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THE ORGANIZATION OF THE REPORT AND SUMMARY

This study provides analytical tools, methods and techniques
for assessing the design and performance of the Space Shuttle
Orbiter data processing system (DPS). The computer data processing
network is evaluated in the following three key areas:

Queueing Behavior;

Synchronization;

Network Reliability.

The report is divided into two main parts. Part I consists of
detailed modeling and analyses of queueing and synchronization
aspects of the DPS. Part II’inv01Ves the evaluation of the overall
network reliability in the presence of various failure modes. The
detailed models, techniques, performance measures and results
presented here fully satisfy all the study objectives outlined in the
associated technical proposal.

Thé structure of the data processingvnetwork is presented in

Section I.1. System operation principles and the network configuration

are described. The characteristics of the computer systems are
indicated.

Traffic, task and subsystem models and parameters are derived
and described in Section I.2. Process parameters and models are
presented for the following network elements: the computer subsystem;
the terminal, task and user traffic; task and application process
parameters; and the communication subnetwork. -

The system performance measures are derived, presented and

discussed in Section I.3. We differentiate between computer

i i g S e e e s L e Sl
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oriented performance measures, user oriented performance measures
and s}stem and network related performance indices.

General important queueing models are described, analyzed
and compared in Sections I.4-I1.5. Computer system queueing
models are presented in Section 1.6. Queueing modeling and analysis
methods for the orbiter DPS are described in Section I.7.

Time-sharing queueing models are described and analyzed in
Section I.4. Included are: time-shared single processor systems;
batch processing systems; round-robin processing; round-robin
with priorities; a round-robin scheme with time-varying priorities;
foreground-background processing shcemes; and multiievel processor
sharing scheme. The performance characteristics of the various
time-shared schemes are then combared.

Priority queueing models are described and analyzed in
Section I.5. While time-sharing schemes increase the operational
efficiency of the orbiter computer complex, priority service
procedures allow the incorporation of tésk priorities in providing
the proper grade-of-service for critical tasks.

In Section I.6, we present queueing models and demonstrate
the performance analysis for the computer system. Operating
systems and memory management techniques are discussed. Computer
scheduling proceduresare outlined. The following analytical queueing
models are then presented; for studying the queueing behavior of
the computer system: a_Markdv{an queueing model with finite buffer
facility; a finite task source ﬁueueing model; a multi-processor
queueing model; and queueing models involving inbuf/output (1/0)

and CPU jnteractions.

,‘c>~.512¢:ji7itl‘; i

o -?- i»‘;..,w_..,,,,.' N '




2 O S P I, T SIS 7 o ST T S I SER R S Py SR St P e g YOO T PIFER G . e ko S5 i SRR JU P23 SUNET S S

, C>l{}ll<iji)l71

Queueing modeling and analysis procedures for the Space Shuttle

orbiter avionics system are presented in Section I.7. The underlying
queueing model js described. A time frame model for the computer
system is then chosen. Tasks are divided as being cyclic or acyclic.
Proper computer taskvservice times are subsequently allocated.

Queueing models are then chosen and analyzed for cyclic and acyclic
tasks. Subsequently, the results are integrated to yield a joint
queueing model. The latter is analyzed, and the system performance
functions are derived, studied and discussed. We then choose proper
queueing models for describing message delay and buffer characteristics
at the user terminals, considering both input and output traffic.

The synchronization problem is discussed in Section I.8.
Synchronization considerations for the data processing system are
outlined. A queueing model is presented to relate time offset
parameters withmessage delay and buffer gueue-size functions. Clock
synchronization procedures are then presented, discussed, compared
and analyzed.

In Part IT of the report, system reliability measures are defined
and studied. System and network invulnerability measures are computed.
A communication path and network failure ana]ysis techniques are
presented. The reliability features of the data processing network
are outlined in Section II.1. In Section II.2 we define failure
parameters and,re1iabi1ity performance measures for the computer
complex. The failure analysis for the computer system, when operating
in the simplex mode, is carried out in SectionII.3. The corresponding
failure analysis for the redundant cbmputer'systemfis pfesented in

Section II.4. The invu1nerabi1ify characteristics and failure
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properties of an application subsystem are derived in SectionII.5.
These results are integrated and combined in Section II1.6, resulting
with the failure analysis of the data processing network.

The techniques, methods and results presented in this study
are of prime importance as tools in assessing the performance of
the orbiter DPS. Furthermore, the models developed and presented
here fre of general fundamental nature, invé]ving the key aspects
of system reliability, queueing (delay-throughput, grade-of-
service and system utilizatimmeasures) and synchronization.
Subsequently, they can be used in studying the performance of
the system under a variety of operational conditions,

including future modifications and expansion situations.
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I.1 THE STRUCTURE OF THE DATA PROCESSING NETWORK

[.1.1 System and Network Configuration and Operation

The space Shuttle avionics system contains five general
purpose computers (GPCs) communicating with the avionic sub-
systems over serial data buses. A block diagram of the Space
Shuttle Avionics system is shown in Fig. I.1.1. Four of the
five GPcs are identically programmed to perform flight-critical
functions, such as guidance, navigation and control. The fifth
computer is programmed to perform non-flight-critical avionic
functions. A block diagram of the data processing and software
subsystem is shown in Fig. I[.1.2.

A GPC consists of an IBM AP-101 central processing unit
(CPU) and an input/output (I/0) processor (IOP). Each IOP is
transformer-coupled to the buses, and can transmit or receive at
a rate of 1 MHz serial digital data over each of 24 bus channels.
The data buses, on the other side, are transformer-coupled to
multiplexer/demultiplexer units (MDMs) and digital subsystems.
The MDMs contain analog-to-digital and digital-to-analog
converters. They interface with analog subsystems, such as
flight 'control sensors and effectors (see Fig. I.1.2).

Subsystems that perform similar functions are assigned to
the same data-bus group. There are seven such groups (See
Fig. 1.1.1). The subsystems have varying levels of kedundancy
at the unit level, depending on their criticality. Each unit
is addressed by a command word over the bus. To prevent the
loss of more than one redundant unit when one data bus fails,

no two redundant units interface with the same bus.
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During time-critical mission phases (i.e., recovery time
less than one second), such as boost, reentry and landing, four
of the five GPCs operate as a redundant set, receiving the same
input data, performing the same flight-critical computations
and transmitting the same output commands. In this mode of
operation, efficient detectionand identification of two flight-
critical computer failures is provided by comparing the output
commands and "voting" on the results. This involves the voting
subsystem. After two failures, the remaining two computers in
the set use comparisonand self-test techniques to provide
tolerance of a third fault. The voting mechanism thus allows a
computer to tgan§mit incorrect commands to critical subsystems
for an indefinite number of cycles without having adverse effects
on system operation.

The system operates as follows. Eachbus within a data-bus
group is assigned, under software control, to operate in either
a command or a listen mode. In the command mode, data requests
and commands are jissued to the subsystems over the bus and data
are received over the same bus. In the listen mode, data are
only recejved on the bus.

In the flight critical sensor and control-data-bus group
(two subgroups of four buses), one bus in each subgroup is
assigned to operate in the command mode (in each redundant-set
computer) and the remaining three are assigned to operate in the
listen mode. In the inter-computer channel (ICC) data-bus group,

containing five buses, one bus (in each computer) is in the command
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mode and the remaining four are in the 1isten mode.

T -

Data Collection. Each of the redundant subsystems is

connected to a different bus. Thus, a different computer requests
data from each of the subsystems and the returned data are
available to all other computers in the set. The listening
computers are informed that the subsystem data are available

by receiving a 1isten command, which is issued by the command
computer just prior to issuing the data request command to the
subsystem.’ In this way, identical input data are available to
each computer in the redundant set.

In noncritical phases of the mission, each of the GPCs is
associated with a proper dedicated subset of subsystems. This
non-redundant configuration is termed the simplex mode.

Data OQutput. Consider the redundant mode. Each channel of
the (voting) effector subsystem is connected to a different
bus of the group. Thus, a different computer transmits command
data to each of the voter-effector channels. Hence, a voter-effector
subsystem requires four inputs which it receives from four different
computers. Since buses are interconnected to all computers, each
computer can listen to the command data sent out by each of the
other computers.

For inter-computer communication transfer, each computer
communicates with all other computers. A computer can thus
pass data to all others, request data from the other computers
and perform any set of integrated tasks. No subsystem is connected

to the ICC buses.
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The main characteristics of the Space Shuttle orbiter

avionics data processing system are summarized as follows
(see Figs. I.1.1-1.1.2).
1.

The avionics system provides data processing capabilities

for guidance, navigation and control (GN&C); communications
and tracking (C&T); displays and controls (D&C); system
performance monitoring; payload management; payload

hand1ing; subsystem sequencing; and selected ground functions.
The system accepts input commands and/or data from the crew,
on-board sénsors, and external sources.

The system performs computations and processing. It generates
output commands and data as necessary to accomplish the
requ{kements specified for the above mentioned tasks, as

well as for any required internal purposes.

fhe system is topologically structured around a central

set of five general-purpose computers (GPCs) which are
intercbnnected to the subsystems so that they may be

operated in redundant groups to provide critical sources.

Each computer has a memory capacity of 65,000 32-bit words.
Additional storage of programs and fixed data is provided

by two mass memory units, each having a data capacity of

134 megabits.

Data transfer between the computer center and the data users

is through a data bus network. This network is composed

of serial, half-duplex data channels operating at a rate

of 1 megabit/sec.
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6. Interface adaptation between the data bus network and the

7. Engine interface units provide operational control of the

8. Incorporated in the system are also dispaly electronics

orbiter subsystems is accomplished by multiplexer/de-
multiplexer (MDM) units. These units provide signal
conversion capability, digital-to-analog (D/A) as well

as analog-to-digital (A/D), and multiplexing/demultiplexing

functions.

main engines from GN&C commands. The units also provide

main engine data for recording, telemetry or GSE.

units, CRT displays, keyboards, manual controls and controller
manipulator instrumentation units.

1.17.2 Characteristics of the Computer System

We have indicated in the previous section that the heart of
the Space Shuttle avionics protessfng system is a set of five general-
purpose computers (GPCs). Four of these computers can operate in a
parallel redundent mode during flight critical phases of a mission.
We summarize in this section the major characteristics of these
computers, on board the Spaée Shuttle orbiter.

The‘fo]lowing are the principal characteristics of the on-
board GPCs.

1. The‘GPCs are designed as adaptation of the IBM AP-101]
computer.

2. Cbmputer size is 0.87 cu.ft., and weight 57.9 1bs. Input
power is 350 watts.

3. The combuter uses transistor-transistor logic, medium and

large scale integration, and multilayer interconnection boards.
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10.

Data flow is in parallel.

Both fixed point and floating point arithmetic can be

used.

Data word Jength (fixed point) is equal to 16 or 32 bits.
Data word length (floating point) is equal to 32 or 64 bits.
Instruction word lengths are equal to 16 and 32 bits.

There are 154 instructions in the computer instruction
repertoire.

The computing speed is equal to: 480 x 103 operations/sec,
under fixed-point; 325 x 10°
The computer incorporates as special architectural features:
microprogramming, a higher order language, 24 general registers
and 19-Tevel interrupt structure. As support software it
contains: an'assemb1er, a linkage editor, a simulator, a

self-test program, a functional set and a compiler.

Memory is in the form of pluggable ferrite core modules.

[}

Memory capacity = 1310720 bits

40960 32-bit words
Memory access time = 0.375 usec

The main characteristics of the computer system on-board

the Space Shuttle orbiter are summarized by the,fo]]owing.

Multiple high performance computers are used to provide the

total computing capacity, and system flexibijlity and reliability.
During critical phases, four of the computers operate

in parallel, and "voting" is used. During non-critical phases,

a simplex mode is 1mp1eménted. One computer is then used for

GNC tasks and one for system management tasks.

TR T e s T e A;‘_A‘;AA,.).\M& . A-]z-_kb o ‘__.M ,.A_ =

operations/sec, under floating-point.
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2. Separate input/output (I/0) processors (IOPs) are used for
information transfer and control. Each GPC consists of two
separate processing units: a central processing unit (cpu),
which provides the central computational capability, and an
input/output processor (IOP), which performs and controls
the I/0 operations for the CPU.

3.  Time-shared serial digital date buses are used to accomodate
the data traffic among the computers and between the computers
and other subsystems. |

There are 24 data buses, organized into 7 groups. The
data;tfansfer is time-division multiplexed (TDM) using _pulse
code modulation (PCM). Each bus operates ataclock rate of 1 Mbit/sec.

4. Microprogramming is used for both the CPU and the IOP. This
allows the implementation of a comprehensive instruction
repertoire.

5.  Both floating-point and fixed-point arithmetic operations are
provided in the CPU for easier programming and program validation.

6. A higher order language is used in the programming of the CPU
to reduce software effort and yield better control. This
language is designated here as HAL/S.

/. As main memory, random-access non-volatile destructive-read-
out ferrite cores aré used. They provide makfmum reliability.
Alsd, high capacity mass memories are used for permanent
on-board off-Tine bulk storage to supplement the on-line
random-access_computer main memory. The mass‘memories are

two identical tape units.
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A functional block diagram of the GPC, showing the inter-

connection betweén the CPU and the assocjated IOP is shown in
Fig. I1.1.3. Concerning the CPU-IQP system, the following char-
acteristics are noted.

The primary communication interface between the CPU and its
I0P is provided by a 36-bit bi-directional data channel.

The main properties of the CPU have already been indicated
above. We further note that the computer has a 96% fault detection
capability, achieved by bui]i—in test equipment and self-testing
programs.

A1l data transmission among GFCs and between GPCs and the
avionic subsystems is performed by the IOPs under CPU control. One
I0P is associated with each CPU to provide direct and passive
monitoring of data traffic. '

Each IOP interfaces withthe other I0Ps and with the interfacing
subsystems over the 24 separate serial data buses. The IOP contains
a set of 24 independent processors, called Bus Control Element
(BCE) processors. A 25th processor, the Master Sequence Controller
(MSC) controls the operation of the 24 BCEs. These 25 processors
act, in effect,‘as 25 digital computers and operate from software
programs stored in main menory . The I0P data processihg'progrmns
are indepen@ent of the CPvarograms and have their own’unique
instruction set. Each BCE controls a Multiplexer Interface
\Adapfer (MIA), which is connected to the serial data bus via bus
computers (see Fig. I.1.3). The MIA transmits and receives inform-
ation, encodes and decodes bus data, and tests for parity and proper

synchronization of bits.
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I.2 TRAFFIC, TASK AND SUBSYSTEM MODELS AND PARAMETERS

1.2.1 The Network Components

In this section we present the main system parameters and
statistical distribution functions necessary to construct an
analytical model for the space Shuttle data processing system.

In particular, our interest here is to construct proper queueing
models that will enable the system engineer to predict and evaluate
the delay-throughput performance of this computer network. The
relevant set of performance measures will be presented in the next
section.

In providing the parameterized models for the system
components, we classify them into three categories.
1. The general purpose computefs (GPCs) and the computer

subsystem {complex). '
2. Terminals, tasks, users and peripheral equipment.
3. The communication subnetwork.

We now consider each of these categories.

1.2.2 The Computer Subsystem

The main characteristics of the computer subsystem have already
been presented in section I.1. For obtaining a global network
model, we choose the following model and parameters. |

The model is shown in Fig. 1'2-]-; The model enables us to
statistically describe theprocessing services provided by the CPU
and IOP, the task queueing delay characteristics, buffer overflow
properties and the CPU-IOP jnteractions. Data and reduests for
service arriving at the GPC subsystem are stored in the IOP

queue. Any required 10P processing is granted to the tasks
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waiting at the IOP queue in accordance with the specified service
ordering discipline. The latter incorporates fixed (static)
priorities as well as dynamically assigned priority functions.

Subsequently, upon terminationof the desired IOP service
portion, the task (or jbb, or message), or a request associated
with it, is stored at the main queue waiting to be granted
service by the CPU. The desired CPU service can involve a
certain computational effort as well as memory extraction and
accessing duties. The requests or data stored in the main queue
are served in accordance with the underlying priority service
discipline. Between various CPU service periods, the processing
of the underlying task can stop so that certain IOP services
or memory accesses could be completed . This is introduced into
the model (see Fig. 1.2.1) by allowing a CPU-IOP-CPU cycle as
well as a CPU-Memory-CPU cycle. Upon termination of its service
the task data output is stored at the output buffer. It is
transmitted to its destination (properly controlled, as well as
time-division-multiplexed by the computer IOP controls) at the
proper output times.

Major parameters of interest are denoted as follows.

AN = memory access time [sec]

o
i

1= I0P service rate [bits/sec]

Cc = CPU service rate [bits/sec]
Mc = Size of amin CPU memory [bits]
MI;= Size of ‘input buffer facility [bits]

My = Size of output buffer facility [bits)

ERRE |
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Some of these parameters can be random, in which case we
are interested in their probability distribution functions, or
just their means and variances.
The processing times requried at the CPU and IOP levels
depend on the task under consideration. Considering a task of
class k, distinguished by its proprity and desired response time
and criticality, we are interested in the following parameters.
Henceforth we identify memory processing, accessing and interruptions

as I/0 duties.

SI(k) = I0P total service time requried by a class k task
(request, message), including memory service time [sec].

Tr(k) = IOP continuous service portion required by a class k
task, including memory service time [sec].

Sc(k) = CPU total service time requried by a cla;s k task

[sec]

CPU continuous service portion required by a class K

—_
o
—~
~
S
"

task [sec].
K(k) = Number of times that a class k task required interruption
in CPU processing for IOP or memory processing.
ThevparaMeters mentioned abové arevrandom variables. We arn
interested in their probabiiity distributions, their means E(-)
and variances Var(-). The associated means (average values) of these

parameters are denoted as follows.

E[S;(k)] = Si(k) = v (k) [sec] | (I.2.2-1)
E[T (k)] = T(k) = u}1'(k) [sec] (1.2.2-2)
ELSc(k)T = Sp(k) = c(k) [sec] (I.2.2-3)

’ -
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ET(K)] = To(k) = E](k) [sec] (1.2.2-4)

We then obtain the following relations:

Telk
K(k) = _.23_(_)_. (1.2.2:5)
uc (k)
wp(k) = KWy (K) = ] (k) (k) . (1.2.2-6)

I.2.3 Terminal, Task and User Traffic

Data traffic distribution within the Space Shuttle avionics
data processing network can be associated with a number of
classified "processes" or tasks. Tasks are divided into task
(or message) classes in accordance with their:

proprity;

scheduled/unscheduled status |

message characteristics, such as message lengths and

desired response time.

Tasks can be assigned priorities on a fixed static Tevel.
Then class 1 tasks have higher priority over class 2 tasks.
Priorities can also be assigned on a dynamic basis (see sections
1.4-1.5 for classification of priority disciplines and the
associated queueing analysis). For example, a dynamic Earlier
Due Date dyanmic queueing priority discipline can also be used.
Then, each task (or job, or message) is associated with dynamically
changing priority level expressing the criticality of the job as
well as its desired due date (response time). (See Section 1.5

for details.) As a particular case, the following priority classes

can be defined.

AR A T T
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Class 1 tasks

H

highest priority tasks, critical.

Class 2 tasks = timely, become critical after a delay

of 62 sec.

Class 3 tasks = timely, but become noncritical after a

delay of 63 sec.

Class 4 tasks = timely, discarded after a delay of §, Sec.

i

Class 5 tasks = noncritical.

To implement a dynamic queueing priority service discipline,
the network controller is designed to administer demand-assignment
assessing and service ordering procedures.

Jobs, or tasks, are also classified in nature as being

cyclic or acyclic (not cyclic) Cyclic jobs require service on

a periodic basis. Acyclic tasks use the processors on an

1

aperiodic basis.

One also distinguishes between scheduled and unscheduled

tasks. Scheduled tasks can be cyclic or acyclic. They cover the
following four areas.

e User interface tasks.

«System control tasks.

eGuidance, navigation and control tasks.

+System management tasks.

Tasks (jobs, or processes) are activated by either internal
or externé] stimuli. The computer processor and the data
network are assigned to tasks on a priority basis, as
indicated above. Service of a task, or process, can be
preempted (interrupted) by higher priority tasks. Certain

tasks can be served on a non-preemptive basis. FEach task is

DIPTSR PR

x
R T ST

T

TR T TR T T T

LA




s oW 2 o R TRt SRV PRV SLVS SROENS SRS UIURP USRS SO S

‘ )
o[t'nC)orn

assigned to a "service class" and given priority within the class.
In addition to representing "processes" requiring service
by the Avionic DPS as tasks, one also identifies the jnformation-

bearing units called routines and messages. Routines serve as

modules executed in performing a task. They can be included
or shared among several different tasks. Messages are defined
to be groups of data handled and transmitted within the data
processing network. Messages can be declared as elements of
certain tasks.
The devices associated with the Space Shuttle orbiter
Avionics DPS are described as follows.
¢15 MDS (Multiplexer/Demultiplexer Units). Max. record size
= 1024 bytes.
Input/Output rates = 120 bytes/msec :
Can be shared among tasks.
o4 DEUs (Display Electrical Units). Can be shared among tasks.
Max. record size = 8192 bytes.
Input rate = 120 bytes/msec.
Qutput rate = 62 bytes/msec.
¢3 DDUs (Dispaly Driver Units). CAn be shared among taSks.
Can hold an unlimited record size.
I/O rate = 120 bytes/msec.
3 KBUs (Keyboafd Units).
Qutput rate =1 byte/msec;

Associated delay of 1 msec.

ﬁ[i‘n[)n.,.;
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2 PCMMus (Pulse Code Modulation Master Units).
Can be used by all tasks.

Max. record size for each unit = 2048 bytes.
I/0 rate = 120 bytes/msec.

Display data can be classified as follows.

Time critical display data. Memory resident, accessible

within ny sec. Typically, n = 1 sec.

Sequence critical data. Accessible within n, Sec. Typically,

ny = 2 sec. Can be resident in memory, if requried.
Noncritical data. Accessed as soon as possible. Access-time
can be minimized by tape head positioning and file ordering.

In the keyboard subnetwork, a message is composed of a key-

stroke or a series of keystrokes sent to the GPC system by a DEU.

s

The DEUs are pulled by the GPCs. Polling frequency is
| f(DEU) polling times/sec
For example, in certain operational modes one sets
5 times/sec < f(DEU) < 10 times/sec

A given DEU receives commands from only one GPC on its bus.
DEU transactions can be very long. It is subsequently
important to evaluate the probability of overflow of the
associated I/0 buffer.
Update data from GPCs to DEUs is transmitted at one of a
number'of possible rates. Typically, the rate is 2 Hz.for.
analog data, and is equal to anyone of 1 Hz, 045 Hz, 0.25 Hz,

0.125 Hz for digital data.
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- I.2.4 Task and Application Process Parameters

Dedicated displays are updated regularly by the GPCs.
Dedicated control inputs are polled by the GPCs at proper
polling rates.

The role of process management is to supervise the allocatijon

of the internal computer resources and control the execution of the
application processes. For that purpose, use is made of dynamic
queues and tables containing the state of the internal resources.

Process control is responsible for allocation of the GPCs

to application processes. This is accomplished according to (the
above-mentioned) preassigned process (task) priorities, controlled
by the demands of the crew, scheduled duties and conditions polled
in the avionics equipment.

Scheduled processes in queues are noted to be in one of three
states: | '
-Agzilg state; the process controls the CPU.
eReady state; the process is ready to utilize the CPU, but

has not attained control yet.

eWait state; time must pass until a certain event occurs or

an I/0 operation is completed.

According to the descriptions of the nature of the application
processes and tasks in the prévious section, the following parameteks
are defined. These are the major parameters used in a macroscopic
performance analysis of the avionics data processing system;

Different tasks make different service demands upon the data

processing network. Tasks are divided into priority (or service)

.___em__‘.,,.
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as follows. The time tn(k) denotes the instant of time at which

classes. GPC service times required by a class-k task have

been defined in Section I.2.2. In particular,we have:

E[S(k)] = E[S(k)+s. (k)]
= (k) = rr(k) + rc(k) = average total GPC service
time required by a class k
message; (1.2.4-1)
var[S(k)] = Var[SI(k)+SC(k)]
= V(k) = wvariance of the total GPC service time
required by a class k message; (1.2.4-2)
where
S(k) = SI(k) + SC(k) = total GPC service time required by a

class k message. \ (1.2.4-3)

In addition to using GPC resources, a class k message
might require various network and device resources. The above
service times describe the overall time required by a task in
directly utiljzing the CPU (through Sc(k)) or in requiring any 1/0
processing (through SI(k)). The local behavior and buffer overflow
characteristics of each device will also be modelled.

In addition to characterizing the task service times, one
also needs to statistically describe the stochastic process of
task request times.

The stochastic arrival process {tn(k),n=],2,...} js described

the n-th task (or, job message) of class-k signals its request for

-24-
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service. This signaling can be realized by the actual arrival
of request for service at the GPC, actual arrival of the proper
data (or message), or any such scheduled arwvival.

The interarrival times {Tn(k),nnl,é,.,.} are defined by

f1

Tn(k) tn(k) - tnq1(k), ne=1,2,... (I.2.4~4)

tO(k) 8. Thus, Tn(k) is in general a random variable denoting the
time between the arrival of the n-th class k message and the arrival
of the preceeding (n-1)-st class k message. Ne usually assume
{Tn(k)} to be a sequence of independant identically distributed
random variables. Wa then set:

Tk(k) = E[T(k)] = average interarrival time for class
k messages; . (1.2.4-5)

VT(k) = Var[T(k)] = variance of the intorarrival time

TN Al
for class Kk messages. (X.2.4-6)

The arrival traffic associated with gyclic tasks can further
be characterized as follows. The starts of the requasts for
service of a class K cyelic task are again governed by the stochastic
év&ivnl stream {tn(k)} and the associated intorarrival times {Tn(k)}ﬁ
However, once service has started for a certain cyelic task, the

servica requirement is specified by:

Tc(k) = time botween vequived services of a class k cyclic task

= time pariod associated with a class k eyelic tasky  (1.2.4-7)

Tc(k) = service time of a eyalic ¢lass kK task within a single
assotiated period. f (1.2.4-8)

ViswWes
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'{C{k) = Elee(k)] = mean of 7.(k) ; (1.2.4-9)

Var[rc(k)] variance of 7

C(k) . (1.2.4-10)

Fig. I.2.4.1 illustrates the evaluation of service times

required by a class-k cyclic task.

T(K) T4(K) To(K)
e R L

A A A

be- e
(k) (k) ool

Fig. 1.2.4.1.

We note that we can allow the periodic times Tc(k), dedicated
to servicing a cyclic class k task, to be identical or of random
varying durations.

The arrival times {tn(k)} and associated interarrival times

{Tn(k)} for scheduled tasks can be regarded to be fixed deterministic
values. This is observed by noting that the signals indicating
request-for-service by scheduled tasks are issued at a priori

known fixed instants of time.

Arrival times {tn(k)} and interarrival times {Tn(k)} of requests

for service of non-scheduled tasks are regarded as random variables.

The mean and variance of the interarrival times, T(k) and VT(k) have
been defined by(I.2.4-5)&(I.2.4~&,respectiVe]y. It can be beneficial
for the advanced performance analysis to also have the interarrival

time distribution function FT k(x), assuﬁing {Tn(k)} to be a

N
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sequence of 1i.1.d. random variables; thus,

Fr(x) = PIT (k) < x}, x>0 (1.2.4-11)

L

Unscheduled tasks are many times assumed to arrive according

to a Poisson process at a rate of A(k) [mess./sec.]. Then,we have

Frylx) = 1- eMKX s, (1.2.4-12)

so that the interarrival times are exponentially distributed. Note

that

AK) = ELTOOIY = [TR)T

= average number of class k task arrivals
per unit time (sec)

Cyclic tasks are statistically characterized by fTC(k),TC(k)}
within each activity period. For unscheduled cyclic tasks, one can
assume requests for an activity period to start at random times
distributed according to a Poisson stream with intensity Tc(k)
[requests/=::c].

When considering the buffer beahvior at a device, the following
statistical characterizations are required.

M(1) = storage capacity of the buffer associated with device 1.

1

T§1) ’intefarriVal times of tasks (message) at device 1.

F§i)(x) = p{T%igc()}, T§i), Var(T§i)) = distribution, mean

and variance of T§1).

: Téi) = interdeparture times of tasks (messages) out of the

buffer of device i.
Féi)(x), Téi), Var(Téi)) = distribution, mean and variance of Té1);
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S§1) = processing time at device i.

ng)(x), gi(i)’ Var(5§i)) = distribution, mean and
(1)

variance of Si

Note that task polling processes can be modelled as cyclic
processes, using the characterizations presented above.

1.2.5 The Communication Subnetwork

The communication subnetwork is composed of the subsystem that
provided for the transmission of information between the GPCs and
the users, terminal and application devices.

For the Space Shuttle DPS, the Avionics communication sub-
network is composed of a network of bus Tines. A bus Tine connects
all computers to a certain device; The lines are used in either a
command or a listen mode. In a command mode the Tine'use is supervised
and controlled by a commanding GPC to transmit or receive information.
The other computers can listen. In the listen mode, a computer can
only receive data over the line.

The rate of transmission of data over each bus line is 1 MHz.

To study the uti]ization of each bus line, we set:

In addition, one is interested in the utilization of the ICC

(inter-computer communication)lines. For which we set:

f(i) = rate of transmission of information over bus line ;
(i) [bps] . ' | (1.2.5-1)
N .
f = -% 2: f(i) = average rate of data transmission over a
i=1 bus line [bps] (1.2.5-2)
where
N = number of bus lines (connecting GPCs and devices). (1.2.5-3)
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f. = average rate of data transmission over an ICC 1ine [bps]

I
(1.2.5-4)
Each bus line serves as a half-duplex communication channel.
It can also be modelled as a multiplexed set of half-duplex sub-
channels.
We set:
CL(i) = transmission rate over the i-th bus 1ine [bps] (I.2.5-5)
AL(i) = bit time lag over the i-th bus line [sec] (1.2.5-6)
PL(i) = probability of a bit error (due to noise,
bursts, interruptions) on the i-th bus Tine. (I.2.5-7)
The topological structure of the communicationsubnetwork is
specified by a connectivity matrix
C = [Cij] ‘ (1.2.5-8)
where
{ 1, if node i is connected to node j
Cous =
1 0, otherwise .
The nodes in our network are the application devices and the
processing GPCs.
In particular, we have
d, = :z: c;: = degree of node i
i 7 i
= number of lines connected to node i. (I1.2.5-9)

The degree di of node i represents the number Qf Tinas connected
to node i. For certain nodes, this number is Timited by physical,

performance and reliability constraints.
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A routing procedure (or algorithm) needs to be specified
for directing the information between the GPCs and the application
devices. Invoived in this algorithm is the selection of the trans-
mission path. Related to it are the tasks of performing memory
allocation, task scheduling, unit selection, element loading and
1/0 services.

In the Space Shuttle orbiter avionics communication subnetwor"
there are 27 data link buses. There are also 11 half-duplex links

for interdevice communications. The data links are divided as

follows.

o5 data buses for ICC, max. transmission rate = C = 1 MHz.

o4 data buses for display system communication, C = 1MHz.

¢8 data buses for flight critical communication, C = 1 MHz.

1

o2 data buses for mission control communication, C = 1 MHz.
o2 data buses for mass memory communication, C = 1 MHz.

o2 ground interface buses, C = 1 MHz.

¢4 PCMMU communication buses, C = 1/MHz.

¢4 data links for communicatibn between DEUS and DUs.
C = 800 Kbps.

¢5 data 1inks between DEUs and KBUs, C = 800 bps.

¢2 data links between PCMMUs and Instruments.
C = 800 Kbps.

i ki 2l
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[.3 PERFORMANCE MEASURES

1.3.1 Computer Oriented Performance Measures

The computer complex in the Space Shuttle orbiter avionics
system is the most crucial subsystem in the network, in determining
the network performance. We will define this seciton the major
computer oriented performance measures. In the following sections
we will define user (or task) oriented and subsystem (or network)
oriented performance measures.

It is important to know the extent to which we utilize the
computing, processing and storing capabilities of the computer
system. The following performance 1ndices_wi11 refer to any
arbitrary GPC. This is also equivalent to considering the
4 GPCs as a single computing machine for the modes in which the
4 computers are used in parallel as a redundant set.

The index of utilization of a GPC, UC’ is defined by

o
1

c relative time during which a GPC is used

P{a GPC is busy}. (1.3.1-1)

Note that

0<U

<1

C

Similarly, the index of utilization of an IOP (Input/Output)

processor is defined by

UIOP = ré1ative time during which an IOP is used

I

P{a IOP is busy} (1.3.1-2)

Note that 0 < U

< 1.

10P
The index of utilization of a CPU is given as

R R
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UCPU = pelative time during which a CPU is used
= P{a CPU is busy}.
Also, 0 < CPU < 1.

The overall GPC system is composed of the CPU, IOP and
associated memory and storage facilities. One can thus define a
GPC to be busy if either its CPU or jts IOP, or both, are busy
(i.e., used for processing, computing or active storing). Then,

we will have

1-Ug = (-Upgp)(0-Uepy)
so that
Ug = 1 - (O0-Upgp) (1-Ugpy)
= Uepy * Urop = Yrop¥cpy

It is also many times of interest to find the statistical

(I.3.1-3)

(1.3.1-4)

(1.3.1-5)

characteristics governing the use of GPC. We identify alternating

idle periods and busy periods in observing the use of CPU, IOP

and the GPC buffers. We then define:

Var(BCPU) = mean and variance of the busy-period
duration BCPU for the CPU

Bepys

TepyeVar(Icp,) = mean and variance of the idle-period

duration ICPU for the CPU

Bygp» Var(Bygp) = mean and variance of the IOP busy-

period

Tiop,'Var(IIOP) = mean gnd variance of the IOP idle-
' period

; BC’ Var(BC) = mean and variance of the GPC busy-period

- =32-

(1.3.1-6)
(1.3.1-7)
(1.3.1-8)

(I1.3.1-9)

(1.3.1-10)
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Tb, Var(IC) = mean and variance of the GPC idle-
period

It is important to also measure the utilization of the

memory and storage devices. For that purpose, the following

performance indices are defined.

UMC = index of utilization of the GPC
= memory average fractional part of the GPC memory
which is not used.
UMI = index of utilization of the GPC input buffer

]

vPOFI probability of overflow of the GPC input buffer

UM0 = index of utilization of the GPC output buffer

POFO probability of overflow of the GPC output buffer

of data processed, and tasks performed, by the GPC per unit time.

Thus:

il

TH. = the GPC throughput

C

average number of bits per sec served by the GPC

We can also consider the number of tasks per unit time performed

by the computer:

]

TTH. = the GPC task (job, message) throughput

average number of tasks (jobs, messages) processed
by the GPC (or computer complex) per sec

[.3.2 User Oriented Performance Measures
The major index of performance associated with a user or a

task (job, message) is the associated task time delay.

L

(I.3.1-11)

(1.3.1-12)
(1.3.1-13)
(1.3.1-14)
(1.3.1-15)

(I1.3.1-16)

The GPC throughput index is used to assess the average amount

(1.3.1-17)

(1.3.1—18)
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Tasks (jobs or messages) are classified into classes (as
detailed in Section I.2) in accordance with their priorities,
criticality and required time delays.

The response-time or time delay of a class-k task is denoted

by

D(k) = time-delay, response-time of a class k task
(message, job) (1.3.2-1)

The response-time D(k) is the period of time measured from the
instant of the class-k task records its request for service to the
instant its service has been completed.

We also set:

W(k)

It

waiting-time of a class k task

time from the instant the task request is recorded
to the jnstant its service starts (1.3.2-2)
Thus, W(k) denotes the time duration that a class task is delayed
until its processing has started.
The processing time required by a class k task has been

defined (see (1.2.4.3)) as S(k). We then have that

D(k) = W(k) + S(k) [sec] (1.3.2-3)

The time-delay and waiting-time functions are random variables.

We are generally interested in their distributions:

F P{D(k) <X} , x> 0; (1.3.2-4)

D’k(X)

fl

Fu k(x) P{W(k) < x} , x>0. (1.3.2-5)

In particular, it is of interest to use as a performance measure

the user average time-delay. We set:

r r°
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D(k) = E[D(k)] = average task k time-delay (response

time); (1.3.2-6)
W(k) = E[W(k)] = average task k waiting time (1.3.2-7)
Since
S(k) = average processing time required by a class k task,
we have
D(k) = W(k) + S(k) . (1.3.2-8)
It is also important in many cases to evaluate the variances
of the task delay and waiting times:
Var[W(k)], Var[D(k)]1; (1.3.2-9)
Var[D(k)] = Var[W(k)] + var{s(k)] . (1.3.2-10)
The standard deviation of the class-k task respoﬁse-time is
then given by
a(k) =" Nar D(k) . (I.3.2-11)
In measuring the peak task response-time, one is interested in the
probability
P{|D(k) - D(K)|}> « , (1.3.2-12)
expressing the probability {fraction of time) that the response
time deviates from its average value by o. By Chebychev's
inequality, we conclude that
PLID(K) = D(k)] > 30(K)} < & & 118 (1.3.2-13)
Therefore, we can estimate the peak delay of a class k task by
setting
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ﬁp(k) = D(k) + 30(k) . (1.3.2-14)

Relation (I.3.2-13) indicates that more than 89% of the time
the delay D(k) will be lower than this 55 value.

Other user re]ated performance measures can be defined in
relation to specific modes of operation.} In certain cases, some

tasks are rejected for processing. We then set:

PR(k) = probability that a class k task is rejected. - (1.3.2-15)

Certain devices, or terminals (users) experience local

queueing phenomena. Considering device i, one then defines: I

UD(i) index of utilizationof the device i buffer; (1.3.2-16)

ﬁb(i) average occupancy of the device i buffer; (1.3.2-17) AR

POF(i) = probability of overflow of the device i buffer; (1.3.2-18)

User related reliability measures are of prime importance as
~well. These will be detailed in the section on network reliability.
In particular, it is of interest to specify and compute the following | } 5

measures:
L(k) = probability of loss of a class k message . (1.3.2-19)

LD(k) = probability that class k message (job, task)
does not receive service within D sec. (1.3.2-20)

[.3.3 System and Network Related Performance Indices

The reliability issue of the topological structure of the
network gives rise to a number of invulnerability measures. ’ lﬁ

In particular, one defines: |
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K(i) = minimal number of line failures that disconnect
device i (or application process i) from the
computer complex; (1.3.3-1)

PK(i) = probability that device i, or application
process i, will be disconnected from the processing
resources (due to line failures, terwinal failures
or GPC failures). (1.3.3-2)

An overall network throughput measure is

TTH = average number of tasks processed by the
system per unit time. (I.3.3-3)

We can then write

THH = D TTH(K). (1.3.3-4)
k

The network delay measures are specified by the values {O(k)},
(O(k)+30(k)}. Indices of utilization of the GPC memory and buffers
and the device buffers have been defined above.

Performance indices indicating the sensitivity of the network

operation to fluctuations in traffic are iwmportant. For that purpose,

we set

aD(k) = change in the average class k message delay as a
result of the increase of the overall traffic rate
according to {ax(k) [mess./sec]}.

ATTH = change in the network throughput with the a increase
of intensity of task demands. '

Also of importance are measures indicating the growth

capability of the network. In particular, we set:

; c>lfl (if? -
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Aﬁé(Dk),Aﬁb(Dk) = average growth allowed in occupancy of
computer buffer (B), or memory (C), attaining
average task delays not higher than {Dk}.

A UC(Dk),AU(i,Dk) = average growth allowed in index of utilization
of GPC elements (UPC, IOP, buffers), or
device i elements, causing message delays
not higher than {Dk}.

; The following sections will present proper queueing models

to be employed in analyzing the Space Shuttle DPS. We will also

present performance analysis results for such models. The

network and computer complex designer will then be able to apply

the proper model to the underlying subsystem he is analyzing. He

will subsequently be able to compute the set of relevant performance

| measures indicated above. In particular, note the following main
families of performance indices that we defined above, and will

- compUte in the following sections.

eTask (job, message) response times (queueing and service

time delays). |

[ ststem Throughput.

{System indices of utilization.

sReliability measures.

sPerformance sensitivity measures.

Network growth measures.
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I.4 TIME-SHARING QUEUEING MODELS

1.4.1 Tinme-Shared Single Processor Systems

We consider a queueing model for a system wheren the serving
resource is modelled as a single server queue. This resource
can model the GPC of the Shuttle orbiter avionics systems. The
service provided by the latter includes the relevant GPC CPU
and iOPvprocessing functions. Demands are made upon this single
server processor by the arriving messages or requests. Due to
the finite resources available to the server, and its finite
processing rates, arriving messages will have to be queued at a
buffer before they can be processed. A scheduling algorithm needs
then to be devised to control the assignment of service resources
to the arriving messages and demands.

We consider in this section.such scheduling algorithms that
use the service facility on time-shared basis.

The general structure of the queueing model is shown in
Fig. I.41

CYCLED MESSAGES

ARRIVALS OF _/STORAGE- PROCESSOR MESSAGE
MESSAGES QUEUETING DEPARTURES
AND REQJESTS SYSTEM (CPU+IOP)

Figure 1.4 1

In the typical time-shared system, one generally wishes
to attain a message average queueing delay (response time) which

is proportional to the average message length. Thus, short

q[i'na)m e




—oLinCom

messages expect to experience short waiting-times, while long

B
i

messages are prescribed longer time delays. This is achieved by
the feedback queueing model shown in Fig. I.4.1-1.

In this time-sharing system, the server (GPC) allows a
message to stay in service (be processed) only for a certain
time period, called quantum. The quantum duration may vary, and
it can depend upon the state of the system, the message priority

and the message past processing record. If the processing time

Wy M W N

required by the message or request is not satisfied by the end of

the quantum service period, the message is returned to the queueing

|

(storage) system, where it joins the queue of messages waiting
for service. Otherwise, the processing required by the message
has terminated and it leaves the GPC to its destination.

1.4.2 Traffic and Performance Parameters

e B i BN |

We need to statistically describe the stream of message

arrivals at the server, and the service (processing) demands made

L Gl

by each message.

For that purpose, we generally assume message interarrival

=

times to be independent identically distributed random variables.

| -

The message interarrival time distribution is set equal to

i |

A(t) = P{interarrival time <t} . (I.4.2-1)

| At

Message service times, or required overall GPC (processor) times,

3

are generally assumed to be independent identically distributed

random Variables; for any specific class (or priority group) of

T
T

message. We then set the message service time distribution to be

ﬁ} | ~ B(t) = P{message service time < t} . , (1.4.2-2)

RS o[)inaun e
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It is common to assume that messages arrive according to a
Poisson process with intensity A [mess./sec]. This amounts to

assuming an exponential distribution for the interarrival time:
At) = 1-e* , tso0 (1.4.2-3)

A Pbisson'arriva] streams models a complete random stream of
arrivals (in that the interarrival durations follow a memoryless
distribution).

It is also many times convenient, to simplify analytical
studies, to assume the required message service time to be

exponentially distributed. Then

B(t) = 1-¢e* | tso, (1.4.2-4)
and we set the
Average Message Service Time = u-] [sec/mess.] . (1.4.2-5)

In a time-sharing system, the quantum service provided by the
processor is usually set equal to a constant A, or is defined as A n
to depend upon the message priority class p and upon its number (n)
of prior entrfes into service. Also included in this quantum duration
is the swap time period,'spent in transferring messages between the
queueing and service facilities.

- The main performance measure used in this section is the
message éverage time delay (response time) D. It represents the
average overall time spent'in the queueing system by the server.
The average time spent by a message is waiting at the queueing
facility is denoted by W. The average message service time is S.

Né clearly have

<
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D = W+S (1.4.2-6)

As a major objective of this feedback system is to attain a
message time delay proportional to the message length T,DaT, we
can represent explicitly the delay and waiting time measures for
a message as functions of its required service time T,and denote

then by D(T) and W(T), respectively. We have
D(T) = W(T)+T (1.4.2-7)

In the following, we describe certain useful scheduling
algorithms for time-sharing systems, and indicate their performance
characteristics.

We assume messages to arrive according to a Poisson process
with intensity A [mess./sec].

1.4.3 Batch Processing: First-Come First-Served

The structure of the basic queueing system, where no feedback

is employed is shown in Fig. I.4-2.

ARRIVALS ‘PROCESSING

DEPARTURE;_
FACILITY

Fig. I1.4-2.

Messages arriving at the systém’are stored in a queue. They
are served by the single server (processor) on a first-come
first—sérved basis. Once a message is accepted into service,
it is allowed to complete its processing. (The quantum is thus
of infinite duration.) The average message response time D(S)

is given by the well-known Pollaczeck-Khintchine formula:

P
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so that arbitrarily high time delays are experienced, as the system
evolves in time, by messages if p > 1. Hence, we are interested in
operating the system such that 0 S_p < 1, and finite queueing
delays resu1£;

We note that the average message response time depends only
on the firsf two moments bf the required message processing time,
and not on its distribution.

The message average waiting time W(T) = D(T)-T, is given by

' Ag?
D(T) = m—)" + T, erp< 1, (1.4.3-1)
where
p = AS = traffic intensity parameter; (1.4.3-2)
S = .I. tdB(t) = average message processing time; (1.4.3-3)
0
52 = J. tde(t) = second moment of message processing
0 time. (I1.4.3-4)
Note that
= s (1.4.3-5)
where o is the standard deviation of the message service time.
The traffic intensity parameter p yields the ratio
_ average message processihg time: (1.4.3-6)
average message interarrival time 1.5
It is a measure of congestion in the system. We obtain
w= D=(n [} ifpi] ’ ’ ‘ (1-4-3-7)

il 1A
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- AS ;
W(T) = ?(T-—p)_ , forp <1, (1.4.3-8)
For the special case, where message processing times follow

exponential distribution (2.4), we have

2

3 - ‘; s? = 201/ (1.4.3-9)
so that the message waiting time is given by
W o= %-/% , where p =2 <1 (1.4.3-10)

Thus, for this (FCFs) model, the waiting time W is independent
of the message required processing time T.
As noted in Fig. 1.4-3, the message waiting time function W

becomes a very sensitive function of p as p approaches 1. Thus,

the messsage queueing delay increases very fast as the system's
congestion approaches its saturation value. One should therefore )
design the System so that it avoids the traffic intensity region

close to saturation, i.e., close to p=1.

- Traffic Intensity (p)

Figure 1.4-3.

The average queue-size parameter X, describing the average ’ |
number of messages in the system, is given for the latter queueing

system by
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X = T%;- , forp <1 (1.4.3-17)

Note that for p = 0.8, only an average of 4 messages are in the

processing system (queued orbeingprocessed), while for o = 0.9

and 0.99, the average queue size is equal to 9 and 99, respectively.

P{system is empty} = 1-5 , for p <1, - (1.4.3-12)

I We also have that

so that

a} U = P{system is busy} = p, forp<1. (1.4.3-13)

Thus, , serves as a measure of system utilization. For p < 1, the

processing system is kept busy a fraction p of time. For p = 0.8

and 0.9 the processor is busy 80% and 90% of the time, respectively. §

Clearly, one must compromise between having high enough a

g

processor utilization factor and low enough message response times.

The system utilization index U = p is also shown in Fig. I1.4-3.

I.4.4 Round-Robin Processing

In a Round-Robin (RR) processing, the processing (GPC) facility

serves each message for a fixed quantum period A. Newly arrived

g
I

messages join the end of the queue. When they arrive at the end

of the queue they are sent into the processing facility where they
are served for a period of A sec. Then, if their service demand

is fully satisfied, they]eavéthe system. Otherwise they are cycled

i

back to the end of the queue, starting again the same queueing-service

process. A RR system structure is i]]ustrated'by Fig. I1.4-4.




Csl{}Il(ifi)lTl

CYCLED MESSAGES

NEW PROCESSING

DEPARTURES
)
ARRIVALS ————> FACILITY

Figure I1.4-4.

The RR service discipline can also be regarded as a processor
sharing service procedure. To explain this notion, we note that
when there are n messages in the system, and if A is small, each
message is in fact processed (served) by the processing facility
at a rate of %-sec/sec. Thus, we can regard the processor as
shared among the various messages on an equal basis.

For a round-robin system with arbitrarily small A value, the

average message delay D(T) is given by

(T) = 5= , forp=2S <1, (1.4.4-1)

where T is the required message processing time. The average

message waiting time is then equal to

—‘

W(T) = T%E , forp = AS < 1. (I1.4.4-2)

Thus, the RR system yields a Message response time which
is Tinearly dependent on the required message processing time T.
For exponéntia]1y distributed message service times, we can
note that messages raquiring shorter (longer) processing times than

the average one will experience shorter (longer) response times in
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a round-robin system than in a first-come first-served system.

1.4.5 Round-Robin with Priorities

We divide the arriving messages into P priority classes. A
p-priority message is a message which belongs to priority group p,
where p is an integer in {1,2,...,P}. A p-priority message is
considered to have higher priority than a g-priority message if
pP<q.

We assume P streams of message arrivals at the single server
queueing system. The stream of p-priority messages is taken to
be a Poisson process with intensity Ap [mess./sec].

Assume p-priority messages to have exponentially distributed
processing (service) times with mean ;l~ [sec/mess.].

A p-priority message is assigned an rp fraction of the
processing time. We can choose rp as desired, setting higher rp
values for higher priority (lower p) messages.

For example, let fp be an arbitrariTy chosen function that
sets higher values to higher priority (lower p) messages. When
‘there are X; messages at the system from the i-th group, i=1,2,...,P,
we set the fraction r_ of processing time dedicated to the p-priority

Y
customer to be

roo= T (1.4.5-1)

P
2 X

RE3

Thus, we have specified a processor sharing system where the share
of the processor assigned to each message depends upon its priority

group.
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The average delay Dp(T) for a p-priority message is then

T P (T
Dp(T) = 355 |1+ 3 (};— -1) ) (1.4.5-2)
i=] P
where |

P
Py = o < 1, »p =Z Py - (I.4.5-3)
i=]

Thus, the message response time again depends Tinearly upon the
message service time T, as for the round-robin system. But, in
addition, we obtain the message response time to depend upon
the message priority class.

By properly choosing the discrimination function fp, we can
separate as we wish between the response-time vs p curves of the
various priority classes. Typical curves for the message waiting-

time functions wp are shown in Fig. I1.4-5.

)_P

Figure 1.4-5.
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I1.4.6 A Round-Robin Scheme with Time-Varying Priorities

We can assign a time-varying priority index to each message,

depending on whether he js being in processing or stored in the
queue. Thus, the priority of a message is set to increase linearly
at a rate o whenever it is waiting in the queueing facility.

His priority is, on the cther hand, set to increase at a lower

rate g8, where

a>p >0,

when it is in the service (processing) facility.

Service is provided to a]]vmessages in'the system which
presently have the highest priority. When more than one message
have the present highest priority value, all the latter are
served in a round-robin fashion, thus sharing the processor
resrouces.

An entering message will then increase its priority at
a higher rate than those currently served. Eventually, this
message catches-up with those being processed. Then it is
entered into the service facility and remains there until its
service demand is satisfied.

The average message delay D(T) in this system is given by

1

T - —
D(T) = LY AT T , (1.4.6-1)

} ]-p ] _d:]_%_]
where

p= Au<l, (1.4.6-2)

A is the intensity of the Poisson message arrivals, and message
service times are exponentially distributed with an average

message processing time of
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S = %- [sec/mess.] .

The average message waiting time is

WT) = D(T) - T (I.4.6-3)

The dependence of the message waiting time W(T) on the requried
processing time T is shown in Fig. I.4-6, where the ratio g/a

is a parameter.

un A

e S a s

B/a =0

1/8
1/2 B
)
FCFS ‘ 1 , 5
| 3
RR \ : i
] , L
P
T=1/u Bk
Figure I1.4-6. ’
We note that a message which requires a processing time T _%@
: %
1

equal to the average one, T = 1/u, will experience the same
response time under any 8/a value.

When 8/a =1, the‘o]dest message in the system captures ;Aé
the processor and uses it for itself alone. Hence, we obtain
a FCFS queueing scherme.

When g=0, we obtain a round robin scheme, since a message

does not gain priority while being processes.
Changing B/« between 0 and 1 we obtain response time curves
that vary continuously between those of a FCFS system and a RR

scheme.
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I1.4.7 Foreground-Background Processing Schemes

In a foreground-background service scheme, we have two
queues. A newly arrived message joints the first queue. It
receives there its first quantum of service Ays being served on }
a FCFS basis. Thereafter, the message joins the end of a second
queue. From then on the message can join only the second queue.

The processing facility always serves first the messages in the s

first queue, called also the foreground messages (or jobs, tasks).

When the first queue is empty, the processor turns to serve the

background messages queued in the second queue. ' ]
The generalized foreground-background (FB) scheduling

scheme described next is structured so that service is always

'given to that message which has So far received the least service
of all.

A new message which finds the system empty is given the full
attention of the processor. It is served at a fate of 1 sec/sec.
If prior to thetermination of its service, é new message arrives, the
processor gives its full service to the second message. This
continues until the second message has received the same service
time as the first one. Subsequently, if there are no new arrivals
and these messages have not yet departed, the processor is shared
among these messages, y%e]ding each service rate of 1/2 sec/sec;
and so on. Thus, the processor a]wayskServes those messages ;E
that have so far received the Teast service.

The average message response timé D(T) is given by

__T__A(T) + T (1.4.7-1)

p(1) = £ o

T
s
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where

2
s(T

A(T) = _AIL_L)_ , (1.4.7-2)
2 ]-pT

S T
$(1)% = f ! x%dB(x) + T[1-B(T)] , (1.4.7-3)
o
f xdB(x) + T[1-B(T)] (1.4.7-4)
0
pr = AS(M <1, (1.4.7-5)

where B(x) is the distribution function of the message processing

time. Wenote that

S(=) = S, S(=) = <, 0. =0, (1.4.7-6)
and _
A(=) = W(FCFS) (1.4.7-7)

where W(FCFS) is the message waiting time in a FCFS queueing system.
A typical curve of D(T), for exponential service times, is

shown in Fig. I.4-7.

)

o(T)

Figure I.4-7
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One computes the slop of D(T) to be equal to L at T=0 and
to 1/1-p at T = =, Thus, a message with a very short required
processing tﬁme is given here a service rate close to unity. On
the other hand, messages requiring very long processing times
has to wait until all the messages arriving during its requried
service time are first processes; thus experiencing a service
rate equal to that given to it in a RR scheme.

[.4.8 Multilevel Processor Sharing Schemes

A family of multilevel processor sharing service disciplines
can be defined by dividing the message (or job, task, process)
processing time into the {ai}‘values:

0 = a0 < a] < a2 <...< aN < aN+1 = o,

We now define N+I schedu]ing procedure. The i-th procedure (SP)i
is applied when the message has been received the service value

of x in the interval
a. <X<a, , i=1,2,...,N*

We can set (SP)i to be either FCFSQ FB or RR. Also,
betWeen these intervals messages are treated as foreground-
background jobs, so that the processor gives its:complete
attention to messages in the lowest level nonémpty queue.

.Aé a FB discipline is used between level, ohe can observe
that the message responsektime depends only on the discipline
used when it departs from the system, after receiving its complete
pro;essihg requirement.

Subsequently when a message departs at the i-th Tevel,

By v
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receiving there FCFS service, his delay time is given by

Ala;) + T

_ i
b ]-pa.-1
i

where A(x)vis given by (I1.4.7-2) and Py by (I.4.7-5).

When the message last level i uses an FB discipline, D(T)
is given by the FB formulas, assuming the entire level below
to use FB procedure.

For exponentially distributed message processing times, one

can note the response curves D(T) for FCFS multilevels or RR

multilevels to be close to the response curve obtained when a

single FB service discipline is used.

One can properly choose the various levels and associated
disciplines so that a D(T) curve with certain desired characteristics
are obtained for the underlying processing system.

1.4.9 Comparing the Performances of the Time-Sharing Schemes

The message delays experienced under the various time-sharing
schemes presented above can be compared as follows.
foreground-background (EB) service discipline y1e1ds.the shortest
response times.. Comparable performance is exhibited then also by
a round-robin (RR) scheme.

For messages that réquire long processing times, the first-
come first-served (FCFS) service disciplines yields the lowest
resbonse time values. This is also the case when medium-valued
required service times are invo]ved.>

The round-robin scheme with time varying pribkities, also

called Selfish Round Robin (SRR) scheme, as well as the Multi-Tevel (ML)

Y Py P T WU T e I P U v
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scheme, yield D(T) curves that are between those of the FCFS and

FB ones. Figure 1.4-8 illustrates the typical situation.

w(m) A

Figure I1.4-8

In designing the time-shared processing part of our computer
system, we can thus attain the proper response time D(T) vs requried
processing time (T) curve, by choosing the proper multi-level (ML)
scheme, or jsut a FCFS, RR, SRR or FB scheme. The optimal choice
can be made based on the presented results, for each traffic-

message environment under consideration.
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I.5 PRIORITY QUEUEING MODELS

I1.5.1 On Service Disciplines

WTTIOE

Messages or requests for service arriving at the central

processing (GPC) system are queued (stored) in a buffer until

! the processor is ready to serve them. These messages need to be
ﬁ properly ordered for service. This ordering follows the service
5 discipline, or scheduling algorithm, governing the operation of

the underlying queueing system.

_TER

A multitude of service disciplines can be defined and imple-

mented in our data processing system. Different disciplines will be

WAL

required at different times, while different jobs and tasks require

oA dod

service. It is thus of importance to implement a dynamic (flexible)

scheduling rule.

B3

In this section we classify and discuss some of the priority

service models of importance and relevance to the Space Shuttle

orbiter avionics system under consideration.
In designing a scheduling algorithm, one can assume the a priori

distribution of priorities among the various messages (or tasks),

it d Bt N

according to their desired response time and measure of importance

or urgency. In turn, one wishes to dynamically modify the order of service

AR E SR

of messages in the system in accordance with the state of the
system, so that a proper performance measure is optimized. Such
a performance measure involves the satisfaction of the required
response times by the various messages,‘in accordénce with their
class, urgency and statistical characteristics.

1.5.2 Scheduling Algroithms for Time-Shared Processing Systems

We have described in Section 1.4 a multitude of scheduling

ety et .
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algorithms for time shared processing systems. We have also given
there the associated response time functions and compared the
performance characteristics of the various schemes.

In these time-sharing systems, the processing center has :
been time-shared among the messages. A single processing unit has
been assumed. The following disciplines have been ncted. :

First-come first-served (FSFS) service discipline. Messages

are served in order of arrival. Thus, messages are queued at |
the storage facility in the order of their arrival. When the
processor becomes free, the message at the head of the queue is

accepted for processing.

Round-robin (RR) service discipline. The processing system

is time-shared among the messages in the system on an equal i

D S T L T T T

basis. Thus, if n messages (tasks) are in the system (requiring
processing), each message is processed at a rate of 1/n sec/sec. i;

Round-Robin with Priorities. The processor service time is

shared among the messages (jobs) in the system in accordance with
the message priority class. Thus, messages which belong to a
higher priority class are assigned a higher service rate.

Round-Robin with Time-Varying Priorities. Messages that are

currently being processed are assigned a lower shared processing

rate than messages that have just arrived.

Foregiround-Background (FB) Processing Schemes. Messages are '%

stored at two different queues. Newly arrived messages are assigned
to the first queue which is a]ways given the higher priority for
service. They are then given a fixed amount of service time and

subsequently entered into the second queue. The latter is

‘ o[infonz
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served only when the first queue is empty. Differentiation is thus

made between foreground and background service processes.

Multilevel Processor Sharing. The service discipline assigns
a proper mode of scheduling rule to the message in the system
according to the amount of service already given to the message.

In this way a set of service discipline level is set up, so that
the different levels are controlled between them by an FB algorithm.

We have noted the response time experienced by a message using
the RR, FB and other related time-sharing schemes mentioned above, to
be proportional to the required message processing time. To obtain
this property, the various schemes utilized a feedback service
procedure. In this way, a quantum of service is given to each
message at a time. Such a procedure needs to be adopted when we
have no prior knowledge concerning the message (or job, task)
required processing time. The feedback scheme estimates this
time through quantization.

However, if prior information is available concerning the
required message service time, a much simpler nonfeedback structured
scheme can be devised, incorporating this information, to yield the
same meSsage delay characteristics. This is many times the case
in our system. Such priority service disciplines will be presented
in this section.

We also note that the FCFS service discipline yields a message
waiting-time which is independent of the message required processing
time.

We can also consider a data processing system with a set of

processors available to serve the messages. The queueing scheme

or LEEeRE 41
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then involves multiple service channels. The resulting queueing
characteristics ére similar to those mentioned in Section I.4,
except that the number of messages can be processed simultaneously,
so that the multi-processor yields a higher service rate.

Another service discipline that could have been mentioned is

the last-come first-served scheduling procedure. This discipline is

noted to yield a response time vs required service time D(T) function
which is identical to that obtained by a round-robin scheme. The
schemes however yield different message delay variances.

We thus note, as will be observed again later, that to
compare various priority §erv1ce disciplines one needs to compute
and compare also the variances associated with the message delays.

I1.5.3 Service Disciplines for Messages in Different Priority Classes

Messages are many times classified into different priority
classes. This classificationis affected by the message index of
urgency and importance and by the message required response time.

Priority-T (or class-1) messages have higher priority than
priority-2 (or class-2) messages. In general, if there are P
priority classes, we assign a higher priority to service class-k
messages over class-j messages, whenever k < j. Messages
belonging to the same priority class can be served according to
sny preQassigned priority procedure. In particular, we assume,
unless stated otherwise, that a FCFS service discipline controls
the servicé 6f'messages belonging to the same priority class.

In considering the service of messages belonging to different
priority c]asseS by a single processing center, we can dfstinguish

between the following disciplines.
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Nonpreemptive Priority Discipline. Messages are ordered for

service in accordance with their priority class. When the processor
becomes available for service it accepts the message of highest
priority. A FCFS ordering is used among messages of the same
priority class. If, however, a higher priority message arrives
at the system while a lower priority one is being processed, the
latter is not preempted and its processing is allowed to be

carried to completijon.

Preemptive Resume Priority Discipline. The scheduling
algorithm is as above except that if a newly arrived message
belongs to a higher priority class than that presently in service,
it is allowed to preempt ihe currently served message. The pre-
empted message joins the queue, and when accepted for service its
service resumes from the point it has been interrupted.

Preemptive Repeat Service Discipline. This scheduling

procedure operates as the preemptive resume one except that
thekservice of a message that has been previously preempted starts
from the beginning. Thus, all the processing provided to a message
is assumed lost if this message gets preempted by a higher priority
message.

1.5.4 Analysis of a Priority Queueing System

Consider a system where messages are classified into 2 priority
classes. Class 1 messages require high priority, while class 2
messages ére of low priority.

Messages of class 1 arrive at random at the system according
to‘the statistics of a Poisson process,’with an arrival intensity of

A1[mess;/sec]. Class-2 messages arrive independently, also according
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to a Poisson stream, with intensity X, [mess./sec].
The system‘is assumed to provide a single server; i.e., a
single processing facility. Messages of class 1 and 2 may require

different (random) processing times. Thus, we set:

"

S] average processing time required by a priority-1
message (1.5.4-1)

w
]

o, = average processing time required by a priority-2

message (1.5.4-2)
The corresponding second moments of the required message processing
times are denoted as

| T L2 T . o2
S] = E(Si) R 52 = E(Sz) (1.5.4-3)
The average waiting time experienced by a randomly chosen

message is denoted by W. Its average time delay (response-time)
in the system is denoted by D. The average waiting time and time
delay of a priority-1 message is w] and D], respectively. Similarly
the average waiting time and time delay of a priority-2 message is
w2 and DZ’ respectively.

We can write:

D = W+S 3 ' (1.5.4-4)
D] = N] + S1 3 (1.5.4-5)
D2 = N2 f So s (I1.5.4-6)

where S is the average service time of a message chosen at random.
Also, since a message chosen at random will belong to class L with
prcbability A]/A, where A = At A, and to class 2 with probability

AZ/A = I-A]/A, the following relationships hold
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W = —X'w] = Wy 3 (1.5.4-7) %

S = X S] + Y 52 ’ (1.54-8) i

A X 1

= L 2 ,,

D = 1D ¢ A 02 . (1.5.4-9) |

The traffic intensities of the lower priority and higher B
priority schemes, Po and pys are given by

Py = A4Sy 5 (1.5.4-10)

5

92 = }\252 . (1.5-4-]]) i

]
The traffic intensity p associated with the corbined stream of arrivals ;j

is equal to :
:

p = pyto, = AS; +A,S (1.5.4-12) 3
1 2 171 272 g

We assume the processor to employ a non-preemptive priority E
service discipline.

If P1 > 1, then high and Tow priority messages will experience
arbitrarily long time delays as the system evolves in time. Thus,

]=w2=m ‘ifp]>1. q

If however Py < 1, the higher prio,ity message experiences a

finite waiting time given by

A]S$ + Azsg
w] = __2_(_]_:5_:].y_. . for .p_l = A]S,l <7, (154"]3)
Also, we have
P{X]=O) = P(N]=O) = l-p;, for py < ] (I.5.4-14)

C>Zf%ll‘:ji)l}l
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where X] denotes the (queue-size) number of class 1 messages in
the system. Thus, with probability ]-p] there wili be no higher
priority messages in the system. The average delay of a priority

message is given by (Pollaczek-Khintchine equation)

AT+ AZEZZ .
R R e TR (1.5.4-15)

The average number of priority messages in the system, denoted

as 7}, is equal (by Little's Theorem) to

Xy = AWty = 4D

*ﬁz ¥ Wz?g
= - 2(]'91) + p] Py (1.5.4‘]6) i
where Py = A]S] <1 ;
If %
p = p‘l + P2 i] ’
class-2 messages will experience arbitrarily long queueing delays, i
so that
Dy = W, = = forp>1 (1.5.4-17)

For p < 1, the average waiting time for a lower priority message is

given by

4S; 1455
wz = 21]‘91)(T;p) ’ for p‘< 1 (I.s.4f]8)

The response time of a lower priority message is thus equal to :

D2 = 2(]_917(]_ ] + 32 , for p= A]S1+A252 <] (1.5.4-19)

o[}ncyom R
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The average overall queue-size, i.e., average number of

both .class messages queueing in the system, is equal to

_ Alx, ‘]2 + A252]
X = ; (] p) + p, for p < 1 (1.5.4-20)

The probabilty P(X=0) that the system will be totally empty is given

by
P(X=0) = 1-p = 1- A]S] AZSZ > (1.5.4-21)
for p < 1. Therefore, the system index of utilization U, is
expressed as -
=P(X>0)=p= A] 1t AZSZ (1.5.4-22)
Thus, the central ppocessor is kept busy in serving (processing)
both priority and regular messages a portion U = p of the time,
when p < 1. (For p > 1, clearly U=1).
The average waiting time W of a message chosen at random is
given as
-5 A
MoyoL e "13§+*233 T
W = —X-N] + —X-wz ’= 7(1=5) T P (1.4.5-23)
for p < 1.

It can be noted that if S]=52, the waiting time W is
identical to that.obtained under a FCFS service discipline. The
‘var1ance 0¥ the message waiting time, when considering a message
chosen at random, is however lower when a FCFS scheme is used rather
than a priority scheme. Of course, the priority scheme yields
average waiting time values lower than W for higherpriority

jobs, while corresponding higher waitingbtime values are

KT 52 el Bt 22
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experienced by lower priority tasks.

1.5.5 The Earliest Due Date Scheduling Discipline

It:is necessary in a number of operation modes of the Space
Shuttle avionics system to implement a dynamic priority queueing
discipline. Subsequently, the computer and network resources are
assigned to the users on a dynamic basis, based upon the current
state of the network, the current queue sizes and experienced job
delays and the current requirements for service. The job currently
in the queue is chosen to be processed by the computer system in
accordance with its spent waiting time in the system, priority,
required response time, required service duration and the
similar characteristics of the cher jobs presently queued for
service,

A general model of such a dynamic priority service discipline,
which is particular important for the proper operation of the Space
Shuttle data network in high traffic and critical phases, is

described in the following. It is described as an Earliest Due

Date (EDD) service discipline.
Jobs (or task, or messages) arriving at the processor are
classified inf) k classes. A class i job is associated with an

urgency number uss i=1,2,...,k. Let

Uy < .o. S U ‘ (I.5.5-1)

The lower the urgency number, the more urgent is the required
service. If a class i job arrives at the system at time tis he is
assigned a real number

d; = t,+u, . | | (1.5.5-2)

—oLinCom—
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This number d;] can be regarded as a dynamic priority number.

Under an associatéd head of the Tine discipline, the processor
admits into service the job with the minimum value of {di=t1+ui}‘
Ties can be broken by choosing the job with the minimum urgency
number. If preemption of a job (from service) is allowed, the
scheduling procedure is modified so that the system is continuously
monitored, and the job that is being processed has the minimum |
~value of‘{ti+u1 } out of all jobs in the system.

In comparing this dynamic priority scheduling rule with the
static priority discipline presented in Sections I1.5.3-1.5.4, we
note the following. In applying the dynamic queueing rule, the ui's
serve the purpose of distinguishing between static priority classes.
Thué, a class 1 job is of highest'static priority and a class k
job has the Towest static priority. But in addition a job that
has been waiting for service as reflected by its arrival time ti
gains in priority dynamically over time.

For our purposes, it is genefa]]y convenient to let the ui's
correspond to ihe interval until the due date is reached. Thus,

a ;]ass i job arriving at time ti has a due date t1+ui desired for
receiving service. SQbsequent]y, we can choose u; to reflect the
desired response time and priority of class i jobs, 1in relation to
the other jobs.

As sucn, this priority scheme is noted to realize schedﬁ]ing
by the earliest due date (EDD) rule in the processing queueing
system. |

As special cases, if we set u1=0 for each i, this service

discipline becomes a FCFS scheduling rule, while 1f;u2—u] = too

S . :
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we have a static priority service procedure where class 1 jobs

|
s
H
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are always processed ahead of class 2 jobs present at the same
time. Thus, by changing the difference in urgency numbers

from 0 to + , the discipline evolves from a FCFS one to a

static priority one.

We indicate now a few performance characteristics associated
with the EDD discipline. Assume k=2, so that we have only 2
classes of jobs. Class 1 jobs are higher priority jobs with an
urgency number Up=uy- Class-2 jobs have Tower priorijty and an
urgency number Up = Uy. We let wh(t) denote the waiting time | %l

(in the queue, prior to initiation of service) of a higher-

priority (class 1) job arriving (virtually) at time t. Similarly, §

we let Ng(t) be the waiting time of a class-2 lower priority job
at time t. We can also consider a non-preemptive or' preemptive-
resume service discipline. The waiting time at t of a higher

priority job under preemptive-resume and non-preemptive discipline

is denoted as W, p(t) and W, n(t), respectively. The waiting
time wg(t) of the lower priority job is clearly independent of
! whether a preemptive or non-preemptive procedure is employed.

We find that for t =< uy,

Ng(t—u&)-ua < W (t-uh)—uh < w, n(t—‘uh)-ui (1.5.5-3)

h,p - N, h -~

To demonstrate further these inequalities we define the lateness

(t),

. : of a lower priority job Lt(t) and higher priority job L
L

h,n

h,p(t)’ at t, by :
= L) = W(t) - u (1.5.5-4a) |

L L
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Lpa(t) = W (8) - up s (1.5.5-4b)

L, (t) wh,p(t) -y (I.5.5-4c)

h,p

Thus the lateness L{t) of a job at time t describes the difference
between the job waiting time in the queue and its urgency value.
If the urgency value corresponds to a desired expected job waiting
time; then the lateness variable describes the deviation of the jub
waiting time from its desired expected value. We then have, for

tiuzs

Lz(t'”z) 5-Lh, (t—uh) f-Lh,n(t'uh) . (1.5.5-5)

P

Thus, a lower priority job arriving at time t-u2 will be served no

later than a higher priority job arriving at time t-uh Z_t-uz. If the
class-2 (10Wer'priority):job waits at Teast up -, uniks of time,
his due date becomes the same as that of a class-h job arriving
u -up units later, and the jobs are then of equivalent priority.
Subsequently, equality occurs above and the anve mentioned class-1
and c]ass-Z jobs experience the éame lateness values.
| Thus, note that lower priority (C]ass 2) jobs increase their

dynamic queueing priority index after waiting in the queue u'éﬁh
units of time so that at this time they aﬁtaindynamic priority
equivalent to that of higher priority (class 1) jobs.

To indicate explicit analytical results, we assume class-h
and c]aSs-z jobs to arrive according to Poisson streams with
intensities Ap [jobs/sec] and Ay [jobs/sec], respectively. Also

assume required processing times of S [sec/job] and S, [sec/job]

—LinCom—

JON Y ¢ PRI ,',‘«_;_._A“,’_;AA




oﬁl’tCOl‘l'L

for high priority and low priority jobs, respectively. The related
moments of the required processing times are denoted as E(Sh),

E(Sl)’ E(Sﬁ) and E(Si). The traffic intensities are

If

pp ¥y <1 | ' (1.5.5-7)

as we assume henceforth, the system will enter steady-state where
finite job waiting-times are experienced.
Let
u=u, -ou . ' (1.5.5-8)

We denote by Bh(W) the busy-period duration spent in servicing
only newly arriving class-h jobé, starting with an initial service

load of W sec.k Then the'(steady—state) mean waiting' times of

higher priority jobs under a non-preeemptive rule, E(wh n), and
of low priority jobs,.E(wg), are given as follows.
o " |
E(W, ) = E(W) - pgj' P(B, (W) > ydy , (1.5.5-9)
E(wg) = * ey Jf P{B W) > y}dy s (1.5.5-10)

where E(W) is the mean waiting-time of an arbitrary job in the
combined-traffic queueing system, given by the Pollaczek-Khintchine
formula as
2 2
AhE(Sh) + AZE(SE)

E(W) = 215,757 CE - (1.5.5-11)
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The distribution of the busy-period Bh(w) can be calculated

by considering the associated (high priority) M/G/1 queueing

system. In particular, the mean busy-period duration is equal to

f PeB, (W) > yldy = E[B, ()] = %ﬁ%l (1.5.5-12)
0 h
We can thus write for each u > 0,
Jf P(B, (W) > yidy = g(u) %é%ﬁ (1.5.5-13)
0

The function g(u) is defined by the above equation, and is clearly a

continuous monotone increasing function of u assuming values in [0,1]:

0 < g(u) =1, g(0) =0, g(=) =1. (1.5.5-14)

In

Substituting in (I1.5.5-9)-(I.5.5-10), we obtain

P
E(wh,n) = E(W) [1-g(u) T:%;] (1.5.5-15)
I . _Ph
E(wl) = E(W) |1+ g(u) ]'ph : (1.5.5-16)
In particular, we obsérve that
, _ PotPh
E(Nz) - E(wh’n) = E(W)g(u)T_ph 3 (1.5.5-17)

yielding the difference in average waiting times between lower
priority and higher priority jobs, using an EDD service discipline
with u = ul-uh.

Consider now the two extreme special cases. If u = Up=Uy = 0,

we have a FCFS service discipline, and then g(u) = g(0) = 0 so that

T PN ST
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= E(W) . (1.5.5-18)

Thus, no priority classes are being distinguished, and the average
waiting time of any job is given by (I.5.5-11).

If u = u -upae, then g(u)+g(«) = 1, and we obtain

2 . el
AME(S]) + A E(ST)
E(W, o) = h ﬁlwhf L , (1.5.5-19)
2 2
) th(Sh) + xgE(Sg)

These are the same equations as noted in a previous section for the
average waiting-times of high and low priority jobs in a system
with two stationary priority classes.

It is obvious by (I1.5.5-17) that by choosing the urgency
difference number u = Ug-up» We can obtain a desired‘difference
E(wz)-E(wh,n) between the average waiting-times of low and high
priority jobs. This difference is 0 when u=0, g(0)=0, and FCFS
procedure is used. The difference attains its maximal value at

=, g(«)=1, when stationary prioritiés are used.

For example, if ph=0.5, pg=0.4,p = pyte, = 0.9, E(W) is
relatively high and when 2 stationary priorities are used,

U=o, g(m)=1, we have
E(Wg) - E(Nh’n) = 1.8E(W) .

This difference can befhigh for certain applications. By using an
EDD scheduling rule we can choose 0 < g{u) < 1 to Tower the latter
difference. For example, we can set u = Ug-Up to yield g(u) = 0.2,
and then
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E(Nz) - E(wh’n) = 1.8E(W)0.2 = 0.36E(W) ,

which can be acééptab]e.

It should be noted that although class-1 jobs experience
shorter waiting times than class-2 jobs, the same is not true
regarding the corresponding lateness values. In fact, the lateness

variable L2 of a low priority job is stochastically smaller than

the lateness variable Lh (representing Lh 0 or Lh n) of a high
priority job. Thus,
P{L2 > x} _<__P{Lh > x} . (1.5.5-21)
Hence,
E(L) < E(L,) = E(W) -y, SEMW) -y (1.5.5-22)

This property that jobs from the-c1ass with the earliest due date
have the maximum mean lateness, though having the shortest waiting
times, is desirable from the system's point of view in meeting the
most urgent needs of the jobs.

In designing an earlijest due date rule we can properly optimize
the choice of the urgency (due date) parameters,{ui}, as illustrated
by the following. Assume 2 priority classes, and non-preemptive EDD
service disciplines. Let > 0, Cy > 0 represent costs per‘unit of
waiting time for class 1 and class 2 jobs, respectively. An overall

cost value C is chosen then as

cC = c1E(w]) + c,E(W,)

SE(W,) (1.5.5-23)

We wish to choose Uysly to minimize C. By the above expressions,

we conclude that we need to minimize

*-j.u o
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4274
(copy = Cy0y) f P{B, (W) > y}dy
’ 0

Subsequently, we conclude that C is minimized over all dynamic

priority queue-disciplines if we choose:

Up=Uy = 0 (FCFS, if c2/c1 > pz/p] 3
Up-uy = = (static priority), if cy/cy < po/0ys
(1.5.5-24)
and dynamic priority discipline, if c2/c] = p2/p1.
In particular, if we set
M A2
1 % @ TED o STy sy 0, a, > 0, (I.5.5-25)
1 72 172
then, if

the optimal policy is to set Up=Uy = = and use a static priority
discipline. Thus, we then attach always higher priority to jobs

whose weighted (by ai) requried processing times are shorter.
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I.6 THE COMPUTER SYSTEM: QUEUEING MODELS AND PERFORMANCE ANALYSIS

I.6.1 Operating Systems

We consider a computer system, such as that associated with
the general purpose computer (GPC) of the Space Shuttle avionics
system.

The term "process" is used to denote a program in execution.

The computer system can be defined in terms of the various
supervisory and control functions it provides for the processes
created by fts useré:

a. Creating and removing processes.

b. Controlling the progress of processes.

c. Responsing to irregular conditions that may occur

during the execution of the process, such as: interrupts,
arithmetic or machine or addressing errors, protection
violations.

d. Allocating hardware resources among processes.

e. Providing access to software resources.

f. Providing protection, access control and information

security.’ |

g. Providing interprocess communication and synchronization.

The computer system software that assists the hardware in

implementing these functions is known as the operating system.

To become an efficient processing system, a computer system
will generally incorporate the following characteristics:

a. Concurrency - parallel processing.

b.  Automatic resource aliocation.

¢. Sharing of resources by more than one process.
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d. Multiplexing of information over an access channel,
and providing remote conversational access to
system resources or processes.

e. Asynchronous operation.

f. Long term storage of information; e.g., in the form of
a file system.

These characteristics involve the management of the computer
memory and processes. Algorithms used to be efficiently designed
for:

a. Managing, controlling and schedulgin processes;

b.  Managing and controlling main and auxiliary memory

devices; |

c. Managing and controlling the flows of information among

the various devices in a computer system.

The two important major sets of resources for the computer

system are processor resources and memory resources. A processor

is any device which handles information or carries out the steps
of a process, such as: central processing unit, arithmetic
proteSsor, 1/0 (input/outout) processor or an access channel

A memory is a device which is used for storage of information.
The capacity of a memory device is the number of words (or bytes,
or bits) of information that it can store. The access time of a
memory device is the average time duration between the receipt
and completion of a "memory-fetch" request, whén queuefng delays

are neglected. A memory device is random access 1f the access

time of each storage site is the same; examples: semiconductor

— LinCom—
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and core memories. A memory device is positionally addressed if

the access time of a word depends on its positon; examples: disks,
drums and tapes.
Informationis generally stored in a computer system in a two

level storage system: main memory and auxiliary memory. Information

residing in main memory is usually random access and requires very
short access time, so that it can be immediately accessible for
processing. Otherwise, it resides in auxiliary memory which is
usually positionally addressed and requires relatively longer
access times.

For the GPC on the Space Shuttle, the main memory is composed
of pluggable, random-access, non-volatile, destructive-read-out
ferrite core modules with a monolithic option. The access time

¥

for this memory system is:
access time = 0.375 psec .

The capacity of the memory is:

capacity = 1310720 bits = 40960 words

where the word length is:

data word length = 16/32 bits (fixed point)

32/64 bits (floating point) ;

" instruction word length = 16/32 bits .

Also, fdr this GPC we have:

number of instructions in repetoire = 154;

3 operations

oc (fixed point) 3

kcomputing speed 480 x 10

| = 325 x 10° 9995251955 (floating point).

.
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On the Space Shuttle orbiter; two high capacity tape units e

are also used as mass memory. The storage capacity of each is 134 mega-

bits of data. They are used to store permanent on-board off-line

information. They thus supplement the on-line random-access

%
3

i

|

internal memorjes of the Space Shuttle computers. § ]
Process coordination characteristics are important in designing 1

a computer system and assessing its performance. In a multi- 1
programming system, both process interruption at arbitrary times 1
and peripheral activity of arbitrary speed are carried simultaneously. %
It is thus necessary to guarantee that the computation performed i
when cooperating processes are involved is independent of the relative ?
speeds of the different tasks. Computation then is required to be
determinate. In addition, in considering process coordination and 3'5

control problems, one should study the following problems:

deadlocks; mutual exclusions between tasks; and synchronization

R T

objectives, needed for example to ensure the timing of the proper

PRI

start of a certain procedure in correspondence with the occurrence
of a certain event.

1.6.2 Memory Management

A memory management algorithm is composed mainly of the following

policies:

a. The fetch policy determining when a block is transferred

from auxiliary to main memory. :

b. The placement po]icx,determining the‘una110cated space

c. The replacement policy determining which blocks are to be

of main memory into which an incoming block is to be palced. ?é
i
%

removed from the main memory.

o c>zf}ll(izi)lil -




. _—— — vam—

=3 goood

R g

’E< wsi

—oLinCom

The structure of a two level memory system is shown in Fig. I.6-1.

The above mentioned policies are implemented by move commands which

control the moving of blocks between main and auxiliary memories.

simulated (or virtual) computer.

share the same address space.

PROCESSOR REFERENCES
T
|
l
|
|
!
|
{
(
k -------- -
MOVE COMMANDS

rigure I.6-1.

use a virtual memory technique.

5

+ MAIN MEMORY

DATA CHANNEL

AUXILIARY
MEMORY

generated by a processor as it executes the task.

1

To analyze the memory management procedure used in the GPCs

of the Space Shuttle avionics system, it is particularly useful to

A virtual memory can be regarded as the main memory of a
A virtual memory system is
described in terms of two spaces, N and M, and a mapping f. The

address space N of a task is the set of addresses that can be

In multiprogramming systems, several

address spaces are utilized. The memory space M of the system

f: N=>MU{g}

represents the set of locations in the physical main memory.

The address map f provides far the transformation

Tasks can

LT ,‘!,78"_\,_;_;, =
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from space N to space M or to a set {¢}. Sets {¢} indicates that
the desired word is presently not in the memory space. Thus, if

x is an address in N, then if
f(x) = yeM,

the desired address is stored in main memory at location y at that
time. If, however, f(x)£M, or f(x)e{¢}, the desired address is not
in main memory, and a fault condition results. Move commands are
then initiated and the table describing f is adjusted. This is
illustrated in Fig. 1.6-2.

VIRTUAL MEMORY SYSTEM

e - e

l
PROCESSOR b—2ENpmm  MapPER =M I MATN MEMORY

t
t
¢

S i |

| I t
|
|
]
{
i

|
l
|
) l
'
|
|

LyOVE COMMANDS _ | AUXILIARY
— N

— e e o nl]

MEMORY

— . SEm ww- e g m— e mm— . Smm—

Figure I.6-2.

In analyzing the performance of auxiliary memory systems, one
considers mainly the underlying queueing problems. This 1is the case

due to the relatively long access times involved. Subsequently, such

memory units can become congestion centers within the computer system.

The models and analysis techniques invovled are similar to those
presented in the sections on queueuing models and analysis. The
index of performance usually used in choosing the related optimal

scheduling algorithm is that of maximizing the throughput of the

memory subsystem.
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In our applications the problems mentioned above concerning
data transfers between main memory and auxiliary memory arise
also in connectionwithdata flows between main memory and I/0
devices. In this connection, one needs also to consider the
associated buffer problems. Shared (pooled) buffers are much
more efficient than individual dedicated buffers. The proper

related performance criteria here are buffer occupancy and

overflow probability. We note that under multiprogramming the

main memory can be regarded as a shared buffer.
In studying main memory management the objective is usually
related to maximum execution speed of programs.

I.6.3 On Computer Scheduling Procedures

In modeling and studying processor schaduling procedures we

can distinguish between deterministic scheduling rules and

probabilistic scheduling models.

In considering deterministic scheduling disciplines we assume
that we are given a (partially ordered) set of tasks whose execution
(required processing) times {Si} are known. We also assume that
there are m (identical) processors available to axecute these tasks.

Two pErfOVmance measures are then considered: the time until

the last task is completed and the average turnaround (flow) time.

The first measure is related to the system utilization factor U.

Thus, if a given schadule finishes in time T, the utilization factor

the processors by the schedule is

s
1

U= —r
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Hence, minimizing T is equivalent to maximizing T.

The second'measure is of interest to the users of the system.
It many times also yields the minimization of the average number
of incomplete tésks. |

The deterministic models assume that the processing times

of all tasks are known in advance and that all tasks are available

for execution at once. It is more realistic in our applications to

assume that the processing times required by the various tasks are
random, governed by certain probability distributions. Also, we then
assume that tasks arrive at the processing system at random times.
We then need to specify the joint statistics of the task inter-
arrival tihes.

Using these probabilistic characteriéations of the tasks
arrival streams and required execution times, the preccessing
system is modeled as a queueing system. The associated service

discipline then represents the task scheduling rule.

Queueing models have been presented, discussed and analyzed

in Section I.4. In particular, time-sharing queueing models have

been considered. Priority service disciplines have been classified,

discussed and analyzed in Section I.5.

In assigning priorities to tasks, we associate an index of
preference or urgency to the processing of a task relative to
other tasks. As nated in Section I.5, tiese priority or urgency
indices can be‘assigned on a statfc basis or dynamical]y in
accordance with the state of the system and the task desired

response time or actual current lateness.

Systems can use "time slicing" to Timit the length of
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processing time that can be given to a task at one time. Tasks
which use the processor at one time more than a certain quantum
"duration, are interrupted and asked to release the processor. They
are then reassigned for service in accordance with the system
service discipline.

In particular, we have considered the following service
disciplines:

1.  First-come first-served (FSFS).

2. Round-robin foreground-background and multilevel service

procedures.
3. Service disciplines for tasks classified into fixed
priority classes.

4. Earliest due date dynamic priority queueuing disciplines.

In addition, one can incorporate service discipiines that assign
dynamic priorities in accordance with task processing times; giving,
for example, priority to shorter tasks over longer ones. Or, as we
already noted, giving service to tasks that have currently received
the least amount of overall service.

We present and study in the next sections certain queueing
models that can be used for performance prediction in our data
processing system.

I.6.4 A Markovian Queueing Model: Finite Buffer Facility

We present in this and the next 2 sections a simple Markovian
queueing model. We also present its performance characteristics.
It is noted that this model can be used for a first-order performance
prediction. It allows the incorporation of afrivai and service

rates that depend upon the state of the sysfem. Subsequently,

‘, o[zfn Cun EEER
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one can use it 'to analyze a processihg system with a finite buffer
size, multiple précessgrs and an arrival task stream that is
generated by a finite source of users (or terminals).
We assume tasks {or jobs, or messages, or customers) to be
exponentially distributed with mean required task processing
time being 1/u [sec/task]. Tasks arrive at the processor according
to a Poissoh‘sfream.
Assume a single processing unit with a finite buffer facility,
wifh storage space for at most L tasks. Tasks arriving when the
bufferkis full are assumed to be rejected. Let Ph denote the
probability that n tasks are in the system (at steady state), queueing
or being processed. Then, we have:
P, = Efi%ggl- , n=0,1,...,L . (1.6.4-1)
T-p
where p = x/u. In particular, the system utilization index U

describing the probability that the processor is busy is given by

L
_ o1 . 1-p _ (1-p7) -
U= 1-py = 1 il (1.6.4-2)

The average queue size X is given as

L L

Y = = 1-p n
X = :E: . = T 2{: np. . (1.6.4-3)
1-p n=0

The probability PR that a task is rejected from the system, not
accepted for service due to a full buffer, is given by

L

P = P = (0=p) =Py »0<p<w  (1.6.4-4)

1-p
Clearly, pR+0 as L =, while PR = P for L = 1. The character cof

the rejection probabi1ity (or overflow probability) curve, as a
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function of the buffer size L-1, is shown in Fig. I.6-3.

Overflow { Rejection) Probability

S= Buffer Size (L-1)

Figure I.6-3.

The average waiting time W of a task, provided this task
is accepted into the system (i.e., the buffer is not full) is

expressed as

L-1 -1 Py
W = Z nu 1_pL . ‘ (I.6.4-5)
n=0

We thus note that a too small buffer size (L small) can imply
a very high overflow probability, or rejection probability, as
illustrated by eq. (I.6.4-4) and Fig. 1.6-3. However, increasing
the buffer size beyond a large enough va]ué L* would not significantly
ihbrove the overflow probability.

If a rejection probabilty no higher than p is desired,

- *
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PR < P s | (1.6.4-6)

then by (1.6.4-4) we should set the buffer size L-1 according to

the formula

Lo s [t (1.6.4-7)

log o

Note that L-1 is the capacity of the buffer facility measured in
number of messages. The average capacity in bits, LB’ is obtained
as follows. Assume the (average) processing rate of the service

facility to be
processor rate = C [bits/sec] . (1.6.4-8)

Then since the average task required processing time is

s

average task required processing time
= 77 [sec/task] (1.6.4-9)
we conclude that
average task length in bits = Cu'] [bits/task] . (I.6.4-10)

Therefore, the capacity of the storage facility in bits is

lg = Ley™! [bits] . (1.6.4-11)

Also note that as the storage capacity L is decreased the
average queue size X and the average waiting time W of an accepted
task both decrease, since accepted tasks have to.content for service

with Tess other accepted tasks. The overflow probability then

of course decreases as well.
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- I1.6.5 A Finite Task Source Queueing Model

It is necessary for our applications to be able to model, at
certain operational modes df the data processing system, part of
the incoming task stream as composed of a finite set of sources.

For that purpose, assume that the processor experiences an
arrival stream that originates from a set of N task sources (or
terminals). Between the completion of its previous task and the
submission of a new task to the processor a certain random delay
time is generally noted. This timé delay is called the "think time"
source.

We assume here that the think time of each terminal (task source),

of the N terminals, is exponentially distributed with mean A-1; i.e.,
Average source think time = A-] [sec] . (1.6.5-1)

The system model is shown in Figure I.6-4. We note that if there are
currently n tasks in the system, n < N, only N-n new tasks can
presently arrive (according to a Poisson stream with intensity
(N-n)a).

TASK 1 COMPLETION INDICATOR

r-—- L I et
{

THINK : ,
TN AT 3
TERMINAL |
n
PROCESSING |__ | w
? SYSTEM 1
TERMINAL l
N /'
x TIME /
e - - —

LT T TASKTN TOMPLETION INDICATOR —

Figure I.6.4.
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We assume, as in the previous section, that task processing

times are exponentially distributed with mean u']; i.e., ’
Average required task processing time = p-] [sec/task] (1.6.5-2) ]

Let
p = Au (1.6.5-3) ;

be the traffic intensity parameter. We also set

Pn = P{n tasks in the system} , (1.6.5-4)

at steady-state, considering both the task in service and the tasks

waiting in the queueing facility. Then, we obtain

A P-4

N
P = E N-3)T P 8 , (I.6.5-5a)
i=0 ‘
= n N! _
Pn B POp IN_n,! s N = Os]s-~osN . (I.G.S-Sb)

The system utilization index U is computed as

U = P{processor busy} = 1-P0 %
R w il 1.6.5-6)
=1 TP : (1.6.5- |
i=0 - ;
The task average waiting time W is equal to %@
W= WX, (1.6.5-7)
i3
where X is the average queue size, i
X = ann . | (1.6.5-8)
n=1

c>Z{}I2<ifi;I?1
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If we also assume a finite storage capacity so that 3
Number of task in system <L < N , (1.6.5-9)

counting both tasks in the queueing facility and the task in

service, we obtain the queue-size probabilities to be given as

follows.
L-1 Nt ; -1
pO = :E: TﬁfiTT 0 R (1.6.5-10a)
i=0 _
. ;.
n N! ‘ ]
Pn = Pop ‘(‘N—_n—)—!- , n=0,1,...,L . (1-6-5']0b) - 4

The average queue size X is computed using Eqs. (I.6.5-8) and

(1.6.5-10). The average waiting time :of an accepted message is o

P RPN T

computed by )

¥
-

W= nl . (1.6.5-11)

The probability PR that a task will be rejected due to a full

buffer (or the buffer will overflow) is equal to

-]
_ N B =LY § LN 517
R TP X T f P T (16:5-12)
=0

Using these expressions, one can properly design the data

processing system. In particular, if a maximum overflow probability : iéi

PR is specified,one can compute by (5.12) the desired buffer size.

The Tatter is equal to L-1 messages or (L-])Cp_1 bits, where C is the é’;

£, T rhuex

processing rate (in bits/sec) of the service system. The system

utilization index U is now given by

'W;_‘;"p BURERY O
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U = P{processor is occupied}
‘ i E
= 1-p, = 1 T—T‘N! 1 1.6.5-1
= 1-Py = 1- Z T , (1.6.5-13)
i=0
where p = A/p.

1.6.6 A Multi-Processor Queueing Model

In certain operational modes of the data processing system, we
need to consider the situation where a task can be processed by any
one of a set of processors. We thus present a Markovian queueing
model to describe the queueing system performance characteristics
in this situation.

Assume the system to contain m identical processors (service
units). Arriving tasks (or requests for processing) are stored
in a queue if all m processors are busy. As soon as a processor
becomes free, it accepts into service the task of the head of the

queue. The system is illustrated in Fig. 1.6-5.

PROCESSOR
m

Figure I.6-5.

ssume tasks (or messages) to arrive at the system according to
a Poisson stream with intensity X [tasks/sec]. We also take the

aVerage requried processing time for a task to be p_] [sec/tasks].
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The required task processing time is assumed to be exponentially
distributed.

We then obtain the queue-size probabilities {Pn}, where
P = P{n tasks in the system, queueing or being served}, (I.6.6-1)

n

to be given by the following expres;ions

ooy =1
m m-1 i

P
1=0
\n
‘(E‘ng%— Po » no<m
) Pn = (1.6.6'3)
m
ET pnPO s n>m
where ,
p = A/my (1.6.6-4)
and p < 1.

The system index of utilization U giving the fraction of time

that the system is occupied (so that at Teast one processor is busy)

is given by
U = P{at least one processor is busy}
-1
m m-1 i
- 1 . = 1. mp (mp }
1-P, = 1 {min +Z: i } : (1.6.6-5)

with p = A/mp < 1.
The fractionof time that all processors are busy, denoted as

Um’ is equal to

R T R I P T
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Um = P{all m processors are occupied}
@ m-1
= E Poo= 1- Py
n=m n=0
m-1 n
= 1-p {mo)
‘0 ni
n=0
) LT )t 1T W ()
= ] - [—no:-.l_p + 1| —'[‘]! (T-6¢6"6)
i=0 n=0
The average task waiting-time W is computed as
W= () S one, (1.6.6-7)

n=m

For given message and traffic statistical parameters (A and u),
we note that by increasing the number of parallel processors m we
decrease the task waiting time (and subsequently reduce its response
time). However, at the same time we obtain a reduced value for the
index of utilization Um (or U). In designing the system, one then
chooses the number of parallel processors m properly, using Egs.
(1.6.6-2)-(1.6.6-7) so that a high enough index of utilization fis
achieved while an acceptable task response time is guaranteed.

As another useful model for the Space Shuttle processing
subsystem, assume now that we have m parallel processors as above,
but that the arrival stream is generated by a finite set of sources.
As in the previous section, we set the number of task sources to
be equal to N. The terminal thinking time is taken to be an
exponentially distributed random duration wifh mean A"1 [sec].

Required task processing times are exponentially distributed with

=91-
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means u-] [sec/task].
Then,'thé probabilities {pn} of the number of tasks in the
system, being processing or waiting in the queueing facility is

computed to be given by the following formulas. For

p = Amp <1,

we have

Pn = ; (1.6.6-9)
p ET. n__N ifn>m
o ml' P [Nen)T ° =
The index of utilization Um is given as
Um = P{all m processors are busy}
m-1
= 1 - }E: Pn (1.6.6-10)

The average task waiting time W is computed using Eq. (1.6.6-7).
We again note that the latter equations should be used to design
‘the system such that the proper acceptable system utilization and

message response times are deduced.

1.6.7 <Queueing Models Involving Input/Output and CPU Interactioné
In studyihg the performance of the Space Shuttle computer
system, it ié'of particular importance to incorporate the interactions

between the input/output and CPU queues. Proper queueing models for
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describing these interactions, and their performance characteristics
and formulas, will be presented in this section.

A basic simple model is that of a cyclic queue involving

single CPU and I/0 processors, shown in Fig. 1.6-6.

CPU
= cpU >
QUEUE |
1/0
1/0
QUEUE

Figure 1.6-6

Tasks enter the system by joining the CPU queue, but only
at the instants when tasks depart from the system. In that way
the number of tasks in the system is kept constant at N. After
receiving service by the CPU a task leaves the system with
probabi]ity o, and then a new task immediately enters the system.
With probability 1-o the task processed by'the CPU enters the 1/0

queue. There, tasks are served on a first-come first-served

~ basis. Upon departure from the I/0 processor, a task joins

immediately the CPU queue.
We assume that each task is assigned a processing time by the
CPU and I/Olwhich are independent and exponentially distributed, with

means ual and u;], respectively. Thus,

1]

Avg. CPU service time “61‘ [sec] 5 ‘ (1.6.7-1)

uil [sec] . (1.6.7-2)
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Avg. I/0 service time
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Since a task will require each time I/0 processing with probability

1-a, and depart with probability «, we conclude that

P{task uses CPU i times} = (1-«

Therefore

Avg. number of tiines that a task uses CPU processing = %~; (I.

Avg. number of times that a task uses the I/0 processor

V-1, i=1,2,... (1.

6.7-3)

6.7-4)

= % -
= 1= . (1.6.7-5)
Hence, we obtain
Avg. total CPU processing time required by a task =
(apc)_] [sec] (1.6.7-6)
Avg. total I/0 processing time required by a task = Eﬁg' . (1.6.7-7)
I
Let
P, = P{n tasks in the CPU, queued or being served} . (1.6.7-8)
Then, we obtain
p = —1¢ n n=0,1,...,N (1.6.7-9)
n ]—-—_D_N.T.T gy sty s - 0.
where
' (1.6.7-10)
p = o U/ =1V
I8 aipc |
The average time delay (response time) D of a task in the
system is obtained to be given by
N+1
N1 -9
D = (1.6.7-11)
" +
Mo p - o
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Note that the task response time D is equal to the sum of the task
overall average waiting time in queues W and required overall average

processing time. But,

Avg. required task overall processing time = —1—-+ lma . (1.6.7-12)
GUC GHy
Therefore, the overall average task waiting time W is
N+1
W= Al <El“* %:&> : (1.6.7-13)
uC 0 - p IJC H1
The CPU index of utilization UC is given by
UC = P{CPU is occupied} = 1 - PO
1-p P - pN+1

= 1 - '————NTT = ——-—-——m . (1.6.7']4)

1 -9 1-0p

By (1.6.7-11) and (I1.6.7-14) we conclude that the task response time
D and the system utilization index UC are related according to the

formula

- N -
g U - (1.6.7-15)

Relation (I.6.7-15) shows clearly how the task response time increases
with the increase of the CPU utilization factor UC' The above
formulas need to be used in designing the system so that proper
response-times and utilization values are attained.

More involved queueingvmode1s representing various interactions
between a CPU (or several CPUs) and 1/0 devices can be developed
using queueing network models. For the purpose of global performance
prediction for the Space Shuttle computer network, the models presented

in this section and the one presented in the next section are

particularly useful.

T N LS LSRRI OSSRy SICSICANNIEIIREREIEEE o § o -SRNEs SE I

2 it bRy
4 D e

PP L R Ny




o Tt
o X

Lo
n OriL

[.6.8 An Analytical Model for the Computer System Performance Prediction ;

= ey

In studying the detailed behavior of the Space Shuttle computer
system, one needs to model the interaction between the CPU and I/0
queues. Such a simple cyclic-queue model, and its performance il
analysis, is presented in the previous section. This model can be éf
used for a first-order study of the performance of the underlying
computer system.

In this section a more involved cyclic queueing model is
described and studied. This queueing model also incorporates f]

the porper interaction between the CPU and I/0 queues. The

level of detail here is such that it allows the system engineer
to study changes in hardware configurations and gross changes in the
software.

The system model is shown in Figure 1.6-7. Users, or sources, f %
request for the processing of their associated jobs. Requests are i %
first stored in queue 1, the queue for Main Storage; until space |
becomes available in main storage. After the job enters the main
storage it actively competes for the use of the CPU or I/0 devices.
The job cycles between use of the CPU and I/0 devices until it is
completed. When a job is completed, a new job from the main
storage queue replaces it.  The source whose job is complete,
sends a new request for job processing after a random think time
delay. | ‘ .

The total number of jobs in the main storage and processing

facility is limited to M.

A TSI T

Jobs are assumed to relinquish the CPU to carry out an I/0

operation. We need to statistically characterize the length SC

P
| oﬁlzajin“““ e
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of each CPU service period between successive I/0 operations for

The

device.

A-]

those jobs in main storage. We assume here that either these
periods are fixed length or they are random and exponentially

distributed.

length or random and exponentially distributed. It is also assumed
here that no I/0 queueing occurs. The I/0 devices are taken to be
identical proéessors operating as M parallel servers. A job requiring

I/0 pfocessing will then be directed immediately to a free I/0

In studying the performgnce of this system, we assume that
the system is sufficiently loaded so that there are always as
many jobs requesting processing as the operating system will allow
in main storage. Thus we take the number of jobs in the main
storage system to be always M. Consequently, no more than N-M
will be in think mode at any one time. This can be regarded as
a fixed multiprogramming level M. |

The model input parameters, reflecting the characteristics
of the request traffic, required processing times, operating

system and the hardware configuration, are summarized as follows.

1/0 service time SI will also be taken to pe either of fixed

Averagé total CPU time required by a job

"

Average CPU time between I/0 operations

= Average service time for an I/0 request

Number of jobs in the main processing system (level of
multiprogramming)

Number cf terminals (sources, users)

= Average user think-time between requests

LR aia
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We also define

T = Average total I/0 time required by a job

K = Average number of times that a job requried I/0 processing.

We then clearly obtain that

c
K = = (1.6.8-1)
11(; B
and
T = Ku;1 = “I]TC/“E] . (1.6.8-2)

Note that the average time values Tc,pé] include both the processing

time of the job itself as well as the overhead time used by the é' ;

system in running the job.
In studying such a computer system, the performance measures
of interest are the following ones. g;ki
D = Job response time (sec) ' %; 4
= Average time delay of a job in the system from entry of o
request to completion of processing. é;';

T = Computer system throughput (interactions/sec, or jobs
served/sec)

]

Average number of jobs departing from the system, per unit
time, after their processing is completed.

B L T T T S s

U = CPU index of utilization

A A A R T

= Average fractionof time that the CPU is utilized for
processing

= Probability that the CPU is occupied (busy, not idle).

The job response time D is obtained, in terms of the CPU éf

index of utilization U, to be given by the formula

mafn( : 0Nt
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D = T - [SEC] . (1-6.8"3) ;i

I T R

In terms of U, the system throughput is given by
T = -;! [interactions/sec] . (1.6.8-4)
C
To prove and explain relations (1.6.8-3)(1.6.8~4) we note that
following. Assume the system to run for a (long) period of t sec.

During this time assume that J jobs are processed, requiring a total

T P

time of ™ sec. Then

. . Jt ‘
_ CPU processing time _ ™1 _ “'C
v = ETapsed time T T ’ (1.6.8-5) i
_ number of jobs served Jd )
T = Elapsed time p (1.6.8-6) i

Therefore

(1.6.8-7)

"
S TEE N T S O T S SR P

and eq. (I1.6.8-4) results.

Observe again the system for a period of t sec, during which
J jobs are processed . During this time each of the N terminals is
either in a response-time period (waiting for its job to complete

processing) or in a think-time peribd (experiencing delay prior to

the initiation of the next request). We have, during t sec,

Average number of jobs comp]etedvper fermina] = J/N . (I.6.8-8)
Hence, -
Average time taken by a single interaction = d}ﬁ = E§~sec (1.6.8-9) :

This time contains both system response time and user think-time. b
But o 7 : ’ EL%
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e (1.6.8-11)
We observed in (I1.6.8-5) that
JTC
T = T . (155.8-]2)

Substituting (1.6.8-12) in (I.6.8-11), we derive (I.6.8-4).
Equations (I.6.8-3)-(1.6.8-4) thus allow to compute the
message response time D and the system throughput T, once the
CPU utilization index U is known. The latter is derived using the
queueing techniques presented in previous sections. We obtain
the following results.
For constant CPU and I/Q service times, the CPU utilization

index is given by

i -1
U
T-:¥7ffr- cIF N ki
tuy 0 W
u = { I I ¢ (1.6.8-13)
UI
"

If we assume CPU and I/0 service times to be exponentially
distributed with means pE] and ui], respectively, we obtain

n -1
M <1

c ] Mo
u = 1 - (M }E: CEDE - . (1.6.8-14)

n=0 M1

Thus, Eqs. (I.6.8-3)-(1.6.8-4) and (I.6.8-13)-(1.6.8-14) yield
the system performance measures D, T and Y. This is expressed here
in a rather simple form in terms of the major processing system and

message-traffic characteristics.
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In designing the system or modifying it to improve its perform- §
ance or increase its capability or efficiency, one incorporates ; 1
the given system parameters of interest and chooses the remaining %u'
. ones to guarantee desired proper values for message delay D, CPU :
utilization U and system throughput T. ;
1
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I.7 Queueing Modeling and Analysis Procedures for the Space
Shutt]e Orbiter Avionics System

1.7.1 The Queueing Model

The queueing model chosen to represent the Space Shuttle
orbiter avionics system is described as follows. It is composed
of the three system elements:

e The computer system.
e The data bus communication network.
eThe application processes, user and destination terminals.

-The combined model block diagram is shown in Fig. I.7-1.

X5
6PC
- SYSTEM
Y
3 THE DATA BUS COMMUNICATION NETWORK
'-- o e———em———— -~ S — - -
'
J
|
RIS e FLIGAT

I Pl KEYBOARDS CRITICAL | [INSTRUMENTS
v FUNCTIONS
’ ,

USER SYSTEM (TERMINALS)

Figure 1.7-1.
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The computer model has been explained in Section 1.2 (see
Fig. 1.2.1). We ﬁave combined here I/0 and memory operations and
accessing functions as single-unit I/0 operations. The computer
subsystem parameters are described in Section 1.2.2.

The combination subnetwork structure has been outlined in
Section I.1. The relevant parameters are presented in Section I.2.5.
This network is composed of a set of half-duplex data buses properly
shared by the computers. The buses are made available for inform-
ation transmission or reception to the terminals at certain times.

The third subsystem is the user system. Terminals (users, tasks)
are granted access to the communication network and the GPCs at
certain times in accordance with their requests for service demands,
TDM and polling processings, and GPC initiated actions.

The relevant system performance measures have been represented
in Section I.3.

| The heart of the system is the computer complex. We thus
start by presenting queueing models for the computer system.

1.7.2 A Time Frame Model for the Computer System

We need to differentiate between cyclic and acyclic tasks.
Such tasks have been statistically characterized in Sections I.2.3-
I1.2.4. Tasks for which computer time is reserved shOujd also be
described. Within the operational time period under consideration,
we can thus make the following period definitions. We set:

T

F
T

duration of main time cycle (time frame) [sec]

1}

duration of’the time cycle period which is dedicated
(reserved) to certain tasks (on a non-contention bacis)

[sec]

fPd
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C duration of the time cycle period which is used by
cyclic tasks [sec]

—
il

duratioh of the time cycle period which is used by acyclic
tasks [sec]

—
by
"

Thus, we have identified a time cycle {frame) of duration TF’
This frame is divided into the following three periods:

eThe dedicated frame period, of duration TD' This time period

is reserved for certain tasks (application processes). These
tasks can be cyclic or acyclic, scheduled or non-scheduled.
During the period under consideration, the network controiler
assigns this periodic portion of the time frame, on a contention-
free basis, to these tasks. Included are: scheduled tasks,
routine updating tasks, routine information flow and processing
duties, high priority dedicated services, etc.

~ oThe cyclic frame period, uf duration Tc. This period of time

is periodically reserved for serving cyclic tasks. Service
time portions within a cyclic frame period are assigned by
the network controller (GPC) according to service demands
(schedu]ed'and unscheduled). These assignments are governed
by the system priority service rules. A cyclic task which is
assigned service time within a certain cyclic frame period,
kkeeps the same assighment in succeeding cyclic frame periods,
until its processing is completed, or until its service is

pre-empted by the network controller.

¢ The acyclic frame period, of duration TA‘ This period is used

by acyclic tasks which arrive at random and require service time.

‘Time is assigned in accordance with the system priority service

discipline.
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We clearly have (Fig. 1.7.2) :
TF = TD+TC+TA . (1.7.2-1)
In the operational period under consideration, tasks with
dedicated service times (which total Ty sec) do not experience
any waiting time. We can thus write
(k) =0, (1.7.2-2)
DD(k) = S(k) , (1.7.2-3)
where
Nn(k) = waiting-time of a class k task with dedicated service
DD(k) = time delay of a class k task with dedicated service
S(k) = overall GPC service time required by a class k message
Of course, the length of the period duration T, assigned for %
dedicated service will affect the overall index of utilization of |
the computer system, as will be noted in the following analysis. -
To obtain the delay-throughput performance characteristics E
of the computer system, we thus need to study the service of %
cyclic and acyclic tasks. This is carried out in the‘fol1owihg ;
sections. o %'
ér-f—TF "fN—TF Pl TF -—
B S T | S | T | L .
S I L L L ot S
D'C A 'D'c 'A ‘DC A
. x
Figure 1.7.2.
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I.7.3 Queueing Analysis for Cyclic Tasks: Model I

We consider, in these sections, cyclic tasks which are served
during the cyclic frame periods. Each cyclic frame period is of
length TC sec. Any two consecutive cyclic frame periods are

separated by a time period of duration

TA +Ty = TF - TC sec . (1.7.3-1)

Assume that the computer system can serve N. cyclic tasks
C

during each cyclic frame period. For simplicity of presentation,

we also assume that equal service times are assigned to all served

cyclic tasks, during each cyclic period. Therefore, a served
cyclic task is granted to a fixed service time of duration A sec,
where

&= TN (1.7.3-2)

Assume cyclic tasks to arrive at the system according to

a Poisson process with intensity

Arrival intensity = \e [cyclic tasks/sec] . (I1.7.3-3)

Each cyclic task is assumed to require a service time SC
which is expanentially distributed with a mean (required computer)

service time equal to
E(SC) = uE] [sec/cyclic task] . (1.7.3-4)

When any ane of the Ne time slots during a cyclic period
becomes available, upon the termination of service a cyclic task,
it can be assigned to any one of the quaued cyclic tasks waiting

for service. The queueing system under consideration thus bacomes

T S T
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an Nc—server queueing system. However, it is not a regular
multi-server queueing system, since it experiences interruptions

in service. After s service period of TC sec., the service granted

to cyclic tasks is interrupted for a period of TF-TC sec. Subsequently,
service is resumed (simultaneously given to NC cyclic tasks) for
another period of TC sec., and then interrupted again, and so on.

A proper simple approximate technique for the performance
analysis of this interrupted multi-server queuefng model is deve]obed
here and described in the following. We consider an equivé]ent
non-interruptable queueing system with NC servers and the following
parameters. To incorporate the original interruption times, we
let the equivalent service denand Sé be exponentially distributed
with mean service time

E(sL) = u"TF/TC . (1.7.3-5)

The arrival intensity remains equal to AC fcyclic tasks/sec].
Considering this equivalent gqueueing model, we perform the
associated queueing analysis and obtain the following results
(in accordance with the formulas presented in Section I1.6.6).
By this model, we assume that each served task is pracessed
by the computer system for a period of A sec, during each TC sec
cycle. A number of NC cyclic tasks are served simultaneously.

Each task will thus require an average of

Avg. No. cyclic periods used by a cyclic task

i -1
T

A T

C

= s (/) (1.7.3-6)

The queueing analysis follows the procedure described in

Section 1.6.6, when (1.7.3-5) is incorporated. The following results
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are subsequently obtained.
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Let

Pn = P{n cyclic tasks in the system, queueing
or being served} . (1.7.3-7)

Define the traffic intensity parameter p by

ATF o
p = N;ETE . (1.7.3-8) - ‘i

For the system queueing process to be stable, so that queue-sizes

and task response time would not become arbitrarily high, we must § ’
3 Lt i
require ‘
ATg ( TR
p = <1 . 1.7.3-9) S
NCuTC _
Henceforth, relation (1.7.3-9) is assumed to hoid. Then, SR
. N _ N : '
) (Nep) ¢ Ne-1 (Ncp)1 !
PO = m + Z 1! H (1.7.3-]0)
i=0
and
(No)" ,
o PO s ifn> NC 3
Pn = NC , (1.7.3-11)
N "p if n >N
NI P To =

C

The GPC index of utilization UC (see definition by Eq. (I1.3.1-1))

is therefore given by

i

UC(C) P{a GPC is busy in processing a cyclic task during

the cyclic period}

=1 - P0 , . (1.7.3-12)
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where P, is given by (1.7.3-10).
The GPC throughput in processing cyclic tasks (see definitions

(1.3.1-17)-(1.3.1-18)), assuming none to be rejected, is given by

TTHC(C) The GPC cyclic task throughput

i

i

Average number of cyclic tasks processed by the

GPC per sec
Ac cyclic tasks/sec . (I
To obta’r the throughput in bps, we set
C = GPC average service rate in bps . (1
Then,
THC(C) = GPC throughput in bps for cyclic tasks
= Acu']C bps (1
The average task waiting time for a cyclic task is equal to
Average Cyclic Task Waiting-Time
Wl Nl
= NC = '—T—‘N—“ 1 - Z nPn ’ (I
ccC 0

n:
where P is given by (I.7.3-10)(1.7.3-11).

The average cyclic task time-delay, response time, DC’ is thus

given by
De = averége cyclic task response time
= WC + E(Sé)
= u-]TF + EZIIE | 1 - NC-] np (1
TC TCNC }Z: n ’

-0~

.7.3-13)

.7.3-14)

.7.3-15)

.7.3-16)

.7.3-17)
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The variance and distribution of the task response time are
obtained similariy.

If a finite source model is desired, the proper formulas follow
by Eqs. (I.6.6-8)-(1.6.6-10).

The study of buffer overflow characteristics is illustrated

by the following model. We let (see also Section I.2.4)
M. = overall (average) storage capacity for cyclic tasks (I.7.3-18)

Assume that: MC > NC' Thus, assume that no more than an overall
number of MV cyclic tasks can be stored in the system. Then, using
the queueing models and methods of Sectivn I.5.6 we obtain the

queue-size probabilities:

1 N -1
o e o,
Po = | 22 K1 * 3 §T e ; (1.7.3-19)
k= k=NC C
n
¢ (o) o
i Po »  ifn <N,
pC
= L n v N .
Pn = T Ner ®? Po > W Nz M (1.7.3-20)
; \ 0 ifn> MC
The probability of overflow is subsequently given by
e oy
® - 5 Cp (1.7.3-21)
POF = PMC W e Py g

where Py is given by (1.7.3-19) and p is given by (I.7.3-8). For this
system, with a limited storage capacity, it is not necessary any mare

to require p < 1.

R .?O.[;fllvéom -
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The GPC index of utilization and response time are given again

according to formulas (1.7.3-12) and (I.7.3-17), with Po now expressed
by Eq. (I1.7.3-19).
Substituting the proper system and task-traffic parameters, as

well as the parameters characterizing the mission phase under 1

p——y

consideration, the above formulas allow us to compute the system
performance indices, related to the service of cyqlic tasks

[.7.4 Queueing Analysis for Cyclic Tasks: Model II

To derive at a more detailed GPC queueing model, in describing
the service of cyclic tasks, we can use the models described in
Sections 1.6.7 and 1.6.8. Using these models, we can describe the
CPU/I0 processing interactions in the GPC system.

Assume thus the GPC service system to be described by the

closed Toop model illustrated by Fig. I.6.6.

We assume that the number of cyclic tasks in the GPC is kept
constant, equal to NC’ as in the previous section.

A task entering the GPC system joins the CPU gqueue. A task can 1?
enter GPC service only when a previous one has been completed, |
assuming thus a constant number of NC cyclic tasks in the system. [
After receiving service by the CPU a cyclic task leaves the system 7 ?
‘with probability .. With probability 1-e_ this task will subsequently

enter the I/0 queue. There, tasks are served on a first-come first-

T TR AT T e

served basis. Upon departure from the I/0 processor, a task joins

immediately the CPU gueue.

We assume each Cyc1ic task to require’CPU and I/0 processing
times which are i.i.d. exponentially distributed random variables

with means

_ |
io[::n(,om -
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Avg. CPU service time required by a cyclic task

= ug(e) [sec] (1.7.4-1)

! Avg. I/0 service time required by a cyclic task

= u}](C) [sec] (1.7.4-2)

We obtain that

Avg. number of times that a cyclic task uses the
Q

I/0 processor = iti}e . (1.7.4-3)
C

Also, _ o
Avg. total CRU processing time required by a cyclic task ;

= [uCuC(C)]"] [sec] ; (I1.7.4-8) !

Avg. total I/0 processing time required by a cyclic task.
1—uc ,
= m* [sec] (1.7.4-5)

We define the queue size probabilities

Py = Rn cyclic tasks in the GCPU, queued or being served}. (I.7.4-6)

To perfofm the queueing analysis we note again that the service
of a cyclic task by the GPC system proceeds in an interrupted periodic

manner. We perform an approximate gqueueing analysis by setting the

effective mean CPU and I/0 processing times, denoted as %aW(C) and

ﬁ;‘(c),‘respectiva1y, to be

e - | L ,
GO = @ o (1.7.4-7)
‘\"1 - "]l TF FU

up (€ =y (C) T (1.7.4-8)
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following the same approximation adopted in the previous section. The
following analysis results are obtained (see also Section 1.6.7).

The system traffic intensity parameter p is set equal to

up(C) |
p = TT:;gygErﬁy‘ . (1.7.4-9)
We obtain the queue-size probability P to be given by
- Ne
P, = ;ﬁ%ﬁ p " s n =0T, N (1.7.4-10)

The average response time (time delay) DC of a cyclic task in
the system is obtained to be expressed as
ke (C) T p_pNCH

D, = (1.7.4-17)

The average task waiting time W s

T T-00)T ‘
W, = Dc‘[ £ +(~“C) F] (1.7.4-12)

cchc(C)TC ucnI(C)TC
The CPU index of utilization is equal to

UCPU(C) = CPU index of utilization by cyclic tasks

]

P{CPU is occupied by cyclic tasks during the
cyclic period}

1

I-p
We note that the cyclic task response time Do and the CPU

index of utilization UCPU(C) are velated by the formula

i g

N+l |
= -0 s
(1-Pg) = —fy N | (1.7.4-13)

oafrz C)m E




nmg&*&m_auw.v e e, A FER | - R SRR ik

77
"“‘oﬁntonz

[ aos KA. ]

E A

RS

.
]

NCTF

D = (1 Uepy(C) - (1.7.4-14)
Thus, we can use these formulas to compute, for each mission
phase, the relevant performance indices.

I1.7.5 Queueing Analysis for Cyclic Tasks: Model 111

Model III for the GPC service system is chosen to be the model
described in section 1.6.8 (see Fig. I.6.7). See Section 1.6.8 for
detailed description and derivations. A1l the system parameters
used are denoted as in this section, with the following modifications.

We consider here 6n]y cyclic tasks. Subseqgeuntly, parameters

are denoted eas: TC(C), pa](C), u;](c), AE], TI(C),K(C).

We set M=NC to denote the maximal number of cyclic tasks in

the main processing system.

We set N=N(C) to denote the number of cycliic terminals (sources,
-1

; C - :
Rederiving the delay-throughput expressions for the present case,

users). The average terminal thinking time is A

we obtain the cyclic task response time DC to be given as a function
of the CPU index of utilization by cyclic tasks during the cyclic
period, UCPU(C)’

v N T~ (C)T
CC F -1 '
D. = - -2 [sec] (1.7.5-1)
C UCPU C TC C
The throughput is given b
Clgp©
THc = _;ETET_ | [interactions/sec] (I.7.5-2)

For exponentially distributed CPU and I/0 service times, we

obtain the CPU index of utilization to be equal to

!
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i AN
Uep(C) = 1 - IN! - ( = ) (1.7.5-3)

Using these formulas, one computes the system indices of
performance when considering the service of cyclic tasks, under
various mission conditions. l

Using Eq. (1.7.5-3), one computes the CPU index of utilization

CPU(C) The latter indicates the fraction of the cyclic frame
period that is occupied by the service of cyclic tasks. The
parameters invo19ed in this computation are:

Nc = maximal number of cyclic tasks served during a single
cyclic frame period

]
-
~~
e TNS
L
]

average CPU time for cyclic tasks between I1/0
operations, during the cyclic period

M (C) = average service time for an I/0 cyclic request,
during cyclic period
The computer system throughput for cyclic tasks, THC is evaluated
by using Eq. (I.7.5-2). It yields the average number of cyclic
‘task completions per unit tfme within the cyclic frame periods.
* Finally, the response-time (average time delay) of a cyclic task,.
Db, is computed by using Eq. (I.7.5-1). It yields the average |
tlme delay of a cyclic task, from the instant it indicates its task
‘ request to the instant its service is completed.
% | The add1t1ona] parameters 1nvo]ved in Eq. (I 7.5-1)- (I 7.5-2)
: are:

TC(C) = average total CPU time required by a cyclic task.
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class-k task is a task with priority number k, k = 1,2,...,p.

L e T T U A S S

-1

Ao o= average think time between initiation of a new cyclic
4 task and the completion of the previous one

TC = duration of a cyclic frame period

TF = duration of a frame period (main'System cycle)

1.7.6 Queueing Analysis for Acyclic Tasks: Priority Model I

We consider now the service of acyclic tasks. Requests for
geﬁvice by such tasks arrive at random, according to the
stétistics oﬁ a Poisson pfbcess with intensity AA acyclic tasks/sec.
Thﬁs:
Average number of new acyclic tasks (requests for service)
arrivals = Ay acyclic tasks/sec . (1.7.6-1)
The computer system can serve acyclic tasks only during the
acyclic frame periods (see Section I1.7.2). Therefore, acyclic tasks
aré served by the GPC during their period for a length of time of
TAvsec; then, service is interrupted for TF-TA sec; subsequently,
se;v{ce resumes for another TA = sec, and so on.
| We wish to describe here a simpie queueing model for the GPC
Sefvﬁce system, which incorporates different task priorities (see
‘SeCtion I.5). We consider a generalization of the priority queueing'
moyel déscribed and analyzed in Section I.5.4.

Acyclic tasks are classified into p priority classes. A

Clhss-] tasks attain the highest priority, while class-p tasks
have the lowest priority.
- Under a nonpreemptive service discipline, when computer service

time becomes available, a class-i task is served before any class-j

; oﬁné)m ""‘J
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'tésk if 1 < j. Within each class, tasks are served in order of
'arrival. No preemption (interruption) of any task service is
allowed.

Under a preemptive resume service discipline, class-i tasks

a?e again preefered over class-j tasks if i < j, as above. However,
| nbw we allow the preemption (interruption of service) of a lower
j priority task when a higher priority task arrives at the system.
We assume that class-k acyclic tasks arrive at the system

| according to a Poisson process with intensity AA(k) tasks/sec:

Intensity of arrival of priority-k acyclic tasks

; so that

We set
SA(k) = GPC processing time required by 2 class k acyclic task

The corresponding required service time moments are

a————

fn particular, we note that if an acyclic class-k task required GPC

service time is exponentially distributed with mean uA](k), then

5,0 = k) L SR

On the other hand, if each k-class task has a fixed service

= AA(k) tasks/sec, k = 1,2,...,p; (1.7.6-2)

XA = AA(I\') . (1.7-6'3)

§A(k) = E{SA(R)} = mean service time for priority-k task; (I1.7.6-4)

Si(k) = E{si(k)} : - E (1.7.6-5)

uiz(k) .  (1.7.6-6)
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requirement, SA(k) = u;l(k), then

5,00 = w5 (K, shk) = up'(k)
We set.
L TE ) ‘
p'l = A’iS-A(1} 'T—A' s 1 = ]929=-'3p;
J
G = D P
i=1
_ p
p= oy = :E: 05
i=1

For queue-size stability (so that queue-sizes and message delay

- would not become arbitrarily high) we requrie
p<1.

We set

'NA(k) average waiting-time for a priority-k

acyclic task

DA(k) = average time delay (response time) for
a priority-k acyclic task

XA(k) = average queue-size of priority-k acyclic tasks
XA = average queue-size of all acyclic tasks.

Assume first a nonpreemptive service discipline. The same

approximation for describing the service interruption used in

. -' A
(k) = (o)

s k=1,2,...,p

previous sections is employed. We obtain the following formulas.

e ¢>Z{}Il€ijz)!1l

(1.7.6-7)

(1.7.6-8)

(1.7.6-9)

(I.7.6-10)

(1.7.6-11)

(I.7.6-12)
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where
R (' (TF)Z 2
A = (i) =) SSG) (1.7.6-13)
D, (k) = Wp(K) + Sp(k) 3 (1.7.6-14)
xAA
x =
A 2(T-0)

The system index of utilization is:

index of utilization of GPC by acyclic tasks

P{GPC 1s'occupied by acyclic tasks during the
acyclic frame periods} .

It is given by
I o TF < '
Up = o = :E; AA(1) TK— SA(1) . (1.7.6-15)
'l:

If a preemptive-resume service discipline is assumed, we obtain

the following formulas.

. B
- k:
Dp(k) = e e (1.7.6-16)
where | ‘
T & T\
o = 200 T 3 00 T-> s21) 3 (1.7.6-17)
| xA(k) - AA(k)DA(kj- : (1.7.6-18)
Xy = :f: Xp(k) . (1.7.6-19)
kel
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Thus, under a preemptive resume priority service discipline 1

the message response time is given by Eqs. (I.7.6-16)-(1.7.6-17),
while the queue-size are given by Eqs. (I.7.6-18)-(I1.7.6-19). HWe

note that the required average buffer sizes are estimated by the 4
queue-size values of (I.7.6-18)-(I1.7.6-19). The computer index ]
of the utilization is expressed again by Eq. (I.7.6-15).

These formulas, and their extensions, as cutlined in this
report, allow us to analyze the computer system performance
under the proper mission conditions. |

We have demonstrated here the use of a simple priority queueiﬁg !

model. Other priority queueing models have been presented and

analyzed in Sections I.4 and I.5. A multitude of time-sharing
queueing models are presented in Section I.4. Various priority

queueing models are discussed and investigated in Section I.5. The

,4, C
T . .
SRS NEIRY S T IR VP ]

results presented there are directly applicable to the queueing modeling
and analysis of the Space Shuttle avionics computer system studied

here. The only modification necessary, when considering acyclic

tasks, is the incorporation of an effective required service time )
T . 5
F : -

equal to SA(k) T; . | | N o
| In this way, the proper traffic, task and subsystem models
|

and parameters, presented in Section 1.2, are used to evaluate
‘ v the computer system performance measures presented in Section I.3. =

The results of Sections I1.4-1.5 are properly integrated.

IR LTSRN LT

1.7.7 Queueing Analysis for Acyclic Tasks: Models II B

Queueing models describing the service of acyclic tasks,
while detailing the CPU/IO interactions are developed and studied

in a manner which is completely analogous to those presented in
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Sections 1.7.4-1.7.5. The only differences lie in:

o#Choosing syétem,service and arrival parameters for acyclic

tasks, rather than cyclic tasks;

eChoosing the proper number N (rather than NC) for the maximal

’number of tasks allowed simultaneously to be in GPC

service;

uRep]aéfng TF/TC by Te/Tpo

Otherwise, we obtain the same relationships for the computer
system indices vaperformance.

1.7.8 Joint Queueing Analysis

The resu1fs in Sectiohs 1.7.3-1.7.7 are combined as follows to
yié]d the indices of performance for the global computer system.

The response-time (average message delay) of a cyclic and
an-acyclic task.is given by DC and DA’ respectively. If prjority-k
‘tasks are considered, the corresponding response times are DC(k) and

DA(k). The proper formulas are given in Sections I.7.3-1.7.7. The
time-~frame division between dedicated, cyclic and acyclic periods
has been exposed .in Section I.7.2.
The traffic infensities-of dedicafed, cyclic and acyclic tasks
~are denoted as XD’AC’ and AA’ respectively. Then, if we choose a

certain task at random, its average queueing delay (response-time)

D will be equal to
| ‘ o
D = A Py * AcDe + AADA} R (1.7.8-1)

where

A= AD + Ac + Ay - (1.7.8-2)

The function DD dencotes the average delay of a dedicated task.:
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For such a task we have presently reserved computer time. We
can thus assume its waiting time to be equal to 0, and set its
response time equal to its average required service duration. We
set
§b = average kequired computer service time for a dedicated
task.
Subseyuently, the dedicated task response-time is equal to
_ T
DD = SD TB- (1.7.8-3)
In computing the computer system queue-sizes, we write
X = Xy + Xy + X 3 (1.7.8-4)

where
_X = g]obal'system average queue-size;
XD = average queue-size of dedicated tasks,
XA = averége queue-size of aéyc]ic tasks,

XC average queue-size of cyclijc tasks.

If we assume that presently no dedicated tasks are wéiting, as noted
above, then the queue-size XD is equal to the number of dedicated
tasks presently being in service.

The GPC index of utilization U is computed as follows. We
have

UC = GPC index of utilization for cyclic tasks in the cyclic
‘periods,
UA = GPC index of utilization for acyclic tasks in acyclic

periods,

U, = GPC index of utilization for dedicated tasks.
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The indices UC and UA have been computed in Sections 1.7.3 - 1.7.7.

e e R e

The index U is”set to be -

D

UD = fraction of time that the dedicated frame period
(of length TD)'is used. (1.7.8-5)

Function UP is determined by the state of the mission as pertaining

to how much dedicated service is presently required.

The GPC index of utilization U, in serving all these three

classes of tasks, is given by

U = fraction of time the GPC is idle : 3

P{GPC rot occupied in serving any dedicated, or cyclic, , ’..!i
or acyclic task}. (1.7.8-6)

We conclude that

P A N I I T

u=1- (1-UD)(1*UC)(1-UA) . ' (1;7.8-7)

Using the index utilization formulas presented in previous sections,

. . . s: A
D’ TA TC’ that will yield Lo

the proper desired high (and even maximum) system utilization values,

T

we can determine the time frame values T

under proper task response-time and queue-size constraints. The

PRALHUSTHISE Wi et RaESaLERRIEE S se S

system designer and analyst can thus deduce, adjust and p1an the
_proper comproijed system performance values. | ;
1.7.9 Queueing Analysis for User Terminals: Output Traffic’ 3 i
The queue-size behavior of a user terminal is described by g{ ;
the following model. %??
We describe the process of transmiésion of requests or %Qi
messages from a user terminal to thg cqmputer complex by a cyclic é;f
polling TDM (time-division multiplexing) procedure. For that DUFPQ$¢, E;T
| I |
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we divide messages into fixed-length data units called packets.

A packet will contain an average of u'] bits:

Average packet length = u-] bits . (1.7.9-1)

A packet can contain request for service information or any data
information transmitted to the computer system.
Data is transmitted across the data-bus network at a rate

of C bps:

Transmission rate = C bps (1.7.9-2)

For the avionics network, we have

¢ = 10° bps.

Subsequently, the packet transmission time is equal to t sec, where

t = (uC)! [sec] . ©(1.7.9-3)

Assume now that we establish a basic time slot duration sec,
so that the terminal under consideration is polled as follows. It
is assigned, on a fixed TDM basis, a single slot for information
transmission, once every M slots. - Thus, the terminal can transmit
a packet of information in its assigned slot of t sec duration;
subsequently, it has to wait (N-])T;SGC for its next assigned
slot to occur, and so on (éee Fig. 1.7.2).

M-1 Slots et M-T» o= L 2
21 F.m et _ 4394
Ii’/(

77| N T

Figure 1.7.2
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Assume now that the terminal generates packets {of service

requests or applications data) according to a Poisson process with

intensity Ap‘packets/sec. Thus

e

Packet intensity at a terminal = Ap packets/sec (1.7.9-4)

&=

Let the terminal indices of performance be given by:

average delay (response-time) for a packet at a user

e
L
[
1}

terminal [sec], , (1.7.9-5)
Eg Xp = average queue-size (in packets) at user buffer, (1.7.9-6)
§: Up = index of utilization of a user terminal buffer. (1.7.9-7)

We proceed with a TDMA queueing theoretical analysis and obtain

e |

the following results for the terminal performance functions.

21 Mo 9
g} Dp =z M+ 1+ Top , o (1.7.9-8)
E where
23 po= My < T (1.7.9-9)
7 - - | )
i Xy = A0 (1.7.8-10)
= = M . .7.9-
U, = » . (1.7.9-11)

Thus, in observing the queueing characteristics of user

transmissions and its buffer, as reflected by egs. (1.7.9-9)-(1.7.9-11)

i SRS vt B e

we deduce the following conclusions. The packet deTay and buffer

il

queue-size increases rapidly as Up approaches its maximal allowable

value of 1. Fixing an average allowable queue size va]ue'xp, to

yield an acceptable probability of overflow (POF) value, results ; |

R R R R ‘H,‘,c>lf}lzfiji)iwz —
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1

by (I.7.9-10) with a delay value Dp = A; Xp, if we assume an :
input rate equal to Ap' The delay function Dp is related to Up = p
= MAp and M by Eq. (I.7.9-8). We subsequently solve for the
associated value of M. The latter specifies the required frequency
of polling (equal td-%) for this terminal.

We have presénted here a model that can apply to the multitude
of terminais, users, subsystems and application processes in the
Space Shuttle avionics system. Time-sharing and priority queueing
models, presented in the previous sections can also be applied.

1.7.10 Queueing Analysis for User Terminals: Input Traffic

We consider in this section the terminal buffer queue-size
behavior in terms of messages arriving at the terminal from the

computer system.

g e

Consider a specific terminal where messages arrive from the ;*

computer complex according to a Poisson process with a rate of
A = message arrival rate~at d terminal [mess./sec] (1.7.10-1) === i

Each message is assumed to contain St bits/mess. Thus:

Sy = E(St) = mean terminal message length [bits/sec]
| (1.7.10-2)
2 2,
St = E(St) (I.7.10-3)
The terminal is assumed to process (and absorb) the received
information at a rate of |
C, = terminal processing rate [bps] . (1.7.10-4)

t

Subsequently, each message requires a terminal processing time of

-1
Stct [sec/mess.] .

" | | | .‘
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The performance indices of interest are:

><
(1]

¢ = average message queue-size in terminal buffer

=
1

¢ = average delay of a message in terminal buffer

[
"

¢ index of utilizationof terminal buffer.

Regarding the terniinal service system in processing input data
from the computer as a single-server queueing system, we obtain the

following results (see Section I.4.3)
N _2

\ 2S¢y < -1
Dt = —2-(]—_‘-)-)— + S Ct . (1.7.10-5)
where

= 2 -] )
p = AStCt <13 (1.7.10-6)
X, = A,D, = Z\_i ic;:z + . (I 7 10_7)
t Tt T2(T-p) e .

- = < -.' -
Ut p )\StCt . ‘ (1.7.10-8)

If message Tengths are exponentially distributed with mean

HEF [bits/mess.], we have

2 L =22
e Sy T oWt (1.7.10-9)

-1.-1

S, = C

t He

For exponentially distributed message lengths (I.7.10-9), we can
also derive the performance measure while assuming a buffer with

finite capacity of

Lt = terminal buffer capacity (in number of messages).
(1.7.10-10)

Using this the results presented in Section 1.6.4, we conclude

the fo]]owingkexpressions.
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Ly
1= n
X, = “‘iLtJ«T Z ne" (1.7.10-11)
1-p n=0
where
= A§C'] = ot (1.7.10-12)
p ttt tpt t ] . . o
L
{] = (]'D 2
t Ly
]_
P
-1
D, = Vet (1.7.10-13)
t He T-Pg “t 2 . /e
where Lt
= P
P = (1-0)”—‘[{;]' (1.7.10-14)
1-p

An additional important measure of performance is now expressed
by the probability that the buffer is saturated (overflow), POFt.
This is also equal to the probability that an arriving message is

rejected (not accepted) at the terminal, denoted as P,, due to buffer

R’
flow. We have:

POFt probability of terminal buffer overflow

= PR = probability of message rejection
Lt :
= (1-p) —F— (1.7.10-15)
Lt-ﬂ
1- o

Thus, in designing and analyzing the terminal system we specify
and compute the delay, utilization and POF measures, using the
performance formulas given abové. Other time-sharing and priority
queueing models can be applied and analyzed, following the presentations

and results presented in the previous sections.
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1.8 SYNCHRONIZATION METHODS FOR THE DATA PROCESSING SYSTEM

1.8.1 Synchronization Considerations for the Data Processing System

Due to the distributed control of redundant sensors among the
Space Shuttie avionics network computers, an unpacceptable time skew

can exist between redundant inputs unless the GPCs are synchronized

prior to initiating the inputs. Similarly, unacceptable data-skew
may exist at the voting effectors unless a synchronization procedure
is employed prior to initiating outputs. In addition, unacceptable
command differences may exist at the voting effectors unless
synchronization occurs at proper states during program execution.

Synchronizationis accomplished in the Space Shuttle computer
complex by using inter-computer discrete signals and synchronization
software. '

Program synchronization is required as well, since computers
that’do not use exactly the same data for computing flight-control
outputs experience command divergence effects. The time required to
synchronize program execution depends on the design of the flight
software operating system. A fixed time-slice system (in which
all processes are run within a given cycle time) requires a single
synchronization point in each computational cycle. An interrupt-
driven system must synchronize at all points at which data are
calculated in ohe process and used in another, and at all points
needed to preserve identical process sequences in all computers
of the set.

Synchronization requirements between the GPCs also arise due
to error deteétion and récovery objectives. To prqvide a smooth

switchover in the case of a faijlure, the computers must possess

’ o[i'l’lc)ln ]
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some degree of synchronization even if the synchronization

implementation uses only the intercomputer communication lines.

iy Wy N

To achieve a high degree of error detection, comparison and

]
Vom—

voting procedures need to be employed. This requires the outputs

of the GPCs feeding the comparison/voting stage to be synchronized.

=

o A software initiated synchronization is performed before:

e Input commands are issued;

==

o Qutputs are exchanged for comparison purposes;

¢ Compool is updéted by the background to pass information to

the foreground;

v |

# Real time is obtained.

A Tist of all active output must be maintained, for comparison

ot

or voting purposes. For a "bit-by-bit" comparison shceme to perform

-yt |

satisfactorily, all inputs to the computers must be identical. These
include sensor inputs, crew inputs and real time. The FCOS must
guarantee the proper synchronization to maintain identical inputs.

For example:

o Sensor and crew inputs must be commanded only after a proper

e

synchronization sequence;

oIf all machines possess independent real time clocks, then

g,»«.»y R

when real time is desired, the machines must synchronize,

exchange real time, and utilize a properly defined average

value to be used in navigation and control loop calculations.
To keep the GPCs in synchronization the following functions

are employed.

nrsor S

a) Synchronization points are specified. For example, the following

synchronization points can be chosen.

i
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c)

a)
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eSync upon entrance to a foreground routine;

eSync before a data input sequence;

eSync before a comparison and output cycle;

oSync upon entrance to a trap routine;

oSync upon entrance to (or exit from) a background/foreground
update block;

oSync before the real time clock is read and exchanged as data;

. eSync upon entrance to the interrupt service routine; etc.

A maximum time-out function is specified. This function
represents the maximum waiting time allowed for the machines to
synchronize. Different sync points can possess different
time-out limits.

A topclogical sync-connection function. This function designates
the SPCs with which synchronizationis to occur at the underlying
point.

In the Space Shuttle orbiter avionics system a GPC software

synchronization technique is thus incorporated into the software
system to support simultaneous operation of GPCs in a Redundant Set.
It alos supports all active GPCs for System Software Interface

Processing.

The following software requirements are associated with the

synchronization procedure:

The synchronization technique is required to meet time skew

constraints, for sampling data sensors and providing output

commands to the external voters.

Allowable time skew on inputs is bounded by a specified value

denoted as  AT.. Typically,

I
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ATI 4 450 usec

A]1owéb1e time skew on output commands is bounded by a specified
vailue denoted as ATO. Typically,

AT0 v 1 msec

il B

The input time skew js defined as the time span between the first

-and last input command to the buses of a redundant sensor set to

achieve the effect of asimultaneous read operation. Additional

time skews need to be incorporated to account for differences in 5, :

bus transmission times and sensor response times.

The output time skew is defined as the time difference involved

in the issuance of redundant output commands to the buses. Additional

time skews need to be incorporated to accouﬁt for hardware related éi i

time differences. »3

b) The synchronization technique needs to support the fault r?.}%
detection and identification software function. This involves : I
GPC self-test procedures in the simplex mode and additional ?'55
bithy-bit comparisons of specified output commands in the
redundant mode. | | |

c) The synchronization technique needs tolgupport synchronization
of all active GPCs (commbn sync points) to facilitate system
software interface processing.
In particular, SSIP processes are those required to run at

the same time in all active GPCs, regardless of the major function

they support. For example, the following functions are elements of

SSIP processing. (These elements may employ various sync points.)

A. Intercomputer communications (ICC).

. . i::»‘}‘;
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B. Time management-required for the input coordination function
on the reading of the MTU and passing GPC prime clock values.

C. Downlist conf;ol to insure a phase relationship of the downlist
program.

D. Configuration change coordination - Required for switch and
keyboard inputs that require coordinated configuration changes.

E. Systems status data for display and control - There are
numerous parameters in the system software that are required
to be available for display across all GPCs. There also are
various logic control parameters denoting systems software
status required to be passed among all GPCs (for example,
what GPCs contain which memory configuration.

F. Applications interfact - Involves the trading of data between
dissimilar GPCs to support integrated displays and special
interfaces.

G. Launch Data Bus control - Involves changing command configuration
of the two LDBs when a request to transfer control is received..

H. GPC initialization - Requirés ICC to establish the current
configurations of other active GPCs.

I.  Annuciation - Common for all memory configurations and
requifed ICC coordination to facilitate GPC control of the PL
and DEU buses to output all C& and alert messages and to
combine identical messages produced by é Redundant Set into
single messages.

J.  GPC error handling - System error responses may require
GPC coordinatien.to determine what logic to invoke (for

example, to avoid downmoding all GPCs in a redundant set

for common mode errors).
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K. Mass Memory contention coordination - Involves coordination
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between GPCs when different configuration require use of a

shared Mass Memory Unit.

1.8.2 A Queueing Model

We present a general queueing model to describe message delays
and buffer behavior under‘a synchronization operation.

The unit under consideration need to synchronize a process
(being an output or input process) with another process. The
other process can be associated with another unit, or be the average
process generated from processes associated with a set of network
units.

Sync points are determined for the time compariscn:of the
two processes. To model this comparison operation, we assume that
underlying messages need to be stored in the unit buffer and queued
for a certain time until a time comparison task is completed.

The period of time required for such a message to be

queued in the buffer, denoted as S, can be simply represented

by the formula

-1

S = J‘—C—— + AT. + AT + AT (1.8.2-1)

S D p°

where

u average sync message length [bits];
~C = unit processing rate [bits/sec];

ATS = time-skew due to clock differences;

>
—
|

D= time-skew due to differences in propagation delays

>
et
i

p time-skew due to hardware processing differences.
If sync points are determined in such a manner that sync

messages arrive as a Poisson process at a rate

! : . [ N
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AS = arrival rate of sync messages [bits/sec],

then the unit system under consideration can be considered as a
queueing system.

In particular, applying the gueue-size and meséage delay results
presented in previous secitons we obtain the following formulas.

The system traffic intensity s given by
p = AS . : (1.8.2-2)
We require
p < 1, (1.8.2-3)

to ensure finite 1imiting queue-size and message delay values.
Then, the mean buffer queue size X, representing the average
number of messages in the system, queued in the buffer or under

processing, is given by

2
- -
el (1.8.2-4)

><|
1]
ko)
+
N —

The mean delay (response-time) D of a message, representing the amount
of time the message has to spend in the buffer for both queueing and

processing purposes, is given by

B o= 1 o
D = S0 tr 1 (1.8.2-5)

Using these formulas, network constraints upon buffer queue-
size and message delays can be applied to deduce the proper constraints
upon the underlying time-skew functions.

1.8.3 Clock Synchronization Procedures

We consider the problem of time synchronization for the Shuttle

computers, the data bus and other Shuttle systems using the time
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functions.

The two main methods that can be applied to synchronize the
GPC (or other unit oscillator) can be classified as:

eMaster-Slave Sync Techniques
eMutual Lock Synchronization Techniques

Under the master-slave sync method, one oscillator is named
the master and is the frequency reference. The other oscillators
are synchronized to the master using phase lock loops. Failure
of the master oscillator must be detected whereupon another
oscillator is named the master.

Successive master oscillators are selected in order from the
surviving oscillators. There are two problems involved in this
scheme: Since the entire system operation depends upon proper
operation of the master oscillator, failure of the‘master oscillator
must be detected and corrected. Two-failure tolerant failure
detection is cumbersomé. Also, the circuitry must be reconfigures
to select a new oscillator to be the master from the remaining
surviving oscillators.

The mutual lock synchronization scheme works as follows. Each
oscillator is controlled by a filter, in this case a phase lock loop.
The outputs of all four oscillators are added together and applied
to the inputs of each phase lock loop. The phase detector at each
phase lock loop input determines the relative phase between a
particular oscillator and each component of the summed inpuf.

For example, if the osci]]ator outputs are considered to be

sinusoids, the summed outputs will be
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where the ¢i's are measured with respect to some arbitrary but

consistent reference. Now the jth

phase difference between the jth oscillator and each of the i

phase detector measures the

components, and it outputs the sum of these phase differences.

th

Thus, the j~ detector output is

¢j=

TR

(,¢.i'¢j)
i=1

where j takes on the values 1,2,3,4.
It can be shown that, as a result of this summing of phase
- error at each input, the several oscillators will achieve mutual
synchronization with normal loop dynamics. This is true provided
the center frequéncies are within a mutual "pull range" to begin
with. |
Therein lies the key to failure safe operations for the mutual
Tock method. The tracking range of each oscillator is Timited by
clamps of the frequency control input of the oscillator. When an
oscillator fails off frequency, 1ossrof 1ock'fs assdfed by properly
limiting the pu11‘kange. The failed'oscillator will then be off
frequency and will be properly ignOred’by the remainingkphaseylock
Toops due to the selection of phase lock Toop bandwidth smaller than
the failed freqﬁency shift. The important point hére iS‘that~faiIUre
of an oscf]]ator does not cause detriment to the remaining oscillators
because any oscillator introduce§ vital control into the loop only

when a proper signal is present.
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The oscillator used in the clocking circuit can fail in
the following ways:
‘ONo output
eWrong output ﬁeve]s
eSmall frequency drift
eLarge frequency shift

The first two failure modes can be easily detected by comparison
of the performance of the quad computers and will not be detected in
the clocking scheme proposed. The second two, however, can cause
erroneous calculations of a more subtle nature and must be monitored
and any failure rectified.

A detector can be implemented tb determine the frequency error
between any oscillator and a referencé oscillator. The difficulty
here is that the reference oscillator may fail or the comparison
circuit may fail. The failure modes of the referéncevoscil1ator
arebthe smae as for an operational oscillator. The failure detector
circuft (comparison circuit) on the other hand may fail in one of
two ways: 1) it may erroneously indicate a failure of ah oscillator
(failure in the FAIL state) or 2) it may erroneously indicate that
an»oscil]ator is operational (failure in the GOOD state).

vTherefore, it is imperative in the oscillator failure detection
écheme to provide that frequency error detection be done without
introducing added failure modes. Oscillator frequency error can
be determined in two ways. First, 1t’can be deduced by comparing
computer Ca]cu]étions using data derived from each reference
oscillator. Secondly, oscillator failure can be determined by

emp]oyingﬂa double-fail-tolerant oscillator failure detector.

IR
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In order to use the master-slave synchronization technique,
failure detectibn of the master oscillator must be done followed
by an electronic reconfiguration to select a new master oscillator.
In ordér‘to maximize hardware efficiency, failure detection may be
done by a comparison between operational oscillators. Such a
comparison between two socillators gives, not a positive indication
of failure of e{ther oscillator, but isa failure syndrome indicator;
the failure can be either of the oscillators or the failure detector.
Thé failure of a particular osci]]ator can be determined by taking a
majority vote amongst several syndrome indicators, depending upon
the number of failures to be tolerated.

In turn, a clock system using a mutual failure detection
principle can be used. Such a scheme is designed to guarantee positive
failure indication of the five oscillators in spite of any three
failures of oscillators or detection circuitry. Oscillator failure
is announced any time two syhdrome indicators go to the FAIL state.
Those syndromes associated with the failed oscillator are then
removed from service and no more comparisons accepted from them for
additional failure indications. This requikes memory of prior
failures and also control functions between faﬁ]ure indication (FI)
logic. Because of the need to have a three-failure tolerant failure

'&etection scheme, the FI logic must be triple redundant with fail
proof wired "OR" fai]ufe indication.

The drawbacks in the mutual failure detecting clock system are
as follows. The control exerted by one osci]latqr and its failure
circuitry upon thé others paves the way for catastrophic failure of

one unit to destroy the others  Therefore, when oscillator failure
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detection is incorporated, the failure detection should be done
on a basis wherein independence is maintained between the four
clocking subsystems. In general, when a mutual synchronization
procedure is employed the structure shown in Fig. 1.8.1 can be

be employed.

%, COMPARISONS LoOP i
b | AND FAULT- f—m Z ; — :
o, SETECTION | DETECTOR FILTER |
| '
' :
VCO, = !
' 1 I
) oo e e T e e e o e ’
o > 0

Figure I.8.1.

Comparisons and fault-detection procedures are used upon the
received processes (phases), in establishing the integrity of the
under]ying clocks. Subsequently, the healthy phase processes are
summed to yield an average phase process. The latter feeds the
phase-locked loop of the system (GPC) under consideration, as
shown in Fig. I.8.1 (for GPC number 1).

The system analysis of such a loop is carried out in the
following manner. Considef the PLL model for oscillator number'1
shown in Fig. I1.8.2.

Neglecting the VCO tuning voltage and VCO instability one can

write the stochastic nonlinear differential equation by inspection

‘as follows:
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e] —— y(t) = V20 Sm[w t{g-ll 2+e *8 ] N(t’¢])
62 » it: \*; £ r ) is
£y s :r“%, St ¢ >H) lhm ](L)
8 ’ :
6= 43, ) Elj
r(t) = /2 cos[mot + 48] - ]
Kv/p o
Figure I1.8.2 s
i
& = KR e B
e
K Fy(p) ;
= —L " sin (¢ + N(t, ¢)] (1.8.3-1) .
p ] :
where :
b= (87 + 0y + 05+ 84 - 40;) = phase error -
N(t, ¢T) = N_. Cos Py - Ng Sin $1 = equivalent phase noise
We can write i
4 o
¢y = s 9; - 8 = (o) +0,+ 8y + 0,) - _"}T°'“ [Sin s, + N(t, 4] | ;
-3 R S
‘h "Z 01- - - 5 [>'_'_" 31!1(511.-4{11) + N(t,q,])J (1.8.3-2)
i=] . i=] |
where,
¢y = (o] * 0, togtog, - 49])
Similariy, the equations for other three loops may be written
i I R e B A R T ‘4C>llel{iji)i11 R —
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as follows:

4 4

K F (p)
i=] i= =]
where
4p = (0, + 0, + 03 + 9, - 40,)
4 K Fa(p) 4
. 3 .
43 =) 8 - — [2 Sin(o, - 40q) + N(t, -4»3)] (1.8.3-4)
i=1 Ti=l
where
#3 = (87 + 8, + 05 + 0, - 40,)
4
K F (p i
@4 = 2. 0] [L Sm 0‘. - 404) + “(t’ i‘q)]
=1 | (1.8.3-5)
where

Equations (I.8.3-2) to (I.8.3-5) represent the system equations
for four parallel coupled loops. Each'equation is a nonlinear
stochastic differential equation with coupling ﬁntroduced due to
other phase lock loops. By assuming F](p) = Fz(p) = F3(p) = F4(p) =1,
j.e., a first order loop and linearizing so that sin ¢ & ¢, the
Fokker Planck technique of analysis can be applied to solve the

simplified equations.
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To illustrate the efffects of time delays between oscillators,

consider the model shown in Fig. I1.8.3.

PHASE | o e
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Figure 1.8.3.

Bea ot

The fundamental equation of a single phase-tocked loop

!ﬁ is given by

.‘3

4 o= - .

] Wy = Moy + Ky Cos (y - 8yp = dy)

? where,

. N1 = Synchronized output signal frequency

Y, = Mominal frequency of the controlled oscillator

;? : Ky = loop gain of the controlled oscillator in rad/scc/rad.
- ¢] and ¢2 = relative output phases of osci]lators one and two
[ 812 = phase delay from oscillator 2 to nscillator 1

wss = steady state network frequency
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For the two phase locked loop clocks the steady state equations

are:

_ (6 - B - 1.8.3-6
Wy = Mgy + Ky Cos (&) - 8y, = &) ( )

Wy = Uy, + K, Cos (a‘q - 01 - ‘f’z) (1.8.3-7)

.

where NSS = N] = w2 = the steady state output frequency of both

oscillators.

For a practical network let

and K, = K, = K.

= Woz 17K

oy

Then equation (1.8.3-6) and (1.8.3-7) gives

0 ='H0] - HOZ + K[cos (¢2 -9y - 0]2) - €oS (él - by - 021)]
Moy = W 8y, 4.0 20, = 280 4 (0,1 - D
B Bl S [ Crz 21)] Sin[: 222 12)}

05y = B4,
and Bl 15

Substitute these in the above equation to give

AWO ‘
g = Sinle + 9)

—QANO
$+ 0= S*”~§KE”
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For a practical case
-ANO >0 and K >> 1,
¢ = -0

Substitute this in equation (I.8.3-6) to get

(- %21 7 82 - ¥

Thus in general
8,, + 2
-y = s Cos |12 021

(1.8.3-8)

These methods can now be integrated with the queueing
techniques presented previously in this section and the reliability
methods developed in the following sections, to obtain global system

performance characteristics.

—— aﬁ‘nam -

. e ot




C:l{}Il<:EZ)ITl

II. SYSTEM RELIABILITY MEASURES AND COMMUNICATION PATH
FAILURE ANALYSIS

II.1 Reliability Features of the Data Processing Network

The Space Shuttle orbiter avionics system is described in
Section I.1. In this section we will summarize the main system
reliability features.

Thg Space Shuttle avionics system contains five general
purpose computer (GPCs) communicating with the avionic subsystem
over a network of serial data buses (see Figs. I.1.1-1.1.2). Four
of the five GPcs are identically programmed to perform f]ight-
critical functions, such as guidance, navigation and control.

The fifth computer is programmed to perform non-flight-critical
avionic functicns.

Subsystems that perform similar funcfiohs are assigned to
the same data-bus group. There are seven such groups (Fig. I.1.1).
The subsystems have varying levels of redundancy at the unit level,
depending on their criticality. To prevent the loss of more than
one redundant unit when'one data bus fails, no two redundant units
interface with the same bus. ‘

During time-critical mission phases (when recovery time is

Tess than one second), such as boost, reentry and Tanding, four

of the five GPCs operate as a redundant set;'réceiving the same
input data, performing the same flight critical compdtations and
transmitting the same output commands. In this mode of operation,

efficient detection and identification of two flight critical

’computer failures is provided by comparing the output commands

and "voting" on the results. This is called the voting subsystem.
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After two failures, the remaining two computers in the set use

comparison and self-test techniques to provide tolerance of a

third failure. The voting mechanism thus allows a computer to
transmit incorrect commands to critical subsystems for an
indefinite number of cycles without having adverse effects on

system operation.

Each of the redundant subsystems is connected to a differenf

bus. Thus, a different computer requests data from each of the
subsystems and the returned data are available to all other
computers in the set.

In non-critical phases of the mission, each of the GPCs is
associated with a proper dedicated subset of subsystems. This
non-redundant configurationis termed the simplex mode.

Topologically, we note that the data processing system is
structuared around a central set of GPCs. Thelatter are inter-
connected to the subsystems so that they can be operated in
redundant groups to provide critical services.

Interface adaptation between the data bus network and the
orbiter subsystems is accomplished by multiplexer/demultiplexer
(MDM) units. The GPC complex is interfaced with the data bus
network through the set of 1/0 procéssors (I0Ps). Thé serial
digital data buses are time-shared, so that data transfer is
carried on a time-division multiplexed (TDM) basis, using pulse

code modu]ation (PCM).

Each GPC contains a self-testing program as well as built-in

capébi]ity.

~test equipment. The Tatter enables it to attain a 96% fault detection
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Each computer IOP interfaces with the other IOPs and with

the interfacing subsystems over the 24 separate serial data
buses. The IOP contains a set of 24 independent processors, o
called Bus Control Elements (BCEs). A 25th processor, the Master
Sequence Controller (MSC) controls the operationof the 24

BCEs. These 25 processors act as separate digital computers, :
with data processing programs independent of the CPU programs. :
Each BCE controls a Multiplexer Interface Adapter (MIA), which

is connected‘to the serial data buses via bus couplers (see Fig. I.1.3).

The MIA transmits and receives information, encodes and decodes i

bus data, and tests for parity and proper synchronization of bits.
In describing the reliability, fault detection and failure N
properties of the avionics data processing network, we will identify

the relevant failure and reliability measures and models for: the

AT EL. T T

computer system; the communication network; the subsystem complex;
and the proper integrated interfaces among these subnetworks.

II1.2 Failure Parameters and Reliability Performance Measures for
the Computer Complex

In considering failures of system elements, we examine failures

associated with the computer system, the communication network and

the application subsystems.
We first consider failures associated with the computer
complex. A GPC is assumed to have an average failure rate equal

to Ao [failures/sec], so that

A, = average GPC failure rate [failures/sec] (11.2-1)
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The period of time frmninitiation of operation to the failure

of a GPC, is called the PGC lifetime. It is a random variable,

’

denoted as Tc. Thus

T. = GPC lifetime = GPC operational time til

c
failure [sec] (11.2-2)

The mean duration E(T_) = TE is equal to AZ‘,
E(TC) = TC = ]/AC (11.2-3)

To statistically characterize Tc we need to specify its

distribution function Fc(x),

Fx) = P(Tx) , x>0 . (11.2-4)

It is many times assumed that TC is exponentially distributed,
so that

F(x) = 1-e ¢ , x>o0. (I11.2-5)

Other lifetime distributions are sometimes also used. For example,

a useful two parameter lifetime distribution is the Gamma distribution

with parameters A > 0 and k = 1,2,..., given by the density

~ k-1_-at
f.(x) = Hg' F(x) = kf] r(x) e, ts o
(I1.2-6)

Another useful ]ife{}me distribution is the Weibull distribution

with parameters v and k, v >e, k > 1, given as

) col- ()} e

F (x) =
' 0., X < g
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The conditiona] failure rate function hc(x), also called the

hazard function, is given by

- f(x)
Ch(x) = T (11.2-8)
The hazard function hC(X) yields the density of computer failure
after a lifetime of duration x, given that it has not failed during

its first x units of time of operation. Thus:
hc(x)dx = P{x <T<x+dx|T>x} . (11.2-9)

For a Weibull lifetime distribution, with parameters , v and k,
we have
t‘g k"] .
hc(t) = k(ng . (11.2-10)
Thus, the chance of a GPC failure increases with time in accordance
with expression (I11.2-10).

For an exponential lifetime distribution (II.2-5) with parameter

Ac’ we obtain

hc(x)-k=~ Ae s for each x > 0 . (I1.2-11)

Thus, under an exponential 1ifetfme distribution, the condifiona]

GPC failure rate is constant. The chance that a GPC will currently
fail, given-it has not yet féi1ed, is independent of the length of
time this GPC has been operational. The éxponentia] distribution

is therefore memoryless. A non-exponential distribution, su¢h as the
failure rate cannto be assumed to be constant. In general, the GPC
conditional failure rate is a non-decreasing function of the past

GPC lifetime.
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Cthidering a simplex operation of a GPC, self-test tests and
‘programs are used to detect a computer failure. The probab11ity
of a computer failure detection, using only self-test techniques is

called the computer coverage. Thus, we set

O
1}

d GPC coverage probability

P{failure detected by GPC self-test operation
GPC failure occurred} . (11.2-12)
In the Space Shuttle avionics system, a goal of 96% coverage
of computer failures has been set, when no external test equipment
or cooperativa use of other GPCs is employed.
To obtain

Pd = 0.9 ,

all GPC self-test techniques are employed, including: built-in

test equipment, timer micro and macro-coded self testing procedures.
A storage of CPU 110 half-words and a CPU processing time of 1.3 msec
is required.

To attain a coverage of

Pd = 0.88 ,

the abové mentioned macro-coded se]f-testing'procedure can be
withdrawn. Then, a CPUgstorage of only 14 half-words and a CPU
processing time of only 0.15 msec is required.

It is worthwhile to achieve Pd = 0.96 prior to assigning'a
‘GPC to a redundant set. However, to save storage and processing
time in using self-test procedures in the redundant set, during

critical mission phases, it is sufficient to attain’Pd = 0.88.
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The resulting redundant set reliability measure will be evaluated
in a later section.
The buf]d-in test equipment by itself can yield Pd = 0.37. It
requires virtually no additional CPU storage and processing resources.
It is also of interest for certain mission purposes, to model

secondary GPC failures. These are fajlures that do not affect the

operation of the GPC as related to the present mission. Given that
a GPC failure has occurred, we let PSF be the probability that it 1s

a secondary failure. Thus:
P

Thus, we have

H

Acs SFAc
Aep = GPC primary failure rate = (1-P

sF) e -

It is also possible to differentiate between transient and
permanent GPC failures. A transient GPC failure will cause an
incorrect computer output which can be restored within a relatively

short period of time TTR' A much longer restoration time TPR

is required to correct a permanent failure. The corresponding mean

restoration times are

TR

BTl

T, = ET

PR PR]

Restoration times are sometimes assumed to be exponentia11y

distributed, but any proper distribution (such as a Gamma distribution)

- can be assumed. For critical mission phases, we can set TPR-= +oo,

g = Plfailure is secondary |GPC failure has occurred} . (11.2-13)

GPC secondary failure rate'= [ W (I1.2-14a)
(11.2-14b)

(11.2-15a)

(I1.2-15b)

= oﬂﬁ'ﬂam
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In detecting computer failures, use is made of mutual tests
and data interchéngg between GPCs, of inter-GPC comparisons, as

well as of self-test procedures. We set

Pd(N) = probability of detecting a GPC failure, given it
has occurred, when both self-test procedures and
comparison procedurs among N GPCs are used. (11.2-16)

Clearly, we have

P, = Pd(l) , (11.2-17)
and

Py(N) 2 Py(N-1) ,  P,(N) > Py, N> 1. (11.2-18)

In choosing reliability performance measures to assess the

‘failu¥e invulnerability of the Space Shuttle avionics computer

complex, we consider the two computer system modes: ‘'the simplex
mode and the redundant mode.

In the simplex mode, an operating GPC serves a certain set of
subsystems. To assess its operational reliability we define the
following indices.

QCF(T) = Probability of a compdter failure within
T sec of operation, in simplex mode. (11.2-19)

EbF = mean time between GPC failures (MTBF), in
simplex mode. (11.2-20)

If we incorporate computer restoration operations, then we

are also interested in the following performance function:

QCO = probability of a GPC being in a failure state,
under restoration, in simplex mode , (11.2-21)
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In the simplex mode, when a computer fails, it can be replaced by
another one. It is assumed that a minimum of two GPCs is required
for regular operation. One is then interested in computing the

simplex system loss probability:

QSL(T) = the simplex system loss probability

probability that there are no two operational GPCs,
in simplex mede, in T units of time. (11.2-22)

We turn now to consider the redundant computer system mode.

In this mode, 4 GPCs are operating in parallel, performing identical
information processing operations. Comparisons are made between
the computer outcomes. A voting procedure is then emploved. The
failure of one or two GPCs is immediately identified and GPC-located
by the voting méchanism. The failure of a third GPC is indicatéd
by the voting procedure. However to detect which of %he remaining
two GPCs has failed, self-testing procedures are utilized.

We assess the computer-complex reliability performance in thé
redundant mode by thekfollowing measures,

PSL(T) = probability of a computer system loss during a T sec

redundant computer system operation. (11.2-23)

The redundant computer system is said to be lost, during a misSion
phase of T sec .duration, if no GPC is remained operational.

In assessing the increase in reliability contributed by the
number of fédundaht para11e1 GPCs (denoted as N), we are also

interested in computing the index:

PSL(T,N) = probability of system loss during a T sec

redundant operation of N GPCs : (11;2-24)
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We note that in the present system, N = 4, so that
P (T) = Pg (T.4) . (I1.2-25)
The following mean time between failures also prcvides a
measure of redundant system invulnerability.

T%(N) = mean time to system failure of a redundant N-GPC
computer complex . (11.2-26)

In the present system N=4, so that we set

T% = Tk(4) . (11.2-27)

II.3 Failure Analysis for the Computer System: The Simplex Mode

I1.3.1 Single GPC Failure Analysis

In the simpiex mode, each of the GPCs is associated with a
proper dedicated subset of subsystems. '

Assume that out of the N available GPCs, only M GPCs are used
on a dedicated basis, M < N. The remaining N-M GPCs are used to
replace failing GPCs.

Each GPC is governed by a failure rate At (Assume only
primary failures.) Using self-testing procedures, the probability
of detecting a GPC failure, once it has failed, is equal to Pd.

The mean time to failure of a GPC is thus equal to

be = T}(l) mean time to failure for a simplex GPC

/2 - | (11.3.1-1)

]

If the time to failure LCF of a sihg]e'GPC is exponentially distributed

‘we have

-Act : A
P(LCF >t) = e , t>0. (I1.3.1-2)
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A time-dependent self-testing failure detection process is

described as fo]]bws. We set

LFD = time to failure detection, by self-testing techniques,
for a simplex GPC, given failure has occurred. (I1.3.1-3)

The mean time to failure detection I%D is equal to

-1
N (11.3.1-4)

Lep ° E[L

D]

provided failure detection occurs. If LFD is exponentially

distributed, we set ,
P(LFD >t) = (]-pd) + Pde » t > 0. (I1.3.1-5)

Therefore, we conclude that

Probability of a GPC undetected failure in t units of time

1

t
j PLLepe(usurdu) IP(Lpy > t-u)

0

t -A.u
_ c - d(t-u)
= j. A8 [Pde + I-Pd]du

0

AP -t -2t -x-t ;
= S e de CTH (1P )00 ©) . (11.3.1-6)

d
-Act ‘
a GPC will fail within t units of

Thus, with probability 1-e
time. After faiiure, by self-testing techniques its failure will be
detected with probability P> and undetected probability 1-P,. The
dynamics of failure detection is described by Eq. (I1I.3.1-5). The latter
yields the probability that failure detection (by se1f§testing) will |

“require more than t units of time. Eq. (II.3.156) describes the

probabiiity that a GPC failure will occur within t units of time

o 2
-157 ' ~ o[:n LOM'”L :




[~

C>lf}Il<2322111

and that the failure will remain undetected during this period.

I1.3.2 Failure Analysis for the Simplex Computer System

We consider the computer complex under the simplex mode. It

is assumed that M GPCs need to be used on a regular basis, each being
assigned a dedicated set of subsystems. The total number of available
GPCs is equal to N, N > M. For the avionics system, we typically

have N = 5, M = 2. The failure characteristics of each GPC hayve

|
I

been analyzed in the pravious section.

=4

We assume now that upon the detectionof a failed GPC, it is
immediately replaced by an in reserve GPC, if such is avaijlable.
Initially, M GPCs are operating and N-M GPCs serve as reserve units.

We say the system loss has occurred when no more than M-1 operating

v B o

GPCs are left. Thus, we set

 ooere |

QSL(T,M) = P{no more than M-1 GPCs are left} . (11.3.2-1)

o |

For the avionics system, M=2, so that

Qg (T) = Qg (Ts2) . (I1.3.2-2)

L wuser

We wish to compute QSL(T,M) and QSL(T).

33

The GPC failure point process can be noted to be a Poisson

process with rate MAC [failures/sec]. We subsequently obtain tha

following result.

QSL(T’M) = P{more than N-Mtl computer failures in T units of time}

B

T M M _u
= 2 (Mx U)(N'M)e ¢ du
IN—M§! c
0 .

s

N-M M1 (e T)! o
= 1-2 e ° -—-n—f-——— (11.3.2-3)

=0
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Therefore, for N=5,M=2, we obtain:

n
3 e-ZACT (ZACT)

{
—
!

QSL(T) =

n!
n=0

. 2 3
-ZACT ; (ZACT) (ZACT)

1+ ZACT t 3 . (11.3.2-4)

1 -e

Using expression (11.3.2-4), we can thus compute the
probability QSL(T) that the simplex system fails, so that no more than
a sinéle GPC is operating in T units of operation time. Alternatively,
given a desired maximum simplex loss probability 9> We can evaluate

the critical time Tc such that

T, = max{T: Qg (T) < Qy} - (11.3.2-5)

To compute Tc’ we solve
0 (T = Q - (11.3.2-6)

I11.3.3 Restoration Analysis for the Simplex Computer System

We consider the simple computer system presented in the previous
section, but now assume that failed GPCs can be restoaed. We assume

the GPC restoration time TR to be exponentially distributed

P(T, >t) = e , t>0, (11.3.3-1)

R

with a mean restoration time TR equal to

TR * E[TR] AR - (11.3.3-2)

Computer time to failure is exponentially distributed with mean A;].

- Assume here that P4 = 1. There are altogether N GPCs. Only M GPCs

" can be used simultaneously where M < N.

e AR o b st d
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To analyze the statistical characteristics of this computer
system, we model it as a proper queueing network, shown in

Fig. II.3.3.1.

RESERVE GPCs IN FALLED
GPCs SERVICE, GPCs
# <M
TOTAL # GPCs=N  MEAN TIME TO FAILURE
-1
= Ac
RESTORATION
REPAIRED MEAN TIME e
GPCs -1
= AR

Figure II1.3.3.1

In this queueing network, no more than M GPCs can be used in
parallel. Each will fail after an average operating time equal to
A;]. Upon its failure, a GPC is being restored. Average restoration
time is equal to 1&1. When a GPC is restored, it immediately joins
the queue of reserve GPCs. Whenever the number of GPCs in service
becomes below M, a reserve GPC (if available) enters service.
To analyze this system, we use and extend the methods developed
in Sections 1.6.5-1.6.6. We set
Pn = P{n GPCs are in the system, operating condition,
in reserve or being used} . (11.3.3-3)
We then obtain the following formulas
M-1

Z Mkk

=0

ave
2 - —
l 'O

MM 7]
T W , (11.3.3-4)

=
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where
AR

P = 'N—D'\-; s (11.3.3—5)

and

Pk, if K < M1

N'p‘kv MM . §
Pk = ‘Po-m—_-.—ﬂ-!— T , ifM<k<N (I11.3.3-6) %

0, otherwise

e Pt

We can now set the probability of system loss QSL for this
model to be equal to the probability that the system contains no
more than M-1 GPCs in working condition. We then obtain QSL to

be given by

(11.3.3-7)

where'Pk is’expressed by Egs. (II.3.3-4)-(IL3.3-6).} '

In this manner, the system engineer can compute the probability
of computer system loss under a simplex mode of operation. The
proper system parameters (such as GPC failure rates, restoration ‘ uﬂ

vrateé, number of reserve GPCs) can then be adjusted or chosen.
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I1.4 Failure Analysis for the Computer System: The Redundant Mode

We compute in this section the underlying reliability perform-

ance measures for the computer system under the redundant mode.

In this mode, four GPCs are operating in parallel conducting identical

operations. The outputs of these GPCs are compared and voting is

used to decide upon the correct output. In this manner, one and
two GPC failures are readily detected and the failed computer is
identified. When only two operating GPCs are left, by comparing
outputs one can detect the failure of a third computer. It, however,
remains to identify the third failing GPC. Self-testing procedures
are subsequently used. When only one GPC is left, only self-testing
techniques can be used to detect its failure. The underlying
reliability characteristics are then identical with those computed
for the simplex mode in Section II.3. \

Tolunderstand the performance dependence upon the number of
parallel GPCs in the redundant mode, we assume that there are N
parallel GPCs. In the avionics system under consideration, a

number of N=4 parallel GPCs are employed. Thus, we set
N = number of parallel GPCs in redundant mode. (I1.4-1)

Each GP7, using self-testingprocedures and programs has a
coverage probability Py Thus, given a GPC has failed, it will
detect its failure with probability Pd, employing self-test
techniques. | ‘

The GPC failure rate is equal to

~ GPC failure rate = Ao - (11.4-2)
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Wé assume only primary failure here. Each GPC has a life-time

(time to failure) described by a random variable TC (see Section I1.2).
Note that

(11.4-3)

We initially assume that TC is exponentially distributed (Eq.(I1.2-5)).

Typical values for the avionics system are:

=0.96; A =8 x 1072 [failures/hour] . (11.4-4)

P c

d
Our analysis is general, so that any proper parameter values can
be incorporated.

We first consider the probability measure Pd(N). 1t has been
defined by Eq. (II.2-16) as the probability of detecting a GPC
failure, given it has occurred, when both self-test procedures and
comparison procedures among N GPCs are used. In the‘redundant mode,
we employ the comparison-voting procedure to detect and identify
failed computers. Thérefore, if i GPCs are operating in parallel
with i > 3, we can always perfectly detect and identify any single

GPC failures; so that
Py(i) = 1, if i=3,4,..., N (11.4-5)

When only two GPCs are operating, we can still perfectly detect

whether one of the GPCs has failed, so that

¢(2) = 1 | (I1.4-6)

In this case,'however, we need to employ self-test techniques to
identify the failed computer.

When a single operating GPC is 1éft, only self-test techniques

k'are used to identify its failures. Subsequently, we have
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Py(1) = Py (11.4-7)

so that the failure detection probability is equal to the GPC
coverage.

To éssess the reliability of the redundant computer complex,
we are interested in computing the following two measures:

PSL(T’N) = the probability of system loss during a T sec (11.4-8)
redundant operation, starting with N parallel GPCs;

TF(N) = mean time to system failure for a redundant computer
system, starting with N parallel GPCs. (11.4-9)

The function PSL(T’N) is computed as follows. We set

fuo(t)dt = P{(N-2)nd  GPC failure occurs in (t,t + dt) }. (11.4-10)

N2

Thus, fNZ(t)dt expresses the probabilit} that, startjng with N
parallel GPCs, we are left at time t with only two operating GPCs,
and the last failure occurred at time t, within (t-dt,t].

If every computer has an exponentially distributed Tifetime,
‘with mean A;], and GPC lifetimes are statistically independent

(as well as identically distributed), we obtain the following result.

fyp(t)dt = PE(N-3) failures in (0,t)IP{a failure in (f,t+dt)}
= (N§3)(1-ehkct)N“3(e—A°t)3 3ACE—3ACtdt . (I1.4-11)
Therefore,
Fyo(t) = %~ TN¥§YT ,\C(l-e-'\ct)N%e—&\Ct . (11.4-12)

We also note that the times between the first N-2 failures are
statistically described as follows. They are i.i.d. random variables

such that the time between the i-th and (i+1)st GPC failures is

3

1
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exponentially distributed with mean {(N-i)xc]_], for i = 0,1,...,N-3.
We now observe the failure of the redundant computer system to
proceed in two phases. In the first phase, starting with N parallel
GPCs, N-2 GPCs fail. Using the comparison voting procedure, these
failures are immediately perfectly detected and identified. We set

TF(N,l) = time duration of first failure phase
time until the (N-2)nd GPC failure . (1I1.4-13)

Then, TF(N,1) is governed by the Gamma density (II.4-12). In particular,
the prcbability that phase one will be longer than t sec is given by

P{TF(N,1) >t}

® -\ X -3A X
=f ]7*«: T‘“)—NN; - (e N3 ety (11.4-14)
“t

The mean duration of a phase one mode is given by \

T ‘ - | = -] '—] -

Te(N,1) E[T(N)T = Al 0 i (I11.4-15)

i=3
In particular, for N=4 we have:

-Act -BACt

f42(t) = 12AC(1-e e ; (I1.4-16)

T.(4,1) = <+ (11.4-17)

F'o 12 “c )

Upon the termination of phase one, when we are left with only
two operating GPCs, the phase-two failure mode starts (provided at
this time, the computer system still operates in the redundant mode).
Having now two operating GPCs, we are interested in computing the

system loss probability P, {t,2). This is the probability that,

SL(
starting with 2 PGCs, no operating GPC is left within t units of time.

To derive this function, we write:

TSI
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1 - PSL(t,Z) = P{no GPC failures in (0O,t)}+ P{a single GPC fails
in (0,t)}P{detecting a failure|a GPC failure has occurred}
-ZACt -lct -Act
=g + 2Pde (1-e ) . (11.4-18)

Therefore, we conclude that

-xct -Zxct
P (t:2) = 1-2pe © e ©(1-2py) . (11.4-19)
We can now compute the system loss probability PSL(T’N) as
T
Po (T.N) = J. sz(t)PSL(T-t,Z)dt . (11.4-20)

0
Substituting (11.4-12) and (I1.4-19) into (II.4-20) we obtain the
following result:

-at

T -3x t
- 1 N! ¢ yN-3 c
0

- _(T-t) -ZAC(T-ti

[1-2p e ¢ -(1-2P,)e ldt . (11.4-21)

In particular, for the present avionics system we set N=4
in (II1.4-21) and obtain, after some algebra, the following expression

for the computer system loss probabi]ity.

P (T) = Py (T,4) = 1- e-ZACT(3e-2ACT-8e—ACT+6) - 4pde-A¢T(1-e-A°T)3
= (1-e-ACT)3[1+e;ACT(3-4Pd)] . (11.4-22)
Eq. (I1.4-22) can also be derived simply as follows. We note that
PSL(T) = P{4 GPCs fail in (0,T)} + P{3 GPCs fail in (O,T)}(1-Pd)

“AT - T -2 T
(1-e €)%+ (1-p)de C(1-e €)%, (11.4-23)

Eqs. (I1.4-22) and (I1.4-23) are identical.
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Extending the approach used to derive (II.4-23), we obtain the

loss probability PSL(T,N) when starting with N paraliel GPCs, N>3,

as follows.

L]

Pg (T.N) = PN GPCs fail in (0,T)}+ PIN-1 GPCs fail in (0,T)}(1-P,)
-AT =T ~A T

cHN (1-P e € (1-e )M
AT AT |

CyN-Tr4e C (N-1-NP )] . (11.4-24)

(1-e

It

(1-e

Eqs. (I1.4-22)-(I1.4-24) can now be used to compute the loss
probability associated with the redundant computer complex. We
note the following characteristics of PSL(T). (Similar properties
hold fof PSL(T,N), using (11.4-24).)

The Toss probability PSL(T), given by (I1.4-22), is a linearly

decreasing function of the coverage Pd. This is illustrated by

Fig. II.4.1. .
PL{T+Pg™0) =
P (T)
T (M
1 st
P (TP4™7 ' =--

- e = el

PSL(T,Pd=1) e - - -

s g gy eme o Mg

— o am— — o "

s S

. g Coverage (P)

L

0 1/2 1
Figure 1I1.4.1

If Py =1, so that we can detect with probability one a computer

~failure, when it has occurred, we obtain by (II.4-22) the loss

probability to be equal to

it 18 LI
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Py (T.P=1) = (1-e €)% . (11.4-25)

This is the 1owést attainable value for the loss probability.

The highest loss probability is observed when Pd=0. Then,
the self-test techniques are inoperable (or useiess), and we have

AT 3 AT -
PSL(T,Pd=O) = (1-¢ )7 (1+3e ) . (11.4-26)

We note that Eq. (I1.4-26) incorporates the observation that if
Pd=0 and two GPCs are left, any GPC failure will result with a system
loss condition. Hence, 3 or 4 GPC failures will result w{th system
loss. * In turn, Pd=1,vwhen two GPCs are left, the system remains
operatioha] under a single GPC failure, and is Tost only when both

GPCs fail. Hence, system loss now occurs only if all 4 GPCs fail

yielding expression (11.4-25).

_ .
For Pd =7 we obtain

AT -2 T
P (ToPy = 3) = (1-e € )3(14e € . (11.4-27)
For Pd = %3 we also note that (see (11.4-16))
| 1 At ‘
i PSL(t,Z,Pd-é) = e (11.4-28)

Consider now’the following procedure, to be called the random
choice procedure. When two operational GPCs are left, if a failure
is observed (through the comparison procedure), one GPC is arbitrarily
(at random) shut down. Or, alternatively, when 2 GPCs are left, one
_GPC is arbitrarily shut down. Under this procedure, the system
loss probabiiity, starting with 2 GPCs, $;L(t,2) is obtained to be
given by '
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~probability is attained when self-test techniques are utilized

- Pys the failure is then detected and the remaining operational GPC

Po(t,2) = e © = p. (t,2,P =N “(11.4-29)
st sL(ts2:P475) - T

The associated system loss probability under a random choice procedure

3;L(T,N), is thus equal to that obtained when P, = %—,
~ _ _1
PoL(ToN) = Pg (T,N,Py=5) (11.4-30)
Therefore,
ry 1
P  (TN) < Pg (T,N,P,) for Py <% (I1.4-31a)
B (TN) > P, (TLN,P) f ] I1.4-31b
st{ToN) > Py (TN,Py or Py > 7 (IT.4-31b)

Thus, if Pd P4 %-the random choice policy is preferrable. Self-
test techniques should not then be utilized, since they provide mis-
leading failure information. On the other hand, if Pd > %‘, as 1is
the case in the avionic system under consideration, a lower loss

(since they then clearly provide additional helpful failure information).
We now compute the mean duration of the phase-two failure

period, denoted by Tk(N,Z). Phase two starts with two operational

GPCs. Let T],T2 denote the lifetimes of these GPCs. These are

i.i.d. exponentially distributed random variables with means A;].

The first PGC fai]uré'ocburs at time min(T],TZ). Then, with probability

1-Pd the failure is not detected and the system is lost. With probability

continues to operate until it fails. Following these observations,
the following result is obtained.

— = . V _‘]
TF(N,Z) = E{m1n(T],T2)} + dec ,

where
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E{min(T],Tz)} 21
c
Subsequenf]y,
To(N,2) = (2a )71 e p !
F'™ o d'c
=2 d e p)) (Ii 4-32)
c ‘2 d :

We again note that under the random choice policy the mean

N

lifetime duration of phase-two, E(TF(N,Z)) is given by

N - —
ECTA(N2)T = a0 = To(N,2,p0) . (11.4-33)

The overall mean lifetime T#(N) is obtained by using Egs. (II.4-15),
(11.4-32), (I1.4-33), to be given by

N
TF(N) s ;\;] (Z i1y %- + Pd\) ; (I11.4-34)
i=3 /
ELT(N)] = 27! <:E: RL {) = TANPED) (11.4-35)
=3

In particular, for N=4 the mean lifetimes are obtained by

(11.4-34)-(11.4-35) to be equal to

T - sl 213
Te(4) = A (Py+ 15 ) s (11.4-36)
_19 -1 -1 .= 1 3

E[TL(4)] = g7, = 1.583%_ = TL(4,P=5) . (11.4-37)

For p, = 1, we obtain
d |

4oy - 25 -1 _ i
Te(4,P=1) = 5. = 2.083x

1 (11.4-38)

The functional dependence of the mean lifetime TF(4)'on the

cOveragerprobabi1ity Py indicated by Eq. (II.4-36), is illustrated
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We now examine the dependence of the computer system ‘ é:j
reliability measures on the number N of parallel computers. E:é
The system loss probability PSL(T,N) is given by formula (II.4-24). % @
If Py=1, we have ‘ f‘f
' | RPANY &
Pg (TuN,P=1) = (1-e © )7 . (11.4-39) §
Therefore, for P =1, o
Pe, (T.N+1,P =1) AT 3
SL ? > d C
— = (1-e ) (I1.4-40) .
PSL(T,N,Pd 1) 3
so that by using an additional parallel PGC we decrease the loss .f%
A T =
probability by a factor of (1-e © )'].
The mean lifetime T%(N) when N parallel GPCs are used and ‘ ff%
P4=1, is given by '
¥
o[} " C)nz T
=171~ SR e T L e
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Therefore,
3, Uil S
- 7 L
To{N+1,P =1) -
£ d = 122 (11.4-42)
i=3
Eq. (II.4-42) represents the factor by which the mean 1ifetime to
failure of the redundant computer system is decreased, when the
number of parallel GPCs is increased from N to N+1.
For example, if we use only N=3 parallel GPCs, rather than
N=4 parallel GPCs, we obtain
- _ 3.1
T3P g+v3 |
= . = 5z = 0.88 . (11.4-43)
T.(4,p=1) 3+L1+1 25
FY 2 d 273 & !

Thus, using 3 parallel PGCs, rather than 4, reduces the mean lifetime

by a factor of 12%.

If we, on the other hand, employ 5 parallel GPCs, rather than 4,

we obtain

T(
(4,p

5,Pd=1)

5e = 1.0955  (IL4-44)

+
B 3
TE(A,p41) 7

d

SO that‘tﬁe hean lifetime is increased then by a factor of 9.5%.

The system loss probability dur?ng an opérational period of duration

T is then reduced, according to (I1.4-40) by a factor of (1-e—ACT)'].

The absolute value of the system loss probability is given by (11.4-24).
The equations derived above for the computer system loss

probability and lifetime are in terms of the following parameters:

N1, 3 _
21 +3 ). (11.4-41)
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AC = the PGC failure rate; T = duratioq of the redundant phase;
N = number of parallel GPCs; Pd = coverage probability. Eq.
(I1.4-24) yields the loss probability and Eq.(I11.4-34) the mean
lifetime. The system designer and analyst can use these results to
study or adjust the failure and characteristics of the redundant

computer system.
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IT1.5 Failure Analysis for an Application Subsystem

We consider an application subsystem of the Space Shuttle
avionics data processing network. The failure characteristics
of this subsystem are examined in this section,

The subsystem under consideration can be a telemetry sub-
system supplying information data to the computer network at certain
times; a sensor subsystem; actuator subsystem receiving commands
from the computer complex; display subsystem; control subsystem;
interface subsystem; GNC subsystem or the mass memory subsystem.

An application subsystem is many times internally redundant.
This is teh case for the hand controllers and the keyboard units.
Also, all safety-of-flight critical effector subsystems, such as
the actuators for the main engine and for the aerosurfaces, the
main engine interface units and mission event controllers are
internally redundant at different levels. Such subsystems receive
redundant commands on separate input channels and using internal
algorithms they generate a single output stream. These algorithms
also detect incorrect commands and eliminate such commands from
consideration 1in the output.

Subsystems which perform similar functions are assigned to
the same data-bus group. Subsystems have different levels of
redundancy at the unit level. In accordance with their criticality
For example, there are three inertial measurement units, two
radar altimeters, and four air data transducer assemblies. To
prevent the loss of more than one redundant unit when one data

bus fails, no two redundant units interface with the same bus.
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To analyze the failure characteristics (invulnerability) of a
redundant subsystem, we set the following parameters. The subsystem
under consideration is assumed to contain L equivalent redundant
units. Each unit is assumed to be connected to a different bus.

Thus,

-
0]

number of redundant units in the subsystem

number of data buses connected to the subsystem (11.5-1)

We characterize the failure properties of each unit by the

unit failure rate Au’

A, = unit failure rate [failures/sec] . (11.5-2)

Thus, if Tu is a random variable representing the unit Tifetime

(i.e., time duration to failure), we have

Average time to unit failure

= E(T) = a . (11.5-3)
The unit lifetime distribution is specified as

Fu(x) = P(T <x)., x>0 (I1.5-4)

u

If the unit lifetime is assumed to be exponentially distributed, we

have
F(x) = 1-e Y , x>0. (11.5-5)

We assume unit lifetimes to be statistically independent and
identica]ly distributed. Furthermore, to explicitly illustrate the
subsystem failure behavior, we assume now an exponential failure
distribution (II.5-5). (The following results, howaver, are readily

extended to include an arbitrary unit lifetime distribution.)
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We consider an operational period which lasts for T [sec].

Then we have

qu(T) = probability of a unit failure in T units of time
-\ uT
= 1 -e . (11.5-6)
Also,
Qu(T) = probability that all subsystem units fail

in T units of time

AT
[a, (M= (1 -e )b (11.5-7)

Each unit is assumed to be connected to a different data bus
To evaluate the probability of operational Toss {or survival) for
the subsystem, we now specify the failure characteristics of the
data buses. -

Each data bus is associated with a random variable T2 representing
its lifetimes (i.e., time to failure). Line failures can be defined i;
to include both physical failures as well as interference (noise)
phenomena which cause degradation in data communications across

the line. We then set the line failure rate to be

A, T data bus (1line) failure rate. (11.5-8)

The distribution of the 1ine (data bus) Tlifetime is given by

F (x) = P(TL < X) x> 0. (11.5-9)
Note that

-1

Data bus mean time to failure = E(T#) = X,

(I1.5-10)

Assuming the data bus lifetime (time to "failure") to be exponentially

distributed, we have

F(x) = 1-e¢ % , x>0 . (11.5-11)
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The invulnerability of the subsystem is expressed in terms of
the following two measures. The subsystem loss probability is

defined by

qSL(T) = probability of subsystem loss within T units of time

1

probability that within T units of time the subsystem
fails or is disconnected from the bus network . (I11.5-12)

The subsystem mean lifetime is defined as

TSF = the subsystem mean time to failure or disconnection
from the bus network (I1.5-13)

The subsystem loss probability qSL(T) is computed as follows.

L
qSL(T) = |1 P{unit i is lost or disconnected}

i=1
L .
= P unit fails or its data bus fails
j=
L
= 1T [1-P(unit i does not fail, its data bus does
i=1
not fail)]
L

= [T [1-P(unit i does not fail)P(data bus connected
=1 45 unit i does not fail)] . (11.5-14)

Therefore, the subsystem loss probability is given by the formula

- “(AU*'AR.)T]L )

g (T) = [1-e (11.5-15)

The subsystem wean lifetime (time to failure) TSF is similarly

derived to be given by |

o= a3 | (11.5-16)
SF Vi M T .

=1

o

j

3

To derive equatidn (11.5-16), one notes that if i operating units

are left, the time to the next failure (of a unit or its associated
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data bus) is exponentially distributed with mean [i(A2+Au)]'] [sec].
Eqs. (I1.5-15)-(11.5-16) provide the desired formula for

establishing the failure characteristics of the redundant subsystem.
The parameters involved are: the operation period duration (T);
the number of redundant units and data buses (L); the failure rate of
a unit (Au); and the failure rate of the data bus (Az). In terms
of these pérameters, Eq. (I.5-15) yields the probability of
subsystem loss (so that no connected operating unit is left),
while Eq. (I1.5-15) expresses the mean time to system loss.

| For given subsystem parameters, these formulas are used to
compute thé subsystem invu]nerabi1fty. For a specified subsystem
loss probability (or mean lifetime), one uses these results to
calculate the desired level of subsystem redundancy and undef]ying

unit and data bus failure rates. ‘
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. characteristics of the data communication network.

IT.6 FAILURE ANALYSIS FOR THE DATA PROCESSING NETWORK

IT.6.1 Reliability Performance Measures for the Data Processing
Network

The Space Shuttle orbiter avionics data processing network
consists of serial data buses which connect the application sub-
systems to the computer complex. The data buses are divided into
groups. Different groups provide comnunication connections to
different subsystems. Certain subsystems contain redundant units,
each connected to a different data bus, to increase the subsystem
invulnerability to failure.

Reliability measures for the computer system have been
presented in Section Il.2. The associated failure analysis for
the computer system is carried out in sections II.3-II1.4. Failure
analysis for an application subsystem is presented in Section II.5.

1

In'this section we wish to combine these results with the faijlure

The topological structure of the data bus network is specified

by the incidence matrix B, where

B = [bij] (11.6.1-1)

and

1, if data bus j connects unit i to the
. computer complex

b.. =
13

0, otherwise.

Each subsystem contains a number of units. We can thus
describe the topological interconnections between the subsystems

and the computer comp]ex by a subsystem incidence matrix A, where

A = [aij] (11.6.1-2)

and : | . ‘
T | ' o[ ~£,sz)111;““‘“
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{ 1, if subsystem i is connected to data bus J
a =
1]

0, otherwise

The overall network topological structure is specified by the

connectivity matrix, also called adjacency matrix, C where

C = [Cij] (11.6.1-3)

and

C.. =

{_1, if node 1 is connected to node j
1

0, otherwise

We regard each network element (GPC, application subsystem or

unit) as a node. Nodes are connected by the data bus Tines,

inducing thus an underlying topological structure modelled as a graph.
Wehn the computer system is in the redundant mode, four GPCs

are connected in parallel, having simultaneous access to all applica-

tion subsystems. We then have

for each unit i and GPC j.
When the computer system is in simplex mode, each subsystem
(task) is associated, on a dedicated basis, with a certain computer.

Then,

whenever subsystem i is associated with GPC j, and a.. = 0 otherwise.

iJ
We wish to examine the invulnerability of the data processing
network to failures of nodes and lines. To assess network reliability,

the fo-lowing performance measures are of interest.

Lo —
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of rerouting upon certain line failures.

We incorporate, as element failures, the failures of computers,
data bus lines and subsystem units.

In the redundant mode of operation, we say that a network loss

event has occurred whenever a certain set of tasks cannot be
processed by the computer complex. This can be due to computer
failures, line failures (or noise), or failures of units in certain
application subsystems.

The probability of network loss in T units of time is set to
be | ‘

PNL(T) = probability of network loss is T units of time. (116.1-4)

To define and compute PNL(T), we identify a set of critical subsystems
(or tasks), the failure of each of which induces a system loss event.

We thus set

Nc = set of critical subsystems in the redundant mode. (I.6.1-5)

Subsequently, the network loss probability in the redundant mode is
defined as
PNL(T) = probability that, under the redundant mode, a critical
subsystem cannot be utilized, or connected to the
computer complex, or receive information-processing
service from the computer system.. (1.6.1-6)
Clearly, in computing PNL(T) we need to consider the availability
of‘computer processing resources to serve the critical subsystem,
the reliable transmission of information between the computer complex
and the critical subsystems. and the operational integrity of the

critical subsystems themselves. We also incorporate the possibility
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In a similar manner, we define the mean time to network loss as

TNL = mean time to network loss, under redundant mode

mean time until the failure of a critical system, or (11.6.1-7)
its network disconnection, or the non-availability of
computer resources for its associated processing services.

Under a simplex mode of operation, we consider the subnetwork
composed of a single GPC and its associated application subsystems.

The probability of network loss is then similarly defined as

, qNL(T) = probability that a critical subsystem cannot be
connected to a GPC in T units of tim2, under the
simplex mode (T.6.7-8)

In computing qNL(T)’ we consider GPC failures, line failures and
unit failures, as béfore. In addition, we also inccrporate the possibil-
ities of rerouting messages (through alternate paths, when their
primary paths fail). Also, we consider the utilization of a stand-by
GPC to replace a failed computer.
In a similar manner, the mean time to network loss under

simple mode is defined by

TSNL = mean time to network loss, under simplex mode.(II.6.1-9)

In assessing the interconnecting communication data bus network

itself, the following connectivity measures are useful:

K(i) = minimal number of 1ine failures which cause subsystem
i to be disconnected. (11.6.1-10)

PK(i) = probability that subsystem i is disconnected. (1I1.6.1-11)

For time-critical tasks, it is also of interest to define;the

delay dependent reliability measure
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PK(i,D) = probability that a task associated with subsystem i
cannot be processed by a GPC within D units of time.

(I1.6.1-12)
In computing (I1.6.1-12), we note that it is possible that the
subsystem will remain connected tb'the computer complex, after certain
failures, but due to increased traffic (caused, for example, by
rerouting tasks away from failed lines or GPCs), associated tasks
cannot receive service (processing) within their required critical
time delay constraints.

I1.6.2 Failure Analysis for the Data Pracessing Network: The
Redundant Mode

The computer system is assumed to be in the redundant mode. The
computer failure rate is A [failures/sec]. The computer coverage
probability (i.e., the probability that a GPC will detect its
fai]uré, wheh it has failed, using self-test procedures) is equal

to Pd. Then, if N GPCs operate in parallel, the probability of a

computer system loss in T sec, PSL(T,N), is given by Eq. (11.4-24)

as

AT AT
PoL(T.N) = (1-e YNy (N-1-NP4)] . (11.6.2-1)

The mean time to failure for the computer system is given by (II.4-34)

to be equal to

N ‘
= -1 . -1, 1
TE(N) = ag ( :E: iT st Pd> . (11.6.2-2)
i=3
In particular, when N=4, we obtain
-ch 3 -xCT
Pe (T) = P, (T,4) = (1-e © )7[1+e * (3-4P,)] ; (11.6.2-3)
T.=T.(4) =" (p, +13) (11.6.2-4)
F-ORY "% Vd T2 -0

Considering now an application subsystem, its failure analysis
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has been presented in Section II.5. Assume subsystém i to contain

Li redundant units. Assume each unit to be connected to a single

data bus, which is in turn connected to the GPC complex ( and

thus to all GPCs in the redundant mode). The failure rate of a

unit which belongs to subsystem i is set equal to kﬂi) [failures/sec].
The data bus line failure rate is equal to Az Lfailures/sec],

for each line. Line failures are assumed to be statistically

independent. Time to failure of a data bus 1ine is taken to be

1

‘governed by an exponential distribution with mean A; . Then, by Eq.

(II.5-15) we find that the probability of subsystem i loss, denoted

as-qél)(T), indicating the probability that subsystem i will fail
or become disconnected within T sec, is given by
(1) ‘(Ae+xé1))T L
ag (1) = [1-e ~ ] (11.6.2-5)
The mean time to fajlure of subsystem i is given, according to Eq.
(11.5-16), by |
(1) (1)1 o
—'i - 'i,\"] l
Tgp = Oung) Z 3 (11.6.2-6)

J=1

Subsystem i is said to be in a state of network loss if it has
failed, is disconnected from the uata bus network or if the computer

system is lost. We set

P&l)(T) = probability that subsystem i is in a state of
4 network loss. (11.6.2-7)

Then, combining results (I11.6.2-1) and (II.6.2-5), we obtain

o
—~
-
~—
—
L)
i

1= [P (T I0-04 ()3  (I1.6.2-8)

‘)\ T - ‘A T . -(A +A(i)")T L.
M ve (1w )I[1e 2 T

1 -1 - (1=e
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If we now let

X 3 i g e . -
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NC = {i]’izﬂ"’!ic} ’ (II-6.2-9)

so that subsystems 11,i2,...,ic are regarded as the critical sub-

systems, then the network loss probability PNL(T) is given by
P (1) = 1-TT [-alik ()]
NL —(T 9sL

ATy, AT

c1-(1-e "< )N Tve "¢ (N-1-p )3 (11.6.2-10)
Eq. (11.6.2-10) expresses the probability of network survival 1-PNL(T), .
as the product of the survival probabilities of the critical subsystems =

and the computer system.

The mean time to network loss TNL is the time to first failure

of the computer system or any one of the critical system, or its

T T P T TR

disconnection. F
Eq. (II1.6.2-10) can be used to evaluate the invulnerability of
the data processing network to failures of the computer system, data %*f

bus lines and application subsystem units.

11.6.3 Network Invulnerability: Aiternate Routing and Congestion féA
Effects L

The network invulnerability characteristics can be improved by

- providing alternate routes upon data bus failures. This is demonstrated
as follows. |
Assume a subsystem with L redundant units. The unit failure
rate is X [failures/sec]. The line failure rate is A, [failures/sec].
~ The subsystem 1is associated with K data buses. A switching capability
is provided so that, upon the failure of its line, a unit can be %% 

connected to one of the available operational buses associated with
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subsystem.
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Thus, initially each one of the L units is connected to a

data bus., When its line fails, a unit can be connected to one of

the operational associated 1ines (including a line that was

previously connected to another unit which has failed).

Under such a switching procedure, the probability of subsystem 1

loss, denoted as aSL(T) is computed as follows.

aSL(T) = P{L units fail or K lines fail, or both}

P{L units fail}+P{K lines fail}

~ P{L units fail}P{K lines fail}
_AUT L 'XZT
=1 - [1-(1-e »10-(-e 7))

S (11.6.3-1) !
We note that for K > L, X

P
e T ke e

o (T) < qq (T) . (11.6.3-2)
Thus, by providing K alternate data buses, we have decreased the T

subsystem Toss probability. 2

Such alternate data buses can be provided to the critical subsystems.
Providing K].,j alternate routes to critical subsystem i., we subsequently

obtain the network loss probability to be given by (when all routes

are assumed to be distinct):

C .
JIURRIENINAR N

~A T o= T
0= (-e SN 7 (N-1-NP )13 (11.6.3-3)

where

, (1)
o T L -2, T K. A
1-gm = p-0-e U ) TI0-(1-e eyt (I1.6.3-4)

SPNIY FO% * prtiaey

Eq. (1I.6.3-3) expresses theprobabi]ity 1-PNL(T) of network survival

SRRTAVRIR TR T RE 2

as the product of the survival probabilities of the computer complex,

critical subsystems and the alternate routes. , - s i
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In turn, as buses are switched to serve critical tasks, non-

l-...m.-..«ii

critical tasks are delayed. If, however, the number of remaining
operationaT data buses is below a certain critical value Mg the
overall traffic associated with critical tasks is high enough to

cause an excessively high message delay value DO‘ Under such high

message delays, the network cannot provide satisfactory service

to the critical tasks, and the network can be said to be lost. This

loss probabilty is thus defined as
ﬁkL(T) = probability that the computer system is lost, or
a critical subsystem is lost, or that the
communication network can provide no more than
my interconnecting data buses, causing critical
message delay value higher than DO . (I1.6.3-5)

~
To compute PNL(T), we model the whole communication network

e PR BN

topological structure. We assume that the c¢ critical subsystems

can use commonly m data buses, m > c. Thus, upon the failure of line,

e |

an operational line from the pool of these m lines can be rerouted

X e

to serve the associated critical subsystem. The subsystems will be

disconnected from the computer complex if m-c or more data buses

i

fail. Therefore, we obtain,

Probability of disconnection of critical subsystems from
~ the computer complex in T units of time

3
=3

-2, T, -, T(m-k) .
= Z (k)(]_e 2 )ke L . (11.6.3 6)

? m-c+1

= We need nowever at least Mg buses to survive to Timit network

% congestion. - Subsequently, the network loss probability PNL(T)

is obtained to be given by
3
i

” e Lin(
i ‘ g o ~ LN om

=187~
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Py (T) =1 -(1-(1- “ U+e (N-1-NP )T}
g } (ig)
A Tk T - T L,
Zm: 1o 2N (igee ) Tk (1106.3-7)
=m k=1 .

To explain (11.6.3-7), we note that 1-3;L(T) expresses the probability
of survival. Then, the first, second and third terms in (I1.6.3-7)
represent the probabilities of survival for the computer system,

communication bus network and the critical subsystems, respectively.

The product of the latter terms yields the probability of network survival.

Eq. (I1.6.3-7) can now be used to evaluate the data processing
invulnerability characteristics, as well as to choose and adjust
the underlying failure parameters, topological structure and routing
discipline. In particular, we note that the following parameters
are involved in computing the network loss probability PNL(T):

¢The computer failure rate (AC);

oThe number of parallel computers (N); (here (N=4);

«The computer coverage probability (Pd); (here P4=0.96 in
redundant mode);

»The duration of operational period under consideration (T);
eThe subsystem unit failure rate (Au)
eThe number of redundant units in a subsystem (L);

«The set of critical subsystems (or tasks, 11,12,...,ic);

oThe data-bus line failure rate (Az);

+The number of data-bus lines commonly used to interconnect the
critical subsystems with the computer complex (m);

+The minimal number of data-bus lines required for a satisfactory
interconnection (involving both reliability and congestion
; performance measures) of the critical subsystem to the computer

complex mg. (if?
' ; , in om
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" exoresses the probability that a critical subsystem under

Incorporating all these parameters in Eq. (I11.6.3-7), we

compute the probability 3 T) of netwerk loss within T units of

NL(
times. Alternatively, for a prescribed maximal value of ~hL(T)’
we use Eq. (II.6.3-7) to determine the proper computer, subsystem
and network (topological) parameters.
We finally note that the network (deterministic) connectivity
measures are given as follows.

K = network index of critical connectivity

= minimal number of lines whose failure disconnect the
critical subsystems

= m-c+l; (11.6.3-8)

0) network index of critical stable connectivity

minimal number of 1ines whose failure cause message
delay to increase above DO sec

= m-my+1 ' (11.6.3-9)

The associated probabilistic connectivity measure is given by
EhL(T)’ and expressed by Eq. (I11.6.3-7).

I11.6.4 Failure Analysis for the Data Processing Network: The
Simplex Mode

| Under the simplex mode of operation; tasks and subsystems are
divided between two GPCs. The remaining GPCs can then serve as
stand-by units.
To characterize system invulnerability to failures of GPCs,
data-bus lines and application subsystems, we compute the network

loss probability q, (T), defined by Eq. (II1.6.1-8). This function

consideration cannot be connected to a GPC, within T units of

operational time, under the simplex mode. For that purpose, the
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following network structure and parameters are specified.
~a) The computer failure rate is equal to A [failures/sec].

b) Two computers need to be in operation. Three computers
are initially in a stand-by mode. Upon the failure of
a computer, a stand-by GPC is immediately used to replace
it, if any operational stand-by computer is available.

The computer system is said to be in a state of system
loss if there are not two operational GPCs.

c) The computer coverage probability (of failure detection
by self-test methods) is equal to Py

d) The data-bus line failure rate is equal to Ay [failures/sec].

e) The subsystem under consideration contains L redundant
units. The unit failure rate is equal to Ay [failures/sec].

f) The subsystem under consideration can use lines taken
from a set of m data bus Tines. it requires, however,

a minimum of my lines, 1 <mg < m, from this set of m
lines, to be able to conduct its information-proce-sing
tasks in a satisfactory manner. ;

g) As an a]ternativé topological model, replacing (f), it can
be assumed that the m data-bus Tines are shared by my
subsystem (or tasks). Each subsystem requires at least
a single (distinct) data bus 1line for its connection to
a GPC.

We use the above mentioned system conditions and parameters to

evaluate the network loss probability qNL(T). We start by using the
study results concerning the failure of the simp]ex computer system,

as presented in Section I1.3. By equation (II.3.2-4), the probability
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qSL(T) that the simplex computer system wi11 fail in T units of tine,
when initial 5 GPCs are available, two GPCs are operating simultaneously,
and computer system failure is declared when at least four GPCs have

failed, is given by

| 3. -2, T (231"
(M =1-2 ¢ T
n=0
“2A T ] 2,1 3
= Tee S [+ T2+ H2 T (11.6.4-1)

The probability that the application subsystem under consideration
will fail, denoted as qA(T), is obtained by recognizing the latter
to fail if and only if all the associated units fail. Therefore,

we have
-)‘UT L

(T = [1-e 7] (11.6.4-2)

Under assumption (f), the interconnecting data-bus network can
serve the underlying subsystem as long as it has My out of m,
operating data-bus lines. Therefore, the probability qL’](T) that
the associated interconnecting data-bus network fails, under condition

(f), is given by

, . m f - T k -A T(m k) .
a (M =3 () O-e * (11.6.4-3)
k=m-m0+1_

Subsequently, the probability 1—qL ](T) that the interconnecting
network survives in T units of time (i.e., that it provides a

connection between the underlying subsystem and the GPC) s equal to

m-m
Q -A,T -2, T{m-k)
- , Lk 3 ;
1 - qL,](T) - Z (T(])(]‘e ) e
k=0
m "A,’Tk "AT =
= (Me "+ (1-e "4tk (11.6.4-4)
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Combining these expressions, we obtain the probability qNL(T)
of network loss, under the simplex mode, in T units of time, by

writing
T-qy (1) = [1-qq (T101-q,(T)100-g (D] (11.6.4-5)

Eq. (I1.6.4-5) expresses the probability l-qNL(T) of network
survival as the product of the survival probabilities of the

simple computer system, the underlying subsystem and the inter-
connecting data-bus network. Subsequently, substituting (II.6.4-1)-
(11.6.4-4) into (I1.6.4-5), the network loss probability qNL(T) ‘

is obtained to be given by the following formula:
=2x T

A (T) =1 - (e ¢ [1+2ACT+2(ACT)2+ %(ACT)B]}
-a, T m ATk =X T '
a-n-e NS (e M- F)"RL (11.6.4-6)
k=mg ‘

Using Eq. (I11.6.4-5) we can evaluate the network invulnerability to
GPC, data-buses and subsystem units, under thé simplex mode of
operation.
In deriving Eq. (11.6.4-6) we havé assumed that the underlying
- subsystem can employ rerouting procedures in utilizing any one of
the operating lines,out of initially available m operating data-bus
lines, as long as no less than My data-bus 1ines are in operation.
Alternatively, to model the sharing of the pool of data bus
lines by a number of subsystems, we now assume conditions (g) to
hold. Then, m, subsystems share the utilization of m data-bus
lines. Note, however, that only a single sUbsystem is aT]owed
to use a certain operational data-bus at one tﬁhe. (Thus, no time

simultaneous use of a data bus by several subsystems is considered.)
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Each Subsystem requires at least a single (distinct) data bus line
for its connection to a GPC. Now, the probability qL,Z(T) of failure
of the data-bus network, is relative to the subsystem under consideration,
is computed as follows.
The data-bus network cannot interconnect the subsystem under
consideration if and only if at a certain time, prior to T, the
Tine connected to the subsystem fails, and the number of operational
Tines then is smaller than flly (so that all operational lines are

occupied). We set
f(u)du = P{m—m]—th line failure accurs in (u,u+du)}. (I11.6.4-7)

Since, until time u line iiiterfailure times are i.i.d. exponentially
distributed with mean (m]Aé)-], we find f(u) to be the Gamma density
myAL | m-m]—l —m]Acu
f(u) = m (m]ACu) e , u>0. (11.6.4-8)
The probability q, 2(T) of bus-network loss, relative to the

underlying subsystem, is subsequently given by

T -2, (T-
q,2(T) =f f(u)[1-e 0 u)]du : (11.6.4-9)
0

Eq. (I1I1.6.4-9) indicates that a bus network loss event will occur
if, at some time u, only My Tines (out of initial m lines) are left,
and in the following T-u units of time the 1ine connecting the subsystem

under cons‘ideration fajls. Substituting (I11.6.4-8) in (11.6.4-9) we conclude

the résu]t
my A m=m,=1 -y U -2 (T-u)

T .
0 s | (11.6.4-10)
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As before, the computer system loss probability qSL(T) and
the subsystem loss probability are given by Egs. (II.6.4-1) and
(11.6.4-2), respectively. Also the network probability of survival
is expressed in accordance with formula (I1I.6.4-5). We subsequently
conclude that the network loss pkobabi]ity udner condition (g),
for the simplex mode, denoted as G&L(T)’ is given by

) =2x T
~ - c 2 . 2 3
qNL(T) = 1- {e [1+2ACT+2(>CT) + §(ACT) 1}

' AT
{1 - [1-e ] }{1-qL 2(T)} . (11.6.4-11)

where q 2(T) is given by Eq. (I1.6.4-10).
The mean time to failure of the interconnecting network, relative
to the subsystem under considerationis now given by

m_m]
1 A

TNr,2 ©

’“Kl = m! . (11.6.4-12)
2

3

2 %

In the same manner we derive the formula for the network loss
probability when it is assumed that different subsystems (tasks)

can share certain data buses on a time division multiplexing (TDM)

basis. Then, if we aséume that a single daté bus can be time-

shared among my subsystems, (tasks), the following results are obtained.
Under conditions (g), with TDM iines, the data-bus network

would not be able to interconnect the subsystem under consideration

if and only if at a certain time, prior to T, the line connected

to this subsystem fails, and the number of operational lines is

smaller than [m]/mT]; the latter denoting the smallest integer not

smaller than m]/mT. Therefore, qL,Z(T) now is given by Eq. (I11.6.4-10)

with m there rep]aéed by [m]/mT]. rThe network loss probability is

subsequently given by Eq. (I1.6.4-11) with a 2(T) expressed as
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indicated above.

Finally, we note that incorporating the results of Section
11.3.3, one derives in an analogous manner the probabi]fty of
network loss formulas, under the simplex mode, when restoration

procedures are employed to restore failed GPCs.
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