)	 P{B1(W) > y}dy .

0

Subsequently, we conclude that C is minimized over all dynamic

priority queue-disciplines if we choose:

u2 - u 1 = 0 (FCFS, if c2/c1 > p 2/p l ;

u2-u l = W (static priority), if c
2/c l < p2/Pl;

(I 5 5-24)

and dynamic priority discipline, if c2/c
l = p21pl.

In particular, if we set

^ 1
^2

1,71 c	 a1	 1 cX^+a2 	 2 = a	 a	 > 0, a	 > 0,2
^`1+a2
	 1	 2 (I.5.5-25)

L^ .

^- then, if

•fi
i^

E(Sl)/al	 < E(S2)/a 2 (I.5.5-26)

tug

j.
the optimal	 policy is to set u

2
u

1
	 and use a static priority

^a discipline.	 Thus, we then attach always higher priority to jobs

i
whose weighted (by a i) requried processing times are shorter.

a

oZli2^OfI2

I.6 THE COMPUTER SYSTEM: QUEUEING MODELS AND PERFORMANCE ANALYSIS

I.6.1 Operating Systems

We consider a computer system, such as that associated with

the general purpose computer (GPC) of the Space Shuttle avionics

system.

The term "process is used to denote a program in execution.

The computer system can be defined in terms of the various

supervisory and control functions it provides for the processes

created by its users:

a. Creating and removing processes.

b. Controlling the progress of processes.

C.	 Responsing to irregular conditions that may occur

during the execution of the process, such as: interrupts,

arithmetic or machine or addressing errors, protection

violations.

d. Allocating hardware resources among processes.

e. Providing access to software resources.

f. Providing protection, access control and information

security.

g. Providing interprocess communication and synchronization.

The computer system software that assists the hardware in

implementing these functions is known as the operating system.

To become an efficient processing system, a computer system

will generally incorporate the following characteristics:

a. _Concurrency	 parallel processing.

b. Automatic resource al'location

C.	 Sharing of resources by more than one process

ZinCont

,	
r	

.

al	 f
{

IZinCoin

i

=.t

a,

d. Multiplexing of information over an access channel,

and providing remote conversational access to

system resources or processes.

e. Asynchronous operation.

f. Long term storage of information; e.g., in the form of

a file system.

These characteristics involve the management of the computer

memory and processes. Algorithms used to be efficiently designed

for:

a. Managing, controlling and schedulgin processes;

b. Managing and controlling main and auxiliary memory

devices;

C.	 Managing and controlling the flows of information among

U,

! the various devices in a computer system.

The two important major sets of resources for the computer

system are processor resources and memory resources. 	 A processor

is any device which handles information or carries out the steps

of a process, such as;	 central processing unit, arithmetic
=f

processor, I/O (input/outout) processor or an access channel

jj
A memory is a device which is used for storage of information.g	 -

f

The capacity of a memory device is the number of words (or bytes,

or bits) of information that it can store.	 The access time of a

r. memory device is ,the,average time duration between the receipt
f

and completion of a "memory-fetch" request, when queueing delays

I are neglected.	 A memory device is random access if the access

time of each storage site is the same; examples: 	 semiconductor

r!
j ^

r	
{	

_

{

G

F^

4

Ell

El

t

and core memories. A memory device is positionally addressed if

the access time of a word depends on its positon; examples: disks,

drums and tapes.

Informationis generally stored in a computer system in a two

level storage system: main memory and auxiliary memory. Information

residing in main memory is usually random access and requires very

short access time, so that it can be immediately accessible for

processing. Otherwise, it resides in auxiliary memory which is

usually positionally addressed and requires relatively longer

access times.

For the GPC on the Space Shuttle, the main memory is composed

of pluggable, random-access, non-volatile, destructive-read-out

ferrite core modules with a monolithic option. The access time

for this memory system is; 	 '

access time	 = 0.375 usec .

I ^
The capacity of the memory is:

G	 .i

capacity = 1310720 bits = 40960 words

i
)

where the word length is:

data word length = 16/32 bits	 (fixed point)

a
32/64 bits (floating point)

1 instruction word length = 16/32 bits	 .

Also, for this GPC we have:

number of instructions in re P etoire = 154;

F computing seed 4°O x 103P	 9	 P
operations

(fixed point)

f
sec

=	
3 operations

325 x 10	 (floating point).
#!""'.t

sec

I'll

E

Y	

^

s X'

E

,i	
1

t	 • 3?

f	 L/Z 01a
ttj	 1

On the Space Shuttle orbiter, two h i gh capacity tae units 	 itP	 ^	 9	 P	 Y	 P

are also used as mass memory. The storage capacity of each is 134 mega-

bits of data. They are used to store permanent on-board off-line

information. They thus supplement the on-line random-access

internal memories of the Space Shuttle computers.

Process coordination characteristics are important in designing

a computer system and assessing its performance. In a multi-

{

1r

E
programming system, both process interruption at arbitrary times

and peripheral activity of arbitrary speed are carried simultaneously.

It is thus necessary to guarantee that the computation performed

when cooperating processes are involved is independent of the relative

speeds of the different tasks. Computation then is required to be

determinate. In addition, in considering process coordination and

control problems, one should study the following problems:

deadlocks; mutual exclusions between tasks; and synchronization

objectives, needed for example to ensure the timing of the proper

start of a certain procedure in correspondence with the occurrence

of a certain event.

I.6.2 Memory Management

A memory management algorithm is composed mainly of the following

policies

a. The fetch policy determining when a block is transferred

from auxiliary to main memory.

b. The placement policy determining the unallocated space

of main memory into which an incoming block is to be palced.

C. 	 The replacement policy ,determining 'which blocks are to be

removed from the main memory.

r

The structure of a two level memory system is shown in Fig. I.6-1.

The above mentioned policies are implemented by move commands which

control the moving of blocks between main and auxiliary memories.

PROCESSOR 1	
REFERENCES

_^ MAIN MEMORY

f

1

r

=I

ff

1

71

Jl

ttII

f

:'#

^^

^i
7

r^

i

t

6

i^

w

i

r

DATA CHANNEL

AUXILIARY

MOVE COMMANDS	 MEMORY

Figure L.6-1.
I

To analyze the memory management procedure used in the GPCs

of the Space Shuttle avionics system, it is particularly useful to

use a virtual memory technique.

A virtual memory can be regarded as the main memory of a

simulated (or virtual) computer. A virtual memory system is

described in terms of two spaces N and M, and a mapping f. The

address space N of a task is the set of addresses that can be

generated by a processor as it executes the task. Tasks can

share the same address space. In multiprogramming systems, several

address spaces are utilized. The memory space M of the system

represents the set of Locations in the physical main memory.

The address map f provides for the transformation

f: N } M U{^l

^o

y.. I 	^,,.:^f:Z",-^._^''_..' ^ A..-.:`:.^.._t...._.^	 - -...__._.i ..	 ._,......,	 . ,.^..._._.__..s...._....._^.,a_,.......+.._..v_.^__..;_^i.-.tea_ ...i........_.u.......-..a.w....	 __.a.. „e............	 u ____._^...	
t

^oLcii^o^rz

from space N to space M or to a set J^J. Sets f^) indicates that

the desired word is presently not in the memory space. Thus, if

x is an address in N, then if

	

f(x)	 y6m,

the desired address is stored in main memory at location y at that

time. If, however, f(x)ZM, or f(x)ef^J , the desired address is not

in main memory, and a fault condition results. Move commands are

then initiated and the table describing f is adjusted. This is

illustrated in Fig. I.6-2.

VIRTUAL MEMORY SYSTEM

PROCESSOR	
xcN	

MAPPER	
eM	

MAIN MEMORY'

	

'	 ZOVE COMMANDS AUXILIARY

MEMORY

Figure I.6-2:

In analyzing the performance of auxili 'a ry memory systems, one

considers mainly the underlying queueing problems. This is the case

due to the relatively long access times involved. Subsequently, such

memory units can become congestion centors within the computer system.

The models and analysis techniques invovled are similar to those

presented in the sections on queueui ng models and analysis. The

index of performance usually used in choosing the related optimal

schedul ing algorithm is that of maximizing the throughput of the

memory subsystem.

c4blCom,

In our applications the problems mentioned above concerning

data transfers between main memory and auxiliary memory arise

also in connection with data flows be-tweet) main memory and I/O

dovi ces	 In this connection ,, one needs also to consider the

associated buffet' problems. Shared (pooled) buffers are Much

more efficient than individual dedicated buffers. The proper

related performance criteria here are buffet, oqqLjgIncj 	 and

overf 1 ow	 qjqbj I i^4Y-	 We note that under 111LIltipt"091'(1111111ing the

main memory can be regarded as a shared buffer.

In studying main memory management the objective
is

Usually

related
to

MaXiMU1 11 execution speed of programs.

1.6.3	 On Computer Schedulina ProcedLO-QS

In modeling and stu
	

schedUlitlg PI'OcedL!V-'S Wdying processoi	 e

can distinguish between dete)-ml nistic schedUlillq rUldS and

probabilistic scheduling models.

In considering deterministic scheduling disciplines we assume

that we are given a (partially ordered) set of tasks whose execution

(required processing) times 	 (S I are known.	 We also assume that
i

there are ni (identical) processors available to execute these tasks.

Two perform-ance MetISUreS are then considered: 	 the time until

the last task is completed and the average tWIMEMUnd (flow) time.

The first measure is related to the system utilization factor U.

Thus, if a given schedule finishes in time T, the utilization factor

the processors by the schedule is

S

U
tiff

w

1.

	 y

1	 ,

î 	 C1

1

1
R

J	 r

Zi nCOM

Hence, minimizing T is equivalent to maximizing T.

The second measure is of interest to the users of the system.

It many times also yields the minimization of the average number

of incomplete tasks.

The deterministic models assume that the processing times

of all tasks are known in advance and that all tasks are available

for execution at once. It is more realistic in our applications to

assume that the processing times required by the various tasks are

random, governed by certain probability distributions. Also, we then

assume that tasks arrive at the processing system at random times.

We then need to specify the joint statistics of the task inter
1s

arrival times. X

Using these probabilistic characterizations of the tasks

arrival streams and required execution times, the processing 	 k µ

system is modeled as a queueing system. The associated service 	 €

discipline then represents the task scheduling rule.

Queueing models have been presented, discussed and analyzed

in Section I.4. In particular, time-sharing queueing models have

been considered. Priority service disciplines have been classified,

discussed and analyzed in Section I.5.

In assigning priorities to tasks, we associate an index of

preference or urgency to the processing of a task relative to

other tasks. As noted in Section I.5, these priority or urgency
t.

indices can be assigned on a static basis or dynamically in	 z;

accordance with the state of the system and the task desired
{

response time or actual current lateness.

Systems can use "time slicing" to limit the length of 	 F.

r.

bG.. ^^f2 _n.>E r>t

E	

f^

.t. A	 i"	 1	 a	 . ,^ ^ y,(ai

processing tiine that can be given to a task at one time. Tasks

which use the processor at one time more than a certain quantum

duration, are interrupted and asked to release the processor. They

are then reassigned for service in accordance with the system

service discipline.

In particular, we have considered the following service

disciplines:

1. First-come first-served (FSFS).

2. Round-robin foreground-background and multilevel service

procedures.

3. Service disciplines for tasks classified into fixed

L^

1-11

priority classes.

j 4.	 Earliest due date dynamic priority queueuing disciplines.

In addition, one can incorporate service disciplines that assign
E

dynamic priorities in accordance with task processing times; giving,

for example, priority to shorter tasks over longer ones. 	 Or, as we

already noted, giving service to tasks that have currently received

the least amount of overall service.

J	
G

We present and study in the next s ections certain queueing

models that can be used for performance prediction in our data

=i
processing system.

{
I.6.4	 A Markovian Queuei ng Model-	 Fini te Buffer Facility

We present in this and the next 2 sections a simple Markovian

queueing model.	 We also present its performance characteristics.

U111

It is noted that this model can be used for a first-order performance

prediction.	 It allows the incorporation of arrival and service

j rates that depend upon the state of the system. 	 Subsequently,

._
zi 7,	 Ofj1

L if2^0/^2

f

	

one can use it to analyze a processing system with _a finite buffer

E
	 size, multiple processors and an arrival task stream that is

f	
generated by a finite source of users (or terminals).

We assume tasks (or jobs, or messages, or customers) to be

exponentially distributed with mean required task processing

{

i
time being 1/u [sec/task].	 Tasks arrive at the processor according

to a Poisson stream.

Assume a single processing unit with a finite buffer facility,

r with storage space for at most L tasks.	 Tasks arriving when the

buffer is full are assumed to be rejected.	 °Let p 	 denote the

I

probability that n tasks are in the system (at steady state), queueing

^ or being processed.	 Then, we have:r

pn	
pn	

L+j^	 n = 0,1,...,L	 (I.6.4-1)

- U",
1- p 	r

where 'p = x/u. _In particular, the system utilization index U
Ell

describing the probability that the processor is busy is given by

^

'

L

z^r 1 (1LU	 =	 1-p0	=	 1	 -	 +1	
(1.6.4-2)

+1
(1 -p	 1-p

i f
The average queue size X is given as

rf X	 _	
L npn	

=	
+ l	
Z	 np n	(I.6.4-3)'1 1 j^

Fn=0	 n=Q

The probabilitypR that a task is rejected from the system, not

t 'accepted for service due to a full 	 buffer, is given by

r 1

C! L

PR	 PL
	 =	 (1-P)	 pL l	 0 < p	 < 00.	 (I.6.4-4)

1 -p

Clearly, p R-0 as L -	 while
P
R = p for L = 1.	 The character of

the rejection probability (or overflow probability) curve, as a

x

y

Lit

i

I

r	 `,
i
C	 k

c

f'

i

function of the buffer size L-1, is shown in Fig. I.6-3.

P

ro

0
i
d
^c
0
4J	 P
U

O

d.1

v

3
O
r-

i
N	

_

O

Buffer Size (L-1)

Figure I.6-3.

The average waiting time W'of a task, provided this task

is accepted into the system (i.e., the buffer is not full) is

expressed as-

L-1	 p

nu
-1
 1-p	 (I.6.4-5)W E

n=0

We thus note that a too small buffer size (L small) can imply

a very high overflow probability, or rejection probability, as

illustrated by eq. (I.6.4-4) and Fig. I.6-3. However, increasing

the buffer size beyond a large enough value L* would not significantly

improve the overflow probability.

If a rejection probabilty no higher than p is desired,

, i

^— li't^Uh2

PR < P
	 (I.6.4-6)

then by (I.6.4-4) we should set the buffer size L-1 according to

the'formula

L =
log

[l-p 1
P
-p TI

log p
	

(1.6. 4- 7)

Note that L-1 is the capacity of the buffer fa ci 1 i ty measured in

number of messages. The average capacity in bits, LB , is obtained

as follows. Assume the (average) processing rate of the service

facility to be

processor rate = C [bits/sec] 	 (I.6.4-8)

Then since the average task required processing time is

r

average task required processing time

µ-1 [sec/task]	 (I.6.4-9)

we conclude that

average task length in bits = Cu-1 [bits/task]	 (I.6.4-10)

Therefore, the capacity of the storage facility in bits is

LB	
LC11-1 [bits]	 (I.6.4-1.1)

Also note that as'the -storage capacity L is decreased the

average queue size X and the average waiting time 9 of an accepted

task both decrease, since accepted tasks have to contentfor service

with less other accepted tasks. The overflow probability then

of course decreases as well.

I

c

Ell

F

{

a

I.6.5 A Finite Task Source Queueing Model

It is'necessary for our applications to be able to model, at

certain operational modes of the data processing system, part of

the incoming task stream as composed of a finite set of sources.

For that purpose, assume that the processor experiences an

arrival stream that originates from a set of N task sources (or

terminals). Between the completion of its previous task and the

submission of a new task to the processor a certain random delay

time is generally noted. This time delay is called the "think time"

source.

We assume here that the think time of each terminal (task source),

of the N terminals, is exponentially distributed with mean a- 1 ; i.e.,

Average source think time = a-1 [sec]	 1	 (I.6.5-1)

The system model is shown in Figure I.6-4. We note that if there are

currently n tasks in the system, n < N, only N-n new tasks can

presently arrive (according to a Poisson stream with intensity

(N-n)a)•

TASK 1 COMPLETION INDICATOR

THINK
- TIME

TERMINA
n	

'' BUFFER	 PROCESSING
..	 FACILITY	 SYSTEM

TERMINAL	 i

N!	 ^

?

THINK
TIME

1ASrN 70MMETIMN IN77CATOR

1

Figure	 1.6.4.

l_ lf2 co17
-86-

_

l ^

	 ^L1 f2^0lI2

We assume, as in the previous section, that task processing

times are exponentially distributed with mean u -l ; i.e.,

Average required task processing time 	 u
l

[sec/task]	 (I.6.5-2)

Let

P	 = a/u	 (I.6.5-3)

be the traffic intensity parameter. We also set

Pn = P{n tasks in the system} 	 (I.6.5-4)

at steady-state, considering both the task in service and the tasks

waiting in the queueing facility. Then, we obtain

P	 =	
N	

N!	 pi	 ,
0	

(I.6.5
N-i !-5a)

i=0

P 	
_ POpn ^NNn !	 n	 0,1,...,N	 (I.6.5-5b)

The system utilization index U is computed as

{ U	 P{processor busy} 	 =	 1-P0
•

^f
N	 _1

j N!	 i

N-i	 P	
(I.6.5-6)

i=0

j The task average waiting time W is equal to

•

W
	

(I.6.5-7)

X is the average	 size,where.	 queue

N
X	 =	 `nPn	 (I.6.5-8)

-# n=1 .{
9

i!2 CO!?'L
-87-

T

If we also assume a finite storage capacity so that

Number of task in system < L < N

counting both tasks in the queueing facility and the task in

service, we obtain the queue-size probabilities to be given as

follows.

(1.6.5-9)

PO

I i=O

N!	 i	
-1

(Nip	 P
(I.6.5-10a)

M1

P n = P OP n
(N

N !
-n)!	 n	 (I.6.5-10b)

The average queue size X is computed using Eqs. (1.6.5-8) and

(1.6.5-10). The average waiting time^of an accepted message is

computed by

L-1	 P
W	 nu-1
	

I-P
n	 (1.6.5-11)E

n=0	
L

The probability P R that a task will be rejected due to a full

buffer (or the buffer will overflow) is equal to

P
R

L

P
L

N!	 i

(N-i	 P	 P
L	 N!

(1.6.5-12)
(N-L)!

i=O

Using these expressions, one can properly design the data

processing system. In particular, if a maximum overflow probability

P is specified,one can compute by (5.12)	 the desired buffer size.R

The latter is equal to L-1 messages or	 (L-1)Cp
-1
	 bits, where C is the

processing rate (in bits/sec) of the service system. The system

utilization index U is now given by

F
is	 ^	 •.^	 r,	

_	 d	 ^	
..	

p	
,

.o

E

rH

p	 ^!

	

^I	 =1

a

sF

r
r	

!	
^

	

^f	 _G

U = P{processor is occupied}

= I - P
	

= l -	 Ni	 pi	
(I.6.5-13)

0	 E	 N-i
i=0

where p a/p.

I.6.6 A Multi-Processor Queueing Model

In certain operational modes of the data processing system, we

need to consider the situation where a task can be processed by any

one of a set of processors. We thus present a Markovian queueing

model to describe the queueing system performance characteristics

in this situation.

Assume the system to contain m identical processors (service

units). Arriving tasks (or requests for processing) are stored

in a queue if all m processors are busy. As soon as a'processor

becomes free, it accepts into service the task of the head of the

queue. The system is illustrated in Fig. I.6-5.

PROCESSOR'
l

f 	
,1

a

V,	
TASK ARRI

QUEUEING
•

f	 FACILITY

PROCESSOR'

Figure I.6-5.

Assume tasks (or messages) to arrive at the system according to

a Poisson stream with intensity a [tasks/sec]. We also take the

average requried processing time for a task to be u -1 [sec/tasks].

I

	m 	 m-1

PO	 m! 0 -p	 E
i=O

(MP)1
i!

(I.6.6-2)

	

(m P)
	

7
n < m

	n! 	 PO

Pn =
m

M I PnPO31n ' m

(1.6.6-3)

i

!

i

`i

f
El	 t

e	

y

f^

ti2^0/32

The required task processing time is assumed to be exponentially

distributed.

We then obtain the queue-size probabilities {Pn), where

P
	 P{n tasks in the system, queueing or being served;, (1..6.6-1)

to be given by the following expressions

where

P	 = a/min (I.6.6-4)

and p < 1.

The system index of utilization U giving the fraction of time

that the system is occupied (so that at least one processor is busy)

is given by

U =	 Pfat least one P rocessor is busy)Y

i
m m-1 i

(MP)

l

-	 _	 _I	
PO	 1 iMP + v

(I.6.6-5)
m.	 1 -p i.

i =0

with p = Aft < 1,

The fractionof time that all	 processors are busy, denoted as

U	 is equal tom

r

': tfZ	 f31
-90-

(mn)n
ti !

n=0

(T6,6-6)

Li
m",

c4G/2l_on

Um	=	 Plall m processors are occupied}
Y

CO m-1

Pn = 1	 -	 Pn

Iti n=m n=0

` 1	 PO

M-1

Y

^mp)n

n!
n-0

-1

1 - (MP)
m + m- 1	

(MP)
m! 1-P

	

	 i!
i=0

(i.6.6-7)

t
The average task waiting-time W is computed as

CO
1

W	 (mp)

_:

	nPn

n=m

For given message and traffic statistical parameters (x and p),

t we note that by increasing the number of	 mparallel	 processors	 we

-^ decrease the task waiting time (and subsequently reduce its response

time).	 However, at the same time we obtain a reduced value for the

index of utilization U
m
^ (or U).	 In designing the system, one then

F

chooses the number of parallel 	 processors m properly, using Eqs.
I

(I.6.6-(I.6.6that	 high enough index	 is2)--7) so	 a	 of utilization

'. achieved) while an acceptable task response time is guaranteed.

As another useful model for C he Space Shuttle processing

1
subsystem, assume now that we have m parallel	 processors as above,

but that the arrival stream is generated by a finite set of sources.

"'
As in the	 section,	 the	 of task sources toprevious	 we set	 number

z

be equal	 to N.	 The terminal thinking time is taken to be an

is
exponentially distributed random duration with mean 	 [sec].

Required task processing times are exponentially distributed with

r ^,^	 -

91-

Lf21..0`^l

'a
means u-1 [sec/task].

t l '	 Then,'the probabilities {p n } of the number of tasks in the
a

^ I	 system, being processing or waiting in the queueing facility is

computed to be given by the following formulas, for

a
P = a/mu < 1 ,

we have

m	 m-1	 n
m	 n	 N!	 +	 (mP)	 N!	 I.6.6-8`	 ()

	

PO	
m!	 P	 N-n !	 n !	 N-n !	 '

nmm	 n=0

n iP)

	

P	 =	 (I.6.6-9)
E,	 n	 mm	 n	 N!

=1^,t
	PO m! P N-n	

if n > m

The index of utilization Um is given as

	

Um	
P{all m processors are busy}

^	 at,

M-1
= 1

	

	 pn	 (I.6.6-10)

n=0

The average task waiting time W is computed using Eq. (I.6.6-7).;!

We again note that the latter equations should be used to design}

the system such that the proper acceptable system utilization and

sames	 a response times are deduced. _9	 P	 1

I.6.7 Queueing Models Involving _Input/Output and CPU Interactions

1	 I_n studying the performance of the Space Shuttle computer
L

system, it is of particular importance to incorporate the interactions'

J'	 between the input/output and CPU queues. Proper queueing models for

-92--92-

a

i^z o^n

describing these interactions, and their performance characteristics

and formulas, will be presented in this section.

A basic simple model is that of a cyclic queue involving

t	 single CPU and I/O processors, shown in Fig. I.6-6.i

CPU
CPU

QUEUE

F,

I/O
I/O

QUEUE

Figure I.6-6

Tasks enter the system by joining the CPU queue, but only

at the instants when tasks depart from the system. In that way

the number of tasks in the system is kept constant at N. After

receiving service by the CPU a task leaves the system with 	 J

1

r

probability a, and then a new-task immediately enters the system.

With probability 1-a the task processed by the CPU enters the I/O

queue	 There, tasks are served on a first-come first-served

{	 basis. - Upon departure from the I/O processor, a task joins

A,	 immediately the CPU queue.

We assume that each task is assigned a processing time by the

y
CPU and I/O which are independent and exponentially distributed, with-

means VC and ;ul l , respectively. Thus,

1.3	 Avg. CPU service time = uCl
	

[sec]	 (I.6.7-1)

Avg. I/O service time = p [sec] 	 (I.6.7-2)

_	 .t 4.	 ^..	 •.	
_	 ..

Y

;.	 ..?^°Y_`^.r	 t"^:•+
i

^iR....:.........^.._.^—..«....,,	 -	_...._.-.^..:..._,._.^x-_:.^..._...._c:..^_...___x_,._..__;,_:^.:—..mss. 	 ..-r....:.....;...,,..._a:..«...,i	 ...	 _

zill co 1) 1

Since a task will 	 require each time I/O processing with probability

1-a, and depart with probability a, we conclude that

{f P{task uses CPU i	 times) _	 (1-a) i-l a,	 i	 = 1,2,... (I.6.7-3)

j{	 t Therefore

Avg.	 number of tines that a task uses CPU processing = a (I.6.7-4)
M

Avg. number of times that a task uses the I/O processor

Erx7 1 	 J _
T

U
__a (I.6.7- 5

Hence, we obtain

Avg. total	 CPU processing time required by a task

I	 J
(auC)-1	 [sec] (I.6.7-6)

j; Avg. total	 I/O processing time required by a task= a -a (i.6.7-7)
I u I

{ Let

i

P	 _	 P{n tasks in the CPU, queued or being servedi
n

(I.6.7-8)

Then, we obtain

} pn	
+f	 Pn	

n = 0,1,,..,N1— P
N

(I.6.7-9)

where

.0
p	 = (I.6.7-10)

' - The average time delay (response time) D of -a task in the

system is obtained to be given by

N	
N+^

D	
1	 P

-
(I. 6.7-11)

' .-
aN+1µ0	

P	 P«

L^* J,

i
i

I	 1
i

^	 k	 i 	

{

	 t	 r	
..!
	 1

l/2 ofs2

Note that the task response time D is equal to the sum of the task

overall average waiting time in queues W and required overall average

processing time. But,

Avg. required task overall processing time = 1 + 1
— as

auC	
aµI

Therefore, the overall average task waiting time W is

N	 1 - pN+l
	 /

1

	

a	
1 -a

	

W _ u	 N+-1-	 - (a	+ au
C	 P' p	 \ C	 I

The CPU index of utilization U is given by

(I.6.7-12)

(I.6.7-13)

U
	 P{CPU is occupied) = 1 	 Pb

1	 1 - p	 _ a	
pN

+l 	(I.6.7-14)
N+l	

1	
N+1

1 - P	 -p

By (1.6.7-11) and (I.6.7-14) we conclude that the task response time

D and the system utilization index
U

are related according to the

formula

D _	 u . UC	 (I.6.7-15)a

C

Relation (I.6.7-15) shows clearly how the task response time increases

with the increase of the CPU utilization factor U C . The above

formulas need to be used in designing the system so that proper

response-times and utilization values are attained.

More involved queueing models representing various interactions

between a CPU (or several CPUs) and I/O devices can be developed

using queueing network models. For the purpose of global performance

prediction for the Space Shuttle computer network, the models presented

in this secti.on`and the one presented in the next section are

particularly useful.

1 wt	
t 	 -	 ^

CA
^

hz' OM

E

1W

C

G

^"77

I.6.8 An Analytical Model for, the Computer System Performance Prediction
t

.;	 In studying the detailed behavior of the Space Shuttle computer

system, one needs to model the interaction between the CPU and I/O

f

queues. Such a simple cyclic-queue model, and its performance

analysis, is presented in the previous section.	 This model	 can be

used for a first-order study of the performance of the underlying

computer system.

In this section a more involved cyclic queueing model 	 i;s

described and studied. This queueing model also incorporate

the porper interaction between the CPU and 1/0 queues. The

level of detail here is such that it allows the system engineer

to study changes in hardware configurations and gross changes in the

software.

The system model is shown in Figure I.6-7.. Users, or sources,

request for the processing of their associated jobs. Requests are

first stored in queue 1, the queue for Main Storage, until space

becomes available in main storage. After the job enters the main

storage it actively competes for the use of the CPU or 1/0 devices.

The job cycles between use of the CPU and I/O devices until it is

completed	 When a job is completed, a new job from the main

storage queue replaces -it.	 The source whose job is complete,

sends a new request for job processing after a random think time

delay.

The total number of jobs in the mai n storage and processing

facility is limited to M.

Jobs are assumed to relinquish; the CPU to carry out
an

1/0

L_ -

USER THINK

l TIME

 (N SOURCES)

3 QUEUE FoR

MAIN

STORAGE

if

y

C
' Wry	^.	 ^^	 ^^	 fir. fir•. ^^ ^

LJ MAIN
STORAGE

QUEUE FOR
(N JOBS)'

x CPU

r.

I. CPU
PROCESSING COMPLETE

I/O • • . 1/O
r	 .► M i

r.

Ll

Figure I.6.7

a,

{

I
L'

u,

i

I
1}

,K

r{

S

j ..	
L.I L	 0 ^.7 4

a

`dbt	 I0	 t`	 fof each CPU service per 7o	 a wee" successive 	 opera ions or

those jobs in main storage. We assume here that either these

periods are fixed length or they are random and exponentially

distributed.

The I/O service time S
i
 will also be taken to be either of fixed

length or random and exponentially distributed. It is also assumed

here that no I/O queueing occurs.. The I/O devices are taken to be

identical processors operating as M parallel servers. A job requiring

I/O processing will then be directed immediately to a free I/O

device.

In studying the performance of this system, we assume that

the system is sufficiently loaded so that there are always as

many jobs requesting processing as the operating system will allow

in main storage. Thus we take the number of jobs in the main

storage system to be always M. Consequently, no more than N-M

will be in think mode at any one time. This can be regarded as

a fixed multiprogramming level M.

The model input parameters, reflecting the characteristics
ra

of the request traffic, required processing times, operating

system and the hardware configuration, are summarized as follows..

TC	
Average total CPU time required by a job

uCl =
	 g	 operations- Avera e CPU time between, I/O o	 ;

ui,	
Average service time for an I/O request

M = Number of jobs in the main processing system (lever of
ii

multiprogramming)

N = Number of terminals (sources, users)- 	 `}

a -1	 Average user think-time between requests
i°

a

9

t

We also define

Ti = Average total I/O time required by a job

K = Average number of times that a job requried I/O processing.

We then clearly obtain that

K

	
TC
	

(I.f.8-1)

r' C

and

T I	 Kpll	 P-ITC/uCi

	
(1.6 .8-2)

Note that the average time values TC p C I include boot the processing

time of the job itself as well as the overhead time used by the

system in running the job.

In studying such a computer system, the performance measures

of interest are the following ones.

D = Job response time (sec)

Average time delay of a job in the system from entry of

request to completion of processing.

T	 Computer system throughput (interactions/sec, or jobs
a

served/sec)

Average number of jobs departing from the system, per unit

time, after their processing is completed.

U = CPU index of util ization'

= Average fraction of time that the CPU is utilized for

processing

Probability that the CPU is occupied (busy, not idle),

The job response time D is obtained, in terms of the CPU

index of utilizati on U, to- be given by the formula

c>L f^II COel	 {

tr	 .

NT

'	

D =	
UC 	

[sec]	 (L.6.8-3)

Ali
In terms of U, the system throughput is given by

T = T
	

[interactions/sec]	 (1.6.8-4_)
C

To prove and explain relations (I.6.8-3)(1.6.8-4) we note that

following. Assume the system to run for a (long) period of T sec.

During this time assume that J jobs are processed, requiring a total

time of Tl sec. Then

U = CPU processing time = T
l	 JTC	

(I.6.8-5)
Elapsed time	 T	 r

number of jobs served	 J)
T	 (I.6,8-6Elapsed time	 T

Therefore

U _
T - TC	(I.6.8-7)

and eq. (I.6.8-4) results.

Observe again the system for a period of T sec, during which

J jobs are processed During this time each of the N terminals is

either in a response -time period (waiting for its job to complete

processing) or in a think-time period (experiencing delay prior to

the initiation of the next request). We have, during T sec,

Average number of jobs completed per terminal	 J/N	 (I.6.8-8)

Hence,

Average time taken by a single interaction
'= J/N	

= NJ sec (L.6.8-9)

This time contains both system response time and user think-time.

But

zip? C011.1:

y	 4	 .

t	

• y

i

D	
NT _-1
J

We observed in (1.6.8-5) that

(1.6.8--11)

JTC

u

hot

r

^ • I'f

i

i

1

f

f
I

i

i

4

E	 tf

i

(1.6.8-12)

Substituting (1.6.8-12) in (1.6.8-11), we derive (1.6.8-4).

Equations (1.6,8-3)-(1..6.3-4) thus allow to compute the

message response time 0 and the system throughput T once the

CPU utilization index U is known. The latter is derived using the

queueing techniques presented in previous sections. We obtain

the following results.

For constant CPU and I/O service times, the CPU utilization

index is given by
-1

if M < 1	 u rl
1+r, T

/P C	 ^	

_	
uC

U	
-1	

(I.6.8-13)

1 , ifM>1 +	 1

If we assume CPU and 1/0 service times to be exponentially

distributed with means
p`l

and ur 1 , respectively, we obtai n

n -1
M	

1
	 ^

MI E M !	 -1

n=0	 t' T

Thus, Eqs. (1.6.8-3)-(1.6.8-4) and (1.6.8-13)-(1.6.8-14) yield

the system performance measures U, T and U. This is expressed here

in a rather simple form in terms of the major processing system and

message-traffic characteristics.

P.

101 _

}

't

In designing the system or modifying it to improve its perform-

ance or increase its capability or efficiency, one incorporates

the given system parameters of interest and chooses the remaining

ones to guarantee desired proper values for message delay D, CPU

utilization U and system throughput T.

zilleol)l

f
I.7 Queueing Modeling and Analysis Procedures for , the Space

Shutt e Orbiter Avionics System

1.7.1 The Queueing Model

The queueing model chosen to represent the Space Shuttle

orbiter avionics system is described as follows. It is composed

of the three system elements:

.The computer system.

he data bus communication network.

*The application processes, user and destination terminals

-The combined model block diagram is shown in Fig. I.7-1.

X5

CPU

GPC

SYSTEM
s

IOP
g

a

i
E

4

7

THE DATA BUS COMMUNICATION NETWORK

1^	 1

1	
FLIGHT1

DISPLAY	
KEYBOARDS	 CRITICAL	 INSTRUMENT-	 M^IUs

''	 DEVICES	 ^
1	 1 FU CITQNS1

USER SYSTEM (TERMINALS)

Figure I.7-1

1
a_..^... -103-

I .x

i

i

t

tUJ

[1
r

f	 i

^ •̂ 	

1

^L`f2^Oh2 a

=1

The computer model has been explained in Section 1.2 (see

Fig. I.2.1). We have combined here I/O and memory operations and

accessing functions as single-unit I/O operations. The computer

subsystem parameters are described in Section i.2.2.

The combination subnetwork structure has been outlined in

Section I.I. 'rhe relevant parameters are presented in Section I.2.5.

This network is composed of a set of half-duplex data buses properly

shared by the computers. - The buses are made available for inform-

ation transmission or reception to the terminals at certain times.

The third subsystem is the user system. Terminals (users, tasks)

are granted access to the cornmunication network and the GPCs at

certain times in accordance with their requests for service demands,

TDM and polling processings, and GPC initiated actions.

The relevant system performance measures have been represented`

in Section I.3.

The heart of the system is the computer complex. We thus

C	 start by presenting queueing models for the computer system.

!	 i 7.2 A Time Frame Model for the Computer System

	

U"	 We need to differentiate between cyclic and acyclic tasks.

{	
Such tasks have been statistically characterized in Sections I.2.3-

t

I.2.4. Tasks for which computer time isreserved should also be

described. Within the operational time period under consideration,

we can thus make the following period definitions. We set:

TF- = duration of main time cycle (time, frame) [sec]

T
D
	duration of the time cycle period which is dedicated

!I	 (reserved) to certain tasks (on a"non=contention basis)

[sec]

ir
x

_	
t

 o

a

Y	 i	 i	 r

^

t	 P	 P
.	 .	 _.	 ._. .#R.: ^..b.^i ,.w_...`.s`......_Y"1R.R..:^..3 ,._J	-Xw^_ _	 ___	

. _. ..-.... _	 .ten...,...._	 s	 a	 -.	 a ^.....eLL._...1w^ »...^..........^ _e....... ..._-._...^_.._.... _^r,.s<;__.....A .,.. _u. 	 ._....s.	 4^

'

T
	 = duration of the time cycle period which is used by

h
i ^. cyclic tasks	 [sec]

TA = duration of the time cycle period which is used by acyclic

i
tasks	 [sec]

Thus, we have identified a time cycle (frame) of duration TF.

a is divided into the following threeThis frame	 9	 eriods:P

• The dedicated frame period, of duration TD'
	 This time _period

is reserved for certain tasks 	 (application processes). 	 These

tasks can be cyclic or acyclic, scheduled or non-scheduled.
Y

During the period under consideration, the network controller

assigns this periodic portion of the time frame, on a contention-

free basis, to these tasks.	 Included are:	 scheduled tasks,

A. ^ routine updating tasks, routine information flow and processing

j duties, high priority dedicated services, etc.

•The cyclic frame period, of duration T C .	 This period of time

i

is periodically reserved for serving cyclic tasks.	 Service

time portions within a cyclic frame period are assigned by

' j the network controller (GPC) according to service demands

4 (scheduled and unscheduled). 	 These assignments are governed

by the system priority service rules._	 A cyclic task which is

assigned service time within a certain cyclic frame period,

keeps the same assignment in succeeding cyclic frame periods,
ti

r until	 its processing is completed, or until 	 its service is

pre-empted by the network controller.

• The acyclic frame period, of duration T A .	 This period is used

by acyclic tasks which arrive at random and require service time.

Time is assigned in accordance with the system priority service

I	 ' discipline.

oL t f2 ^..-o /^'t

r-zilICOM

x	 I

	
We clearly have (Fig. Ii7.2)

T
	 = Tp+TD+TA

	
(1.7.2-1)

Ti	 Y
In the operational period under consideration, tasks with

dedicated service times (which total TD sec) do not experience

any waiting 'time. We can thus write

Wp(k) = 0	 (1.7.2-2)

0(k) = 	S(k)	 (1.7.2-3)
D

where
r

WD(k) = waiting--time of a class k task with dedicated service

i DD(k) = time delay of a class k task with dedicated service

S	 = overall	 service time required b 	 a class k message_(k)	 erall	 GPC s	 ice	 me req	 y	 eg

Of course, the length of the period duration TD assigned for

dedicated service will 	 affect the overall 	 indec of utilization of

the computer system, as will 	 be noted in the fallowing analysis.

To obtain the delay-throughput performance characteristics

of the computer system, we thus need to study the service of

cyclic and acyclic tasks. 	 This is carried out in the following

sections.

' •E- T 	 ---- T
	

-- T 	 --^-

t^i
TO TG	TA	T 	 T
	 Ta	

TD
TG	TA

Figure	 1.7.2.

_	 ^_.,.^^.___ .	 ^.^z ^..^:.^ __-^_..	 cam•.. [. / L	 (^1 f 1.

i

j . 1.7.3 Queueing Anal ysi s for Cyclic Tasks: 	 Model	 I

We consider,' in these sections, cyclic tasks which are served

during tale cyclic frame periods.	 Each cyclic 'frame period is of
1
4

length TG sec.	 Any two consecutive cyclic frame periods are

separated by a time period of duration

TA + T
D
	=	

T
	 - T 	 sec	 (1.7.3-1)

Assume that the computer system can serve NC cyclic tasks

durin gg each cyclic frame period.	 For simplicity of presentation,

{ we also assume that equal service times are a s s igned to all served
4

cyclic tasks, during each cyclic period.	 Therefore, a served

t cyclic task is granted to a fixed service time of duration A sec,

1 where

i

A	 _	 T
C
/NC 	(1.7.3-2)

i Assume cyclic tasks to arrive at the system according to

a Poisson process with intensity

Arrival intensity	 =	 xC [cyclictasks/sec]	 (1.7.3-3)-

1 Each cyclic task is assumed to require	 a service time SC
f

which is exponentially distributed with a mean 	 (required computer•)

service time eqLlal to

t
E(SC)	 - uG l	 [sec/cyclic task]	 (1.7.3-4)

When any one of the N	 time slots during a cyclic period
C

becomes available, upon the termination of servic e a cyclic task,

it can be assigned to any one of the queued cyclic tasks waiting

1	 `^ for service.	 The gUeueing SyStelll Under consideration thus becomes

r^
r	 a	 f

I

M	 r	 '
i	

?	 {	
4

4	

^BY

I

4

an Nc-server queueing system. However, it is not a regular

multi-server queueing system, since it experiences interruptions

in service. After s service period of T sec., the service granted

to cyclic tasks is interrupted for a period of TF-TC sec. Subsequently,

service is resumed (simultaneously given to N C cyclic tasks) for

another period of T sec., and then interrupted again, and so on.

A proper simple approximate technique for the performance

analysis of this interrupted multi-server queueing model is developed

here and described in the following. We consider an equivalent

non-interruptable queueing system with N C servers and the following

parameters. To incorporate the original interruption times, we

let the equivalent service demand SC be exponentially distributed

with mean service time-

E(S^) _	 u 1TF/TC	 (1.7.3=5)

The arrival	 intensit	 a	 .^y remains equal	 to	 C [cyclic tasks/sec]'.

Considering this equivalent queueing model, we perform the

.t
associated queueing analysis and obtain the following results

(in accordance wi th the formulas presented i n Section 1.6.6).

By this model, we assume that each served task is processed

by the computer system for a period of e sec, during each TC sec

r
cycle.	 A number of NC cyclic tasks are served simultaneously.

Each task will thus require an average of

a Avg. No. cyclic periods used by a cyclic task

i fr U- 1NC

ul	 _	 =	 E(S ,)	 {N /T)	 (L.7.3-6)
d	

T
	 C	 C	 F

The queueing analysis follows the procedure described in

Section I.6.6, when	 (1.7.3-5)	 is	 incorporated.	 The following results

^7 ^.^^^
-108 -

r

r

r
4

oLc^xClojrt

l^i	 are subsequently obtained.

	

t	 Let

Pn = P{n cyclic tasks in the system, queueing

	

T911 	 or being served}	 (I.7.3-7)

r

Define the traffic intensity parameter p by

xT

	P = N uT	
(I.7.3-8)

c C

For the system queueing process to be stable, so that queue-sizes

	

j	 and task response time would not become arbitrarily high, we must
z^

require
aT

P = N ^T 	< 1(I.7.3-9)

	

M	 C C{

Henceforth, relation (1.7.3-9) is assumed to hold. Then,

(N
p) NC	 NC-1	 (N p)l	

1

	

P^ =	 N C 1 _p	 +	 ii	
(1.7.3-10)

	

r	 C	 i =0
and

(NCP)n
ni	 PO	 if n > NC

Pn	
N	

(I.7.3-11_)
E rj NC

C	 n
N	 p P O	 if n> NC
C'

The GPC index of utilization UC (see definition by Eq. (I.3.1-1))

is therefore given by

	

K	 UC(C)`= P{a GPC is busy in processing a cyclic task during

the cyclic period}

= 1	 PO

r	 '
AW

zX.4i'Z^Olyt

where PO is given by (I.7.3-10).

The GPC throughput in processing cyclic tasks (see definitions

(I.3.1-17)-(I.3.1-18)), assuming none to be rejected, is given by

TTHThe GPC cyclic task throughput
C(

C)	
yI

= Average number of cyclic tasks processed by the

GPC per sec	 l

a C cyclic tasks/sec	 (I.7.3-13)	 1

To obta jF , the throughput in bps, we set
{

f	 ^

a
C	 GPC average service rate in bps 	 (I.7.3-14)

Then,

j

THe(C)	 GPC throughput in bps for cyclic tasks
-1	

i

a
C
u C bps	 (I.7.3-15)

The average task waiting time for a cyclic task is equal to
IT I

Average Cyclic. Task Waiting-Time

T	 NC-1
F	 (L.7._3-16)W	 nPnC	 TCNC	 1 - 	 ,

n_p
'f

where Pn is given by (I.7.3-10)(I.7.3-11).

The average cyclic task time-delay, response time, D C , is thus`

given by

DC	 average cyclic task response time

I	 W + E(S6)

kk
	 u-1TF	 a=1TF	 NC-1

i	 TC	 +	 TCyC	 1 -	 nP	 (I.7..3-17)

n=0

rl

I

.	 f

ririii	 ^ a	 x

The variance and distribution of the task response time are

obtained similarly.

If a finite source model is desired_, the proper formulas follow

by Eqs. (1.6.6-8)--(1.6.6-10).

The study of buffer overflow characteristics is illustrated

by the following model. We let (see also Section I.2.4)

MC	 overall (average) storage capacity for cyclic tasks (I.7.3-18)

Assume that; M
C

: NC . Thus, assume that no more than an overall

number of M
V
cyclic tasks can be stored in the system. Then, using

the queueing models and methods of Sectiibn I.6.6 we obtain the

queue-size probabilities:

	

N -1	 k	 m	
NC

(Nkn)	
*	

NC	 kP
O	

i	
11C

	

i	 R	 (I.7.3-19)

	

k=0	 k=NC

(NO)"

	

11!	 PO	 ,	 ifn<NC,

NC

P 	 NC! PnPO 	 if NC : n < Mc	 (I.7.3-20)
C_

0 if n a MC

The probability of overflow is subsequently given by

M
CM^ P1C.

POF	 =
_

P ^1C (.h1 ! P	 PO (I.7.3-21)

where
PO

is given by (1.7.3-19) and p	 is	 given by	 (1.7.3-8). For this

system, with a limited storage capacity, it is not necessary any more

to require p < I.
r

tt

L	

E	

i 	

A	

^	

k

y rurtfxzn.s au

The GPC index of utilization and response time are given again

accordi ng to formulas (1.7.3-12) and (I.7.3-17), with PO now expressed

by Eq.	 (I.7.3-19)`,

I^
Substituting the proper system and task-traffic parameters, as

well as the parameters characterizing the mission phase under

'd	 t^	 th	 b	 f	 1	 11 t	 t	 h	 t%.U"a _4=1 a ion,	 e a ove ormu as a ow us a cornpu e t e aja em

I+̂r

h'

1{
Ir

'

1r

1.l;

t^

performance indices, related to the service of cyclic tacks

I.7.4 Queueing Analysis for Cyclic Tasks: Model I1

To derive at a more detailed GPC queueing model, in describing

the service of cyclic tasks, we can use the models described in

Sections 1.6.7 and I..6.8. Using these models we can describe the

CPU/10 processing interactions in the GPC system.

Assume thus the GPC service system to be described by the

closed loop model illustrated by Fig. 1.6.6.

We assume that the number of cyclic tasks in the GPC is kept

constant, equal to N C , as in the previous section.

A task entering the GPC system joins the CPU queue. A task can

enter GPC service only when a previous one has been completed,

assuming thus a constant number of N C cyclic tasks in the system.

After receiving service by the CPU a cyclic task leaves the system

with probability aC . With probability 1-nc this task will subsequently

enter the I/O queue. There, tasks are served on a first-come first--

served basis. Upon departure front the 1/0 processor, a task joins

immediately the CPU queue. I

We assume each cyclic task to require CPU and. I/O processing

times which are i.i.d. exponentially distributed random variables

with means

L	 Y :.I

I?

6j

^r

r7

F'	 k	

R	 E

	

x

~C>Un Om

it

Avg. CPU service time required by a cyclic task

PC I (C) [sec]

Avg. 1/0 service time required by a cyclic task

rai l (C) [sec]

(1.7.4-1)

(1-7.4-2)

We obtain that
a(

Avg. number of times that a cyclic task uses tare
G

Lt

I/O processor = l c

- C

(1.7.4-3)

1`

Al so,
r

Avg. total CPU processing time required by a cyclic task {

p (C)]-1	
[seca

[a CC (1.7.4-4)

Avg. total	 1/0 processing time required by a cyclic task

l-nG

ix	 i	 C'	
[sec] (1.714-5)

We define the queue size probabil ities

Pn = P(n cyclic tasks in the CPU, queued or being servedl. (1.7.4-6)

i

To perform the queueing analysis we note again that the service

of a cyclic task by the GPC .system proceeds in an interrupted periodic

s.

manner.	 We perform an approximate queueing analysis by setting the

effective mean CPU and 1/0 processing times, denoted as uC^(C)`and

u,l (C),	 respectively, to be

l (C) P C (C)	 rF

T.

(1.7.4-7)
C [

^i 1 1 (C)	 -	 uSl	
T

 (C) (1.7.4-0)
Y

j

^	 !	 r «..«. 1 .	 Y.	 #

W

1

p	 t

following the same approximation adopted in the previous section. fihe

following analysis results are obtained (see also Section I.G.7).

The system traffic intensity parameter p is set equal to

pin

t
We obtain the queue-size probability Pn to be given by

1-	 NC

P^	 _	 •----N +l,	 p	 , n = 0 1, ... , N C
C

(1-7.4-10)
1-p

The average response time (time delay) D
C

of a, cycli c task in

the system is obtained to be expressed as

r

NT C	^1
D	 =

aCuC	
TC	

N

1p_R

(I.7.4-11)

i The waitingaverage task	 time WC is

TF	 (l -c%C)TF

l

W
C

=	 D	 -
C

x,.. +	 - -d-
`^C^'C^TC	 aCPI_C YTC

(1.7.4-12)

i The CPU index of util ization is equal to

UCpu(C)
=	 CPU index of utilization by cyclic 'tasks

KCPU is occupied by cyclic tasks during the

5
cyclic period}

N r,+l

'.
`N(l_pD)	 _

C
+

(1.7.4- 13)
1-p

}

We note that the cyclic task response time DC and the CPU

index of utilization UCPU(C) are related by the formula
}

l^ 7
.

F

i

u

440- r

• r]	 llr]

D	 =	
NCTC T

	
U	 (C)	 (I.7.4-14)C

QLC^'^ 	
CPU

Thus, we can use these formulas to compute, for each mission

	

phase, the relevant performance indices. 	 j
I

I.7.5 queueing Analysis for Cyclic Tasks: Model III

Model III for the CPC service system is chosen to be the model

described in section I.6.8 (see Fig. I.6.7). See Section I.6.8 for

detailed description and derivations. All the system parameters

used are denoted as in this section, with the following modifications.

We consider here only cyclic tasks. Subseqeuntly, parameters

are denoted as: TC (C), U C1 (C), P -1 (C), A -1 , TI(C),K(C)<.

We set M= NC to denote the maximal number of cyclic tasks in

the main processing system.

We set N=N(C) to denote the number of cyclic terminals (sources,

users). The average terminal thinking time is X C 1

Rederiving the delay-throughput expressions for the present case,

we obtain the cyclic task response time DC to be given as a function

of the CPU index of utilization by cyclic tasks during the cyclic

period, UCPU(C),

D	
NCTC(C)TF - A

-1	 [sec]C	
UCPU C TC	

C

The throughput is given b

TH	
UCPU(C)

C	 TC C	
[interactions/sec]	 (I.7.5-2)

For exponentially distributed CPU and I/O service times, we

obtain the CPU i ndex of utilization to be equal to

,{	 `	
m

A	 ^
n,	 ^.ractE4	 ^:?- R.l..«.«R4	 _	 t-	 °-,..-_.•t.w.v..*.1<-w.,»r,.d...-:,x<=.re.^r..aoue...ela.._..x^. 	 _• «+^v.d._«.^.^+R -	 •wcRt...	 ,cM ::.awa+14N11.at:»^1a 	 ., 	 pR
l ob

t

N C 	 -1	 n	 -1
uCU	 (C)	 _	 1	 _	 N	 i	 l	 C)'	 (I.7.5-3)

CPU	 CNC-n	 !	 u -1 (C)

;r
n-0	 I

f

Using these formulas, one computes the system indices of

performance when considering the service of cyclic tasks, under
;f

various mission conditions.

Using Eq.	 (1.7.5-3), one computes the CPU index of utilization

{ Ui 	(C).	
The latter indicates the fraction of the cyclic frame

CPU

period that is occupied by the service of cyclic tasks.	 The

parameters involved in this computation are:

C	 - N	 maximalial	 number of cyclic tasks served during a single

(cyclic frame period

1 P 1 (C) = average CPU time for cyclic tasks between I/O
C

1
i

' operations, during the cyclic period

u I (C) = average service time for an I/O cyclic request,
(during cyclic period

E The computer system throughput for cyclic tasks, TH C is evaluated
i

by using Eq.	 (I.7.5-2).	 It yields the average number of cyclic

task completions per unit time within the cyclic frame periods.

Finally, the response-tilde 	 (average tilde delay) of a cyclic task,

I
DC, is computed by using Eq.	 (1.7.5-1).	 It yields the average

`i time delay of a cyclic task, from the instant it indicates its task

IJ,

request to the instant its service is completed.

The additional	 parameters involved inEq. 	 (I.7.5-1)-(I.7.5-2)

are

s. TC(C) = average total CPU time required by a cyclic task

E
r	 r

0
0

-103-

I
J	

34

ail

	

C	
average think time between initiation of a new cyclic

task and the completion of the previous one

	

T
C
	duration of a cyclic frame period

	

T
F
	duration of a frame period (main system cycle)

1.7.6 Queueing Analysis for Acyclic Tasks: Priority Model I

We consider now the service of acyclic tasks. Requests for

service by such tasks arrive at random, according to the

statistics of a Poisson process with intensity x
A

acyclic tasks/sec.

Thus:

Average number of new acyclic tasks (requests for service)

arrivals = x
A

acyclic tasks/sec	 (1.7.6-1)

The computer system can serve acyclic tasks only during the

acyclic frame periods (see Section 1.7.2). Therefore, acyclic tasks

are served by the GPC during their period for a length of time of

T
A

sec; then, service is interrupted for T F -T A sec; subsequently,

service resumes for anotherT
A
	sec, and so on.

We wish to describe here a simple queueing model for the GPC

service system, which incorporates different task priorities (see

Section 1.5). We consider a generalization of the priority queueing

model described and analyzed in Section 1.5.4.

Acyclic tasks are classified into p priority classes. A

class-k task is a task with priority number k, k	 1,2,...,p.

Class -1 tasks attain the highest priority, while class-p tasks

have the lowest priority.

Under a nonpreemptive service discipline, when computer service

time becomes available, a class-i task is served before any class-j

Aom

r

^^	 _.^__^__.r_	 __.... ^..,n^-=-.^u...._.,..._.^..s_s.a.,r..aaa^.M...^...-,-i.+e.-+-.._-..s.x..^. 	 -^ _..M.._a,w..-3sr-#.i.tl1.^".•^"_^_.:.°-"»^_,A-.AY.^^,^

i
E

task if i < j. Within each class, tasks are served in order of

arrival. No preemption (interruption) of any task service is

allowed.

Under a preemptive resume service discipline, class-i tasks

are again preefered over class-j tasks if i < j, as above. However,

now we allow the preemption (interruption of service) of a lower

priority task when a higher priority task arrives at the system.

We assume that class-k acyclic tasks arrive at the system

according to a Poisson process with intensity xA (k) tasks/sec:

Intensity of arrival of priority-k acyclic tasks

_ XA(k) tasks/sec, k = 192,....P 	 (I.7.6-2)

so that

P

XA	 aA(k)	 (I.7.6-3)
k=

We set

SA(k) = GPC processing time required by a class k acyclic task

The corresponding required Service time moments are

SA (k) = E
{SA

(k)) = mean service time for priority-k task; 	 (1.7.6-4)

SA(k) = E(SA(k)}	 (1.7.6-5)

Tn particular, we note that if an acyclic class-k task required GPC

service time is exponentially distributed with mean "A1(k),'then

SA(,k)A^(k)	 SA(k) _ uA2 (k)	 (I.7.6-6)

On the other hand, if each k-class task has a fixed service

t
,i

F

°x
Al

f

f

I

E

F

'I
a

i

{

1	 3

JAM :..'_Fitt

requirement, SA(k) = uA 1 (k) , then

Sa(k) = uA1 (k)	 SA(k) = ual(k)

We set.

(I.7.6-7)

i

Ga
T

pi	
aiSA(i)	

TFA
(I.7.6-8)

Cli

i i=1

i
p

P _ 	
pi

(I.7.6-10)P

x

For queue-size stability (so that queue-sizes and message delay

^k
would not become arbitrarily high) we requrie

P (I.7.6-11)

. 4

We set

1
M WA (k)	 =	 average waiting-time for a priority-k

1
t
{ acycl ic task

i

DA (k)=	 average time delay {response time) for

a priority-k acyclic task

{	 (

L

XA(k) _ average queue-size of priority-k acyclic tasks

XA	 average queue-size of all acyclic tasks.

_Assume first a_nonpreemptive service discipline. 	 The samet ,

approximation for describing the service interruption used in

previ ous sections is employed.	 We obtain the following formulas.

W	 (k)	
A	

k =	 1,29•••^P
A	 2	 l -a k	 1-crk'

(I.7.6-12)

t

+1

f

o^L ^Z ^Of'f2

where

P

	 (

TF
A	 AA(i) T

C2

SAM	 (I.7.6-13)

i=1

DA(k) = W (k) + SA (k)	 (I.7.6-14)

X
A
A

XA	 2(1-p)

The system index of utilization is:

UA	 index of utilization of GPC by acyclic tasks

P{GPC is occupied by acyclic tasks during the

acyclic frame periods}

It is given by

11 U	 p=	 p	 AO T
F
 S (i)	 (I.7.6-15)

A	 A	 TA A

i^,
	 =1

If a preemptive-resume service discipline is assumed, we obtain

the following formulas,

D (k)	

Bk.	
(I.7.6-16)

21A	 -Qk 1-Qk+1

where

^.	 T	 k	 2

	

B k 2(1-Qk)A(k)
T
F
+	 aA(i)(TFT	 SA(i)	 (I.7.6-17)

C	 i=l

XA (k)	 aA(k)DA(k)	 (I.7.6-18)

P
XA

	

	XA(k)	 (I.7.6-19)

k=1

r^.

I

L-7-1	 Zincoln

r

4	 r	 dITT! t

f	 +

n c-0 't

Thus, under a preemptive resume priority service discipline

r
the message response time is given by Eqs. (I.7.6-16)-(I.7.6-17),

while the queue-size are given by Eqs_. (I.7.6-18)-(I.7.6-19). We

note that the required average buffer sizes are estimated by the

queue-size values of (I.7.6-18)-(I.7.6-19). The computer index

of the utilization is expressed again by Eq. (I.7.6-15).

These formulas, and their extensions, as cutlined in this

_report, allow us to analyze the computer system performance

under the proper mission conditions.

We have demonstrated here the use of a simple priority queueing

model. Other priority queueing models have been presented and

analyzed in Sections 1.4 and I.5. A multitude of time-sharing

queueing models are presented in Section I.4. Various priority

d 1	 d'	 d	 d	 t' t d	 S t'	 I 5	 Thqueuesng_ " IV
 e s are	 iscusse	 an	 a a	 in	 ec ion	 e

results presented there are directly applicable to the queueing modeling

and analysis of the Space Shuttle avionics computer system studied

r here.	 The only modification necessary, when considering acyclic

tasks, is the incorporation of an effective required service time

T
f

equal to SA (k) TF .
A

In this way, the proper traffic, task and subsystem models

and parameters, presented in Section I.2, are used to evaluatei

in	 1.3.the computer system performance measures presented 	 Section

The results of Sections I.4-I.5 are properly integrated.

>j

t

I.7.7	 Queueing Analysis for Acyclic Tasks:	 Models II

Queueing models describing the service of acyclic tasks,

while detailing the-CPU/IO interactions are developed and studied

{	 ;'1 in a'manner which is completely analogous to those presented in
A

E

Iiii4i

L^^O^

Sections 1.7.4-1.7.5. The only differences lie in:

*Choosing system service and arrival parameters for acyclic

tasks, rather than cyclic tasks;

•Choosing the proper number N (rather than N C) for the maximal

number of tasks allowed simultaneously to be in GPC

service;

#Replacing TF/T C by TF/TA2

Otherwise, we obtain the same relationships for the computer

system indices of performance.

1.7.8 Joint Queueing Analysis

The results in Sections 1.7.3-1.7.7 are combined as follows to

11 yield the indices of performance for the global computer system.

The response-time (average message delay) of a cyclic and

an acyclictask.is given by DC and DA , respectively. If pri ority-k

tasks are considered, the corresponding response times are D C (k) and

DAM. The proper formulas are given in Sections 1.7.3-1.7.7. The

time-frame division between dedicated, cyclic and acyclic periods

has been exposed in Section 1.7.2.

The traffic intensities of dedicated, cyclic and acyclic tasks

are denoted as A D!' X C 9 and x A` respectively. Then, if we choose a

certain task at random, its average queueing delay (response-time)

will be equal to

D	 D D
D + A C D C + X A D Al

where

+ A +	 (1.7.8-2)
D	 C	 A

The function D D denotes the average delay of a dedicated task.

-122-

n CO M

f

For such a task we have 'presently reserved computer time. We
E ,

	

	r
can thus assume its waiting time to be equal to 0, and set its

response time equal to its average required service duration. We

set
—	 ,

SD = average required computer- service time for a dedicated

 task.

Subsequently, the dedicated task response-time is equal to

Ali TF
DD	

SD Tp
	

(I.7.8-3)

In computing the computer system queue-sizes, we write

ILI
X	 =	 XD + X 	 + XC 	(I.7.8-4)

f.

where

X = global system average queue-size;

i X
D
 = average queue-size of dedicated tasks,F

XA = average queue-size of acyclic tasks, F'

XC = average queue-size of cyclic tasks.

If we assume that presently no dedicated tasks are waiting, as noted fi:

above, then the queue-size X	 is equal to the number of dedicated

tasks presently being in service.

The GPC index of utilization U is computed as follows. 	 We

have

U	 = GPC index of utilization for cyclic 'tasks in the cyclic f°
C

periods,

z	 U = GPC index of utilization for acyclic tasks in acyclic

periods,

U =
D	

GPC index of utilization for dedicated tasks.

a

zirteom

The indices U C and U have been computed in Sections I.7.3 - I.7.7.

The index . UD is set to be

Up = fraction of time that the dedicated frame period

(of length TD) is used.	 (I.7.8-5)

Function U P is determined by the state of the mission as pertaining

to how much dedicated service is presently required.

The GPC index of utilization U, in serving all these three

classes of tasks, is given by

U = fraction of time the GPC is idle

= p{GPC rot occupied in serving any dedicated, or cyclic,

or acyclic task}.	 (I.7.8-6)

We conclude that

U	 1 - (1-UD)(1-UC)(1 -UA) 	(1.7.8-7)

Using the index utilization formulas presented in previous sections,

we can determine the time frame values T
D'

TA, TC , that will 'yield

the proper desired high (and even maximum) system utilization values

under proper task response-time and queue-size constraints. The

system designer and analyst can thus deduce, adjust and plan the

proper compromised system performance values.

I.7.9 Queueing Analysis for User Terminals: Output Traffic

I The queue-size behavior of a user terminal is described by

the following model

We describe the process of transmission of requests or

messages from a user terminal to the computer complex by a cyclic

polling TDM (time-division multiplexing) procedure. For that purpose

r

r.

3

1

i

If

t	 kkk

ZnCoin

we divide messages into fixed-length data units called packets.

A packet will contain an average of u 1 bits:

Average packet length =
- 1

bits .

A packet can contain request for service information or any data

information transmitted to the computer system.

Data is transmitted across the data-bus network at a rate

of C bps:

Transmission rate = C bps

(1.7.9-1)

(I.7.9-2)

For the avionics network, we have

C	
106 bps

Subsequently, the packet transmission time is equal to T sec, where

r

T	 (PC)
-1
	[sec]	 (I.7.9-3)

Assume now that we establish a basic time slot duration 	 sec,

E"
so that the terminal under consideration is polled as follows. 	 It

is assigned', on a fixed TDM basis, a single slot for information

transmission, once every M slots.	 Thus, the terminal can transmit

a'packet of information in its assigned slot of T sec duration;

subsequently, it has to wait (N-1)T,sec for its next assigned

slot to occur, and so on 	 (see Fig.	 I.7.2).

? M-1 Slots	 -0--	 M-1*	 A	 «b►r

q

1	

F

}	 CMiS.YI

Figure	 I.7.2
_

I	 ;^

::w}

v

Li2^0i^2

Assume now that the terminal generates packets (of service

i	 requests or applications data) according to a Poisson process with

intensity a p 'packets/sec. Thus

t

"

	

	 Packet intensity at a terminal= a p packets/sec	 (I.7.9-4)fl

Let the terminal indices of performance be given by;

j
Dr) = average delayy (response-time) for a packet at a user

terminal [sec],	 (I.7.9-5)

	

XP = average queue-size (in packets) at user buffer, 	 (I.7.9-6)

	

Up = index of utilization of a user terminal buffer. 	 (I.7.9-7)

We proceed with a TDMA queueing theoretical analysis and obtain

the following results for the terminal performance functions.

Dp	 2 M + 1 +
1Mp	

(I.7.9-8)

y

where

j

i	 p	 Map < 1	 (I.7.9-9)

:f

XP	 apDp	 (I.7.9-10)

Up = P = Map	(1.7.9-11)

^i
Thus, in observing the queueing characteristics of user

f transmissions and i ts buffer, as reflected by eqs. (1.7.9-9)-(I.7.9-11)

Y	 i we deduce the following conclusions. The packet delay and buffer

queue-size increases rapidly as U p approaches its maximal allowable
F

value of 1. Fixing an average allowable queue size value X p , to

Z	 yield an acceptable probability of overflow (POF) value, results

µ ^ 1

I'

K (^

}

t	 !

f

e^

F	 r....	
i

• Q
	 `.yy

by (I.7.9-10) with a delay value DP = ap 1 Xp , if we assume an

input rate equal to a p . The delay function D is related to U p = P

Ma p and M by Eq. (I.7.9-8). We subsequently solve for the

associated value of M. The latter specifies the required frequency

of polling (equal to M) for this terminal.

We have presented here a model that can apply to the multitude

of terminals, users, subsystems and application processes in the

Space Shuttle avionics system. Time-sharing and priority queueing

models, presented in the previous sections can also be applied.

1.7.10 Queueing Analysis for User Terminals: Input Traffic

We consider in this section the terminal buffer queue-size

behavior in terms of messages arriving at the terminal from the

computer system.

Consider a specific terminal where messages arrive from the

computer complex according to a Poisson process with a rate of

I.
At = message arrival r •-a-!7e­ata terminal [mess./sec] 	 (I.7.10-1)

t	

hk
I	

ki

'i

1 Each message is assumed to contain S	 bias/mess.	 Thus:t
k _

St	
=	 E(S t)	 mean terminal message length [bits/sec]

(I.7.10-2)

^

2	 _	
2

S	 -
t	

E(St) I.7.10-3

1 ^ The terminal is assumed to process (and absorb) the received

information at a rate of

Ct = terminal processing rate [bps] (I.7.10-4)

} Subsequently, each message requires a terminal processing time of

S tCt l	[sec/mess.]

} ^U05. L^f'l	 ^)2_	 UIV7

x

v^	 Y

tt

•

L/2^0^'72

1
t
t
1111

11

c

The performance indices of interest are:

Xt = average message queue-size in terminal buffer

Dt = average delay of a message in terminal buffer

Ut = index of utilizationof terminal buffer.

Regarding the terminal service system in processing input data

from the computer as a single-server queueing system, we obtain the
"k

following results (see Section I.4.3)
S2C_2

ttt	 1
Dt	

2(1-p) + StCt	 (I.7.10-5)

where

P = aStCtl < 1	 (I.7.10-6)

2 2 -2

X	 a D = ^tStCt
	

+ p	 (I.7.10-7)t	 t t	 2 1-p

U
	 = p	 aStctl	 (I.7,.10-8)

If message lengths are exponentially distributed with mean

lit T. [bits/mess.], we have

St	 ptl^tl	 St' = u 2 Ct2	(I.7.10-9)

For exponentially distri-buted message lengths (I.7.10-9), we can

also derive the performance measure while assuming a buffer with

finite capacity of
i

Lt = terminal buffer capaci ty (in number of messages).
(I.7.10-10)

Using this the results presented in Section I.6.4, we conclude

the following expressions.

r

aC.tfi^ofyz
b't

1 P	 n	 (I.7.10-11)
Xt	

bt*1	
np ,

1-p	 n=0

where
f

P	 atStCtl = a tut l
Ctl
	(I.7.10-12)

L

i	 Ut	 (1-L t

t
1 - P

l
_1	

It
^t	 ut + I-PR	

Xt 	(I.7.10-13)

where t
PR = (1 -p)	 pL +1	 (L.7.10-14)^

t
1- P

An additional important measure of performance is now expressed

M	 by the probability that the buffer is saturated (overflow), POFt.

This is also equal to the probability that an arriving message is

rejected (not accepted) at the terminal, denoted as Pdue to buffer
R

flow. We have:

i	 POFt	 probability of terminal buffer overflow	 i

I P
R

= probability of message rejection

L
t

(1-P)	
pL

+1	 (1.7.10-15)
1-Pt

Thus, in designing and analyzing the terminal system we specify

I	
and compute the delay, utilization and POF measures, using the

performance formulas given above. Other time-sharing and priority

#1	 queueing models can be applied and analyzed, following the presentations"

and results presented in the previous sections.i

i

4

`J

}

I.8 SYNCHRONIZATION METHODS FOR THE DATA PROCESSING SYSTEM

I.8.1 Synchronization Considerations for the Data Processing System

Due to the distributed control of redundant sensors among the

Space Shuttle avionics network computers, an unacceptable time skew

can exist between redundant inputs unless the GPCs are synchronized

prior to initiating the inputs. Similarly, unacceptable data-skew

may exist at the voting effectors unless a synchronization procedure

is employed prior to initiating outputs. In addition, unacceptable

command differences may exist at the voting effectors unless

synchronization occurs at proper states during program execution.

Synchronizationis accomplished in the Space Shuttle computer

complex by using inter-computer discrete signals and synchronization

software.

Program synchronization is required as well, since computers

that do not use exactly the same data for computing flight-control

outputs experience command divergence effects. The time required to

synchronize program execution depends on the design of the flight

software operating system. A fixed time-slice system (in which

all processes are run within a given cycle time) requires a single

synchronization point in each computational cycle. An interrupt-

driven system must synchronize at all points at which data are

calculated in one process and used in another, and at all points

needed to preserve identical process sequences in all computers

t
of the set.

Synchronization requirements between the GPCs also arise due

to error detection and recovery objectives. To provide a smooth

switchover in the case of a, failure, the computers must possess

-130-

4

^r

nkE^

1 F11's

r

E

^^.^.CXhZcoln

c^

some degree of synchronization evert if the synchronization

implementation uses only the intercomputer communication lines.

To achieve a high degree of error detection, comparison and

voting procedures need to be employed. This requires the outputs

of the GPCs feeding the comparison/voting stage to be synchronized.

• A, software initiated synchronization is performed before:

• Input commands are issued

a Outputs are exchanged for comparison purposes;

• Compool is updated by the background to pass information to

the foreground;

a Real time is obtained.

A list of all active output must be maintained, for comparison

or voting purposes. For a "bit-by-bit" comparison shceme to perform

satisfactorily, all inputs to the computers must be identical. These

include sensor inputs, crew inputs and real time. The FCOS must

guarantee the proper synchronization to maintain identical inputs.

For example:

Sensor and crew inputs must be commanded only after a proper

synchronization sequence;

•If all machines possess independent real time clocks, then

when real time is desired, the machines must synchronize,

exchange real time, and utilize a properly defined average

value to be used in navigation and control loop calculations.

To keep the GPCs in synchronization the following functions

- are employed.

a	 Synchronization points are specified. For example, the followi ngy	 r	 r	 r	 g

synchronization points can be chosen.

c
t

s

a	 '

oLc^^^o«a °'l •Sync upon entrance to a foreground routine;

*Sync before a data input sequence;

t
g	 f

i

s

ik

*Sync before a comparison and output cycle;

#Sync upon entrance to a trap routine;

*Sync upon entrance to (or exit from) a background/foreground

update block

* Sync before the real time clock is read and exchanged as data;

•Sync upon entrance to the interrupt service routine; etc.

b) A maximum time-out function is _specified. This function

represents the maximum waiting time allowed for the machines to

synchronize. Different sync points can possess different

time-out limits.

c) A topological sync-connection function. This function designates

the aPCs with which synchronizationis to occur at the underlying

point.
-

In the Space Shuttle orbiter avionics system a GPC software 	 1°

_synchronization technique is thus incorporated into the software 	
t

system to support simultaneous operation of GPCs in a Redundant Seta;

It alos supports all active GPCs for System Software Interface

Processing.	 }

The following software requirements are associated with the
i^

synchronization procedure:	 l

a)	 The synchronization technique is required to meet time skew
i,;F

constraints, for sampling data sensors and providing output 	 f'

commands to the external voters.
f.

Allowable time skew on inputs is bounded by a specified value

denoted as AT I	Typically,

i

•h t co / (.
,

1

f{
4

ATI P 450 usec

Allowable time skew onout ut commands is bounded by a specified

value denoted as ATO . Typically,

ATn ti 1 cosec

The input time skew is defined as .the time span between the first

and last input command to the buses of a redundant sensor set to

achieve the effect of a^.simultaneous read operation. Additional

time skews need to be incorporated to account for differences in

bus transmission times and sensor response times.

The output time skew is defined as the time difference involved

in the issuance of redundant output commands to the buses. Additional

time skews need to be incorporated to account for hardware related

.i

-1

I

{

n

z

A

^i

time differences. {

b) The synchronization technique needs to support the fault

detection and identification software function. 	 This involves

GPC self-test procedures in the simplex mode and additional
i r

bit-by-bit comparisons of specified output commands in the S

{. s '` redundant mode. ,
i'

c) The synchronization technique needs to support synchronization
t 4y> (

of all active GPCs (common sync points) to facilitate system

{ f software interface processing.

In particular, SSIP processes are those required to run at

the same time in all active GPCs, regardless of the major function

}> they support.	 For example, the following functions are elements of I••

° f SSIP processing.	 (These elements may employ various sync points.)

A. Intercomputer communications (ICC).

r

LAI-133-

_.
P

x

.,r

f

z^

i

a	 ' f

t l l

1<

 " 9.

B. Time management-required for the input coordination function

on the reading of the MTU and passing GPC prime clock values.

C. Downlist control to insure a phase relationship of the downlist

program.

D. Configuration change coordination - Required for switch and

	

	
i
1

keyboard inputs that require coordinated configuration changes.

E. Systems status data for display and control - There are

numerous parameters in the system software that are required

to be available for display across all GPCs. There also are

various logic control parameters denoting systems software

status required to be passed among all GPCs (for example,

what GPCs contain which memory configuration.

F. Applications interfact - Involves the trading of data between

dissimilar GPCs to support integrated displays and special

interfaces.

G. Launch Data Bus control	 Involves changing command configuration

of the two LDBs when a request to transfer control is- received.

H. GPC initialization - Requires ICC to establish the current

configurations of other active GPCs.

I. Annuciation	 Common for all memory configurations and

required ICC coordination to facilitate GPC control of the PL

and DEU buses to output all C&W and alert messages and to s

combine identical messages produced by a Redundant Set into

single messages.
i
r

J. GPC error handling System error responses may require

GPC coordination to determine what log ic to invoke (for

example, to avoid downmoding-all GPCs in a redundant set

for common mode errors).

-134-

A t ,

`II

I

l

K.	 Mass Memory contention coordination -Involves coordination

between GPCs when different configuration require use of a

shared Mass Memory Unit.

f
I.8.2 A Queueing .Model

it
i	 We present a general queueing model to describe message delays

,i	
and buffer behavior under a synchronization operation.

The unit under consideration need to synchronize a process

i	 (being an output or input process) with another process. The

other process can be associated with another unit, or be the average

process generated from processes associated with a set of network

f	 units.

Sync points are determined for the time comparison , of the

' Es
{	 two processes. To model this comparison operation, we assume that

underlying messages need to be stored in the unit buffer and queued
.i

for a certain time until a time comparison task is completed.

i
The period of time required for such a message to be

queued in the buffer, denoted as S, can be simply represented

j
by the formula

I	 _1

S 	 + ATS + ATp + ATP	(I.8.2-1)

where

u- 1	average sync message length [bits]

1	 C = unit processing rate [bits/sec];

AT = time-skew due to clock differences;

AT = time-skew due to differences in propagation delays

ATP = time-skew due to hardware processing differences.

If sync points are determined in such a manner that sync

messages, arrive as a Poisson process at a rate

i

}	
l	

^

•

aS 	arrival' rate of sync messages [bits/sec],

then the unit system under consideration can be considered as a

4 queueing system.

In particular, applying the queue-size and message delay results

presented in previous seci tons we obtain the following formulas.

The system traffic intensity	 is given by

P	 _	 aS	 (I.8.2-2)

We require

P	 <	 1	 (I.8.2-3)

to ensure finite limiting queue-size and message delay values.

Then', the mean buffer queue size X, representing the average

x number of messages in the system, queued in the buffer or under

processing, is given by

_	 lX	 =	 P	 + 2	 1-P	 (I.8.2-4)

The mean delay (response-time) D of a message, representing the amount

(
Y^

FJ of time the message has to spend in the buffer for both queueing and

4
processing purposes, is given by

^ PD	 _	 SO +]	 (I.8.2-5)2 1-P

Using these formulas,	 buffernetwork constraints upon	 queue

size and message delays can be applied to deduce the proper constraints

upon the underlying time-skew functions.

I.8.3	 Clock Synchronization Procedures

We consider the problem of time synchronization for the Shuttle`

data bus	 Shuttlecomputers, the	 and other	 systems using the time

i

i

i

i

is

I

i

r

1

4	 I^
f

I`

Pf

I
-

r !	 ^,..-ice. 	1 	 1	 k	 r

t -eft	 '

•

functions.

The two main methods that can be applied to synchronize the

GPC (or other unit oscillator) can be classified as:

*Master-Slave Sync Techniques

#Mutual Lock Synchronization Techniques

Under the master-slave sync method, one oscillator is named

the master and is the frequency reference. The other oscillators

are synchronized to the master using phase lock loops. Failure

of the master oscillator must be detected whereupon another

oscillator is named the master.

Successive master oscillators are selected in order from the

surviving oscillators. There are two problems involved in this

scheme: Since the entire system operation depends upon proper

operation of the master oscillator, failure of the master oscillator

must be detected and corrected. Two-failure tolerant failure

detection is cumbersome. Also, the circui try must be reconfigures

to select a new oscillator to be the master from the remaining

surviving oscillators.

The mutual lock synchronization scheme works as follows. Each

oscillator is controlled by a filter, in this case a phase lock loop

The outputs of all four oscillators are added together and _applied

to the inputs of each phase lock loop. The phase detector at each

phase lock loop input determines the relative phase between a

particular oscillator and each component of the summed input.

For example, if the oscillator outputs are considered to be

sinusoids, the summed Outputs will be

•

-137',-

r^

_f
a

I '^

!I

ij
i

k

{ii

}
1	 k
4	 t
1

t'

a	 ^	 ^

'	
I

yi

4

	

e0 	Ai sin(wc i t + ^i)

where the p i 's are measured with respect to some arbitrary but

consistent reference. Now the
jth

phase detector measures the

phase difference between the jth oscillator and each of the i

components, and it outputs the sum of these phase differences.

Thus, the jth detector output is

4
1%
	 .

	

J	 J
i=1

where j takes, on the values 1,2,3,4.

It can be shown that, as a result of this summing of phase

error at each input, the several oscillators will achieve mutual

synchronization with normal loop dynamics. This is true provided

the center frequencies are within a mutual "pull range" to begin

with.

Therein lies the key to failure safe operations for the mutual

lock method. The tracking range of each oscillator is limited by

clamps of the frequency control input of the oscillator. When an

oscillator fails off frequency, loss of lock is assured by 'properly

limiting the pull range. The failed oscillator will then be off

frequency and will be properly ignored by the remaining phase lock

loops due to the selectionof phase lock loop bandwidth smaller than

the, failed frequency shift. The important point here is that failure

of an oscillator does not cause detriment to the remaining oscillators

because any oscillator introduces vital control into the loop only

when a proper signal is present.

!	 ^	 !	 '	 f!	 F	 i	 t

r^ J	t
11^: tom.._..___ ^:__._ ,..	 ^	 _.__^__^.^.^.,+^^...:^w.^:	 •a,.:. ^^^ _^.___:^^___..^. ,,>,__.._^_,w._.._. 	 L	 ^_^.^..

'
f

r rt

I+

r

1

.^	 up

} n

it

The oscillator used in the clocking circuit can fail in

the following ways:

•No output

.Wrong output levels

*Small frequency drift

*Large frequency shift

The first two failure modes can be easily detected by comparison

of the performance of the quad computers and will not be detected in

the clocking scheme proposed. The second two, however, can cause

erroneous calculations of a more subtle nature and must be monitored

and any failure rectified.

A detector can be implemented to determine the frequency error

between any oscillator and a reference oscillator. The difficulty

here is that the reference oscillator may fail or the comparison

circuit may fail. The failure modes of the reference oscillator

are the smae as for an operational oscillator. The failure detector

circuit (comparison circuit) on the other hand may fail in one of

two ways: 1) it may erroneously indicate a_failure of an oscillator

(failure in the FAIL state) or 2) it may erroneously indicate that

an oscillator is operational (failure in the GOOD state)

Therefore, it is imperative in the oscillator failure detection

scheme to provide that frequency error detection be done without

introducing added failure_ modes. _-Oscillator frequency error can

be 'determined in two ways. First, it can be deduced by comparing

computer calculations using data derived from each reference 	 i

oscillator. Secondly, oscillator failure can be determined by	 {

employing a double-fail-tolerant oscillator failure detector.

1-^

r
Li	 I

I

I
a
c

U

k

1

l
^A

In order to use the master-slave synchronization technique,

failure detection of the master oscillator must be done followed

by an electronic reconfiguration to select a new master oscillator.

In order to maximize hardware efficiency, failure detection may be

done by a comparison between operational oscillators. Such a

comparison between two socillators gives, not a positive indication

of failure of either oscillator, but isa failure syndrome indicator;

the failure can be either of the oscillators or the failure detector.

The failure of a particular oscillator can be determined by taking a

majority vote amongst several syndrome indicators, depending upon

the number of failures to be tolerated.

In turn, a clock system using a mutual failure detection

principle can be used. Such a scheme is designed to guarantee positive

failure indication of the five oscillators in spite of any three

failures of oscillators or detection circuitry. Oscillator failure

is announced any time two syndrome indicators go to the FAIL state.

Those syndromes associated with the failed oscillator are then

removed from service and no more comparisons accepted from them for

additional failure indications. This requires memory of prior

failures and also control functions between failure indication (FI)

logic. Because of the need to have a three-failure tolerant failure

detection scheme, the FI logic must be triple redundant with fail

proof wired "OR" failure, indication.

The drawbacks in the mutual failure detecting clock system are

as follows. The control exerted by one oscillator and its failure

circuitry upon the others paves the way for catastrophic failure of

one unit to destroy the others	 Therefore, when oscillator failure

__i_an-	 W yu-
oL`6t^Ot2

A	 k	
r	

. 	 _

y 	a
r

11C0111

detection is incorporated, the failure detection should be done

on a basis wherein independence is maintained between the four

clocking subsystems. In general, when a mutual synchronization

procedure is employed the structure shown in Fig. I.8.1 can be

be employed.

{
61	 COMPARISONS	 1	 +

PHASE	 LOOP
AND FAULT-	 1

DETECTOR	 FILTER
e4	DETECTION	 1

a
VCO

► 	 1

EIR
Figure I.8.1.

Comparisons and fault-detection procedures are used upon the

received processes (phases), in establishing the integrity of the

underlying clocks. Subsequently, the healthy phase processes are

summed to yield an average phase process. The latter feeds the

,phase-locked loop of the system (GPC) under consideration, as

shown in Fig. I.8.1 (. for GPC number 1).	 1

The system analysis of such a loop is carried out in the

following manner. Consider the PLL model for oscillator number 1U11

shown in Fig. I.8.2.

Neglecting the VCO tuning voltage and VCO instability one can

write the stochastic nonlinear differential equation by inspection

as follows:;

7
;I

i

a	 ,
E

Zineoin

1	 At)	 !,_A Sin[C', t^+ +9 l 1 . 0 +A ` 1A4]	
N t

a 2	 1	
, (41)

:4- 	 1
4 	 f	 5i1i	 +	

c	
"I K,111 F 1 41)

A4

r(t) _ F2 eas[w0 t + 41 ^ X01

Kv/u

I
Figure I.8.2

r

h = p^ [Fl (p) e]

K F1(P)	
(I.8.3-1) i

-	 p	 [Sin (4I) + rl (t, 41)7

where

i

i ml	 (ol + 02 + 03 + 04 - 4o l) = phase error

Ll

N(t,	
o	 ,

h)
= N

Co
c	

s ^fi l - Ns Sin O l	 equivalent phase noise k

We can write	 I;	 a

4

	

K F (p)	
r.
,.

+ a 2 + 8 3 + °4)	
-

 F l (p)
	 < l + N(t,^,)]

I

?	 4	 K F 4 	 a1(p)

P	 Si 11	 -4o 1)	 N(t,¢ 1 ')	 (I.8.3-2)

where,,

i

'l = (0 l + 0 + 0 3 + 0 4	 401)

I	 .,I
j	 Similarly, the equations for other three loops may be written	 z	 ,

{

^fZ^0f^2

as follows:

K F2(p)	
4

3 _	 ©. -	 Sin (O i - 4o2 j + N(t, W2)

2 	
N	

i^1

where

^2 = 10 1 {- 0 2 + 0 3 + 04	 4,)2)

(I.8.3-3)

^b

x` `^3	 v	 i P L^ Sin{oi	
4 p 3) + N(t,	 ^3) (I.8.3-4)

where

r-
4

=	 (e	 + o 	 +o + o -40)

'
4

K
4

F	 (P)
4

,
E __	 p

04i p ^L,	 Sin(t^	 - 40i	 4) + t^(t,	 ^4) I
=l -1 (I.8.3-5)

where 'r

^4 (p l 	 +	 Q2
+	 0 3 +	

'4	
4o4).,

CS

Equations	 (I.8.3-2) to (1.8.3-5) represent the system equations

for four parallel	 coupled loops.	 Each'equaton is a nonlinear it

stochastic differential equation with coupling introduced due to

i

otherhase lock loops.P	 P B	 assuming 	 = F	 =Y	 9	 l (p)	 2 (p) F	 = F 3(P)	 4(P)

i.e., a first order loop and linearizing so that sin ^	 the

Fokker Planck technique of analysis can be applied to solve the

simplified equations.

^	 k

I	

^

61^

I	 ^`

i

•̂dli2^Of^2
To illustrate the efffects of time delays between oscillators,

consider the model shown in Fig I.8.3.

PHASE	 LOOP	 r^Cl

QETICTOR	 FIL1Pr	
Y

K1

^	 0)21C»

K2

VC0 ,	 LOOP	
4

SEHA

	

F I 1.1 ER	 TCCTti^

Figure 1.8.3.

r

t

E	 ^
1

k

#

'i

R ^

r ^

{
f'

The fundamental equation of a single phase-locked loop

is given by

W I = W01 + K 1 Cos (P2 - r l2	 `'I

where,

W = Synchronized output signal frequency

W01 = Nominal frequency of the controlled oscillator

VI = loop gain of the controlled oscillator in rad/scc/rad.

1 and ^2 = relative output phases of oscillators one and two

012 = phase delay from oscillator 2 to oscillator 1

Wss	
steady state network frequency

;.r^_..a_.:..ate I 	 _	 ..,•.._—.^...-^,,..-,,.....__•_---'^.-- 	 ::.a.	 ^.r	 , ^„ .. _.__....a . v.. __.	 i

CAtcom

For the two phase locked loop clocks the steady state equations

are:

W1 = W01 + K1 Cos (v 2 ` 612	 $1)

W 2	 W02 + K2 Cos (^': 1 - t) 21 - ^d
Y

(I.8.3-6)

(1.8.3-7)

where Wss W1 = W2 = the steady state output frequency of both

oscillators.

For a practical network let

W01 = W02 and K ,	 K2 = K.

Then equation	 (I.8.3-6) and	 (I.8.3-7)	 gives

0 = '11 01 	- W
02 +

K[cos	 (^ 2 -
^1	

- 0 12) - cos	 U, 1 -
^2	 e201

41	 -
01

W
02

E3-(12 +	 E^ 	 ^,2.F	 21)	 '2
^	 C

2^1 +
	 0	 - 012)_

K
_-	 Sin Sin

2	 + 2

=^Let	 Sin 12 2_21)l_A
J

^2 - ^ 1	=

021 -_e 12_ _and 2
0

Substitute these in the above equation to give

r^410
K =	 Sin(+' 9)

-	 AWo

+ p Sin_ 2A

i
L	 111n

8

For a practical case

`lido = 0 and K >> 1

-Q

Substitute this in equation (1..8.3-6) to get

W - W	 + K Cos ^-- 2
1_ 01 2 - 2012)

1	 0 1 	l

Thus in general

.r	 W	 _ 44 - 1J	 + } Cos	 1°2.
`121

ss	 1 _ 01	 2
(1.8.3-8)

These methods can now be integrated with the queueing

techniques presented previously in this section and the reliability

methods developed in the following sections, to obtain global system

performance characteristics.

4

T

1i
l

3
S

i

U

y

IAN

(^—c4incofn.

II. SYSTEM RELIABILITY MEASURES AND COMMUNICATION PATH
FAILURE ANALYSIS

II.1 Reliability Features of the Data Processing Network

The Space Shuttle orbiter avionics system is described in

Section I.1. In this section we will summarize the main system

reliability features.

The Space Shuttle avionics system contains five general

purpose computer (GPCs) communicating with the avionic subsystem

over a network of serial data buses (see Figs. I.1.1-I.1.2). Four

of the five GPcs are identically programmed to perform flight-

critical functions, such as guidance, navigation and control.

The fifth computer is programmed to perform non-f light-critical

avionic functions.

Subsystems that perform similar functions are assigned to

the same data-bus group. There are seven such groups (Fig. I.1.1).

The subsystems have varying levels of redundancy at the unit level,

depending on their criticality. To prevent the loss of more than

one redundant unit when-one data bus fails, no two redundant units

interface with the same bus.

During time-critical mission phases (when recovery time is

less than one second), such as boost, reentry and Landing, four

of the five GPCs operate as a redundant set, receiving the same

input data, performing the same flight critical computations and

s	 ;	 transmitting the same output commands. In this mode of operation,

efficient detection and identification of two flight critical

computer failures is provided by comparing the output commands
t

and " voting" on the results. This is called the voting subsystem.

4:	 d
^a

^.	 4

t^

t

f(

(4^

{f

R
i

1_..^...3.....,..h .e!	 ;.:.	 .._ _	 •	 ^... a..	 _	 ,:.-.. ,. _-t .ww..s{.xm+.v>.^u.uS,uhwa.:.. ...K_.-.:,...^..# x-...^..i.a	 .w....«^a -..v:..:,..e».x w	_..-.,._, e	 ... ,-......r .s. ,m	 ^... ,. -	 -. _..r,	 _	-.^-.....-...,.t	 ...e..A.,.w	 AAA

	

c^C.crz^orn	 _	
I

After two failures, the remaining two computers in the set use

comparison and self-test techniques to provide tolerance of a

third failure. The 'voting mechanism thus allows a computer to

transmit incorrect commands to critical subsystems for an

indefinite number of cycles without having adverse effects on

system operation.

Each of the redundant subsystems isconnected to -a different

bus. Thus, a different computer requests data from each of the

subsystems and the returned data are available to all other

computers in the set.

In non-critical phases of the mission, each of the GPCs is

associated with a proper dedicated subset of subsystems. This
)

non-redundant configuratio ms termed the simplex mode.

Topologically, we note that the data processing system is

structuared around a central set of GPCs. Thelatter are inter-

connected to the subsystems so that they can be operated in

redundant groups to provide critical services.

Interface adaptation between the data bus network and the

orbiter subsystems is accomplished by multiplexer/demultiplexer

(MDM) units. The GPC complex is interfaced with the data bus

network through the set of I/O processors (IOPs) . The serial

digital data buses are time-shared, so that data transfer is

carried on a time-division-multiplexed (TDM) basis, using pulse

code modulation'(PCM).

I
	Each GPC contains a self-testing program as well as built-in 	 f,

test equipment. The latter enables it to 'attain a 96% fault detection

	

capabili ty. 	I

Each computer IOP interfaces with the other IOPs and with

the interfacing subsystems over the 24 separate serial data

buses. The IOP contains a set of 24 independent processors,

called Bus Control Elements (SCEs). A 25th processor, the Master

Sequence Controller (MSC) controls the operation of the 24

BCEs. These 25 processors act as separate digital computers,

with data processing programs independent of the CPU programs.

Each BCE controls a Multiplexer Interface Adapter (MIA), which

is connected to the serial data buses via bus couplers (see Fig. I.1.3).

The MIA transmits and receives information, encodes and decodes

bus data, and tests for parity and proper synchronization of bits.

In describing the reliability, fault detection and failure

properties of the avionics data processing network, we will identify

the ;relevant failure and reliability measures and models for: the

computes system; the communication network; the subsystem complex;
	

l

and the proper integrated interfaces among these subnetworks,

II.2 Failure Parameters and Reliability Performance Measures for
the Computer Complex

In considering failures of system elements, we examine failures

associated with the computer system, the communication network and

the application subsystems.

We first consider failures associated with the computer.

complex. A GPC is assumed to have an average failure rate equal

to a [failures/sec], so that

Ac	 average ,GPC failure rate [fail ures/secl	 (11.2 -1)	 }

t

ei

6 i

i

i

Al
^ 1	 Y

t
+Y

'Y

.i

1

, 	 t
tY	

h' Ms :'.y	 ^ M1..>^.'+.._T^ x
	

Y	 ^	 r	 .. r	 .. , v. r	 , .v` 	... _-..r ^a	 L

•l iZ^Ot^2
11

^ I The peri od of time from i ni ti ati on of operati on to the fai l ure

of a GPC, is called the PGC lifetime. It is a-random variable,

denoted as Tc . Thus

Tc = GPC lifetime = GPC operational time til
failure [sec]
	

(II.2-2)

The mean duration E(Tc 	c) = T is equal to a-1,

t

t
c

i
f E(T c)- = T 	 1/ac .	 (II.2-3)

To statistically characterize T we need to specify its

distribution function Fc(x),

FC(x)	 P(Tc<x) , x > 0	 (II.2-4)

It is many times assumed that T is exponentially distributed,

so that
-a x

Fc (x)	 1 - e c
	

x > 0.	 (II.2-5)

Other lifetime distributions are sometimes also used. For example,

a useful two parameter lifetime distribution is the Gamma distribution

with parameters a > 0_and k	 1,2,..., given by the density

	

fc (x) _ d Fc (x) =	 kl i
(ax)k-le- ate t > 0.

(II.2-6)

Another useful lifetime distribution is the Weibull distribution

with parameters v and k, v >e, k > 1, given as

	

e xp	
(x _ E) k`

FC (x) =	 (II.2-7)
0	 x <e_

i

f

i

I	
t

^

///

/n

n/II NN	 tt
^

^`nCor2 {j

j

111

{ The conditional	 failure rate -function hc (x), also called the

hazard function, is given by

f c(x)

hc (x)	 1-F 	 x	 (II.2-8)

c{{
I The hazard function h (x) yields the density of computer failure

c{
after a lifetime of duration x, given that it has not failed during

xi
its first x units of time of operation. 	 Thus:

y

ii hc(x)dx	 =	 P{x < T < x + dx1T > x} 	 (II.2-9)
h

For a Weibull	 lifetime distribution, with parameters 	 v and k,
I,

we have

I k-1

hc (t)	
k(v(II.2-10)-e)

j
{

Thus, the chance of a GPC failure increases with time in accordance

with expression (II.2-10).

lifetimet For an exponential	 distribution (II.2-5) with parameter

ic'
we obtain

j

}
hc(x)	 =	 ac	for each x > 0	 (II.2-11)

Thus, under anexponential 	 lifetime distribution, the conditional

f
GPC failure rate is constant. 	 The chance that a GPC will currently

fail, given -i t has not yet failed, i s independent of the length of
r

1

! time thi s GPC has been operational.	 The exponential distribution

is therefore memoryless.	 A non-exponential distribution, such as the
}	 1

Gamma or Weibull distribution, should be used if the GPC conditional
U1,

I
failure rate cannto be assumed to be constant. 	 In general, the GPC

^

conditional	 failure rate is a non-decreasing function of the past

iI
GPC lifetime.

_ Li'l	 Ul")"2

Considering simplex Operation of a GPC, self-test tests and

programs are used to detect a computer failure. The probability

0

of a computer failure detection, using only self-test techniques is

called the computer coverage. Thus, We Set

P^ = GPC coverage probability^	 '

= P{faflure detected by GPC self-test operation
GPC failure occUrred}^II.2-12),	 `	 '

_
In the Space Shuttle avionics system, a goal of 96% coverage

of computer failures has been set, when no external test equipment

^ Or cooperative use of other GPCS is employed.

To obtain

p.U = OLBh
`	 .	 |

all GPC self-test techniques are employed, 'including: built-in

test equipment, timer micro and macro-coded self testing procedures.`

A storage of CPU llU half-words and a CPU processing 'time of 1.3 msec`

is required.
'

To attain a coverage of	 -

'	
Pd = 0.88

the above mentioned macro-coded self-testing procedure Can be

' withdrawn. Then, a CPU storage of only 14 half-words and a CPU

processing time /Vf.only 0 ' 15 03ec is required.`	 '

It is worthwhile to achieve^^ P =
.	 0,96 prior to ass1gDinga^."

. 	 '

C to d redundant set-. However, to save storage and processing

time in using self-test procedures in the redundant set, during

. 'critical mission phases, it is 	 to attain p = 0.88._88 |	 r	 '	 ^^ 	 (^ 	 `

`

U^

,
^ ^^

x	 , a -i	
w J

'.,._-._4.^._ _	 t	 .u. -..........._	 -^+1l_•...ti.+_V=c..—twl	 a^	 _.-.+.-^:`3eT_iii 	 +.1 e	1..

^	
I

•

G

i.

The resulting redundant set reliability measure will be evaluated

in a later section.

The build-in test equipment by itself can yield Pd = 0.37.	 It

requires virtually no additional CPU storage and processing resources.

It is also of interest for certain mission purposes, to model

secondary GPC failures. 	 These are failures that do not affect the

operation of the GPC as related to the present mission. 	 Given that

a GPC failure has occurred, we let PSF be the probability that it is

a secondary failure. 	 Thus:

PSF = P{failure is secondary,GPC failure has occurred}	 (II.2-13)

Thus, we have

a

CGS	
GPC secondary failure rate = PSFac	 (II.2-14a)

4.

aCP = GPC primary failure rate	 (1-PSF)ac	(II.2-14b)

E

f,

It is also possible to differentiate between transient and

permanent GPC failures.	 A transient GPC failure will cause an

incorrect computer output which can be restored within a relatively

short period of timeTTR .	 A much longer restoration time TPR

is required to correct a permanent failure. 	 The corresponding mean;

^.

restoration times are i

TTR	
E[TTR]	 (II.2-15a)

^^	 1

TPR	
E[TPR]	 (II.2-15b) !"	 '

Restoration times aresometimes assumed to be exponentially }}{

iA

distributed, but any proper distribution (such as a Gamma distribution)

can be assumed.	 For critical mission phases, we can set T	 = ±Co .
PR

s:̂ j

rig Ofi2 ij

i	
In detecting computer failures, use is made of mutual tests

!z

v

j

'I

i

a

t

^
I,

and data interchange between GPCs, of inter-GPC comparisons, as

well as of self-test procedures. We set

Pd (N) = probability of detecting a GPC failure, given it

has occurred, when both self-test procedures and

comparison procedurs among N GPCs are used.	 (II.2-16)

Clearly, we have

Pd = Pd (1)	 (II.2-17)

and

Pd(N) > Pd (N-1) ,	 Pd (N)> Pd , N > 1.	 _(II.2-18)

In choosing reliability performance measures to assess the

failure invulnerability of the Space Shuttle avionics computer

complex, we consider the two computer system modes: 'the simplex

mode and the redundant mode.

In the simplex mode, an operating GPC serves a certain set of

subsystems	 To assess its operational reliability we define the

following indices.

QCF(T)
	 Probability of a computer failure within

T sec of operation, in simplex mode.	 (IL.2-19)

LCF
= mean time between GPC failures (MTBF), in

simplex mode.	 (II.2-20)

If we incorporate computer restoration operations_, then we

are also interested in the following performance function:

QC0 = probability of a GPC being in a failure state,

under restoration, in simplex mode 	 (IL.2-21)

^F

3 it

1+4+

j

Ell

I

1

oCCrt^or,^t

r	 ^

j

I

i
i

In the simplex mode, when a computer fails, it can be replaced by

another one. It is assumed that a minimum of two GPCs is required

for regular operation. One is then interested in computing the

simplex system loss probability:

QSL(T)
	 the simplex system loss probability

probability that there are no two operational GPCs,

in simplex mode, in T units of time. 	 (II.2-22)

We turn now to consider the redundant computer system mode.

In thismode, 4 GPCs are operating in parallel, performing identical

information processing operations. Comparisons are made between

the computer outcomes. A voting procedure is then emploved. The

failure of one or two GPCs is immediately identified and GPC-located

by the voting mechanism. The failure of a third GPC is indicated

by the voting procedure. However to detect which of the remaining

two GPCs has failed, self-testing procedures are utilized.

We assess the computer-complex reliabili ty performance in the

redundant mode by the following measures.

PSL (T)	 probability of a computer system loss during a T sec

redundant computer system operation.	 (II.2-23)

The redundant computer system is said to be lost, during a mission

phase of T secduration, if no GPC is remained operational

In assessing the increase in reliabili ty contributed by the

number of redundant parallel GPCs (denoted as N), we are also

interested in computing the index:

PSL (T,N) =`probability of system loss during a T sec'

redundant operation of N; GPCs 	 (II.2-24)

I

_cam L fZ	 ^^'L
-155

e
E

1

n

^ 	 I

^^oLLi2^0i'Yi

We note that in the present system, N = 4, so that

PSL(T) = PSL (T,4)	 (11.2-25)

The following meantime between failures also provides a

measure of redundant system invulnerability.

TF (N) = mean time to system failure of a redundant N-GPC

computer complex	 (II.2-26)

In the present system N=4, so that we set

TF	 TF(4)	 (II.2-27)

F II.3 Failure Analysis for the Computer System: 	 The Simplex Mode

II.3.1	 Single GPC Failure Analysis

In the simplex mode, each of the GPCs is associated with a

proper dedicated subset of subsystems.	 I

Assume that out of the N available GPCs, only M GPCs are used

on a dedicated basis, M < N. 	 The remaining N-M GPCs are used to

replace failing GPCs.

Each GPC is governed by a failure rate x c .	 (Assume only

primary failures.) 	 Using self-testing procedures, the probability

of detecting a GPC failure, once it has failed, is equal 	 to Pd.

The mean time to failure of a GPC is thus equal to

LCF =
TF (1) = mean time to failure. for a simplex GPC,

=	 1/ac 	(LI.3.1-1-)

If the time to failure L CF of a single GPC is exponentially distributed

we have

-a t
c

P(LCF > t)	 =,	 e	 t >	 0	 .	 (II.3.1-2)

"	 2

A time-dependent self-testing failure detection process is

described as follows. We set

LFD = time to failure detection, by self-testing techniques,

for a simplex GPC, given failure has occurred.	 (II.3.1-,3)

The mean time to failure detection LFD is equal to

LFD	 E[LFD]	 Xd'	 (II.3.1-4)

provided failure detection occurs. If L FD is exponentially

distributed, we set

P(LFD > t) = (1-Pd) + P d e

_adt,

t > 0.	 (II.3.1-5)

Therefore, we conclude that

Probability of a GPC undetected failure in t units of time
i

4

ft P[L
CF

6(u u+du)]P(L FD > t-u)
r

0	 k

t a e ^cu[P e- d(t-u) + 1-P]du
J	 c	 d	 d0

acPd	 -adt -X t`	 -aft
_^ [e	 -e] + (1-P)(1-e)	 (II.3.1-6)
c d

-^ t
Thus, with probability 1-e

c
a GPC will fail within t units of

time. After failure, by self-testing techniques its failure will be

detected with probability Pd, and undetected probability l-P d . The

dynamics of failure'detection is described by Eq. (-I1.3.1-5). The latter

yields the probability that failure detection (by self-testing) will

require more than t units of time. Eq. (LI.3.1-6) describes the

probability that a GPC failure will occur within t units of time

^ L0i7.
	 r

-157

t=

and that the failure will remain undetected during this period.

II.3.2 Failure Analysis for the Simplex Computer System

We consider the computer complex under the simplex mode. It

is assumed that M GPCs need to be used on a regular basis, each being

assigned a dedicated set of subsystems. The total number of available

GPCs is equal to N, N > M. For the avionics system, we typically

have N = 5, M = 2. The failure characteristics of each GPC have

been analyzed in the pr(,vious section.

We assume now that upon the detectionof a failed GPC, it is

immediately replaced by an in reserve GPC, if such is available.

Initially, M GPCs are operating and N-M GPCs serve as reserve units.

We say the system loss has occurred when no more than M-1 operating

GPCs are left. Thus, we set

QSL (T,M) = P{no more than M-1 GPCs are left y	(11 .3.2-1)

For the avionics system, M=2, so that

	

QSL (T) -
QSL (T,2)	 (II.3.2-2)

We wish to computeQSL (T,M) and QSL(T).

The GPC failure point process can be noted to be a Poisson

Process with rate Ma c [failures/sec]. We subsequently obtain the
I

following result.

QSL (T,M)	 P{more than N M+1 computer failures in T units of time}
r

_
fT Mxc	

(Ma u) (N M)e
Mac u du

P	
J	 N-M !	 c
0

N-M	 -Ma 1	 (Ma T)n
= 1 -

	

	 e	
c	

'ni	 (II.3.2-3)

n=0

1

t
r

f

c

S

4 E

(i

^i

t

^t

S	 -

i,

l.af

1'

i
t{	 {

F	 I

^

	

	 Therefore, for N-5,M=2, we obtain;
t

3	 -2aT (2^, T)cc	 n

I	 4SL(T) = 1 -
	 e	 ni

n=0

`	
-2a

1'	 (2x T)2	 (2x T)3

= 1	 e	 c	 1 + 2XcT +	 2^-	 +	
3
i	 (II.3.2-4)

Using expression (II.3.2-4), we can thus compute the

probability QSL (T) that the simplex system fails, so that no more than

a single GPC is operating in T units of operation time. Alternatively,

given a desired maximum simplex loss probability q O , we can evaluate

the critical time T such that

Tc = max{T; QSL(T) < Qo}	 (II.3.2-5)

To compute Tc , we solve

QSL (Tc)	 QO	 (II.3.,2-6)

LI.3.3 Restoration Analysis for the Simplex Computer System

We consider the simple computer system presented in the previous

section, but now assume that failed GPCs can be restoaed. We assume

the GPC restoration time T to be exponentially distributed

a' t
P(TR > t) _ e- R
	

t > 0,	 (II.3.3-1)

with a mean restoration time T equal to

TR = E[TR]	 - a
R1	

(II.3.3-2)

Computer time to failure is exponentially distributed with mean ^-I

Assume here that Pd	 1. There are altogether N GPCs	 Only M GPCs

can be used simultaneously where M < N.

S'

To analyze the statistical characteristics of this computer

system, we model it as a proper queueing network, shown in

Fig. II.3.3.1.

ab
RESERVE	 GPCs IN	

FAILED

GPCs	
SERVICE,

#	
GPCs

< M

TOTAL # GPCs = N	 MEAN TIME TO FAILURE
X-1
c

RESTORATION
REPAIRED	

MEAN TIME
GPCs	 _1

= aR

Figure IL.3.3.1

In this queueing network, no more than M GPCs can be used in

parallel. Each will fail after an average operating time equal to

Xcl. Upon its failure, a GPC is being restored. Average restoration

time is equal to XR1 . When a GPC is restored, it immediately joins

the queueof reserve GPCs. Whenever the number of GPCs in service

becomes below M, a reserve GPC (if available) enters service.

To analyze this system, we use and extend the methods developed

in Sections 1.6.5-I.6.6. We set

P = Ptn GPCs are in the system, operating condition,

in reserve or being used}	 (II.3.3-3)

We then obtain the Jol l owing -formulas

.l

P =
M-1	

^N)Mkpk + N
	 N R k ' MM 	^	

(II.3.3-4)
0	 k	 E N) M

k=0	 k=M
1

160

t

I
4"

where

aR
p

Ma	
(11.3.3-5)	 i

C

, and

P N Mkk	 if k<M-1
0(k) p '

t P	 =	 P	
Nlpk	

M—M	 if M< k< N	 (IL.3.3-6)k	 0 (N-k)!
l	

M.

t'	 0	 otherwise
d

We can now set the probability of system lossQ
SL
 for this

model to be equal to the probability that the system contains no

#i	 more than M-1 GPCs in working condition. We then obtain
QSC

to

be given by
M-1	 y

	

P	 ,
s1	 QSL	 Ek
a	 k=0

y i 	where Pk is expressed by Eqs. (II.3.3-4)-(L.3.3-6).

In this manner, the system engineer can compute the probabili ty

I	 of computer system loss under a simplex mode of operation. The

proper system parameters (such as GPC failure rates, restoration

rates, number of reserve GPCs) can then beadjusted or chosen.

f

x

x

.	 A

cam. L f2 ^lf f32	 _.

4",

kk

	 ^	 x

j	 f}

t	 cX,Li^^Op3't	
,

IIA Failure Analysis for the Computer System: The Redundant Mode

We compute in this section the underlying reliability perform-

r

f
i

^.	 1

9.

ance measures for the computer system under the redundant mode.

In this mode, four GPCs are operating in parallel conducting identical

operations. The outputs of these GPCs are compared and voting is

used to decide upon the correct output. In this manner, one and

two GPC failures are readily detected and the failed computer is

identified. When only two operating GPCs are left, by comparing

outputs one can detect the failure of a third computer. It, however,

remains to identify the third failing GPC. Self-testing procedures

are subsequently used. When only one GPC is left, only self-testing

techniques can be used to detect its failure. The underlying

reliability characteristics are then identical with those computed

for the simplex mode in Section II.3.

c

^I

To understand the performance dependence upon the number of

parallel GPCs in the redundant mode, we assume that there are N

i parallel GPCs.	 In the avionics system under consideration, a

number of N=4 parallel GPCs are employed.	 Thus, we set

N` = number of parallel GPCs in redundant mode.	 (II.4-1)

Each GFI '- , using self-testingprocedures and programs has a

coverage probability Pd .	 Thus, given a GPC has failed,	 it will

detect its failure with probability P d , employing self-test

techniques.

The GPC failure rate is equal to

GPC failure rate=	
^c	

(II.4-2)

;

7	 ^	 ,

otLi2^06^2 I

We assume only primary failure here.	 Each GPC has a life-time

^i (time to failure) described by a random variable T 	 (see Section II.2).c
Note that

T	 _	 E(T)	 _	 1/a	 (II.4-3)
cc	 c

We initially assume that T
c
 is exponentially distributed	 (Eq.(II.2-5)).

Typical values for the avionics system are:'

Pd	0.96	 ac = 8 x 10 -2 [failures/hour] 	 (11.4-4)

{

Our analysis is general, so that any proper parameter values can (a

be incorporated.

^; I

j

We first consider the probability measure P
d
 (N).	 it has been

defined by Eq.	 (II.2-16) as the probability of detecting a GPC f} f,

t^

failure, given it has occurred, when both self-test procedures and
a

comparison procedures among N GPCs are used. 	 In the redundant mode,
i

we employ the comparison-voting procedure to detect and identify 1
a

failed computers.	 Therefore, if i GPCs are operating in parallel

i	 wewith	 > 3,	 can always perfectly detect and identify any single,— 1

i

GPC failures; so that

Pd (i)	 =	 1,	 if	 i	 =	 3,4,...,	 N	 (II.4-5)

When only two GPCs are operating, we can still perfectly detect

whether one of the GPCs has failed, so that

Pd(2)	 =	 1	 (H. 4-6)

In this case, however, we need to employ self-test techniques toY'

identify the failed computer.

When a single operating GPC is left, only self-test techniques

are used to identify its failures.	 Subsequently, we have
_ z _a

t

at

y

Pd (1)	 Pd	 (II.4-7)

(

so that the failure detection probability is equal to the GPC

coverage.

E
To assess the reliability of the redundant computer complex,

we are interested in computing the following two measures:

a

PSL(T,N) = the probability of system loss during a T sec	 (II.4-8)

I^ redundant operation, starting with N parallel GPCs,

^a	 TF(N)	 mean time to system failure for a redundant computer

system, starting with N parallel GPCs. 	 (II.4-9)

i
The function P SL (T,N) is computed as follows. We set

fN2 (t)dt = P{(N-Z)nd	 GPC failure occurs in (t,t + dt) }. 	 (II.,4-10) i

Thus, fN2 (t)dt expresses the probability that, starting with N

parallel GPCs we are heft at time t with only two operating GPCs,

and the last failure occurred at time t, within (t-dt,t].

If every computer has an exponentially distributed lifetime,

with mean X 1 and GPClifetimes are statistically independentc
(as well as identically distributed), we obtain the following result.

i
}	 fN2(:t)dt= K(N-3) failures in (O,t))P{a failure in (f,t+dt).)

__

(NN3)(1 -e^ c)N-3(e
x) 3 3,ce 3actdt'.
	 (II.4-11)

Therefore,

--,Nt	 3^ t
fN2(t)	

1	
NN!3	 A (1-e

c
)N-3e	

c	 (II.4-12)

We also mote that the times between the first N •-2 failures are

statistically described as follows. They are i,.i-.d. random variables

such that the time between the i-th and (i+l)st GPC failures is

—P, A IN rd-h 1 11 1

,r

k

^i

4 ":

7

i
•

L11CO1)T

exponentially distributed with mean [(N-i)ac]-1, for i 	 0,1,...,N-3.

We now observe the failure of the redundant computer system to

proceed in twohp ases. In the first phase, starting with N parallel

GPCs, N-2 GPCs fail. Using the comparison voting procedure, these

failures are immediately perfectly detected and identified. We set

TFMl)	 -time duration of first failure phase
time until the (N-2)nd GPC failure 	 (II.4-13)

Then, TF (N,l) is governed by the Gamma density (II.4-12). In particular,

the probability that phase one will be longer than t sec is given by

P{TF (N,l) > t}

i	 -X x	 3a x
_ r	 ac NNE i (1-e c) N - 3

e- c dx	 (iI.4-14)
J
t

The mean duration of a phase one mode is given by

N
TF (N, l) = EETF (N , 1)1 = ail E i-1
	

(II.4-15)

i=3

In particular, for N='4 we have:

f42(t) = 12ac(1-e
-a

c
t
)e

-3x
c
t	

(II.4-16)

T 4 1	
_	 7	 -1	

II 4 17

1

3

i^

^h

r

a^

i

LA

F () _	
12	 Ac

(-)

Upon the termination of phase one, when we are left with only

two operating GPCs	 the phase-two failure mode starts (provided at

this time, the computer system still operates in the redundant mode).

Having now two operating GPCs, we are interested in computing the

system loss probability PSC (t,2). This is the probability that,

starting with 2 PGCs, no operating GPC is left within t units of time.

To derive this function, we write:

I
{
c

i

J'^

l

+>

k

E

3

r

V
1	 _

1	 PSL(t'2)	
P{no GPC failures in (O,t)}+ P{a single GPC fails

in (O,t))P{detecting a failureja GPC failure has occurred}

	

-2a t	 -x t	 -a t
= e	 c + 2Pde	 (1-e c)	 (II.4-18)	

l

i

Therefore, we conclude that

P (t,2)	
d

1 - 2P e-pct - e 2xct
SL	

(1-2Pd)	 (IIA-19)

I

We can now compute the system loss probability PSL (T,N) as	 j

T

	

PSL (T,N)	 f	 fN2(t)PSL(T-t,2)dt
	 (II.4-20)

0

Substituting (II.4-12) and (IIA-19) into (II.4-20) we obtain the

following result:

PT N	 rT l k	 Ni
	 1-e act N-3e-3xct

SL ()	 ,1	 2	 c N-3) !	 ()
0

-a (T-t)	 -2a

	

[1-2Pde c	 (1-2Pd)e	 c
(T-t)
]dt	 (IIA-21)

In particular, for the present avionics system we set N=4

in (IIA-21) and obtain, after some algebra, the following expression

for the computer system loss probability.

-2a T -2a T	 -a T	 -a T	 -a T

PSL()	 P') (T,4) = 1- e	 c (3e	 c -8e c +6) - 4P e- c (1-e c,)3

	

-aT	 -aT
(1-e c)3[l+e c (3-4P d)](II.4-22)

E	 II4-22 can also be derived si mply as follows. We note thatEq. ^)	 P Y

PSL (T)	 P14_GPCs fail in (0,T)} + Pf3 GPCs fail in (0,T)1(1 -Pd)

	

=a T	 —x T	 -a T
	_ (1-e- c) 4 + (1-Pd)4e	 (1-e ° c)3	 (I1.4-23)

Eqs. (II.4-22) and (I1.4-23) are identical.

,

'	 .,...a.....+."..._.:...a._...__.._.x...-•-•-_.-.........:..-:... --_^.:,..,. _.,.,_., .:.:....-, 	 _	 _._.	 _ _...:.__	 a-w.a.^

t

w
i

Extending the approach used to derive (II.4-23), we obtain the

loss probability PSL (T,N) when starting with N parallel GPCs, N3,	 R

8

as follows.

P (T,N) = P{N GPCs fail in (0,T)}+ PO-1 GPCs fail in (0,T)}(1-P)
SL	 d

_ (1-e -
^cT) N

 + (l-P)Ne ^cT(1-e-AcT)N-1
d

	-x
C
T

N-1	
-acT'
_(1-e)	 [1+e	 (N-1-NP d)](II.4-24)

Eqs. (1I.4-22)-(11.4-24) can now be used to compute the loss

probability associated with the redundant computer complex. We

note the following characteristics of P SL (T). (Similar properties

LLI hold for P (T,N), using (II.4-24).)

t
SL

The loss probability PSL (T), given by (I1.4-22), is a linearly

decreasing function of the coverage P d . This is illustrated by

}	 Fig. II.4.1.

{	
P
SL

(T,P
d
 -0)

}	 ^

r 	
PSL(T)	 1

T	 PSL(T)¢	 PSL(T,Pd 2)	 -	 - a

i
i

-	 __-
pSL(T'pd-1)

i ^ 	Coverage (Pd)

}}	
0 1/2

l'

Figure I1.4.1

If Pd - 1, so that we can detect with probability one a computer

^}	 g`

5	 failure, when it has occurred, we obtain by (II.4-22) the loss

probability to be equal to
j

{

t	 t	 }	 k

PSL(T,Pd=1) = (1-e-AcT) 4	(11.4-25)

This is the lowest attainable value for the loss probability.

The highest loss probability is observed when P d=O. Then,

the self-test techniques are inoperable (or useless), and we have

P
SL	 d=

(T,P 0) = (1-e -xcT) 3 (1+3e -xcT)	 (II.4-26)

We note that Eq. (11.4-26) incorporates the observation that if

Pd=O and two GPCs are left, any GPC failure will result with a system

loss condition. Hence, _3 or 4 GPC failures will result with system

loss. In turn, P
d =

1,; when two GPCs are left, the system remains

operational	 under a single GPC failure, and is lost on15 when both

GPCs fail. -Hence, system loss now occurs only if all 4 GPCs fail

yielding expression (11.4-25).

For Pd	 2, we obtain

-aCT	 -acT1	 3
PSL(T,Pd = Z)	 _	 (1-e)	 (1+e)	 (11.4-27)

For Pd = 2, we also note that -(see	 ('11. 4-16))

PSL (t,2,Pd=2)	 =	 e	 c
	

(II.4-28)

n

Consider now the following procedure, to be called the random

choice procedure.	 When two operational- GPCs are left, if a failure

is observed (through the comparison procedure)', one GPC is arbitrarily

(at random) shut down. 	 Or, alternatively, when 2 GPCs are left, one

GPC is arbitrarily shut down. 	 Under this procedure, the system

loss probability, starting with 2 GPCs, PSL(t,2) is obtained to be

given, by

_ tit	 Oin

x^

^-	 a

l'

1.

j

j

1

{

i

1

I

n '	 X11 +>s:'^ - c .0 -	 _	 ,	 .. ^	 ..	 _ ^ .. _.,

ZilIC0111

N	 -xoT	
1

PSL(t'2)	
e	

PSL(t'2'Pd 2)
„(II.4-29)

The associated system loss probability under a random choice procedure

PSL (T,N), is thus equal to that obtained when Pd

1

PSL (T ' N)	
PSL(T,N,Pd=2)	 (II.4-30)

Therefore,

PSL (T,N)	 < PSL (T ' N,Pd)	 for Pd < Z
	

(II.4-31a)

j

F PSL(T'N) > PSL(T,N,Pd)
	 for Pd > 2	 (II.4-31b)

J

?1

I

i Thus, if Pd c 2 the random choice policy is preferrable. 	 Self- j

test techniques should not then be utilized, since they provide mis-

f

leading failure information. 	 On the other hand, if Pd > Z
	

as is

I' the case in the avionic system under consideration, a lower loss

{ probability is attained when self-test techniques are utilized
t

(since they then clearly provide additional 	 helpful	 failure information).

We now compute the mean duration of the 'phase-two failure

period, denoted by TF (N,2).	 Phase two starts with two operational

GPCs.	 Let 17 1 ,17	 denote the lifetimes of these GPCs.	 These are

U i.i.d.	 exponentially distributed_ random variables with means Acl.

The first PGC failure occurs at time min(T l ,T2).
	

Then, with probability

1-Pd the i:ailure is not detected and the system is lost. 	 With probability

II ' Pd, the failure is then detected and the remaining operational GPC

continues to operate until	 it fails.	 Following these observations,

the following	 is obtained.result

1

TF(N,2)	 =	 E{min(Tl ,T2)} + Pdacl

where

x.

t

_A_69,m

t

{	 ^— cX l f2 ^4.f'l2

E{min(T
l' T2)}	 [x

c

Subsequently,

TF(N,2)	 _	 (2ac)-1 + PdXCI

_	
^c l

(2 + Pd) (1 1.4-32)

We again note that under the random choice policy the mean

lifetime duration of phase-two, E(TF (N,2)) is given by

E^TF(N,2)]
	 _	

^cl	 _	 TF(N^2^Pa_Z)
(IIA-33)

The overall mean lifetime T (N) 	 is obtained by using Eqs. 	 (I1.4-15),

(IIA-32),	 (LL.4-33), to be given by

_	 N
T (N)	 =	 a

_
 1	 i

_
 1+ I+ P	 ;F	 c	 t	 2	 dr

(11.4-34)

\i=3

N
E[TF(N)]	 =	 ac l	 i-1 + 1	 =	 TF (N,Pd-2) (II.4-35)

i=3

In particular, for N=4 the mean lifetimes are obtained by

(1L.4-34)-(L1_.4-35)	 to be equal	 to

T F (4)	 =	 a c 1 (Pd + 12) (II.4-36)

E[TF (4)]	 _-2 ac l	 =	 1.583x- 1 = TF (4,Pd=2) (I1.4-37)

For pd = 1 , we obtain

TF(4,Pd=-1)	 =_ 12 ai l	=	 2.083a
c

1 (II.4-38)

The functional dependence of the mean lifetime T F (4) on the

coverage probability P d , indicated by Eq.	 (11.4-36), is illustrated

f2^fYt

i

oL^/''l^Of^2

Mean Computer System Lifetime (N=4)

2.083x

1 F

rV

E(TF) ti

s

1.583 XC1 i
II	 t

t

t
I	 t

1.083ac^

0	 1/2	 1

Figure I I A.2
Converge (Pd)

it

in Fig. I1.4.2.

We now examine the dependence of the computer system

reliability measures on the number N of parallel computers.

1=
The system loss probability P L (T,N) is given by formula (1I.4-24).

tr ^	 If P
d
=1, we have.

-_^cT N

PSL(T,N,Pd=1) = (1-e)	 (II.4-39)

Therefore, for P
d =11

PS L (T,N+l,Pd= 1)	 -acT

PSL T,N,Pd=
(1-e)	 (11.4-40)

so that by using- an additional parallel PGC we decrease the loss
!	 -a T

C -1probabili ty by a factor of (l-e)

The mean lifetime TF (N) when N parallel GPCs are used and

P =1 is g iven b
d	 9	 Y

zill CO IIII
171=

I

Zi nCo m
f

Therefore,

+ s

C

y

TF(N,Pd=1) = X cli-1+2

(i =, 3

(II.4-41)

3	
N+l	

-1

TF(N+T,Pd=1)	
i3TF(N,Pd_1)	 3 + =N

2
i=3

(II.4-42)

Eq. (II.4-42) represents the factor by which the mean lifetime to

failure of the redundant computer system is decreased, when the

number of parallel GPCs is increased from N to N+l.

For example, if we use only N=3 parallel GPCs, rather than

N=4 parallel GPCs, we obtain

TF(3,Pd=1)	
2 + 3	 22
--'^ = 25 = 0..88.	 (II.4-43)

TF (4,Pd= 1)	 3 l + 4

Thus, using 3 parallel PGCs, rather than 4, reduces the mean lifetime

by a factor of 12%.

If we, on the other hand, employ 5 parallel GPCs, rather than 4

we obtain

TF(5,Pd=1)	 2 + 3_+ 4 + 5
_	 __ 137	

1.095;	 (1I.4-44)
TF(4,Pd=1)	

2 + 3 + 4	
125

so that the mean lifetime is increased then by a factor of 9.5%.

The system loss probability during an operational period of duration

^TT'is then reduced, according to (II.4-40) 	
c

by a factor of (1-e	
)-1

The absolute value of' the _system loss probability is given by -(II.4-24).

The equations derived above for the computer system loss

probabili ty and lifetime are in terms of the following parameters:

_	 I
I

I

x = the PGC failure rate; T = duration of the redundant phase;
c

I
N	 number of parallel GPCs 	 Pd = coverage probability.	 Eq.

(II.4-24) yields the loss probability and Eq.(II.4-34)	 the mean

lifetime.	 The system designer and analyst can use these results to

study or adjust the failure and characteristics of the redundant

computer system.

r

r

I	 3

i

Ell
t

{

t

i

I

Y

t
s

(S

f

{I

r

-173-

I

II.5 Failure Analysis for an Application Subsystem

We consider an application subsystem of the Space Shuttle

avionics data processing network. The failure characteristics

of this subsystem are examined in this section.

The subsystem under consideration can be a telemetry sub-

system supplying information data to the computer network at certain

times; a sensor subsystem; actuator subsystem receiving commands

from the computer complex; display subsystem; control subsystem;

interface subsystem; GNC subsystem or the mass memory subsystem.

An application subsystem is many times internally redundant.

This is teh case for the hand controllers and the keyboard units.

Also, all safety-of-flight critical effector subsystems, such as

the actuators for the main enoi ne and for the aerosurfaces , the

main engine interface units and mission event controllers are

internally redundant at different levels. such subsystems receive

redundant commands on separate input channels and using internal

algorithms they generate a single output stream. These algorithms

also detect incorrect commands and eliminate such commands from

consideration in the output_.

Subsystems which perform similar functions are assigned to {

the same data-bus group. Subsystems have different levels of 	
E

redundancy at the unit level. In accordance with their criticality

For example, there are three inertial measurement units, two

radar altimeters and four air data transducer assemblies. To

prevent the loss of more than one redundant unit when one data

bus fails, no two redundant units interface with the same bus.

i

^ (Q\f/J//J^ / 1
	

F

t

'R
t .	 .

cncvin

To analyze the failure characteristics (invulnerability) of a

redundant subsystem, we set the following parameters. The subsystem

under consideration is assumed to contain L equivalent redundant

units. Each unit is assumed to be connected to a different bus..

Thus,

L = number of redundant units in the subsystem

number of data buses connected to the subsystem	 (II.5-1)

We characterize the failure properties of each unit by the

unit failure rate au,

	

_a u = unit failure rate [failures/sec] 	 (II.5-2)

Thus, if T
u

is a random variable representing the unit lifetime

(i.e., time duration to failure), we have	 ^N

i
Average time to unit failure	 l

#j

E(Tu)	
Sul	

(II.5-3)

The'unit lifetime distribution is specified as 	 [;

Fu(x) = P(Tu < x) 	 x > 0	 (II.5-4)

If the unit lifetime is assumed to be exponentially distributed, we
f

have

_a x

Fu (x) = 1	 e u
	

x > 0'	 (II.5-5)

f,
We assume unit lifetimes to be statistically independent,` and-	 G

identically distributed. Furthermore, to explicitly illustrate the

subsystem failure behavior, we assume now an exponential failure

distribution (II.5-5). (The following results how2ver, are readily	 i1

extended to include an arbi trary unit lifetime distr°ibution.)

t'

jj n
	 in

yy

175

t
c^G.^f2^OfI2

bati

i

I;

i)(
1 1

^ir

{u.

r

i

r- C

We consider an operational period which lasts for T [sec].

Then we have

qu(T) = probability of a unit failure in T units of time

= 1 - e xuT .	 (IL.5-6)

Also,

Qu(T)	 probability that all subsystem units fail

in T units of time

[q u (T)]L = (1 - e-AUT)L.
	

(II.5-7)

Each unit is assumed to be connected to a different data bus

To evaluate the probability of operational loss (or survival) for

the subsystem, we now specify the failure characteristics of the

data buses.

Each data bus is associated with a random variable TQ representing

its lifetimes (i.e_, time to failure). Line failures can be defined

to include both physical failures as well as interference (noise)

phenomena which cause degradation in data communications across

the line. We then set the line failure rate to be

a Q = data bus ,(line) failure rate. 	 (II.5-8)

The distribution of the line (data bus) lifetime is given by

.F R (x)	 R(TL < x)	 x > 0	 (II.5-9)

Note that

Data bus mean time to failure = E(TQ) = aQ l 	(II.5-10)

Assuming the data bus lifetime (time to "failure") to be exponentially

distributed, we have
-a x

FQ (x) = l- e Q	 x> 0	 (11.5-11)

__	 ^_	 G.LIInf32

L"l
tf

:a

t

t

;i

E

i

s ,

'j

t

r ^

	 `

The invulnerability of the subsystem is expressed in tents of

f	 the following two measures. The subsystem loss probability is

defined by

gSL(T) = probability of subsystem loss within T units of time

= probability that within T units of time the subsystem

fails or is disconnected from the bus network	 (II.5-12)

The subsystem mean lifetime is defi ned as

TSF = the subsystem mean time to failure or disconnection

	

from the bus network	 (II.5.13)

The subsystem loss probability gSL (T) is computed as follows.

L
gSL(T)

= 1
1 P{unit i is lost or disconnected}i

L
P unit fails or its data bias fails

L
[1-P (uni t i does not fai l, its data bus does

i =l	 _
not fail)]

L
-[l-P(unit i does not fail)P(ddta bus connected

i= l 	 to unit i does not fail)] . 	 (II.5-14)

Therefore, the subsystem loss probabi lity is given by the formula

gSL (T) =_ [1-e]L	 (11.5-15)

The subsystem mean l ifetime (time to failure) TS is similarly

derived to be gi ven by
L

TSF	 ` ;^^±^u)
l	 i	 (II.&-1 G)

t	 -
=1

To derive equation (11.5 .16), one notes that if i operating units

are left, the time to the next failure (of a unit or its associated

data bus) is exponentially distributed with mean [i(a R+a u)]	 [sec].

Eqs.	 (II.5-15)-(II.5-16) provide the desired formula for

establishing the failure characteristics of the redundant subsystem.

The parameters involved are:	 the operation period duration (T);

the number of redundant units and data buses (L); the failure rate of

a unit (a u); and the failure rate of the data bus (a Q).	 Ln terms

of these parameters, Eq. 	 (I.5-15) yields the probability of

subsystem loss (so that no connected operating unit is left),

while Eq.	 (I.5-15) expresses the mean time to system loss.

For given subsystem parameters, these formulas are used to

^ compute the subsystem invulnerability.	 For a specified s bs step	 Y	 Y u	 y	 m

r loss probability (or mean lifetime), one uses these results to

calculate the desired level of subsystem redundancy and urderlying

unit and data bus fa i lure rates.

f
i

IT
{

I
I
I
I
fe.

a.

I

IF

11.6 FAILURE ANALYSIS FOR THE DATA PROCESSING NETWORK

11.6.1 Reliability Performance Measures for the Data Processing
Network

The Space Shuttle orbiter avionics data processing network

consists of serial data buses which connect the application sub-

systems to the computer complex. The data buses are divided into

groups. Different groups provide communication connections to

different subsystems. Certain subsystems contain redundant units,

each connected to a different data bus, to increase the subsystem

invulnerability to failure.

Reliability measures for the computer system have been

presented in Section 11.2. The associated failure analysis for

the computer system is carried out in sections 11.3-11.4. Failure

analysis for an application subsystem is presented in Section H.5.

In this section we wish to combine these results with the failure

characteristics of the data communication network.

The topological structure of the data bus network is specified

by the incidence matrix B, where

B = [b j 	 (11.6.1-1)

and

1, if data bus j connects unit i to the
computer complexbij

0, otherwise.

Each subsystem contains a number of units. We can thus

describe the topological interconnections between the subsystems

and the computer complex by a subsystem incidence matrix A,
where

I TY
A	 [aij]	 (11.6.1-2)

and
{	 o^E sa ^ca^»

-179-

I

a
1

t	 •

cfzl..oin

1, if subsystem i is connected to data bus j
aij = 0, otherwise

The overall network topological structure is specified by the

connectivity matrix, also called adjacency matrix, C where

C = [c ij 1 	 (11.6.1-3)

and

1, if node i is connected to node j

cij
0, otherwise

We regard each network element (GPC, application subsystem or

unit) as a node. Nodes are connected by the data bus lines,
fi

inducing thus an underlying topological structure modelled as a graph.

Wehn the computer system is in the redundant mode, four GPCS

are connected in parallel, having simultaneous access to all applica-

tion subsystems. We then have

a j 	1	
y

for each unit i and GPC j'.

When the computer system is in simplex mode, each subsystem
4

(task) is associated, on a dedicated basis, with a certain computer.

Then,
a

aij	
1

whenever subsystem i is associated with GPC j, and a i d = 0 otherwise.

We wish to examine the invulnerability of the data processing

network to failures of nodes and lines. To assess network reliability,

the fo-lowing performance measures are of interest.

-180- 2C, 01)z

f

i
I

I

i

it

I	 ;

ol

•cl o n, -

We incorporate, as element failures, the failures of computers,

data bus lines and subsystem units.

In the redundant mode of operation, we say

event has occurred whenever a certain set of to

processed by the computer complex. This can be

failures, line failures (or noise), or failures

application subsystems.

The probability of network loss in T units

be

PNL (T) = probability of network loss is T units of time. 	 (LI6.1-4)

_ To define and compute P NL (T), we identify a set of critical subsystems

(or tasks), the failure of each of which induces a system loss event.

We thus set

NC = set of critical subsystems in the redundant mode. 	 (H.6.1-5)

Subsequently, the network loss probability in the redundant mode is

defined as

PNL(T)
	 probability that under the redundant mode, a critical

subsystem cannot be utilized, or connected to the

computer complex, or receive information-processing

service from the computer system. 	 (II.6.1-6)

C, Clearly , in computing P NL (T) we need toconsider the availabil ity

of computer processing resources to serve the critical subsystem,

i the reliable transmission of information between the computer complex

and the critical subsystems, and the operational integrity of the

$	 critical subsystems themselves. We also incorporate the possibility

G.(
of rerouting upon certain line failures.

wj	 s2^^^rz

that a network loss

;ks cannot be

due to computer

of units in certain

of time is set to

i
I

1

V

1

ZinCof)ll

In a similar manner, we define the mean time to network loss as

TNL
= mean time to network loss, under redundant mode

= mean time until	 the failure of a critical	 system, or	 (I L 6.1-7)

its network disconnection, or the non-availability of

computer resources for its associated processing services.

Under a simplex mode of operation, we consider the subnetwork

composed of a single GPC and its associated application subsystems.

The probability of network loss is then similarly defined as

gNL(T)	
Probability that a critical subsystem cannot be

connected to a GPC in T units of time, under the
simplex mode	 (U.6.7-8)

In computing gNL(T), we consider GPC failures, line failures and

unit failures, as before. In addition, we also incorporate the possibil-

ities of rerouting messages (through alternate paths, when their

primary paths fail). Also, we consider the utilization of a stand-by

GPC to replace a failed computer.

L	
l	

h	 kl
	 d

n a siml at manner, t e mean time to networ	 oss un er

simple mode is defined by

TSNL	
mean time to network loss, under simplex mode.(II.6.1-9)

In assessing the interconnecting communication data bus network

itself, the following connectivity measures are useful:

f	 K(i)	 minimal number of line failures which cause subsystem

i to be disconnected.	 (II.6.1-10)

li4o

PK(i)	 probability that subsystem i_is disconnected:	 (II.6.1-11)
I

For time-critical tasks, it is also of interest to define the

j,
delay dependent reliability measure

tl
182

}

P K(i,D) = probability that a task associated with subsystem i

cannot beprocessed by a GPC within D units of time..

(11. 6.1-12)

In computing (I.6.1-12), we note that it is possible that the

subsystem will remain connected to the computer complex, after certain

failures, but due to increased traffic (caused, for example, by

rerouting tasks away from failed lines or GPCs), associated tasks

cannot receive service (processing) within their required critical

time delay constraints.

II.6.2 Failure Analysis for the Data Processing Network: The
Redundant Mode

The computer system is assumed to be in the redundant mode. The

computer failure 'rate is
x

[failures/sec]. The computer coverage

probability (i.e., the probability that a GPC will detect its

failure, when it has failed, using self-test procedures) is equal

to Pd . Then, if N GPCs operate in parallel, the probability of a

as

i
PSL(T,N)	 =	 (1-e-AC

T) N - 1
[1+e

AC
T

(N-1-NP d)]	 (II.6.2-1)

j The mean time to failure for the computer system is given by (II.4-34)

i to be equal to

!

N

TF(N) = ail	
i_l	

+ 2 + Pd	 (II.6.2-2)

i=3

In particular, when N =4, we obtain

j P	 (T) =	 P	 (T,4) _ _(1-e
-acT) 3 [1+e-ac

^(3-4P)]	 (II.6.2-3)
SL	 SL	 dt

—	 —	 -1	 13
T	 = T {4) = a	 (P	 + -)	 (II.6.2-4)

F	 F	 c	 d	 12
gg
'll Considering now an applicationsubsystem, its failure analysis

0.

`	 1

f r

P-

•

E	 IL.

has been presented in Section II.5. Assume subsystem i to contain

L i redundant units.. Assume each unit to be connected to a single

.i	 data bus, which is in turn connected to the GPC complex (and

thus to all GPCs in the redundant mode). The failure rate of a

unit which belongs to subsystem i is set equal to a (i) [failures/sec].
u

	j	 The data bus line failure rate is equal to at (.failures/sec]

for each line. Line failures are assumed to be statistically

independent. Time to failure of a data bus line is taken to be

foverned b an e xponential distribution with mean a- 1 	Then b E^.	 9	 y	 p 	
y	 -g

E

	

j.i	 (LI.5-15) we find that the probability of subsystem i loss, denoted

as -q (i (T), indicating the probabilitythat subsystem i will fail 	 1
x

or become disconnected within T sec, is given by

	

r	
t r̂
itA

gSL (T) = El -e]	 { I I.6.2-5)	 '

rI

The mean time to failure of subsystem i is given, according to Eq. 	 ,
}

(II.5-16), by

L	 i

	

I	
TSF)	

(ak+aU^)^-1	

J	
(II.6.2-6)°

d-1	 ^.

Subsystem i is said to be in a state of network loss if it has
w:

failed, is disconnected from the uata bus network or if the computer

system is lost. We set

	

j'	 P(^)(T)	 probability that subsystem i is in a state of

	

(NL	 r.:

	

r	 network loss,	 (II_.6.2-7)

Then combini ng results LI.6.2-1 and II.6.2-5	 we obtain	
"a

	

E	 9	 ()	 ()^

P NL (T)	 1	 [1-PSL(T,N)][1-q(')(T)]	
(IL.6.2-•8)

SL 3

-a+a)T L•
= 1	 (1 - 1-^e ^cT N-1 1+e ^ ^T (N-1-NP)	 1 1-e	

ui

^^•̂12 COOitt —J

If we now let

i

	
NC = 019i V ... 2

i
d

	
(II.6.2-9)

a

	 so that subsystems il,i2,...,ic are regarded as the critical sub-

systems, then the network loss probability PNL(T) is given by

f
	 C

PNL(T) = 1 - 	 [1-q(
i

(i
k)
 (T)l

n

	
k=1

•{1-(1-e-AcT)N-1[l +e xcT (N-1-NP
a
)]l.	 (II.6.2-10)

Eq. (1I.6.2-10) expresses the probability of network survival 1-PNL(T),

as the product of the survival probabilities of the critical subsystems

7
	

and the computer system.
i

The mean time to network loss-T NL is the time to first failure

of the computer system or any one of the critical system, or its

disconnection.

Eq. (II.6.2-10) can be used to evaluate the invulnerability of

thee data processing network to failures of the computer system, data

bus lines and application subsystem units.

^t	 II.6.3 Network Invulnerability: Alternate Routing and Congestion
Effects

The network invulnerability characteristics can be improved by

providing alternate routes upon data bus failures. This is demonstrated

I
	

as fol lows.

Assume a subsystem with L redundant units. The unit failure

rate is au [failures/sect. The line failure rate is
x

[failures/sec].

The subsystem is associated with K data buses. A switching capability

is provided so that, upon the failure of its line, a unit can be

connected to one of the available operational buses associated with

..x...,..-.`._^..a.,..+.i..xt^_:^.A,.,...Jat^tt.^t_........,M .. ^—...R--.-ry.s ,..aw....^.a ^.. _:::,^':._..•iFi 	 }t,=;::..—.,..ni^1C:Atx_-&»:^5^..:uS..^^^..^r. ^3^'SYYM.^,—_.,: 	 ^.
J

subsystem. Thus, initially each one of the L units is connected to a

data bus. When its line fails, a unit can be connected to one of

i'

the operational associated lines (including a line that was

previously connected 'Co another unit which has failed).

Under such a switching procedure, the probability of subsystem

loss, denoted as qSLM is computed as follows.

A

gSL (T)
= P{L units fail or K lines fail, or both}

= P{L units fail}+P{K lines fail}

M units fail}P{K lines fail}

I	 [1-0-e
-x

u T) L 1 [1.. (1 -e ?,kT) K
I 	 (11.6.3-1)

We note that for K > L,

gSL(T) `—
g SL (T)	 (II.6.3-2)

Thus, by providing -K alternate data buses, we have decreased the

subsystem loss probability.

Such alternate data buses can be provided to the critical subsystems.

Providing K i d alternate routes to critical subsystem i i , we subsequently

obtain the network loss probability to be given by (when all routes

are assumed to be distinct):

PNL(T) = 1 - c [1-,(i (T)]
k=1

{1 -`(1-e-XcT
) N-1

[1+e -XcT(N-1-NPd)]}	 (II.6.3-3)

where

1	 q(' (T)	 [1 - (l-e)][1 - (l-e)	 1	 (LI.6.3 -4)
SL

Eq. (I1.6.3-3) expresses theprobability l- PNL M of network survival

as the product of the survival probabilities of the computer complex,'

critical subsystems and the alternate routes.

^i

i

r

,z

r a
G

n': n

C54.mConz
'j
s

a In turn, as buses are switched to serve critical tasks, non-

critical tasks are delayed. 	 If, however, the number of remaining

x^

operational data buses is below a certain critical	 value m0 , the

overall traffic associated with critical tasks is high enough to

cause an excessively high message delay value D 0 . Under such high

message delays, the network cannot provide satisfactory service

to the critical tasks, and the network can be said to be lost. This•

loss probabilty is thus defined as

PNL(T) = probability that the computer system is lost, or

a critical subsystem is lost, or that the

communication network can provide no more than

m0 interconnecting data buses, causing critical

message delay value higher than D0 	 (II.6.3-5)

To compute PNL (T), we model the whole convnunication network

topological structure. We assume that the c critical subsystems

can use commonly m data buses, m ? c.	 Thus, upon the failure of line,

an operational	 line from the pool of these m lines can be rerouted

to serve the associated critical 	 subsystem. The subsystems will be

i
disconnected from the computer complex if m-c or more data buses

fail.	 Therefore, we obtain,

Probability of disconnection 3f critical subsystems from

the computer complex in T units of time

T	 -a T(mm	 -X	 -k)
_	 {k)(1-e	

) k e (II.6.3-6)

m-c+l

r We need however at least m 0 buses to survive to limit network

(.
congestion.	 Subsequently, the network loss probability PNL(T)

is obtained to be given by

A-187-

X'2

OV
PNL (T) = 1 - { 1-(1-e -XcT) N-l [I+e

-xcT (N-1-NPd)] }

m	 a Tk	 -a T	 c	 -a(i0T L.
(^)e	 (1-e	

)(m-k)
-7 [1-(l-e u) ^ k

]
 (11.6.3-7)

l

k=mo	
k_1

To explain (11.6.3-7), we note that 1-'PSL (T) expresses the probability

of survival. Then, the first, second and third terms in (II.6.3-7)

represent the probabilities of survival for the computer system,

communication bus network and the critical subsystems, respectively.

The product of the latter terms yields the probability of network survival.

Eq. (II.6.3-7) can now be used to evaluate the data processing

invulnerability character-;stics, as well as to choose and adjust

the underlying failure parameters, topological structure and routing

discipline. In particular, we note that the following parameters

are involved in computing the network loss probability PNL(T):

.The computer failure rate (;,c);

.The number of parallel computers (N); (here (N=4);

*The computer coverage probability (P d) (here Pd=o. 96 in

redundant mode);

,The duration of operational period under consideration (T);

#The subsystem unit failure rate (au);

.The number of redundant units in a subsystem (L);

The set of critical subsystems (or ta.sks, i l , i 2 ,.. ,id ;

.The data-bus line failure rate (x d;

•The number of data-bus lines commonly used to interconnect the

critical subsystems with the computer complex (m);

.The minimal number of data- . bus lines required for a satisfactory

interconnection (involving both reliability and congestion

performance measures) of the critical subsystem to the computer

complex mo .	?

CAICO irl

i

Incorporating all these parameters in Eq. 	 (II.6.3-7), we

I
compute the probability PN^(T) of network loss within T units of

times.	 Alternatively, for a prescribed maximal 	 value of PNL(T),

we use Eq.	 (I1.6.3-7) to determine the proper computer, subsystem

and network (topological) parameters.

We finally note that the network (deterministic) connectivity
µ

E
measures are given as follows.

K = network index of critical connectivity
t

= minimal number of lines whose failure disconnect the r`

critical subsystems
a

m-c+l;	 (1I.6.3-8)

K(DO) = network index of critical stable connectivity

= minimal	 number of lines whose failure cause message

delay to increase above DD sec

= m-m0+1	 (II.6.3-9)

The associated probabilistic connectivity measure is given by
i

PNE (T), and expressed by Eq. 	 (11.6.3-7).

II.6.4	 Failure Analysis for the Data Processing Network: 	 The
^rSimplex Mode

Under the simplex mode, of operation, tasks and subsystems are

divided between two GPCs.	 The remaining GPCs can then serve as

stand-by units.

To characterize system invulnerability to failures of GPCs,
F

data-bus lines and application subsystems, we compute the network

loss probability gN b (T), defined by Eq_ 	 (11.6.1-8).	 This function

ex presses the probability that a critical subsystem under

consideration cannot be connectedto a GPC, within T units of j}

operational	 time, under the simplex mode.	 For that purpose; the
1

i

Zine-Oin

following network structure and parameters are specified.

a)	 The computer failure rate is equal to ac [failures/sec].

b)	 Two computers need to be in operation. 	 Three computers

are initially in a stand-by mode. 	 Upon the failure of

a computer, a stand-by GPC is immediately used to replace

it, if any operational stand-by computer is available.

The computer system is said to be in a state of system

loss if there are not two operational GPCs.

c)	 The computer coverage probability (of failure detection

by self-test methods) is equal to Pd.

d)
	 equal	 toThe data-bus line failure rate is e 	 a. Q [failures/sec].

h

e)	 The subsystem under consideration contains L redundant

F

i

units.	 The unit failure rate is equal 	 to
x	

[failures/sec].

lines taken

3

i

f)	 The subsystem under consideration can use

from a set of m data bus Tines. 	 It requires, however,

a minimum of mG lines, 1	 < mG < m, from this set of m

lines, to be able to conduct its information-proce-sing

tasks in a satisfactory manner.)

As	 itg)	 an alternative topological model, replacing (f), 	 can

be assumed that the m data-bus lines are shared by ml

subsystem 	 or tasks).	 Each subsystem requires at leastY	 ()	 Y	 q ^

a single (distinct) data bus line for its connection to

a GPC.

i`We use the above mentioned system conditions and parameters to

evaluate the network loss probability q
NL

(T).	 We start by using the ^-

study results concerning the failure of the simplex computer system,

as presented in Section II.3.	 By equation (II.3.2-4), the probability
a

x i-

C54. It	 M

gSL(T) that the simplex computer system will fail in T units of tithe,

when initial 5 GPCs are available, two GPCs are operating simultaneously,

and computer system failure is declared when at least four GPCs have

failed, is given by

3	 -2acT (2acT)n
gSL(j) = 1 - E e
	 ni

n=0

= 1 - e -2acT [l + Z\ cT + 1 MN T) 2 + 6(2A cT) 3]	 (I1.6.4-1)

The probability that the application subsystem under consideration

will fail, denoted as q A(T), is obtained by recognizing the latter

to fail if and only if all the associated units fail. Therefore,

we have

fit:.

id

i	
l

+	 jd

F

F

F	 i	 z

q	 (T)	 _	 [1-e_ uT] L 	(I1.6.4-2)

h Under assumption (f), the interconnecting data.-bus. network can

^.E

r	 serve the underlying subsystem as long as it has mo, out of m,
9	

poperating data-bus lines. 	 Therefore, the	 robabilityq
	

(T) thatLj{

the associated interconnectin 	 data-bus network fails	 under conditiong

M, is given by
'I

at	
nr	

_^ T k -aP,T(m—k)

f	 qL ,1(
)	 (k)()

E	
k=m-

m0
+1

Subsequently, the probability 1-qL}1(T) that the interconnecting

network survives in T units of time (i.e., that it provides a

connection between the underlying subsystem and th e GPC) is equal to

m-mo	
n	

_^ T k	 _.\ T(m-k)
1	

_ gLl
(T)	 _	 ^`	 (k) (1, -e	 c)	 e

t	 k--- 0
-	 nt	 ^A ,Tk	

- ^.^.T m-k

{	 K=1tt0

y	 c-^'.^. d f r	 iC^ 3 31

=l gl

a e

i -

Combining these expressions, we obtain the probability gNL(T)

L
of network loss, under the simplex mode, in T units of time, by

writing
3

l -gNL (T)	 [1-gSL(T)]L1-q	
(T)]	 (T)]'.	 (11.6.4-5)

Eq.	 ('II.6.4-5) expresses the probability l-q NL (T) of network

survival as the product of the survival probabilities of the
r

simple computer system, the underlying subsystem and the inter-

connecting data-bus network. 	 Subsequently, substituting	 (II.6.4-1)-

-(II.6.4-_4)	 into	 (11.6.4-5), the network loss probability qNL(T)

is obtained to be given by the following formula: s^-

q	 (T) = 1	 - {0
,-2a^T

L1+2a T+2(x T) 2+ ?(a T)3]}NL	 3

t _.

c	 cc

-auT	 m	 m	 -X Tk	 -X T
) m-k

{1	 -	 [1-e]	 }	 (k)e	 (1-e)	 (11.6.4-6)

lk=mU,

} Using Eq.	 (11.6.4-5) we can evaluate the network invulnerability to
4

GPC, data-buses and subsystem units, under th6 simplex mode of

' operation.
,

In deriving Eq.	 (IL.6.4-6) we have assumed that the underlying h	 '

subsystem can employ rerouting procedures in utilizing any one of

the operating lines,out of initially available m operating data-bus

lines, as long as no less than m 	 data-bus lines are in ;operation.

Alternatively, to model the sharing of the pool of data bus

lines by a number of subsystems, we now assume conditions (g) to

'
i

hold.	 Then, m
I
 subsystems share the utilization of m data-bus

lines.	 Note, however, that only a single subsystem is allowed r

to use a certain operational	 data-bus at one time.	 (Thus, no time

simultaneous use of a data bus by several 	 subsystems is considered.)

a

-192-

a

i

}

Each subsystem requires at least a single (distinct) data bus line

.for its connection to a GPC. Now, the probability g L,2 (T) of failure

of the data-bus network, is relative to the subsystem under consideration,

is computed as follows.

The data-bus network cannot interconnect the subsystem under

consideration if and only if at a certain time, prior to T, the

line connected to the subsystem fails, and the number of operational

lines then is smaller than iiI 1 (so that all operational lines are

occupied). We set

f(u)du = P(m-nil -th line failure occurs in (u,u+du)). 	 (II.6.4-7)

Since, until time u line iiiterfailure times are i.i.d. exponentially

distributed with mean
(nil

x,') l we fi nd f(U) to be the Canuila density

m1 ac	 m -m1-1 n1 acu

f (u)	 m-n1 -
-,)1	 (1u 1 Zhu)	 e

-i	
u? 0	 (11.6.4-8)

1

The probability q
L,2

(T) of bus-network loss, relative to the

underlying subsystem, is subsequently given by

f

T 	 -a (T-u)
	g L ^ 2 (T) =

	
f(u)[1-e]du	 (11.6..4-9)

0

Eq. (11.6.4-9) indicates that a bus network loss event will occur

if, at some time u only m l lines Gout of initial nt lines) are left,

and in the following T-u units of time the line connecting the subsystem

under consideration fails,. Substituting (II.6.4-5) in (II.6.4-9) we conclude

the result

T	 «r l IN	 m- 1111-1	 m l I ku	 I (T-u)

g L,2^T)	!n-ml-	
(m,^^u)	 a	 [1-e]du

0
(II.6.4-10

C11 , Om

w^ ti

zilIC0171

As before, the computer system loss probability g SL (T) and

the subsystem loss probability are given by Eqs. (II.6.4-1) and

(II.6.4-2), respectively. Also the network probability of survival

is expressed in accordance with formula (LI.6.4-5). We subsequently

conclude that the network loss Probability udner condition (g),

for the simplex mode, denoted as gNL (T), is given by

q (T) = 1- {e
2acT

[1+2X T+2(? T)2 + ?(a T)31}
NL	 c	 c	 3 c

{1	 [1-e-^cT]L}{1-q L,2(T)}	 (I1.6.4-11)

where g L,2 (T) is given by Eq. (II.6.4-10).

The mean time to failure of the interconnecting network, relative

to the subsystem under considerationis now given by

f

m-ml	
1	 1+	 (LI.6.4-12)TNF,2

X
^	 madm1XQ

In the same manner we derive the formula for the network loss
t

probability when it is assumed that different subsystems 	 (tasks) Y ^a
r

can share certain data buses on a time division multiplexin g (TDM)
^

basis.	 Then, if we assume that a single data bus can be time- t.

shared among m 	 subsystems,	 (tasks), the following results are obtained.

Under conditions (g)	 with TDM lines, the data-bus network

would not be able to interconnect theunder consideration, subsystem

if and only if at a certain time, prior to T, the line connected t

to this subsystem fails, and the number of operational lines is

smaller than[m
I
/mT]	 the latter denoting the smallest integer not

is

i}i}

smaller thanml/mT .	 Therefore, g
L,

2(T) now is given by Eq.	 (II.6.4-10) td.

i
with m1 there replaced by [m l /mT].	 The network loss probability is

subsequently given by Eq.	 (IL.6.4-11) with g L,2 (T)	 expressed as ^	 ^

fi i

i

indicated about..

Finally, we note that incorporating the results of Section

II.3.3, one derives in an analogous manner the prcbability of

network loss formulas, under the simplex mode, when restoration	 i

procedures are employed to restore failed GPCs.

1	 .

	

fill 	 ' 1

Eli

E7

is

"

"
4

	

}	
i

A	 ^

^E

r

+E

t

i

c^li2^Of^2	 .

c Pn on-z

III, REFERENCES

t

r,

1. NASA LBJ Space Center, Computer Program Development Specification No..
SS-P-0002-110A, Volume 1, Book 1 (revised), Level A Hardware, 25 June 1975.

2. NASA LBJ Space Center, Computer Program Development Specification No.
SS-P-0002-12OA-1, Volume 1, Book 2 (revised), Level A Software, 20 June 1975
(updated 3 July 19-15). Also, SS-P-0002-1200, J •u 1` Z3', T975_.__

3•	 NASA JSC, Computer Program Development Specification No. SS-P-0002-130A,
Volume 1, Book 3, Launch Data Bus Software Interface Requirements,
24 June 1975.

4. NASA JSC, Computer Program Development Specification No. SS-P-0002-140,
Volume 1, Book 4, Downlist/Uplink Software Requirements, 27 June 1975.

-P	 9	 A	 ,^•	 NASA,JSC, Computer Pro tam Develo pment Soecif^cat7on No SS-P-0002-410-2
Volume 4, Book 1 (revised), ALT Functional Level Reuulreme.nts - Guidance,
Navigation and Control, 7 JuTy 1-17	 ups at̂eTT 25 Judy 1975 an	 ugust 1975).

5. NASA JSC, Computer Program Development Specification No. SS-P-0002-430,
Volume 4, Book 3, ALT Functional Level Re quirements - System Management
Level B, 27 Novembe r 97

7,	 Rockwell International Space Division, SD No 74-SH-0120-06-I-E, Functional
_S__u__b _system Software Requirement sirement s System Interface, Volume G, Part l of 2,
Sections I through 1 for Orbs-ter '101 4 3u^-1 75.

B •	 Rockwell International Space 'Division, SD No. 74-Sfi-0120-06-1-E, Functional

Subsystem Software R equirements System Interface, Volume 6, Part 2 of 2
PF eti ices A through K for' Orbiter 1(?^July T975. t

9. Rockwell International Space Division, SO No. 74-SH-0230A, Data Processing
Subsystem Description and Performance Document, February 1975,

10. IBM Federal Systems Division, 75-A97-001, Space Shuttle Advanced System/4
Pi	 Model AP-101 Center Processor Unit, Technical Description,

arc 1117'
11. IBM Electronic Systems Center, 74-A31-001, S ce Shuttle Advanced S stem/4

Pi - In ut/Output Processor (10P) Principles ofpe^rati'on: MSG, BCE, M ,

an PCI/PC Functional Description, 5 May 1974_

12. IBM Electronic Systems Center, 74-X131-001, Space Shuttle Advanced S steer/4
Pi	 Input/Output Processor (10P), Functional Description, 5 May 1971	 !

13. IBM Federal Systems Division, 74-SS-0302A, S ace Shuttle Orbiter Avion ics
Software - Approach an d Land in g Test ALT	 unF ctiorrail Design 5 ecificael o n,
Vol ume , System Software Ovr vi e yr , 8 November 1974.

14. IBM Federal Systems Divisin;, 75-SS-0714, Space Shuttle Orbite r Avionics
Software - :ALT	 pas ion S2eci fi ca t on)o ume f ' (updated);
"System SQftw{1	 , 21 July 1915.

/ /1	 All Plot

C

t

i
1

i	 ^

'I

i

15. IBM Federal Systems Division, 75-SS-0473, Space Shuttle Orbiter Avionics
Software ALT Functional Desinn S pecification, Volume III, T p licat7 ns
Software " t Part I - ui ance, Navigation an control, 17 February 1975.

16. IBM Federal Systems Division, 74-SS-0302A, Space Shuttle Avionics Software
ALT Functional Desiqn Specification, Volume III,"App ic^ati'-ons SoT-TtWrr
Part 2 - Systems Management, 8 5 ember 1974.

17. IBM Federal Systems Division, 74-SS-0185, Space Shuttle Orbiter Avionics

Software	 Flight Software Memory Sizinq and CPU Loading Estimates,

July 1974.

18._ IBM Federal Systems Division, 75-SS-0421, IRD No. ld, Space Shuttle Orbs iter

Avionics Software - Flight Software Memory Sizinq and CPU Loactinq Estimates,

6 January 1975.

19. Rockwell International, SD74-SH-0120-01-1-NC, Functional Subsysten
Requirements Document - System Management, 15 Marc y 9I4 ^

20. Rockwell International, SD74-SH-0120-02-1, Functional Subs stem Software
Requirements Document - Flight Computer Operating System,, - r-0 5,1974..

21. Rockwell International,-SD74-SH-0120-03-1, Functional Subsystem Software
Requirements Document - Guidance and Navigation, 15 March 1974.

22. Rockwell International, SD74-SH-0120-04-1, Functional Subsystem Software
Requirements Document	 Flight Controls, 15 March 1974.

23. Rockwell International, SD74-SH-0120-05-1, Functional Subsystem Software
Requirements Document	 Displays and Controls, 15 March 7974.

24. SAMSO, SAMSO-TR74-155, Department of Defense Space Shuttle On-Board
Software Requirements, July 1974.

25. System Development Corporation, TN-(L)-5658/000/00, Final Report, Digital
Data Processing System, Dynamic -Loading -Analysis, 30 April 1976.

26. W. T. Chow, "Airborne Computer Technology," _Proceed ings of the Tenth
Space Congress ,ess, Cap Canaveral, Florida, April 1973; published by the
Canaveral Council of Technical Societies.

27. T. B. Lewis, "Primary Processor and Data Storage Equipment for the
Orbiting Astronomical Observatory," IEEE Trans. Electronic Computers,
ED-12, 667, 1963.

28. A. E. Cooper and W. T. Chow, "Shuttle Computer Complex," Proceedings of
sue. a1 sue..-^.

the Sixth Triennial World Congress, IF;C, 1975, Boston/Ca 	 Mass.,
August 1975.

29 Intermetrics, Requirements and Architecture of the, Space Shuttle
Fli g ht Computer Operating System FCOS, M3W8XM1X-483000, NAS 9-14000,
FOTP P ri'1 1197-3.

3

I -
1
1

T
r.	 ti4

30. J. R. Sklaroff, "Red'andancy Management Technique for Space
Shuttle Computer as , " IBM J. Res Peye1app. 20, 20, 1576,

31. A. E. Cooper and W. T. Chore, "Development of On-Board Space
Computer Systems," IBM J. Res. Develop. 20, 20, Jan. 1976.

32. F. G. Kilmer and J. R. Sklaroff, "Redundant System Design and
Flight Test Evaluation for the TAGS Digital Control System,"
Proceedinns of the 29th Annual National Forum of the American
Helicopter Socet^, Washington, D. C., May 197:x.

33. H. Hecht, "A Comparison of Fault Tolerant and Externally Redundant
Computers," SAMSO TR 74.66, Aerospace Corporation, El Segundo,
California, January, 1974 available as document AD777166
from the U. S. National Technical Tnformation Service,
Springfield, VA, 22151.

34. E. A. O'Hern, "Space Shuttle Avionics Redundancy Management,"
presented at the AIAA Digital Avionics Systems Conference,
Boston, April 1975.

35. H. A. Padinha, "Divergence in Redundant Guidance, Navigation
and Control Systems," Procee_di nos of _the ION Nati onal Aerospace
Meeting, Washington, D. C., March 19732

36. D. R. Thomas and F. G. Kilmer, "Redundancy Management Policies
for a Dual Redundant CmputerConfiguration," TR. 75-065-0013,
IBM Federal Systems Division, Owego, New York, 13827,
February 1975.

^R

37. I.	 Rubin, "Reservation Schemes for Dynamic Packet Access-
Control of Multi -Access Communication Channels," Technical
Report, UCLA School of Engineering and Applied Science,
UCLA-ENG-7712, January 1977.

{

38. I.	 Rubin, "Message ,Delays in FDMA and TDMA Communication Channels,"
Technical	 Report, UCLA School of Engineering and Applied Science,

f in preparation.	 Also, Proceedings of the Conference on System
! Sciences,	 the Johns Hopkins University, Baltimore, MD, March, 1978.

s

' 39. I.	 Rubin,	 "The Delay-Capacity Product for Store-and Forward'
Communication Networks:	 Tree Networks," Aepl. 	 Math.	 & Optim.-,

t
2,	 197,	 1976.

a

40. I.	 Rubin, "The Delay-Capacity Product for Message-Switching
q Communication Networks," J. 	 Combin.	 Inform.	 &_Sj t

:i 1976.

& 41. I.	 Rubin,	 "On Reliable Topologies for C0111puter Networks,"
Prod. 	 2nd Intl, Conf.	 on Software,Eng.., San Francisco, CA, Oct.T976_

f
42. I.	 Rubin, "On the Design of Reliable Hierarchial	 Computer

Conurrunication Networks," Proc. 	 EUROCON	 1 77, Venice	 Italy,
May	 1977..:

r.

x

r

{

{	 I

{

C	 ^	 a	 ,^ _ sr' j	
F

ry 	 ,

L	 ^	 _

i 3 ^	 1	 G7^r 4•Y^•	 ^ f 3r^.

43, E. G. Coffman, Jr. and P. J. Denning, Operating Systems
Theory, Prentice-Hall, 1973.

44. J. W. Cohen, The Single Server , Queue, Wiley, 1969

45. P. Green and R. Lucky, Editors, Computer Communications,
IEEE Press.

46. N. Abramson and Kuo, Editors, Computer Communication Networks,
IEEE Press.

47. H. M. Goldberg,"Analysis of the Earliest Due Date Scheduling
Rule in Queueing Systems," Math. of Op. Res.,Vol. 2, No. 2,
May 1977.

48. N. U. Prabhu, Queues and Inventories, Wiley, 1965.

49. T. L. Saaty, Elements of Queueing Theory with Applications,
McGraw-Hill, 1961.

50. J. W. Boyse and D. R. Warn, "A Straightforward Model for
Computer Performance Prediction," Computing Surveys, Vol. 7,
No. 2, June 1975.

51. N. K. Jaiswal, Priority Queues, Academic Press, 1965.

52. H. Goto, "A Digital Phase Lock Loop for Synchronizing Digital
Networks," presented at the International Communication
Conference, San Francisco, June 1970, pp. 34-21 to 34-25.

53. V. K. Agarwal, "Clock Network Synchronization," TRW IOC 7333.3-55,
1 June 1970.

54. V. K. Agarwal, "Synchronization of Oscillators for Space Shuttle
and Other Related Applications," TRW IOC 7352.10-60, Sept. 13,1971.

55. T. J. Stephens, "Shuttle Clock Synchronization," TRW IOC 7333.3-130,_
10 March 1971.

56. V. K. Agarwal, "Colocated Transmitters Clock Synchronization,
TRW IOC 7352.21-03, March 22, 1972.

57. M. W. Willard and H. R. Dean, "Dynamic Behavior of a System
of Mutually Synchronized Oscillators," IEEE Trans. on Comm.
Tech., August 1971.

58. M. W. Willard, "Analysis of a System of Mutually Synchronized
Oscillators, IEEE Trans. on Comm. Tech., Vol. COM-18, pp. 467-483,
October 1970,

59. J. R. Pierce, "Synchronizing Digital Networks," B.S.T_J., 48,,
No. 3, March 1969, pp. 615-636.

^	 S

If

	
f	 1	

r

a	 w fib'`

. I

info s` n

60. I. W. Sandberg, "On Conditions Under Which It is Possible to
Synchronize Digital Transmission Systems," B.S.J.T., Vol. 48,
pp. 1999-2022, July-August, 1969.

61. H. Inose, et al., "Phase Relation Between Offices in a Mutually
Synchronized System," Electronics Letters, 3, No. 6, pp. 243-244,
June 1967.

62. H. Mumford, et al., "Synchronization of a PCM Network Using
Digital Techniques," Proc. IEE, Vol. 113, No. 9, pp. 1420-1428,
September 1966.

63. M. B. Brilliant, "Dynamic Response of Systems of Mutually
Synchronized Oscillator," B.S.J.T., pp. 319-356, February 1967.

64. H. R. Krauss, "Clocking and Synchronization within a Fault-
Tolerant Multiprocessor," Technical Report T-564, M.I.T., June, 1972.

65. R. W. Larsen, and I. S. Reed, "Redundancy by Coding versus
Redundancy by Replication for Failure-Tolerant Sequential
Circuits," IEEE Trans. on Computers, Vol. C-21, No. 2,
February 1972, pp. 130-137.

