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1.0	 INTRODUCTION

!;J This is the final report for the "Integrated Source and Channel

Encoded Digital Communication System Design Study" (Contract No. NAS 9-

15240). The contract is to evaluate the Ku-band system design, analyze

S-band and Ku-band tracking techniques, and study payload communication

techniques.

As defined in the Statement of Work, the first task required

the evaluation and assessment of the baseline Ku-band system design

under development by Hughes Aircraft Corporation (HAC) and study the

performance/compatibility problems associated with the SSO/TDRSS RFt
interface.	 More specifically, the particular Ku-band carrier, PN

despreading, and symbol	 synchronization strategies, which are selected

by HAC for implementation in the Ku-band transponder aboard the

` Orbiter, are to be assessed and evaluated from a systems performance

viewpoint, verifying that system specifications are met.	 Furthermore,

it was required that any critical areas impacting the detailed concep-

tual and breadboard designs as they develop be identified, discussed

and studied and appropriate recommendations made for parameter optimi-

2

zation, as necessary.

During the one-year period covered by the contract, Axiomatix

k continuously rendered support to HAC in all of the above areas, with

the major thrust of its activity directed toward understanding, studying,

and proposing potential solutions to the data asymmetry problem prevalent

' on the Mode 1	 high data rate channel of the Ku-band return link.	 In

this link, two selectable modes which provide three channels are avail-4	 ^.

able.	 Channel 1	 is used for operational data, whereas Channels 2 and 3

may be assigned-a wide variety of digital	 and analog signals. -Addi-

tional	 support was provided by_Axiomatix to assess the anti-jam capa-

bility of the SSO/TDRSS RF interface. 	 The results of these activities

are 'summarized in Section 2.0, with the detailed, analyses,	 system per-

formance comparisons, and tradeoffs included as Appendices A through D.

ii As ,a part of the overall effort to assess the Ku-band system

design and to evaluate possible system simplifications/modifications

# that may be achievable, the second task required a study of the design

and implementation of tracking techniques which are suitable for incor-

y poration into the Orbiter-Ku-band communication system.	 Emphasis was
Ep.	 i
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placed on maximizing tracking accuracy and communication system flexi-

bility while minimizing cost, weight, and system complexity of Orbiter

and ground system hardware.

.'
Section 3.0 summarizes the results obtained for the performance

1
of several	 implementations of biphase Costas .loops when subjected to

the unbalanced QPSK input.	 The subcarrier tracking loop performance

is also summarized in Section 3.0.	 The detailed analysis of both

carrier and subcarrier tracking loops'is presented in Appendices E

through L.

". Section 4.0 describes the payload communication study to assess

the design and performance of the forward link and return link bent-pipe

relay modes for attached and detached payloads. 	 As part of this study,

a design for a forward link bent-pipe is proposed which employs a

residual carrier but which is tracked by the existing Costas loop.

Detailed analysis of Costas loop tracking for signals with residual

carrier is presented in Appendix L. 	 Critical Ku-band system parameters

have been identified and optimized such that cost and complexity have

0 been minimized.	 Finally, Section 4.0 identifies the basic transmission

capabilities that can be accommodated by both the forward link and

{ return link bent-pipe relay modes.

s

•,

v

i
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2.0	 KU-BAND SYSTEM DESIGN EVALUATION

As defined in the Statement of Work, this task required Axiomatix

to evaluate and assess the baseline Ku-band system design under develop-

ment by Hughes Aircraft Corporation (HAC) and study the performance/com-

patibility problems associated with the SSO/TDRSS RF interface. More

C

	

	
specifically, the ,particular Ku-band carrier, PN despreading, and symbol

synchronization strategies, which are selected by HAC for implementation

in the Ku-band transponder aboard the Orbiter, are to be assessed and

evaluated from a systems performance viewpoint, verifying that system

specifications are met. Furthermore, Axiomatix was required to identify,

discuss, and study any critical areas which impact the detailed concep-

tual and breadboard designs as they develop and to make appropriate

recommendations for parameter optimization, as necessary.

0

	

	
During the one-year period covered by this contract, Axiomatix

continuously rendered support to HAC in all of the above areas, with the

major thrust of its activity directed toward understanding, studying, and

proposing potential solutions to the data asymmetry problem prevalent on

0

	

	
the Mode l high data rate channel of the Ku-band return link. Additional

support was provided by Axiomatix to assess the anti-jam capability of

the SSO/TDRSS RF interface. The results of these activities are summarized

in what follows, with the detailed analyses, system performance compar-

C	 sons, and tradeoffs included as Appendices A through D.

Impact of Data Asymmetry on Bit Error Probability2.1
Performance of the Ku-Band Return Link

i

C) the early months of the Task 1 effort, an area of concern

developed over the data asymmetry* produced by the HAC design of the

50 Mbps (100 Msps) rate 1/2 convolutionally coded data channel	 of the

Ku-band return link through the TDRSS.	 This data asymmetry was poten-

tially capable of causing several dB degradation to the demodulated data !^

K at the TDRSS ground station.	 Therefore, a suitable asymmetry model had

to be developed, the amount of degradation as a function of the amount ;d.

Q The term "data asymmetry" as used here denotes the condition in
which pulses of opposite polarity in the data stream unintentionally have
unequal	 widths.
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of asymmetry had to be computed;, and the possible solutions to the
problem had to be investigated.

The high data rate link from the Shuttle Orbiter through the

TDRSS to the ground takes NRZ symbols at 50 Mbps and encodes them with

a rate 112, constraint length 7, convolutional code.	 The bit error rate

f

4;

performance of the convolutional decoder depends, among other things, on

the symmetry of the modulation. 	 Any asymmetry in the NRZ symbols entering

the symbol synchronizer causes a misalignment in the symbol synchroniza-

tion clock which degrades the integrate-and-dump output and any soft or

hard decisions derived from it for- input to the decoder. 	 For a specified

degree of asymmetry (in terms of a, fraction of a symbol 	 interval), the

bit error rate degradation is dependent on the transition probability of

the data.	 Clearly, if the data transmitted was either all ones or all

minus ones, misalignment of the bit synchronization clock would have no

degrading effect on the integrate-and-dump output since, for each symbol,

this circuit would integrate up to its maximum value before being dumped.

On the other hand, when the data is an alternating sequence, the worst

case degradation results, since the transition which occurs at the end 	 {

of each symbol	 in combination with the symbol synchronization clock

' misalignment prevents the integrate-and-dump output from reaching its

maximum value.

2.1.1	 Asymmetry Models and Defi nitions

r
P

To quantitatively determine the degrading effect of NRZ symbol

asymmetry on error rate performance, one must develop a suitable asym-

metry model which accurately describes the physical source from which

the asymmetry originates. 	 During the early definition phase of the

r study, much confusion reigned over the appropriate model and definition`

of data asymmetry to be used in meeting the performance specification.

rF. After expending considerable effort on resolving the differences among
y

n

proposed, it was determined that twothe various models and definitions 	 ro-	 p_	 p

t: possible models were appropriate and, provided that asymmetry was properly

defined, either model	 produced the identical	 performance degradation due

to this asymmetry.	 In the first model	 (the one adopted by Axiomatix),_I^
the assumption is made that +1 NRZ symbol's are elongated by AT/2 (rela-

tive to their nominal value of T sec) when a negative-going data

w.. __



5

j transition occurs and -1 symbols are shortened by the same amount when

a positive-going data transition occurs.*	 Otherwise (when no transitions

occur), the symbols maintain their nominal T sec width.	 Thus, AT repre-

sents the relative difference in length between the elongated +1 and

shortened -1	 symbols.	 An example demonstrating this model is illustrated

i in Figure la.	 The second asymmetry model 	 (used in [1,2]) makes the

assumption that positive NRZ pulses are shortened whenever adjacent

pillses are negative. 	 Thus, a given positive pulse preceded and succeeded

r b>	 a negative pulse would be reduced in duration at both ends'. 	 Stated

r another way, a positive-going transition occurs early and a negative-

', going transition occurs late relative to the nominal	 transition time

# instants.	 Letting d represent the fractional 	 (relative to the nominal

bit duration T)	 increase in positive pulse length due to a single adjacent

negative pulse, then for a given random data sequence, the shortest pulse

I would have length T( 11- 26)., while the longest would have length T(1+ 26).

Figure lb illustrates the application of the second asymmetry model to

the same bit stream as that used in Figure la.

,y Regardless of which asymmetry model is used, data asymmetry is

defined as the difference in length between the shortest and longest

pulses in the sequence divided by their sum. 	 For the first model, this

definition gives

T(1 + 2) - T(1 -A 	 Z)	 a
Asymmetry	 =	 n	 _	 — ,	 (1)

T(1 + Z) + T(l - -2)	 2

0 whereas for the second model, we get

_	 T(1 + 2S )	 - T(l - 26)_	 _On	 2s	 2.T(1 + 26	 + T 1 - 26)

In the absence of noise, the timing instants for the in-phase
s

integrate-and-dump (i.e., the 'epoch of the symbol 	 synchronization clock)

C-
are determined in Appendix A.	 For the first asymmetry model, these

Due to symmetry in the data itself, it is immaterial whether the
F elongated pulse is of positive or negative polarity, and vice versa for

the shortened pulse.

ORIGINAL PAGE IS
^.; OF POOR QUALITY



t

t

r 
r

i

I^-T(1-2) -•^	 ^-- T =-^- T(1-'2)-►1	 I.^"	 T

Figure 1'a. Asymmetric Data Stream Using Asymmetry Model 1
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Figure lb. Asymmetric Data Stream Using Asymmetry Model 2
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occur at t = TO +4) 	 n = 0, ±1,±2, ....	 For the second model, 	 it can easily
be shown that, on the average, the symbol synchronizer will lock up at

the nominal transition points of the equivalent symmetric data waveform,

i.e.,	 0,±T,±2T,±3T,.	 .

2.1.2	 Error Probability Performance (Perfect Symbol Synchronization)

Based on the foregoing definition of asymmetry and the accompany-

ing clock misalignment for the two models, it is straightforward to
show that, for random NRZ data, the average symbol error probability

associated with hard decisions made on the in-phase integrate-and-dump

output of the symbol	 synchronizer is , given by
F.

P	 5	 erfc	 E /N	 + - erfc
16	 0	 8

E /N	 0 - n)
[^

(1 - 2n
E

erfc
+ 116

[^_Es/_No
s

(3)

where ES denotes the symbol energy, N O the channel noise spectral den-
p

sity, and

fCO 	2erfc x	
2 

	

e-t	
dt	 (4)

VTr	 x

Table 1 contains the symbol energy-to-noise ratio degradations

(in dB) for asymmetry values nx100 of 3%, 7%, 	 10%, 15/, and 20', and

E s /No = 0, 0.75, and 1.5 dB.	 The values of E s /No selected correspond
to bit energy=to-noise ratios Eb/N 0 = 3, 3.75, and 4.5 which correspond 5

a respectively to decoder bit error probabilities P b - 10	 10	 and 10

The -degradations are the additional E s /N O ;required due to asymmetry to
0{p roduce the same value of symbol error probability when n =0, 	 i . e. , PE,

.	 t where

P 0	 2 erfc VE	 (5)

It should be noted that the symbol energy-to-noise ratio degradations

given in Table 1	 assume no channel	 bandwidth 'limitation, 	 i.e.,	 ideal

^. rectangular pulse shapes have been assumed for the NRZ data. 	 Any

1 Q6
rounding of the pulses caused by channel bandwidth limi tation produces

an additional	 symbol energy-to-noise ratio degradation over and above

^ 	 ^ PAGE 
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that due to data asymmetry. However, the bandlimiting degradation and

the data asymmetry do not add algebraically but, rather, combine in a

way determined by the particular symbol synchronization implementation.

More will be said about the combined effects of bandlimiting and NRZ

data asymmetry shortly.

Table 1. Performance Degradation Due to Data Asymmetry with Random Data

44

Asymmetry (I)	 Es 	 (dB)	 Pb	 Degradation (dB)'
3

3	 0	 10 -3 	0.135
0.75	 10-4	 0.135
1.50	 10_5
	

0.135

a 7	 0	
10_3	

0.333i
0.75	 10 -4 	0.337
1.,50	 10-5	 0.340

10	 0	 10_3
	

0.495

°i 0.75	 10 -4 	0.505
1.50	 10-5	 0.517'

15	 0	 10-3	 0.799
0.75	 10`4
	

0.824
1.50	 10 -5 	0.854

`I

{ 20	 0	 10-3	 1.149

4
0.75	 10

-4
	1.201

-5_1.50	 101.264 C
r

2.1.3	 Error Probability Performance (Imperfect Symbol Synchronization)

In the previous section, we presented the effect of NRZ data asym-

metry on the error probability performance of a- convolutionally coded
'f
_. channel, namely, 	 the 50 Mbps channel 	 of the Ku-band return link.'iA

.` Inherent in those results was the assumption that thin symbol 	 synchro-

nizer produced a perfect clock which ,locked up with a misalignment equal =`

to half the asymmetry for asymmetry Model 1 and no misalignment for

Model	 2.	 The effect of additional clock misalignment	 (commonly referred 5.'

y I to as symbol	 sync jitter) which is typical of practical	 symbol	 syn-

chronizers, was the next item studied under this task.	 The results`

n



4

I

of this study, which are presented in detail	 in Appendix B, are now

summarized.

For random NRZ data with equiprobable symbols, the average proba-

bility of error conditioned on the misalignment (XT) of the symbol 	 syn-

chronization clock relative to its nominal 	 position is given by

^ 	 S	 l
P E ^a)	 16 erfc ^

E s/NO + 16 erfc D-E s /N o  0 - n - 21 A I

I

+ -1
T6 erfc [ 	 (1 - n + 2 a	 + 1'6 erfc	 E s /N^ { 1 - 2rl}

k 0 <	
l a l	 <
	

2	 (6)

_ where either (1) or (2) still 	 applies as the definition of asymmetry.
Note that, when a= 0,	 (6)	 reduces, to (3).	 Figure 2 illustrates the
SNR' degradation at a symbol	 Es/N0 of 1.5 dB (corresponding to a decoded
bit error probability of 10 5 ) as a function of N with percent asymmetry

nx 100 as a parameter.	 It is observed that, 	 in the neighborhood of the

+ nominal symbol' synchronization lockup point (X= 0), the sensitivity of

SNR degradation due to asymmetry is extremely small, even for large

k asymmetry values. 	 This makes the results given in Section 2.1.2 rela-

tively insensitive; to the assumption of a hard-locked symbol 	 synchroni-

zation, even though this assumption yields the minimum SNR degradation

due to asymmetry.

Another approach (not discussed in Appendix B) to assessing SNR

degradation due to both asymmetry and symbol 	 synchronization misalign-

ment is to assume a model 	 probability density function p(a) 	 (p.d.f.)

for X and average the conditional error probability P E W over this
x

p.d.f.	 to obtain the average error probability performance [2].- In

this regard, we postulate a Tikhonov p.d.f. 	 for p(a) which is entirely

characterized in terms of the variance a	 of the synchronization error.

Thus, for NRZ data, we have [3],
E

exp	 [cos 2rr a/ (2 Tr 6x) 2]
'	 p'a

l
pW_	 2 	 2	 (1)

i,. I0 [(1/2u6)	 ]

i
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In order to average the conditional error probability over the p.d.f.

in (7), we must, in addition to (6), characterize P E (a) over the inter-

'	 val n/2 < 1 X i <.1/2. Following the procedure given in Appendix B, it

is straightforward to show that (also see [2])

k '	 P (a) = 1 erfc ^E_S/_N o + erfc IE /N (1 - n - 2 a O0	 E	 4	 . 	 8	 'J s 0	 -^^

+ $ erfc [JES /N0 (1 - n + 21 a• 1 )]	 n/2	 JAI < 112.	 (8)

Thus, using (6) (7) and (8) the average error probabili ty can be

computed from

1/2
PE

PE (X)
	 da	 (9)

-1/2C

Figures 3 and 4 illustrate PE [as computed from (9)] versus E /N O i n

dB with a 
	 as a parameter for asymmetry values of 3/ and 6%,'respec-

tively.	 (These numerical values are taken from [2].) 	 Again at

E A	 = 1.5 dB, the additional degradation due to symbol 	 synchronizations	 0
jitter is on the order of a few tenths of a dB, even for a timing error

(as measured by its standard deviation Q^) as large as 7/.

` ► 2.1.4	 Error Probability Performance for Asymmetric
Manchester Coded Symbols

R Although Manchester coding cannot be employed on the high rate

channel because of bandwidth limitations on the Ku-band return link,
O

such coding is used on the lower rate channels, and thus the effect

of asymmetry on 'the performance of these channels is potentially of

t
interest.

' When Manchester coding is employed, then relative_ to the NRZ

-
fD

sequence, the Manchester coded waveform has 3/2 as many transitions.

Thus, since SNR degradation due to asymmetry is directly related to

ti• i the average transition density of the data sequence, one would intu-

itively expect that, for the same asymmetry, the Manchester coded case

;j should yield a larger SNR_degradation than the corresponding NRZ case.

r
f

Whether or not and to what extent the above intuitive notion is indeed

F
°'
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true depends on how one defines percent asymmetry for the Manchester

coded case.

To demonstrate this point, consider the NRZ sequence of Figured
and the corresponding asymmetric Manchester waveforms which, for the

two previous asymmetry models, are illustrated in Figure 5. Here,

corresponding to Model 1, 0/2 denotes the fractional (relative to the

half-symbol time T/2) elongation of the positive half pulse in the

Manchester coded waveform, and for Model 2, 6 is accordingly defined

relative to the same half-pulse width. Then, defining asymmetry as

was done for the NRZ case but now relative to the half-pulse duration

gives (for Model 1)

6	 2 (1 +A/2)	 2 (1 0/2)	 o
Asymmetry = n =	 _ —	 (10)

2 (1 +0/2) + 2 ( 1 - A/2)	 2

and, for Model 2,

Z(1+2b) - 2(1-25)	
-

(11}

!	 Z (1 +2d) + 2( 1 - 26)	
2s

which are identical with (1) and (2).* Once again, as in the NRZ case,

the in-phase integrate-and-dump output depends, in general, on the

polarity of the symbol over which it is integrating and the preceding

and succeeding symbols. Thus, evaluating this integrate-and-dump

output for the eight possible three-symbol sequences and noting that,9	 P	 y	 9	 g

"	 for Model 1, 'the nominal- bit synchronization lock-up misalignment isa^ I
now AT/8, we get an expression for the average probability of error

corresponding to asymmetric Manchester coded random data, namely,

a

'	 PE = 4 erfc L^Es/P^^ (1 - n^ + 4 erfc L,JE s /N O (1 - 2) l	 (12)

1	 '^

*Note that, while this definition allows for equal percent
asymmetry when compared with NRZ, the actual time asymmetry as mea-

_:	 sured in seconds) is different for the two cases.

,.z? 
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Using (12) and (3), Figure 6 illustrates the SNR degradation in dB
versus percent asymmetry for Manchester and, for comparison, NRZ coded

data at E s /N O = 1' ' 5 dB. Here note that the Manchester code yields a
larger SNR degradation than NRZ for small asymmetry values, while the

reverse is true for large percent asymmetries.

0

	

	
If, on the other hand, we define data asymmetry relative to the

symbol time T for both NRZ and Manchester data, then equal percent

asymmetry implies equal amounts of asymmetry (in seconds) as measured

by the actual time displacements of the waveform transitions. 	 Thus,

0 for Manchester coded data, we have that n= a/4 for Model 1 and n= d
for Model 2.	 The corresponding expression for error probability is

identical	 to (12) with n replaced by 2n.	 Using this definition,

Figure 7 plots SNR degradation in dB versus percent asymmetry for

E s /N 0 = 1.5 dB for Manchester coded data and the corresponding results

for NRZ data obtained from (3).	 Note that now the Manchester coded

case always yields a larger SNR degradation for a given percent asym-

metry.	 The conclusion to be reached here is that, in making comparisons

between asymmetric NRZ and Manchester coded systems, one must exercise

care in selecting a definition which is appropriate to the _particular

application at hand.

To generalize the results given in (12) to the case of imperfect

0 symbol synchronization, one merely follows the procedure outlined in

Appendix B for NRZ data, whereby (6) and (8) are obtained as extensions

of (3).	 In particular, for a timing misalignment of XT/2 (consistent

with our first definition of asymmetry relative to the half-pulse width

and the fact that the time base for the symbol	 synchronizer is now T/2),

the conditional	 error probability is given by (also see [21)

1	 1

i

4 erfc ,̂JE$/N O (l - n] + 8 erfc ^JE s /N O 0 - 2 - a^ )

i+ $ e r f c [^E;/__R  ̂(1 - 2 + a )]	 0 <_ a <_ 2
PE(h)	

r
4 erfc [ 	 (1 - 2;^ O I + 8 erfc 

L
,JE s /N^ (1 --a -  ^)

erfc 
C,rs/NO (1 + 2 
	 2	 a <_ 2

—^
(13)
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Substituting (7) and (1'2) into (9) results in the average error proba-

bility performance for Manchester coded data with asymmetry. The cor-

responding performance plots analogous to Figures 3 and 4 for NRZ data

are given in Figures 8 and 9. Comparing the NRZ and Manchester data

results, we observe that, in terms of error probability performance,

©	 Manchester data appears to be less sensitive to symbol synchronization

{{	 error. Of course, it should be pointed out that this conclusion is
k

highly dependent on the time base used as normalization for the , asym-

metry definition. In fact, if the alternate definition is used, wherein

0	 both NRZ and Manchester asymmetries are defined asfractions of the

symbol time, then for fixed values of n and	 the error probability

performance of Manchester data will always be worse than that for

NRZ [2].

2.1.5 The Effect of D.C. Restoration on Error Probability
Performance in the Presence of Asymmetry

i'
The investigation of the effects of d.c. restoration* on communi-

cation link performance was prompted by test results [4] conducted in

the Electronic, Systems Test Laboratory (ESTL) at JSC-which indicated

significantly less performance degradation than that predicted by the

' analytic results of the previous sections.	 Iny	 p	 particular, it was found

that d.c.. restoration tends to reduce the degrading effects of data

asymmetry and thus it was necessary to incorporate d.c. restoration into

the analytical model	 in order that the predicted performance better

. agree with the test results.

x The effect of d.c.	 restoration on data detection is most easily

accounted for by artificially shifting the decision threshold (nominally

: at zero) against which the matched filter output is compared. 	 The

amount of this artificial 	 shift in threshold depends upon the specific'

way.in which d.c. restoration comes about.

..L -The simplest method of achieving d.c.	 restoration is to capacitive *

Ij couple the input signal 	 to the symbol	 synchronizer.	 In this case, the

artificial	 threshold shift equals the d.c' i	 component of the asymmetric

C

D.C.	 restoration refers to the process by which the d.c.	 value
of the asymmetric data waveform is forced to zero.

ORIGINAL PAGE IS
`^ ' OF POOR QUALITY
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	 data waveform in front of the capacitor which, for random data with

transition density D, is easily shown to be [4]

4t 	n D E	 ,	 (14)J

whereE	 is the data pulse amplitude in Figure 1. Computing the

matched filter output for the eight possible three-symbol sequences

made up of the present, preceding, and succeeding symbols and shifting

these outputs by At gives the result for the error probability per-

formance of asymmetric NRZ data with d.c. restoration by capacitive

coupling, namely,

PE	 4 erfc [,D E S/N 0 (1 - nD  +_ 116 erfc C 	 0 - 2n+ nD)^

8 erfc [,DE S /ND (1 - n + nD)] + 1̂ 6 erfc	 E s /N^ (1 + nD)]	 (15)

For equiprobable data symbols (D = 0.5), (15) simplifies to

- PE	 =	 8 erfc —s	 2d (1 - 2) +	 16 erfc [^_E s /No (1 - Zn) a

L

+ 116 erfc [js _/N 0  (1 + 2] (16)

Comparing (16) with (3), we observe that the effect of d.c. 	 restoration

is to compensate for the data asymmetry by shifting the effective

decision threshold away from the shortened symbols.

For a given value of asymmetry, the value of E/No required to
st^

obtain P E [as computed from (16)] equal 	 to 10-5 can be calculated.

Comparing this value of E
s
 /N

0
 with that obtained from (5) for the same

MI PE gives the SNR degradation for asymmetricNRZ•data with d.c. restora-

tion by capacitive coupling. 	 Figure 10 illustrates this SNR degradation

versus asymmetry along with the comparable results obtained from (3)

tJ corresponding to no d,c. 	 restoration (direct coupling).
r

a^ Another method of achieving d.c. 	 restoration, which depends

specifically on the symbol synchronizer implementation itself, is to

require the matched filter output to have zero crossings at the center

of each symbol	 period that starts with a data transition.	 In this case,

.4^
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the effective shift in decision threshold relative to its nominal (zero)

value is [41

At = nE^ .	 (17)

Comparing (17) with (14), we can immediately conclude that the error

probability for this method of d.c. restoration is given by (15) with

D= 1, i.e.,

r
P	 =	 erfc	 E /N 0 - n) + — erfc 	 + _L erfc l E /N (1 +E	 l	 C^ s 0	 ] 8	 [ 	 16	 s 0LN	 n

.	 i
ji

(18)	
y.

e1 Again by determining those values of E s /N^ required to obtain P E = 10-5

for various values of asymmetry, one can compute the SNR degradation for

d.c. restoration based on symbol timing. 	 The results of these calcula-

tions are illustrated in Figure 11, along with experimental 	 test results

taken in the ESTL for the sake of comparison. 	 It is to be noted that

the experimental results include the.effect of bandl`imiting, whereas

the theory as predicted by (18) in no way accounts for this effect.

Furthermore, the data detector used in the experimental setup is not

a true matched -filter as is assumed for the analytical model. 	 Surpris-

ingly enough, however, the analytic and experimental results show rea-

sonably good; agreement. 	 In the next section, we 'consider the combined

effects of bandlimiting and asymmetry on the performance of a filter-

i 4 sample type data detector which is a more realistic model of the detector
a

,.
used in the ESTL experimental tests.

a

`^ 2.1.6	 The Combined Effects of Bandlimiting and Data Asymmetry
on Error Probabili ty Performance

In the previous sections, the degradation of error probabili ty
P !!

_.

performance due to data asymmetry alone was considered. 	 Since, in

reality, a ractical receiver operates  in the presence of both band-p

limiting and data asymmetry, it is important to study the combined

effects of these two sources of degradation on its error probability

performance.	 Assuming a filter-sample type detector (see Figure 12)
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and NRZ data, Appendix C investigates in detail the combined degrading

fl^
	 effects of intersymbol interference and SNR reduction of the desired

signal due to bandlimiting by an ideal low-pass filter and data asym-

metry. The results of this analysis, which are first derived assuming

no d.c. restoration and later modified to include this effect, are sum-

marized below.	
!

Figure 13 illustrates the bit error probability as a function

of energy-to-noise ratio with BT as a parameter and 10% asymmetry whil e

Figure 14 illustrates as a function of asymmetry the required energy-to-

noise ratio to achieve a bit error probability of 10`5 with BT still the

parameter.	 Both of these figures assume no d.c. restoration. 	 The cor-

responding results which include d.c. restoration by capacitive coupling

are illustrated, respectively, in Figures 15 and 16. 	 It is concluded

that, for small values of asymmetry (less than about 10%), the optimum

filter bandwidth- bit time product remains equal to 0.91* and the'corre-

sponding amount of energy-to-noise ratio degradation at a fixed error

rate is virtually independent of whether or not d.c. restoration is

present.	 In_ particular, Tables 2 and 3 summarize typical 	 results for
- the two cases when BT= 0.9. 	 The quantity AE 

S
A

O
represents the additional

Es/N0 required at a given value of data asymmetry relative to its value

at zero asymmetry.

On the other hand, for values of BT other than the optimum, d.c.

restoration has a beneficial effect in reducing energy-to-noise ratio

' degradation due to data asymmetry.

The other conclusion which can be reached by comparing the above

numerical	 results with those in the previous section is that the sample

detector is much less sensitive to data asymmetry than the integrate-

and-dump detector.	 This is not surprising when one realizes that the

degradation due to data asymmetry for the integrate-and-dump detector

comes about because of a reduction in the signal energy as a result of

k
r integrating only over a fraction of the total	 bit interval.	 By comparison,

the reduction in the peak of the filter response at the sampling instant

F

A previous study [5] of the degrading effect of ideal low-pass

r bandlimiting alone on the bit error probability performance of a 
filter-sample detector revealed that BT= 0.9 was optimum from the
standpoint of minimum degradation,

^t

s...M



Figure 13. Bit Error Probability as a Function of
Energy-to-Noise Ratio with Filter Bandwidth -
Bit Time Product as a Parameter and Fixed Data
Asymmetry; No D.C. Restoration
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Figure 15. Bit Error Probability as a Function of Signal-
to-Noise Ratio with Filter Bandwidth- Bit Time Product
as a Parameter and Fixed Data Asymmetry - D.C. Restor-
ation by Capacitive Coupling
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Table 2.	 No D.C.	 Restoration

PE = 10-4 P-	 _ 10-5
E

n	 (%) Es /No ( dB) AE /N0 (d6) n	 (%) Es/No (dB)	 DES/ND (dB)

f ,. 0 9.97 0 0 11.28	 p
` 2.5 9.98 0.01 2.5 11.29	 0.01

5.0 10.00 0.03 5.0 11.32	 0.04
7.5 10.06 0.09 7.5 11.37	 0.09
10.0 10..13 0.16 10.0 11. 43 	 0.15
15.0 10.31 0.34 15.0 11.63	 0.35

l

E
tTr

i

Table 3.	 D.C.	 Restoration by Capacitive Coupling	 1

PE 	10-4 PE = 10 5

c.
0

E /N	 (dB)s	 0 AE /N	 (dB)s	 p n	 (%) Es/Np (dB)	 of /N O (dB)	
a

0 9.97 0 0 11.28	 0
2.5 9.99 0.02 2.5 11.30	 0.02
5.0 10.02 0.05 5.0- 11.32	 0.04

10.0 10.12 0.15 10.0 11.40	 `0.12
15.0 10.25 0.28 15.0 _11.54	 0.26	 _,q
20.0 10.44 0.47 20.0 11:73	 0.45
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due to data asymmetry should have a considerably lesser effect. In fact,

in the absence of bandlimiting, the integrate-and-dump detector would

still yield considerable'' E s/ND degradation due to data asymmetry, whereas
`-	 the sample detector would show none. Of course, the sample detector

without bandlimiting would produce infinite noise power and, thus, on

r	 an absolute E /N O basis would be far worse than the integrate-and-dump.

2.1.7 Performance of a Gated Integrate-and-Dump Filter
for Detection of Asymmetric Data

w_ This section deals with still another implementation of a data

detector for asymmetric data, namely, the gated integrate--and-dump

filter (see Figure 17	 The motivation for st udying the9	 )•	 y^ 9performancep
of such a detector stems from several considerations.	 First, from an

implementation point of view, the gated, integrate-and-dump has the

advantage that operation at high data rates can be accomplished with

smaller circuit losses than the ideal integrate-and-dump since the

constraint on its switching times at the symbol -transition instants
can now be considerably relaxed. 	 Second, since.the input data stream

^. possesses asymmetry, the ideal integrate-and-dump is no longer the opti-

^. mum detector, and it is thus possible that an alternate (possibly simpler

to implement) detector could yield superior performance.

-; Appendix D discusses in detail-the performance of the gated

integrate-and-dump filter as a function of data asymmetry and gating

interval and demonstrates the relation between these parameters which

. optimizes this performance.	 Only the case of NRZ'data is treated; how-

eves, as before, the results are obtained for both the case of no d.c.

restoration and the case of d.c. restoration by capacitive coupling.

sy: These results are summarized as follows.

In the absence of d.c. restoration, the average error probability

performance of the gated integrate-and-dump is given by

16 erfc^N Es/N0	 1 - 2e ] + 8 erfc
1 

_ n	 ^l[^E`s/_NO
\

+	 erfc f	 Es/N0 ( 1 - 2n + 2e l
^J

;	 0 < E	 n/216
-	 P	 _	 L	 \\E

^ F erfcE /N	 1- 2e	 <_	 <_n/2	 E	 1/2	 (19)
^^2	 s	 0

^. ORIGINAL PAGE IS0
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Figure 18 is a plot of 
PE 

versus E with n as a parameter and

E S /N0 = 9.6 dB (corresponding to P E = 10-5 when c = n = 0).	 We observe

from this figure that, for a given value of data asymmetry n, 
PE 

is

minimized by choosing F- =  n/2.	 'Figure 19 is an illustration  of the
symbol energy-to-noise'ratio (in dB) required to achieve an average

error rate of 10 
5 

in the presence of data asymmetry.	 The curve labeled

e =,0 corresponds to the performance of the ideal integrate-and-dump
(see also Figure 3 of Appendix A). 	 The remaining curves indicate a

constant Es/N^ for values of n< 2c in accordance with the second equa-

tion of (19) followed by an increase in E
s
 /N

0
 with n as required by

the first equation of (19).	 Note that each of these curves cross the

E= 0 curve at some value of n, say n 0 , which means that, for n> 710,

the gated integrate-and-dump outperforms the ideal integrate-and-dump

t 
0 in the sense of requiring less E S/No for a given average probability

of error.	 The dashed curve in Figure 19 'represents the performance

corresponding to selecting E= n/2 at each value of n and is thus the

best achievable with the gated integrate-and'dump.

When d.c. restoration by capacitive coupling is present, then

the analogous result to (19) is

erfc C^^ES/N0 (l - 2E)(1 - nD) I 	 +	 erfc	
PE

s /NO (1 - 2-E-:)- (1 + nD)
-^	

1̂6

+	 erfc nD[JE/NO 	 2n +	 + 2E (1 - nD)
16 s 

+ 8 erfc
pE	

- ^ES/NO	
l - n+ nD - 2E nD 1 0 <	 <_ n/2J

4 erfc -
DE

S /N 0	l ,- 2e (_1 - 0 i + 4 erfc PEs/N,(1- 2E)(1 + nD

^► n/2	 < E	 < 1/2.-	 (20)

R	 i	 f?	 G
tit

Figure 20 again illustrates PE versus E with n as 'a parameter

and Es/N 0 = 9.6 dB, where PE is now computed from (20) .	 We observe from
this figure that, fora given value of data asymmetry, there exists a

^, value of E'which minimizes P E ;	 however, unlike Figure 18, 	 this value

1/
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E S /N 0 = 9.6 dB

^.	 Figure 20. Average Error Probability versus Gate Interval at Symbol Edge with Data
Asymmetry as a'Parameter - D.C. Restoration by Capacitive Coupling



-IN

39

of e, namely,. 
Emin'	

is not equal to n/2.	 figure 21	 is the analogous

figure to Figure 19 when d.c. restoration is present. 	 Again, the dashed

curve corresponds to e= Emin which represents the best achievable per-

formance using the gated integrate-and-dump as a data detector. 	 Com-

paring Figure 21 with Figure 19, we observe the considerable reduction

` 40 in SNR degradation due to data asymmetry when d.c. restoration is employed.

This improvmenet is analogous to that achieved when other types of data

detectors are used.

In conclusion, the use of a gated integrate-and-dump filter for

0 detection of asymmetric NRZ data can, depending upon the amount of data

asymmetry present, produce significant improvement in SNR degradation

due to asymmetry relative to that of an ideal integrate-and-dump filter.

a
2.2	 Antijam Techniques for Shuttle Communication

There are three basic techniques for antijam communication.

These techniques are direct sequence pseudonoise (DSPN), frequency
i3

hopping (FH), and time hopping (TH), and any hybrid of these techniques.

2.2.1	 Direct.Sequence Pseudonoise Spreading

' The most straightforward way to widen the spectrum of a data

signal	 is to multiply (modulate)	 it by a wideband signal.. Such a.i
spreading signal must have correlation properties that aid in acqui-

sition and tracking.	 One of the best.signals fitting these specifica-

tions is the binary pseudonoise (PN) signal.	 This type of spread

spectrum is used on the S--band and Ku-band Shuttle forward links to

provide the low flux density over a 4 kHz bandwidth.
1

The antijam performance of a DSPN system is easily computed.

Assume that the additive interfering signal 	 has noise power N within

the PN bandwidth.	 No matter what its initial 	 bandwidth, when the

® received signal- is demodulated, this interference is spread over the

k PN bandwidth.	 Note that the ratio of required energy per bit to

single-sided noise spectral density is given by

Eb	 -	S Tb

. , —
NO

(21)
req	

N Tc
1 1

its

4.
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where S is the signal power, N is the noise power in the PN bandwidth,

T  is the bit duration, and T  is the PN chip duration.

For a tone jammer of the carrier frequency with power J and

white noise power in the PN bandwidth equal to N 0/Tc , then

	

N = N_0+ J	 (22)
Tc

Therefore,

i	
EbS T 
	 S 

T 	
1

(23)
N O	 N	 Nreq	 0 + J T	 0 + J Tc 	 N0 + J Tc

(T—C	 ) c	 S T b S (Tb)

Let the available Eb/N0 = ST b/N0 be denoted (E b/N0 )a then

J Tc	 -	 1	 1

S	
(24)Tb	

Eb/NO 
req - 

E b/N o
 
a 

Define the circuit marg-in in the presence of white noise only equal

to M; that is,

Eb^N0 req

Rewriting (24),

Eb J Tc	 _ M- 1	 (26)N o S Tb

or	 ORIGINAL PAGE IS

OF POO. QUALITY
'C	 (M - 1)
Tb	 -Eb/NO a^^/S^	

(27)

k

Note that 1/T b is equal to the bit rate Rb and 1/T^ is equal to the
t	 PN chip rate R	 Therefore,f	 c

` 4̂{	 (Eb/N0)a (JA S )
4.	 _

.. l	
Rc	 Rb (M — 1)	

(28

:f

6

+.Fa....•^.na^..+-s-. - 	 _.-.^._^.^-.

a.

r
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As an example of the use of (28), consider the S-band forward link.

,i Let the required Eb/N 0 for a bit error rate of 10-4 be

EM
b=	 3.5 dB*	 +	 1.5 dB	 +	 1.0	 +	 1.0

N O 	 -^^--^req--^._.
y. rate 1/3, K=7	 loss in	 loss in PN	 TDRS

convolutional	 bit sync	 despreading	 loss
I coding requi red

for P b =10-4

a 7 dB.	
_	

(29)

Let the available (E b /N0 ) a for Rb = 32 kbps be

`
Nb
0a

=	 8 dB	 (30)

j^

and let J/S be 20 dB; then

r	 w (d/S) (E /N	 )0
Rc	_	 (32 kbps)	

M- b

	 a	 =	 78 Mbps	 (3l)

y

Note that, since the energy is normalized to the bit rate rather than

n the coded symbol rate (3x 32= 96 ksps), the bit rate is used in (28).

Also note that (28) assumes a PN code length of infinite period but,n-
in actual practice, the PN code rate must be greater than Tb/TC.

Therefore, in this case, the code length must be 4095 or greater.

This example illustrates the disadvantage of using DSPN to achieve
i

antijam communication for moderate data rates and small circuit margins

in white noise.	 The main disadvantage is that extremely high chip

rates are required and, as a consequence, the synchronization time

j • becomes unacceptably long.

2.2.2	 Frequency Hopping

Another method of antijam modulation is frequency hopping (FH).

Using this technique, the carrier is hopped over a large number of

frequencies (i.e., large bandwidth). 	 The carrier frequency selection

{ process is controlled by a PN sequence which could be nonlinear to
R
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deter determining the selection code by the jammer. Since the frequency

0

	

	 hopping rate is of the order of the bit rate and much less than the

total hopping bandwidth, the acquisition of a FH system is much easier

than a-PN system with similar bandwidth.

The antijam performance of a FH system depends on the type of

0

	

	 jamming. For example, if the jammer placed equal power at each of

the possible carrier frequencies, then the FH processing gain over a

non-frequency hopping system is

PGFH	=	 number of carrier' frequencies 	 =	
R	

(32)

where B is the total available bandwidth and R is the larger of the	 j

frequency hop rate or the bit rate. 	 _If, instead of jamming each.pos-

F

CD
Bible-carrier frequency, the jammer could jam 0.2 of the carrier

frequencies with enough power to cause an error (probability 1/Z),

then the bit error rate would be 10%.	 Thus, to protect against par-

tial band jamming, an error correcting code must be employed; otherwise,

an error would be made every time a carrier frequency from the jammed

band was selected.

It is important to notethat only noncoherent frequency hopping

is being considered,	 since large hopping bandwidths make it impractical

to maintain phase coherence across the total bandwidth.	 Therefore',

each hop has an independent phase but the phase is constant over the

j hop.	 Because of the noncoherent frequency hopping, unless a very slow

frequency hopping rate is used which would allow frequency following

fD
by the jammer, it is impractical to lock up a carrier tracking loop at

each frequency hop.	 Therefore, in the Shuttle application, a modifica-

tion to the carrier recovery must be made to the demodulator. 	 Probably

the simplest modification is to employ differential	 PSK (DPSK) and
k

R
derive the carrier phase by comparing the successive bits-.

f To calculate the antijam performance of a FH 'system, effective

t
Y signal-to-noise ratio is defined as

Eb	
=	 B	 S	

(33)
NO	 Rb	 deff.
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where B is the hopping bandwidth, R  is the bit rate, J is the interfer-

ence power, and S is the signal power. Note that, in using (Eb/NO)eff'

it is assumed that the thermal noise is insignificant to the jammer

power (i.e., 10 dB less than J). For DPSK modulation with soft deci-

sion Viterbi decoding (rate 112 or rate 1/3), the required(Eb/NO)eff

C	 is shown in Table 4

For FH-PN/DPSK, the data modulation is first spread with a PN

code as in DSPN and then the carrier is hopped. Using (33), the

required bandwidth can be determined for the example used in the DSPN

case. For rate 1/3 Viterbi decoding, (E N O ) 	
7.8 d6 at Pb =10-5.

Thus,	 a

( E,) -
B 7.8 dB	 (34)

N0eff	 Rb J

with Rb 32 kbps for the S'-band and (J/S)= 20 dB, then

B =	 19.6 MHz	 (35)

CD

For the Ku-band forward link, R is equal to 216 kbps. With no
b

coding on the Ku-band forward link,_ 
(E b/N O )

eff = 42.6 dB for 
Pb 

10-5

To achieve (J/S) = 20 dB, then

B. = 393 GHz	 (36)

I'

	

	 which is clearly impractical. However, if rate 1/3 Viterbi decoding

is used, then (Eb/N 0 ) eff = 7.8 dB and B= 130 MHz.

E	 Note again that (	 y	 g	 g33) assumes a reasonably high circuit margin

'	 in thermal noise. If this cannot be achieved, then a finer antijam

` performance analysis can be made. But even if B was required to be

greater than 130 MHz, the synchronization requirements would not be

increased over the modest requirements of the FH system in the example

f	 because the synchronization time is independent of the hopping bandwidth.'

.`	 2.2.3 Time Hoppingji

Whereas FH channelizes via different carrier frequencies within

a given bandwidth, time-
hopping  (TH) channelizes via time slots within



Required (Eb/NO)eff Worst Case Jamming

Signal	 Format
FH/DPSK
(dB)

FH-PN/DPSK
(dB)

No Coding

P b =  
10-3 27.0 22.6

P b = 
10- 5 47.0 42.6

R= 1/2 Viterbi Decoding

P b= 10-3 10.4 6.1

-P b= 10 5 14.3 10.0

R= 1/3 Viterbi Decoding

Pb =  10-3 9.2 4.9

Pb =  10-5 12.3 7.8

ii C)

A

Table 4. Antijam Performance of Freq4ency Hopping

45



a given time frame. A burst transmission is employed within the slot

selected by a PN code or nonlinear sequence. Provided the TH trans-

mitter can operate at a high peak power but with low duty factor, the

TH system has the same antijam performance as the FH system. The TH

system does not appear practical for the Shuttle system unless the

transmitter is converted to a high peak power pulsed operation.

As a conclusion to the antijam techniques for the Shuttle

communications, it appears that a frequency hopping system could

provide the best antijam performance for the Shuttle S-band and Ku-band

forward links with some,modification to the demodulator in deriving

^o

i

I_

46
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3.0	 TRACKING TECHNIQUES ANALYSIS

t3 As a part of the overall effort to assess the Ku-band system

design and to evaluate possible system simplifications/modifications

that may be achievable, this task requires Axiomatix to study the design

and implementation of tracking techniques which are suitable for incor-

poration into the Orbiter Ku-band communication system.	 Emphasis is

placed on maximizing tracking accuracy and communications system flexi-

bility while minimizing cost, weight, and system complexity of Orbiter

and ground system hardware.

In a host of previous studies [6-13], much consideration has been

given to implementation of the three-channel Orbiter modulator, whose_

purpose is to generate a signal for simultaneous transmission of three

channels of information on the Ku-band return link.	 One of the possible

structures for Mode 1	 is referred to as the Three-Channel Quadrature

Multiplex Modulator [9], wherein the high data rate channel	 (50 Mbps)

is biphase modulated on an in-phase carrier and the two lower rate chan-

nels (192 kbps and up to 2 Mbps), after being biphase modulated onto
(1) quadrature squarewave subcarriers and summed, are amplitude modulated

onto the quadrature carrier (see Figure 22). 	 The receiver for the

three-channel quadrature multiplex signal employs biphase Costas loops

for carrier and subcarrier recovery. 	 While the performance of the carrier

recovery loop has previously been investigated [6, Appendix C], the com-

panion performance analysis for the subcarrier loop has not.	 Thus, the

first part of this task focuses on developing the theory necessary to

carry out this analysis. 	 In particular, we begin with a fundamental

0 study of the tracking performance of biphase Costas loops when subjected

to an unbalanced QPSK input.	 The plural	 usage in the phrase "biphase

Costas loops" refers to the fact that we shall study several different

Costas loop implementations, each of which has advantages over the others,

a- depending on the application.	 Following these more general analyses, we

shall apply the results_ specifically to the subcarrier tracking loop of

the-Ku-band return link.

ORIGINAL PAGE IS
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3.1	 Tracking Performance of Unbalanced QPSK Demodulators

Unbalanced quadriphase-shift-keying (QPSK) used on the Ku -band

return link is an attractive means for transmitting two digital data

streams which have different average powers. 	 The two data streams are

not constrained to have identical data rates nor must they have the

same data format; e.g., one might be an NRZ sequence and the other a

Manchester code.	 In fact, it is the difference in data rates which

l causes the unbalance of power when it is desired to have symbol energies

<, and therefore error rates on the two channels within the same order. of
4t

magnitude,

3.1.1	 Biphase Costas Loop With Passive Arm Filters

Previous results [14,15] have indicated that, when the unbalanced

power ratio is large, e.g., approximately 4:1 or greater, a biphase

Costas loop is a more efficient demodulator than a fourth-power tracking

_loop.	 These results, however, accounted only for the filtering effect

produced by the two passive arm filters of the loop on the equivalent

additive noise perturbing the `'-loop.	 When the bandwidth of these filters
is selected on the order of the data rate, as is typical of optimum

Costas loop design for tracking purposes [16,17], the filtering degra-

dations of the data modulations themselves and the cross-modulation noise

r aj produced by their multiplication in the loop often cannot be neglected.
An analysis that incorporates these additional 	 filtering effects

into the performance characterization of a biphase Costas loop demodu-

lator of unbalanced QPSK is presented in Appendix E. 	 Many of the results

obtained in this appendix are in the form of closed-form expressions

which can easily be evaluated numerically for design and performance

s prediction purposes.	 The generality of the results enables them to be

applied to a wide variety of applications, in particular, the performance

of the subcarrier tracking loop for the three-channel Orbiter Ku-band

return link, which will be discussed later on`. 	 For the moment, we shall

briefly summarize the results given in Appendix E.

It is common practice to characterize thetracking performance

! of a Costas loop by the variance of the hoop phase error 'L ( 	 often

referred to as the tracking phase jitter.	 In the linear region of

G
operation, an .expression for this quantity is given by

a
r i

rte:
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(37)

where P-	 PT/N0BL
 is the total power (PT ) to noise spectral density (N0)

ratio in the loop bandwidth (B
L
) and S

L
 is the so-called sq_uari:ng loss,

which represents the additional degradation in equivalent loop signal-

to-noise ratio relative to a linear loop, i.e., one in which there

exists no nol sex noise or signal x noise error signal components. 	 Thus,
from (37), we see that characterization of the loop squaring loss in

terms of system parameters is sufficient for predicting the loop's

tracking performance.

As a numerical	 illustration of this characterization, consider

the case where the low rate modulation m l (t) is Manchester coded data,

the high rate modulation m 2 (t) is NRZ data, and the arm filters are

single-pole Butterworth (RC) filters. 	 Then Figure 23 illustrates (for

fixed fractional channel powers ,nl and n2 corresponding to a 4:1 power

ratio on the two channels) the behavior of S L as a function of the ratio

of two-sided arm filter noise bandwidth B i to the higher of the two data

rates R2 = 1 /T2 , with the ratio of data rates R2 /R1 and PTT2 /N 0 as param-
eters._	 Assuming PT /N0 to be fixed, then the variation of squaring loss

{ with PTT2/N 0 directly reflects the effect of changing the high data rate

R2 .	 Furthermore, at low values of B i /R2 , we observe from Figure 23

that additional	 interesting peaks and valleys, of the squaring loss char-

acteristic occur.	 These extrema represent tradeoffs between SXS distor-

tion and cross-modulation noise or SxN power,; depending on which of the

latter dominates the total noise.
The corresponding numerical evaluation of the tracking jitter,

for a fixed ratio of arm filter noise bandwidth to the loop noise band-

width (B i /B
L
)-is shown in Figure 24.	 The minimum values of Q

^O 
for some

ratios of R2/R^ represent best design points when the combined effect

of-N xN distortion and cross-modulation noise or S xN power is minimal.

Assuming PT/Ng to be fixed, the variation of Q^o with PTT 2 /Ng is shown	
l

in Figure 25:	 As is intuitively true, the tracking jitter performance

improves with the increase of PTT2/N0.

S
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3.1.2 Biphase Costas Loop With Active Arm Filters

In a previous Costas loop study for biphase modulation [16], it

was demonstrated that considerable improvement in tracking performance

k could be obtained by employing active arm filters of the integrate-and- 	 i

4 dump type as opposed to passive arm filters, 	 An investigation of whether
^. ray

a similar performance improvement can be obtained for an unbalanced QPSK

modulation is presented in detail	 in Appendix F.	 The highlights of this

investigation are summarized as follows.

In Section 3.1.1, we observed that, for given values of the data

rate ratio R2 /R1 , power ratio P
l
/P2 , and total	 signal-to-noise ratio	 i

in the high data rate bandwidth P TTZ/N O , an optimum arm filter band-

r

r
width or, equivalently, Bi/R 2 , exists in the sense of maximizing S L

(i.e., minimizing the squaring loss). 	 Using that value of B i /R2 , namely,

(Bi /R2)opt 	
and defining the corresponding value of S	 by SLo	 then

the minimum improvement in tracking performance (or, equivalently, in

squaring loss performance) obtained by employing active integrate-and-

dump arm filters as opposed to active arm filters is given by

I= SL/sLo t, where S
L
 is used here to denote the squaring loss of7

the Costas loop with integrate-and-dump arm filters.

Closed-form expressions for SL are derived in Appendix F for all	 i

combinations of NRZ and Manchester data formats for the two channels 	 j

K and both synchronized and unsynchronized symbol clocks. 	 As an example,

assuming single-pole (RC) arm filters as the basis, of comparison for

the Costas loop with passive arm filters and assuming unsynchronized

` symbol clocks for the Costas loop with integrate-and-dump filters,

Figures 26 and 27 illustrate I (in dB) versus the channel 	 power ratio

P1 /P2 with the data rate ratio R2/R1 as a parameter and values of total

power-to-noise ratio P TT2/No typical of coded and encoded systems.	 We

observe from these figures that the improvement in squaring loss per-

formance of using integrate-and-dump filters as opposed to single-pole

arm filters is an increasing function of P
1
 /P

2
 and depends heavily on

' the choice of data formats for m l (t) and 'm2(t).
i

`	 Similarly, using many numerical 	 illustrations,	 it is shown in

Appendix F that, for a fixed ratio of data rates and total 'power-to-

;:
F

noise ratio in the higher data bandwidth, the squaring loss itself
°	 x	

^.

c

i
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increases as the ratio of powers in the two channels increases, and the

rate at which this loss increases (tracking performance deteriorates)

also depends heavily upon the data formats in each channel. Thus, it

is concluded that, when the ratio of data rates is on the same order

of magnitude as the inverse of the power ratio, i.e., approximately

equal signal energies in the two channels, the biphase Costas loop can

be used as an efficient demodulator of QPSK. On the other hand, if the

energy in the two channels is very unbalanced, e.g., one channel is

coded and one is uncoded, then it is still possible to efficiently use

a biphase Costas loop for demodulation of unbalanced QPSK, provided that

the higher data rate channel is Manchester coded. It is understood that

the foregoing.conclusions are quite general and are not intended to rule

out specific design situations in which sufficient total power-to-noise

ratio is available to tolerate large squaring losses. In an individual

situation, one must resort to the specific numerical results given in

the illustrations to determine the suitability of employing a biphase

Costas loop for demodulation of unbalanced QPSK.

3.1.3	 Biphase Polarity-Type Costas Loop With Passive Arm Filters

In Sections 3.1.1	 and 3.1.2, we addressed the problem of tracking

loopan unbalanced QPSK signal with a conventional biphase Costas 	 with

analog input phase detectors and an analog third multiplier (the one

that forms the loop error.signal`). 	 Because of do offsets associated

" with analog multipliers, it is common practice to hard-limit the

in-phase* channel arm filter output and replace the analog third multi-

plier with a chopper-type device (switched multiplier) which typically

exhibits much less offset (see Figure 28). 	 While it is also possible to

replace the input in-phase and quadrature analog phase detectors with

switched multipliers, the impact of doing so on the resulting tracking a

performance is minimal	 since the arm filters will. pass only the first-

M) harmonic of these phase detector outputs.	 Thus, aside from the 8 /Tr2

power loss associated with the first harmonic of a square wave, the 
r.

For unbalanced quadriphase, we shall arbitrarily refer to the
.^ in-:phase channel as that corresponding to the point of data extraction

for the higher power signal.
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performance of the loop would be identical to that given in Section

	

9	 3.1.1 for an analog third multiplier or that to be presented here for

a switched third multiplier. For ease of terminology, we shall refer

to a conventional biphase Costas loop with a switched third multiplier

, as a "biphase polarity-type Costas loop" or, even simpler, a "polarity-

	

4 !9	 type Costas loop."

Generally speaking, introduction of a limiter (hard or soft)

into a system results in signal suppression, the amount of which is
9E

a function of the signal-to-noise ratio at the limiter input. This

signal suppression, in turn, reduces the total loop gain and, as a

consequence, the loop bandwidth. Another potential problem with the

limiter under strong signal conditions is that it may increase the
tendency of the loop to false lock.

Appendix G discusses in detail the tracking behavior of the

polarity-type Costas loop with unbalanced QPSK input and compares its

performance with that of the conventional Costas loop discussed in

Section '3.1.1 and Appendix E. In particular, for the case of single-

pole Butterworth (RC) arm filters and a particular combination of NRZ

and Manchester coded data on the two channels, the squaring loss

(tracking jitter penalty relative to a linear loop) is evaluated and

` illustrated as a function of the ratio of arm filter bandwidth to

G , higher data rate and total signal power-to-noise ratio in this higher

data rate bandwidth.	 Also numerically illustrated is the corresponding

E mean-squared tracking jitter performance as a function of these same

receiver parameters.	 A summary of these results is given as follows.

Figure 29 illustrates the variations of s 
L 

versus B i lR2 with PTT2/NC

s as a parameter.	 Superimposed on these curves (in dashed lines) are

` the corresponding results obtained from Figure 23 for the biphase

Costas loop with passive arm filters.	 We observe from these numerical

N

A"	 0 results that, for high signal-to-noise ratios, the hard-limited loop

r
actually outperforms the conventional loop and, depending on the data

r. rate ratio, the improvement (in terms of squaring loss) might be as

high as 2.8 dB. Also, for a given signal-to-noise ratio and a given

arm filter bandwidth to high data rate ratio, the squaring loss does

	

j l	 not change significantly with data rates when the ratio . of the data

^.	
1

c
,.
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rates is high.	 This is particularly true for small values of arm filter

le bandwidth to high data rate ratio.' A comparison with the dotted curves

of Figure 29 reveals that the same is not true for the conventional

Costas loop with passive arm filters. 	 However, the fact that the

polarity-type Costas loop produces an improvement in tracking perform-

410 ance at high signal-to-noise ratios over the biphase Costas loop with

passive arm filters is not surprising in view of similar results

recently demonstrated for biphase modulation [18].

3.2	 Performance of the Subcarrier Tracking Loop for the
0 Three-Channel Orbiter Ku-Band Return Link

Having examined the many ways in which a biphase Costas loop can

track an unbalanced QPSK signal, we are now in 'a better position to

analyze the tracking performance of the subcarrier loop for the three-'

channel Orbiter Ku-band return link. 	 The primary difference between	 n

the subcarrier loop tracking behavior and that of the loops discussed

in Section 3.1	 is the fact that the in-phase and quadrature data modu-

lations which are input to the subcarrier loop are biphase modulated 	 }

onto quadrature square-wave subcarriers as opposed to sine-wave sub-

carriers. _A secondary difference is the fact that, since the output

j of the quadrature phase detector of the carrier tracking loop serves

1 as the input to the subcarrier loop, the performance of the latter 	 Y

depends on the carrier tracking loop phase error.	 An analysis which'

takes both of these differences into account is given in Appendix H.

For simplicity of numerical evaluation, it was found convenient to

assume perfect carrier tracking. 	 The additional degradation due to

the phase tracking jitter of the carrier loop itself can be easily

assessed from the results of a'previous report [6, Appendix C] wherein

the performance of a Costas loop for recovering the carrier from the

three-channel quadrature multiplex signal was studied.

-Some'specific results from Appendix H are summarized below. 	 In

addition to perfect carrier tracking which was already mentioned, the
following assumptions were made. 	 The subcarrierfrequency is 8.5 MHz,

the high rate modulation m i (t)	 in Mode l	 is a rate 112, constraint,.	 lb
length 7, convolutional code (NRZ format) with data rate R^- 50'Mbps

Ell

and the arm filters in the subcarrier loop are one-pole Butterworth (RC).
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Under these assumptions, Figures 30 and 31 illustrate the subcarrier

tracking jitter behavior for a fixed ratio of arm filter noise bandwidth

to loop noise bandwidth (B i /BL ). In particular, Figure 30 •illustrates.

the case where m 2 (t) is NRZ data at 500 kbps and m 3 (t) is Manchester

coded data at 192 kbps, while Figure 31 corresponds to the same param-

eter values as Figure 30 with the exception that m2(t) is now also

Manchester coded. - In both figures, the rms tracking jitter, Q (,, (in

radians), is plotted versus the ratio of two-sided arm filter noise

bandwidth (B i ) to the higher data rate (R2) with total power-to-noise

ratio in the higher data rate bandwidth (P
T
 T2,/N 0) as a parameter. It

is observed that the changes in she subcarrier tracking jitter as a

function of B i /R2 are more obvious when m2(t) and m3(t) are both Man-

chester codes than when m2(t) is NRZ and m 3 (t) is Manchester.

Upon establishing a subcarrier reference signal;, the two lower

rate modulations, m 2 (0 and m3 (t), can then be demodulated. The error

probability performance associated with these two data`demodulations

is the subject of discussion in the next section.

3,3	 Error Probability Performance of Channels 2 and 3

,^ of the Three-Channel Ku-Band Return Link

Evaluation of errorrobabilitp	 y performance of BPSK'QPSK, and

offset (staggered) QPSK receivers has been extensively covered in the

literature [19-24]	 While the techniques used there are certainly

applicable to demodulation of unbalanced QPSK as on the two lower rate

:<	 _channels of the three-channel signal, the complexity of the evaluation

when the ratio of data rates in the two channels is large prompts one

'	 to look for a simpler calculation procedure. Indeed, such an approach

is possible when the noisy reference loss* is small or, equivalently,

the effective signal,to-noise ratio in the tracking loop bandwidth is 	 j

large, i.e., the loop operates in its so-called linear , region. Making
I^

_	 such an assumption for purposes of error probability performance evalu-

ation is quite reasonable when one realizes that this very same assumption

"Noisy reference loss".is defined here as the equivalent increase
n	 in signal power required to produce the same error probability as obtain-

able in a perfectly synchronized system.
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has already been implied in assessing the tracking performance of the

subcarrier loop. The approach taken is to expand the error probability

conditioned on the subcarrier loop phase error ^ in a power (Maclaurin)
series in ^ and then, keeping only the first few terms of this series,

average this conditional error probability over the probability density

function (p.d.f.) of ^. By doing this, we obtain the additional error

probability due to a noisy subcarrier reference as an additive term

directly proportional to the mean-squared phase jitter-a^ directly

associated with the receiver's subcarrier tracking loop. In this

regard, the results derived in Appendix F play an important role in

assessing this error probability performance. Finally, similar argu-

ments can be advanced to give closed-form'results for the noisy refer-

ence loss itself.

Appendix I contains.a detailed discussion of the general problem

of assessing the error probability performance of unbalanced QPSK

receivers under the above-mentioned assumptions. The key results from

this discussion are summarized as follows. In terms of the total

signal-to-noise ratio RT2 (RT2 = PTT2 /N0 ) in the higher data rate band-
width and the transmitted modulation indices n2 and n3 defined by

i
a

f

j

(p2 + P
3 
)T2pi

RT2 =	 N	 TI 	 P + P	 i = 2,3	 (38)
2	 3

x	 the error probability performance of Channels 2 and 3 become

k	
R	

n

PE = 2 erfc RT2 n2 + 2	
T2

7r 2 exp (- RT2 n2) 1 + 2RT2 n3 m32 Q 2
2

R y n
'.	 PE = Z erfc,' RT2 YT n3 + Z	 T2T 3 exp (-RT2 YT n 3 ) 1 + 

2R T2 n2 m32 	
2

t
3

(39)

whereY
T 

 R /R3 is the ratio of data rates and the normalized mean-

 2t '.	 squared crosstalk 632 is tabulated in Table 2 of Appendix F for various

=# combinations of data formats in the two channels. The corresponding

expressions for the noisy reference loss (in dB) itself are

i

r
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f
10 1 og l 0	 1+ R2 1+ 2R3	

Y 
12)] 0TL 2	 =

R 2

10 log 10 ^1 +R	 h] a 2".
L3	=	 (40)

R3

Fak

In applying the results of (39) and (40) to Channels 2 and 3.to

the three-channel SSO'Ku-band return link	 9, we signal,	 again assume that9 

m2 (t) is NRZ data with'a maximum rate R 2 = 2 Mbps and 
m3(t) 

is a Manchester

coded data stream at R3 = 192 kbps.	 We further assume that the power
allocation is chosen so that, for the given data rate ratio YT

	 R2/R3

f. 10.42, the signal-to-noise ratios R 2 ,R3 in the two channels are made

,.y equal, i.e., both channels operate at the same error rate. 	 Thus,

R2 = R3 implies P 2T2 =
 

P 3 T3 and the modulation indices n 2 ,n3 become

^^
P	 Y

nn	 -	 _	 0.9124

2
	

P2 + 
P3	

YT + 1

P0	 3	 1
n3	 =	 P2 + P 3	 =	

YT 
+ 1	 =	 0 0876	 (41)

Further, it is typical to design the Costas loop bandwidth on the order

of R
2/100 (or less) since most of the power is i;n the high rate channel

which controls the performance of the tracking loop. 	 Thus, assuming

n B^ /R2 = 0.01,* Figures 32 and 33 illustrate L2 and L3 of (40) versus	 r-
B/R2 for error probabilities of 10 -4 , 10-5 , and 10 6 , corresponding

p	
Y	 2 =
	 ,

res ectivel	 to R	 R	
_ 
8.4	 9.6, and 10.5 dB.	 Several	 conclusions

' may be drawn from these figures. 	 First, the noisy reference loss on

Channel 2 is considerably smaller than thatof Channel 3. 	 The principal	 i

Smaller values of B4/R2 as would be typical 	 in practical receiver
^' design would 'yield insignificant losses in ,L 2 and L3.
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`f reason for this can be easily explained in terms of the result in (40),t

where it is observed that the effective cross-modulation loss on Chan-

nel 2,	 m3 , is divided by YT , which in this case has a value equal to

10.42.	 Secondly, for either channel, the noisy reference loss decreases

with increasing error probability. 	 This is intuitively satisfying when

q; one realizes that the slope of the error probability versus signal-to-

noise ratio curve becomes steeper as P E becomes smaller and thus, for

a given a	 the parallel ideal and noisy synchronization error proba-

bility curves become closer together.	 Finally, we observe that there

exists an optimum arm filter bandwidth (for fixed R2 ) in the sense of

minimizing L i ,	 i= 2,3.	 Since only a
2
	 depends upon this bandwidth, it

is clear that this bandwidth choice is identical	 to that which minimizes

1 G
2
	 or, equivalently, the loop squaring loss.	 Note that,	 if B b/R2 is

decreased, then the noisy reference loss will also decrease, since the

equivalent loop signal-to-noise ratio p increases.
In summary then, it is concluded that the crosstalk degradation`

due to noisy subcarrier demodulation references is quite small 	 (on the

Cl order of tenths of a dB or less, depending on the particular channel

and the ratio of loop bandwidth to data rate in that channel). 	 When

a the higher data rate channel 	 is 1 Mbps Manchester coded data, then since

both channels are now Manchester coded, the crosstalk loss would be even

smaller.

While the results of Appendix I have been directed principally

toward the demodulation of unbalanced QPSK by a conventional 	 (single-

jchannel) Costas loop, the expressions for average error probability

[see (39)] and noisy reference loss [see (40)] apply in a much broader

. sense._	 In particular, the two-channel	 type Costas loops' discussed in

[25,26] have a mean-squared phase jitter given by (37) where, however,

S
L 

is 'a much more complex function of the various system parameters 	 r

s` such as data rates and channel 	 power ratios.	 Nevertheless, once SL

(and thus a	 )	 is determined,	 (39) and (40) apply directly toward

evaluation of the noisy synchronization reference effects of these
^. loops on error probability performance. 	 Further discussion of the

performance of two-channel Costas loops along these and other lines

is presented in the next section. 	 Final ly, other possible applications

[. of the results derived in Appendix I pertain to demodulation of
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unbalanced QPSK using a biphase Costas loop with switching type multi-

pliers. Once again, (39) and (40) apply, provided that an expression

for the squaring loss can be found (see, for example, Appendix G).

3.4	 Techniques for Improved Tracking of Unbalanced QPSK Modulation

As part of the ongoing effort to investigate tracking techniques

for improving communications efficiency on board the SSO, Axiomatix

undertook to reexamine previous work [25,26] on the problems of carrier

synchronization of an unbalanced QPSK (UQPSK) signal format, starting

with the well-known maximum _a posteriori (MAP) estimation technique as

motivation for deriving closed loop tracking configurations. Such

carrier reconstruction implementations are suggested upon examining

the gradient of the likelihood function whose solution is the MAP esti-

mator of carrier phase:

in general, the closed loop implementation which results from

application of MAP estimation ­,heory to the problem of carrier phase

estimation (herein referred to as the MAP estimation loop) is impractical

primarily because of the difficulty of implementing the hyperbolic

tangent nonlinearity suggested by using . the gradient of the likelihood

function as an error control signal in the loop. To arrive at practical

realizations, one ordinarily approximates this nonlinearity with simpler,

more easily implementable functions. In the past, authors have employed

the approximations

tanh x	 sgn x	 x large	 (42)

and	 tanh x	 x ;	 x small.	 (43)

Since the input to the noeli-nearity is a monotonic function of signal-

to-noise ratio (SNR), then the approximations of (42) and (43) corre-_

spond,'respectively, to conditions of high and low SNR.

'In Appendix J, we reexamine some of these approximations and the

optimum structures which result	 Using a slightly more sophisticated

apiproximation of the nonlinearity, new and interesting structures are

0	 presented, first for QPSK as an example and then for UQPSK,, which over-

come some of the deficiencies posed by MAP receiver structures for these

4r,a1..s..	 kg`s	
Sw`eiew	 -	 .,:3	 '^c'Y4.s,.Pyx

.f___-7
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same modulations suggested by authors in the past. 	 The equivalence of

the new QPSK structure (Figure 34) with the well-known quadriphase Costas

loop is discussed in Appendix K. 	 Furthermore, it is demonstrated that

the new UQPSK structure (Figure 35) allows carrier reconstruction at

k all ratios of data rates and powers in the two channels, even in the

limit of balanced QPSK.

=Ilk In addition to arriving at new structures for optimum tracking

of balanced and unbalanced QPSK, the practicality of the two-channel
l

type carrier reconstruction loop for UQPSK is discussed in detail 	 in

0	 Appendix J, paying particular attention to its sensitivity to variations

is in channel gains.	 Rather than go into the details of the performance

of the loop in Figure 35, we instead investigated in Appendix J the

,f sensitivity to gain variations of the simpler loop (Figure 36) found

in [25,26] and used these results qualitatively as being indicative of

R	 two-channel Costas-type configurations. 	 Actually, to make life even

` s;impler, we performed our sensitivity analysis on the equivalent loop

to Figure 36, where active (integrate-and-dump) arm filters were used

f 0	 in place of the passive arm filters and, furthermore, the channel gains

° !	 2 K /N O and 2 K /Ng were replaced by arbitrary channel gains K and K

It is shown there that, whereas the channel gains -1 and K

were "optimally" chosen in [25,26] from MAP estimation considerations,

-^ a different selection of these gains based upon-directly o timizin 	 the9 	 P	 9	 a

loop's tracking performance can yield as much as a 10 dB improvement _in

this performance.	 The significance of this statement is not so much the

fact that the tracking performance can be enhanced by , a better choice of

gains, particularly since these gains are now theoretically signal-to-

noise ratio dependent, but rather the high degree of sensitivity of the

performance of the MAP estimation-type loop to variations in the channel 	 l
gains themselves.

f
To provide quantitative verification of these points, Figures 37

' through 39 illustrate the squaring loss SL , corresponding to the two

j possible selections of channel 	 gains, versus 'the _power ratio A p with

the data rate ratio a t = n (n integer) fixed and the total power-to-noise

y ratio in the high data rate bandwidth ) = PTTi /Ng=-3 d6 and 10 dB.	 The

a values of	 n	 selected for these plots range from bal ancet, (n = 1) to	 N
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highly unbalanced (n= 10) data rates.	 Several points are worthy of note
from the results in these figures.	 First, from Figure 37, we observe

a j that, for the balanced data rate case (n= 1, a p arbitrary), both chan-
nel gain selections produce the identical	 squaring loss.	 Another case

where the two channel gain selections produce the same result is that

p for which the channels have equal energy, i.e.,	 a p =l/n.	 Since, from
[25,26], the "optimum" value of K 2/Kl as motivated by MAP estimation

theory is

K2	 n
K 1	 -	

(44)

which is independent of signal-to-noise ratio, then for the equal energy

case, we have K2/K1_ ap

Second, the difference between the true optimum squaring loss

and the value given by selecting the channel gains as in [25,261

increases with increasing	 n .	 Also, for fixed	 n , these differences

are much more significant at higher values of total power-to-noise

ratio c
I
	 in the high data rate bandwidth than at the lower values. 	 As

an example, for n= 10 and	 s = 10 dB, we see from Figure 39 that, for

equal	 powers	 ( kp = 1), the optimum squaring loss is 10 dB smaller than

that predicted by MAP estimation channel gain selection.	 The same com-

parison at cl = -3 dB only shows a 1.4 dB improvement.

i Third, the true optimum (minimum) squaring loss decreases with

increasing ^ 1 ,	 regardless of the values of	 n	 and X, except for the

case of small A and n= 1.

Finally,	 it can be shown that Figure 37 is representative of the

one-channel	 Costas loop performance for all 	 n	 and a p ; hence, these

curves represent lower bounds on the squaring loss performance for the

two-channel	 configuration.	 That is, for fixed ^,	 and a p , the two-

channel	 Costas loop will	 exhibit a smaller squaring loss for any data

., rate ratio	 n	 than the value indicated in Figure 37. 	 This performance

comparison between one- and two-channel Costas loops is made in Figure 40

where the ratio S	 = SL	 /S	 (in dB) is plotted
L	 12-channel	 ^1-channel

versus a p with sl	 (in dB) as a parameter and X P = 1/n.	 Clearly, for

¢`	 ! a	 approaching unity, the improvement becomes infinite; however, we
p
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so

recall that, in this limiting case, neither the one-channel nor the

two-channel loop is capable of tracking at all, i.e., SL goes to zero

for both.
In conclusion, we point out that the MAP estimation theory pro-

~ vides good intuition for implementing closed loop tracking configurations

for UQPSK modulation; however, care must be exercised in selecting the

' ratio of gains between the two channels of the resulting configuration."

r In this regard, two options are available, namely, (1) that gain ratio
zj

F # which is motivated b	 MAP estimation theory and is inde pendent of	 1y	
y

t
^ signal- to -noise ratio and (2) that ratio which minimizes the loop

E
r squaring loss and is dependent on signal-to-noise ratio.	 The differ-`

' ence in squaring loss between these two choices of gain ratios can be

as much as ,10 dB for certain values of data rate ratio and power ratio.

When the signal energies in the channels are chosen equal, then both

gain ratios also-become equal and yield identical squaring loss perform-

ance.	 Even in this case, the two-channel Costas loop of [25,26] is

capable of tracking balanced quadriphase.	 By an extension of the power

10 series approximation used for the hyperbolic tangent nonlinearity which

arises from the MAP estimation approach, we have been able to demonstrate

a carrier reconstruction loop for UQPSK (Figure 35) which should yield

s better performance than the above-mentioned two-channel loop as the

modulation becomes more balanced; in particular, 	 it acts like a quadri-
'((

t phase Costas loop in the limiting case of balanced QPSK. 	 A detailed

j analysis of the tracking performance of this loop will be considered

in the future.

r 3.5	 Costas Loop Tracking Performance on the Shuttle S-Band
Uplink in the Presence of Residual 	 Carrier

F We conclude the tracking techniques analysis task with an inves-

tigation of the effects of residual carrier on the Costas loop tracking

.J S
ir

I performance of the Shuttle S-band uplink.

t Traditionally, a Costas loop is intended for use in receivers

^ which must reconstruct a carrier reference from an input. si ,gn,al whose

carrier component is totally suppressed, e.g., a biphase modulated

^{
s

carrier.	 On the Shuttle S-band uplink, however, during the time when 	 i
r

both data and a ranging subcarrier are linearly modulated on the same	 j



carrier, the data modulation index is not a/2. Thus; in this instance.,

the Costas loop is called upon to accurately track a signal whose

carrier component is not completely suppressed.

A simple block diagram which, for the sake of analysis, charac-

terizes this situation is illustrated in Figure 41. Included in this

illustration are the means by which the data and the ranging subcarrier

are extracted using the in-phase demodulation reference generated by

the loop.

Several key questions arise relative to the performance of the

Costas loop under these unorthodox conditions:

1.	 Is the loop capable of successfully tracking the input

independently of the value of the data modulation index?

2.	 Is it possible to extract the ranging subcarrier as shown

if the data modulation is removed?

3.	 What is the additional threshold power-to-noise ratio

required to operate the loop in the PM (ranging and data) mode as

compared to the PSK (data only) mode?

4.	 What tradeoffs exist between power in the ranging channel

and loop threshold performance as a function of the data and ranging

modulation indices?

The answers to these and other questions related to the perform-

0 ance of Costas loops in the presence of residual carrier are given i'n

Appendix L, where a theory is established for such.performance as a

function of the parameters which characterize the system tracking

behavior.	 The key results from Appendix L are summarized below.

F%rst, it is demonstrated that, in the residual carrier mode of

operation, there exists a critical data modulation index below which

the loop will	 not operate, regardless of the value of signal-to-noise

ratio.	 An expression for this critical modulation index is given as 	 -

follows.	 Consider the Costas demodulator illustrated in Figure 41

whose input signal	 is of the form

s(t,e)	 =	 _P sin [w0t + s 	 d (t) + s 	
sin, (wsct+ 

er(t)) + ^^ '	 (45)

where P is the total received power, w0 is the carrier radian frequency,

and e the corresponding input phase to be estimated, O d is the data
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modulation index with d(t) the data waveform, and
s
 is the ranging

subcarrier modulation index with wsc the radian subcarrier frequency

' and 0 r (t) the tone ranging modulation.	 Then, if

t'
a	 2-	 °°'	 2

Dm 	-	 <d (t )>	 I	 Sm (f) J G(j 2Tr f)	 df	 (46)

represents the power in the data modulation at the arm filter output

with Sm(f) denoting the power spectral.density of the unfiltered data

d(t), when

cot2 s	 D	 , `	 (47)
d m

the loop S-curve vanishes and the loop will not lock at any loop signal-

:I _to-noise ratio.	 For values of 0 d_less than the critical value satis-

fying	 (47),	 the	 loop locks at cp = ±(2n+1) Tr/2,	 n = 0,1 ,2,.....	 For

'
{

values of sd greater than this critical value, the looplocks at

E co =+nTr,	 n = 0,1,2,.

Table 5 tabulates the critical values of data modulation index

f' for the various data symbol rates RS of interest on the S-band uplink,

wherein the data is Manchester coded and the Costas loop arm filters

are assumed to be single-pole Butterworth (RC) with 3 dB cutoff fre-

quency f	 and two-sided noise bandwidth B• _ Trf .

a
C	 1	 c

Table 5.	 Critical Values of Data Modulation Index on the S-Band Uplink

xs	 fc	 Bi/Rs	 Dm	 (sd)crit

32 kbps	 (Low	
134 kHz	 13.155	 0.886	 0.8157 rad

Data Rate Uncoded)

96 ksps	 (Low	
134 kHz	 4.385	 0.6636	 0.8872 rad

Data Rate Coded)

72 kbps	 (High
Data Rate Uncoded)	

308 kHz	 13.44	 0.8884	 0.815	 rad

' 216 ksps	 (Nigh
Data Rate Coded) 	

308 kH-/-	 4.48	 0.670	 0.8848 rad
t'
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Second, the performance of the ranging channel is characterized

both when data modulation is on and when it is off. For either case,

the signal.power in the ranging channel is given by

Pr = 2P cos t ad it (as ) cos t cO

where, for large psi,

cos t W	 1 - p SL

(48)

(49)

T Then, when the data modulation is on, we note from (45) that, as the

value of ad is increased beyond its critical value as determined from

(47), the carrier becomes more suppressed and thus the Costas loop

tends to track better. 	 However, as ^	 is increased, cos ad decreases

and thus [from (48)] the power in the ranging channel Pr tends to

decrease because of this.	 Since the power in the ranging channel 	 is
r

proportional to both cost a  and the accuracy of Costas loop tracking

f:. (through the factor cos 2 co), a tradeoff exists with regard to the

selection of the data modulation index.

When the data modulation is removed, i .e. ,	 ad = 0, then as pre-
viously mentioned, the loop will 	 now lock up around cp = 7T/2 (as opposed

j to	 co = 0).	 This is equivalent to saying that the in-phase and quadra-

^. tune demodulation reference signals switch 'roles. 	 Thus, since the

ranging subcarrier component in the input signal's(t,'e) 	 is now demodu-

lated by the-quadrature carrier reference signal, then from (48), we44

have that (for large loop signal-to-noise ratio) P r = 0.	 The conclusion

to be reached then is that, in order to extract range information as

in Figure 41, the data modulation cannot be turned off at the transmitter.
Y.

The third key result concerns thecomparison of threshold tracking

t . performance in the PM versus; the PSK mode. 	 Tracking threshold is typi-

cally specified as the minimum input signal 	 level for which the mean

.. time to loss of lock is greater than or equal to 10 seconds. 	 This con—

dition is uniquely specified by the loop signal-to-noise ratio or,f .

P equivalently,	 a 2 ^ .	 Thus, two modes of operation, e.g., PM and PSK,

o^IG^AL	^	 r
POOR

 U^,_
QOF

z	 m
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will have identical tracking thresholds if the total power-to-noise

ratio P/N 0 is adjusted in one relative to the other to produce the same

a2^o in both.

The baseline design of the S-band network transponder under

^r development by TRW calls for ^s = 1.0 rad and v 1.1 rad. Performance

tests on the engineering model, as reported in the network transponder

CDR package [27], reveal the following tracking threshold signal levels

in the PSK mode'(through TDRS):

Table 6. Tracking Threshold Signal Levels in the PSK Mode

-y1

Data Rate

Low Data Rate
(32 kbps encoded or

96 ksps coded)

High Data Rate
(72 kbps uncoded or
216ksps coded)

Temperature

70°F

120°F

-20°F

70°F

120°F

-20OF

Signal Level

-104.2 dBm

102.4 dBm

-104.2 dBm

-103.7 dBm

101.4 dBm

(SSP will not hold
lock -100 dBm)

The	 input noise power spectral density is -151 dBm/Hz. 	 Thus,

t the maximum measured P /N0 i_s 48.6 for the low rate and 49.6 for the
high rate modes. 	 Assuming these threshold values of P/Ng for PSK

`' { operation through the TDRS, Table 7 tabulates the values of various

system parameters leading up to the calculation of P'/N 0 (total power-

jto-noise ratio in the PM mode). 	 Also indicated in the table is the
^a

dB increase in power-to-noise ratio required to go from the PSK to the

PM mode through the TDRS.

A' Table 8 illustrates the power-to-noise ratio P /Nin the rangingr, r	 0
channel	 [as computed from (48)] for the same parameters as in Table 7

1 and operation in the PM 'mode.

Finally, tracking threshold performance is examined as a func-

tion of data and ranging modulation indices. 	 This threshold, when

operating in the PM mode, can be reduced (relative to that in the PSK

mode) by reducing the ranging modulation index 0 	 and/or increasing
 

s

the data modulation index 0 d	(i.e., suppressing the carrier more).

s
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a

Table 7.	 System Parameters for Calculation of P'/N0

i

P/N 0 = 48.6 dB,	 as 1.0 rad,	 ad	 1.1 rad

x Data Rate KO Dm PT/NO (dB)
pi	

(dB)	 P' /NO (dB)	 oP/N O (dB)

32 kbps 0.829 3,549 -4.642 54.23	 5.63

96 ksps 0.5078 -1.223 -4.642 55.01	 6.41
r

72 kbps 0..8326 0.0267 -8.257 53.83	 5.23

rk^ 216 ksps 0.5166 -4.745 -8.257 54.50	 5.90-

Table 8. Power-to-Noise Ratio in the Ranging Channel

`' E P/NO = 48.6 d6, 
s	

= T.0 rad,	 ^d _	 1.1	 rad,	
p

B
L 

= 200 Hz

Data Rate Pr/N0 (dB)

32 kbps 43.21

i
96 ksps 43.97

72 kbps 42.78
216 ksps 43.41

t o kl,

K

r a
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If Unfortunately, however, both of these changes also reduce the power-

to-noise ratio in the ranging channel.	 To see these effects quanti-
tatively, Figure 42 illustrates the tracking threshold power-to-noise

ratio for PM operation as a function of ranging modulation index for

fixed data modulation index, and Figure 43 illustrates the ranging

' channel power -to -noise ratio as a function of these same parameters.
The value of P/N	 for PSK operation is again chosen equal to 48.6 dB

and the results are given for both encoded and coded low data rates.

We observe from Figure 42 that, as ad approaches ,r/2 (fully suppressed
carrier), the tracking threshold becomes virtually insensitive to data

rate.	 A similar phenomenon is observed in Figure 43 for the ranging

channel	 power-to-noise ratio. 	 Using the information in these curves,

along with the ranging channel bandwidth and the required signal-to-

noise ratio in this bandwidth turned around to ground, one can select

values of a s and Ra to meet the additional requirements on increase
in tracking threshold for PM versusPSK operation.

f

J

h

j 	

4

V

t
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,j	 4.0	 PAYLOAD COMMUNICATIONS STUDY

? The Ku-band system currently provides a return link wideband

and narrowband bent-pipe.	 This study assessed 'the design and perform-

ance of the return link bent-pipe relay mode for attached and detached

payloads.	 As part of , this study, a design for a forward link bent-pipe

i 'is also proposed, and its performance is evaluated for attached and

detached payloads.	 Critical Ku-band system parameters have been

identified and optimized such that cost and complexity have been

minimized, and the basic data transmission capabilities that can be

accommodated for payloads have been identified for both forward link

and return link bent-pipe relay modes.

r	 ;,
4.1	 Forward Link Bent-Pipe Relay.,Design

y The _present Ku-band system design does not include provi sion for

a forward link bent-pipe relay mode.	 This section proposes-a possible

modification to the Hughes Aircraft Company (HAC) Ku-band forward link

design to accommodate forward link bent-pipe signals to attached or

' detached payloads.	 A simplified block diagram of the HAC forward link

design is shown in Figure 44. 	 The 'F receiver is in the Deployed

Electronic Assembly (DEA). 	 The input to the Electronic Assembly 1

(,EA-1) is at 647 MHz IF. 	 The EA-1	 provides IF amplification, automatic

gain control	 (AGC), and . automatic level control	 (ALC) for the remaining

demodulation circuits in EA-1.	 The PN spread spectrum modulation i

removed by the PN tracking loop while the Costas loop tracks the

carrier to complete the demodulation of the data.	 The output of the

EA-1 is buffered with an AGC. 	 The input to the Signal Processor

Assembly (SPA) is either switched to the Network Signal Processor

(NSP)-directly or bit and-frame-synchronized in the SPA.` In the

second mode, the`demultipl,exed 72 kbps operational data is sent to

the NSP while the demultiplexed 128 kbps data is sent to the payload
processor.	 In order to implement a forward link bent-pipe mode, an

additional output is needed from the Costas loop and an additional

switch is needed in the SPA.	 The switch in the SPA allows either

normal data, bent-pipe data modulated on the carrier, or bent-pipe

data modulated on a subcarrier to be output to the payload.

ORIGINAL PAGE IS.
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The outputs of the Costas loop for normal data and the bent-pipe

data are presented in Figure 45. In the normal data demodulation, the

Costas loop has been designed to reconstruct a carrier reference from

the input signal whose signal component is ,totally suppressed (e.g.,

a biphase modulated carrier). For the bent-pipe mode, the Costas loop

must accurately track a signal whose carrier component is not comp"'etely

suppressed. As is the case for a Costas loop with a ranging waveform

modulated on the subcarrier of the received signal, several key questions
arise relative to the performance of the Costas loop when bent-pipe

data is present. These questions are repeated here for convenience.

1. Is the loop capable of successfuly tracking the input

S

K '^
k

independent of the value of the data modulation index?

2.	 Is it possible to extract the bent-pipe data modulated

on a subcarrier if the normal data modulation is removed?
3.	 What is the additional	 threshold: signal-to-noise ra io

required to operate the loop in the PM (i.e., residual carrier) mode

as compared to the PSK mode?

4.	 What tradeoffs exist between the power in the bent-pipe

channel and ,loop threshold performance as a function of the normal

data and the bent-pipe data modulation indices?

Appendix L presents the detailed analysis to answer these questions for

the general case of Costas loop tracking in the presence of a residual

carrier.	 To dl-termine the performance of the Costas loopwith the

bent-.pipe data, consider the input signal of the form

s(t,e)	 =	 127 sin [w 0t+ ad d(t) + o 	 sin	 (wsc t+ e bp (t)) + e]	 (50)

where P is the total received power, w0 is the carrier radian frequency

and a is the corresponding input phase to be estimated, s 	 is the dataP	 g	 d
modulation index with d(t) either the normal data waveform or the bent-

pipe data waveform when modulated on the carrier., and s 	 is the bent-

pipe subcarrier modulation index with w sc the radian subcarrier fre-_

quency and e bp (t) the bent-pipe data waveform.	 Using the results

' presented in Section 3.5 and Appendix L, the performance of the sub-

carrier bent-pipe channel 	 is characterized both when 
$d 

is equal to zero



lot

l	 ,.

af

I	

,

1

Normal Data or Carrier Modulated Bent-Pipe Data

Y

es(t}	
LPF

G(s)

1

rs(t)

zs(t)

X(t)

	 Loop	
j	 z0(t)

BPF	 VC0	 Filter
H(s) F(s)

'	 7o90	 (t)
r (t)
c	 `c(t)	

LPF
G(s)

Subcarrier Modulated Bent-Pipe Data

t
}

Figure 45. Costas Loop for Normal and Bent-Pipe Demodulation



94

(i.e., data modulating the carrier directly it not present) and when ad

is nonzero (i.e., data modulating the carrier directly is present) by

the bent-pipe signal ,power P bp to the total power P.

PbP. = 2 cost (B )1 12(s) 1 - 1	 ,	 (51)
P	 d	 s	 pSL

where p is the signal-to-noise ratio in the loop bandwidth BL given by

$j p
p	 _	 N	 (52)

0 
B 
L	

r

and where SL is the squaring loss in the Costas loop. 	 The squaring

loss SL is derived in Appendix L to be

J0 (ss) [Dm sin 	 (a	 - cos 2 (ad 
)] 2

}fitt SL 	 (53)

:.1 2	 2.	 2	 Bi/RS	 4	 sin	 (2a d)
i 	 (as )  [cos	 (s')+D	 K	 sin	 (s)]+	 +R	 d	 (s )d... d	 o	 s	 20 	 d	 m D	 4Rd

for NRZ data.	 The data distortion factor Dm for NRZ data with RC

+ filters as the-lowpass arm filters in the Costas loop is given by 	 f

G

w

1	 26i
Dm	 =	 1 -	 2B. /R 	1 - exp	 -	 R	

(54)
i	 s s

The factor D K	 in (53) is found in Appendix L to be
m

3 -	 (3+ 2B /Rs );exp (-2Bi /RS)
D K 

D
	 =	 1 -	 (55)

m	 46i/Rs

3 The term B i /Rs is the ratio of the two-sided noise bandwidth of the

. lowpass arm filters in the Costas loop the the data rate. 	 The signal

F

energy per bit-to-single-sided noise spectral density, Rd , is given by'

P
Rd 	 -	 N	

(56)

GRs
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` Figure 46 presents the ratio of subcarrier bent-pipe signal power
{	 , Pbp to total	 power P as a function of. modulation indices.. 	 The curves

of Figure 46 are computed from (51)..	 It may be observed that the curves

for R 
d= 

5 dB and R 
d= 

10 dB coincide,.and hence the bent-pipe data

k. demodulation performance is insensitive to Ri.

Another key performance parameter is the additional power required

to operate the Costas loop in the PM mode. 	 Let P denote the signal

power in the PM mode to achieve the same performanceas PSK data with

power P.	 Then the ratio of p' /P is the factor by which the signal power
must be increased in order not to degrade the normal data bit error

probability.	 Appendix L shows that

` t
P'	 B	

C( 	 )57
+ J^A2A	 A

where

'

i

A = J0 ( O
s ) [Dm sin g ( Ss ) - cos 2 (Bd)]

i4P 2D
B = -J 2 (s ) [cos t (^ ) +D	 K	 sin g 	)]0	 s	 d	 m	 D	 dB-	 m

/Rs^'. Dm KD +	 4Rd

2
(Bi/Rs)	 ^m

C = -
4 R d B i 

/TiT
(58)

r
S

Dm K0	 4 Rd '

! Figures 47 and 48 present the ratio P'/P as a function of modu-

lation indices for Rd = 5 dB and Rd = 10 dB, respectively.	 From these
figures,	 it may be seen that, assd increases (i.e., approaches PSK) }

the ratio P'' /P approa -ies	 1,.	 Also, ^s Rd is	 increased,	 there is only

{ a small	 increaTa in	 e ratio P'/P for large S d but, for sd = 1.1, ^;

increasing Rd from 5 dB to 10 dB increases the required P`'/P by 0.4 dB. f!

The tracking performance of the Costas loop in the PM mode is
r:

4 also an important design parameter.	 The tracking	 hp	 g	 p	 g phase jitter which'

degrades the power in the.data and subcarrier bent-pipe channels has

i

6.s.j
ai variance

i
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Cr 
2	 1	

(59)^ = 
P  ,

^f	 L

where p and SL are given by (52) and (53), respectively.	 For as= 1.0

and Bd = 1.1, the standard deviation Q	 of the tracking phase jitter
in percent radians is presented in Figure 49 as a function of R d and

' the ratio of Costas loop arm filter to normal data rate.	 Note that

increasing the ratio of B i /Rs greater than 2 drastically degrades the

tracking performance.	 The optimum value of B/R s for the PSK mode is

1.4 and this seems to be a good value for the PM mode as well.	 There-

fore, the Costas loop need not be modified for bent-pipe operation

but the additional output from the quadrature arm is required in EA-1

if bent-pipe data is to be modulated on a subcarrier. 	 Also, as Figures

46 through 48 have shown, there will be some degradation to the normal

-,' data in the PM mode, depending on the modulation indices.

J
4.2	 Return Link Bent-Pipe Relay Design

The return link bent-pipe mode for payloads allows transmission`

r ^; of data that is not in the standard NASA format. 	 Thus, multiple formats 	 'a
1

and multiple modulators/demodulators can be used by the ,payloads. 	 The	 ?

design goal for the bent-pipe mode is to minimize the signalprocessing

in the Orbiter for data that does not meet the standard NASA format.

Therefore, no Orbiter control of command or telemetry for the bent-pipe

data is proposed.	 Rather, the Orbiter will act as a relay which will

either merely make a frequency translation at IF or perform RF demodu-

lation and remodulation on a new carrier.

The block d iagram for the return link bent-pipe is shown in

' Figure 50._	 Channel	 1	 is primarily an analog commercial TV channel

j
b	 2 MHwithw	 a	 anw	 o.z.	 Abandwidthd	 f 4	 A lternately, however, Channel 1 may

w
I

t:

consist of one of the other data channels shown, namely, 4.5 MHz of

analog data or up to 4 MHz of NRZ digital data.

' The remaining channels are to be modulated onto an 8.5 MHz square-

` wave unbalanced QPSK subcarrier.	 The power split is 4:1.	 The 20% input	 {

is designated as Channel 3 and consists of a 192 kbps Bi-O-L data

channel from the network signal processor. 	 The 80% input, Channel	 2,

is generally from the payload system and consists of up to 2 Mbps of
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data in the NRZ format. 	 As shown in Figure 50, Channel 2 may also con-

sist of information from recorder playbacks.

Among the various candidate signal formats that are expected to

be transmitted via nonstandard bent-pipe is a 16 kbps Bi-^-L data

stream on a 1.024 MHz subcarrier.	 A block diagram of the transmitter

is shown in Figure 51. 	 Figure 52 shows a block diagram for a possible

-^ implementation of the ground receiver. 	 At the receiver, the post-

detection filter for the 8.5 MHz subcarrier has a bandwidth of 7.6 MHz,

The LPF for the analog TV channel	 is 4.2 MHz.	 The 16 kbps data signal

on the 1.024 MHz subcarrier was also tested in Channel	 l as shown in.

Figure 52	 The bandwidth of the prefilter for the 1.024 MHz subcarrier

" is set at 160 >kHz.

The FM deviations are set at the transmitter by adjusting the

F-_ gains G l , G2 and G3 , each individually with the other signal 	 inputs

removed, as follows:

` Gain	 Channel	 t AF

G
1
	8.5 MHz subcarrier	 6 MHz

a	 . G2	 TV - Channel	 1	 11 MHz
L:	 ^a

G3	 16 kbps on 1.024 MHz sub- 	 5`MHz
carrier in Channel 	 i

A The total range of the instantaneous frequency deviation is 2AF in each

of the above cases.

E In the wideband bent-pipe mode, the bent-pipe payload data is

^. transmitted in Channel 	 1.	 The concern in this mode is that, for low

signal bandwidths (or low data rates), the S/N in the 4.5 MHz band-

width at the transmitter will be so small that the FM discriminator
rk on the ground will be below threshold. 	 However, the S/N in the 4.5 MHz

bandwidth at the transmitter will not affect the performance of the

bent-pipe mode, but rather the S/N in the signal	 bandwidth is the

parameter that determines the performance. 	 This occurs because the

noise at the transmitter is treated as signal by the FM discriminator

so FM threshold will not occur unless the total	 received' signal	 power

-(i.e., signal	 plus noise from the transmitter) 	 is too small	 compared,.;
till to the noise power at the receiver. 	 Thus, the FM discriminator restores

x	 Ok
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a

the signal-plus-noise waveform that was present at the transmitter.

:y€®
	 following the FM discriminator, _the post-detection signal demodulator

A.^	 must contain a filter matched to the transmitted signal if the signal

y

	

	 is to be optimally demodulated. If the post-detection filter is

matched to a signal with a 4.5 MHz bandwidth, then demodulating a

Y^

	

	 16 kbps signal will not be optimum, and required S/N in the 4.5 MHz

bandwidth will have to be increased drastically. Therefore, the per-
'p`.	

formance of the wideband bent-pipe mode is a function of the ground
^r

k

	

	 post-detection demodulation filter being matched to the transmitted

signal and not due to the FM threshold.

In the narrowband bent-pipe mode, the bent-pipe payload data

is transmitted in Channel 2. The main concern in this mode is the

S/N in the4.5 MHz bandwidth of the Payload Interrogator (PI) will be

so small that the ground subcarrier tracking loop presented in

Section 3.2 will lose lock and the operational data will also be

b

	

	 lost. If the S/N in the PI 4.5 MHz bandwidth is small, then the

effective data rate in Channel 2 will be 4.5 Mbps. Since the ground

subcarrier tracking loop is designed for a maximum of 2 Mbps in

Channel 2, the signal distortion due to lowpass filtering of 4.5 Mbps

will increase, and the squaring loss of the Costas loop will increase;

also. Therefore, the ground subcarrier tracking loop performance will

degrade and lose lock at a much higher received S/N in the 2 MHz band-

width. In order to establish the required S/N in the PI 4._5 MHz band-

width for the narrowband bent-pipe mode, a test of the HAC digital`

implementation of the subcarrier UQPSK modulator should be made for

the narrowband bent-pipe signals at low S/N. Depending on the effective-

bandwidth of the HAG-subcarrier modulator, the PI 4.5 MHz bandwidth

may have little significance.

A proposed way of ,combating low S/N in PI bandwidth is to devise

a squelch circuit that would not send a signal to the Ku-band system

from the PI unless the S/N in the PI bandwidth was greater than 7 dB.

Thedesign of the squelch circuit is a problem because, without knowl-

edge of the signal structure, which is unlikely in the bent-pipe mode,

4 ± r

	

	it is difficult to determine the signal waveform from noise. It should

be noted that, instead of a squelch,•thetground operations could always

r

^ •_... 	 -._: _	 `^`^-t^^^,. • `^.^+^^^ii•3'"^"3^ p̂  ^::f "Wn:1?+.__ -'^. "-  " , ...z. '-..^	 •4'^ 1 . ^2.._ y`-:^' ±LL'e`tr ^ ^;',i
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command the Ku-band system out of the narrowband bent-.pipe mode if the

V ground subcarrier tracking loop loses lock and the operational data

is not being demodulated.

To solve the low S/N problem in the narrowband bent-pipe mode,

a test should be made with the HAC digital subcarrier UQPSK modulator,

and an analysis of low S/N signals in Channel 2 should be developed to

compare against the test results.

a

u^
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APPENDIX A

BIT ERROR RATE DEGRADATION OF THE KU-BAND RETURN LINK CHANNEL
DUE TO NRZ DATA SYMBOL ASYMMETRY

+	 by

Marvin K. Simon

The high data rate link from the Shuttle Orbiter through the TDRSS

i to the ground takes NRZ symbols at 50 Mbps and encodes them with a rate 112,

constraint length 7, convolutional code. 	 The bit error rate performance

of the convolutional decoder depends, among other things, on the symmetry

of the modulation.	 Any asymmetry in the NRZ symbols entering the symbol

synchroniser causes a misalignment in the syi-tibol synchronization clock

which degrades the integrate-and-dump output and any soft or hard decisions

derived from It for input to the decoder.	 Fora specified degree of asym-

metry (in terms of a fraction of a symbol	 interval), the bit error rate

degradation is dependent on the transition probability of the data.'

Clearly, if the data transmitted was either all ones or all minus ones,

then misalignment of the bit synchronization clock would have no degrading'

-° effect on the integrate-and-dump output since, for each symbol, this cir-

cuit would integrate up to its maximum value before being dumped. 	 On the

other hand, when the data is an alternating sequence, then the worst case

degradation results, since the transition which occurs at the end of each'

symbol	 in combination with the symbol synchronization clock misalignment-

prevents the integrate-and-dump output from reaching its maximum value:

To quantitatively determine the degrading effect of NRZ symbol

asymmetry on error rate performance, consider first the alternating NRZ

sequence illustrated in Figure la, where the +1 symbols are elongated by

e AT/2 (relative to their nominal value of T sec) and the -1 	 symbols are

` shortened by the same amount. _Thus, AT represents the relative difference

in length between the +1 and -1 symbols. 	 The data asymmetry is defined

as the ratio of the difference in length between the +1 and -1 symbols

A
to the sum of their lengths,	 .e.,'

.

c Q	 T(l
+A 	

_ T(1 _)

^.

Q

Asymmetry	 _ 
T(1 +2) + T(1 - 2)	

2	
I

k
In the absence of noise ., the timing instants for the .in-phase

r-	 I integrate-and-dump (i.e., the epoch of the symbol	 synchronization clock)

r are determined as follows. 	 The mid-phase integrate-and-dump in the symbol
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synchronizer integrates across the transitions in the data symbol stream

and determines the magnitude of the symbol synchronization error signal.

l	 In the steady state, this error signal must have zero value, on the average.

Letting eT denote the misalignment of the symbol synchronization clock,

then from Figure lb we see that, when integrating across a negative data

transition, the output of the mid-phase -integrate-and-dump is given by

V_
	 1

(2 + 2 e)T - ( _ - 2 +e)T = (A	 2e)T .	 (2)

When integrating across a positive data transition, the same output is

given by

V+	 - (2 - e)T +(2 + e)T = 2eT .	 (3)

Figure lc illustrates the in-phase integrate-and-dump output  for the two
types of data transition (negative and positive). For the negative data

transition, we notice that the in-phase integrate-and-dump output reaches

its maximum value and thus no degradation results. For the positive data

'	 transition, this same output is degraded by the factor (l- 4E).' T-hus,

since the symbol synchronization clock misalignment a is determined by

{	 equating the average of the product of the mid-phase integrate-and-dump

'	 output and the sign of the difference of two adjacent in-phase integrate
and-dump outputs (or, equivalently, the sign of the data transition) to

zero, i.e., V+ - 
V_	 0. Thus, from (2) and (3),

2e•.T -	 (A - 2F-)T	 _ 0, (4)
or

E	 _
A (5)
4

Assuming then a clock misalignment as in	 (5) and letting E s _denote the

t symbol energy and N0 the channel	 noise spectral density, then the average

symbol error probability associated with hard decisions made on the

in-phase integrate-and-dump, outputs is given by

PE	 _	 4 erfc_(,'E-/N,)  + [
4

erfc	 E	 0 - e)] (6)

where

{f erfc x 2	 e -t 
2

dt (7)
'r	 x

-	 --
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.y^
and the "A" superscript on PE refers to the result for an alternating

data symbol sequence.

When the input data is random with equiprobable symbols, then the

±`:# in-phase integrate-and-dump output depend;, in general, on the polarity

of the symbol over which it is integrating and that of the preceding and

succeeding symbols.	 Thus, one must compute the in-phase integrate-and-

F. dump output for each of the eight possible three-symbol sequences (see

Figure 2) and their corresponding conditional error probabilities. 	 Then

- averaging these conditional error probabilities over the equal probabili-

ties of the eight equally-likely three-symbol sequences gives the average

error probability PE , i.e.,

P	 _ — 5 —erfc E N + 2 r— e
2

( 	 (1 - --)	 + —erfc	
(EC2 0] rfc   	 2 	 (1 - A ))

T s

_-5erfc N +	 erfc	 E N (1 - ^) + I erfc 	 (1 - o)	 (8)8	 [	 [Y'I S /N o ]16	 s	 0	 s	 0	 2]	 16  

where the "R" superscript on PE refers to the result for a random data

symbol sequence.

Tables l and 2 contain the symbol energy-to-noise ratio degradations
(in dB) for asymmetry values [see (1)] of 3, 7, 10, 15 and 20% (A= 0.06,

0.14, 0.20,	 0.30, and 0.40)	 and E
s 
/N	 = 0, 0.75, and 1.5 dB. 	 The values

of Es 	 selected correspond to bit ene,rgy-to-noise ratios E b /N o = 3, 3.75,

' and 4.5 which, respectively, correspond to decoder bit error probabilities
k

Pb= 10-3 , 10
- 4,

 and 10-5 .	 The degradations are obtained from (6) and (8)
,'` by computing the additional E A0 required due to asymmetry to produces	 0the same value of symbol error probability when A= 0, i.e.  , P. , where

PE	 2 erfc (` E O) •	 (9)

r
It should be noted that the symbol energy- to - noise ratio degradations given
in these tables assume no channel 	 bandwidth limitation, i.e., ideal 	 rec-

tangular pulse shapes have been assumed for the NRZ data.	 Any rounding

w of the pulses caused by channel bandwidthlimitation produces an additional

symbol energy-to-noise ratio degradation over and above that due to data

asymmetry.	 However, the bandlimiting degradation and the data asymmetry

do not add algebraically but rather combine in a way determined by the

particular symbol synchronization implementation.

.. i



rd 5
11	 1Symbol

Sequence I

T_^ t

	In-Phase	 T

	

I & D	 AT/4

Output
--i	 ea`

I

	 t .

AT/4
^	 1	 1	 .,a

Symbol

	

Sequence	 :,;	 AT/2	 °a

t a

3

	

In-Phase	

Til

I & D

	

Output	
t

.^
l	

1 
(D

Symbol
Sequence

t

i

(D	 In-Phase	
1

	

I & D	
-

,l	
Output	

t

T(1 - o)

4	 Symbol

	

Sequence	 r

a

	

	 a
is

ORIGINAL PAGE IS
OF POOR QIJALITY^

	

In-Phase ` 	 x

r	 I&D	

fr

GV	 Outpu	 t

-T(1 - 0/2)
^Y

t

	Figure 2	 In-Phase Integrate-and-Dump Behavior for Eight Possible
Three-Symbol Sequences

, s{



Symbol

Sequence

/

i	 |
| ^^

'̂

6

^

y |

t

`
^

"	
.

^^
	

In-Phase	
T

	

 

Output	 t

 Symbol

 

Sequence

	

 In-Phase	 T

 Output

 Symbol
 Sequence

 

0	 Output

 Symbol

 

0	 Sequence

 

ORIGINAL PAGE IS
 OF POOR QUALITY

 

Output-

 Figure Z (continued)

 - V444 5 _iani ;j;- ; 7; 1 Q7



0
7

Table 1. Alternating Data

Asymmetry (%)	 Es /N
0
 (dB)	 Pb	 Degradation (dB)

3	 0	 10-3	 0.275

0.75 10
-4

0,275
' 1.50 10- 5 0.275

7 0 10-3 J0.68	 a
0.75 10-4 0,69
1.50 10-5 0,70

:..°> 10 0	
.

10-3 _ 1.025
0.75 10-4 1.045

r. 1.50 10-`5 1.070

15 0 10-3 1.693
0.75 10-4 1.748
1.50 10-5 1.811

20 0 10-3 2.530'
0.75 10-4 2.645
1.50 10-5 2,778

Table 2. Random Data

4 Asymmetry (/) Es /N
0
 (dB) Pb Degradation (dB)

r :: 3 0 10-3 0.135
0.75 10-4 0.135
1.50 10-5 0,135

V 7 0 10-3 0,333
0.75 10-4 0.337
1.50 10-5 0.340

. k
10 0 10'3 0.495

0.75 10-4 0,505
1.50 10-5 0.517

15 0 10-3 0.799

. 0.75 10- 

4

0.824
1.50

10-5 0.854r
rz

20 0 10 -3 1.149
^.I 0.75 10-4 1.201

1.50 10`5 1.264

,K

r ^J
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For uncoded NRZ data, we find from (9) that, for PE = 10- 5 , we
require E s/N0 = 9.6 dB. 'The corresponding additional E s/N0 (SNR degrada-

tion) due to asymmetry required to produce a 10-5 error probability is

illustrated in Figure 3 as a function of percent asymmetry. In this,

figure, we have let T+ denote T(1+ A/2) and T- denote T(1- A/2) in accord

ance with the definition of asymmetry given in (1). Also illustrated in
this figure is the SNR degradation due to asymmetry where the asymmetry
is, in accordance with Goddard's definition given by

T+ T_
	 T(l + A) - T(1 - 2)	 v

Asymmetry	 =	 _	 (10)
2T-	 2T(l - 2)	 2(l 2)

or . equivalently,

!!
1

o	 _	 2(Asymmetry)	 (11)
-

OV
1 +Asymmetry

Thus, for a given asymmetry, A as computed from (11)	 is substituted in (8)
from which the necessary E

s
 /N

0
 to yield	

PE 
O= 

10- 5 is computed..	 Comparing
this Es /N0 with 9.6 dB yields the SNR degradation plotted in Figure 3.

In conclusion, we note that an analysis of the data symmetry prob-
lem is also presented in 	 [1,2] using, however, a slightly different model

{ for the way in which the asymmetry comes about. 	 The assumption made there

is that positive NRZ pulses are shortened whenever adjacent pulses are

negative.	 Thus, a given positive pulse preceded and succeeded by a -nega-

tive pulse would be reduced in duration at both ends.	 Letting d represent

the fractional	 (relative to the nominal 	 bit duration T)	 increase in posi-
tive pulse length to a single adjacent negative pulse, then for a given
random data sequence, the longest pulse would have length 1+ 26, while

f the shortest	 would	 have length l- 26.	 If, as before, asymmetry is-
` defined as the difference in length between the shortest and longest

pulses in the sequence divided by their sum, then using the model 	 in
[1,2], we get

T(l + 26)	 - T(l - 26)	 =	 26 .	 (12)Asymmetry	 =	
T(1 +26) + T(l .- 26 

Also, usinq this same model, it can easily be shown that, on the average,

the symbol synchronizer will 	 lock up at the nominal 	 transition points of	 l

the equivalent symmetric data waveform,	 i.e., 0,T, 2T, 3T, ....

t
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Finally, using the definition of (12) and the above statement

regarding the relative timing of the symbol synchronization clock and the
14 Q

data, the result given in [1,2] for averag e error probability due to data

-t~ asymmetry is identical	 to our Equation (8).	 Thus, properly applied,

either symbol synchronization asymmetry model will yield the same results.
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APPENDIX B

FURTHER CONSIDERATIONS ON THE EFFECTS OF DATA ASYMMETRY ON
BIT ERROR RATE.PERFORMANCE OF THE KU-BAND AND.

' S-BAND RETURN LINK CHANNELS

by

Marvin K. Simon

t7
In Appendix A and [1], we investigated the bit error rate degrada-^:

tion of the Ku-band return link channel due to NRZ data symbol asymmetry:

Inherent in these results was the assumption that the symbol synchronizer

was of such a type (e.g.	 data transition tracking loop [2]) as to pro-

duce a symbol	 sync clock which, on the average (e.g., no noise)., locks

up with a misalignment equal to half the asymmetry. 	 While this assump-

tion is believed to be typical of a wide variety of symbol synchronizers

which employ an integrate-and-dump filter as a data detector, one might

nevertheless ask the .question:	 How sensitive is this SNR degradation due
:u

to asymmetry to perturbations of the symbol _sync clock misalignment about

its above-assumed value?' 	 Having this information would also tend to make

- the results somewhat independent of symbol sync configuration. 	 In this

l appendix, we derive an expression for symbol error probability in the pre-

sence of data asymmetry and conditioned on an arbitrary clock misalignment

= whose value is allowed to range over the data asymmetry interval. 	 SNR

degradation for the coded NRZ case is then given as a function of this

clock misalignment with percent data asymmetry as a parameter.

Despite the fact that the high rate Ku-band return link is coded

NRZ data, it is also desirable to have theoretical results for SNR degra-

dationdue to asymmetry corresponding to coded Manchester data.- This

would allow comparison with measurements previously made by TRW on the

S-band return link.	 Thus, the second partof this report has as its end

result a plot of SNR degradation in dB versus percent asymmetry for coded

Manchester data at a bit error rate of 10
-5
 (symbol SNR equal to 1.5 dB).

k Also plotted on the curve for purposes of comparison will be the corre-

sponding results (taken from Table 2 of [1]) for NRZ data.

Probability of NRZ Symbol Error in the Presence of Data
Asymmetry and Arbitrary Clock Misalignment

For random NRZ data with eq'uiprobable symbols, the in-phase
c 	 t

integrate-and-dump output depends, in general, on the polarity of the

symbol over which it is integrating and that of the preceding and

x,



2

succeeding symbols. Letting cT denote (as in [1]) the misalignment of

the symbol sync clock, then the in-phase integrate-and-dump output for

each of'the eight possible three-symbol sequences is tabulated below.

In-Phase
Integrate-and-Dump

Symbol Sequence	 Output

;^ 1	 1	 l	 T

1	 1	 =1.	 T

:^ 1	 -1	 1	 -T(1 - A)
-.T(1 - o+ 2E)

^: -1	 l	 l	 T
T

-T (1 - 2e)

Thus, since each of these three-symbol sequences are equally likely, the

`. average probabili ty of error conditioned on c is given by

n '4 PE (c)	 =	 16 erfc	 E	 + 116 erfc [ E	 (1-2e)]

+ 116 erfc [ Es	 (1 - A+ 2e)] + 116 erfc [ E 	 (1 - b)]

where the "R" superscript on PE refers to the result for a random data -
., sequence.	 First note that, for e = A/4, (1) reduces to (8) of [1].

a Secondly,	 PE (c)	 is a symmetric function of c around the, point o/4, i.e.,

equal positive and negative variations of a around the nominal position

A/4 produce equal SNR degradations above that previously given in [1].

Figure 1	 illustrates the SNR degradation at a symbol E s 	 of 1.5 dB

(corresponding to a decoded bit error probability of 10 - 5) as .a function

of a for 0'<_ e <_A[2 and percent asymmetry A/2000 as a parameter. 	 We
k .observe the y;, in the neighborhood of the nominal	 symbol sync lockup point, 	 1

c = 0/4, the sensitivity of SNR degradation due to asymmetry is extremely
small, even for large asymmetry values on the order of 25/. 	 Thus, we

j 11 conclude that the results given in [1] are relatively insensitive to the

`	 f assumption of a hard-locked symbol sync at the midasymmetry point, even	 j

though this assumption yields the minimum SNR degradation due to asymmetry.

A
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Probability of Manchester Symbol Error in the
Presence of Data Asymmetry

When Manchester coding is employed, then relative to the NRZ
sequence, the Manchester coded waveform has 3/2 as many transitions.
Thus, since SNR degradation due to asymmetry is directly related to the

average transition density of the data sequence, one would intuitively

expect that, for a fixed amount of asymmetry (in seconds), the Manchester

coded case should yield a larger SNR degradation than the corresponding....

NRZ case.	 Indeed, this is true, as we shall soon demonstrate. 	 On the

other hand, depending on how one defines percent asymmetry for the Man-

chester coded case (two possibilities are suggested), a plot of SNR

degradation versus percent asymmetry might result in a different con-

clusion than the above. 	 This shall also be demonstrated by numerical

j example.

Consider an NRZ sequence and the corresponding Manchester waveform

with asymmetry illustrated in Figure 2. _Here o/2 denotes the fractional
(relative to the half symbol time T/2) elongation of the positive half

pulse in the Manchester coded waveform. 	 Once again, as in the NRZ case,

the in-phase integrate-and-dump output depends, in general, on the polarity

of the symbol' over which it is integrating and the preceding and succeeding

symbols.	 For the eight possible three-symbol 	 sequences, the in -phase

integrate-and-dump output i 	 tabulated below, assuming a nominal bit

. sync lock-up misalignment of AT/8.

In-Phase
" Integrate-and-Dump

Symbol Sequence	 Output

T	 1	 1	 T(l - d/2)e
1	

1	
-1	 T(1 - 

Q/4)

T(l - 0/4)

.: -1	 1	 l	 T(1 - 0/2)

-T'(1 - 0/2)

F	 _." - 1	 -1	 1	 -T(1 - a/2)4

a/4)

Thus, the average probability of error for random Manchester coded data

is



'
i (a)	 NRZ Sequence

5

r
.j

+1

V i
•	 i{ E^--- T —^

1	 1

J

,.	 Et

t{! (b)	 Manchester Sequence with Data Asymmetry

T/2(1 +a/2)
+1^

G.II
^.	 I

cif

-1

T/2(1- A/2) 
0"

(c)	 Symbol Sync Clock 
+1

J!

-1

r;

!:,! (d)	 _	 ( b )	 x	 (c

w^

L	
{

(T

]

ORIGIN	 PAGE
(e)	 Jd (d) dt = In Integrate-and-Dump Output OF POOR QUALI'T'Y	 f

/(1 - 0/2) ^T(1 - a/4) T(1 - 0/4)

I

f
k -T(1 - a/4)-. =T(1 - 0/4) — .P- -T(1 -012)

Figure 2.	 Data Asymmetry Effects for Manchester Coded Data



6

PE	
4
erfc [ E	 (1- A/2)] + 4 erfc [E 	

O 
(1- A/4)] .
	 (2)

If we define percent asymmetry relative to the inverse of the data rate

(i.e., T), then a given amount of asymmetry (in seconds) produces the

same percent asymmetry for either NRZ or Manchester coded data. Thus,

from Figure 2,-we have, for Manchester coded data, that

Asymmetry _ A/4.	 (3)

Using this definition, Figure 3 plots SNR degradation in dB versus percent

asymmetry for Manchester coded data and E s/N0 =1.5. For comparison, the

corresponding results for NRZ obtained in [1] are also illustrated. Note

that the Manchester coded case always yields a larger SNR degradation for

a given percent asymmetry. This conclusion is in accordance with our

previous observation's relative to the increased average transition density

of Manchester coded data relative to NRZ

If asymmetry is defined as was done for NRZ but now is relative to

the half-pulse duration, then

^T^2)+ 
_ 

(T/2)-	
2(1 +A/2) - 2(1 - A/2) 	 _	 AAsymmetry	 =	 +	 =	 T	 -	 2	 (4)(T/2)	 + (T/2)r	 —,(I+ A/2) + 

T
2(l - A/2)

Note that, for this definition, a given percent asymmetry (i.e.,-A/2 x 100)

results in twice as much asymmetry (in seconds) for Manchester than it

does for NRZ.	 Nevertheless, using this definition, Figure 4 illustrates

SNR degradation in dB versus percent asymmetry for Manchester coded data

at ' Es/NO = 1.5 dB.	 The NRZ curve is again included for comparison and is
identical with that given in figure 3. 	 Here note that, for small asym-

metry values, the Mancheste r code yields a larger SNR degradation than

NRZ while, for large percent asymmetries, the reverse is true. 	 Thus, in

drawing conclusions relative to the performance of Manchester versus NRZ

coded data in the presence of data asymmetry, one must exercisecare in

applying their definitions of data asymmetry.

nrW
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APPENDIX C

THE COMBINED EFFECTS OF BANDLIMITING AND NRZ DATA ASYMMETRY
ON THE BIT ERROR PROBABILITY PERFORMANCE

OF A SAMPLE DETECTOR
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Figure 1. Band Limit and Sample Detector for Binary Data With Asymmetry
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i00	 CO 

a n (t; 0 ) _	 do p ( t - nT) ,	 (1)n=_	 n=-co

where do is the polarity (±1) of the nth data bit, and p(t) is the pulse

shape which, for NRZ data, is defined by
A;	 0<_teT

p(t)
0	 otherwise ,	 (2)

with A denoting its amplitude and T its nominal bit period. In the

+ fij	 presence of data asymmetry, this same data stream is described by

€	 A;	 nT<t<(n+l )T	 if d o = dn+1 1

	

A;	 nT < t < (n+l+n)T i f do	 d o+1 = 1
a n (t;n)
	

(3):i	 -A ;	 (n+n)T <_t.<_ (n+l+n)T if dn= d o+1 = -1

	

-A ;	 (n+n)T-< is (n+l )T	 if d o = -dn+l = -1
ki

Since the ideal low-pass filter in Figure 1 has transfer function

1	 -B< f 
H 1 (f) _	 (4)

0	 elsewhere

then the transfer function B n (f;n) of the response of this filter to the

nth data bit a n (t',n)is

sin  Tr f Tn	 -jirf(Tn
n	

+2nT)
dATn	 ^rf T	 e

n
a Bn(f;n)	 a°-{bn(t;n)} B^f <B	 (5)

..'	 0 ;	 elsewhere
.	 f

where
r	 T	 -	 T;	 if do = do+1	

(6)n
IT(l+dnn) ;	 if do = -dn+1

the cGrresponding time response ; bn (t;n) is given by
r

IS

b (t; TO = B B 
(f;n)'e^2^rft df	 O%G1	 vAII'T'Yf	 POOR Qi	 n	 - 6 n	 p%

2 d A nBT	 2T (n + ?^ ( 1 - d

r .	 j	
n sin x	 2t	 i-	 2	 nJ
( x )cos	 ` - T +	 Tx1	 dx .	 (7)

; 	 0	 n	 n

4

i
14



"k The total response of the filter to the doubly infinite pulse train can

be expressed as

CO	 2d0R	 ,rBTO
2T ^-2 (1

y(t,n)	 _	 bn(t;n)	 _	 ,r
x

j
	 ( sin

 x	
) cos

2t
x 1 - T +	 T dx

n=-^ 0 0	 0

CO
	 n2d	 A  	 xn

2T [n + 1 (1 - d)]
2t	 2	 nf7rBT- ( sinx	 )cos - x 1 - T +	

T
dx .	 (8)

A' n=-00 0 n	 n
n0

The first term in (8) is the desired signal which, for BTO <12

peaks at a value of t 	 such that the argument of the cosine function

equals zero.	 Thus, for do = 1, this peak occurs at [see (6)]

2	
if d 0 = d^

t	 = (9)

2 (l +n)
	

if 
d0 = _d1,

r	 " For d
0

	-1, the peak occurs at

2 0 + 20 ;	 if d 0 = dl

t
(10)

2 (1 + n) '	 i f d 0	-d1

e

Since, for random data, d 0 and d l are each equally likely to take on

values +1 and -1, then, on the average, the peak of the desired signal

occurs at t= 
2 

(1+n)	 t s , where is denotes the desired sampling time.

The second term in (8) is the intersymbol interference due toP
-bandlimiting the input signal. 	 Thus, when sampled at t= t s, the total

` response becomes

2d0A 
At 	 gin)	 _	 ,r

f"T
.( sin  x ) COs nIX 2 ( d 0 + d^ J dxx

w

. R A	 irBTn	 sin x2 do	
fo,+(cos

(1 +rndn2n
x+ dx , (11)

I
n=-OD	
nx

En`	 ^n

00

^ I : where
n r^

n	
o	

1	 +	
2	

(d n - do+1) . .(12)

P f
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Alternately, after some trigonometric simplification,

	

Y	 g	 p
2d 0A

At s ;n) _ _ 
7r	 { j-  Si [,r BT (l +,d

0
	 + 2 S i [,r BT (1 - nd l )]}

i	 00 2d A'.	 +	 ^2Si [,r BT(2n+l-ndn+^)^ + !Si C,rBT(2n-1-ndn))J

00 (13)

l	 wherer1
N,

Si (Y)	 f 
y 

sin x 
dx .	 (14)J p	 x

f

	

	
The total filter response sampled at is is then hardlimited to

determine the estimate d of the zeroth bit polarity dU, The probability

A! 40	 of error P
E
 in making this decision is given by

.::	
PE = 2 Prob {y(t s ;n)*+ n l (t s ) < Old 11

a;	 0
r

+ Z Prob ly(t s ;fl) + n,l (t s ) > OId _ 1 1 	 (15)
0	 1

where n l (t) is the low-pass filtered noise process which is zero mean

Gaussian with variance a2= N0B, and the overbar denotes statistical

r averaging ;over 'the `joint distribution of the doubly infinite data

sequence Id n }; n # 0. As an approximation to (15), we shall assume

that the contribution to the total inters mbol interference caused

by bits further away than N bit intervals from the bit being detected

(d
0
) is negligible. Stated another way, we shall consider only the

intersymbol interference effects of the N preceding and N subsequent

bits on the bit under detection, where the value of N typically depends

o-	 on the product BT. For-BTs1,'a value of N = 5 is sufficient:
Making the above simplification in (15) produces the result

.^	 22N+1

	

P	
2

	

E	 erfc	 N -Dli(BT,n)
`.	 2 2N+1	 i =1	 D

I	 2N+1
+ l	 1	 2	 1 erfc	 E D	 (BT,n)^	 (16)&	 2 22N+1 i _1 2	 Ng -1i	 ^

I
j
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where E A 2 T is the energy per bit,

r^ 	 2
erfc x	

2 

J 
e-y dy ,	 (17)

f	 ,r X

and*

o	 l	 b0 ^)(ts ;n) 	 N	 bn 0(tsn)

	

DI i' 	
_ 2	 A	 d =l n=-N	 A	 ld =1

0	
n¢0	

0

a	 1	 bo (ts,n)	 N	 bni)(ts,n)
D_l(BT,n) _	 +	 -(18)

2BT	 A	 d=-1 n=-N	 A	 d=-10
n#0

From (13), we find that

0	 s = ,l—r ^Si [,r BT (1 +n)] + Si [7r BT (1 - dl(^)n)J}
A	 d0=1

b (i) ( t	
d(i)k	 n	 s'n)	 _	 n	 Si [Tr BT (2n + 1 - d +i ) n)] - Si [71 BT (2n - 1 - d (i )n)J

A	 d =1	 {	 n 1	 n	 }
0

n 0,-1

b (Ji)(ts;n)M
^Si

_
  [1r BT (1 + rl )]	 Si [,r BT ( 3 + d_1 n)]}	 (19)

A	 d0=1	 -4

and
i

	

b0 ^ )(ts;n)	 -	 (^)

}	
=

,r ^Si [n BT (1 - n)] + Si [^rBT (1 - d l	 n)]^	 (20a)
A	 d0 -1 

	

b ( ' )(t ;n)	 d (^^n	 s	 -n {Si [Tr BT (2n +1 d ( ' ) n)] - Si [n BT (2n - 1 - do )n)]^
Tr

`IDl	
A	 d0=-1

r	 n = 0,- 1 	(20b)

The superscript i on b 0 (t s ;n) and b n (t s ;n) refers to the evalua-
^	 }	 d	 dn	 N;	 tion of these quantities for the ith data sequence Id	 _ ^_ ,F ^^	 —	 -N+1

a	 .,d	 ,d l( ^ ), dz^),. .,dN+11)); i	 1,2,. .,2N+1.

r

^y



,4 f 0
7

b(^')(ts^n)	 d_1
=	 {Si [n BT (1 - n)1 - Si	 [7r BT (3+d M n)1} (20c)n	 ,,-	 1A	 d0-1	 -

d Substituting (19) and (20)	 in (18) and simplifying yields the final
result

D,(BT,n)	
l	 N - 1

	
[(dn( 	 ' d M 'S^(2n+ 1 -ndn+1^

li
2BT	 n= -N	 n  i

do	 )=1

+ d_N 	S 2N + 1 + nd _N	 + d
N	

S 2N + 
1 - n,dN+1 )

}
N-1

0 (BT, n )	 _	 _	
1

-1 i dn	 - do(2n + 1 - ndn +l))S	 +l)^]
2 n--N i)

=-1d(

y,
r	 11

+ dS 2N + 1 + n d-N	
+ dN	 S 2N+ 1 - n dN+1

M`	 Ci)1	 (i)	 1 
(21)-N

r	 ,

where

S(x)Si (Tr BT x) (22)
".v:.	 . 7r

Combining (16) and (21), one obtains the average error probability

performance of the sample detector in the presence of ideal 	 low-pass

bandlimiting and data asymmetry.	 This performance i s ill ustrated in

P
Figure 2, with BT a parameter and fixed data asymmetry, namely n = 0.1

(10%).	 In this and the remaining numerical	 illustrations, the number N

of preceding and succeeding bits whose intersymbol interference is taken -

into account has been set equal to 4.	 Comparing Figure 2 with the same

Y, figure in [21, where data asymmetry was absent, we observe a similar

F

behavior as a function of BT, 'namely, the average bit error probability

in the presence of 10% data asymmetry is again minimum for BT = 0.9.	 To

what extent this is true at other values of data asymmetry is demonstrated

in Figures 3 and 4 when, for fixed erro.r probabilities of 10- 4 and 10 5,

{ respectively, the energy-to-noise ratio required to achieve this error

rate is plotted as a function'of percent data asymmetry with BT again

as a"parameter.	 Relative ' to the E/N0 values at n = 0, the curves of

. Figures 3'and 4 illustrate the combined degradation due'.to intersymbol

^,;#
interference	 -bandwidth limiting) and data asymmetry.;(	 9)

.	 r.
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Figure 2. Bit Error Probability as a, Function of
Energy-to-Noise Ratio with Filter Bandwidth
Bit Time Product as a Parameter and Fixed Data
Asymmetry; No D.C. Restoration

n= 100
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t 3.0	 PERFORMANCE OF A BAND LIMIT AND SAMPLE DETECTOR IN THE
`	 irk PRESENCE OF NRZ DATA ASYMMETRY - D.C. RESTORATION BY

ii CAPACITIVE COUPLING

In [7],	 it was shown that, when the input signal 	 is coupled

:. through a capacitor, and hence the actual d.c. component in the signal

vanishes, the degradation due to data asymmetry is reduced. 	 The reason

_ for this is that the d.c. restoration has the effect of producing an

artificial shift in the decision threshold away from the shortened

symbols (the culprits in the degradation due to data asymmetry). 	 We

: wild show here that, for the sample detector with bandlimiting, a

similar reduction in data asymmetry degradation occurs when the input

signal	 is capacitively coupled.

r Following the approach taken in [7], let D denote the transition

r°1 density of the input NRZ data stream, e.g.,, for random data, D= 0.5.
Then the average value of thi s data stream is n DA.	 Alternately, the

y positive (longer) signal	 level	 is now A(1 - nD) and the negative (shorter)
;i

ff
si gnal l evel i s now -A(l + n D) .	 These l evel s. repl ace A and -A, respec-
tively in (3).	 The impact of this on, for example, the time response

bn (t;n) of (7)	 is that A is replaced by A(1- do nD).	 Thus,

- 2dn(1 -d n 9D) A
bn(t;n)

7T

wBTn 2t	 2T [n + 2 
0 - dn )]

^.:r
X	 sin x

fo
	 (	 x	 )cos x _	 +1	 Tn	

T 
dx

(23)t

and,	 since the argument of the cosine function is unchanged by the capa-
,n
r citive coupling,	 the proper sampling time is still 	 t

s
= 2(1+n),	 Using	 1

(23)	 rather than (7), one should have little difficulty in directly .

mE^ seeing how to modify Dli (BT,n) and D li (BT,n) of (21) for use in the

C, error probability expression of (16). 	 Specifically, we now have that

w	 °
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Dli(BT,n)	 =.	 l

32BT

N-1 Ir(i)  
x n (1 - n D d o 	 - d o+l (1 n D d o+l 	 S (2N+1 - n do+l

N -	 (1)_n	 ^j d 	 -1

d (N) (1 - n D d N1'/ S (2N+1 + n d (N ), + dN ^) (1 - n D d N( ^ )^ S (2N+1 - n dN+l)^

2

j[	 (1-nDd	 )-d	 (1-nDd	 +l-nd	 >1]S(2n
n-

_
 N	 n	 n	 n+1	 n+1	 n+l

(i)d	 =-1
" 0

+ dN	 (	 {i)1 - n D d N	/ S 2N+1 - n d P
(i)(	 (i)1	 (2N+l	 1	 1	 (+ d_n(i 	1 - n D d / S 	 + n d-N

(i)
-N	 /	 1+1

o
}

(24)

' with S(x)	 still	 defined	 in	 (22)

Analogous to Figure 2, the error probability performance of the

filter-sample detector with data asymmetry and d.c 	 restoration by

capacitive coupling is illustrated in Figure 5 with BT once again a

parameter,	 n= 0.1, and transition density D = 0.5.	 Comparing Figure 5

with Figure 2, we observe that, for a fixed error probability, and data

asymmetry, the required E/N 0 at the optimum BT= 0.9 is virtually inde-

pendent of whether d.c. 	 restoration is present or not.	 On the other

hand, for other values of BT, e.g"., 0.5, the required E/N O can be much
smaller when d.c.	 restoration is employed.	 Finally,	 Figures 6 and 7

demonstrate the corresponding results to Figures 3 and 4 for the d.c.
1

restoration case.	 Here, the value BT= 0.9 appears to be optimum for
i.

all data asymmetries in the sense of minimum required 'E/N O at a fixed
t

P E . t	
;F

4.0	 CONCLUSIONS

The combined degrading effects of intersymbol interference due

to band) imi Ling and data asymmetry have been assessed for a, filter-sample
y^
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. :j	 10-2

Figure 5. Bit Error Probability as a Function of Signal-
to-Noise Ratio with Filter Bandwidth— Bit Time Product
as a Parameter and fixed Data Asymmetry - D.C. Restor-
ation by Capacitive Coupling
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type detector.	 For small values of asymmetry (less than about 10%), the

optimum filter bandwidth- bit time product remains equal 	 to 0.9 and the

corresponding amount of energy-to- noise ratio degradation at a fixed

error rate is virtually independent of vihether or not d.c. restoration 	 I

is present.	 In particular, Tables 1 and 2 summarize typical	 results for

the two cases when QT = 0.9.	 The quantity AE/N 0 represents the additional

E/N0 required at a given value of data asymmetry relative to its value

at •n = 0.

On the other hand, for values of BT other than the optimum, d.c.

restoration has a beneficial effect in reducing energy-to-noise ratio

degradation due to data asymmetry.

The other conclusion which can be reached by comparing the numer-

ical results of this appendix with those in [8] is that the sample detector

' is much less sensitive to data asymmetry than the integrate-and-dump

detector,	 This is not surprising when one realizes that the degradation

due to data asymmetry for the integrate-and-dump detector comes about

' because of a reduction in the signal energy as a result of integrating

only over a fraction of the total bit interval. 	 By comparison, the

reduction in the peak of the filter response at,the sampling instant.

due to data asymmetry should have a considerably lesser effect.	 In

fact, in the absence of bandl imi ting, the integrate-and-dump detector

- would still yield considerable E/N
0
 degradation (see [3-7]) due to data

asymmetry, whereas the sample detector would shownone. 	 Of course, the

sample detector without bandlimiting would produce infinite noise power

and thus, on an absolute E/N 0 basis, would be far worse than the integrate-

and-dump.

y
^

x

C

G	 j

k

l

L-1: S
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PE = 10-4 PE = 10-5

n M E/N0 (dB) DE/N0 (dB) n	 (/)

Q

E/N0 (dB) of/N0.(dB)

0 9.97 0 11.28 0
2.5 9.98 0.01 2.5 11.29 0.01
5.0 10.00 0.03 5.0 11.32 0.04
7.5 10.06 0.09 7.5 11.37 0.09

10.0 10.13 0.16 10.0 11.43 0.15
1.5.0 10.31 0.34 15.0 11.63 0.35

1 
^y	 Table 2. D.C. Restoration by Capacitive Coupling

F

^	 z

PE= lo 
4 

`

PE = 1 o-5

n M
E/N0 ( d B) of/N0 (dB) n M E/N0 (dB) of/N0 (dB)

0 9.97 0 0 11.28 0
2.5 9.99 0.02 2.5 11.30 0.02
5.0 10.02 0.05 5.0 11.32 0.04

10.0 10.12 0.15 10.0 11.40 0,12
15.0 10.25 0.28 15.0 11.54 0.26
20.0 10.44 0.47 20.0 11.73 0.45

n°
f

^-	 1

•
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APPENDIX D

E	 DETECTION OF ASYMMETRIC NRZ DATA USING A
^	 GATED INTEGRATE-AND-DUMP FILTER

+	
by

Marvin K. Simon

.1'
1.0	 INTRODUCTION

k It is well known that the optimum detector (in the sense of

minimum error probability) of symmetric NRZ data is an integrate-and-

dump filter whose integration time extends over the entire data symbol

` interval.	 When the input data stream 	 ossesses asymmetry, then thep	 p
OP

ideal	 inteprate-and-dump filter is no longer the optimum detector; thus,

it is possible that an alternate (possibly simpler to implement) detector

could yiel- superior performance.	 In Appendix C (see also [1]), the per-

formance of a filter- sampler type data detector when the input was asym-

metric NRZ data was investigated. 	 It was shown there that, by optimiz-

ing the ratio of filter ban.dw`idth to data rate, one could, for sufficient
data asymmetry, outperform the ideal integrate-and-dump filter. 	 An

alternate approach is to use a gated integrate-and-dump filter (Figure l)

:a where the gating interval can be selected to minimize the error proba-

;f bility for a given amount of data asymmetry. 	 Such a selection results

in the best achievable error probability performance using a gated

integrate-and-dump at each value of asymmetry. 	 Alternately, the gating

' interval may be fixed at a value which represents 'a compromise between
the additional SNR degradation (over that of the ideal 	 integrate-and-

dump) which can be tolerated when no asymmetry exists and the SNR

k improvement obtained at the maximum value of data asymmetry expected.

In either case, the selection of a gated integrate-and-dump filter has
r the additional	 implementation advantage of operation at high` speed with

h smaller circuit losses since the constraint on its switching times at

the symbol transition instants can now be considerably relaxed.

The purpose of this appendix is to present the performance of

e	
,'

the gated integrate-and-dump filter as a °function of data asymmetry and

gating interval and demonstrate the relation between these two param-

eters which optimizes this performance. 	 As in previous studies, the

results will	 be given for both the case of no d.c. restoration and the

case of d.c.	 restoration-by capacitive coupling.	 The numerical	 results
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presented permit the above-mentioned tradeoff between additional SNR

degradation at no asymmetry and SNR improvement at maximum asymmetry

to be made.

2.0	 PERFORMANCE OF GATED INTEGRATE-AND-DUMP DETECTOR IN THE
PRESENCE OF NRZ DATA ASYMMETRY - NO D.C. RESTORATION

= When the input data is random with equiprobable symbols, then

the gated integrate-and-dump (GI&D) depends, in general, on the polarity

of the symbol over which it is integrating and that of the preceding
J	 p,,

and succeeding symbols. 	 Thus, one must compute these outputs for each

of the eight possible three-symbol sequences (analogous to the approach
taken in [2] for the ideal integrate-and-dump) and their corresponding

conditional error probabilities.	 Then averaging these conditional

error probabilities over the equal probabilities of the eight three-

symbol sequences gives the average error probability performance of

the GI&D detector.

When asymmetry is present, the GI&D outputs can be grouped into

four distinct categories.	 Arbitrarily assuming that the +1 symbol s

are elongated by qT (relative to their nominal value of T sec) and

the -1 symbols are shortened by the same amount, then for all four

three-symbol sequences whose middle symbol is +1, the mean GI&D output

x is

x	 =	 E	 T (1 - 2e) ,	 (1)
s

V^ iwhere E s is the symbol energy, a is the fractional 	 (relat i ve to T) gate
' interval at each end of the symbol, and n is the fractional data asym-

metry.	 Similarly, for the three-symbol sequence in which all symbols

are -1, the GI&D output is

The remaining three possible sequences are split up as follows. 	 For
the sequence whose middle symbol	 is -1 and both adjacent symbols are

+1, we get

-	 EsT	 (1-2n+'2E)	 ;,	 0E2
1 x	 _ (3)

E

n	 1
-	 Es 	 (1=2E)	 2 < E < 2

A
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while for the two sequences whose middle symbol is -1 and only one

adjacent symbol	 is +1, we get
tip

1
-	 EsT (1 - n)	 G	 c <2

I

-

x	 = (4)

-,JEST ( 1 -2e)	 2 `—e-2

. For all	 eight possible three-symbol	 sequences, the standard

deviation a  of the GIN output is easily determined to be

1
NDT

Qx	 2	 (1 - 2e) (5)
II

o f finally, then, the average error probability P E is given by

L-1—.a PE	 =	 2 erfc	 -- (6)
aX

where	
.7 .

fooerfc x	 =	 2	 exp (-t2 ) dt (7), 	̂ X
~{'. and the overbar denotes statistical averaging over the eig,ht equi-

probable three-symbol data sequences. 	 Substituting equations (1)
K through (5) into (6) and the fact that each three-symbol sequence

occurs with probability 1/8 gives the final result:

E E

is ` 5erfc16
s	 (1 - 2s)NG + 1 erfc-8

_-s	 1 - n	 l
No	 7E )VTk

i
u

+ )	 erfc16
Es	 1 - 2n + 2e p < c	 _ n_ 2NG

M1

w
PE	 - (8)

- n

' 2 erfc 	 2 —	 - 2FNO 1 - 2c)	 n	 c ^;1

.x?:r. -;^.'^ «.^t^,f+.-.'7^`^'^x^	 ,..^.s ^s^T+v^^. .̂ a•	 „ ..s'l+'.,^'t ."'F^''^. _ ,... _, ^r`.^$':.	 ^'.. '„	 .^....1	
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Figure 2 is a plot of P E versus c with n as a parameter and E s/N0 = 9.6 dB
(corresponding to P E = 10-5 when e = n=  0). We observe from this figure

that, for a given value of data asymmetry n, P E is minimized by choosing
e

'
= 11/2. Figure 3 is an illustration of the symbol energy-to-noise

ratio (in dB) required to achieve an ave'rag'e error rate of 10-
5
 in the

presence of data asymmetry. The curve labeled c = 0 corresponds to the

performance of the ideal I&D (also see Figure 3 of [2]). The remaining

curves indicate a constant E s/Ng for values of.n<_. 2E in accoruance with
the second equation of (8) followed by an increase in ES/N O with n as
required by the first equation of (8). Note that each of these curves

cross the E:=  O curve at some value of n, say no, which means that, for

n> n0 , the GI&D outperforms the ideal I&D in the sense of requiring less
Es/NO for a given average probability of error. The dashed curve in
Figure 3 represents the performance corresponding to selecting e= n/2

at each value of n and is thus the best achievable with the GI&D.

3.0	 PERFORMANCE OF GATED INTEGRATE-AND-DUMP DETECTOR IN THE

s

^a

PRESENCE OF NRZ DATA ASYMMETRY - D.C. RESTORATION BY
CAPACITIVE COUPLING

When the GI&D is capacitively coupled, then d.c. restoration of

the input data stream takes place. 	 For NRZ data of transition density D

(e.g., D-_ 0.5 for random data), the average value of the data stream is,

ffi nD4Es/T	
Thus, after d.c. restoration, the positive (elongated) symbol

now has a level	 Es/T (1- nD) and the negative (shortened) symbol has

the level	 -,JE S/T (1+ nD).	 The impact of this unbalance in positive and
negative`` symbol	 levels on the output of GI&D for the eight possible

three-symbol sequences is summarizedbelow.

x	 _ ,J E S T (1 - 2e)(1 - nD) ;	 all	 four three-symbol	 sequences
whose middle symbol	 is +l	 (9)

S x	 _	 -,JE s T,(1 - 2e)(1 + nD) ; 	 sequence in which all	 three
symbols are -1	 (10)

-,JEs T [1 - 2n+ nD+ 2E (1 - no)]	 0	 E .5. 2. x	 =
-,JE_ T	 (1 - 2e)(1 + nD),; 	 2 <_ e` <_ Z	 j

sequence in which middle symbol
is -1 and both adjacent symbols
are	 +1	 (1,-1)-

l
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- EST [1 -n +nD- 2EnD]	 0 <_ E :5. 2
X -

- E T (1 - 2E)(1 +nD) 	 n < e < 1
2

2

two sequences in which middle
symbol is -1 and one adjacent
symbol is +1	 (12)

Since the standard deviation of the GI&D output is unaffected by the

d.c.	 restoration, ( 5) still applies and thus the average probability

of error is given by
x

t	 •.
1 Es Es

s
erfc4 (1 - 2E) (1 - ^D)NO 1 -erfc+

16
(1 - 2e) (1 + nD)

No

1	 Es
+	 1 - 2n+ nD+ 2e(1 - nD)— erfc

16 N0	 31 _-2
P

P	 _	 + 1 erfcE
Es	 1- n+ nD - 2 E nD l ;

(
0	 E	 n

-8	 N0	 -72e	 /	 2
x

i

erfc
4

E	 E.	

)	 ;s 0 - 2E) (1 - Q	 +	 erfc	 S,(1 - 2e) (1 + nDN0	 4	 N0

- 2 <_ E <_ Z	 (13)

Figure 4 again illustrates PE versus c with n-as a parameter and

E s /N0 = 9.6 dB, where P E i s now computed from (13) . ` We observe from
this figure that, for a given value of data-asymmetry, there exists

G. a value of E which minimizes PE; 	 however, unlike , Figure 2, this value

} of E, namely 
Emin' 

is not - equal to n/2.	 Figure 5 is the analogous

figure to Figure 3 when d.c. restoration is present.	 Again, the dashed

curve corresponds to E =Emin which represents the best achievable per-

,. : Figureformance using=the GI&D as a data detector.	 Comparing5 with

. Figure 3, we observe the considerable reduction in SNR degradation due

(D to data asymmetry when d.c. restoration is employed. 	 This improvement

is anz"iogous to that achieved when other types of data detectors are

' used [2] .

^.. ^'.̂..4•,--;^•P—°-------r...._, 	 ..	 . ..,.	 .._._. ^ _ ___^_.__..^._... _.^.._^.	 A	 'i....^^.e.,.,..,-,ter,-^.w^zr.ut"."5 	 _
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?	 4.0	 CONCLUSIONS

The use of a gated integrate-and-dump filter for detection of

asymmetric NRZ data can, depending upon the amount of data asymmetry

present, produce significant improvement in SNR degradation due to

asymmetry relative to that of an ideal integrate-and-dump filter.

Such a filter has the further implementation advantage of allowing

finite switching times at the symbol transition time instants..

Since, for no data asymmetry, the performance of the gated integrate-

and-dump is inferior to that of the ideal integrate-and-dump (matched

filter) a tradeoff exists between the two filter types depending

upon the amount of asymmetry present in the data. Whether or not d.c.

restoration is present, there exists a value of gate interval for a

given value of asymmetry which minimizes the average-error probability

performance of the receiver and thus represents the best achievable

performance using a gated integrate-and-dump. The particular value
of gate interval which achieves this minimum does, however, depend

upon whether d.c. restoration is used or not.
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APPENDIX E

TRACKING PERFORMANCE OF UNBALANCED QPSK DEMODULATORS

PART I - QIPHASE COSTAS LOOP WITH PASSIVE ARM FILTERS

by

Marvin K. Simon
Waddah K. Alem

INTRODUCTION

Unbalanced quadriphase-shift-keying (QPSK) is an attractive means

for transmitting two digital data streams which have different average

F.: powers.	 The two data streams are not constrained to have identical data

dm
rates nor must they have the same data format; e.g., one might be an NRZ

sequence 'and the other a Manchester code.	 In fact,	 it is the difference

in data rates which causes the unbalance of power when it is desired tojS
have symbol energies and therefore error rates on the two channels within

ID
the same order of magnitude.

Previous results [1,2] have indicatedthat when the unbalanced

power ratio is large, e.g., approximately 4:1 or greater, a biphase

Costas loop is a more efficient demodulator than a fourth-power tracking

loop.	 These results, however, accounted only for the filtering effect

produced by the loop's two arm filters on the equivalent additive noise

perturbing the loop.	 When the bandwidth of these filters is selected on

the order of the data rate, as is typical of optimum Costas loop design

[3,4], the filtering_degra(ations of the data modulations themselves and

. the cross-modulation noise produced by their multiplication in the loop

often cannot be neglected.

P
The purpose of this report is . to incorporate these additional

filtering effects into the analysis of a biphase Costas loop demodulator

of unbalanced QPSK. 	 Many of the results obtained herein are in the form'

of closed-form expressions which can easily be evaluated numerically for

design and performance prediction purposes. 	 The generality of the results

enables them to be applied to a wide variety of applications such as the
R

k
„performance of a subcarrier tracking loop for the three-channel Space

Shuttle Orbiter (SSO)	 Ku-band return link [5].

f SYSTEM MODEL AND LOOP EQUATION OF OPERATION

Consider the Costas loop illustrated in Figure 1 when _i'nput x(t)

R`

is an unbalanced QPSK signal 	 plus noise,	 i.e.,

»r._
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.^	 F(s)

E	 gp^	 z^(t)

rc(t)

Lowpass	
a

r	 Filter

E
c
(t)	 G(s)
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Figure 1. Costas Loop for Carrier Tracking of Unbalanced Quadriphase
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X(t)
	 =2P m l (t) cos "(t) + 2P m2 (t) sin (P(t) + n i ( t ) (1)

where t(t) ° w0  + A(t) with wG the radian carrier frequency and

e(t) = eo + 62 t the input phase to be estimated, m l (t) and m2(t)'are

independent data modulations, and n i (t)	 is the additive channel noise

which can be expressed in the form of a narrowband process about the

actual frequency of the observed data, i.e.,

rF ^ ni(t)	 _	 v2 {Nc (t) cos 4,(t)	 - Ns (t)	 sin (t)} (2)

In (2), Nc (t) and N
s 
(t)are approximately statistically independent,

stationary, white Gaussian noise processes with single-sided noise spectral

density NN w/Hz, and single-sided bandwidth B 	 <w0/2,r.

The input signal x(t) is demodulated by the quadrature reference

signals	 .

rs(t)	 _	 Yr2 K l	 sin $(t)

I	 (t)	 _	 r K l cos $(t) (3)

to produce the corresponding phase detector outputs (ignoring second

harmonic terms):

es(t)	 Km x(t)	 rs (t)	 =	 K l Km	 m2(t) - NS(t)^ cos cp(t)

' - K l Km
Illp	

ml (t) + Nc (t)^	 sin cp(t)

Ec (t)	 Km x(t) r c (t)	 _	 K 1 Km 	P m2(t) - N s (t)^ sinco(t)

+ K l KmCP m l (t) + No(t)^_ cos cp(t)
(4)

where co(t)	 (D(t) - ^M	 is the loop phase error. 	 After lowpass filter -

s. _ing	 e
s 
(t) and E c (t)	 with arm filters G(s),	 these signals become,'

^'	 u respectively,

t z	 {t}	 o	
G( p ) e 	 (t)	 _	 K	 'K1s	 s	 m[̂ Pl	 5m	 {.t)	 -	 (t), 2- cos ^0(t)

V	 '
-	 K

1 
K [AP, m

1
(t) + A(t) sin ^p(t) (5a)

m .	c

.	 i
.n a	 ^
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k	 zc(t)	 G(p) ec(t) = 
Kl Km 

CP m2
(t) - As(t)]

f' €^

	

	 + K  Km ["P, ryt) + Nc (t) cos cp(t)	 (5b)

where the "hats" denote filtering of the corresponding si gnals; e.g.,
m l (t)

Q G(p)m l (t)- Thus, the output of the'third multiplier is the
dynamic error signal

j3 ZD(t)	
A
	 Zc (t)	 Zs(t) 

K12 	 2 ^n 
I IP2 m2( t) - P^ m^ (t)	 sin 2cp(t)

2

+ 2 vV72 ml (t) m2 (t) cos 2co(t)

^E r
+ LS (t) - N	 (t) -- 2'F2 62( t) As(t)

2 P m l (t) NC(t)^ sin 2co(t)

+ [2v^P2 m2(t)Nc(t)-2Pml(t)As(t)

'•

} - 2 A (t) N ( t )	 cos 40(t)
I

c	 s (G)

The instantaneous frequency of the VCO output is related to z 0 (t) by

d	 t)	 K	 [F( p ) z (01 + w	 (7)0dt

and hence the stochastic equation of loop operation becomes

t	 „

^

Zd dt t	 2n0, - K F(p)
LP2m2(t) - Pi 61 1 (tsin 49(t)	 1

+ 2,P P m l (t) m2 (t) cos 2 (t,)

+ v2[t ' Zcp(t)^ (8)

. where
^j

6
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5

v2[t,2cp(t)]	
[s( t) - 

N^ (t) - 2 P m2 (t) Ns(t)

- 2 VP-1
 m

l (t) Nc (t) _ sin 2co(t)

b

	 L P m2 (t) Nc (t)	 2 P rti l (t) Ns('t)
t

'	 - 2No(t) A (t) cos 2cp(t)
	

(9)

' and K Q K, Km KV .	 As has been previously done [3,4] in problems of this

type, we shall now decompose each of the signal terms in (8) into its

mean value plus the variation about this mean, e.g.,

t
m^ (t)	 sin 2c9(t)	 =	 <m^ (t)> sin 2co(t) +	 [ 12 (t) - <m I2 (t)>] sin 2co(t)

f (10)

where the overbar denotes statistical expectation and < > denotes time

averaging.*	 It is easily sho?vn that

rr CO

<mk	 0	 Dk	 _	
J

^Sm k (f)IG(j2^rf), 2 df	 k= 1,2	 (11)(t)>

and since m
1 
(t) and m2(t) are independent,

_ m (t) m (t)	 _	 0	 (12)l	 2

r In (11), 2m k(f) denotes the power spectral	 density of_mk (t); k = `1,2; and
- jG(j2^rf)^	 is the magnitude,squared of the arm filter transfer function.

Rewriting (8) using the above decompositions gives

2	 =	 20	 - K F(P) ^[P22-D 	 P 1 D 1 ]	 sin 2cp(t) + ne(t,2(p)^-	 (13)

where the total equivalent additive noise n
e
(t,2co)	 is given byiG

ne{t,2^p)	 v2(t,2co) -	 P 1 n 1 (t) sin 2(p( t)	 + P2 n2(t) stn 2cp(t)

f + 2 PP2 n1 2 (t) cos 2^p(t)	 (14)

The additional	 time averaging is necessary since m l2 (t) and m2 (t)
are-cyclostationary processes.	 Alternately, one may include a random phase'

h in these two. processes and statistically average them over the uniform

Y distribution of this phase L6 j-

^ ,. ,mss i ^	 •	 A	 c

a•
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with the self-noise nk (t); k = 1,2; and the cross-modulation noise n12(t)

kl ;	 defined by

nk(t)	 6k(t)	 <mk (t)>
	 k=192

n12 (t)	 ml(t) 62(t)	 (15)

h
STATISTICAL CHARACTERIZATION OF THE EQUIVALENT ADDITIVE NOISE

The self-noise and cross-modulation noise processes all have zero

mean and a continuous power spectral density component. 	 Since the band-

width of these processes is very wide with respect to the loop bandwidth,
t.

it is sufficient to find for each one only the power spectral density at

ri the origin which, when multiplied by the loop bandwidth, gives the con-

tribution to the total noise power of that modulation component. 	 From

(14), the autocorrelation of ne (t,2cp)	 is easily shown to be

Re(T, 2co)	 9'	 <n e (t,2^o) ne(t+T,2(p)>
f

=	 P^ sing 2co Rn l (T) + PZsing 2co Rn2(T)

+ 4 P l P2 cos t 2^o Rn12(T)
+ 4 j

[P l 	R^ ( T ) + P2 Rm2 (T)l RN( T ) + RN 2 ( T )}	 (16)

where

>	 =	 Sm (f) (G(J,2,rf) I 2 e^^rfT df ; 	 k = 1 ,2Rm ( T )	 n	 <m k( t ) mk(t+T) 	 2
k  k

Rnk (T)	 <nk(t)	 nk( t+T)>	 ;	 k= 12

Rn12(T)	
Q	

<n12( 
t)
	 n12 (t+T)>	 -	

Rm l (T)	 Rm2(T)

R^(T)	 N (t)	 N (t+T)	 =	 N	 (t) N (t+T):H N	 c,	 c	 s	 s
t
`.

1 N	 00
0G('2^rf	 2 ej2rfT d'f	 17

2	
J	 )^	 (	 )

F; The equivalent noise power spectral density at the origin - is then

Sf[

.... r..,	
6..	

.....^e'^n° ..	 _^^^4''^^^y'vP..w'..M[
t

m	 .^'w.t•..:  ^RM^4^3'^.'er.#z	 .,..,	 ^1a^^."ith'.5°.	 ^ _.	 __	 c	 :.	 .,_
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N 
e 
(2^)	 2	 R e(T,2 co) dT

ao

Substituting (16) together with (17) into (18) and using Parseval's
Theorem yields

N
e 
(2cp) = P

1	 2

2 
sin 

2 2(p S n l ( 0 ) + P 2 sin 
2 2V Sn2(0)

+ 8P
1 , P2 Cos

2
2(p S.,(f) SM

2
 (f)	 IG(j27rf)1' dff. 

6-
CO 	f - OO SM2(f){+ 4	 P	 N, j. Sm, (f	 .1 G (j27rf) 14 df + 

P2 
No

4
JG(j27rf)j	 df3̂

40

NCO
4

02+	

f	 I G (i 2 f)
1
	df

2
(19)

_OD

where [3]

Sn (0)	 6	 2	 00	 Rn	 T) d T 	 4 T 
k	

0 (n T
k )	 kk	 CO 	k	 nolol	 m k

1,2

with R 
k = I/T k 

the data rate of the digital modulatio n m k (t); k= 1	 ,2.

In [3], it was shown that, for cases of practical 	 interest, the effect
of the self-noise power on loop tracking performance was negligible.
Thus, for all practical purposes, we may concern ourselves only with
N
e
 (2(p) evaluated at co= 0,	 i.e.,

N
e	

N	 (2^o)
e

8P	 P	 D	 + 4

1
^0=0	 1	 2	 12

P N	 D KD	 + P	 N D	 KD	 +1	 0	 1	 1	 2	 0	 2	 2
K
L2

(20)

where	 D k 2	 k	 1.2;	 is defined	 in	 (11),

CO

D 12	 f	 Sml (f) Sm2(f)	
IG(j2 7Tf) 14 df

fco Smk(f)	
IG(j2nf)l'4 df

K	 k= 192
Uk	

1Smk (f 	
G(j2nf)l 2 df'

fw IG(j27Tf	
14 df

K (21)COL	
C G(j2ff f) 

2 df

L
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t

and

00B
	

1G(J 2nf)1
2
 df	 (22)

is the two-sided arm filter lowpass bandwidth.

EFFECTIVE LOOP SIGNAL-TO-NOISE RATIO AND PHASE JITTER

From the loop equation of operation given in (13), we can see that

the effective loop-signal-to-noise ratio is given by

(P2D2 - P 1 D1 ) 2

pe	 N B -	 (23)
e L

where BL is the single-sided loop bandwidth. Substituting (20) into (23)

and .impl'ifying results in

Pe	 4 SL
	 (24)

where p P /N B with the total power P = P + P and S i s the loop
T	 O L	 T

11squaring loss" which is given by
1	 2 L

s

(P 2 D 2 - P 1 D l )2

P
T

j ^L	 NOgi	 2 plP2D12

(25)

P 1 D 1 KD l + P2D2KD2 +	 2	 KL + N
0

Defining the modulation indices,

6	
, P

k	 P^	
k = 1,2

T
(26)

r then (25) simplifies to

^n2D2 - n1D1)2
_SL	 NB

0	 ^
(27)

PT	 •lk n 1 R 1 KD	 + n2^2 KD2` + ( 2 PT ) KL + 2n l n2 C N 0 / D12

t Ordinarily, to optimize tracking performance, i.e., maximize	 pe,

f the arm filter bandwidth is 	 selected relative to the higher of the two

t .i data rates.	 Thus, arbitrarily assuming that R2 > R19 we rewrite (27)	 in

the final form

k-



g

(n2 D 2 - nl Dl) 
2

„1E
SL	

B i 1R2	 012	
(2$)

i
+	 +KL	

2nl n2 RT2(T2 )nl D
l Kp l 	n2 D2 K02	 2RT2

where RT2 A
=
 PTT2A0

What remains is to characterize the tracking phase jitter perform-

ance.	 In the linear region of operation, the variance of the loop phase

error 2cp is given by

62 	 1 	
4	

(29)29	 p e	
p SL

Since the demodulation reference signals of (3) are at 
w0 

rather than 2w0,

then the tracking jitter on the output data streams is

l
i

2 1	 2	 1	
(30)

^^P	 4	 F2cp	 p S^

i We conclude then that characterization of the loop squaring loss in terms

of the system parameters is sufficient for predicting the loop ' s tracking

performance.

SQUARING LtiZS EVALUATION FOR PRACTICAL FILTERS AND DATA MODULATION SPECTRA

6
To graphically illustrate the theory previously developed, it would

be convenient to obtain closed-form expressions for the parameters defined

in equations (11), (21), and (22) for practical filters and data modulation

formats.	 Indeed, such is possible for certain special cases of interest

as we shall now illustrate. 	 Let us consider a simple RC filter with 3 dB

`. cutoff frequency fc for the Costas loop arm filters.	 Then,
e

k^

IG(j2frf)l2 	 1 (31)
2

1	 + (f/f)c

r	 .: -1

Substituting (31) into (22) and carrying out the integration gives the

relationship between two-sided noise bandwidth and cutoff frequency,

namely,

Bi	 =	 Trfc	(32)i

r

	

r-	 y

	

y
^
{

ty^	 ^^'"rayaaî ,_^	 ._... t ^ ^ . ...w . ^'^^L	 • ^''S syn. eti_ ^ '±^ xuy.	 F^ ^x ..	 ^.. i ^a'^ a..	 ^'.._ a ._.^	
.L ^+.w^.^ ^	 i	 .. _.'
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Also, from (21), substituting the square of (31) into the numerator of

the expression for K 
L 
and recognizing that the denominator is merely

equivalent to B 
i 
of (32) gives, upon integration,

K;	
1	

(33)
L T

Evaluation of D 
k9 KD k 

k= 1,2 , and D12 requires that we further specify

the forms of the two data modulations. For NRZ data with power spectral

densit

sing 7rf T k

Sm (fY	 Tk	 2k
(34)

(7rf T k)
x.

it has been previously shown [3] that

D	 [1	 exp	 k)]k	 2B IR	 (-2B i IR
i	 k

k	 12

3 - (3 + 2B i /Rk ) exp (-2Bi/Rk)

4B IRi	 kK	 IDk
k.= 1,2	 (35)

2B /R	
[1	 - exp (-2B 

i 
IR k)]

i	 k

For Manchester codes, the power spectral density is

sin
4
 (-nf T /2)

k
S	 (f)	 T	 —	 k=

m k	 k	 2
T

1,2	 (36)
(7rf

k 
/2)

Recognizing the trigonometric identity

sin
4
 x	 =	 sin g  x	

I	
sin 

2 
2x (37)

4

then (36) can be rewritten as

0 sin
2 	 (nf T 12)	 sing

k
Trf T 

k
Sm (f)	 2

k
T

(T,,)

2	 k	 1	 2	 (38)
2	 2	 k

(7rf T 
k 
/2) (Trf Tk)

which spectrally looks like the difference of two NRZ spectra of'different

data rates.	 In view of this,	 it is obvious from (21) that, for Manchester

codes,

ORIGINAL PAGE I$
OF POOR QUALTEZ

4 'tv



D 

MANCH _ 

2 D  

NRZ I

Rk=2Rk 
_ 

D 	 '
NRZ

	k= 1,2

=1

11

K MANCH, =	 l	
2 D NRZ K NRZ	 D NRZ K NRZ

l

D 
	 D MANCH	 k	 Dk	 IRk=2Rk	 k	 Dk

k
k - 1 ,2	 (39)

Substituting (35) into (39) and simplifying yields the following results

for Manchester codes:

D k	 1	
26 

%R [3- 4 exp (-B i /Rk ) + exp (-2B i /R01	 km 1,2
i	 k

'

	

	 9 = 4(3+B i /Rk ) exp (-B i /Rk ) + (3+2B i /Rk) exp (-2Bi /Rk')
l 4BI /Rk

KDk	
3	 4 exp (-B, R

k 
+ exp -2B i /Rk	 '

Y

2Bi/Rk
a

k 1,2	 (40)

All that remains is to derive expressions for the cross-modulation

`.	 coefficient 0 1 2 corresponding to the various combinations of modulation

formats and relative data rates. Starting out with the simplest case

{	 (at least algebraically), we shall assume that m l (t) and m2 (t) are both
i

NRZ data streams with respective bit rates Rl R2 , and R2 > R l . Then,

^-	 from (21), (31). and (34) we have that

l	 sing 7rfT
1
 sing 'rfT2	1	 2

D12 =	
4	 4	 2	

df	 (41)

^ 	 k

Using _a partial fraction expansion followed by considerable integral

evaluations and manipulations, we arrive at the final answer, namely, 	 1

A^ p p,GE IS
SRI ^R` OF

4
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22D 12	 T2 (1 - 3T } - T2 (TI)
1	 (Bi/2)

T
+	

8 T2 (T2/	

1	
3

1
5 - (5 + 2B i /R2 } exp (-2Bi /R2)

(Bi/R2)

- (5 + 2B i/Rl ) exp (-2Bi/Rl)

T
+ 2 C5+ 2(T1 -.1)

T
Bi /R2] 

eXp 

^2(T1 l1) Bi/R2]
2 2 a

T
+ 1 ^5+ 

2 (T 1 + 1)

T
B i /R2] exp ^2(T1

+ 1^	
BiIR2^

2 2

" R2 > Rl (42)

Ir ml(t)	 is NRZ, m2(t) is NRZ y

If m 1 (t) is now a Manchester code while m 2 (t) is still	 NRZ,	 then using

(36)	 in addition to (21),	 (31), and (34) gives
i

4	
co	 sin4 of T^/2 sin 2 ,rf T2	 l

2

{	 r1 D12	
_	

4it	 T I T 2
1	 f4 l + (f/fc)2

df	 .(43)

Once again using the trigonometric identity of (37), D1 2 of (43) simplifies 4

y
to

2	 co	 sin 	 Trf T 1 /2 sing of T2	 l 2 i
-
;

-
612	 W4 (T1/2.) T2	 _m	 f4 1	 +	 (f'/ fc)2

df
?a

.^

_

l	 co	 sin2 it f' T 1	 sin 2 irf T2	 1	
_2

_
Tr	

T 1 T2	 1-00	 f4 1 + (f/fc)2
df	 (44)

Comparing (44) with (41), we immediately arrive at the following results:

MANCH	 NRZ NRZ
} NRZ	 _	 NRZ

X12	 2D12
NRZ

R=2R	
- D12

I
R2 > 2R1

i

MANCH	 NRZ NRZ

D
NRZ	 _	 2 b	 NRZ	 _ p	 NRZ

12	 12	 R2=2R1	12
R	 < R	 < 2R1 -	 2 —	 1 (45)

ti R1-R2

i

Asam.^z^. — --_
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Letting m^(t) now be NRZ and m2 (t) a Manchester code, we get the remaining

'^	
result:

NRZ	 NRZJ NRZ

.^ D	 MANCH	 _	 2 D NRZ
12	 12'

_ p	 NRZ	 R	 RI R
-2
-2R2	12	 2	 .	 1

(46)

a Finally, when both ml (t) and m2(t) are Manchester nodes, we have

16	 CO 	sin4 ,rf T i /2 sin4 of T
2
/2

1	

2

D12<' _	 4 j	 4 +	 2 df	 (47)
n	 T

1 T2
0	f 1	 (f/fc)

{
To simplify (47)	 in terms ' of previously given results, we require the

trigonometric identity:

sin 	 ax sin 	 bx	 =	 sin g ax sing bx -	 sing-2ax4 sing bx
y

-	 4	 sin 	 ax sin 	 2bx +	 116 sin 	 2ax 'sin 	 2bx
..F.

(48)

Making use of (48) in (47), we see, for example,- that

1~
MANCH	 NRZ	 NRZ r

D	 MANCH	 _	 4 D	 NRZ
12	 12

_ 2D	 NRZ
R

1 
= 2R

1
	12 R1 =2R1

{
R2=2R2

NRZI NRZ

F - 
2 
p12 RZ R _2R	

+ D12NRZ	 R2 L2	 2 2Rl

MANCH	 NRZ NRZ NRZ

D	 MANCH	 _	 4 D NRZ
12	 12

- 2 D' NRZ
R1 =2x1	 12

_
R2=2R2

2 D	 NRZ
12 R2= 2R1

R2
=2R2 Rl =R2

NRZ
{ NRZ	 2R	

R	 > R1+ D12	 1	 2	 1

Expressions for D1 2' corresponding to (45),	 (46), and (49), in terms of

system parameters can be obtained by substituting (42) into these equa-

tions and simplifying..	 For example, corresponding to the first of the

two cases in (45)	 we get
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D12-	
T2 (1 - T2/T 1 )	 3T2 (T2/T1)	 1	

2

.0 (Bi/R2)

+ 8 T2 (T2

	

	
i 2

/T 1 )	 3 15 -3(5+ 2Bi /R2 ) exp (-2Bi/R2)
(B lR )

4(5+ B1/Rl) exp (-BilR1)

+ (5+2B i IRO exp (-2B i /Rl )

	

T	
T

+ 2 5+ 2(2T - 1, Bi/R2] exp 12 (2T -1 Bi/R2]
C	 2	 _	 2

F .	 T	 T
-
 

2 C+ 2(Tl - 1) B^ /R2] exp C2(T1 - 1) Bi /R2]
L	 \2 /	 2

	

T 1 	T1
2,5+ 

2(YT2 
+1 B i /R2] exp [2(2T +1) Bi /R2]
 '	 2

	

T	
T	

l

- 1 5+ 2	 + 1 B/R	 exp -2	 +1 B/R2 `
v	 2	 (T2	 i)	 2]	 [ (T2 )

I
I

R2 > 2R 1 (50)

whereas for the second case in (45),

D
	 T [

LT2-T Z-^+T1 -ZT 1- T2
12	 2 	 6T3(T1 1	 2(	 2T1(B•/R2 2	 i	 2 )	 J.

+ T 
12	

1	 15 - 3(5 + 26./R ) exp (-2B./R )8 2(T 1_)_ (B /R ) 3 	 ^ 2	 ^ 2{
- 4(5+ B i /R1 ) exp (-Bi /R1)

+ (5+ 2B i /R 1 ) exp (-2B i /R 1 )	 y

	

Tii
+ 2 5 + 2 1 - T1
	

B R	 ex [2(1 - Tl	 B ./R

	

2T	 2T

l

	

I^ 	 T	 T- 1 5+ 2- l B. /R	 exp -2	 - 1 B /R	 r

	

-2JL	 (T2 > i , 2]	 [ {T2	 i 2]

	

5+ 2 1 + 2T1	 B i /R2 exp2 1 y" 2T	 R2 `	 }C (+ 2	 2)	 ]	 C (	 2 Bi/}
T	 T

_ 2[5+ 2(T21 + I B i /R2] exp 
F

2(" +11 Bi/R^]

	

 /	 2	 /	 `1

R1 <2 < 21^^	 (51)
t°
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Finally, when m l (t) is NRZ, mZ(t) is Manchester, and R2 ? R1 9 then corre-

sponding to (46) we have

D	 _	 6 T2 (T /T) - T (T /T)12	 2	 1	 2	 2	 1	 2
/R2)(Bi

+ 8 T2 (T2/T1 )
3

15 - 3(5 + 2B IRO exp (-2Bi/R1)

,.
(Bi/R2)

-

- 4(5 + B /R2 ) exp (-Bi/R2)

+ (5 + 2B i /R2 ) exp (-26i/R2)

+ 2 5+ 2 1 -_ T2	 B: /R 	exp . 	-2 1 - T2	 B •/R2T	 1]	 2T) i
r	 ^, 1 \	 1

T2	 T\
- 2[ +2(1 -T) B i /R 1̂ exp

C2\1.-T2 J
 Bi/R1]

r 1 \	 1

+ 2[ T 2+2 f1+
2T	 BiIRI^ exp

l

T
C2

C
1+ 2T 	Bi

/R l )

1

;GINS' PA
GE	 - Z +2^1[5 	T+T2 1 B i /R l̂ exp

T
[2(1 + T?^ Bi/Rl]. OR QUALITY 1 / \	 1

µ OF POOR 

R2 	 R1	 (52)

K 0 Obtaining a detailed closed-form expression corresponding to (49), i.e.,

the case of m
1
 (t)and m

2
 (t)both Manchester coded streams, is left as an

5
exercise for the reader.

NUMERICAL RESULTS

Illustrated in Figures 2 and 3 is the behavior of the 'normalized

Y: cross-modulation distortion D 1 2/T 2 as a function of the ratio of the two

data rates with the ratio of two-sided arm filter noise bandwidth to high

data rate as a parameter.	 In figure 2, the results are for the case where

both mI (t) and m2 (t)'are NRZ data streams and are thus obtained from (42).

The results in Figure 3 are obtained from	 50	 and correspond to the case

where m l (t) is NRZ and, m2 O is'a Manchester code, and R2 ? 2R^.	 Also

f ;^ illustrated as dotted curves are the limiting curves which ignore the

' bandlimiting effects of the arm filters.	 These curves which are obtained
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from (42) and (50) by letting B 1 /R2-}- correspond to the results given

previously [1,2].

We now turn to numerical evaluation of the loop squaring loss (28)

which, for a fixed loop bandwidth and ratio of total power-to-noise spec-

tral density, is a direct measure of mean square tracking jitter. 	 Figures

4 through 6 illustrate (for fixed n 1 a.nd n2 ) the behavior of S
L
 as a func-

tion of the ratio of two-sided arm filter noise bandwidth to the higher

of the two data rates R2 with the ratio of data rates R2/Rl and PTT2/No
as parameters.	 Assuming PT/N 0 to be fixed, then ther variation of squaring

loss with PTT2/N0 directly reflects the effect of changing the high data

rate R2 .	 Furthermore, at low values of B1 /R2 , we observe from Figures 5

and 6 that additional	 interesting peaks and valleys of the squaring loss

characteristic occur.	 These extrema represent tradeoffs between SxS

distortion and cross-modulation "noise or SxN power, depending on which

of the latter dominates the total noise.

The numerical evaluation of the tracking jitter, for a fixed ratio

of arm filter noise bandwidth to loop noise bandwidth (B i /B
L
) [(30)], is

shown in Figures ,7 through 14.	 Figures 7 through 10 illustrate the

behavior of a (p, for fixed n1 , n2 , as a function of the ratio of the arm

filter bandwidth to the higher data rate R2 for all possible signal

format combinations with 
R2/R1 

and PTT2/N o as parameters.	 The minimum

values of a (P for some ratios of R2 /R I
 represent best design points when

the combined effect of Nx.N distortion and cross-modulation noise or SO

power is minimal. 	 Assuming PT/N0 to be fixed, the variation of aP with

PTT2/N0 is shown in Figures 11 and 12 for the case when m 1 (t) and m2(t)

are NRZ and the case when m (t) is Manchester code and m2 M is NRZ,

respectively.	 As is intuitively true, the tracking ji tter performance

improves with the increase of PTT2/N 0 . 	 Furthermore, for a fixed value

of B i /R2 , the variations of a (p with P 2 /PT = n2 are shown in figures 13

and 14 for the two previous cases.	 The figures show that, as the powers
^1â

of the two data rates become equal	 (n2 = 1/2), the loop is not able to

operate.

•
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,t	 APPENDIX F

TRACKING PERFORMANCE OF UNBALANCED QPSK DEMODULATORS

11	 PART II - BIPHASE COSTAS LOOP WITH ACTIVE ARM-FILTERS

by

Marvin K. Simon

INTRODUCTION

In Part I, we investigated the performance of a biphase Costal

loop with passive arm filters insofar as its ability to track an unbal-

anced QPSK type modulation. 	 In a previous Costas loop study for biphase
modulation [1],	 it was demonstrated that considerable improvement in

` tracking performance could be obtained by employing active arm filters
k

of the integrate-and-dump type as opposed to passive arm filters.	 The

purpose of this part, then, is to investigate whether a similar perform-

ance improvement can be obtained for an unbalanced QPSK modulation.

Before going into the details of such an investigation, we point

out that the use.of active arm filters in a Costal loop carries with it
the assumption that symbol synchronization of the two data streams is
known.	 This assumption, namely, that symbol 	 synchronization be avail-

able before carrier synchronization, appears to involve one of those

unstable situations in which carrier acquisition cannot be achieved

without first having symbol	 synchronization, and vice versa.	 If, how-

ever, the range of frequencies over which the carrier loop must be

acquired is kept small	 (on the order of the data rate or less) by doppler
correction, then the presence of the beat note, which causes the symbol
synchronization input to be amplitude modulated by the cosine of the

carrier loop phase error, does not destroy the information carried in
the symbol	 transitions from which the synchronization clock is extracted.

R -Hence, for a maximum frequency uncertainty less than the data symbol
rate, the symbol	 synchronizer can be designed to acquire rapidly as the
carrier VCO is swept ,through the region around the zero beat frequency.

Thus, a coarse estimate of symbol	 synchronization is obtained before we
• have actually acquired the carrier loop or the lock detector has decided

to kill	 the sweep.

:i
I
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SYSTEM MODEL AND LOOP EQUATION OF OPERATION

To avoid the duplication of effort, we shall, in this section,

draw heavily upon the notation, definitions, and results given in Part I.

Consider the Costas loop with integrate-and-dump arm filters illustrated

in Figure 1, where again the input x(t) is an unbalanced QPSK signal plus

bandlimited Gaussian noise of constant spectral density. Then, by analogy

with (5) of Part I, the arm filter outputs are now given by

z s (t)	 Kl KmT 2 C P m 2 ( t ) - N s (t)] cos ^p(t)

® K l Km T 2 [ P m l (t) + Nc (t)] sin cp(t)

z (t) _ K K T [ gym (t)	 N (t)] sin cp(t)..	 c	 1 m 2	 2 2	 --N s (t)]

 Km T 2 [ P m 1 (t) :+ N (t)] cos cp (t)
(k-1)T2 <_ t	 <_ kT 2 ,	 (1)

where

kT2

'
m i (t)	 4	 T

f (k-I)T
milt) p 2 [t - (k-1 .)T2] dt	 i = 12

2 Z

kT2

Ns(t)	 Tf( k-l )T

N s (t) p2 [t - (k-1 )T	 dt
2

2
2

kT2

N c ( t )	 T	
J

Nc(t) P2 [t - (k-1) T 2 ] dt
F

2 (k_ 1) T2

(k-1 )T 2 s t 4 kT 2 ,	 (2)

and p(t),	 i = 1,2,	 is the basic unit power symbol	 pulse in the ith data

stream defined to be nonzero only on the	 inteirval	 (0,Ti).

Forming the product of zt (Wand zs(t), gives the dynamic error

r signal,

i We assume here, as	 in PartI,	 that R2 > 1,'l (T2_Tl)	 and that the
j integrate-and-dump arm filters are identically designed to accommodate

the higher data rate signal.
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2 (k-1)T2	 Hold

/Kl sin $(t)

Z (t)
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-1	 i
4

	Tk.2K2T2
,	 zO(t) = zc (t) z s (t) _	 m 

22
	 (t)> - P l <m l 2 (t)> sin 2^(t)

	

t^ 	 + 2 -,/ P 2 (ml (t) 62(t)> cos 2 (p(t)

i

	

ta ' {	 + N e [t,2cp(t)]	 (3)

k-

where the total equivalent noise Ne [t,2co(t)] is defined by

N e [t,2cp(t)]	 [NS( t ) -N^ (t) - 2 P m2 (t),Ns (t) - 2 P m l (t) Nc (t)] sin 2Y'(t)

[2 AP 2 m 2 (t) N c (t) - 2 3P l m l (t)N s (t) - 2N M Ns(t)] cos 2co(t)

^ + P2 [m2 ( t ) - (m2 (t)^	
P1 [1^ 

1 (t)	 <m l2 (t)>1	 sin 2cp(t)

+ 2 3P2 Im1 (t) m2 (t) - (ml (t) 62 (t)^ cos 2 yp (t) .	 (4)

In (3) and (4), the overbar denotes statistical expectation and <>

-	 denotes time. average. Since the VCO phase estimate e(t) is related to

z0  via
K F(p)

e (t)	 v p	 zO(t)	 (5)

then the stochastic equation of loop ,operation becomes*

R	 2pco _ - K F(p) TZ [P2 <m2 (t)> - P 1
 <m^)>1 sin 2^p

+ 2 TZ P 2 (m l (t) m2(t)^ cos 2cp + T2 Ne(t,2co)	 (6)
w

where K	 Kv K 12 Km2 .

Since the digital modulations can be expressed in the form

CO

mi(t) _

	

	
ani p i (t - nT i )	 i = 1,2	 (7)

n=-00

For simplicity of notation, we drop the dependence of ^o on the
time variable t.

^,	 f1



C,	
^

2p ^9	 K F(p)	 T
2

[p 
2

2	 _
<ff'2 (t)>

pl <ffl 2(t) 
>]

1
sin 2 (o	 + T' N e (t,2(p	 (9)

2

where

5

where a	 is the polarity (A) of the nth data symbol in the ith data
n i

stream, then assuming that the a 
nl' 

s and a 
n2' 

s are independent, we have

from (2) and (7) that

0 1 (t) 'Y t)> = 0 -

	 (8)

Furthermore, the third term in (4) represents the self noise of the

filtered modulations, which has been shown previously [I] to have a

negligible effect 
on 

loop performance. Thus, ignoring these self-noise

terms and using (8) in (4) and (6) gives the simplified results

2(t)	 2(t) 
2 VF-- ^' (t)	 (t) - 2 VIP—, ^ l (t) ^ C (t)] sin 2^o

s	 c	 2 2	 s

+ [ 2 VIP_2 
ff2 ( t) 

Nc ( + ) - 2 VP__l	 (t) ^ S (t) - 2 N c (t) ^ s (t)] cos 2^o

	

+ 2 Yf, _P^ ffi (t) ffi (t) cos 2^o	 (10)
1 2 1	 2

Note that,the first two terms of the total equivalent noise in (10) repre-

sent the traditional signal x noi se and noi se x noi se terms characteri sti c

of the error signal in Costas loops. The third term of (10) corresponds

to the cross-modulation noise of the two data symbol streams.

Linearizing the loop, we have that

N Me
2 ^o	 H	 (p)

2 (p

	

2	 1 <^12(t)>
t)>

P
2 012	 P

where H	 (s) is the closed loop transfer function defined by
2 ^O

	

2	 ^12(t)>], 2

	

(t)> - P <	 T K F(s)
[P 2 2	 1	 2

P	 =	 (12)
2^o	 <^ 2 (t)>s +	 pl

[P 2	 2
2

<a,	 T	 K F(S)
>1 2

Assuming that the loop noise bandwidth B	 is much narrower than
L

the noise

bandwidth of N (t), the variance of 2^o can be approximated by
e

ORIGINAL PAG .E;? IS
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0	
6

2	 _	 Ne 8L	 (13)

Fn <^2	 1 1	 1
where

2aL 	
21T	

J' H
2 (s) H2 ( -s) ds	 (14)

J 1_ mJ

and

N	 Q	 ,
J

e	
2 

J	 <R

N
 (t,t*T)> dz (15)

0	 e

with RNe(t,t+T) denoting the autocorrelation function of N e (t), i.e.,

RNe(t,t+T)	 9	 Ne (t)Ne (t+T) (16)

TRACKING PERFORMANCE - THE CASE OF SYNCHRONIZED SYMBOL CLOCKS

' We assume first that the two -data clocks are synchronous in that

they both have a positive-going pulse starting at t= 0 and their pulse

repetition frequencies are integrally related, i.e.,

'
T

YT	
T1 	 n

2
(17)

where n > 1 is an integer.	 Since from (2),m 2(t) is the output of a

matched filter matched to the basic pulse shape of m2(t), then regard-

less of the data formats of m 1 (t) and m2(t), we have from (7) that

On the other hand, evaluation of <m> depends quite heavily on the

data formats of;'m l (t) and m2 (t).	 For example,	 if ml(t)	 i`s NRZ'data and

m2.(t)	 is Manchester coded data, then'

1;	 OstsT
pl

(
t ) 1

0 ;	 otherwise
(19)

t 1';	 0<t<T212
i p2(t)

r. -1;	 T2/2<t<T2

1



,. <m> ,-	 0 (20)

If both m l (t) and m 2(t) are NRZ data, then

0.1

These results, together with those for the remaining combinations of

formats for m l (t) and m 2 (t), are given'in Table 1	 below.

Table 1.	 Evaluation of <m l2 (t)} ; T l /T2 = n

Yt
M
2

 (t)
Manchester NRZJ^

0	 n>-2 1;	 n even
Manchester n_1

1n=1 n	 ;n odd
ml(t)

NRZ	 0	 1

Since we have assumed'a linear system in writing	 (13), then inso-

far as computing the equivalent noise spectral	 density N	 we may set

sin 22co	 0 and cos22co	 1	 in	 (10).	 Doing so, we get the simplified 

result

Ne(t,0)	 =	 2 P m2 (t)tc (t) - 2 P ni l (t) Ns(t)

i 2Nc(t) N s (t)	 + 2VP
I

	 m2(t) (22)

4

i Taking the autocorrelation .function of the nonstationary process Ne(t,0)

ID and 'averaging the resulting expression over t yields

<RN	 (t,t+T)>	 _	 4 [P2 CRm N (t,t+T)> + P l <Rm N (t,t+T)>
2c	 1se

+ CRN 
N 

( t , t+T)> + P 1 P 2 <Rm m (t,t+T)
,

1	 2 l
(23)

x r". c s

a
t

'F

.t

^r a vi
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a	 where

a	 <Rm N (t't+T)>
	 <62(t) ac(t) m2 { t+T) ^Tc(t+T)>

^I	 2 c

o
<Rm N (t,t+T)>	 _	 <m l (t) a s (t)ml(t+T)aas(t+T)>

1s

<RN 
N 

(t,t+T)>	 <Nc(t) N s (t) N c ( t+T) Ns(t+T)>
c s'

tl	 <Rm m (t,t+T)> 	
n	

< m 1 ( ,t) 'm2 t) ml t+ T) m2 ( t+T)>	 (24)
12

Since, from the definitions in (2), the noise processes N
c
(t),NsM and

the signal processes m l (t),m2 (t) are piecewise constant over a T2-second

j	 interval, then

k	 amt O ff? 	 ITI < T2

< Rm N (t,t+T)> =	
2	

2
•',	 2 c

0'	
ITI > T2

amt CY (1 IT I)	 ITj <_T2
<R	 (t,t+T)>	 1	 2

m l Ns
i	 0	 )TI > T2

k
T	 oN (1')	 (T)< T2

<RN N t,t+T 2
r	 c s	 0	 IT

I > `T2

t	 amt amt (1 _ ^T)	 JTJ < Y2

<R ^	 tt+T >	 =	
1	 2	 2	 ^25)

m 1 m2
0	 ITI > T2

where
^	 N

^N	 c .	 s	 2T2
4

^m2 = <
m^ (t)>	 1	 (26a)

r'	 2
s^	

and

AL PAGE L'
R Qm2 = 

<m12 (t)> 	 ORIPOOF. QU^1Yr	 (26b)1	 OF

Al

4

n,



r.	 t

is evaluated from Table 1. Substituting (25) and (26)	 into (23) yields

}	 1. 4 !
4 [P 2 +

N 

0
P 1 am	 2T	 +

N0
( 2T 2 )2

2+ P 1 P 2 Q^ T(1 	 2^ 	 ; 	 T I	 < T2
2 1

SRN (t,t+T)>
c 0 ITI	 >	 T2	 (27)

k•

` Finally, integrating (27) over T between and +	 [see (15)] gives	 the •

equivalent noise spectral density

N No03 +	 + 2P .1 P 2T 2
e

-	 4 N	 P + P
0	 2 1	 m 1	 2T2 N0

a ^2
ml

(2II)

whereupon, from (13),	 the variance of the 2c9 process becomes

2 4N'	 B0	 L (P	 +P)1	 2 N2	 0 2P	 P	 T1	 2	 2	 2
a

a

2 to
=

P+ P	 2 2
1	 2	

(P2	
P1 
m^

P	
+ P

2 a_	
+

1	 m	 2T
1	 2

+	
av	

.
N	 m

1
1

(29)

Alternately,

Q.2	 4	 P 1 
+ P2
	

=	 PTP (30)2 c	 p S L	
NO BL	

N0 BL

where SL is the "squaring loss" defined by

(P
2 - 

P 
1 

Cr ^2)2
ml

SL	 - N	 2P	 P	 T0	 ,
22

(31)
(P1 + P2) [p2 + pl off + 2

	
+

N 0
.bm1

In terms of the power ratio YPQ P 1 /P 2 ,	 (31) can be put into the final

desired Form

0 _YPQm2)2

^ 1SL
2

(32)

1 + Y	 2 Y P RT2 am;

(1 + YP): 1
P

+	
1

+Y P om2 + 2R	 +Y P1 T2

where, as in Part I,'RT2 	 ( P 1 + P 2 ) T 2 /NO is the total	 power-to-noise
ratio in the high data rate bandwidth.	 Note that, except for the depen-

dence of a
m
V

on the data rate ratio R /R (see Table 1), the 'squaring
l 2	 1
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loss of (32) is, unlike the results in Part I for passive arm filters,

independent of this ratio.

Figure 2 illustrates S L versus yp with R12 fixed at values typical

of coded and uncoded system's, and a3 as determined from Table 1 corre

sponding to the specific data formats of m l (t) and 
m2(t)	

Note that,

while the bi-phase Costas loop is unable to track a . conventional balanced

QPSK signal since, regardless of the value of R T2 , SL = 0 when n= YP= l and

m
I
(t) and m2(t) are of the same format, it is indeed able to track a

balanced QPSK-type signal in which m l (t) and m2 (t) have identical data

rates and powers but are not the same format. For example, if m
1
 (t) is

NRZ and m2 (t) is Manchester coded, or vice versa, then when n = 1, a 1= 0,

and furthermore, when YP= 1, we have from (32) that

S	 1
L -
	 (33)

2 1 + -R

T 2]

'.	 } TRACKING PERFORMANCE -- THE CASE OF UNSYNCHRONIZED SYMBOL CLOCKS

t a More often than not, the two data clocks will be unsynchronized

A' since, typically, the two data streams are generated from totally inde-

pendent sources.	 In this situation, there is,	 in general, no relation

between the epochs of the synchronization pulses corresponding to the two

clocks and,0 data	 furthermore, the ratio of the two data rates need not be

an integer.	 Nevertheless, still 	 assuming that the active arm filters are
r. matched to the pu t e shape P 2 (t), then <m2(t)j	 is again given by (18).

Computation of <m l (t)>	 for the unsynchronized clock case is _a bit more

K tedious than was the case for synchronized clocks. 	 The nature of the

mathematical	 model	 required is very much like that used in co ,mputin'g the

f cross-modulation distortion D 1 2 in Part I.	 In fact,	 the results for

0m 21 (t)>	 correspondi ng to the various data format combinations for ml(t)

i and m 2 (,t) can be obtained directly by 'taking the limit of 0 12 /T2 as Bi /R2

approaches	 infinity [see equations 	 (42),	 (50),	 (51),	 (52),	 for example].

4 j These results are summarized in Table 2.

' I Thus, to compute the loop squaring loss for the unsynchronized

clocks case, we use (32) with am	 now determined from Table 2. 	 Note that,

in the limit asYT + ^, Table 1	 and Table 2 are equivalent; 	 i.e.,	 for a

sufficiently large ratio of data rates in the two channels; the loop

a
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tracking performance is approximately the same for synchronized and unsyn

r`

	

	
chronized clocks, as one would intuitively expect fi , Figures 3 through 6

illustrate SL versus Y P P 1 /P 2 , with RT2 PTT2/NO fixed at the same values

j

	

	 as in .Figure 2. The curves are distinguished from one another by the

formats of the modulations m l (t) and m2(t). Note that, when the higher

2data rate modulation m (t) -is Manchester coded, the squaring loss is sig_

nificantly improved relative to when this same modulation is NRZ. Again,

the reason for this stems from the'fact that the active arm filters are

matched to the pulse shape of m 2 (t) which, for a Manchester code, results

in much smaller values of an,i (see Table 2) than for an NRZ pulse shape.

It is important to note that, here again, as for the synchronized clock

case, the bi-phase Costas,loop is quite capable of tracking a balanced

'	 QPSK signal(-YT= yP 1) when m2(t) is Manchester coded.:

	

Table 2. Evaluation of_<m 12 (t)>	 Tl/T2 o YT >_ 1
m2(t)

	Manchester	 NRZ
_
}	 6 EYT Y + 12 - 6YT ] ;	 YT - 6 YT _l + 3	

;
T	 T

Manchester	 R1 `— R2	2
	 R1 

< R2 < 2R 

^.

	

	 2YT; 
h2 >, 2R 1	1	 Y	 R2

	
2R

M l(t)

T

1	 -1
NRZ

6_YT

	 l _ 3YT

COMPARISON OF SQUARING LOSS PERFORMANCE; ACTIVE VERSUS PASSIVE ARM FILTERS

a'40-
We are now in a position to answer the question raised in the first

paragraph of the introduction, namely, is there a tracking performance

ir=

	

	 improvement obtained by employing active integrate - and -dump arm filters

as opposed to passive arm filters and, if so, how much. To begin this

investigation, we borrow a result from Part I, namely, (28), which charac-

terizes the loop squaring loss for passive arm filters. In terms of the

x
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î
.	

3

	r	 10	 5
W

2
10-

0	 0.25	 0.5	 0.75	 1
Yp-P1/P2

^r
Figure 6b. Squaring Loss versus Ratio of Pourers in the Two Data Channels
With YT° 1`1/1-2 as a Parameter; RT2 10 dB ni l (t) is Manchester, m2(t) is

	

}	 NRZ Unsynchronized Data Clocks<

IB `

.""Ik^..,..._...,F.^.._.. 	 ^....^-..,_....... ^ ..may.	 o-a

21



22

notation developed here in Part II, (26) can be rewritten as

	

S
	 (D2	 Yp DI) 2
	

34

	

L	 1+Y	 B	 / 2	 R	 D	
31(
	 )

0 +' Yp) D2 KD + Yp Dl 'DI + KL (2R) ^T,) + ( lY + yT2 ) l T 2 )
2	 T2	 2	 P	 2

:y

where D 1 ,	 D 2 ,	 KD 1 ,	 KD 2 , `and D12 are all	 defined i n Part	 I.	 Note the simi-

larity in form of (34) and 	 (32), corresponding to the squaring loss for

integrate_-and-dump arm filters.

r Since D i ,	 D 2 ,	 KD 1 ,	 KD 2 ,	 and D12/T 2 of	 (34)'are only functions of

B i /R2 and yT ,	 then analogous to the biphase case [1], for given values of

YT , Y P ,,and RT 2, an optimum value of Q i /R2 exists in the sense of maxi-

mizing S
L
 of	 (34)	 (i.e., minimizing the squaring loss).	 Using that value

of B i /R2, namely,	 (B/R2)opt, and defining the corresponding value of SL

by SLopt, then the-minimum improvement in tracking performance (or, equiva-

lently,	 in squaring loss performance) 	 is given by the ratio of (32) 	 to (34)

2	 1+Y	 B	 2 Y 	R	 D

) ^T
cr 2

B
SL	 \	 Y P	 m l )

_Q	
(1-	 D	 K	 + Y 	D	 K	 +K	 P	 +	 P	 T2	 12

)^R i )2.	 D 2	 P	 1	 D l	 L (2R
T2	 2

(1 + Y
opt.	P	 2F

I_
	 _

-	
S	 -L opt	 2

2
1 + Y 	 2 Yp RT2 °ml

* (D2	 YP D^) 2l + YP 
am 	 + 2R	 +	 l

1	 T2	 YP

(35)

:.: Assuming single-pole (RC) arm filters as the basin of comparison, wherein

` KL = 112 [1],	 and unsynchronized symbol 	 clocks	 (i.e., a jp	 , determined from

Table 2),	 Figures 7 through 9 illustrate 	 I	 in dB versus	 `the channel	 power

ratio Yp wi th the data rate ratioY T as _a parameter and values of total

power-to-noise ratio RT2 -typical of coded and uncoiled systems.	 We observe
;.
z from these figures that the improvement in squaring loss_ performance of

using integrate-and-dump arm filters as opposed to single-pole arm filters

is an increasing function of YP and depends heavily on the choice of

+ data 'formats for m l (t)	 andm 2 (t).	 Also note that,	 in the limit,	 as YT

approaches infinity, D 1 = Kp 1 = D 12 /T 2 = 1	 and aml =1 	 or 0, depending on

p 7 the data formats of m (t) and ,m M.	 Thus,	 I of (35) simplifies consider-1	 2
s' ably for this	 special	 case.
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CONCLUSIONS

We have evaluated the performance of a biphase Costas loop with

active arm filters when tracking an unbalanced QPSK signal. 	 The cases

of synchronized and unsynchronized clocks have been treated and results

are given for all ,possible combinations of NRZ and Manchester formats

for the two information channels.	 It has been shown that, while for a

` fixed ratio of data rates and total	 power-to-noise ratio in the higher
- data bandwidth the squaring; loss does indeed increase as the ratio of

powers in the two channels increases, the rate at which this lossincreases

(tracking performance deteriorates) depends heavily upon the data formats

in each channel.	 Thus, it is concluded that, when the ratio of data rates

is on the same order of magnitude as the inverse of the power ratio,

i.e., approximately equal	 signal	 energies in the two channels, the
biphase Costas loop can be used as an efficient demodulator of QPSK.

' On the other hand,	 if the energy in the two channels is very unbalanced,

e.g.,	 one channel	 is coded and one	 is uncoded,	 then	 it is still	 possible

to efficiently use a biphase Costas loop for demodulation of unbalanced

QPSK provided that the higher data rate channel 	 is Manchester coded. 	 It

4'1 is understood that the foregoing conclusions are quite general 	 and are
not intended to rule out specific design situations in which sufficient

'. total	 power-to-noise ratio is available to tolerate large squaring losses.

;' In an individual	 situation, one must resort to the specific numerical

results given in the illustrations to determine the suitability of employ-

ing a biphase Costas loop for demodulation of unbalanced QPSK.
As a final 'note,	 the results derived	 in this part will 	 play an

important role in assessing the error probability performance of unbal-

anced QPSK receivers where the data detector is, 	 in fact, an integrate-

and-dump'filter.	 The results of such an investigation are- the subject
of a future _paper by the author.
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TRACKING PERFORMANCE OF UNBALANCED QPSK DEMODULATORS

PART III - BIPHASE POLARITY-TYPE COSTAS LOOP
WITH PASSIVE ARM FILTERS

by

Marvin K. Simon
Waddah K. Alem

INTRODUCTION

In Parts I and II of this study, we addressed the problem of

tracking an unbalanced QPSK signal with a conventional 	 biphase Costas
loop with analog input phase detectors, and an analog third multiplier

(the one that forms the loop error signal). 	 Because of do offsets
associated with analog multipliers,	 it is common practice to hard-limit

7

the in-phase* channel arm filter output and replace the analog third

multiplier with a chopper-type device (switched multiplier) which

typically exhibits much less offset.	 While it is also possible to

replace the input in-phase and quadrature analog phase detectors
with switched multipliers, the impact of doing so on the resulting

tracking performance is minimal 	 since the arm filters will	 pass only

the first harmonic of these phase detector outputs. 	 Thus, aside from

the 8/7r2 power loss associated with the first harmonic of a square
wave, the performance of the loop would be identical	 to that given

in Part I for an analog third multiplier or that to be presented here

in Part III for a switched third multiplier. 	 For ease of terminology,

we shall refer to a conventional 	 biphase Costas loop with a switched
third multiplier as a "biphase polarity-type Costas loop" or, even

simpler,	 a	 "polarity-type Costas 	 loop."

Generally speaking, 	 introduction of a limiter (hard or soft)
into a system results in signal	 suppression,	 the amount of which is

a function of the signal -to-noise ratio , At the limiter input. 	 This

signal suppression, in turn, 	 reduces the total	 loop gain and, as a
consequence, the loop bandwidth. 	 Another potential problem with the

limiter under strong signal	 conditions is that it may increase the
tendency of the loop to false lock.	 This tendency was demonstrated

s
For unbalanced'-quadriphase, we shall 	 refer to the in-phase

channel as that corresponding to the point of data extraction for
the higher power signal.
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in [1 ,2] for a polarity-type Costas loop with a bi hase data input.

The purpose of this appendix is to address the tracking behavior

ff

	

	 of the polarity-type Costas loop with unbalanced QPSK input and com-

pare its performance with that of the conventional Costas loop dis-

cussed in Part I of this same study. In particular, for the case of

single-pole Butterworth (RC) arm filters and a particular combination

of NRZ and Manchester coded data on the two channels, the squaring

loss (tracking jitter penalty relative to a linear loop) is evaluated

and illustrated as a function of.the ratio of arm filter bandwidth to

higher data rate and total signal power-to-noise ratio in this higher

data rate bandwidth. Also numerically illustrated is the correspond-

ing mean-squared tracking jitter performance as a function of these

same receiver parameters.

2.0	 SYSTEM MODEL

Consider the Costas loop With hard-limited in-phase channel

illustrated	 in Figure 1.	 The input x(t)	 is,	 as	 in Parts	 I„and	 IL, an

unbalanced QPSK signal	 plus noise,	 i.e.,

X(t)	 _	 P m (t) cos 4^(t) +	 2P	 M.W sin P(t) + n i (t) ,	 (1)

where ^P(t), m
1 
(t), m2 (t) and n i (t) have been previously defined	 To

avoid unnecessary duplication, we shall	 not rederive the expressions'

for the in-phase and quadrature arm filter outputs, zs(t) and zc(t),

but rather refer the reader directly to the results in equation (5) of

s Part I. 	 Thus, hard-limiting z s (t) and multiplying by zc (t) produces

an error signal	 z(t) at the switching multiplier output (assuming
0

this multiplier has unit gain) which is given by

zo(t)	 a	 z	 ( t )	 sgn	
[ZS(t)J

Kl2 '
m 2 (t)m(t) sin cp(t) + K ) Km P m l (t)m(t} cos ^p(t)

-Km

+ K	 Km m(t) [N c (t)	 cos	 cp(t)	 - N s (t)	 sin (p(t)J	 (2)

where

tn(t)	 sgn	
2 

m 2 (t) cos ^p(t} - P m l (t) sin	 co(t)

f	 F
-	 [N s (t) cos (P(t) + A	 (t)	 sin	 (p(t)]}	 (3)
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and sgn (x) _° x/Jxj denotes the "signum" function of the argument x.

fThe instantaneous frequency of the VCO output is related to z 0 (t) by
1

d ^^ t = K [F(p) z 0 Ml+ W0	
(4)

and hence the stochastic differential equation of operation for the

loop in Figure d becomes

22 -- 2st - KF(p) 2	 m (t) m(t) sin c^(t)+ 2 	 in (t) m(t) cos (t)dt	 0	 2 2	 1 1

i 2 m(t) N C t ,^o (t)^}	 (5)

{	 where K_ K, Km Kv, and

x	
N it, (P(t)I--° N o (t) cos cp(t) - N S (t) sill ^(t) •	 (c)

I	 Consider first decomposing m2 (t) m(t) sin yo(t) into

m 2 (t) m(t) sin co(t) _ <ifi	 m(t) sin co(t)>
1

M 
Il 2 (t) m(t) sin cO(t) - <m2(t) 1n(t) sin ^p(t)>^	 (7)

where the overbar denotes statistical expectation with respect to

both the noise and data modul ation processes, and < > denotes time

average. Similarly,
31^

4	 ml (t) m(t) co.s cO(t) _ <m l (t) nI(t) cos cD(t)>

F [m l (t) m(t) cos V(t) - <m l (t) m(t) cos cO(t)^	 (8)	 Ii
The first terms of (7) and (8) represent the normalized do components

of the error signal at the switching multiplier output. Since 'these

dc voltages are, in general, a function of the loop phase error

(specifically, in this case, a function of twice the loop phase

error), it is traditional to refer -to their weighted sum as the loo

S -curve or tracking characteristic, With this in mind, we can write*

{
For convenience, we drop in our notation herein the dependence

3	 of co on time. Also, the loop bandwidth is assumed -to be much less than
the data rate and thus va(t)_is essentially constant over a symbol time= 	

s

}



} 2 
2 

<m2 (t) m(t) sin co(* +	 2 P<^ l (t) in(t) cos cp(t)>

2 P <m2(t) m(t)> sin cp + 2 P <mi (t) m (t)> 'Cos cP	
Q	 P f(2cp)

-E
^^

=	 P af l ( 2 V),	 (9)
4

where fl (x)	 is a nonlinearity which is periodic in 	 x	 with period 2,r

and has unit slope at the origin, 	 i.e., x = 0.	 Thus,	 a defined by

A	 df(2	 ))	 1	 df 2

'
a	

-	 dj2V1
=

cp=0	 2	
d^o	 (P =0

a2	
al

m ( t )>I_	 +	
P^	

d̂ 	 <iP^ l (t) m(t)»4^	 F2
(10)

i 2	 -° (P=0

is the signal	 amplitude suppression factor which results due to the

combined distortion effects on the input modulations m l (t) and m2(t)

` of the hard limiter and finite arm filter bandwidth. 	 In the next sec-

1 Lion, we evaluate this suppression factor for modulation data formats

and an arm filter 'type of current interest in practice.

The second terms in (7) and (8) are zero mean processes which

` I represent the-self noises of the filtered, hard-limited data modulations

at the switching multiplier output. 	 Thus, defining 'these self noises

by

t
 

^on
D1 

It, 2(n]	 2 4P, [m
1 
(t)m(t)- <m

l
 (t) m(t)>] cos

i
. ,	 not It s	 ^ _° 2 P 1^2(t) m(t) — <m2(t) m(t)>] sin rp	 (l^ )

I f	 and substituting (11) together with (9) into (5) gives the resulting

r`q	 p	 p_.^ equation of loo p o p eration

..	
2	 = 25 0 -K 'F ( p ){ P af l (2cp) +2m(t) N(t,cp) ^-no2 (1,2cp) nol (t,2 co) ^

(12)

Finally, since for good tracking performance the loop operates in the

region of small_ variations of ^o (i.e., its linear region), then

w:
since no2 (t,2co) is proportional to sin cp, its self-noise power in

}

} 1f



h

the narrow loop bandwidth will	 be vanishingly small when compared with

that of the dominant noise component m(t)N(t,tp). 	 Thus, as has been

done in similar analyses [3,4], we shall 	 ignore the effect of this

self-noise term.	 Under this assumption (12) reduces to

d	 =	 2a0 - Kt (p)^ 2 af 1 (2(p)	 Ne (t,2zo)^ (13)

where

Ne(t,2(p)	 2 m(t) N(t, 0 * n nl (t,2co) (14)

is the equivalent additive noise perturbing the loop.

3.0	 CALCULATION OF THE SIGNAL AMPLITUDE SUPPRESSION FACTOR

The input digital modulations m i (t);	 i= 1,2; may be represented
as

M2 (t)	 _	 ant p 2 (t- nT2)

co

m1(t)	 _	 and p l (t r n Tl	 e) (15)
n=-

where ani =:L1	 is the polarity (±l) of the nth data symbol	 in the ith
data stream, T i =	 1/Ri	 is the symbol	 time and p i (t)	 is the symbol	 pulse
shape of the ith data stream (e,g,, for NRZ coding)

 0<t: T i
t

p	 (	 )

10;
16

(	 )

i
otherwise

and e is the random epoch between the two data streams which accounts

for the fact that, in general, the two modulations are asynchronous.

After passing through the Costas loop arm filter, these same

modulations become

co

m i (t)	 _	 ani p i (t - n T i )	 i = 1,2 17
n ..

w where

T _ f

pi (t)
fo

p i ( 'r ) g( t 	 T) dT (l 8)
^, ORIGINS, PAGE IS

OF POOR QUALITY `a
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s
with g(t) the impulse response of the arm filter G(s). 	 Thus, from (10)

E

T

a2	 02(t) m(`t)>	 T	 fO2 m2(t) m(t) dt (19)-
^O=0	 2 	 ^^p-0

f

which, from (3) and (17), becomes

A -
a foT2	

ro	

coF	 a	 p (t- nT)
[n=--	 2n2	 2

sgn	 a	 p	 (t- nT) -N	 (t)	 dt.
2	 2	 2

G 2	
T2 n=-co	

n2	 s
1 (20)

The statistical	 average over the filtered Gaussian nose pr ocess NS(t)
in (20) can be performed quite easily with the result

I

sgna	 p(t-nT)	 N(t)	 __erf2

p

a	 p(t-nT)2	 2	 2 (21)
n=_n=_00

n2	 2	 2	 s	 n2n

! wherep2= 2P 2/N oBi	 is the high power channel	 signal-to-noise ratio in the

a ►°m filter bandwidth,

erf x	 2	
J

r x
exp	 ( - t2 ) dt , (22)

f /1-T 0

and B 	 denates the two-sided noise bandwidth of the low-pass arm filter

G(s),	 i.e.

t
B j^G(j 27rf)( 2	df (23)

Substituting	 (21)	 into	 (20), we get the somewhat simplified result

T2	 p2
C 	 =

fo
a	 p	 (t- n`T)

2 ]
erf a	 }^	 (t- nT)

2	 2	 2
dt . (24)

«. 2	 T? n=_^	
n2	 2

n

r '	 In general,	 evaluation of a2 as given by (24)	 is a difficult,	 if

CW not impossible, task due to the presence of the error function non'-

alb
OP	

linearity which impedes performing the statistical average over the

V, 	 doubly infinite data sequence. 	 Fortunately, however, the problem can

$.{ g	 be somewhat simplified by noting that, i;n practical system design, the

" Q Q	 3 dB cutoff frequency of the arm filter is chosen on the order of the
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data rate or greater to assure good tracking performance. This implies

that the tails of p2(t) beyond a-single symbol interval decay rapidly,

and thus it is sufficient to consider only the contribution of the

data bits a 0 and a_ 1 insofar as computi ng the argument of the error

function in the interval 0 <_t :!J * Assuming then that the data bits

are random and take on values ±1 with equal a priori probability, we

obtain the result

a1	
T2 
p ( t ) erf	 p2 p (t} dt + l	

T2 P ( t ) erf	 p2 P ( t ) dt
2	 2T2 f0 2	 2	 2+	 2T2 10	 2-	 2 2-

<1

(25)

where 4

	

= 1 	
p2t(t)	 P2(^)	 p 2 " T 2 )	 0 < t < T2 .	 (26)

	

°-	 Computation of a 1 defined in (10) is slightly more complicated

since the time origin of both data streams is involved and thus an

	

"	 additional average over, the random epoch e between them is required.

_	 Averaging first over the filtered Gaussian noise process NEt,cO(t)1

.j N s (t) cos cp(t) +N c (t) sin ^o(t) with variance QN 2 = N0Bi/2 gives
r.

	

i	 d!	 C 2 m (t) cos rp - P m1 O sin c
or^ = dtP 

C
m l (t) erf
\N/-0

Y	 lI

-

F2p 	 m 2 (t) eXp	 P2 m2 (t)	 (27)1	 2 2^

where

	

-	 p	 a

	

P I 	2P1	
(-	 -	 28)

	

..	 1	 ^	 2	 N06i^_

	

r.	 N

	

t	 ,

	s	 Again, because of the independence of the two data streams and
x

the asynchronism of their timing, (27) can be simplified to

 §^

R# *Extension of this approach to take into account intersymbol
interference from more than one previous purse interval follows in a-

	

-	 s	 straightfot^ward mranner.

	

y	 -	 -r

	

Y.	 ^vr



1
a	 =	

Zpl \m 2 (t)
><

eXp	 ^'2 2
2 2 	 (29)

The first factor in (29) is easily evaluated as [1]

W
<m 2(t)>
	 0m	 = Ir Sn, 

1 

(f) IG (j 27r f)^ Z df,	 (30)
l	 ^ 

where Sm l (f) is-the power spectral density of the modulation ml(t).

The second factor in (29) can be simplified by once again using the

approximation of considering only intersymbol interference from the

previous pulse as was done in reducing (24) to (26). Thus,

a = - 
E7rD
	 (T2exp	 Pp(t)dtl 	 tnl 2T 2 J 0	 C 2	 2

2p1 0
	 1	 T2 exp	 p2 p 2 (t) dt .	 (31)7r	
ml 

2T2 f 0 	[ 2 2-

Finally, letting

P

YP	 Pl	 (32)
2

denote -the ratio of powers in the two data channels, then from (10),

(26), (31) and (32), the signal amplitude suppression factor a is given

`	 by

a	 21— T2 p ^(t) erf	 ^? p +(t) dt F 2^. ^T2 p 2- (t) erf	 2 p 2- (t) dtT	 2	 ^2 2	 l

	

2 10	 2 a0

- y	 2 p 2 D	 1 f
O
T2 exp	 ^2 p2 (t) dtP	 7r	 m l 2T 2 	2	 2+

	

>.YTP p	
(
T2eXp _ n2 p 2 (tx dt	 (33)P 	 ml 2T2 J 0	 2 2-

Note from (33) that the effect of the quadrature data channel (Channel 1)

on the signal amplitude suppression factor is to reduce its value rela-

tive to that [the first two terms of (33)] when the input is a biphase

.	 K.

r -
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t

modulation [4].

As an illustrati on of the application of the result in (33) to

a particular case of practical interest, we consider a Costas loop with

single-pole (RC) Butterworth arm filters and input modulations specified

as follows. The high data rate modulation ,m2 (t) is characterized by

NRZ data with pulse shape P2(t) specified in (27), while the low data,

rate channel has a Manchester coded modulation ml(t).

As is well known, an RC filter has a transfer function

G( jW) =	 l(34)
1 + j w

0)c

where we = 2rfc is the radian 3 dB cutoff frequency. Taking the inverse
Fourier transform of (34) and substituting this result, together with

(16), into (18) results in

I,
r^

Lit

p2(t)	 [1 - exp ( - wct)] u(t) - [1	 exp (-wc (t - T 2 ))] u(t - T 2 )	 (35)

where u(t) is the unit step function. Thus, from (26), (33), and (35),

we obtain

	

l	 . 1 ^'2
a2 ( {7 ` 2 exp [-2'(Bi/1?2) x] erf 	 ^2. ^l - 2 exp [-2(B /R2) 

x1 
dxdx

.Q

e
p	 2p	 1	

p

	

+ 2 erf 2 Y P 	 ^r 2 dm 2 J exp - 2 4l - 2 exp [-2(B i /R2 ) x]} 2 dx

2P2 
a	 1 exp (- 2
	

(36)

	

P	 'T	 nt1 2	 \	 2 i

where we have made -the substitution x= t/T2 and taken note of the fact

that, for an RC filter, the two-sided noise bandwidth B  and 3 dB

radian cutoff frequency wC are related by w  = 2B i . Also, the mean

squared value for a Manchester coded modulation after arm filtering

is given by [5]
a

	

Dm 	1	
26,1/N 

[3 - 4 exp (-B IRO + exp (-2B i /R,)]	 (37)	
i

	

1	 i	 1
3
l



I 

Before illustrating the variation of a with B i /R2 , we must char-

acterize the signal-to-noise ratio P 2 in terms of the system parameters.

From the definition of P 2 , we have that

P	 _ 2P 2 	2 P 2T 2	 1	 _ 2 R	 1	 (38)
2	 NoBi	 7fNO	 fcT 2	 nr 2 

or in terms of the ratio of-arm filter noise bandwidth to data rate,

2R
2

P2 = B1/R2 ^
	

(39)

i

Since,	 in a given system design, the data detection signal-to-noise

ratio R2 a P 2'r 2/NO is typically fixed by the requirement on bit error

probabilityperformance i n the high data rate channel, we shall param-

eterize R2 and plot the signal	 power suppression factor a 2 as a function

of B i /R2.	 Figure 2 illustrates such a plot. 	 The curves are drawn for

B i /R2 > 1.5 or, equivalently, Tc /T < 1/3, where T c = 1/wc is the arm

filter time constant:

For large B i /R2	 an appropriate asymptotic expression for a 2, 
i

can be obtained from (36) and is given by

j;
4R.R

a2
A 2̂

F	 4

-	
erf R2	 - yP	

^8ilR2 
exp	 - B . R̂2 ,	 (40)_

Also,	 in the limit as R 2 -}
	

we obtain the asymptotic expression'

a 2 	 -	 1- '2B 1/R	 [In 2 - exp	 (-26 i /R2 )^ ,	 (41)
i	 2

which is identical	 to the result obtained -For a biphase modulation

input	[4].-r.

^. 4.0	 CALCULATION OF THE EQUIVALENT NOISE SPECTRAL DENSITY Ne

t
In practical applications,	 the bandwidth of the Costas loop is 	 f

ordinarily designed to be narrow with respect to the equivalent noise

bandwidth of ig e (t,2cp)	 defined in (14).	 Thus, we can further approxi-

mateNe(t,2cp)	 as a delta correlated process with equivalent single-

7

sided noise spectral density

1
r^

i
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Ne 
a 

2 
f-

co R, (T) dT
e

(42)

where

13

	

l	 RN (T) o 
^Ne(t,2(p) Ne(t+ 

T,2^o)\	 (43)
e

Since, as previously mentioned, for good tracking performance, the loop

will operate in the neighborhood of ^D = 0, we shall evaluate (43) and

hence (42) only at the point ^o = 0. For a conventional Costas loop

without the hard limiter in the in-phase arm, the equivalent noise

	

'r	 spectral density is indeed independent of c9 C3]. Proceeding then under

the foregoing assumption, we have from (3), (6), (11), (14) and (43) i

	

j	 that*

RNe(T) = 4(Nc (t) iV c (t+T) sgn {	 m2 (f) - ^ (t)j sgn ^"`P2  m 2 ( t+ •r ) -Ns(t+T)

	

4 P	 (t) m

	

l ^m l 	 l (t+ T) sgn ^ 3P2 P(t)- N s (t)^ sgn ^IP2 612 ( t+T) - Ns ( t+T)1^

4 CRN( T ) + P l Rm (T)] </sg n ^^ 2 m 2 (t) - N S (t)^ sgn f P m 2 (t+T) Ns(t+T)j>
1	 #

(44)

where

RN (T) = NC (t)FJc (t +T)	
2 
	 G{^ 2,r 

f) I 2 ej2rrfT df
	 (45)j^

	

s	
and

Rm (T)	 {Inl(t)P( t+T)> 	 COSm (f) IG(j 2,r 
f)I 2 e32^rfT df .	 (46)1	 j^	 l

For the RC filter of (34), it is simple to show that	 i

Rh( T)

Furthermore; for Manchester coded data on Channel 1 with power spectrum

Note that, because of the independence of m l M and rn 2 (t), the

term <m l (t) n,(t)>I =o ='(m 7 t) s9 11 C P m 2 (t) - N s (t)]> in np Ct,2(p]
evaluates to zero.

w
`'^+KAm'w»w.Y.v.w^•t<1"JC'•^-iEr?'''..t:'c1.o","u:..s--._ 	-	 .	 -.	 _..._ ... .....•	 -..



F 1 ; 14

4 /^rfT^`
sin l	 )

25m (f) _ T 1 ^..^2— r	 (48)
1	 / ^r f711

` 2 J

we have that

r 
e 
-Bi/R1 - 

e 
-26 i /Rl̂ 	 -26i^T^

4	 cosh 2B i T - 3e	 T1

Ti	 2Q . /R

- 2B	 ^^	 - 2B	 Ri	 T	
^/

` e	 [4 cosh B i /R1 - 31 - e	 .1 cosh 2B i T	 T 1

E'''
T	

-	 -

Rml(	 )	 -	
-

^1	 Tl

<	 <

2 — ITI — T126
7/
•	 R

l

ITI
e	 [4 cosh B./R	 -cosh 2B . /R	 -3]

i	 7	 7 T1	 T	 < 	 (49)
2B i /Rl

-^ Thus, what remains is to compute the correlation function of the hard

limiter output as required 	 in (44).

The general problem of computing the correlation function at the

output of a zero memory nonlinearity (e.g., a hard limiter) when the

(( input is signal	 plus Gaussian noise can be attacked by a variety of

techniques, among which are the transform approach [6], Price's Theorem [7]

and the series expansion method [8]. 	 Letting

n. ( y(t)	
-	 sgn { P m 2 (t)-^ N s (t)} ,	 (50)

then to compute the equivalent noise spectral	 density defined in (42),

we must calculate

N e	 -	 8 1
	

[RN(T) + P l % (T)] Ry (T) dT .	 (51)
1

K As was true for the signal	 suppression factor and even more so

' here, evaluation of Ry (T) when m 2 (t)	 is specified by (15) 	 is difficult

f if not impossible.. 	 Even when one is willing to make the simplifying

assumption of requiring that the statisti cal average on the data be

n taken only over two data symbols, additional	 simplifying assumptions

are necessary if one is to obtain meaningful numerical results for the

t' equivalent noise spectral	 density.
AGE ^

..	 '; 	 ^^
p

QUA^^OF POOR'
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k

It is convenient to start with the power seriesp	 approach of [8]

h to evaluate Ry (T), namely,

t
<-

6

Ry("r)

erf	
Pz 

m (t)
2	 2

erf	 (t+T
N

[JL2
?_	 2

2+ 	
P2

-	 [m 2 (t) +m 2(t+T)]	 !H 	 m (t)H ^exp

 {	 2	 2	 2	 }-	 k.	 k-1 QP2	 2	 1	 k-1 QP 2 m2 (t+T />
k-1

(52)

- where H k (x)	 is the kth degree Hermite polynomial defined by

H(x)	 _	
(_l)kex 

2 
12	 d 

k 

k 
e-x 2 /2 (53)

dx

and

R„ (T )

2BijTPh(T)
	

RN 0	 e
(54)

N

The case of interest here is where the data on Channel	 2 is uncoded, in

which case, the signal-to-noise ratio R 2 would be large to achieve a

small	 error probability on this channel. 	 Thus,	 sincep 2 is directly

` proportional	 to R2 for a fixed ratio of arm filter bandwidth to data

rate k2 , then for large P2 ,
 
the first term (k=1) in the series expan-

x 3 sion of (52) will dominate. 	 Thus,	 keeping only this term and again

assuming that the statistical 	 average on the data sequence is computed

'. only over two symbol	 intervals, we obtain

w	 r

t

S 	 jj
t	 i^

t ^i _
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0

N e = 4N0B i
 f2T2 e

-20 iI T

I[T2
 ^T2 erf z 2{terf Z m2(t+T) dtdT

-2T 2 	 0

r2T	 -4B IT^ r	 T	 P
+ 4N

0
B i (2) 

J 
2 e	 T 

fo
2 exp -2M +m2(t+T)]^dt dT

2T2 2 0

+ 0 13 o f2T 

2

2 
R -(T) '1
	

T2 erf 2 m	 ) erf	
2 m ( t+T) dt dT0 i 1 	 2T ml	 T2 fO	 2 2(t	 2 2

4N B (2) R	
2T2 

R f (T) 
e -2B i ^T^ 1 

fo

r2 e
yp - u2 [m 2 (t)+m2(t+T)] dtdi0	 Tc	 1 J_ 2T

2 n,1	 T

.	

2 	 2	 2	 2

0

6

(55)

where m 2 (t) and m 2 ( t+T) ; 0 <t <T2 , 0 <_ ( •r j <2T2 ; are computed from (17)

and (35) and R jp,(T) is given by (49). Carrying out the statistical

average, we obtain after much manipulation

N 	
=' 4N 0 R	 (56)

where, analogous to Equation (57) of [4], 
^N 

is defined by

1 -(2gi/R2 )y	 -2Qi/R2

	

^N ` 2Bi/R2 J e	 f^(y) + e	 f3(y) dy
0

2 fo

1 -(4Bi/R2)y	 -4Bi/R2
(2gi /R2) 72 	

e	 f2 (Y) + e	 f4(y) dy
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f (Y)	 (?) erf2 ^2 - (y g (x) dx + f 	 g (x) dx1	 4	 2	
J0 1	 1-	

1
; j 	 y

1 1-y	 l y

!	
+ 2 j	 9 1 ( x ) 9 1 ( x+y ) dx - 4 f 9 1 (x)9 1 ( x+1 -y ) dx

0	 0

f (y) _ ( 2--Y ) exp 2 (-p /2) + y 9 (x) dx + 1 g (x) dx2	 4	 2	 ^0	 _2	 f1	 2y

1 
l —y	 1 y

+ 2 f	 92( x ) 9Z(x+Y) dx + 4	 9 2 (x)9 2 ( x+l —y ) dx
0	 0

6

f (Y)	 O erf2 a2 + J g (x) dx - 1 g (x) dx3	 4	 2	 0 1	 f1-	 1y

s^
	

el (Y

4 J0 9
1 (x) 91(x+y)'d,c

`f (Y)	 exp2 (-P /2} +	 I lg 2 ( x ) dx + 4 y 9 (x) g (X+1-y) dx4	 4	 2	 2 ^O	 10 2	 2

1 _y	
`+	

92(x) 

92Cxy) dx	 (58)

- fo
	 'T4

i	 and

p2	 _(2Qi/R2)x
g l (x) _ erf	 2 (1 - 2e

y	
Y

^ 	
A

p2	 (2ai /R2 )x 2

T	 92(x) = exp - 2 1 - 2e	 (59)
r

5.0	 CALCULATION OF SQUARING LOSS AND TRACKING JITTER

F
^	 We have already observed in previous analyses of this type [3-5]

that the performance of Costas loops in either their linear or nonlinear	
t

tracking regions is characterized by the behavior of a parameter referred

to as s uarin loss, This loss represents 'the additional degradation in

equivalent loop signal - :o-noise ratio relative to a linear loop, i.e.,
one in which there exists no noise x noise or signalx noise error signal	

f.

components, More specifically, if in (9) the normalized S-curve fl(2cp)
n^

PAGE
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is replaced by 2cp,	 its linear approximation, then one obtains the

linear equation of loop operation from which the effective loop signal-

to noise ratio p'	 insofar as computing the behavior of the 2c0 process

'

l

is

( P a}2
'-P
	

NeBL
(60)

where B L is the single-sided loop noise bandwidth and N eB L represents

the noise power of the equivalent noise processNe(t,2(p) in this

bandwidth.

Using	 (56), we can express (60) in the form

1	 P 1 	 P2	 P2 a2
P' = 4	

NOaL	
P 1 + P2 =	 p S

IIN	
4	 L (61)

and,	 in addition, for 00 = 0, the tracking jitter is given by

}Y ^^^ _	 pI {62)

where

P +p	 p

P	
NQ2 - NQ	

(63)

	

;w	 0L	 0L

and

e

S	 (( 1 2	 (64)L	 \1 + YP 1 sN

is the so-called squaring loss with cc given by (33),^
N
 given by (57),

	

'	 and yp defined in (32).

Since the modulation reference signals are at w0 rather than

2wthen the tracking jitter on the output data is

	

22	 -	 lCT(p	 4 '2 (P _ pSL

Using (38) along with the definitions ofa,
N
 and SL , Figure 3

illustrates the variations of SL versus B i /R2 with P 
T 

T 
2 
A 

0 
as a parameter.

i

Superimposed on these curves (in dashed lines) are the corresponding
,.	 =lf

f	 results obtained from [5] for the biphase Costas loop with passive arm

	

i -	 filters. Figure 4 shows thephase jitter v tp as a function of Q,/R2

for the hard-limited loop with PTT A and R 2 /R 1 as parameters. The

f	 a	 A	 a
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Polarity Type with Passive Arm Filters

--- Passive Arm Filters
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7
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f
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-13 f

//R1 = 
20

•
^^ I
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_	 1R 
/x 

- 20
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•	 21
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4 Figure 3.	 Squaring Doss Variations Versus B i /1? with R /R1 and	 PTT
2

/N
F	 ,, • as Parameters; mi(t) is Manchester code, m () is NRZ.
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3

Y = 0.25	 y r^
p	 i

B i /B L = 104 r	 ,^

r	 ^

PTT 2 /N 0 = 10 dB

r

	

r	 ,.	 R2/RI = 20	
R2 JR 1 = 5

s	 ^
.r

R 2/R1 = 20	 ^ .^ ^r	
R 2 11? 1

 = 20
	PTT2/N0 = 15 dB	 R2/R1 5

PTT 2 /N 0 = 10 d6

PTT2/N 0 = 15 dB

2

b

0

U
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y
$

f

I
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i

phase jitter of the'conventional	 loop '6] for R2/Rl = 20 is also included

for comparison.	 The computations for the phase.jitter are based on a

typical	 ratio of B i /B L = 104 .	 We observe from these results that, for

^i
high signal-to-noise ratios, the hard-limited loop actually outperforms

the conventional	 loop.

V 6.0	 CONCLUSION
i

The squaring loss of biphase polarity-type Costas loops (with

a switched third multiplier) has been analyzed in this report.	 An

improvement in the tracking performance of these loops at high signal-

l

to-noise ratios over the biphase Costas loop with passive arm filters
.,
;I has been demonstrated.	 The numerical evaluation shows that the improve-

ment (in terms of the squaring loss) might be as high as 2.8 dB. 	 It

has also been shown for a given signal-to-noise ratio and a given arm

_filter bandwidth to high data rate ratio that the squaring loss does-

not change significantly with data rates when the ratio of the data

rates is high.	 This is particularly true for small 	 values of arm filter

bandwidth to high data rate ratio.

,i

-

I

t

A

i

c
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f	 APPENDIX H

SUaCARRIER TRACKING ANALYSIS FOR THREE-CHANNEL ORBITER

4 KU-BAND RETURN LINK

by

Marvin K. Simon
Waddah K. Alem

;l INTRODUCTION

{ In a previous eeport.(Ref.	 1, Appendix C), we studied the perform-

*y ance of _a Costas loop for recovering the carrier from the three-channel

quadrature multiplex signal transmitted on the Orbiter Ku-band return

link.	 We observed there that the output of the quadrature phase detectork	
15r of this loop serves as the input to the subcarrier tracking loop (see

Figure C-2 of Ref.	 1, Appendix C).	 Upon establishing a subcarrier refer-

`

4	
r ence signal,	 the two lower rate modulations, m 2 (t)	 and m3 (t),	 can then

be demodulated.	 This appendix presents the tracking performance of a

Costas loop used for subcarrier recovery (Figure 1).

. 1 SYSTEM MODEL AND LOOP EQUATION OF OPERATION

{ Based upon the above comments, the input signal 	 is of the form

{. (see equation	 (0-15)	 of Rey .	 1, Appendix C):

x(t)	 _	 , /2P s 2 (t) + , 3 s 3 (t) + N^(t) cos r0 (t)

[/2+ 	 sl(t)	 s(t)	 s2 (t)	 s 3 (t)	 - N s (t)^	 sin roc(t)
-'

A
Y

Sd (t)	
(^)

where	 cpc (t)	 = carrier tracking loop phase error

s	 (t)	 m l (t)	 = high rate modulation

s 2 (t)	 m2 (t)	 Sin w sct = low rate modulation #1	 on square-wave
subcarrier

' s (t) = m (t)	 Gos w	 t = l ow rate modulation #2 on quadrature 	 }
3	 3f sc	

square-wave subcarrier,	 (2)

^.
The square-wave subcarrier frequency f sc	 w sc/27r is nominally 3:5 MHz,

while the modulation m 3 (t)	 is operation data at a rate R 3 = 192 kbps and

the modulation m2 (t)	 has a rate I,'2 up to 2 Mbps.	 Thus, assuming that the	 7k

input baadpass filter H(s) has amplitude and phase characteristics which

sr
k

r	 .

r

. Y w	 ^	 ,M -	
i`er	 _3.-.
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	 3

are symmetric around its center frequency f and a bandwidth which issc ,

relatively wide with respect to the two data rates, e.g., on the order of

the subcarrier frequency, then letting

r
s
 (t)	 42- K	 cos [W

sc 
t	 ^O	 (01sc

r
c 
(t)	 F2 K	 sin [wsc t
	 (Psc (01	 (3)

ie

and ignoring second harmonics, we get for the quadrature phase detector

output:*

E (t)	 K	 K F-L 	 I-	 ^ sc	 4 Ap^
c	 1	 m	 c 0 s (Pc	 112

(t) 	
sin	 p	 +	

3 
m
3
 (t)	 cos ^OscL 7T

+ F2 (t) cos (W	 t	 cOc	 sc	 sc d

+	 K	 K 
Ill
	 sin cOc

1
3 P 

1	
(t;w	 (P	 (t;w	 ^OIc	 d	 dcsc' - 	sc	 sc' - 	sc

F2 ^1 W Cos (W t 	 (Pscs	 s c)]
(4)

In	 (4),	 Km is the phase detector (multiplier) 	 gain, (Psc	 is the subcarrier
phase error,	 and the remaining quantities are defined (in operator form)

by

2(t)	 He(p)	 111 2 (t)

m3 ( t )	 H	 (P)	 M 3 
(t)

171	 (t;w	 H	 (P)	 [ al l M	 cos	 (W sct - (Psc)]lc	 sc' (P sc 't

dc (t;w	
- 'PSc	

H(p)	 Is d (t) cos (wsc t - cps )]	 (5)
sc

and
N M	 H(p)N M.s s

^N (t)	 H(p) N W	 (6)
c	 c

where	 H	 (jw)	 is the lowpass equivalent of H(jw)	 and is defined.by

H ( jw )9,2 C^j (W+W SC )'+	 (W-W (7)sc

For convenience of notation, we omit the deendence of	 and
^O

p	
c	

cosc
on	 t

1^
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4

Expanding the filtered noise processes N c (t) and 0 S (t) as

N c (t) 
= F2	

cc 
(t) Cos wsct - Ncs (t) sin wsct]

N s (t) = F
	

sc 
(t) cos wsct ` 

Nss(t) 
sin wsc t ] ,	 (8)

where N cc (t), Ncs (t), N sc	 N(t), andAss are approximately statistically

independent, stationary, lowpass Gaussian noise processes with power spec-

tral densities
A

(
I

No	 2SN(w)	 _	 (FIQ(JW) I (9)

then	 substituting	 (8)	 into	 (4) yields

.^ EC (t)	 _	 K1 Km	 cos cps 44
3r 3 m2 (t) sin 

(sc + Tr P 63(t) cos cpsc
^f

?f
+ N	 (t)	 cos cp	 - N	 (t)	 sin co

cc	 Sc	 CS	 SCl

+ K l Km	 sin cp
c

 ^

d Y	 m	 •w	 ,-cp	 ) -	
/=P d  m	 ( t •	 ,(t 
	 do	 w[, ~ 1 	 l -cpc	 sc	 sc	 sc sc

- N
sc

(t)	 cos cosc + Nss(t)• sin (PSC] (10)
f

Similarly, the output of the i n-phase multiplier can be shown to be

;I ES(t)	 =	 K l Km	 cos 
(Pr-	 FL

3 P 2 m 2 (t) cos cPsc - 4 3 m3 (t) sin cnsc

w

t; NCC(t)	 sin cpsc ` NCS (t)	 Cos ('scl

+ K 1 Km	 sin (Pc 3PI mIs(t.,wsc'-'Psc) 	 ^ mds ( t ; "sc' Esc)* i

+ Nsc (t) sin cpsc+ 
N ss (t)	 Cos ^0s (11)

9

where	 (in operational_ form)
r

m	 (t•w	 ,-cp	 )	 H	 (P)	 [m 1
 (t)	 sin	 (w	 t -	 ^q	)]is	 sc	 sc	 Q	 sc	 sc

rnds(t,wsC,	
'PS	 IiQ(P)	 [sd (t)' sin	 (wsc t	 Esc)]c) (12)

1

After lowpass filtering with in-phase and quadrature arm filters G(s), the

phase detector output signals z c (t)	 and z s (t) are given by	 (10)	 and	 (11),

respectively, where the "hats" now denote filtering by the cascade

,;	 o	 l G0(s)	 H k (s)	 G(s).	 Multiplying these two low pass filter outputs

r

pew
'



4.
5

(assuming, for simplicity, that this multiplier has unit gain) gives the

dynamic error signal:
^flt

r =-

zo(t)	 g	
zc(t)_zs(t)

K2K21	 m
2	 1

16 cos t cp	 [P	 m 2 (t)	 - P	 m 
2 tc	 2	 2	 3	 3 ( 	)]	 sin 2(psc72

32	 2
+ ^2 cos	 c^c	 m2(t) 1n 3 (t) cos 2co

r

sc

^'Et!

2

+ 2 51n	 ^qC P l 
m1s(t wsC'^ SC ) m 1c (t;wsc 	 CSC)

I
+ 2 sin g cP	 P	 m	 .wc	 d	 ds (t '	 sc' `(Psc )	mdc(t'^'sc'-cPsc)

*
2 s in (P	 p m	 (t;w	 ,-cp	 ) m	 (taw	 ,-	 )c	 1	 d	 lc	 SC	 sc	 ds	 sC sc

- 2 sin 29^c	
P P n1 T s(t ' wsc' - ^5C ) mdc (t ' w ' ` ^ 	 )sc	 sc

r 4	
sin 2(Pc	P nt2 ( ) sin Esc + /P 3	 m3(t) sin

s c

L	 1	 is	 sc	 (Psc ) - d mds('wsc'`'^sc)^

xf
+ ^ sin NT^	 c m (t)	 cos	 -	 m[/P2	 2	 Esc	 3	 P) cos cpsc^

s
[/P:: 	

m1c (t;wsc' - ^sc ) - P mdc(t;wsc, ̀(Ps c)

l 2 (t'	 c' 2cPsc )	(13)

r
where

v2(t'^c'2^sc)	 =	 A S sin 2 ^sc + Ac cos 2vsc	 (14)
.!

f

E	 .

b
E

i

...

"	 ..

Yj

R	 .,

'f

s

'	 x
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wi th

As	
Cos 

2 
^ C [Ns (t)
	 2 (t)] sin 2^

osc
cc

2
+ sin

2
(P [N)	 (01 sin 2^o
C 	 sc

2
sc

+ 2 sin 4o cos (pC	 C	 cc	 sc	 CS	 SS(t)]

8	 2-	
`^c [IP 2 NCs 

(t) m 
2 (t) + 3 Ccc(t) m3(t)

+ m8 sin co(, cos ^oc/p
[ 2 	 ss (t) 2(t) + /P3	 sc (t) m 3 (t)]Tr

+ 2 sin 
2 
^c 	(t;w

I/P	 C	 s C	 /Pzd 
m
dc (t;t'jsd] %c(t)

[ P m ls(t.;wsc) - P mds(t;w sc) 	 ss

2 sin coc Cos coc ;w 	 ( t;;w
I/p: 1 

61 
1 C
(t 

sc )	 /pd ^dc	 SC] cc
(t)

+ I
/p I	 Is 

(t;w 
sc ) - /pd mds (t;wsd] Ncs(t)

and

A	 -2 sin 
2 
^c N sc (t) N ss (t) - 2 Cos 2 (PC 

N
CS ( t ) N Cc ( t )C

+ 2 sin Soc Cos co [ N
CS (t) N̂ sc c c

(t) + N (t) 
Nss 

(t)]
c 

8+	 Cos
2

7T	 ^oc	 p 2 N cc	 2 (t)	 /P3 Fl cs (t)	 (t)
7r

8
- sin  (p

C 
cos  ^o c

Tr [/p 2 sc	 2(t)	 3 ss	 3(td

+ 2 sin 2 ^o	 Pm^ ^(t;ws^)	 /P ^ 1^ 	 t . w	 (t)d dc scd ss

R	 (t;w	 (t;w ) NI	 ls	 sc	 v""pd	 S	 sc] sc (t) l

2 sin ,,w	 ;w	 Ncoc cos coc	
—	 d dc (t scd CS (t)I/p,	 Ic (t sc

[Apm (t;w	 rn (t;w)	 /pd ds	 sc	 cc

(16)

p,CINA, L PAGE ISo 
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and

mlc(t'wsc)	
mlc(t;ws^,0) = GO ( p ) [m l (t) cos wsct]

m 1s (t;wsc	 1s
)	 m (t;wsc ,0) = G0 (p) [m 1 (t,) sin wsc t]

mdc(t;wsc)
	 mdc(t'wsc,0) = GO(P) [sd(t) cos.wsct]

mds (t ' wsc ) 	6ds(t;wsc'0) = G O ( p ) [s d ( t) sin ws c t]'•	 (17)

Each of the signal terms in (13) can be broken up into its mean value and

a self-modulation component around tht mean, e.g.,

P 2 m2(t)	 P3^n3 (t) 	<CP 2 m2 ( t ) - P3 m3 (t)]>2	 ^2	 2	 ^2

+ 
P 2 Cm2 (t) - < m2 (t)>]	 P3  [m3 (t) -,<m3 (t)>]

(18)

	

As before in analyses of this,u	 y	 type (Ref. 1, Appendix C; Ref. 2), we shall

 neglect the effects of the self-modulation noise components. Furthermore,

i 4D 	 for the cross-modulation noise components, we may set cpc	 'Ps c	
O, which

eliminates all but that due to the m2 (t) m3 (t) product. Finally, by
analogy with (21) and (33) of Ref. 1 Appendix J,

is	 sc	 sc	 1c	 sc	 sc

^	
_j^'sc	

«^	 r^
	 ^ (	 ^r k

► 	 limes 4j T	
e	 ^^ I ^G O ĵ Cw+ws c + 

2irk
T	 P L^w	

2

T

TO }	
1	 k=	 1	 1

T
sin L T1k + 2r^s c ,^ 0 )`

x G [j(-w+w	
1	 2 !1 dw

0	
sc)a P( Jw)	 - T	 2n	 #

11 ((	 1	

3

	

* .	

(T 
k + 

2wsc1` Ol
1	 2

yi

J4Osc 	 (^	 2rk	 2nk 1 	 ^]

	

r	
e	

k=-.	
GO'L ^w - w sc + Tl ! I P I ^w	 Tl

1

	

(T
	

d^

^

	

'	 sin C	 2wsc)Tk -	 \ ^^- ^	 1	 2'
x G^ [J{-w - ws c )] R(-jw)

( 2,ik
2w 	 TO	

2n

1 T 1	sc^` 2

I{{
(19)

a
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where R	 l/T	 is the data symbol	 rate of m (t).	 Since (27Tk)/T	 >> W

for any k	 0, and for k = 0,
sc

sin w	 Tsc	 0lim	
W	 T	

0 (20)
T o 

4- CO	 sc	 0

then

< C11 Is (t;W sc	 -qlsc)	 lc 
(t;W 

sc	 -^`sc )>
	 0 (21)

Similarly,

ds (t;W	 -(Psc 	 fldc(t;WscI-^`sd>	 0sc

<ffl	 (t;W	 M	 (t;W	 0- ^Osc	 ds	 sc -(Psc1C sc

<IiI	 (t;W	 (t;W	 )>	 0- ^Osc	 dc	 (̂ s CIs sc	 sc, (22)

Also, since m i (t)	 and m (t),	 i^ j,	 are independent, we have, for example,

m	 02 (t)	 M 3 (t)	 0	 612 (t)	 ^I,i(t;wsc'-^Psd (23).

Thus, (13)	 simplifies	 to

2 2
Cos	 (P	 EP	 D	 D I	 sin

0	 TT	 c	 2	 2	 3	 3
4osc

2

2
+ 2(	 n	 2(psc

2	 3	 23 (t)	 V2(t;Pc (24)
Tr

where

D	 <I-n	 t >
cc

S	 G OW 
) 12 dw

Mi (W) 0	 TIT
i	 2,3	 (25)

with Sm i (w)	 denoting the power spectral 	 density of mi (t) and n	 A
23(t)

Y t) 613(t)'
The instantaneous frequency of the VCO output is related to z M

0
by

d K [F(p)	 z (01	 Wdt	 V	 0	 sc (26)

7 ^71k%

OL
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where F(p) is the loop filter transfer function and KV is the VCO gain in

rad/sec/v.	 Thus the stochastic integro-differential	 equation of loop

r

1

operation becomes

2

2 dt	 K F(p)	 C4)	
cost ^

Pc CP2 D2 - P 3 D 3 ] sin 2qgsc

2

(1r)	 2	 3	 23	 2	 c	 sc

ne(t'c'2^qsc) (27)

` where	 K	 K 2 Km K1	 m	 V

CHARACTERIZATION OF THE EQUIVALENT ADDITIVE NOISE
i!

'	 ! Vie now proceed to evaluate the noise spectral 	 density, ate, of the }

equivalent delta-correlated noise process,	
n e(t; oc'2^osc)'

}
4 4
	 r

^

N 	 =	 2	 4(,r )	 P 2 	 3	 j	 R23( T`
1 dT + 

1	
Rv2 (T) dT (28)

j where

Rv (T)	
d
	 v2(t;cpc,2cpsc	 v2 t+T'c0c'4sc

2

R23(T)	

n	
<n Z3 t	

n23+`
(29)

` Substituting	 (14),	 (15),	 and	 (16)	 into	 (29),	 we obtain,	 after considerable

algebraic manipulation

2

Rv 2 (T)	 4 RFj ( T ) + 4 (7)	 P2 Rm2 (T)	 P 3 Rm3 (T)] RFI(T)

+ 4	 [j (Rmlc(T;wsc)	 + Rmis(-r;wsc)[
ll

+ Pd\Rmdc (T ' w sc	 + Rmds (T,w sc ))^	 RFJ(T)

R2 (T)	 Ftm2(T)	 R 3 (T) (30)

k	
T;

^	 r
where ;

K g f.,

t
yrtW.
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r" R	 (T) <n>>(t) mi(t+T)^ i = 2,3i
Cj

R^	
(Tbw	

, `n,	
(t;

w 	) m

1c	 sc	 1c
(t+T;W	

)

scmlc	 sc

j

'	 {
Rm	 (T ' wsc ) odc(t'wsc) %c(t+T'wsc),>

(31)

d o "(

and similar definitions for the autocorrelation functions Rmis(T'wsc) and

Rmds 
(T;w

sc
 ).	 Also,

i

I
{ RFJ(T)	 n

N 
0 G0 0011 e^ wr 2n (32)

Integrating	 (30)	 between and	 and noting that

00
( ' 0

2	 4
RN2(T)	 dT	 )	 IGn(Jw)I	

2w

i C"

4 2^iwr
=2,3Rm,(T) RN(T) dT	 2^ Sm.( w )l	 , G0(Jw) i.

{ (	 Rti	 ( T ;w	 )
1

R^(T) dT	 =	 20RN (-u) (	 Sml c (w;wsc)	 G0(Jw') 4 2w
i

J_Coc J-^ 
u

Co

Rm	 (-r "W	 ) NR"( T ) d -r	 =	 2̂N

(	 Sm

do (w'wsc) I 
G0(Jw)

1 4

 2_dc	 sc 1

r

^. etc.

6

R tp2 R tp3 (T)

Co

dT
J

Sm2 (w) Sm3(w)IG00W)

4
dw
2^ r	 (33)

with

Sn1IC (w;w sc ) =	 power spectral density of m (t) cos W t
sc

Smdc (w;wso ) =	 power spectral density of s d (t)	 cos wsot

etc., (34)

we get an expression for N e given by

t< 	 '
ORIGINAL PAGE IS

* OF POOR QUA L",, 
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0

2

x.

r10	 4 dw	
G U W) 

4 dw
tl e	 4 N 

0 2	 0 
(i W) I 

2,r
+ 

(^T)' [P2 f 
SM2 

(W) 1 0
	 2,r

G

4 L+	 w	
dw

1
G (i W)	

2	 +	
S
MI 

(W) 
I 
G [ 

j	 ]14 

2 Tr—
S (W) 

0	 0	
3-W

3	 m3	 sc

(

^}
G0[j(W_W

).31  dw
+ P d	 si ll d (W)	 sc	 T71

^ 4

cc
dw

LTr
+ 8	 )	 P 

2 
P 

3(
S

[C.	
M2( W)	 SM3 (W)

1 1
4 (35)

In	 arriving	 at	 (35), we have used the additional	 relations

S 
Mic 

(w;03 
sc	

+
Smls(W;Wsc )
	 1

2 S ml( W - W 	)	 + 1	 S
sc	 2	 ml(W+W SC)

SRld 	
(W;W

S c	
+

SRid	
(W;Wsc )	

2
S 
Md 
W-W

2) 
+ 1 S 

md 
(W+W (36)

c s sc	 sc

where Sm 
1 

(w)	 and 
Sald 

(w)	 are the power spectral	 densities of m l (t) 	 and
s d(t)'

respectively	 Also, we have taken note
of 

the fact that Sml(w),	
Smd(w)'4and	 JG0(jW)1	 are even functions of W.

Finally,	 from (27),	 the equivalent	 loop signal-to-noise ratio, p',

is
2

cos t
c

2	 ^2
D

(171r)	 EP2 D 2 	P 3	 3 ]	A
P

P_ S
4	 L

(37)
N	 B

Le

where p	 P/N0
LB	 is the loop	 signal-to-noise ratio of a phase-locked (CW)

x.
1 oop operati ng on the tota 1	 power	 P	 P	 + P	 +

1	 2
P	 + 0
3	 d	

and

4 
No

2 P	 D
2	 2 - 

P
3 D 3

S 
L	 N

Cos
2	 4)

^q c	
^ 7T

(38)
e P

A
is the loop squaring loss.	 Defining	 the modUlation	 indices	 n	 i =1,2,3;

and nd by

i	 1,2,3
P

ORIGINAL PAGE 11,
.	 , # P

d OF POOR QUALITY
nd (39)

p

t.
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A

we obtain, after much simplification,

l 2-	 cos2 `P c 1( 4/

l2 

Cn 2 D 2 - n3 D 3 ] J
P

SL - nD + KL +2 f414 n n —D^D	 pi	 \,r / 2 3 N 0 23

where

(40)

f

J roJGO ( j ( 11 ) I 4 2w`

KL	
J IGO (J w ) I2 27T

4

yy3

°23 0 ^^ Sm2(w) Sm3 (w)I GO ( jw )` 2

1^ Q 4
2 	 4 d	

0	 4' 
dw

n D K	 _ (_1 F"2Sm (w) G (jw) 	— + n	 Sm (w) G (jw)D 	\ ,r / 	 2	 10	 2 Tr	 3	 3	 ` 0	 2,r
L

+ 
r, ^ CÔ 

s,;, l (w)^GOCj(w-wsc)^
I4 z	 nd f Smd(w) IGoCj (w-wsc)]14 2

(41)

and 
pi	

2P/NoBi is the signal-to-noise ratio in the "arm filter bandwidth*

t	 B defined by
i

,a
Bi	

Z7r J	 JGO(jw) 
L2

CO 

	

dw	 (42),

F	 ,

Assuming arbitrarily that R2 > R3
9
 then (40) can be rewritten as

2 2	 2

(i)cos	
c 	 En 2 G2 - n3 D31 )

sL - - /\	
KL Qi

/R2	
,4	 PT2 

D23	 (43)

`.	 nDKD + 2P-/N	 + 2 ^

4

u n2'^3(N ?T
T o	 o	 z

r

4 The tracking phase jitter performance can now be specified-. In

the linear region, the variance of the loop phase error 2w is given by

*Note that the bandwidth defined in (42) actually characterizes the
cascade of the subcarrier loop arm filter and the lowpass equivalent of the
input bandpass filter.

rF

t
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-.1

a

G

2	 1	 4

a2co = p •
	 n SL

a where n'	 is given in (37).	 However,	 since the demodulation reference

signals if (3)	 are at wsc rather than 2wsc , then the tracking jitter

on the output data streams is

C

^f

2	

=	

1	 2 = 	 1
4	 2 cO	 P SL

(44)

;A We note that Smd (w)	 is similar to Sm1 (w) except that it is spread

',-I '4P sli ghtly at the high frequencies because of the multiplication of ml(t)

1
by s

2
 (t)and s 3 (t).	 However, since wsc << 27r/T l 3 then Sml M and Smd(w)

are approximately the same in the vicinity of the subcarrie'r frequency.

t Thus, to a good approximation,

CO

Sm (w)	 G ^j(w- wsc )] k Zw	 =	 Sm (w) GOCj(w-wsdi k .,l^	 I0	 i	 f^1 d
k = 2,4 (45)-

Additional	 practical	 assumptions can be invoked to simplify (44)	 still

further.	 Since thebandwidth B i	of G^(jw)	 is typically selected on the

+
order of the larger of the two data rates l/T 2 and 1/1-3 and since

.I 1/TI	 >> l/T 2 or 1/T 3 ,	 then

-kk
do	 dw(^

l^Sm^(w)I G 	Cj (W-w	 )IJ	
5	 (w	 )

2,r	
ml	

sc	 J IG	
(jw)I

0 27r

Sm
l(wsc )	ai	

k	 2

Sm l (casc ) K^ Q i '	 k	 4 (46)

As an example,	 suppose m 1 (t)	 is an NRZ modulation of rate R l	 _ 1/1- 1.*

4
F

Then,

sin wT l /2 2	 l	 sin nfscIR	 2

'	 Jt Sm1(W)	 =	 T 1	 WT /2	 Rl	 -Rfc/Rl (47)

For a subcarrier frequency of $.5 MHz, and data rate 1 /T	 100 Msps,

*
In mode l	 of the Space Shuttle Orbiters-TORSS KU-band return link,

mi (t)	 is a rate 1/2, constraint length 7, convolutional	 code with data
rate 100 Msps:
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_	 1	 ,r(8.5/100sin
S	 (w

sc )
nr 

6	 it 8.5/1001	 100x 10

=	

0.988

1OOx 105

The numerical	 evaluation of the subcarrier tracking jitter (44)

for a fixed ratio of arm filter noise bandwidth to loop noise bandwidth

(Bi/B
L

)	 is shown in Figures 2 through 5. 	 Three assumptions are made:

(a)	 The carrier loop is tracking perfectly; thus, 	 cos ro c = I.

(b)	 The bandwidth of H(w)	 is much wider than that of arm

t filters	 G(w).

(c)	 The arm filters G(ca) are assumed to be one-pole Butterworth

(RC)	 filters or

^G(j 21r f)	 2	
1	

(48)

'
l + ( f/f	

2
c)

where f 	 'is	 the cutoff frequency. 	 The two-sided noise bandwidth (42) of

GO 2;r f)	 is given by

( B.	 =	 irf^ •	 (49)

Figures 2'and 3 illustrate the case when m
1
 (t)	 and m2 (t)`are NRZ_, While

rn3(t) is a Manchester code.	 Figures 4 and 5 illustrate the case when

a ml(t)	 is NRZ, while both-m 2 (t) and rr^ e (t) are Manchester codes. 	 The even

^^. figures have the signal-to-noise ratio (PT 2/N O ) as a parameter, while

the odd figures have the high subcarrier data rate R2 as a parameter.

It is observed that the changes in the subcarrier tracking jitter

as a function of B i /R2 are more obvious when m2 ( t) and m3 (t) are both

Manchester codes than when in 2 (t)	 is NRZ and m8 (t)	 is Manchester.

f

t -

M1

^j
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APPENDIX I

ERROR PROBABILITY PERFORMANCE OF UNBALANCED QPSK RECEIVERS

by

rMarvin K. Simon

1.0	 INTRODUCTION

,r

Previous analyses by the author [1-5] and others [6-9] discuss

the tracking performance of unbalanced QPSK receivers with particular

emphasis on determining the mean-squared tracking phase jitter on the

reconstructed carrier (or subcarrier) reference signal. As is true in

any phase-coherent receiver, this lack of perfect coherence between the

received signal and the reconstructed reference causes an additional

degradation in system error probability relative to that due to the

additive channel noise alone. Frequently, this increase in error proba-

bility due to noisy synchronization references is translated into an

equivalent increase in signal power required to produce the same error

probability as obtainable in a perfectly synchronized system. This 	 i

increase in required signal power is referred to as the noisy reference

loss.

Evaluation of noisy reference loss in QPSK, QPSK, and offset

(staggered) QPSK systems has been extensively covered in the literature

[10-15]. While the techniques used there are certainly applicable to

demodulation of unbalanced QPSK, the complexity of the evaluation when

the ratio of data ratesin the two channels is large (this will 	 be
r
p

explained in moredetail 	 in the next section) prompts one to Took for

a simpler calculation procedure. 	 Indeed, such an approach is possible

when the noisy reference loss is small or equivalently the effective

R
signal=to-noise ratio in the tracking loop bandwidth is	 large,	 i.e.,

the loop operates	 in its so-called linear region. 	 Making such an

: assumption for purposes of error probability performance evaluation

is quite reasonable when one realizes that this very same assumption

has already been implied in the previously mentioned tracking perform-

ance studies of unbalanced QPSK.	 The approach taken is to expand the

error probability conditioned on the loop phase error ¢ in a power

(Maclaurin)	 series in ^ and then,	 keeping only the first few terms ofi
this series,, average this conditional error probability over the proba-

bflity density function (p.d,.f.) of ^. By doing this, we obtain the

t^
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additional error probability due to noisy synchronization references as

an additive term directly proportional to the mean-squared phase jitter

a2 directly associated with the receiver's tracking loop. Similar

arguments can be advanced to give us closed-form results for the noisy

reference loss itself.

Using the above approach, this appendix presents results for the

error probability and noisy reference loss performance of the unbalanced

QPSK receivers corresponding to various combinations of data formats in

the two channels. Specifically, for the subcarrier tracking loop asso-

ciated with the two lower rate channels of the three-channel Space

Shuttle Orbiter (SSO) Ku-band return link, wherein the two data channels

are typically 192 kbps Manchester coded data and 2 Mbps NRZ data,

numerical evaluation of this performance in these two channels is given.

2.0	 ERROR PROBABILITY PERFORMANCE FOR SMALL NOISY REFERENCE LOSS

Common to all of the Costas-type demodulators of unbalanced QPSK

previously considered	 [1 , 2, 4, 5, 6, 8, 9]	 is the fact that the input

signal	 plus noise is first demodulated with in-phase and quadrature

phase detectors, the outputs of which represent the inputs to the data

detectors for the two information channels. 	 An example of this state-

ment is illustrated in Figure 1	 for the case where a conventional	 Costas

loop is used for tracking the unbalanced QPSK signal: We shall	 pursue '

7 this case in detail	 and later indicate how the results can be extended

to other Costas-type demodulators.

The input x(t) to the Costas loop of Figure 1 is the unbalanced

QPSK signal	 plus noise, namely,

X(t)	 =	 ,P mi(t) cos D(t) + P m 2( t) sin ^(t)	 +	 n i (t)	 ,	 (1)

I
where, P(t) _ w 0t + 0 0 ,	 with 

``'0 
the radian carrier (or subcarrier) frequency

and 0 0 the input phase(assumed time independent) to be estimated, ml(t)

I and m2 (t) are independent data modulations assumed, in general,	 to be

r asynchronous, and n.(t)	 is the additive channel noise which can be

expressed in the form of a narrowband process about the actual frequency I

of the observed data,	 i.e.,

71
ni(.t) 	 /2— {Nc (t)	 cos	 ^(t)	 --	 N(t)sin	 ^(t)}	 (2)S

t

1
tot

ten.
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r	 Figure 1. Costal Loop for Carrier Tracking of Unbalanced Quadriphase
b

w



i

{
E

i

A

i

4

In (2), N c (t) and N s (t) are approximately statistically independent,

stationary, white Gaussian noise processes with single-sided noise

spectral density N g w/Hz, and single=sided bandwidth 
B  

<W 
0 
/27F.

Assuming that the input in.-phase and quadrature phase detectors

are of the analog type, then when x(t) is demodulated by the quadrature

reference signals

r,s(t) =	 Y'2 sin ^M

rc (t) =	 F cos ^(t)

the corresponding phase detector outputs (ignoring second harmonic

terms) are*

Es ( t) °- x(t)rs(t) = - m 2 (t) cos ^p(t) -	 m l (t) sin rp(t)

Ns(t) cos cp(t) - N c (t) sin (p(t)

ec (t)	 x(t)rc(t)	 P m2 (t) sin ro(t) + ,	 m l (t) cos ^(t)

- N
s 
(t)sin co(t) + Nc (t) cos co(t) ,	 (4)

where cp(t)	 (D(t) - $M is the loop phase error. In addition to their (

forming a loop error signal when multiplied, these phase detector out-

puts also, as previously mentioned, serve as inputs to the channel	 data

detectors which we shall	 assume are matched filters.. The outputs of

these matched filters at the end of the (k-1) signaling interval	 in

each channel are respectively given by

I 1	 kTZ+e2

Q	
-	

s	 (t) p	 [t - (k-l)
2	 T	 s	 2

T	 e]
2	 2

dt
2
2	

1 l	 +e( k-	 ) T 
2	

2
fi	

e

1	 1 #
f 4j ec(t) p l [t - (k-1)j T l - e l ] dt ,	 {5)

t 	 f
1	 (k	 ] )T1+^1

} where p(t);	 i= 1,2,	 is the basic unit power symbol pulse	 in the ith_

data stream m i (t) defined to be nonzero only on the interval	 (O,Ti),

For simplicity, we shall assume these phase detectors have unit
gain-

(3)
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and E:	 i= 1,2,	 is the arbitrary pulse epoch in these same modulations.

Obviously then, the channel modulations m i (t);	 i= 1,2, are related to

p i ( t ) and c i by

Co

m i (t)	
-	 an	 p i (t - nT i - e i ) ;	 i = 1 ,2 (6)

n=-CO

where	 lani }_; i= 1,2,.are independent ±1 	 sequences with the properties

{1	 m	 n
- aa	 =	 8	 _	 1

ni	 mi	 mn	 0 ;	 m	 n a

an i amp 	_	 0	 all	 m,n (7)
i ^J

°w where the overbar denotes statistical	 expectation.

Substituting (4)	 into (5)	 separates the matched filter outputs.x
a into their signal	 and _noise components, 	 i.e.,*

4 2 - ^a	 cos-gym	 sit) 	 cos ¢-N
2	 k-1,2	 1	 12	 s2

sin ¢
c2 l

Q 
1

-	 3P	 m sin ^p	 a	 cos	 - N	 sin ¢+ N
2	 21	 1	 k-1,1	 sl

cos	 (g)
ci

4

where

i	 rt _ 1	 kT2+e2
m12 T2 m (t) p 1 t - (k-1) T2 	 e ] dt1	 2	 2	 2k-	

T +E
(	 )	 2	 2

`. - 1	 kT l +e l ORIGINAL PAGE IS
,. m21 -'	 r l m2^t} p

i Ct - (k-1 } T	 e	 ]	 dt,	 1 `	 1f (k-l)T OF POOR, QUA j,1TY
+e 1

f

r d	 1	 kT i +e

r N
s^

•
Ti i	

Ti
 f
	 N`.(t) p 	 It-(k-1)-E:i	 dt; i=1,2

6 (k-
1)T^

+ei

N
kT.+e.

a	
T 	 f(k-I)T

`	 7	 i	 N^ (t) p i [ t - (k-1 } T i +'e i ]	 dt ; = 1 ,2 .	 (9)c i +eii

d We shall drop the dependence of V (t) on	 t	 and further assume
that co(t) _	 is constant over a symbol	 interval	 of either data rate.

I V A
ix
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The data estimates ak--1,l and ak-1,2 of the Channel 1 and Channel 2

data bits ak-1,l and a k _1,2 transmitted, respectively, in the (k-1) sig-

naling interval are then given by

ak-1 
j	

sgn {Q i } ;	 i = 1,2	 (10)

where sgn x o x/1x1	 is the signum function. 	 Note from (8)	 that the pre-

sence of a loop phase error due to noisy carrier synchronization refer-
:

ences causes crosstalk,	 i.e.,	 the data in one channel 	 affects the

:;i detection of the data inthe other channel.	 This crosstalk, which is

proportional to sin ¢, in combination with the degradation of the desired

signal amplitude by cos ^ together account for the noisy reference loss

'	 ##i associated with the detection of an unbalanced QPSK signal.

Letting

I
N2	 -	 - N s2 cos	 - Nc2 sin

N^	 -	 Ns1	 sin	 + Nc1	 cos	 (11)

then, from (9), one can immediately show that

{ N

^i2	 E	 i = 1,2 ,	 (12)
^ N i2 {	 2T.,.

Thus, the probability of error in each channel conditioned on a fixed
.	 1

a	 ^
phase error is given by

j

{

,

P	 W=	 Prob is	 a^	 } ;	 i = 1,2	 (13)E i	 k-1,i	 k-lJ

p which, from (8),	 (10) and	 (12)	 becomes

k P T	 P T
1	 1;	 2	 1

,

P	 (	 )	 _	 erfcE 1	 4 cos	 +	 m	 sinN^	 N0	 21
#.

i
a

PT	 PT
1	 l

ifI +	 erfc cos	 - `	 N	 m 21	 sinN	
00

(14a)
.

z



	PT 	 PT
PE ( )	 4 erfc	 N 2 cos $ +	

N 
2 
m12 

sin
2	 ILI 0	 0

xr

	

PT	 PT

	

+ 4 erfc	 N 2	 cos ^ -	
N 2	 m12 sin	 ,

	

0	 0

where the complementary error function (erfc x) is defined by

2	
co	 2

(14b)

il

erfc x J	 exp	 (-y 	) dy	 (15)
x

^:f

and the overbar denotes averaging over the data sequence and uniformly

distributed random epoch dependences in m 21	 and m 1 2.	 We shall	 assume

throughout the remainder of this report, as was done in [1,2], that

1 the data rate R2 ^ l/T2 of m2 (t)	 is arbitrarily chosen to be higher

} than or equal	 to the rate R1	 1ji	 of m:+ (t).	 Then, when the ratio
r.^

of these rates R
2
/Rl > 1	 is large, the statistical	 average over the data

sequence required in PE I (¢) of (14)	 involves a comparably large number

Fg ^ of complementary error function evaluations sincem2 1 must be computed

•
aw

for each possible sequence of m 2 (t)	 in the <interval	 (k-1) Tl
+"1 < t <_kT1+el

Furthermore, for each of these contributing terms to PE l (¢), we must

q. perform an average over the p.d.f. p W of the loop phase error ^ to

determine the average error probability performance of Channel	 I.	 More

will	 be said later about this additional 	 average over

^. In the meantime, to get around the computational 	 bottleneck, we

propose a scheme based upon expanding PE i (fl into a power series in

which, for small 	 o^, provides credible results. 	 In particular, we note

. from (14) that P Ei,(f)	 is of the form

PE	 (^)	 =	 4 erfc	 [A i	 cos	 + E i	 sin	 +.i erfc	 [A i	 cos 	- ; i	 sin ^] ;

w
i=1,2-	 (16)

i
where A i	 is a constant and ^i	 is.a random variable in the sense that

it is both data sequence and random epoch dependent. 	 Differentiating

PE i W once and twice with respect to ¢ gives the results
J

y



's	 8

{	 d 
PE iM 	 1	 2
d ¢ 	 cos	 Ai sin	 exp [-(Ai

2r	
cos	 + i sin) ]

f	 + - 1	 (C i cos	 + Ai sin	 exp [-(Ai cos	 i sin	 2 ]	 (17a)
2

d2 PE i (`P)

d2	
-

i9	 (A.^ cos	 + i s-in $) exp [-(A i cos	 + C i 'sin ^) ]
i	 2 31r

A. cos + . sin ^)(^ cos ^ - A• sin 	 exp 	 cos ^+ ^.'^	 (	 ^h)	 P	 p)2)+ 2 

	

i	 isin

+ (A i cos	 -i sin	 exp [-(Ai cos ¢ - i sin i,)2],

I+ 	 2	 _	 2+ 2(A i cos - i sin,d)(E i cos	 A i sin k) exp [ (A i Cos ^ - i sin ^) ])	 (17b)

which, when evaluated at	 0, become

d PE•W1	
dl	

=	 1
/

.^ exp (-Ai) +	 ^iexp (-Ai2 ) = 0
t ",	 ^=O	 2,rr	 2K1T

1 d2 PE i (fl
-- 

d 2

	

	 T [Ai exp (-A7) + 2A i 	exp (-Ai)]
3-r=0

s	
A. exp (-A 2)	 2

i	 [ 1 + 2 ^ i ]	 (18)

_Furthermore, from (16)	 {

P W - 1 erfc A	 (19)E 	 I =0	 2	 •

Thus, combining (18) and (19), we get

1

	

-	
w

Y

e^•W!4s.x^.as'	 ^ n;.:^amrr.M1tc?u`^ .^., -	 -	 -..	 >,..	 _...
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d PE•(^) d2 P E 	 (^)
PE W	 =	 P E (o) +	 dli	 i

+ 2	
i2

^=0	 d
^2

^=0p

(20)erfc A i +	 [1 + 2 ^	 ] fi2 2 3,r

Comparing (16) with (14), we can immediately identify Ai and 	 i	 in terms

i.i of the receiver parameters, whereupon (20) becomes

o' R

P	 (^)	 erfc ^ + 1	 >	 exP (-R) [1 + 2 R Y	 m 2	
^2

M E1	 2	 1	 2_2	 it 	 1	 T	 21

A

R
	

m 2

PE (fi)	 =	 2 erfc R + 2	 12	 exp (-R2)	 l' + 2 R1	 122 = (21)
2	 L	 YT

with signal-to-noise ratios in each channel defined by

r

Ir r
P.T.

Ri	 N	 i = 1,2 (22)

r
0,-

and the ratio of data rates defined as in [1,2] by

1
Y	

Q	 R2	
=	

T1	
>	 '

T	 Rl	 T2	 r
(23)

Note from (21)	 that, as promised,	 the error probability consists of a
r

term representing the performance for perfect carrier synchronization

{ plus a term proportional	 to the crosstalk,

x 0 What remains insofar as evaluating P E -W	 is to compute the

normalized mean-squared crosstalk terms m 2̂ 	 and m l^ for various com-

binations of data formats in Channels 1	 and 2.	 Evaluation of rn21	and

M12  depends not only on the specific data formats in the two channels
r

but also on the relative synchronism of the two data streams. 	 Morear

often than not, the two data clocks will 	 be unsynchronized since, typi-

cally, the two data streams are generated from totally independent sources.

,i In this. situation,, there	 is,	 in general,	 no relation between the epochs

i 4 `l	
and e2 of the synchronization pulses corresponding to these clocks

': }
fi and, furthermore, the ratio of the two data rates need not be integer.

:. Recognizing,	 however, certain similarities between the definitions of

777, Z
^..
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'f
m21 and m 2̂ , and the computation of cross-modulation distortion 012

associated with the Costas loop given in [1],	 it is relatively straight-

to show that

D
212_

m12	 BIRm	 T2
i	 2

—2
D	 m

m 2	 -	 lim	
12	 _	 12	 (24)

2 1 B i /R2 	 T 1	 YT

where 
D12 

is given by (42),	 (50),	 (51)	 and	 (52)	 of [1], and B 	 is also

defined in that reference. -These results are summarized in Table 1.
a

' T /T	 Y	 , 1Table 1. 	 Evaluation of m 2 '	 1	 2	 T 1.;

m2(t)

;. Manchester NRZ

l

4
6[YT -Y	

+12-6YT]
_YT- 6

^T -1 t 3Y,

Manchester R	 < R	 < 2R1—	 2-	 1 R	 < R	 < 2R1— -2 -	 1

2y	
R2 >_ 2R1

T-
1	

Y	
R2 > 2R1

T
.,., ml(t)

r
f

4

NRZ
1

6YT

1
1	 - BYT

j

Finally,_ averaging PF M) of (21) over the p.d.f. 	 of 0 as deter-

mined by analys.i s of the Costas loop (see [1]) and assuming that the 180°

phase ambiguity is perfectly resolved, we obtain the average error proba-

bility performance of each channel, namely,-

,r /2

K

P F1	 = P E '(fl P(fl d^	 (25)
n 2/ c

a Substituting	 (21),	 combined with	 (24),	 into	 (25)	 gives	 the desired simple
t.
^. resultr.
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R
PE	

_	 2 erfc R + 2
	

exp (-Rl ) [1 + 2R2 m 12] Q

l.^
a

R	 m
2 'P E 	=	 2 erfc R + 2	 exp 

(-R2)
1	 + 2 R^	 12 Q (26)

2 YT

k
Alternately,	 in terms of the total	 signal-to-noise ratio RT2 in the high

data rate bandwidth and the transmitted modulation indices n l and n2

defined by

(P1 

+	
PiP2) T2

9 TI 	 P	 + P	 i = 1,2RT2 	 N
0	 1	 2

(27)

1.. the results of (26) become

u
Y	

n

C. FLTP	 _	 erfc	 R	 y	 n+ 1 	 T	 1	 ex p (_ R	 Y	 n) [1 + 2 R	 n	 m 2]QE 	 2	 T2	 T	 1	 2n	 T2	 T	 1	 T2	 2	 12l

1	 l
RT2 

n2	
y 
2	

2

_	 _	 + 2	 +	 mP	 —erfc	 R	 ex	 - R	 1	 2 R	 Qn	 p(	 n)[	 n	 ^
L2	 2	 ^ T2	 2	 2	 T2	 2	 T2	 1	 12 	 ' 28(	 )^r

The mean squared phase error Q	 may be related to the receiver

parameters already defined by noting that, for the Costas loop of

"n Figure 1,*

2	 -	 1
-p 5

L
(29)

where p © (P l + P2 )/N 0
BL	is the equivalent total	 signal-to-noise ratio

in the single-sided loop bandwidth B L of a linear loop, and S
L 

is the

loop "squaring loss" which reflects the fact that the Costas loop error

signal	 `is formed by a nonlinear operation, 	 namely, multiplication of the
;.

w, in-phase, and quadrat`ure filtered phase detector outputs. 	 In terms of

T R	 defined in	 (27) and the ratio of loop bandwidth B 	 to higher data
T2	 L
rate R27 the loop signal-to-noise ratio p can be expressed as

'

R

P	 _

R

BL/ 2 (30)

Actually,	 the relationship in (29) 	 is not restricted only to
^

^^ the conventional	 Costas loop of Figure 1	 but al so holds for a wide
x

variety of other types of unbalanced QPSK demodulators (see [4,5 	 8,



An expression for SL can be obtained from Eq. (28) of [1], namely,

h.
	

(n2 D 2 - n I 
D1)2

SL =	

aiIR2	 D12	
(31)

nl D1 KD1 + n2 D2 KD2 + 2R T2  K  + 2 n1 n2 T2

where the parameters D 1 ,_ D2, KD 1 , KD 2 , K 	 and D12 depend on the magnitude

squared of the arm filter transfer function 	 JG(j 2Tr f) I	 and the power

- spectral	 densities Sm l
(f),	 Sm2(f) of the modulations m l (t), m2(t)

according to the relations

co

D k 	
= Sm (f)	 JG( j 27Tf)1 2 df;	 k-1,2

J

co

D 12	 Sm (f) Sm (f) JG(j 2	 f)14 dfN 1 	 2

A	 ^ 	 Smk(f) 1G(j 2,r f) 1 4 df

KD	 2	 ;	 k- 1,2
k	 f	 Sm k ( f ) JG( j 2Trf)	 df

coj , IG(j2,Tf)^ 4 df
x

p
(32)

L r^IG(J2Tr f)1
2
 df

Specific closed-form expressions for the above parameters, when the

Costas loop has single-pole (RC) arm filters and the modulations ml(t)

and m ,2 (t) are variously NRZ and Manchester coded data streams, can be
found	 in	 [1].

3.0	 EVALUATION OF NOISY REFERENCE LOSS IN EACH CHANNEL

Letting PE. denote the value of PE i when a,- 0 (i. e.,	 ideal	 PSK

performance) and approximating the complementary error function of (15)

a by the first term of its `asymptotic expansion-,' i.e.,,
f

2

ex	 (-xerfc x	 (33)
L ,!Tr	 x^r

then, from (26)	 we have

F	 ^

f

12
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P
PE1	 =	 1 + R	 [1 + 2R	 m 2]Q2

l	 2	 12El

PE 2
P --	 =	 1 + R2
E 2

(^'l21	 +	 2 f2 1 	 Y
T

2
Q (34)

or

f
log10 PE	 - 1og 10 PE	 log10	 1 + R

l [l + 2 R2 m12 ] Q^
1	 1

`
i

log10 PE 	
log lo PE2	 log10
	

l	 + R2

m
2

1	 + 2 Rl 0^ (35)
Y T

For small	 noisy reference losses and small 	 error probabilities, a curve

of log
lo
 PE i	versus R i	 in dB would be parallel	 to the corresponding

ideal	 performance curve,	 namely,	 log lo PE i	versus R i	 in dB.	 Thus,

. letting r i	be the dB equivalent of R i ,	 i.e.,

r i	 =	 10 log10 R
i'	 i	 1,2 (36)

then

d	 log	 P i	 log	 p	 .	 _	 to	
P^

to	 E^	 _	 10	 Ei	 g1.0	 E7
• ^ d r i	 r' 	 ri (37)

r where

•
r	 =	 10 log10

	
R'. (38)

and Ri	 is the signal-to-noise ratio required to achieve an error proba-

bility PEi	 in the presence of the noisy synchronization reference. 	 Thus,

the quanti ty r'- r i represents the noisy reference loss	 (in -dB I at the

e_ given value of error probability PE i .	 To compute an expression for it,
we proceed as follows. 	 Taki ng loglo of<PE i and differentiating with

respect to ri	 gi ves

t d	
10910 

PEi	
I	 e x p	 (-Ri)

d ri 10^	 erfc w
( 39)
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3	 i{	 Using the approximation of ( 33)	 in ( 39) g ives

d log
10 PE i 	 -

d r i
	

_	 0.1	 R i 	(40)

Finally, combining (35),	 (37),	 and	 (40)	 and solving for the noisy refer-

ss	 ence loss ri - r 	 in Channel	 i;	 i= 1,2 gives

h.-I1o	 10 `log1 0 ^l	
+ 

R1 
[1	 + 2 R2	 ,	 Q	

1
L 1 	r1	 ri	 R1

°^ c	
211	 m

1 0 log10	 1	 + R 2	 1	 2 R1
L2	

Y 

Z 

.r 2 	-	 r2	
T	 (41)^

{	 R2

,z
	

4.0	 NUMERICAL RESULTS

ff

	 As an example of the application of the previous results, con-

I	 'sides the performance of the two lower rate channels of the three-channe l

SSO Ku-band return link wherein m (t) is a Manchester coded data stream

at R^ - 192 kbps and m 2 (t) is NRZ data with a maximum rate R2 = 2 Mbps.

.^	 We further assume that the power allocation is chosen so that, for the

given data rate ratio YT = R2
 
/R1	 10.42, the signal-to-noise ratios

'"1•	 R11	 R 2 in the two channels are made equal, i.e.,	 both channels operate_

1
`	 at the same error rate.	 Thus, R 1 = R2 implies P 1 T 1 = P 2T2 and the modula-

tion indices n l ,	 n2 become

Pnl	
Q	

P	
P	 I	 Y	 =	 0.0876

l	 2	 T

P	 Y0	 2	 _	 T	 =	 0.9124.	 (42)
r	

'12	 P 1 + P 2	 1+ YT
6

1

Further, it is typical to design the ` Costas loop bandwidth on the order	 -

of R2/100 (or less) since most of the power is in the ,high rate channel

which controlsthe performance of the tracking loop. 	 Thus, assuming'

b	 BL/R2= 0.01, * Figures 2 and 3 illustrate L i 	and L 2 of (41)	 versus Bi/R2

*Smaller values of BL/R2 as would be typical 	 in practical	 receiver
design would yield insignificant losses in L i, and L2,
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V

If, 0

for error probabilities of 10-4 , 10 -5 , and 10 6 , corresponding respec-

tively to R 1 = R2 = 8.4, 9.6, and 10.5 dB.. Several conclusions may be

drawn from these figures. First, the noisy reference loss on Channel 2

is considerably smaller than that on Channel 1. The principal reason for

this can be easily explained in terms of the result in (41), where it

is observed that the effective cross-modulation loss on Channel 2, ;2,
is divided by YT which in this case has a value equal to '10.42. Secondly,

for either channel, the noisy reference loss decreases with increasing

error probability, This is intuitively satisfying when one realizes

that the slope of the error probability versus signal-to-noise ratio

curves becomes steeper as PE becomes smaller and thus, for a given Q,

the parallel ideal and noisy sync error probability curves become closer

together. Finally, we observe that there exists an optimum arm filter

bandwidth (for fixed R 2 ) in the sense of minimizing L i , i = 1,2. Since

only a 2 -depends on this bandwidth, it is clear that this bandwidth

choice is identical to that which minimizes a 2 or, equivalently, the

Loop squaring loss. Note that, if B
L
/R2 is decreased, then the noisy

reference loss will also decrease, since the equivalent loop signal-

to-noise ratio p of (30) increases.

We conclude by noting that, while the results of this appendix

have been directed principally toward the demodulation of unbalanced

QPSK by a conventional (single-channel) Costas loop such as in Figure 1

the expressions for average error probability [see (26) and (28] and

noisy reference loss [see (41)] apply in a much broader sense. In par-

I ticular, the two-channel type Costas loops discussed in [8,9] have a

mean- squared phase jitter given by (29) where, however, S L is a much

more complex function of the various system parameters such as data rates

and channel power ratios. Nevertheless, once SL (and thus a2) is deter-
mined, (26) and (41) apply directly toward evaluation of the noisy syn-

chronization reference effects of these loops on error probability

performance. Other^ possible applications of the results pertain to

demodulation of unbalanced QPSK using a biphase Costas loop with
f

switching type multipliers. Once again, (26), (41) and (29) apply,
E

provided that an expression for the squaring loss can be found (see,

)'9
for example, [5,16]).

•	 k
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5.0	 CONCLUSIONS

This appendix has demonstrated a simple technique for calculating

the error probability performance and associated noisy reference loss

of practical unbalanced QPSK receivers. The result for error probability

is in the form of a leading term representing the ideal (perfect syn-

chronization references) performance plus a term proportional to the

mean-squared crosstalk. For the Ku-band return link subcarrier demodu-

lation of 192 kbps Manchester coded data and 2 Mbps NRZ by a conventional

Costas loop, it is concluded that the crosstalk degradation due to noisy

subcarrier demodulation references is quite small (on the order of

tenths of a dB or less, depending on the particular channel <,i.d the

ratio of loop bandwidth to data rate in that channel). Whr-.fi the Ptigher

data rate channel is 1 Mbps Manchester coded data, then since troth

channels are now Manchester coded, the crosstalk loss would be even

smaller yet (see Table 1). The general results obtained can also be

applied to other unbalanced QPSK receivers with more complex Costas-

type loop structures.

f^
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APPENDIX J

PRACTICAL DESIGN CONSIDERATIONS ASSOCIATED WITH OPTIMUM
CARRIER RECONSTRUCTION TECHNIQUES FOR UNBALANCED QPSK

by

Marvin K. Simon

INTRODUCTION

^f. In a recent paper [l], the authors address the problem of carrier

synchronization of an unbalanced QPSK (UQPSK) signal 	 format, starting with }

the well-known maximum a posteriori 	 (MAP) estimation technique as motiva-

tion for deriving closed loop tracking configurations. 	 In particular,I

such carrier reconstruction implementations are suggested upon examining

the gradient of the likelihood function whose solution is the MAP esti-

mator of carrier phase.	 While the MAP approach leads to closed loop x.

implementations with active arm filters which are matched to the signal

pulse shape (integrate-and-dump circuits for digital signals) and thus

require knowledge of the data timing clock, one can, 	 in practice, replace

these filters with passive lowpass filters with, however, an `attendant

d loss	 in performance.	 Nevertheless,	 it is common practice to accept this

performance penalty so as to avoid the necessity of having to lock up the

bit synchronizer prior to achieving carrier lock.

' Before going into the specific details of the performance of these

so-called "optimum" carrier reconstruction loops for unbalanced QPSK, 	 it

is perhaps worthwhile reviewing these same considerations first for simple

^. PSK and then for balanced or conventional QPSK. 	 In the latter case, we

t will come upon _a new structure which, performance-wise, 	 is theoretically

identical	 to the well-known quadriphase Costas loop [2].	 Also, as we

shall	 see, the nature of the approximation to the true MAP solution,

h: which allows us to arrive at this new configuration, has application in
S

the unbalanced QPSK situation, thereby permitting us to carry the work

Y initiated in	 [1] one step closer to an "optimum"	 solution.-	 Indeed,	 the

y	 '" generalization proposed here of the linear in-phase channel 	 configuration

r: 4 given in [l] allows carrier reconstruction from a UQPSK signal 	 at all

ratios of data rates and powers in the two channels, even in the limit
kk

as	 these ratios	 simultaneously approach unity	 i.e.,	 balanced quadriphase,.

Finally, we shall	 discuss the practicality of the unbalanced QPSK

carrier reconstruction loops found in Ell'	 paying particular attention

4c
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a

to their sensitivity to variations in channel gains. It will be shown

that, whereas the channel gains were "optimally" chosen in [1] from MAP

estimation considerations, a different selection of these gains based
upon directly optimizing the loop's tracking performance can yield as

much as a 10 dB improvement in this performance. The significance of

this statement is not so much the fact that the tracking performance can

be enhanced by a better choice of gains, particularly since these gains

are now theoretically signal-to-noise ratio dependent, but rather the

high degree of sensitivity of the performance of the MAP estimation-type
loop to variations in the channel gains themselves. This point will

be explored numerically to provide quantitative verification of this

sensitivity behavior.

CARRIER RECONSTRUCTION LOOPS MOTIVATED BY MAP ESTIMATION THEORY

PSK Modulation

Consider the problem of finding the MAP estimate of carrier phase

from an observation made on a biphase-modulated, suppressed - carrier

signal ' in additive Gaussian noise.	 In particular, the signal s[t,e(t)]

is of the form

	

s[t,o(t)]	 S m(t) sin [w0t + 0(t)],

kfG	 where S is the average signal power, m(t) is a binary modulation (a ±1

digital waveform) of rate R = 1/T and pulse shape p ( t), w0 is the radian

carrier frequency, and 6 ) = 0 0 + Q 0 t is the received carrier phase.

The total received signal x(t) is then

r	 x(t)	 s[t,o(t)] + n i (t) ,	 (2)

	d	
where n i (t) is the additive channel noise which can be expressed in the

	

{ E	 form of a narrowband process about the actual frequency of the observed

	

l	 data, viz. ,'

n
i
(t) = S N (t) cos [w t+ e(t)] - N (t) sin [w t+ e(t)]}	 (3)

	

  { ^	 O	 s	 0

where N c (t) and N s 
( t) are approximately statistically independent, sta-

tionary, white Gaussian noise processes with single - sided noise spectral

density N 0 w/Hz ( see [2]) and single - sided bandwi dth BH < 
W0 

/27T.

t	 ;,

	

z	
_



3

The MAP estimation problem may now be stated as follows. 	 Based

upon observation of x(t) over the interval	 0 <_ t.<_ KT and knowledge of S,

G m(t), w 0 , and the precise time instants at which the modulation can change

states, we wish to choose that value of a(t) = e (assumed constant over

0<_ t<_ KT) which maximizes the a posteriori probability 	 p(e(t)Ix(t)) .

The solution to this problem, i.e., the best estimate of e in the MAP

sense, is well	 known [2] to be that value that maximizes the function 	 i

K 2	
kT

f(e)	 _	 cosh N J	 2S x(t) sin W t+ e) p(t) dt (4)
k=1 0	 (k-l)T

I' CO
or,	 equivalently,

k1in f(e)	 =	 In cosh /2S x(t)	 sin	 (w 0
t+ e ) P( t ) dt

N
_	 (5)_	 I

k=1 0	 k-1 T

The physical interpretation of (5) 	 implies an open loop estimation in the

sense that, for each value of e in the continuum	 we form'the funs-

tion	 In f(o) and then choose that particular value which corresponds to

the maximum of this function.	 A discrete (in the sense of a finite number

of trial	 values of e) version of this interpretation is illustrated in

Figure	 1.

To go from open loop to closed loop configurations, we consider

r an alternate interpretation of the MAP estimate solution. 	 Defining

K	 jg (e)	 o	 d In f(o)_	 2	 kT	
r2S x(t)	 cos	 (w t+ ©) P(t) dt

k

do	
k=1	 N0	 (k-1)T

kT
x tanh

[4-0
x(t)	 sin	 (w Dt + ^) P( t ) dt

j
(6)

(k-1)T

4

IT then the MAP estimate e is also the solution to	 PAGE ISpOR,GIN
i  QUAD

9(0)	 _	 0 .	 OF P	 (7)

For any value of e other than 6, g(6) will 	 be either positive or negative,

`` depending on the sign of e- 6.	 -Thus, g(6)	 is	 intuitively an appropriate

choice for an error signal	 in a carrier phase tracking loop.	 -Using this

-motivation,	 Figure 2 illustrates such a closed loop implementation which

herein will	 be referred to as the MAP estimation l ook.
,

kX,
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Figure 1.	 A Block 'Diagram Interpretation of the MAP Estimate of Carrier Phase Solution
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The MAP estimation loop of Figure 2 is impractical, primarily

because of the difficulty of implementing the hyperbolic tangent non-

linearity. To arrive at practical realizations, one must first approxi-

mate this nonlinearity with simpler, more easily implementable functions.-

In particular, we have that

tank x - sgn x

tanh x = x

:. Since the input to the nonlinearity is a monotonic function of signal-

{
!' to-noise-ratio (SNR), then the approximations of (8) and (9) correspond,

respectively,	 to conditions of high and low SNR. 	 Using these approxi-

mations, then,	 in (6)	 leads to the practical 	 implementations of Figures

V 3 and 4.	 In Figure 3, the arm filters are, as in the MAP estimation loop,

of the integrate-and-dump type and thus require a knowledge of symbol

=.I sync.	 In Figure 4, these same filters have been replaced by lowpass

filters and,	 in accordance with this change,	 the digital	 filter and NCO

j are replaced by an analog loop filter and UCO. 	 The tracking performances

t of these familiar loops,	 i.e., the conventional	 Costas	 loop	 (-Figure 4a)

si and the polarity-type Costas loop (Figure 4b) 	 or, equivalently, the Costas

loop with hard-limited in-phase channel, have recently been documented

in the literature [3,4] wherein the bandlimiting effects of the arm filters

on both the input data modulation and the noise have been accounted for.
L

In both cases,	 it is shown that, by properly selecting the arm filter

bandwidth, one can optimize the loop's tracking performance in the sense

40 of minimizing its squaring loss or, equivalently, 	 in the linear region

• of performance, minimize its mean-squared tracking jitter.

` QPSK Modulation

;.< Quadri	 hale-shift-ke edp	 y	 (QPSK) modulation,	 as	 is well	 known, offers

the opportunity of achieving a given bit error rate performance with half
^ pis.•

' the channel	 bandwidth required by PSK.	 Carrier reconstruction loops for

.. We shall	 see that,	 in the case of quadriphase modulation, this
F<	 i approximation of the hyperbolic tangent function for small 	 values of

i'ts argument is not sufficient.
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such a modulation are variously referred to as the fourth-power loop and

q the quadriphase Costas loop [2 1 ,	 Assuming analog (four quadrant type)

4{

t̂

multipliers, these two loops have been shown [2] to be stochastically

equivalent.

In this section, we derive the MAP estimation loop for a QPSK

signal, and by suitable approximations to the nonlinearity which arises

as a consequence of the MAP theory, reconfigure this loop with practical

realizations which are valid for high and low signal-to-noise ratios.	 In

particular, for the low signal-to-noise ratio case, we are led directly

to a new structure which,	 like the fourth-power loop, will	 be shown to
C^

be stochastically equivalent to the quadriphase Costas loop mentioned

above.	 This new structure, however, has decided implementation advan•-

tages over the conventional 	 quadriphase Costas loop, particularly in

applications where thereceiver may be operated in either a biphe.se or

quadriphase mode.	 The significance of this statement will 	 become clearer

after we have had an opportuni ty to examine this new structure in finer

detail.

As a generalization of (1), a quadriphase-modulated, 	 suppressed-
:Q

carrier signal takes the form

s[t,e(t)] _ 	 2S m^(t) sin [wit ^. 8(t)] + S m 2 (t) cos`[w0t + e(t)] ,	 (10)
E

e where S is the average signal	 power in either of the two data channels,

m l (t) and M2( t)
	 are the corresponding independent, binary modulations,

both, (for balanced quadriphase) of rate R= l/T and pulse shape p(t), and

e( t), as previously defined,	 is again the received carrier phase.	 Based

upon an observation of this signal 	 in additive noise as described by (2)

and -(3),	 then by an analogous approach to that used in deriving (4), we

` find that the MAP estimate of carrier phase is that value that maximizes

the function

K ` 2 	 kT
l̂ —f(o)	 -	 cosh S x(t) sin (w t+ o) P( t ) dt

0
k= 1 lN0	 (k-l)T

^.

I

kT

?X cosh
N O

2S x(t) cos (w t 4- ©) p(t) dt
j	 0

(ll )
k-1	 T_

or,	 equivalently,	 -

ILI t

^T



c ^ ^^	
l l

	

K	 fkT

in f(e)	 In cosh 
N 	

2S x(t) sin (wit+ e) p(t) dt

	

k-1	 0 (k 1)T

+ in cosh 2 kT	
S---	 x(t) cos	 (w t+ e) p(t) dt]NO J(k p-1) T

" Once again, to go from an open loop MAP estimate to a closed loop track-

' ! ing configuration, we introduce the function g( 6)	 (d In f(a))/de and use

g(o)'as an error signal 	 in such a closed loop. 	 Differentiating	 (12) with

respect to e gives

;^ M * g(e)	 o	 d in f(a)	 _ 2	 kT	
S x(t) cos ^u) t+ ©) p (t) dt^

de	 k=1 N O 0(k-1)T 

'
-

x tanh
kT

?N	 2S x(t) sin ( wO t + e ) P(t) dtf 

0	 (k-l)T

2	
kT

2S x(t) sin (w t+ 6) p(t) dt 	 j
N O	 (k - 1)T	 0

(kT
X tanh

N
f	 S x(t) cos (wOt+ e) p(t) dt

0 (k- 1,)T

(13)

The corresponding MAP estimation loop for QPSK is illustrated in Figure 5.

'

To achieve a practical	 realization of Figure 5 for high SNR, we

again approximate the hyperbolic tangent function as in (8). 	 The result-

.n	 loop,	 using passive arm filters,	 7s	 illustrated	 in	 Figure	 o.	 If one	 +,
g	

gp	 g

' tries to use the approximation of	 tanh x	 given in(9) to construct a low

SNR implementation of the MAP estimate loop 	 then substituting (9) in_

(13), we immediately see that g(6)= 0 for all 	 e;	 hence, no error signal

sY. is generated.	 To circumvent this apparent dilemma, we go one step

,,. further by approximating the hyperbolic tangent function by the first

two terms of its power series, namely,

3
=tanh x	 x .- 3	

x small .	 (14)

I Substituting this approximation into (13) 	 results in
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K (	 kT

g ( e ) _	 f ?	 2 x(t) sin (w t+ e.) p(t) dt

	

k=1 N0	 k-1 T	 0

	

x 1 (-L
 kT	

2 x(t) cos (w t + 8) p ( t ) dtl3

	

3 
NO

f
(k-l)T	

0

kT
- N

f
	 2 x(t) cos (wOt+ e) p ( t ) dt

^; 0 	( k

- 

1)T

kT

x1(rif	 2S x(t) sin ( too t+ e) p (t) dt)3 1	 (15)
=.sl	 !0	 (k

-
1 T

i	 which is of the form

9( e ) =	 (AB3	 BA3),	 (15)3 - k=l

U
	 where A and B are immediately identified from (15). Rewriting (16) as

K	 I
g ( e )	 [AB(B2 - 2

	

A}]	 (17)
3 k=1

j allows us to draw the practical 	 realization of the MAP estimation loop

for low SNR (see Figure 7) .* 	 Several	 interesting observations can be

made from both (17 	 and F i gure-7. `	The signal)g	 product. AB represents the

k x	 - error signal	 generated in a conventional	 biphase Costas loop. 	 The signal

difference B2-,A 2 represents the output of a lock detector associated with

the same biphase Costas loop.	 Thus, the quadriphase error signal	 of (17),

-1 namely, AB(B2 -'A2 ),	 is the product of the error signal and lock detector

output of a conventional	 biphase Costas loop.	 The accumulation required

in (17)	 is, as	 before, accomplished in the analog version	 (Figure 7)	 by

E the loop filter F(s).

Implementing a quadriphase carrier tracking loop in Figure 7_ has

several	 implementation advantages over the conventional 	 quadriphase Costas

4 loop.,	 First,	 it allows for either biphase or quadripha;se operation, 	 since

the biphase error'signal	 AB is already available.	 This choice of operation

f *This particular quadriphase Costas loop configuration was origi-
nally suggested to the author by J. 	 C. Springett of Axiomatix, apart
from its motivation by MAP estimation theory.
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mode can be accomplished using a simple switch (see Figure 7). Thus,
relative to the hardware required to implement a biphase Costas loop and

its associated lock detector, all that is needed to generate a quadri-

phase error signal is one additional analog multiplier. We hasten to add

that the large SN^R loop of Figure 6 can also, as shown in this figure,

be made to operate either as a biphase or quadriphase polarity-type Costas

loop. Second, even if the loop is designed strictly for carrier tracking

of balanced QPSK, the implementation of Figure 7 requires only two quad-
rature reference signals and two arm filters, as opposed to . the four
reference signals (spaced by n/4 radians) and the four arm filters

needed to build the conventional quadriphase Costas loop.

The only point that remains is: How does the performance of the

loop in Figure 7 compare with that of the conventional quadriphase loop?

The answer to this question is that thetwo loops are stochastically
.equivalent, i.e., it can be shown [51 that the two ha y.e identical sto-
chastic differential equations of operation. Thus, by starting with
MAP estimation theory as a m athematical basis, we have proven, via.the

introduction of a new configuration, that the conventional quadriphase

Costas loop and its 6quivalent (the fou^th power loop) are low SNR prac-

tical realizations of the MAP estimate loop for QPSK,.

Unbalanced QPSK

I With the results for PSK and QPSK as background, we are now in a
position to better understand,	 interpret, and augment previously obtained
results [1] for the case of interest here	 namely, carrier reconstruction

iti

techniques for unbalanced QPSK (UQPSK) as motivated by MAP estimation
theory.	 While it is true that, depending on, the ratio of powers 	 in the
two channels of the UQPSK signal, a simple biphase or quadriphase Costas

.4i
loop can be employed for carrier reconstruction [6,7, 8], the purpose of
the study in [1] was to search for "optimum" carrier reconstruction tech-

-vie niques in the sense that the loop would make full 	 use of the total	 power
in the two channels to enhance its tracking capability.	 Also,	 by applying
MAP estimation theory directly to the UQPSK signal, the intuitive feeling

was that some sort of hybrid configuration would arise which would present

a continuous compromise between the 	 'extreme desires of tracking a highly
unbalanced QPSK signal	 and the more common balanced QPSK signal	 in which
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the powers and data rates in the two channels are equal.

Indeed, the results derived in [1] largely represent this dream

come true. Unfortunately, however, the low SNR realizations of the MAP

estimate loop for UQPSK suffer from the fact that they cannot track a

balanced QPSK signal. The problem herein lies again in the way in which

the hyperbolic tangent nonlinearity is approximated at low signal-to-

noise ratios. We shall demonstrate shortly that, by using (14) rather

than (9) at low SNR, one obtains a practical implementation which allows

carrier reconstruction from a UQPSK signal at all ratios of data rates

	

i	 and powers in the two channels, in particular, in the limit as these

ratios simultaneously approach unity, i.e., balanced QPSK. In fact,

	

r°
	

in this limiting case, the loop becomes equivalent to the quadriphase

loop of Figure 7.

An unbalanced QPSK si nal takes the form,^ g

` f sCt,e(t)]	 =	 2P	 m l (t) cos [wi t+ e ( t )] +	 P m2(t) 	sin [wit + e (t)]	 (18)

i where P l and P 2 are the average signal	 powers, respectively,	 in channels l

and 2, and m l (t) and m2(t) are the corresponding independent binary modu-

lations with rates 
R1 

=1/T19 R
2

= 1/T 2 and,	 in general, different pulse

j
shapes p l (t) andp 2 (t).	 Applying the MAP _estimation theory to an obser-

1 nation of the signal	 18	 in noise	 the error s i gnal	 e9	 (	 )	 _	 9	 9^, ) for the MAP

estimation loop	 is derived in [l] as

;r K2 +1	 8k

1

g(e)	 d In de(e
)e

_	 N 2 x(t) cos (2t + 8} p 2 (t) dt
s=6	 k=1	 0	
k-1

d k

X tanh
N- J	

2 x(t) sin (wit+ e) p 2 (t) dt

X
0-	

ak-1

a
K1+1	

Tk

w
L

2 x(t) sin (wit+ ©) p l (t) dt
k=1	 0	 Tk_1

^.
zk

X tanh
N 0

2 x(t) cos (wit +6) p l (t) dt

# Tk-1
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In	 (19),	
T 
	 (k = 1,2,...,K1)	 is the ordered set of time	 instants at which

the modulation m 1 (t) may potentially have a symbol transition in the

4 observation interval	 (0,T).	 Similarly,	
6  

(k= 1,2,,..,K2)	 is the ordered

set of time instants at which the modulation m 2 (t) may have a symbol

transition in the same observation interval. 	 Note that, since the two

modulations might,	 in general, be generated from independent data clocks,

no restriction is placed on the relative synchronization between the taus

and the deltas.	 This same assumption could also have been made for the

balanced quadriphase case with the appropriate modification of (13).

Illustrated in Figure 8 is the MAP estimation loop for UQPSK with

0 g(8) of (19)	 as	 its error signal.	 A practical	 realization of this loop

for high SNR, obtained by using the approximation to the hyperbolic tangent

function of (8)	 in	 (19),	 is	 illustrated	 in Figure 9.	 For small	 SNR, using

(9) as an approximation to 	 tanh x, the authors of [1] suggest the loop

` illustrated in Figure 10. 	 Unfortunately, this loop (or its equivalent

using active arm filters of the type given in Figure 8)	 has the disadvan-

tage that, as the ratio o ^ rates and powers both approach unity, 	 i.e.,

balanced quadriphase, the two lowpass filters LPF l	and LPF 2 would become .

identical	 (or equivalently integrate-and-dump filters of equal 	 duration),

and thus the error signal	 at the input to the loop filter goes to zero-

for all	 loop phase errors.	 If,	 instead of (9), one were to use (14) as

an approximation to	 tanh x, then making this substitution	 in (19)	 results

in the loop illustrated in Figure 11, where again we have drawn the case
i,. where the arm filters areof the passive type. 	 Note that this two-channel

Costas loop configuration reduces (except for the one-third gain factor)

y	 P to Figure 7 when the input signal	 becomes balanced QPSK,	 i.e.,	 LPF^ = LPF2
T.

and, thus, it is capable of tracking such a signal. 	 -Rather than go into

the details of the performance of the loop in Figure 11 	 at this point, wet

'	 n shall turn to an investigation of the sensitivity to gain 	 variations of

the simpler loop in Figure	 10 and use these results qualitatively as being

t indicative of two-channel	 Costas-type configurations`.	 Actually, to make

r	 "'z life even simpler, use shall	 perform our sensitivity analysis on the equiva-

C'	 i lent loop to Figure 10 where active (integrate-and-dump) arm filters of

the type illustrated in Figure 8 are used in place of the passive arm

filters.	 Making this substitution greatly simplifies the analysis, 	 but

!'. nevertheless allows us to illustrate the conclusions we are after._



S 1-

^'.i
(2 P )/N0

2•

zk
'k

a ( t ) P l (t) dt tanh O

Tk-1
t

3

i Data Stream 1

a(t) i' Accumulator
l

t	 (2/P---)/N0
}s	 d

t	
k

ka(t)f

s

P2 (t) dt

k t  _(2 P )/NO
x(t) Accumulator

a k - t	 dk
2

90 0 b(t) P2 (t) dt ^^ tanh O

°k-1
t

t
f

Data Stream 2

b(t)

r

r	 (2 P )/N^

t	 Tk
T

kb ( t ) P l (t) dt
T k-1 Symbol'

Sync'

cos {w0t + 8) Bumped
Phase

Oscillator

Figure 8.	 The MAP Estimation Loop for Carrier Phase (UQPSK)	 1D

e



lx	 T	 f ..
:^;	 o	 -

#.9t f:^	 ^	 ..	 "L^^.: A	 T'.	 '114J	 ^,..	 ^.	 -.

-
_

(2 P)/No

Figure 9. A Practical Realization of the MAP Estimation Loop Passive Arm Filters, Large SNR
NO



4

,t!
I

o i

Op

i

x(t

 F'

14

Figure 10. A Practical Realization of the MAP Estimation Loop;
Passive Arm Filters, Small SNR tanh x = x

N
J

Y

Y

J



.

``
'

'

'

^^	
'

'	 '

'
^'	 '

'
`

'



23

i
B

j

r

SENSITIVITY OF TRACKING PERFORMANCE OF TI-10-CHANNEL
COSTAS-TYPE LOOPS TO CHANNEL GAIN VARIATIONS

The tracking performance of the UQPSK carrier reconstruction loops

illustrated in Figures 9 and 10 has been studied in great detail in [1].

Part II of this reference treats the passive arm filter case, i.e., Figures

9 and 10 as they are drawn, while Part I presents the results for the

equivalent loops with active arm filters. In each case, the phase track-

ing jitter based on a linear loop model is calculated as a function of

such system parameters as signal-to-noise ratio in each channel, the ratio
of powers in the two channels, and the ratio of data rates in the two

channels. Although the theoretical results were derived as a function

of the ratio of the gains in the two channels, specific numerical results

were presented only for the "optimum" choice for this ratio based upon

MAP estimation theory.

Unfortunately, as we shall see shortly, selection of this gain

ratio as motivated by MAP estimation theory does notnecessarily optimize

the tracking performance. In fact, the selection of this gain ratio to

directly optimize the tracking performance in the sense 
of 

minimum mean

squared phase tracking jitter, can yield as much as a 10 dB improvement

in this performance relative to the MAP estimation choice of gain ratio.

To illustrate this point, we shall begin by extracting pertinent

results from [1] for the equivalent loop to Figure 10 with active arm

filters and arbitrary channel gains K and K In particular, it is

shown in [1] that the variance of the loop phase error (phase tracking

j i tter a2 ^ for a linear  loop model is given by

^

(K
	 K	 2

r	
,. 2

B + B	 + B	 _
0	 1 \ K/	 2 ( K2)1

CT
	

_
2co

4 N O BL 	 2'(20)

[AO + A l 
( K2

 Kl

where

AO - p l 	 P2

A
l	

= P2 n
2 

- P 1 n

N 2 P	 P	 T1 	 2	 1B O_
p l	

2 T

1 P2 0
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7111, Bl = -2 n p l + 27
	

n2 P2 2 P lN P 2 Tl

R	 C	 l )	 C	 0	 }

N	 2P P T
B2 - 

n3 (P1 + 2T } + n4 (P2 + 	
lr, 2 1 ^	 (21)

0

and we have implicitly assumed that the two data clocks are synchronized

with the ratio of data rates being int eger,ri	 g 	 i.e.,9

T

	

n o T2 > 1	 n integer,	 (22)
1

Equivalently,  the loo "s " squaring loss" is g iven b

	

p q	 9	 9	 Y

(
( K2

)
l 2

g	 4NOBL	
_

[A0
+AI\K1l^

i ^

	

-	 (23)
`	 S 

	

CT 2 ^ ( P l + P 2 )	 K2	 K2 2

	

(P 1 + P2) BO + B l( K 	+ B 2(K )
^	 l	 1

Clearly, from (20) and (23), minimizing the phase tracking jitter a2co

ff3	 is directly equivalent to maximizing S  (minimizing the squaring loss).

From the form of (23), it is a simple matter to differentiate this equa-

tion with respect to K2/K l , and thus find that value of channel gain

	

ratio which maximizes S	 After some routine algebra, the solution to
the equation

DS
L

K T / Kl 0	 (24)

i$

(4 (K,	 2A1 B 0	 A0 Bl(.
K1 opt

	

2A B2 - A l 8 	 ?;

	

/	 N	 2P P T
t.	

P2 (P1 + 2T \	

pl (P2 +
	 IN 

2 1`

	

x	 (
\\	

1 /)	 0	 )

^
^.

	

-r- N 0	 + 2	 + 2 P1 P2 Ti	
(25)

	

nP l (P1 2T1 )	 n Pl(P2	 N0

Alternately, defining the ratio of powers in'the two channels by

t	 p2/P1	 (26)

	

;,	
GE ISf	 we can rewrite _(25) in the form	 AZ, pA

" r	 ORIG ^g QU AL1^
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}+a+	 2^1

L2
2+ 2C1	 1 + a

`^
K1

opt	 - ^ n 1 + a	 z^l
(27)

r	 , 1 + na 4
2 	na } + a

where,	 in addition, we have defined (as in [1])	 C1	 as the total power-to-

noise ratio in the high data rate bandwidth,	 i.e.,

(P1 + P 2 ) T,
1 N 0 (28)

Note that the first factor in (27) is the "optimum" value of K
2 
/K

1
 as

	

Y,	
motivated by the MAP estimation theory, i.e.,

4

K2

	

K	 n	 (2g)

	3	 which is independent of signal-to-noise ratio. Only when the channels

	

'	 have equal energy, i.e., X = 1 /n, are the results of (27) and (29) equal,

i.e.	 K2/K}
Substituting (27) into (23) results in an expression for the minimum

squaring loss, namely,

2^

	

1 + 
12^	 (1 - 2a+ na g }	 a(n- l) ^l +	 +l^}

	

S	 1

	

_	 (30)

	

L
	

2

	

+ j7 + 1+X	 1 + 1+a + na l +(1	 1 ls	 ) \	 2 1 / R	 2^1 /	 l 

On the other hand, using (29) in (23) gives the result obtained in [1],

namely,

2

	

S	 (1 - 2a +nag}	 (31)
t	 l(} + 7,) (1 + }2^ ^'^(} - 2a+ na 2 ) + all + ^

2 1a/ (1 - nX)2

	

1	 _

+	 Figures 12 through 15 illustrate SL as computed from (30) and (31) versus

w the power ratio a with n fixed and	 =_3 dB and 10 dB. The values of n

^.

	

	 selected for, these plots range from balanced (n= 1) to highly unbalanced

(n= 10) data rates. Note that, for the balanced data rate case (n =1,
4

X arbitrary), both (30) and (31) reduce to the same result, namely,

q

}

i	
Al
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S	 =	 0 - a)2
	

2r

+
	

32)

	

L	 (1 + a) 1 + l2 ^ X + a (1 + 1
1A

(

f, !4	 1}

despite the fact that the channel gain ratios (27) and (29) are not, in

general, equal. Furthermore, the result in (32) is also identical to the

"
squaring loss of a conventional (one-channel) Costas loop when used to

track unbalanced QPSK with both unequal data rates and unequal powers [8].

.

	

	 In this case, the identical in-phase and quadrature integrate-and-dump

arm filters are assumed to be chosen to accommodate the higher data rate

'	 modulation.

} Several	 important conclusions can be drawn from the numerical

results	 illustrated in Figures 12 through 15.	 First,	 since we have

already observed, Figure 12 is representative of the one-channel Costas

loop performance for all	 n	 and X, these curves represent lower bounds

on the squaring loss performance of the two-channel configuration. 	 That

is,	 for fixed	 ^ l_,and a,	 the two-channel	 Costas loop will	 exhibit a smaller

squaring loss for any data rate ration	 than the value indicated in

Figure 12.	 This performance comparison between one- and two channel

Costas loops will	 be made in the next section of this report.

{ Second, the difference between the true optimum squaring loss

[Eq.	 (30)] and the value given by (31), as in 	 [1],	 increases with

increasing	 n .	 Also, for fixed	 n , these differences are much morea

significant at higher values of total 	 power-to-noise ,ratio c l _in the

high data rate bandwidth than at the lower values.	 As an example, for

n = 10 and
1
 = 10 dB, we -see from Figure 15 that,	 for equal	 powers	 (x= 1) ,

r the squaring loss as given by (30) 	 is 10 dB smaller than that predicted

"ff by (31).	 The same comparison at ; 1 = -3 dB only shows a 1.4 dB improvement.

.` Finally,	 the-true optimum squaring loss 	 [Eq.	 (30)] decreases with

increasing 
c 1

, regardless of the values of	 n	 and a, except for the case

of small	 a and n =.l .	 Using the result of (31)	 'for squaring loss, we

observe that,-for fixed	 n	 this "optimum" squaring loss can actually

increase with increasing §,, depending on the value of X.

To further illustrate the sensitivity of the two-channel 	 Costas

loop squaring loss performance to the particular choice of gain ratio

;r K./K, or, more important, variations in this ratio about some nominal
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i to

figures, K2/K I is allowed to vary from 0.1(a/n) to 2(a/n) with the opti-

mum values corresponding to (27) clearly indicated by the peaks of the

curves. The expression used for plotting these curves is.a rewrite of

(23) in terms of the definitions of n , a, and c1, namely,

K2 2

[AO + 
Al 

\"'I
SL =

KK2 2

'(1' + X) [B6 + B^ (K) + B
2(K1)

where

A6 = 1 - a;	 Ai = n(nX - 1)

2C
B6	 1 + 12^a +a(1 + 1+1^)

1

(33)

it

{	 B^	 -2n L + 2	 + na ^l + 12+1a)1	 1
Zc

B2 = n3 l + 12+ 
a + na(1 + +1	 (34)

A C6MPARISON OF THE SQUARING LOSS PERFORMANCE OF
ONE AND TWO-CHANNEL COSTAS LOOPS

We have already mentioned the fact that one-channel (conventional)

Costas loops are inferior to two-channel Costas loops when tracking

unbalanced QPSK. The squaring loss performance for the one-channel

loop (assuming both data modulations are --NRZ)'was given in (32). To

k

	

	 allow-a simple comparison with the performance of two-channel hoops, we

shall assume in the latter case that both channels have equal energy,

= P
1 T 1

 or, equivalently, a = 1/n. For this case, we havei.e., P2T2 

already observed that the value of K2 /K selected by MAP estimation

i	 theory considerations is identical to that which minimizes the squaring_

loss`. Thus, from (30) [or (31)], we find that

SL	
(1 - ^`)
	 (35)

b
s	

0+a)L + 
12 ^

Taking the ratio of (35) to (32) then gives the improvement in tracking

performance of the two-channel Costas loop over the conventional loop.

5e	 ,
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LettingsE denote this ratio, we have r;
2c

l2SE	 l +
2-1	 +	 l l 	+ 1 + la ){ =	 channel	 = (36)	 .

L	 SEI1-(1	 + l2 ^1	 - a) Fchannel

Figure 19 illustrates	 B
L 

(in dB) versus a with ^l	 (in dB)	 as a parameter.
.	 j

Clearly, for a approaching unity, the improvement becomes infinite; how-

ever, we recall	 that,	 in this limiting case, neither the one-channel 	 nor

the two-channel	 loop is capable of tracking at all, 	 i.e., SE goes to

1
zero for both.

CONCLUSIONS

In conclusion, we point out that the MAP estimation theory provides

good intuition for implementing closed loop tracking configurations for

.^ BPSK, QPSK , and UQPSK modulations.` In the latter case, however, care
i

must be exercised in selecting the ratio of gains between the two channels
.a

of the resulting configuration.	 In this regard,	 two options are available, 3

0 namely, that gain ratio which is motivated by MAP estimation theory and l

is independent of signal-to-noise ratio, and that ratio which minimizes

the loop squaring loss and is dependent on signal-to-noise ratio. 	 The

difference in squaring loss between these two choices of gain ratios can g

be as much as 10 dB for certain values of data rate ratio and power ratio.

y

When the signal	 energies in the channels are chosen equal, then both gain

ratios also become equal and yield identical .squaring loss performance.
Even in this case, the two-channel Costas loop can considerably outperform

the one-channel	 (conventional) Costal loop. 	 However, neither the con-

ventional	 nor the two-channel loop of [1] is capable of tracking balanced

'	 ;.. quadr`iphase.	 By an extension of the power series approximation used for

the hyperbolic tangent nonlinearity which arises from the MAP estimation

A, approach, we have been able to demonstrate a carrier reconstruction loop

for UQPSK which should yield better performance than the above-mentioned,'

two-channel	 loop as the modulation becomes more balanced;	 in particular,

! it acts like a quadriphase Costas loop in the limiting case ofbalanced

QPSK.	 A detailed analysis of the tracking performance of this loop is

the subject of a future report.
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APPENDIX K

ON THE EQUIVALENCE IN PERFORMANCE OF A PRACTICAL REALIZATION
OF A MAP ESTIMATION LOOP FOR BALANCED QPSK AND

A CONVENTIONAL QUADRIPHASE COSTAS LOOP

by

Marvin K. Simon

1.0	 INTRODUCTION

In Appendix J	 (also [1]), the author considered the similarities

in structure of carrier reconstruction loops motivated by MAP estimation

theory for PSK, QPSK, and unbalanced QPSK modulations. 	 In particular,

for the balanced QPSK case, it was shown that, by approximating the

hyperbolic tangent nonlinearity in the MAP estimation loop by the first

two terms in its power series, an interesting practical 	 realization of

this loop results which applies at low signal-to-noise ratio (see

Figure l).	 Indeed,	 the error signal	 in this loop is formed by multi-

plying the error signal and lock detector output signal of a conventional

bi hase Costas loop. 	 We also note from Figure 1 	 that such a quadri-

phase loop can be constructed using only a pair of quadrature reference

0 signals and a pair of arm filters, as opposed to the four reference

signals	 (separated by n/4 radians) and four arm filters required in'

4
L

^. a conventional• quadriphase Costas loop (see Figure 2). 	 The loop of

Figure 1 also has the advantage that it can easily be switched from

a biphase mode to a quadriphase mode depending on the form of the input

{ modulation.	 With all	 this in its favor, the only question remaining is:

How does the performance of the loop in Figure 1 compare with that of

the conventional 	 quadriphase loop in Figure 2?

In the next section, we shall	 derive the stochastic differential

equation of operation of the loop in Figure 1.	 Following that, we

q shall make an analogous derivation for the conventional 	 quadriphase

Costas loop.	 (The result of this derivation 	 is available in	 [2]	 if

the signal distortion effects of the arm filters are ignored.) 	 Com-

paring the two results, we shall 	 then reach the conclusion that the two'

F. loops are stochastically equivalent, 	 i.e.; they have identical 	 stochastic{

differential	 equations of operation.	 Thus,	 an alternate conclusion is

that the conventional quadriphase Costas loop and its previously shown

equivalent [2],	 the fourth power loop, are low signal-to-noise ratio

practical realizations of the NAP estimate loop for QPSK.

ORIGINAL PAGE IS
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. 2.0	 DERIVATION OF THE STOCHASTIC.DIFFERENTIAL EQUATION OF
OPERATION FOR THE CARRIER RECONSTRUCTION LOOP (Figure l)

i40
As mentioned in the introduction, the error signal for the quadri-

phase loop of Figure 1 	 is formed from the product of the error signal

and lock detector output signal	 of a biphase Costas loop, namely, zl(t)

and z 2 (t), respectively.	 Since the performance of a biphase Costas loop
.^ whose input is an unbalanced quadriphase modulation plus additive Gaus-

sian noise has been previously treated [3], we shall 	 be brief in our

presentation here.	 Assuming then that the input to the loop of Figure l

is the balanced QPSK modulation

x(t)_	 2P m l (t) cos'	 (t) + 12P m 2 (t)	 sin D(t) + n i (t),	 (1)

. then from [3], letting P 1 = P 2 = P, we have for the arm filter outputs

rl zs(t)	 G(P) e s (t)	 =	 K1 Km 
I
	 m2 (t)	 - N s (t)]	 cos ^0(t)

- K	 K	 FvP
	 m 

(t) + N (t)]	 sin ep(t)1_m 1	 c

z c (t)	 G(p) E c (t)	 =	 K l Km
IFP m 2 (t) - Ns(t)] sin	 ^p(t)

+ K 1 Km [v'P- m l (t) + N c (t)] cos co(t)	 (2)

` where the "hats" denote filtering of the corresponding signals, e.g.,

,11
ml(t)	 = G(p)m l (t).	 Thus,	 the output of the third multiplier is the

dynamic error signal

z l (t)	 o	 z M zsct)

2	
2K l	 Km

=	 P m 2 (t)	 - m l 2 (t)
C2

sin 2^o(t)	 + 2Pm	 (t) m	 (t)1	 2 cos 2co(t)2 _

+	 [N S (t) -	 2(t))- 2,/Pm 2 (t) NS(t) - 2P ml (t) NC(t) sin	 2`co(t)

^. +	 [2^ m2(t) Ac(t) - 2/P—	(t) Ns (t) - 2 N c (t) NS(t) cos 2cp(t)

(3)

$ Similarly,	 taking the difference of the squared filter outputs gives

,



Y

5

z2(t)	
_°	

z2 
(t) - zs (t)

7

:' < Kl2	 2 - P[m2 (t) 
-ml2(tJ

cos 2rp(t)	 + 2 P m l (t) m2 (t)	 sin 2V(t)

- [S (t) - N^ (t) - 2 V m2(t) N s (t) - 2^ 6 1 (t) N C (t 	 cos 2V(t)

+ C2vP m 2 (t) Nc (t) - 2F ml (t) N s (t) - 2 N C (t) N S (t)J sin 2V(t)?

2z	 (t)	 (4)
Tr12(p(t) =t,	 2co(t)	 2

;. where the notation "_>" 	 means "replaced by." 	 As before (see (9) of [3]), ti

al
letting

v2[t,2cp(t)] NS (t) - N^ (t) -2^ m 2 (t) N s (t) - 2^ ml (t) Nc (t) sin	 25o(t)

+ C V m2( t ) N c (t) - 2F m (t) N s (t) - 2 Nc (t) N s (t] cos 2co(t)

1 (5)
then the product of z l (t) and z 2 (t) gives the resulting quadriphase error
signal

`., zp(t)	 n	 zl(t)z2(t)

^I
K 
4	 4
Km p2	 6 m 2 (t) m 2 (t) - m 4 (t) - m 4 (t)l	 2	 l	 2

sin 4cp(t)
4_

..^ + 4P 2 m l (t) m2(t) P,2 (t) -m2 (t) { cos 4co(t)

+	 v 4 [t,4cp(t`)] } ,	 (6)
a

where

t v4[t,4cp(t)]	
6	 2 u2[t,2 co(t)] v2 [t, 2 ^o(t) -	 2]

K -	 + 2 u 2 [t,2cp(t) - Z^ v2[t,2co(t)]

+ 2 v 2 [t 2cp(t)] v 2 [t, 2co (,t) - 2]	 (7)
^ and

u	 [t,2co(t)]	 _	 P	 m2 (t)	 - m 2 (t)	 sin 2(p(t)
2	 1

t

+ 2 P m l (t) 61 2 (t) cos 2cp(t)	 (8)

-.



ji Substituting	 (5)	 and (8)	 into (7)	 and simplifying yields

i v41t 4co(t)]	 =	 As(t) sin 4co(t) + A c (t) cos 4cp(t), (9)

where

A s (t)	 _	 - N^ (t) - Ns (t) + 4^ m 2 (t) NS (t) - m l (t) N^ {t)

_ 12^ 
16

2(t) NS(t) Ncz (t) _ m1(t) 
N(t)+ 6 NS 

(t) Nc
(t)	

C
N52(t;^

+ 6	 ^ryc 
(t) - NS (t)1 ,[r2 (t)	 _ m^2(t)

a ^ L	 ^1 L

4 
P:t/2 

m
2 
(t) (^S(t) 12 (t)- m2(t)1

+ 4 P3^ 2 tn^ (t)	 [3N^(t) m2 (t} - m 12 (t

-	 24 Pm l (	 ) m 2 (s̀ .) NS(t) Nc(t) J
1

A^{ t )	 _	 4 N c (t) NS (t) - 4 N S (t) N^ (t) + 4- F 2(t) Nc 
(t) +ml (t) Ns (t]

+-12 P m^ (t) m 2 (t) 
L

^2(t)	 - NS (t) + 12 P N M N S (t) L2 ( t} - ml2(t]

b
-

_	 12	 m 2 (t) N c (t) Ns (t) + m l (t) Ns(t) N2(tL
f + 4 P 3/2 m2(t) Nc(t)

3 ml (t) - m2 (t)

+ 4 p3/2 m^ ( t ) N s( t ) [3 m2 ( t) - m^ (t (i0)

'^ The instantaneous frequency of the VCO output is related to z 0 (t) by
E

?.
d ^(t	 _	 K	

CF( p ) z	
(t)] +

d t	 V	 _ 0	 0 (11)

11 and hence the stochastic equation of loop operation becomes

w
i 4d 

Ti =	 4s^u- K F(P)	
P2 [6 ^;

12 (t) m2 (t) - m 14 ( t ) - m2 (t^	 sin 4cp(t)
f .	 ...

4 P2 m 1 (t) m 2 {t) Cm l2 (t)
-^

-m2 (t)
--- ►►►

cos 4c9(t)

{
+ v 4 1t,4^o(t)J (12)

4 i where	 K	 K I Km KV

t F'^.

R

., end
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3.0	 DERIVATION OF THE STOCHASTIC DIFFERENTIAL EQUATION OF
OPERATION FOR THE CONVENTIONAL QUADRIPHASE COSTAS LOOP

For the quadriphase Costas loop of Figure 2, the input.x(t) 	 is

again given by (1) and the demodulation reference signals r i (t);	 i= 1,

f

2, 3, 4, are. respectively

ri(t)	 _	 V K 1 	sin	 [d^(t) +	 (i - 1) 4]	 i = 1, 2, 3, 4 . 	 (13)

Multiplying x(t) by ri (t) and ignoring second harmonic terms gives the

wj four phase detector outputs which, after arm filtering by G(s), become

z i (t)	 K1 Km [VP m2 (t)	 - N s ( t )] cos [cp(t) 	 4]	 I

- Kl Km [F ml (t) + N c ( t )]	 sin	 [^o (t) - (i - 1) 4] ; 	 i = 1 ,2,3,4	 4

K1 Km ^a c (t) cos 	 [cp4a s (t)	 sin	 [(p( t) - (i4
f

(14)

Multiplying z l ( t )	 and z 3 (t)	 gives

' z1(t)z3(t)	 =	 K ,	 ^n {[ac(t)- as(t)]	
zcp(t)	 + a c (t)a s (t)	 cos 2cp(t)}	 .

s in

:

(15)

Similarly,

ij 4e. sin [2((p(t) 
z2(t)z4(t)	 K,2 K„2	 [ac(t)-as(t)]	 2	 4

+ a c ( t ) a(t)cos [2((p(t)
^

t̂t

s

K12 Km 	 [as(t ) - as (t)] cos
	 (t	 + a c (t) a s (t)	 sin 2co(t)^ .

l-

(16)

Thus,	 the`quadriphase error signal	 z(t)is obtained	 by multiplying	 (15)
0

land	 (16),	 namely,
r	 ..: 4	 4

Q	 4	 K1	 2	 2	 2	 2	 2	 sin 4 cp(t)
z
0
(t) 	 TT	 z i (t) =	 ^- [a c (t) - a s (t)]	 + 4 a c (t) as (t)}	 42

f;'
K 4	 4^n{ +	 1	 a(t) a(t)[ac (t) 	 - as (t)] 	cos 4cp(t)

2	 c	 s

t	
F	 ^` (17a)

^	
r	

,

3

v .
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or	
K 

4	 4
18z 0 

(t)-	 (-1)x/2 4CQ, a2 (t)	 -^ t)	 sin 4c9(t)
z=0,2,4	

a s

K 4 K4
+	 1	 m	 (-1)(R-1)I2	 C	 a k (t) a 4-^(t)	 cos 4`o(t)4 9	 s

(17b)
8=1,3	

c

IP

` where nCk is the combinatorial coefficient defined by

n 
C 
k	 -	 k!	 n-k	 ! (18)

From the defining expressions for ao(t) and a s (t)	 in (14), we get that

, ac (t)	 _	 (-1)Q-m RCm\'/P 
62(t)1m 

( h s (t) ) '-m.

 
4-Q

as	 ^ t)	 -	 4- QCk(	 m 1 (t) 	 ^NcM)4-z-k (19)
k=0	 /

Substituting	 (19)	 in (17) gives the final results for z 0 (t), namely,

4
-

4	 4K1	 Kin	

L0,2,4
	 R/2	 t	 4-Q

z0(t)	 =	 8 
	 (-1)4CQ;	

R-m
(-1)	 -kC k P(m+k)/2kcni 4 m0 k0

x m2 (t) m lk (t) NS -m (t) NC -Q	 k (t) }	 sin 4co(t)1
I

{

4	 4

+ K 1	 Km	 (_1)(Q-1 )/2	 4-z (_1)Q-m	 C	 C	 P(m+k)/2

Ll8	 3	 _4 k m=0 k=0	
Q m 4_ Q k

4-z-k
(t) 	 cos	 4co(t) .X m2 (t) m lk (t ) Ns -m(t)

(20)
F.	 - c

1^

The terms which are independent of the noise components N c (t) and
N S (t) are obtained by letting z= m and k= 4-z= 4-m.	 Thus,

- K4	 4
-+ zC(t) -	 18 ^n	 P2

Im
	 (t) +m2 (t) - 6m 12 (t) m2 (t] sin 4c9(t)- 

m
k=4-m	 - 4 P 2 m 1 ,(t) 61 M [ 12 ( t ) - m2(t J cos 4co(t) (21)

Comparing (21) with the first two terms of (6), we see that, except for
k

a factor of two in gain, the two are identical. 	 Furthermore, evaluating

r'
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the remaining terms in the summations in / 7O \ , we get the identical

s  gnal x noi38 and OniSe:nOi3e terms as in /9\ Combined with (l0),

except again for the same factor of two in gain. / Carrying out the

algebra to prove this identity is left to the reader.) 	 Thus,

K
ZU/t) !
	 l4 Km' p^	 ^

]
2 /t\ ^ 2 (t\ - ^

l
4 /t\ -^ 4 /t	 sin 44o/t\

2 	 d
^	 `	

^f ^P ^ /t\ ^ /t\	 /t\-^ /t	 CO% 4^^/t)+^ ^t ^q//t \ ]` /^'2 ` ' [~^ ` /	 '2 ` /|	 ` '	 ^- `	 ' /-[
^-	 ^	 )

4 4and letting K now equal K lD V|	 'K- K' /2 " ^e get the identical stochastic

equation of loop operation as in /121.

/22\

4.0	 CONCLUSIONS

We conclude by pointing out that, while we have indeed'shown that

the low signal-to-noise ratio realization of the MAP estimation loop for

QPSK is stochastically equivalent to the conventional	 quadriphase Costas

loop, we have not attempted to give the tracking performance of these

loops nor compare it to that of a biphase Costas loop. 	 Determining the

tracking performance of the quadriphase loop of Figure I	 (or Figure 2),

taking into account the bandlimiting effects of the arm filters, 	 is con-

siderably more complicated than the equivalent analysis for the biphase

loop.	 The principle reason for this stems from the fact that the

uation of fourth order moments of the filtered signal 	 and noise com-

pone nts.	 While indeed such evaluation is possible, 	 the resulting expres-

sions and necessary algebra to arrive at them are quite complicated,

even for the simplest case of a single -pole (RC)	 arm filter.	 Neverthe-

less,	 these results, upon completion by the author, will	 be presented

in a -future report.
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APPENDIX L

THE EFFECTS OF RESIDUAL CARRIER ON COSTAS LOOP PERFORMANCE
AS APPLIED TO THE SHUTTLE S-BAND UPLINK

by

Marvin K. Simon

1.0	 INTRODUCTION

Traditionally, a Costas loop is intended for use in receivers

hi"ch must reconstruct a carrier reference from an input signal whosew

carrier component is totally suppressed, 	 e.g., a biphase modulated

carrier.	 In certain applications, however, the Costas loop is called
upon to accurately track a signal whose carrier component is not com-

pletely suppressed.	 One such application occurs on the Shuttle S-band

uplink during the time when both data and a ranging subcarrier are

linearly modulated on the same carrier and the data modulation index

is not n/2.	 A simple block diagram which, for the sake of analysis,

j characterizes this situation is illustrated 	 in Figure 1.	 Included in

this illustration are the means by which the data and the ranging sub-

carrier are extracted using the in-phase demodulation reference generated

by the loop.

Several	 key questions arise relative to the performance of the

Costas loop under these unorthodox conditions:

1.	 Is the loop capable of successfully tracking the input

independent of the value of the data modulation index?

2.	 Is it possible to extract the ranging subcarrier as shown

_I if the data modulation is removed?

3.	 What is the additional threshold power- to-noise ratio

required to operate the loop in the PM (ranging and data) mode as

y compared to the PSK (data only) model

V 4.	 What tradeoffs exist between power in the ranging channel

and loop threshold performance as a function of the data and ranging

modulation indices?

This appendix attempts to answer 'these and other questions related

to the performance of Costas loops in the presence of residual 	 carrier

by establishing a theory for such performance as a function of the key
I	 ^

system parameters. For example, we shall first demonstrate that.there

j	 l	 exists a critical data modulation index below which the loop will not

.'	 operate, regardless of the value of signal-to-noise ratio.

-	 •X31`^'^`'le^+„iM!'t^^^'.g5i=f";^/^, ....w	

..	 .-	 ,., Y,	

+}
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+	 Figure 1. Costas Loop and Ranging Demodulator
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2.0	 SYSTEM MODEL

Consider the Costas demodulator illustrated in Figure 1 whose
,d

input signal is of the form

s(t,e) = P sin [w0t + ad d(t) + a's sin (wsct + 0 r (t)) + 01

where P is the total received power, w 0 is the carrier radian frequency

and 0 the corresponding input phase to be estimated, ad is the data

modulation index with d(t) the dada waveform, and a
s 

is-the ranging

subcarrier modulation index with w sc the radian subcarrier frequency

and 0 r (t) the tone ranging modulation.' Using simple trigonometry,
s(t,0) of (1) may be decomposed into its carrier, ranging, and data

components, namely,

s(t,o) = P sin [ w 0 t + ad d(t) + 61 cos [ as sin (wsct + er(t))]

	

+ P cos[wit + R d d(t) + e1 sin [as sin (w sc t + e r ( t )) ]
	

(2)

or, making use of the relations,

co 1	 n=0
cos	 [a sin x] =	 ^	 EnJ2n^a) cos 2n x ;	 en

n =0 2 ;	 n > 0

co

sin	 [a sin x] _	 2	 1	 J2n+1(a)	 sin	 (2n+ 1) x (3)
n=O

re
where J n (x)	 is the nth order Bessel function of the first kind, then

s(t,o) _	 F2	 cos ad sin	 (w Ot + o)	 enJ2n(as)	 cos	 [2n (wsct+er(t))]'g _n=0

+	 2P sin
co

ad d(t)	 cos	 (t +) {	 e n J2n (as)	 cos [2n (w,sct+er(t))]
n0

+ P cos ad cos	 (wot + e)	 2	 J2n+l(ss) sin [(2n+1)(wsct+ 0r(t)) ]
Sn-0

- _P sin ad d(t)	 sin	 (wOt +e) {2	 '2n+1	 as sin	 [(2n+1) (ws c t+ or(t))
M

^
(	 n =0

^ m

,

,.
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The additive channel noise n i (t) can be expressed in the form of a

narrowband process about the frequency of the observed data, namely,

n i (t)	 =	 ^F {Nc (t) cos	 (W t+ e) - N s {t) sin (wgt+ e) } , (5)

where Nc (t) and N(t)are approximately statistically independent, sta-,s
tionary, white Gaussian noise processes with'single-sided noise spectral

f
density N g w/Hz and single-sided bandwidth B^ 	 < W0 /27r.

The input signal	 plus'noise is bandpass filtered where the filter
`^

bandwidth is narrow enough to exclude the ranging subcarrier and its
s

harmonics.	 Thus, demodulating the bandpass filtered signal plus noise

by the quadrature reference signals
ll

r (t)	 _	 vr2 K l	 cos	 (coat + e)C

F	 .	 ( rs(t)	 _	 ­vT K 1	 sin ( w0 t+ e) (6)

gives the corresponding phase detector outputs (ignoring second har- y

monic terms)

`
co

cos B	 E	 J	 (B ) cos [2n (w	 t + 6	 (t))^ ( sin cp(t)	 =	 K 
1 ^n 

^	
d  	 n	 2n	 rc	 s	 scn

+ K	 sin	 d t	 E	 J,	 e	 cos	 2n w	 t+ e	 t	 cos
1	 d`	 (	 )	 n	 Lrt ( 	[	 ( sc	 ))^n	 s )	 r (

noo
.

+ Kl Km [Nc (t) cos cp - N s (t)	 sin col

E (t)	 =' - K	 K	 4 cos se	 J	 (R ) cos [2n (w	 t+ e (t))^	 cos ^p
1	 d	 n	 2n	 sc	 rs	 m	 n G	 s

+ K 1 Km 3P	 sin (^d d(t)	 ).	 rn J 2n (f^ s ) cos [2n(U'sct* e r (t))a`	 sin q)
n=0

+ K1 Km [N c (t)	 sin co + N S (t)	 cos co] , (7)

where Km is thr phase detector gain and 	
(p 

d e- e is the loop phase error.

Assuming that 'osc /27r >> B i 42, where B	 is the two-sided arm filter

bandwidth,	 i.e.

B	 G(j'27r f)	 2 df (8)

r ^	 ORIGINAL PAGE IS
'f OF POOR QUALITY
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then only the n = 0 term in the summations of (7) pass through these

filters.	 Thus, the arm filter outputs are simply

l' zc(t)	 =	 K 1 Km [	 cos Sd J O W - N s (t] sin 9

+ Kl Km [VP sin	 ad d(t) J O ( ss) + NC(t)^ cos cO

z s{t)	 _	 - K l Km ["rP 	 cos	 sd J O ( as )	 - N s (t) J cos cp

K	 sin	 s	 d(t) J	 (^)	 +`N	 (t)	 sin	 cp
1K[	 d	 0	 s	 c (9)

where the "hats" denote filtering of the corresponding signals by the

arm filters,	 e.g., d(t)	 G(p)d(t).	 Thus, 	 the output of the third
multiplier is the dynamic error signal'

i
zO(t)	 zc(t) zs(t)

2	 2
Kl

2(s)-	 J	 P[a 2 (t)	 sin' S	 - cos z a ]	 sin 21;o- `(

' - J^ (S s ) P sin 2sd d(t)	 cos	 2rp + v 2 [t,2 cp]^, (10)

where

v2(t,2(p) [N^ (t) - NS (t) + 2 AP 	 cos sd J O ( as) N s (t)

a
+ 2 >P-sin 6d d(t) J O (^S) N c (t)	 sin 2^p

-1
i

-	 [2 A cos	 R	 J O (t^s) N c (t)	 - 2 >^ sin fed a (t) J O (f^ s ) NS(t)

- 2 NcW N s (t cos 2^p (11 )

--t------oThe instantaneous frequency (relative	 w O ) of the VCO output is
related to z O (t)	 by

f

do 	 _
dt	 -	 KV EF( p ) z O ( t )l (12)

r r^ Thus, the stochastic equation of operation of the loop becomes

x



2d- 	 K F(p) J2 ( R s ) P [D
m 

sin  sd - cost 
ad] 

sin 2cp

,•, 4.
+ J O ( B s ) P sing sd [d 2(t) - Dm] sin 2c0

self-noise

of data

JO (RS) P sin 
2sd 

d(t)	 cos.2cp + v 2(t 2 ^o ) (13)

where

Dm	 {d2(t)>	 =	 I	 Sm (f) J G (J 2Trf) ( 2 df (14)
€ °°

' represents the power in the data modulation at the arm filter output

the 	power spectral density of the unfiltered datawith Sm(f) d
o 2 

i
2

d(t),	 and K = ,K 1 	Km KV.

The first term i n the braces of (13) 	 is the loop S-curve, while

the remaining terms are al l zero mean and thus contribute to the total

+
noise perturbing the loop.	 Note that, when cos t sa = Dm sing 

ad' 
or,

equivalently,
Cot  

Rd = Dm , (15)

the loop S-curve vanishes and thusthe loop will 	 not lock at any loop

signal-to-noise ratio.	 For values of ^d less than the critical	 value

satisfying	 (15),	 the loop	 locks at co =	 (2n+1,) Tr/2,	 n = 0,1 ,2,....	 For

values of a
d	

seater than this critical	 value, the loop locks at

cp = + nTr,	 n = D, l t 2 	... .
As a specific illustration of (1,5), consider the caseof Man-

$" chester coded data (all of the S-band uplink low and high data rate

tracking modes) and single - pole Butterworth arm filters (typical of

Costas loop in network transponder).	 Then the mean-squared filtered

data power, Dm	 is given by-[1

e 3 - 4 exp	 (- B i /R5) + exp	 ( - i? Bi/Rs )

-D	 -	 -Dm
	

1 
	 Bi /RS

(16)

7,a

to ;

I

6
	 {
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k where.	 1=	 T is the data	 coded or uncoded	 symbol rate./	 (	 )	 or aY	 F
s

single-pole Butterworth filter with transfer function

^G (j 27r f)	
2	

-	 (17)
2

1 + (f/fc):I
and 3 dB cutoff frequency fc , the noise bandwidth B

i
	is given by

B 
	 =	 ,rf	 (18)

Using	 (15),	 (16)	 and	 (18),	 Table 1	 tabulates	 the critical	 values of

` data modulation index for the various data symbol rates of interest

on the S-band uplink.

Table 1

Rs	 fc	 BilRs	
Dm	 (sd)crt

32 kbps	 (Low	
134 kHz	 13.155	 0.886	 0.8157 radData Rate Uncoded)

96 ksps	 (Low
134 kHz	 4.385	 0.6636	 0.8872 radData Rate Coded)	 s

`
.

72	 kbp's	 (High
Data Rate Uncoded)	

308 kHz	 13.44	 0.8884_	 0.815	 rad
^.

_216	 ksps	 (High
Data Rate Coded)	

308 kHz	 4.48	 0.670	 0.8848 rad

t	 s

3.0	 STATISTICAL CHARACTERI'ZA'TION OF THE EQUIVALENT ADDITIVE NOISE

,s As mentioned above, the equivalent additive noise terms in	 (13)

s all	 have zero mean.	 Furthermore, each has a continuous power spectral

t density component.	 Since the bandwidth of these processes is very wide

} with respect to the loop bandwidth, it is sufficient to 'find for each

- 4 one only the power spectral density at the origin which, when multiplied
j

by the loop bandwidth., gives the contribution to the total 	 noise power

c'	 #
r

of that component.

_S.a
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In previous analyses . of this type [1,2],	 it was shown that,	 for

cases of practical	 interest, the effect of the self-noise of the data

modulation on loop tracking performance was negligible. 	 Making this„t

same assumption here, and further assuming that 	 ^o = 0 (high loop

signal-to-noise ratio), the equivalent noise of (13) reduces to

t	 `^ ne(t)	 _	 - d0 (ss ) P sin 2 sd d(t)	 + ^2(t'0)'

_j
0

 ( ss ) P sin 2 sa d(t)	 - 2 1P cos	 Rd J
0

( R5 ) Nc(t)

+ 2	 sin	 Rd a(t) J d (Rs) N s (t)	 + 2 N o (t) Ns (t) . (19)

The autocorrelation function R
e 

(T)of n e (t)	 is easily shown to be

R( T) {n
e

(t) n e (t	 T)>
e

_	 J^ 
( s s ) P2  sin g 2 Rd Rd(T) + 4P  cos 2` Rd J^ (RS ) RN(T)

+ 4 P sin g a	 J0
(as) 

Rd(	 )'RN(T) + 4 RN 2 (T) (20)

where

r Rd(T)	 <d(t) d(t +T)> S d (f) {G(j 2Trf) i

2 e72,rfT df

r J

k

Rh (-r) 	 NC (t) N C (t + T)	 =	 NS (tN s
(t+ T)

F	

±	

a

a
C4

Q	 N_0	 JG(j 2Tr 
f) i 2, eJ2,rfT df (21)

1
2

t

J The equivalent noise power spectral density at the origin is then

_^
0 N	 2(	 R (T) dT

e_
r,

e	 J-

i =	 2 J^ (s s ) P2 sin 2 2 
s d sd(0) + 4 N o P	 cos t Rtl J^ (Rs)

+ 4N0 P 
sing ad J 2 (ss) S	

(f)-JG(j 
27r f) l 4	 df

t	 ,;

~
+ 2ND

00_

^G(j2rrf)j4	 df
f-CO

(22)
ORIGINAL PAGE IS
OF POOR QUALITY
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Letting

ca
	 21r f) 1 4 

df

KL _C0J G ( j 2,r f) 1 2 df

J7co Sd (f) JG(j21rf)1
4 df

KD

	

	 f.Sa() IG(j 2,r f) 1 2 df	
(23}

J

f	 and making use of (8) and (14), we can rewrite (22) as

/'d (0)AP 	= 4 N O P 2 NTI 10 (B s ) sin g2 	 ad 
LO	 T

	

+ J0 (!i s) cost	 + Dm Kp sin2 tad	
K

+ L	 (24)
Pi

lip

'	 where, in addition, we have defined

p	 2P

	

i - 
NO B 	

(25)

as the signal-to-noise ratio in the arm filter bandwidth.

4.0	 EFFECTIVE LOOP SIGNAL-TO-NOISE RATIO AND TRACKING PHASE JITTER

t	 From the loop equation of operation i'n (13), we can see that the

1 effective loop signal-to- noise ratio is given by

J 4 (R) D sin	 co

	

g R	 s S )t	 2r	 p	 s( m	 d	 d
z	 (26)
I	 Pe	 N B	 'k	 e L;I

where BL is the single-sided loop tracking bandwidth (typically 200 FIz
for the S-band network transponder). Substituting (24) into (26) rind

simpl ifying resul ts in	 r

Pe	 4SL	 P = N 3	 (27)
^.	 0 L

A	 where SL is the loop "squaring loss" defined by

f	 {t

^	 r



^i	 10

J 4 (S) (D	 sin g R	 - cos h R )2
0.	 r SL	 =

2	 2	 2	 Kb	 4	 sin 2 26d	Sd(0)
(28) 

+ Dm 
K 
	 +	 + RdJO ( a

s ) [cos	 Rd	 sin	 Rd ]	 J O (ss)
P.i 	2	 T

j and Rd 
o 

PT/N O is the data. signal-to-noise ratio.	 The comparable result

for operation in the PSK (data only) mode can be obtained from (28)

by letting	 RS = 0 and	 Rd = ,r/2, namely [1],
r^

D 2

SL
	 m	 K

L

(29)

Dm KD
Pi

Again, for Manchester coded data and single-pole Butterworth

arm filters, we have that S d (0) = 0 and K L = 112.	 Thus,	 (28) simplifies'
to

k+j

,.

`
J^ (Rs ) (Dm sin g sd	 - cos t sd)2

S	 _ (30)	 z
L

J 2(R) [cos2 R+ D	 K	 sin g R J + 	1,
0	

s	
d	

m	 D	 d	 2pi

i What remains is to characterize the tracking phase jitter per-

formance.	 In the linear region (high loop signal-to - noise- ratio),

the mean-squared phase jitter cr	 of the loop phase error 2cp is

given by
i

2^p	 Pe	
PS

L

Since the demodulation reference for the data and ranging signals is

r ;
}

at wG rather than &01 then the jitter which degrades the power in

these components has variance 4.
^ 2	2

^O 	-	 T 
0 2^o	 _	 PSL

5.0	 RANGING CHANNEL PERFORMANCE CHARACTERISTICS

5.1	 Data Modulation On

r"^a The ranging subcarrier with its tone modulation is extracted

<;` from the input signal	 plus noise by demodulating this input with the
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r

i in-phasein-	 reference	 ( r c (t)	 generated by the loop in a wideband phasep 

detector and then bandpass filtering the output of this detector (see

e. Figure l).	 The signal	 and noise components at the filter output are

obtained from (4),	 (5) and (6), and are given by

'' - I e y(t)	 =	 K^^{ 2P	 cos sd cos (wit+0[2J1(ss) sin	 (wsct+er(t))]

+ ^[N c (t) cos (w gt+0) -N s (t) sin (wgt+ e)] } ^K 1 cos (W t+6)

t
=	 K

1 
Km {2 /V cos	 6	 J (s) cos cp sin	 (wsc t+ 6 (t)) d	 1	 s	 r

i
- + Nc 	 cos	 ^O - N s 

(t)	 sin cp} (33)

where the "hat" now denotes filtering by the ranging channel 	 bandpass'

filter (bandwidth equal	 to B r .	 Thus, the,signal power into the

ranging channel	 is

j# Pr	 2 P cos t ad Jl2( R
Sv
	 cost cO . (34)

;i and the corresponding noise power is

Nr 	 N p Br (35)

. From Chapter 2 of [31, we have that
r. I	 (p S

	 )2.	 1+ cos	 2^O	 1	 2	 Lcos	 cp	 =	 1 + (36)2 I O p SL

u `: Furthermore, since

I 2 (x)	 I0(x) 	
x	

I 1 (x) (37)

(36)	 simplifies to

y

1
I	 (PS1	 L

.

f '^

cos t. ^P	 =	 1	 - p SL
I g p SL

(38)

r.. or, for large P SL,

t
t
 cos	 _	 1 -	 1	 ORIGINAL PAGE I$ 

P SL (39)
OF POOR QUALITY

i
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Note from (34) that, as the value of Rd is increased beyond its

critical value, the carrier becomes more suppressed and thus the Costas

loop tends to track better. However, as 
a  is increased, cos ad

decreases and thus the power in the ranging channel Pr tends to

decrease because of this. Since the power in the ranging channel is

proportional to both cos t sd and the accuracy of Costas loop tracking

(through the factor co_- cp), a tradeoff exists with regard to the

selection of the data modulation index.

5.2	 Data Modulation Off

When the data modulation is removed, 	 i.e.,	 a
d = 0, then as pre-

j viously mentioned, the loop will	 now lock up around	 cp =7r/2 (as opposed
r	 t

E to	 co = 0).	 This is equivalent to saying that the in-phase and quadrature

i demodulation reference signals switch roles. 	 Thus,	 since the ranging

. subc'arrier component in the input signal s(t,e)	 is now demodulated by

the quadrature carrier reference signal, then from (34), we have that

(for large loop signal-to-noise ratio) Pr = 0.	 The conclusion to be

reached then is that, 	 in order to extract range information as in

Figure 1, the data modulation cannot be turned off at the transmitter.

6.0	 PM VERSUS PSK THRESHOLD TRACKING PERFORMANCE

Tracking threshold is typically specified as the minimum input

j^ signal	 level	 for which the mean time to Loss of lock is greater than

or equal	 to 10 seconds.	 This condition is uniquely specified by the

t	 .	 ^ loo	 s i gnal-to-noise ratio or, equivalentl y,P	 9	 q	 y, Q 2^o .	 Thus,	 two modes

of operation,	 e.g.,	 PM and PSK, will 	 have identical_ tracking thresholds

' if the total	 power-to-noise ratio P/N O is adjusted in one relative.to

the-other to produce the same 2	 in both.
rP

Using	 (29),	 (30)	 and	 (31),	 one can determine in accordance with

the above equivalence the additional P/N O required in the PM mode to
b

K

produce the same tracking threshold as for PSK operation. 	 Letting

P'/N0 (> PAD) denote the power-to-noise ratio required in the PM

- .' mode, then,

2	 4	 2	 2	 2
P	 Dm,	 -P'	 d0 (Rs ) (Dm sin	

sd	
-	 cos	 Bd)i

r
_	

(40)
4N	 B	 N	

B.	
_	 4N	 B	 N	 B	 .

0	 L	 0	 1	 0	 L	 2	 2	 2	 0_1;i D	 K	 J
m	 D	 4P	 0	 s) Ccos	 sd +DmKDsin	 r^dl+	 4P'

';1
,1



13

Solving for P'/N 0 in terms of P/N O gives the quadratic equation

A(P'/N 0 ) 2 + B(P'/N 0) + C = 0,	 (41)

where

A	 J^ (Rs) [Dm sin g Rd -  Cos 2 Rd ]2

r ll	
D

2

B - -JO(Rs) ICos2ad+DmKDsin2Rd^\N / 	 m 	 B.

0 Dm KD + 4 P1

N	 B	
2

0 2
mC	 _

0	 i	 P 1

4 P	 CN.O/
(42)N0 Bi

Dm K 	 +	 4 P

The solution to (41) is well	 known to be i

0	 2A	 12A / - A

K_

a^
Note that, if arm filter degradations are ignored,	 i.e., D	 = K	 -Z, 

m	 D
a (corresponding to B	 then

4P
r

N0 
Bi

1+	 4P 1+	 4p^^

N=

N	 B
R-)	 02 1+ 1+ 4 cos t 2Rd

NOB,
(44)

0 0 	 2J O (a	 Coscos	 2Rd 4 P	 2
N	 B0	 t)

s	 # which is bounded below by

k
P'

0

P/N
0	 --	

2	
for

1	 (S) {cos	 2R	 i

2 P
N	 B.	

« 1

0	 i
(45)

%..® 0	 _s	 d

and bounded above by

:.
P'

N 0
=	 P/NO	 for

J^ (R s ) cos	 2Rd

2 P	 ^^	 1
N0 B 

(46)

t
C
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7.0	 APPLICATION TO THE S-BAND NETWORK TRANSPONDER DESIGN

The baseline design of the S-band network transponder under

development by TRW calls for as= 1.0 rad and Rd = 1.1 rad. Performance

tests on the engineering model, as reported in the network transponder

CDR package [4], reveal the following tracking threshold signal levels

in the PSK mode (through TDRS):

Table 2

Data Rate	 Temperatu re 	Signal	 Level

Low Data Rate	
70°F	 -104.2 dBm

j (32 kbps uncoded or	 120°F	 -102.4 dBm
96 ksps coded)	

-20°F	 -104.2 dBm

r	 :'f

r-r High Data Rate	 70°F	 -103.7 dBm

(72 kbps uncoded or	 120°F	 -101.4 dBm
216 ksps-coded)	

20°F	 (SSP will	 not hold

.i

lock -100.dBm)

rl

-^ The input noise power spectral density is -151 	 dBm/Hz.	 Thus,

the maximum measured P/N 0 is 48.6 for the low rate and 49.6 for the

' high rate modes.	 Assuming these threshold values of P/N 0 for PSK

' operation through the TDRS, Table 3 tabulates the values of various
k

system parameters leading up to the calculation of P'/N D from (43).

^£
1

Also indicated in the table is the dB increase in power-to-noise ratio

required to go from the PSK to the PM mode through the TDRS.

y
Table 4 illustrates the power-to-noise ratio P r/N^ in the ranging,

4`

r
channel	 [as computed from (34)] for the same parameters as in Table 3

and operation in the PM mode.

,. 8.0 '	 PERFORMANCE AS A FUNCTION OF DATA AND RANGING MODULATION INDICES'-

The tracking threshold of the Costas loop when operating in the

PM mode can be reduced (relative to that in the PSK mode) by reducing

'	

(

the ranging modulation index s 	 and/or increasing the data modulation

.1
index sd (i.e.	 suppressing the carrier more).	 Unfortunately, however,

_ both of these changes also reduce the power-to-noise ratio in the rang-

ing channel.	 To see these effects quantitatively, Figure `2 illustrates

4	 ar

n	
Y Y.

.s	 ..z A	 s}	 N	 y	 .r	 .V
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a
1t	 Table 3

j P/N 0 = 48.6 dB, 6 s = 1.0 rad, sd = 1.1 rad

Data Rate	 KDDm	 PT/N0 (dB)	 pi (dB)	 P'/NO (d pi)	 AP/N0 (dB)

-

`	 32 kbps	 0.829	 3.549	 -4.642	 54.23	 5.63

96 ksps	 0.5078	 •-1.223	 -4.642	 55.01	 6.41

72 kbps	 0.8326	 0.0267	 -8.257	 53.83	 5.23

216 ksps	 0.5166	 -4.745	 8.257	 54.50	 5.90

_a
1

	

#	
Table 4

P/No 48.6 dB, R s = 1.0 rad, sd = 1 .1 rad , BL 200 Hz

	U	 Data Rate	 Pr /N o (dB)

C	 4t	 32 kbps	 43.21

96 ksps	 43.-97

	

'	 72 kbps	 42.78

216 ksps	 43.41_

r<

4

}_ ,4 

'10
f

q

tr	

^-.

s

:.	

1

F

t

	

_.	 —....nit
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I the tracking threshold power-to-noise ratio for PM operation as a func-

1

A
tion of ranging modulation index for fixed data modulation index, and 	 +

Figure 3 illustrates the ranging channel power-to-noise ratio as a

' function of these same parameters. 	 The value of P/N O for PSK opera-

tion is again chosen equal to 48.6 dB and the results are given for

both uncoded and coded low data rates. 	 We observe from Figure 2 that,

as Bd approaches n/2 (fully suppressed carrier), the tracking threshold

becomes virtually insensitive to data rate.	 A similar phenomenon is

i observed in Figure 3 for the ranging channel power-to-noise ratio.

Using the information in these curves, along with the ranging channel

bandwidth and the required signal-to-noise ratio in this bandwidth

a^ turned around to the ground, one can select values of ^	 and sd to

meet the additional.requirements on increase in tracking threshold for

PM Versus PSK operation.

9.0	 CONCLUSIONS

:. The operation of-a Costas loop in a PM mode produces performance

degradation (relative to PSK operation) because of the presence of

residual	 carrier.	 This appendix has numerically evaluated 'such degra-

dation for parameters of interest on the Shuttle S-band uplink. 	 The

corresponding performance of the ranging channel	 is also given as a
function of these same system parameters, thus allowing the necessary

tradeoffs (choice of modulation indices) to be made between such per-

formance and that of the Costas loop when trackingunder threshold,

conditions. 
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Figure 2. Tracking Threshold Power-to-Noise Ratio for PM Mode vs. Ranging
^; s	 Modulation Index with Data Modulation Index as a Parameter
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