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This paper is one of a continuing series of economic analyses:_

w conducted by the Project Analysis and Integration Task of the Low

' Cost Silicon Solar Array Project of the National Photovoltaic Con- 'A
version Program. 	 The intent of these studies is to anticipate _..

ti

,problems which may arise as the Project pursues its objectives of

dowering th•a production cost of photovoltaic arrays to a level com-

petitive with other sources of electricity, and to insure a smooth

transition from government R,D&D to private commercial production.

The study is concerned with two somewhat disjoint subjects - the

diffusion of new industrial production processes and the determinants
'	

.

of success of previous federally funded demonstration projects.	 The

=a^ research was limited to secondary sources. 	 In essence, a literature'x.

+ l search on these two subjects was the primary aim of the study.

That search led, however, to some fairly strong conclusions out

of which specific recommendations for the_ future plans and conduct of

a°x
the LSSA project have been derived. 	 It must be emphasized that these

V recommendations are made only on the basis of the evidence considered.

That is, no attempt has been made to incorporate the myriad other x"
.x

factors which bear significantly on the Project (e.g., funding levels

or political imperatives).	 Thus, these recommendations are not a com-

prehensive set of project management recommendations to the Photovol-

taic Program of the Department of Energy. 	 They are to be viewed as an

' input into such a comprehensive set.'
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The guidance and direction for this and otheri

	

	 g	 n th r studies..in the

series has been supplied by Dr. James Doane. Separately issued

background papers, upon which this study draws heavily, have been

prepared. These papers, "Prospects for Innovation and Diffusion of

Photovoltaic Technology" by Bill Gates, and "Sequential Pilot-

Demonstration-Commercial Strategy and Its Relation to LSSA's Indus-

trialization Plans" by Tom Lee, form the basis for Sections II and

III, respectively. A heavy debt is owed to each member of the study

team.

Special thanks are due to Beverly Williams for her efforts,

above and beyond the call of duty, to ensure that each of the many

drafts of this paper were promptly typed and processed.
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SECTION I

i INTRODUCTION

A. 	 PURPOSE a'

This report is intended to define, elucidate, and comment on problems

which may arise as the Low Cost Silicon Solar Array (LSSA) Project attempts to

industrialize (as opposed to commercialize) the new production technologies

expected to be forthcoming as a result of the Technology Development efforts of

the project.	 In particular, LSSA's'charge to insure an annual production capa-

bility of 500 MW peak for the photovoltaic supply industry by 1986 is critically

fi examined.	 The e.tamination focuses on one of the motivations behind this goal--

concern over the timely development of industrial capacity to supply anticipated

demand.	 Con-lasions from the analysis are then utilized in a discussion of

LSSA's industrialization plans, particularly the plans for pilot, demonstration

;t. and commercial scale production plants. 	 Specific recommendations for the imple-

mentation of an industrialization task and the disposition of the project quantity

goal are'derived.

B.	 RESPONSIBILITY

For the purposes of the National Photovoltaic Program (and this paper)

' industrialization has been explicitly defined as the process by which new tech-

nology is adopted by the photovoltaic, supply industry.	 Commercialization, on the

' other hand, refers to the process by which an effective demand for photovoltaics
y

is realized, given product price. 	 Thus, commercialization deals with user

" acceptance and industrialization with supplier acceptance. 	 The photovoltaic

program currently allocates the analysis of industrialization issues to JPL's -

Project Analysis and Integration Task (PA&I), while the problems associated with
s	 ., ,r

commercialization are the responsibility of otherparts of the program.

s{

t	 i See Commercialization and Industrialization of-Photovoltaics: 	 Draft Plan,
Photovoltaic Program Planning Group, July 1977.
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The PA&I task has been charged with five specific activities, among

which are:

(1)	 Assess the goals and progress of the LSSA project and

(2)	 Contribute to the generation and development of Project plansl.

Since much of the previous effort of the PA&I task has focused on issues

surrounding the LSSA price goal of 	 watt by 1986, this paper concentrates

on the second goal--the annual output capacity of 500 MW peak.

R C.;.
	

MOTIVATION

The activities of the Photovoltaic Conversion Program of DOE's Division of

Solar Technology are planned	 to develop and to promote the use of photovoltaic

•t
systems to such an extent that the private sector will produce and utilize cost-

' competitive photovoltaic systems "2 (italics added).	 This broad statement of

purpose has been translated into specific objectives for both the photovoltaic

program and the LSSA project.	 In particular, the specific JPL project goal for

-1985-86 is ",to reduce today's (1975) solar array prices of $20,000 to $25,000
R

F` per kilowatt (peak) in annual quantities of 100 kilowatts to less than $500 per

kilowatt (peak) in annual quantities of 500,000 kilowatts."3

Given the emphasis on cost-competitiveness and private sector production
F _

with which the ;program began, the importance attached to price reduction seems

entirely appropriate.	 Most of LSSA's resources are devoted to reducing the cost

F ^` of photovoltaic arrays, and as pointed out above, the primary efforts of the

PA&I Task have been directed at analyses concerning the price goal. 	 It is clear	 j

that photovoltaics will never make a significant contribution to the nation's

r. energy supply unless and until it becomes -competitive, in the price dimension,

with other sources of electricity.

P ^ `	

pAGr 1^
ORIG^AR Qv^^

F OF Y^

1First  Annual Report, LSSA Project, ERDA/JPL-1012-76/5, p. 3-1.

rt Ibid, P. 1-1
3

1Ibid, p..	 -1.
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However, from the beginning both the program and project have been

concerned that a demonstration of the technical ability to produce solar arrays

at a "cost-effective" price will not be sufficient to bring' about their speedy
introduction, acceptance, and diffusion into the energy production sector. Thus,

the cost reduction goal has been supplemented with other goals specifically aimed

at promoting user and supplier acceptance.''

"The objectives of the ERDA [DOE] Program are:

...To stimulate the creation of a viable industrial and
commercial capability to produce and distribute these
systems for widespread use in commercial, residential,
and governmental applications."

"JPL's-role in the'ERDA [DOE] plan:

To encourage expansion of industrial capability to pro-
duce solar arrays.	 To support methods of user acceptance."

It seems clear that the 500 MW peak/year output goal of the LSSA Project is

partially, if not wholly, the result of such concerns over supplier acceptance

of new technology.

However, there are at least two possible interpretations of, or motivations

for, the 500 M peak/year output in addition to the promotion of supplier accep-

tance.	 First, attainment of the output goal has come to be viewed as an aid in

the successful realization of the project price goal. That is, through the

operation of the learning curve, assuring a large annual output will in and of

itself promote the attainment of a smaller per unit cost.

fP
More fundamentally, the 500 MW peak/year goal can be interpreted as an

ultimate standard against which the entire photovoltaic program may be judged.

Since 500 MW is approximately one percent of the total annual additions to the

,- electrical generation capacity in the United States, this may be viewed as the

threshold level above which the photovoltaic program will be considered a success.

t The implications for the LSSA project of either, alternative interpretation of the

output goal are elaborated below.

e

1

1.

Ibid, p. 1-1.
f
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Thus, this report analyzes the industrialization goal of the LSSA project.

'

	

	 The conclusions of that analysis are used to develop recommendations with respect

to Dilot, demonstration and commercial scale production plants, as well as the

disposition of the current LSSA annual output goal.

F,

D.	 ORGANIZATION

r
Section II begins the analysis with an examination of the likelihood that

significant barriers to the wide-spread adoption of new photovoltaic production

t

	

	 techniques will exist given that: the project has successfully attained a

product price of 50e/peak watt and user acceptance has been successfully pro-

moted. Specifically, the probability that barriers arising from (1) industry

structure (2) capital availability or (3) inadequate information transfer may

significantly impede the adoption of new production techniques by the photo
a_

voltaic supply industry is examined. The key roles played by the dual assumptions

of an effective market demand (user acceptance)at a cost-competitive price are
I

(?	 emphasized.
r,

u ;<;

	

	 Our general conclusion is that the likelihood of significant delay, given

effective demand for the product, is quite small. That is, given that users
k.	 a

i	 desire the product at 50e/peak watt (commercialization is successful) and that

the capability exists to profitably manufacture them for this price, it is

k	 extremely.unlikely that production will not quickly be forthcoming, even without

-any significant government aid or prodding. Our best guess, supported by con

"•	 siderable evidence (see text), is that 1-2 years is a reasonable estimate of the
r.

lag from the moment such conditions exist until the new process is commercially

producing and filling market demands. Thus, we expect no barriers to the adop-

tion of new technology from the supply side.

In light of this conclusion, the LSSA project, goals and plans are

re-evaluated. First, recommendations for the disposition of the 500 MW peak/

year output goal are developed. Then, a third chapter begins an examination of

the LSSA plans for pilot, demonstration and commercial scale production plants.

An intensive and wide-ranging analysis of previous federal demonstration programs

^,	 q
`	 is included to isolate those factors which have contributed to their success or

K	 failure.
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A final chapter presents a summary and our recommendations and conclusions,

among which are:

(1)	 Construction of small scale pilot plants is recommended if and when
it is believed they would significantly contribute to technology
development.

(2)	 Large-scale demonstrations of photovoltaic production technology
should only be undertaken when, from the operating experience
gained in pilot facilities, it is determined that the technology is
well-in-hand."

(3)	 Commercial scale production of photovoltaic arrays should be left
to the private sector.	 (However, significant quantities of arrays
will likely be forthcoming froTif the demonstration in (2) above.
Furthermore, an adequate demonstration may be physically identical
to expected future commercial plants.)

(4)	 The 500 MW/peak annual output goal should be shifted to Program
Headquarters if it is meant as a passive standard against which to
judge the success of the entire photovoltaic program (one percent
of the total net additions to electrical generating capacity in
the U.S.).*	 Other interpretations of the purpose of this output
goal lead to the conclusion that its level should not be
predetermined.	 Rather, it should be set as deemed necessary
for demonstrations, tests, etc.

*of course, LSSA is currently a major portion of the Photovoltaics Program and
as such remains committed to Program goals, including any production capacity

goals.	 The close contact between JPL and the photovoltaic array industry
gives JPL a unique a dvantage for the accomplishment of certain tasks necessary
to implement a capacity goal.	 I n particular, the monitoring of current
industry production techniques and quantities, industry views of future
gover pmlentand private markets, and industry willingness to invest in new
technologies can probably best be accomplished withi-n the LSSA Project.
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SECTION II

INDUSTRIAL STIMULATION

A.	 INTRODUCTION

As pointed out above, the LSSA project has been charged with the attainment

of two distinct goals--both price and quantity of output targets. 	 The 500 MW

peak/year quantity goal flows directly from the often expressed desire to stimu-

late industrial adoption of innovative production techniques. 	 Thus, JPL is

instructed to "encourage expansion of industrial capability to produce solar

arrays	 This concern over the future development of photovoltaic supply appears

throughout the National Photovoltaic Program. 	 For example, the federal Photo-

voltaic Utilization Act currently before Congress is designed to, among other

things, "accelerate the growth of a commercially viable photovoltaic industry."

Furthermore, these statements are always coupled to a proviso that theJ

resultant photovoltaic industry be self-sustaining, competi`ive and private.

Thus, a government owned or government sustained industry appears to be ruled

out.	 The supply target arises from a concern that significant barriers may exist

to the development of an efficient supply industry and the belief that these
_T_

barriers will yield to government prodding. 	 Specifically, there is conEern over

the rapidity with which new production techniques will be adopted by or intro-

duced i nto the photovoltaic industry, and with their subsequent diffusion

throughout the industry.	 In essence, the call for industrial stimulation 'is a

call for government lubrication of the transfer of new solar cel^ production

techniques to private industry.

This section is intended to examine the basis for these concerns and

determine whether the anticipated barriers are real or ephemeral. 	 Although

product price (and thus profitability) and product demand are identified as real

and paramount concerns, they do not provide a legitimate basis upon which to

support industry stimulation.	 No other significant barriers (other than price

and demand) to the rapid introduction and diffusion of supply technology are

anticipated, although several possibilities are discussed. 	 This conclusion is

First Annual Report, LSSA Project, p. 1-1.

N
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supported by evidence on 18 major product and process innovations in the

semiconductor industry, an industry quite similar to the photovoltaic industry,

as well as other empirical studies. 	 Thus, we conclude that effort°s at industrial

r stimulation, as distinct from efforts to produce information (R&D) or encourage

market demand (commercialization), are unnecessary.

R.	 PRODUCT PRICE 4
A

The major effort of the Photovoltaic Program is directed at reducing the

V , price of arrays to a level competitive with other sources of electricity genera- f,<

i'. tion.	 The 1986 price of 50^_/peak watt is one of a number of sequential price

targets established by the Program office, 	 It is clear that attainment of a

competitive price is absolutely essential to the development of a significant

photovoltaic industry.

However, the complexity involved in the realization of this goal is con- y

siderable.	 Much more than a simple laboratory verification of a 50^/peak watt '•

production price is required.	 A tremendous amount of information must be

generated along several dimensions of uncertainty before the price goal is, in

fact, accomplished.	 It is not enough to demonstrate a process with the possi-

bility of attaining a particular price per unit. 	 The probability of attainment

must be high enough such that the risks are _considered acceptable by private

markets.	 Thus, uncertainties with respect to reliability, externalities, and

h. regulation must all be lowered to acceptable levels.- The .several stages of

' R,D&D are designed to attack specific types of uncertainty through the
s

. generation of new information (see Section III for an elaboration of this

v;

{

sequence).	 All of these activities, aimed at the production of new
t:	 r

information, are properly classified as parts of the effort to increase

N the likelihood of actual array production and sale at a specific output price.

Only if sufficient information is generated in each dimension will

photovoltaic.supp.ly firms be ̀reasonably'confident that they can produce

arrays profitably at this price.

This section, however, is concerned with a second and distinct activity of 

the'LSSA'project--supply industry stimulation. 	 Thus, although the pre-eminence

.j of attaining the price goal is recognized and its importance acknowledged,` it is

1 j
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assumed for the moment that this part of the project will be successful. That.

is, we assume the price goal will be attained, with the implication that if an

efficiently managed plant can find a market for its product at 50e/peak watt,

then it will be able to operate profitably.

C.	 MARKET DEMAND

This raises a second crucial issue upon which the success of photovoltaics

depends--market demand. Even if it is clearly shown that arrays can be profitably

produced at 50q/peak watt, it is of equal importance to show that a significant

demand for the arrays will exist at this price.l

Unless it can be shown that attainment of the price goal will provide the

possibility of reducing the cost of energy in a significant number of applica-

tions (that is, that photovoltaics is "cost-effective" to electricity suppliers

and users), there will be no place to sell the newly produced arrays. Thus, the

estimation of future prices of alternative sources of electricity is imperative,

and drives the importance attached to any particular LSSA price target. Further,

it must be shown that this potential demand for photovoltaics will become

effective--that buyers will find %ut about and appear in the photovoltaics

market place.2

PAGE IS

QRIG pINOR QUALITY
OF P

1See Section III for two examples of previous federal R,D&D Programs which
successfully attained their price targets, but ultimately failed because
sufficient market demand did not materialize (Fish Protein Concentrate and
Desalination at Freeport, Texas)

2The diffusion of photovoltaic arrays into the electricity supply sector is `a
separate` and distinct issue from the diffusion of new production processes for
photovoltaics into the photovoltaic supply industry. Given that dispersed resi-
dential and agricultural applications are currently envisioned to become a large
fraction of the photovoltaic applications market, a priori reasoning would sug-
gest diffusion of the final product will be'a much more important "problem" than
diffusion of the new processes currently being developed to produce that product,
since the number of individuals who must make` decisions_ to adopt is much greater in
the former case. Furthermore, most of the existing sociological, geographical
and economic 'literature has dealt with diffusion of final products to dispersed
buyers such as consumers and farmers. The literature dealing with industrial
process diffusion is considerably more limited. It is the latter with which
this section is concerned, however.
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The issues related to market demand and its realization--alternative energy

prices, estimates of potential markets, diffusion of photovoltaic arrays, demon -

strations of photovoltaic installations, etc.--fall into the 'category dubbed

''commercialization" issues which currently are not under the purview of the LSSA

project. Thus, even though the importance of these issues is acknowledged, we

move directly to the problem at hand by assuming an effective market demand for

photovoltaics will arise when the price target is successfully realized.

To many, including ourselves, these dual assumptions of (1) successfully

meeting the price goal and (2) realizing an effective market demand, robs the

analysis of its most important issues. However, it allows a finer focus on a

third potentially dangerous barrier to the successful completion of the Photo -

voltaic Program, namely, barriers on the supply side to the adoption of new

production technologies. The following sections proceed with a discussion of

several such potential barriers which oftea arise in discussions of supply side 	
m

issues.

`	 D.	 INNOVATION,, DIFFUSION AND COMPETITION

Given that a product price of 50^-/peak-watt has been established and that
w

an effective market demand has been realized, the ,photovoltaic industry must

still adopt the technology, produce and sell arrays at this price. The length
K

	

	 of time between the establishment of a technology's viability and the first

commercial adoption of that technology (innovation) is of considerable interest.

The rate at which the technology spreads to other photovoltaic suppliers (diffu -

sion) is also quite important. Together, they refer to a process often calked
R

"technology transfer." It is clear that there must be some lag between the

establishment of commercial viability and innovation, due to the physical

necessity of planning and constructing new production lines. Evidence is pre-
p	 °.

sented below which indicates that less than a year is necessary to bring such a 	 k

facility on line.* Further, the optimal rate of diffusion is clearly not 	 #

,This assumes sufficient floor space can be made available without the construc-
tion of any buildings. The construction of new buildings would add 12 to 18
months to the time necessary for production capacity to be brought on line.
The P,A&I Task Cost Goal Allocation Team has estimated that approximately
1800 sq. ft. of floor space will be required for each MW of annual output capacity.

2-4



instantaneous if older production facilities exist which are still economically

viable. Thus, estimates of the optimum rate of diffusion of photovoltaic produc-

tion processes and the expected divergence between the actual and this optimum

are required.;

New capital utilizes variable inputs in a more efficient way than old

' capital, and thus has the advantage of lower operating costs. 	 On the other

a hand, the cost of existing capital is sunk. 	 Therefore, while current equipment

7 has higher operating costs, it has no capital costs. 	 William Salter writes,

..the cost of new capital equipment is the barrier to immediate general use

of new techniques, and higher operating costs are the price paid for retaining

`.' outmoded methods."* 	 Optimality from the firm's point of view requires that ^:w

existing capital be replaced by capital embodying the current best practice

technology as soon as the older capital becomes economically obsolete. 	 In a

competitive market, price will be bid down as soon as new, more efficient

technology is incorporated into the production processes of some firms.	 As

pi,ice decreases, the high operating costs of older capital equipment will no

? longer befully recovered, at which point the old capital becomes economically

obsolete.	 At this point, older capital will be scrapped and replaced by t

w	 - capital embodying the new technology. Net additions to the capital stock will

augment this process in a growing industry. 	 Thus, through both replacement

investment and net additions to the capital stock, the percentage of the

industry's output using the new technology will gradually increase, and the

` invention will spread throughout the industry. 	 Neither the socially or

privately optimal rates of diffusion, however, yield an initial complete

adoption of a new technology. 	 Furthermore, the two rates will generally be
•3.

identical in a competitive market with no significant externalities.

F

c ^

*William E. Salter, Productivity and Technological Change (Cambridge, England:
Cambridge Univ. Press, 1966) .

2-5
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F Edwin Mansfield presents some interesting empirical observations on the

diffusion of innovations in the bituminous coal, iron and steel, brewing, and

railroad industries*

First, the diffusion of a new technique is generally a
rather slow process. Measuring from the date of the first
successful application, it took 20 years or more for all
the major firms to install centralized traffic control,
car retarders, by-product coke ovens, and continuous an-
nealing. Only in the case of the pallet loading machine,
tin container, and continuous mining machine did it take
10 years or less for all the major firms to install them.'

Second, the rate of imitation varies widely. Although it
sometimes took decades for firms to install new techniques,
in other cases they followed the innovator quickly. For

{

	

	 example, it took about 15 years for half of the major pig
iron producers to use the by coke oven, but only
about three years for half of the major coal producers to
use the continuous mining machine. The number of years
elapsing before half the firms had introduced an innova-
tion varied from 0.9 to 15, the average being _ 7.8

Thus, diffusion rates can be slow and vary widely. Substantial evidence is

presented below which supports an anticipation of quite rapid diffusion in the

photovoltaic supply industry, however.

Further, a rapid diffusion of new technology is not essential to the

`	 success of the Photovoltaic Program, even though it is anticipated. -In a com-

petitive industry, price will be determined by the most efficient technology,

given that some producers have adopted it. Thus, although it is critical that
k	

a portion of the industry adopt the technology,- it is  ̀not 'necessary for the

entire industry to convert before the full benefits to society from that new
i

production technology are forthcoming:

Although still preliminary,: current evidence suggests that the anticipated

photovoltaic supply industry will be competitive. Other than governmental

"r.

^YEdwin Mansfield,' Industrial Research and Technological Innovation (New York:
W. W. Norton & Co., 1971) 	 p. 136.

rr

w
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restrictions on competition (as in regulated utilities, for example) the most

important determinant of the competitiveness of an industry is the optimum size

firm in relation to the size of the market. 	 If there is enough "room" in the t
market for a large number of firms of the optimum size to produce, then the

industry will sell its output at the lowest possible price-- the competitive

price.	 The optimum size firm is determined, of course, by the shape of the

average cost curve--a firm is an optimum size if it is producing at that rate of

output where the cost per unit output is at its minimum. ,

Other members of the P,A&I Task Team have developed sophisticated and
x

detailed process-cost models of the anticipated photovoltaic technologies,

(called SAMICS models).	 These models can be used to generate average cost

curves.	 Although development is still proceeding, it appears that these curves
reach a minimum in the range of 20-50 MW peak/year. 	 That is, all the economies
of scale seem to be exhausted in a plant of this size. 	 Since 50 21W peak/year is.

substantially smaller than the envisioned photovoltaic market, there would seem
rs;.,

to be plenty of room for competitors to profitably enter with an optimally scaled

plant-.	 Thus, the photovoltaic supply industry is expected to be quite competi-

tive unless there are other barriers or impediments to entry into the market

(other than market size). V
Vol

The next four sections discuss possible impediments to the rapid adoption

or diffusion of the new technologies anticipated for the production of photo-
j,ro

voltaics.	 These impediments have been classified as either information-flow

inhibitors, capital shortages, market structure barriers or governmental

barriers:

1.	 Information-Flow Inhibitors try

Before a potential entrant or existing photovoltaic supplier can adopt a

new technology, they must have access to and the ability to employ detailed

information about that process.	 Barriers can arise because the firm simply

remains ignorant of the process or from patents and proprietary information held

by other firms.

The dissemination of information, however, is viewed as more of a problem

for the demand side of the industry than for the supply side.	 Suppliers

.2-7



typically have well developed information channels and actively seek out new

 knowledge. In addition, as discussed below, the industry is expected to be

'	 characterized by a mobile labor force and to establish liberal licensing policies

which will increase theflow of information within the industry. Furthermore,

	

,'.	 the pilot and demonstration plants included in the program plan will increase

:i	 the amount of information available. Therefore, a simple lack of information

is not expected to create significant barriers to the widespread dissemination

of new technOLogy within the photovoltaic supply industry.*

Y

	

	 Patents or proprietary information are also not anticipated to create

significant barriers to the adoption or diffusion of new photovoltaic technol-

ogies. Currently, government funded technological developments are con-

sidered public property and areavailable on a non-exclusive basis. Therefore,

	

f	 patents should not restrict the dissemination of government produced knowledge.

Furthermore, experience shows that the probability that new firms will., use new

technology without patent rights is surprisingly high. Therefore, firms in

research intensive industries frequently adopt liberal.licensing policies.

The firm hopes to entice its competitors to purchase a lenient license, as
opposed to simply ignoring the ,patent, as they might with more stringent-

t" license agreements. This policy has the added advantage of giving firms ready

access to new ideas developed in other firms. This is particularly important

in research-intensive industries, such as photovoltaics, where one firm cannot

hope to make all the technological developments.

Scientists and engineers are likely to be mobile because of the lucrative

opportunities created by the possibility of establishing a new firm based on

	

^.	 a new technological development. As a result of this mobility, and the desire

of most scientists and engineers to publish, secrecy regarding new knowledge

is hard to maintain.
f	 ;;

*See "LSSA's Efforts Toward Effective Technology Transfer" a JPL unpublished
}	 memo;, for a detailed discussion of the steps'JPL takes to insure adequate

information flow to industry. 	 -

	

;"	 i
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Each of these conditions have held in the semiconductor industry, a

research-intensive industry quite similar to the anticipated photovoltaic

industry (see below for a detailed comparison). Therefore, limitations to the

widespread adoption of new technology due to barriers in the flow of.knowledge

between inventors and eventual users are not expected in the photovoltaic

supply industry. (It is on the basis of these arguments that Section III argues

that photovoltaic supply demonstrations planned by the Photovoltaic Program be

aimed primarily at information production, not information transfer).

:. 2.	 Capital Availability

' Probably no supply side barrier is mentioned more often that the possi-

bility that sufficient venture capital may not be forthcoming to adequately

capitalize a-new, untried industry or process.	 Of course, capital will not be

forthcoming if there is not a reasonable expectation, with acceptable levels of

risk, of making a profit.	 But given that a'venture offers a reasonable profit
opportunity, most analysts agree that sufficient capital is easily attainable.

1 Mansfield states the problem:

t,
The application of new technology...is often begun by small
businesses run by technical people with little-business
experience and little knowledge of the market for venture

' capital.	 On the other hand, the banks, wealthy individuals
F and others who are in a position to put up the money typically

have no appreciation of technical matters (and their staffs
are often of little use in this area, either). 	 .,.Without a
question, an important determinant of the rate of application

" of new technology is the size of the-pool of venture capital--
jR and the efficiency and imagination with which it is lent out.

Therefore, capital availability represents a potential impediment to the

4 diffusion of technology. 'Shortages of capital can erect entry barriers for new

firms who cannot rely on internally generated funds.	 If this is the case,

government action is needed to increase the availability of venture capital.

r

a	
'`

"

^ *Edwin Mansfield, "Determinants 	 fi	 ns	 ,	 n nts o	 the Speed of Application of New Technology
in B.R. Williams, Science and Technology in Economic Growth (New York:_ John

F	 ; Wiley and Sons, 1973), p. 205.'
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There are, however, good reasons to doubt that capital availability will
create a significant barrier to the diffusion of photovoltaic supply technology.

E w•	 In the first place, entry into the photovoltaic supply industry is not limited
u	

to firms that are just beginning commercial operation,, If current suppliers are
slow to incorporate improvements in the production technology, then firms with

existing operations in other product areas can also be expected to enter the
rty
4 . industry. These firms will have established channels for obtaining funds, as

r well as internally generated capital. Therefore, capital market imperfections
will create a possible problem only for a portion of the potential entrants-the
newly established firms. Furthermore, evidence indicates that there has not been

a shortage of venture capital. John Tilton states, in an insightful study of the
semiconductor industry, "Venture capital for new semiconductor firms has been

readily available, at times even lavishly;so. "1 Carter and Williams point out
that there are many channels through which the enterprising entrepreneur can

acquire capital funds. They conclude, "A firm bf any size but the largest may

v r	 of course be held back because the next stage of technical improvement is too

`	 massive for its resources; but we do not think that this is a frequent problem

r	 in the kinds of specialists ,trades in which small firms flourish. "2 Therefore,

F

	

	 capital market imperfections sxould not impede, the entry of new firms
incorporating new production techniques into the photovoltaic supply industry.

r"
However, progressive, rapidly expanding firms may be frustrated by capital

constraints. As Tilton writes, "...capital apparently is more of a'problem for
w	 the successful small company that wants to expand rapidly. "3 This may cause

new firms that have successfully introduced a technological improvement to merge

with a larger firm in order to obtain financial backing. But this will not
impede the entry of these new firms into the photovoltaic supply industry.

F
-	

..

1John E. Tilton, International Diffusion of Technology: The Case of Semi-
conductors, (Washington, D.C.: The Brookings, Institution, 1971), p. 89.

"	 C. F. Carter and B. R. Williams, Industr and Technical Progress,Industry	 g	 , (London,
Oxford University Press, 1957), p. 123.

1	 3Tilton, International Diffusion, p. 88.
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The MIT Energy Laboratory Policy Study Group reached a similar conclusion

on the availability of venture capital*:

It is often argued that investment in new energy-related
technologies is blocked by lack of financing. The in-
vestments at the introduction stage are so risky, it is
argued, that private investors are unwilling to advance
the necessary capital.

Even if true, this may or may not be a "market failure."
When an investment banker states, for example, that
large-scale synthetic gas plants "can't be financed," he
may simply mean that the expected profitability of in-

;; vestment in such a plant is not high enough to compensate
I for the risks that would have to be borne.

" ...Society as well should demand a high expected return
on ;capital, the higher the associated risks.

' ...The U.S. has a highly elaborated and efficient set of
capital. markets, and these offer extensive opportunities
for spreading risks. 	 The combination of markets for loan
funds and the various stock markets for equity capital--

', supplemented by various forms of joint corporate ven-
tures--can serve to diversify risks 'very widely over the
community of stock and bond holders. 	 These markets appear
to serve very well in supporting potentially profitable
investment--including very large and risky ones--in energy
and othersectors of the economy.

...Not all corporate managers are risk averse:	 We observe
„	 r corporations, for example, investing hundreds of millions

to acquire off-shore drilling rights, even though there is
' a significant change (proven by experience) of getting

nothing at all.

Thus, shortages of capital are not expected to cause significant delays in

the wide-spread adoption of new photovoltaic conversion technologies.'

*Policy, Study; Group, Energy Laboratory, Massachusetts Institute of Technology,
Government S upport for the Commercialization of New Energy Technologies,

' (Cambridge, Mass:	 Energy Laboratory Report MIT-EL 76-009,, November 1976).
r

E
ti•
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3.	 Market Structure

Market structure refers to the number and distribution by size of the firms

within an industry and the ease with which new firms can enter. As discussed
above, preliminary indications are that a sizable photovoltaic supply industry
will have enough room to support many efficiently sized firms Thus, it is
expected to be competitive. This will insure a product price close to the mini-
mum production cost (including a competitive rate of return or profit), but may

also have implications for the diffusion of new technologies. Furthermore, the

plants are expected to btu relatively small (50 NIW peak/year output rate),

although they may be one production line of a much larger firm, possibly a
major semi-conductor manufacturer. This section discusses, respectively, the

effects of firm size, competition, flexible entry, and rapid technological

change on innovation and diffusion.

a.	 Firm Size The size of firm may affect the profitability of adopting
a new production process. Large firms may have an advantage in their

ability to locate and exploit information protected by patent or
kept secret by other firms. On the other hand, large firms are

sometimes thought to have sluggish, risk averse decision making

processes which may reduce their propensity to innovate. In the
smaller, typically owner .-supervised firms, the propensity to

innovate is dependent on the personality and ability of the owner.
Therefore, an aggressive entrepreneur in a small firm may be able

to overcome the advantages of the bigger, though less innovative
larger firms. Afterr weighing the differences in the size of the

capital stock, level of output, and managerial capabilities of
large versus small firms, it seems prudent to conclude that a
diversity of firm sizes will enhance the rate of adoption and
diffusion of new production processes. Thus, as Carter and Williams

!	 state, "We conclude-therefore--and this conclusion is confirmed by

our case studies--that there is no ';general and systematic connection
between the size of 'firms ... and the possibility of technical

-	 I	 ;
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progressiveness. This possibility exists at all sizes ... but each

=	 has its own balance of advantages and disadvantages whose outcome

depends on the circumstances of the time and industry."*

F	 b.	 Competition. There is a great deal of controversy concerning what

industry structure (competitive vs. monopolistic) is most conducive
t-

'

	

	 to the spread of a new invention. On the one hand, adopting a new

technology implies a great deal of risk, involves a large level of

funding, and requires the ability to plan over a long time horizon. 	 r

It is felt that the monopolist, because he is isolated from the

uncertainties of competition, is better able to incorporate these

traits than is the competitive firm. In addition, the incentive to

innovate is based on the profitability of the innovation. In a

competitive industry, these profits will be eliminated more quickly

`.

	

	 than in'a monopolistic Andustry. Therefore, a monopolist, because

of his more secure markret position, will have a greater; incentive
i

to innovate than a competitive firma On the other hand, competition 	 :.

forces the competitor 110 actively seek out new technologies, and
F	 `.

apply them as soon as ^t is profitable to do so. The monopolist is

immune to this influence and therefore may delay before he intro-

duces a new technique.; (See, for example, the experience of the 	 Y.

semiconductor industry vs. the iron ar^d steel industry below).

Though the debate is still unsettled, the latter influence is 	 n

expected to dominate, and diffusion is generally assumed to proceed- 	 i

`	 more rapidly in a competitive industry. 	 -°s

C. 	 Flexible Entry. The analysis of the effect of competition on the

rate of innovation and diffusion assumes that the market structurer'

`	 is fixed, and that the rate of adoption of new ideas will depend on
4

this exogenously determined form of organization. A more realistic

approach is to assume that the structure of the industry will be in

a continual state of flux. New technology creates new products and

production processes, establishes new markets, and gives rise to new
r	

firms and changing market shares. Therefore, industry structure is
l

#	 an evolutionary process. The crucial factor is to maintain low
4

*Carter and Williams, Progress, p. 126.

I
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entry barriers and . a flexible structure which can adjust to the

continually changing conditions. Tilton stresses the importance

of new firms in the diffusion process. He writes, " ...the diffusion

of new technology is stimulated by a flexible market structure that

allows new firms to arise and replace the established industry lead-

ers whenever the latter delay too long in using new techniques."'

Empirical evidence indicates that the potential entry and growth of

new firms provides one of the most powerful incentives for the rapid

diffusion of new technology.

The importance of maintaining low entry barriers and a flexible

market structure in order to stimulate the rate of adoption of new

-technology has been stressed by many authors. E. Roberts, for

example, describes the role that the entrepreneur plays in the

diffusion of new technology. He then goes on to state, "Although the

on-going corporation is at least on occasion the active scene of

technical entrepreneurship, it is. in the new firm that the innovat-

ing entrepreneur flourishes." 2 Similarly, Tilton, in examining the

semiconductor industry, hypothesizes that, "The diffusion of new

technology is accelerated by a market structure that allows new

firms to enter an industry and supplant the established industry

leaders whenever the latter fail to employ new techniques as quickly

as economic conditions warrant. Hence, diffusion tends to occur

faster in countries with flexible market structures than in countries

where entry barriers are high and company rankings rigid." To

support this hypothesis, he compares the market share captured by

the new-firms-in the semiconductor industry with their contribution

to the technological advancement of the industry. Ile argues that if

a firm captures a share of the market which exceeds their inventive

effort as measured by the number of major inventions developed

internally by the firm, then they have been instrumental in diffusing

Tilton, International Diffusion, p. 160.
3.

2E.B. Roberts, "Entrepreneurship and Technology" in Gruber and Margues,Factors
in the Transfer of Technology (Cambridge, Mass.: MIT Press, 1969), p. 224.

3Tilton, International Diffusion, p. 2
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new technology. His examination finds that, "Indeed, the market

shares enjoyed by a handful of new firms have greatly surpassed
their contribution to the innovative process ... Apparently, these
firms have been particularly adept in the diffusion process and have
led in using new technology, developed in their own and other labora-
tories, to produce better, cheaper semiconductor devices."* There-

fore, new firms utilizing new technological developments have been
able to grow and capture a significant market share. This increases

the rate of diffusion of new inventions. Furthermore, in order to

stimulate the diffusion of a new production process, it is not
essential that these new firms ever capture a large share of the

market. As long as the possibility exists for new firms to enter an

industry and grow by exploiting a new technology, established firms
will be motivated to remain alert to new technological opportunities.
Therefore, potential entry can be as important in stimulating the
spread of a new production process as actual entry. The crucial

factors are the maintenance of low entry barriers and a flexible

market structure.

d.	 Rapid Technological Change. Finally, the fact that the photovoltaic

industry is anticipated to exist iu an environment of rapid techno-
logical advance has important implications for the capital intensity
of the 'production processes adopted by firms. In a regime of rapid

technological change it is optimal, from the firm's point of view, to

invest less (possibly much less) in capital equipment than.in a
regime of stable technology. That is, the firm keeps the line flex-
ible to allow adaptation to technological change by operating .a labor

intensive process. This was the experience of the early semi-

conductor industry, and is the experience of current photovoltaic

suppliers. Only after the technology stabilized did the semi-

conductor industry switch to more efficient, highly automated,

capital intensive production processes. Furthermore, this is pre-

cisely the reaction toanticipated technological change which is

socially optimal--it prevents the waste ofcostly capital equipment.

Ibid, p. 69.
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Current plans of the Photovoltaic Program exhibit a glaring

inconsistency when viewed in this lighc. 	 They call for a highly

capital intense production process by 1985 to help meet the price.

goal.	 However, it is also envisioned that the technology will

continue to rapidly advance to lower the production cost an order of ^r

magnitude by the year 2000. 	 (The price goal for the year 2000 is

10-304 per peak watt). 	 This scenario presents the industry with a

dilemma.	 Businessmen will be quite reluctant to commit to a highly

automated, expensive production process that will be obsolete

(unable to profitably produce) inside of several years. 	 And this is

precisety the reaction which is socially= optimal.--it is not in

society's interest, anymore than a businessman's, to "waste"

expensive capital equipment.	 Thus, it serves no socially useful
A

purpose for LSSA or the Photovoltaic Program to attempt to counter-

act this built-in impediment to the innovation and diffusion of

new technologies.

,v
It is inconsistent to plan a highly automated, capital intense pro-

duction process, in the midst of a rapidly changing technology. 	 It

is the program plan that is at fault and that should be changed--not j

the natural and socially correct reaction of private businessmen who

will be reluctant to invest in such a situation.

For this reason, among others, Section III recommends that the most

advanced stage of the industrialization task--demonstration--not be

undertaken until the technology is well in hand.	 By this we mean not

only that the technology be well developed and understood, but also

that it be stabilized.* d

It is possible that the potential profit will be so attractive that

the reluctance to invest in capital intensive processes will be

overcome.	 Regardless, we do not consider this problem to be a

1

7
}	 of course, it would also be possible to back away from the capital
{	 intense production process currently envisioned, but discussion of
y	 this solution falls into a class excluded from the current top ic--

l

 price reduction strategies.
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legitimate basis upon which to recommend action (such as subsidies)
t

to facilitate diffusion, as these actions would be facilitating a
I	

socially costly and wasteful process. Thus, the assumption is made

that either the resulting process is not so inflexible and capital

intense as to prevent :innovation and diffusion or that the rate of

technological change has diminished (stabilized) such that invest-

ment in highly automated processes is both privately and publicly

attractive, at which point no impediment is anticipated.
i

4.	 Governmental Barriers

L

	

	 In many cases, it is government actions which are most potent as impedi-

ments to rapid innovation and diffusion. Regulated industries such as railroads,

utilities, and banks, often exhibit slow rates of diffusion. Industries pro-

tected by tariffs or quotas from international competition can also be slow to

adopt new technologies (see below for a discussion of the iron and steel industry).

Fortunately, however, no particularly important governmental drags on the

diffusion process, other than the program plan inconsistency discussed above, is

foreseen. The photovoltaic industry is expected to be keenly competitive with

little regulation, no important patent barriers, little tariff or quota restric-

tions, etc.

But there is one potential set of government actions which could give rise

to innovation and diffusion blockages. These actions consist of Photovoltaic

Program and LSSA Project actions with respect to demonstration and commercial

production,

Section III recommends that no commercial production of photovoltaic arrays

be undertaken by the federal government. Unfortunately, the LSSA project

management is constrained by the 500 MW ,peak/year output goal to plan a govern-

ment constructed and possibly government-owned commercial plant in the event that

the private market does not produce at the prescribed rate. We believe this con. ..

tngency,plan`to be extremely detrimental to the innovation and diffusion of

photovoltaic technol^)gy into the private sector.

Government production for commercial markets has a history of inefficiency

and ;inadequate management. Furthermore, competition will be stifled (witness

the post office) as no government facility is able to survive in -a competitive
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regime without large subsidies. Thus, even though photovoltaic output may be

increased in the short-term, the long-term effects of government production would

be to increase the social costs of photovoltaics, decrease their value to society

and possibly to decrease the total long-run quantity of photovoltaics produced

and sold. Thus, we recommend that no government production, other than for the

purposes of tests and demonstration, be planned or undertaken. (LSSA feels
i'
	

further constrained by two additional output quantities, sometimes referred to as
j.

	

	
the "X" and "Y" quantities. The most efficient size production plant appears to

be 20-50 MW/year. Production process demonstrations should be sized in this

range (the X quantity). Furthermore, JPL is currently responL^ible for

' supplying arrays to all federal final product demonstrations. 	 Thus, JPL must
' insure that the combined output from government and private production is adequate

to supply these demonstrations (the Y quantity).)

Of course, this does not rule out government subsidies to private

production.	 However, since no important barriers to the innovation and diffusion_, J
of new technology are expected, other than those that may arise from the actions

of the government, no subsidies to encourage diffusion are considered necessary.

Finally, we recommend that any subsidies planned to encourage the use of

N	 +" photovoltaics in substitution for other sources of energy be applied to the

demand side.	 That is,	
g.subsidies should be given to users of photovoltaics

rather than suppliers.. 	 These subsidies would presumably be justified on the

basis that solar energy avoids the obvious externalities resulting from the use

g" of conventional electricity generation sources.; This will not only have the

desired effect--substitution of photovoltaics for other energy sources--it will

allow the photovoltaic industry to develop in a natural, competitive-manner, free
w

b of artificial government distortions. 	 This scheme has the added benefit of
giving no preferential treatment to any particular suppliers.

a
" Needless-to-say, , this does notrule out government participation in or full 	 i

funding of pilot and demonstration plants.- The next chapter makes specific

recommendations in this regard.

c In summary, no barriers or impediments to the innovation and diffusion of
s

i

k
new photovoltaic production technology'arising from information transfer, capital 	 `-

^ i

9
w i a
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availability or market structures areenvisioned. Technology transfer is not

thought to be an important problem. However, several parts of the program and

project plans need to be altered to insure the orderly and rapid development of

f'	 -a competitive photovoltaic supply industry. - In particular, the plans for a

highly capital intensive production process in conjunction with a rapidly Chang-
t	 ,^

ing technology, as well as the plans for government production of or subsidy to

the supply industry, need reconstruction if the program is to proceed to a

successful conclusion.

k•

	

	 The next sectionsupplements this reasoning with evidence from the semi-

conductor, petroleum refining,; and iron and steel industries.

{	
E.	 CASE STUDIES*

t{

Further evidence regarding the expected rate of diffusion of photovoltaic

i	 production technology can be obtained by examining the rate of diffusion of new

technology experienced in other industries. A comparison of the conditions that
i

existed in these other industries, with those anticipated in the photovoltaic

supply industry, can be used to determine if similar rates of diffusion will be

experienced by new photovoltaic supply technologies Three industries will be

r.	 considered.- The semiconductor industry, which has many characteristics similar

to those expected in the photovoltaic supply industry, has experienced a rapid
^	 a

'rate of diffusion of new technology. The petroleum industry, characterized as

having a slow rate of application of new ideas, has actually:experienr,ad a rapid

s	 rate of diffusion using the narrow definition of industrialization adopted in
t	 ;'

s iF
this study. Finally, the slow rate of adoption of new technology in the iron and

steel industry can be attributed to conditions existing in this industry that are

not 'expected in the photovoltaic supply industry.

1.	 Semiconductors
P

The semiconductor industry is an example of a research- intensive industry

k	 which has experienced a rapid rate of diffusion of new technology. Many of the

conditions which characterized this industry during its development, and helped
I
k

E

This section draws particularly heavily on Bill Gates' background paper "Prospects
for Innovation and Diffusion of Photovoltaic Technology," taking much of it

x	 verbatim.
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to stimulate Xhis rapid rate of diffusion, are expected to exist in the
4'i

photovoltaic supply industry. Both semiconductors and photovoltaics are based
on the refining of semiconductor materials. Currently, silicon is the dominant

material in both production processes. Therefore, these industries use many of

the same inputs, have the same suppliers, and utilize similar production

technologies. (The major difference in technologies is that the semiconductor
industry emphasizes decreasing the amount of silicon used and, thus, the size of

each unit. In the photovoltaic industry, on the other hand, size is constrained
because of the importance of surface area. This distinction, however, would

not appear to introduce significant differences in firm or industry structure
(e.g., size of firms, patent licenses, research intensiveness) and thus in rates
of diffusion between these two industries, although it does affect the antici-
pated rate of cost reduction in the photovoltaic industry.) Because of the
similarities, the photovoltaic industry is expected to assume many of the
characteristics of the semiconductor industry. Optimal firm size, market struc-
ture, the degree of competition on both the national and international level, as

well as the policies and regulations adopted by the government for pbotovoltaics
are expected to follow the example of the semiconductor industry.

The photovoltaic industry is a research-intensive industry expecting a
rapid rate of technological change. As a result the existing producers have
relied on labor-intensive production processes. This enables them to avoid
capital investment in equipment which would become economically obsolete before
sufficient profits . accrue to justify the investment. These conditions also
characterized the semiconductor industry during its initial stages of development.
The early semiconductor industry was also a research-intensive, producer goods
industry. It exhibited many of the conditions favorable for the entry of new,
technologically based firms. Unexploited technology existed, firms adopted liberal
licensing policies, and there was a high degree of interfirm mobility of scientists
and engineers. In addition, there were no significant entry barriers. All

important economies of scale were captured at low output levels relative to the

market size, venture capital was available, and there was a flexible, competitive
market structure. Furthermore, federal antitrust, patent, and procurement policies

helped maintain an environment which facilitated the entry of new firms. (For
further elaboration of these conditions, see John Tilton's book International

It
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i

Diffusion: The Case of Semiconductors.) Therefore, the conditions existing in

the early semiconductor industry encouraged new firms to enter and exploit unused

technological developments. This provided an important stimulus to the diffusion

s

	

	 of new ideas in the industry. As Tilton writes, "...new firms with little or no

previous experience in the active-components industry have been the most agres-
sive diffusers of new semiconductor technology.' These conditions are also

expected to characterize the industry for photovoltaic conversion systems.

Since;, the photovoltaic industry is expected to experience a development

N
similar to semiconductors, the rate of diffusion of technology in the early semi-
conductor industry can be used to gain some idea of the expected rate of
diffusion in the photovoltaic supply industry. -Tilton examines the rate of
diffusion of both product and process innovations within the semiconductor
industry. A comparison of three tables presented in this study, 2 reproduced

•,

	

	 here as Tables 2-1, 2-2, and 2-3, provides evidence on the rate of diffusion of

new products and processes in this industry.

:.`

	

	 Table 2-2 gives the date of development of six new processes which led to

new semiconductor products (four other process innovations were not associated

q

	

	 with new products). It is apparent that the longest time between date of develop-

ment of the process and first commercial production -(Table 2-1, column 3) of

the associated new product was one year,, products introduced in the same year that

the new process was developed TWhich made them possible. Table 2-3 shows that in

many cases the original conception, reduction to practice, development and first
M

commercial production all took place within a year or two. Thus, innovation
appears to have occurred very rapidly in this industry and an estimate of a 1-2
year lag between development and commercial introduction appears quite reasonable.

This conclusion has been supported by Theodore Barry and Associates (TB&A) in a

contract to the P,A&I task in which they estimate that less than a year will be
necessary to construct a photovoltaic production line given sufficient floor space.

Construction of floor space-would require an additional 12-18 months according

to TB&A.

Tilton's study does not explicitly examine the rate at which individual
new production processes spread within the semiconductor industry after their

1Tilton, International Diffusion, p. 161.
2Ibid, pp. 16, 17, and 75.
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Table 2-1. Major Product Innovations in the
Semiconductor Industry, 1951-68a

Principal	 First
firm	 commercial

Innocation	 responsible	 production	 Importance

Point contact Western Electric	 1951
transistor

I
Grown junction Western Electric 	 1951

transistor

Alloy luncliou General Electric 	 1952
I	 transistor RCA

Surface barrier Philco 1954
transistor

Silicon junction Texas Instruments 1954
transistor

Diffused Western Electric 1956
transistor Texas Instruments

Silicon con- General Electric 1936
trolled

1 rectifier

1
Tunnel diudeb Sony (Japan) 1957

Planar Fairchild 1960
transistor

FQitaxial Western Electric 1960
transistor

Integrated Texas Instruments 1961
circuit Fairchild

MOS transistor 	 Fairchild	 1962

Gunn diode"	 International	 1963
j	 Business
i	 Machines

First solid state amplifier. More eflkient in power
consumption, and eventually less costly, more reii-
able, and smaller than tubes.

Increased production yield, thus lowering costs. less
electrical noise and greater resistance to shock.

Greatly improved transistor capability to perform
digital (switching) operations. Encouraged develop-
ment of second-generation computers.

Increased transistor frequency range and switching
speeds, useful in computer development.

First transistor not made from germanium. Silicon
incrwsed temperature range of operation, thus open-
ing up military market. Also increased frequency
range.

Lower production costs, increased reliability and
frequency range.

Valve allowing electric current to flow in one direc-
tion only, at same time controlling the flow. Can
replace thyntron tubes for control and switching
functions.

Can replace special purpose tubes for amplification
and oscillation at very high frequencies. Very fast,
but so far too expensive: though a major technical
development, commercial use is limited.

Batch production possible, lowering costs. Improved
performance and reliability.

Increased switching speed, lower production costs.

First semiconductor device with two or more ele-
ments within a silicon substrate. Incorporated bigger
segment of circuit into one device, making Increased
reliability, faster switching speeds, lowei costs, and
greater miniaturization fusible.

Cheaper slow-speed switch. Easy to integrate into cir.
coit designs. Fewer steps in production process.

Gallium arsenide device, can replace klystron and
magnetron tubes for generation and oscillation in
microwave range. Still in experimental and develop.
ment stage.

a. From 1963 to 1968, important advances in semiconductor technology were concentrated in the inte-
grated circuit field. These innovations are considered further developments of integrated circuit technology
and are not separately identified here. A list is given in Anthony M. Golding, "The Semiconductor Industry
in Britain and the United States. A Case Study in Innovation, Growth and the I/ilfusion of lehnology"
(Ph.D. dissertation, University olSussex, forthcoming).

b. Company and date indicated are for the first laboratory model rather than the first c,ornmercial pro-
duction.
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Table 2-2. Major Process Innovations in the
Semiconductor Industry, 1950-68a

Prirrrip.d	 fate of	 Assoc rated
Jinn	 decelop-	 product

` Innovation	 responsible	 meat	 Innovation" Importance

Single crystal	 Western	 1950	 Grown Method of growing and doping germanium
growing	 Electric	 junction crystals.	 Hell	 Laboratories	 (an	 affiliate	 of

transistor Western Electric) achieved carne innovation
for silicon crystals in 1933, leading to silicon
Junction transistor.

Zone refining	 Western	 1950 Produced extremely pure germanium and sht-
Electric con crystals. Also improved doping process.

Alloy p,ocess	 General	 1952	 Alloy junction New method for ;arming junctions. leading to
Electric	 transistor transistors with superior switching capabilities.

t
3-5 compounds	 Siemens	 1952 Semiconductor materials made from combi-

(Germany) nations of elements in third and fifth groups of
periodic table, such as gallium arsenide. Later
used in the Gunn diode.

Jet etching	 Philco	 1953	 Surface Process for	 producing	 transistors with	 In-
' barrier creased frequency and switching properties.

transistor

oxide masking	 Western	 1955	 Diffused Improved	 method	 for	 forming	 junctions.
and dtffusione	Electric	 transistor flitch production pouible, reducing produc-

tion costs. Also	 improved	 quality	 control;
increased power and frequency capabilities of
transistors, diodes, and rectifiers.

Planar process	 Fairchild	 1960	 Planar Mvelopment on oxide meshing and diffusion
transistor process that lowered production costs and im-

proved performance characteristics; of great
importance for ecoaondcal production of inte-
grated circuits.

Epttaxial	 Western	 1960	 Epitaxial Technique for junction forming whereby one
process	 Electric	 transistor type of crystal structure is grown on another.

v Used with planar process, it reduces produc-
tion costa and Increases performance charac,
teristics,	 particularly	 frequency	 range,	 of
transistors and Integrated circuits.

Plastic	 General	 1963`1 Inexpensive method of protecting transistors
encapsulation	 Electric and integrated circuits from wnumination

when reliability is not crucial. Though impor-
tant commercially,	 not	 a	 major	 technical
advance.

Beam lead	 Western	 1961 Reduces encapsulation costs for hl3hly reliable
Electric semiconductor devices. Permits ti • isolation of

integrated	 circuit	 elements,	 an.^	 facilitates
mixing of semiconductor and thin-fil:s 	 tech-
nologies In hybrid integrated circuits.

a. From 1961 to 1968, important advances in semiconductor technology were concentrated In the Inte-
grated circuit field. Thee innovations are considered further developments of integrated circuit technology

f r̀ and are not separately identified here. A list is given in Golding, "The Semiconductor Industry In Britain
and the Vnited States."

b. When the new process led directly to one of the new semiconductor products listed In Table 2-1.
this column Indicates the product.

c. Up to this point, diffusion has referred to the transfer or dissemination of technology. The term Is also
used in this study, as it is here, to identify a specific process used in semiconductor production. The mean-
ing intended is apparent from the context.

d. Plastic encapsulation was known in the 1950s but was not practical for commercial use.

i
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:; 1 Table 2-3.	 Dates of Conception, Reduction to Practice, and First
Publication for Major Semiconductor Innovations Achieved by

Bell Laboratories, 1947-68a

Reduction	 First
mm

Innovation	 Conception	 to practice	 publication

~`Point contact transistor	 Dec. 1947	 Dec. 1947	 June 1948
Zone refining	 May 1950	 Oct. 1930	 Feb. 1952
Silicon diffusion	 Feb. 1954	 Feb. 1954	 June 1954 i
Diffused base transistor (mesa type)	 Dec. 1953	 July 1954	 June 1955
Silicon diffused base transistor 	 March 1955	 March 1955	 June 1955
Oxide masking for diffusion	 June 1955	 Aug. 1955	 Jan. 1956
Epitaxial transistor 	 Sept. 1959	 Feb. 1960	 June 1960
Beam lead	 Fall 1963	 Spring 1964	 Oct. 1964

,a Source Correspondence with Bell laboratories.
a. This table lists only the major innovations identified in Tables 2-1 and 2-2, none of which were intro-

duced by Bell Laboratories after 1964.

I

initial commercial application.	 Two factors, however, indicate that this also

occurred at a swift rate.	 The first factor is the rapid increase in the share of

the semiconductor market captured by new firms introducing a new technology._

Texas Instruments, Transitron, and Fairchild, among others, all used product and

process innovations to enter and capture significant shares of the semiconductor

market.	 For example, Tilton writes, "The second largest semiconductor producer in

the late 1950's was Transitron, a small new firm whose growth and-success-were

also built on a new product. 	 Bell Laboratories developed the first gold-bonded

diode, but Transitron was the first to work out the many problems associated with k'c1 .;r

large-volume production and to achieve yields high enough to permit a price com-

.- petitive with the less reliable point-contact diode then in use. 	 The gold-

bonded diode launched the new firm..."* 	 Thus, Transitron was able to become the

second largest semiconductorfirm (second to Texas Instruments, another new,,

` technologically based firm) as a result of a process innovation that allowed it

` to effectively market a better quality product, at a lower price. 	 Thus, evidence

indicates that diffusion of a new technology through the growth of the innovator

rr occurred rapidly in the semiconductor industry.	 In addition, Tilton indicates

that diffusion by imitation proceeded quickly also. 	 In discussing a new product

` developed byTexas Instruments, he writes, "Texas Instrument's lead in this

i l Ibid, pp. 66-67.
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development lasted some two or three years, a remarkably long time in an industry
where firms usually can duplicate a new device and second-source the innovator in

six months."1

Finally, Tilton considers the rapidity with which semiconductor devices as

a whole replaced conventional active component production. 	 He concludes2:

The penetration of semiconductor technology among active-
component producers proceeded swiftly in all countries
[U.S., Britain, Japan, France, Germany] during the 1950's
except possibly Britain where the data are incomplete.
....The proceeding measures of diffusion indicate that
new semiconductor technology spread rapidly to and within

- the countries considered._

' Comparing the ratio of semiconductor production to active-component

production with that ofsemiconductor usage to active-component usage, he con-
cludes that diffusion of semiconductor technology is limited primarily from the

product demand side:

` Competent semiconductor firms can normally duplicate new
devices within six to twelve months.
....So demand, rather than supply, apparently is also the
relevant constraint on diffusion of semiconductor use.3

Therefore, evidence from the semiconductor industry indicates that the lag

- between the establishment of technological and economic feasibility and the first
G

+ commercial application of the new technique was very short. 	 Furthermore, though

actual data is not given, the implication is that diffusion within the industry,

both through imitation by ,other firms in the industry and through the growth of
s

the innovator, proceeded at a swift pace once the initial application of the new

technology had occurred.	 Thus, the semiconductor industry experienced a rapid

rate of diffusion of new technology. 	 Tilton stresses, "Although the impact of

s. the many factors affecting diffusion cannot be precisely separated,, several con-

F siderations suggest that diffusion has proceeded as quickly as justified by

0RIGVAL PAGE IS
POOR QUALITY

llbid, pp. 65-66	 OF

2 Ibid, pp. 30,34

3lbid, pp. 37-38
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demand conditions in the countries considered... 	 In other words, given

technological and economic feasibility, and an effective market demand, industri-

alization of semiconductor technology occurred without any significant lags. A

delay of one to two years is a reasonable estimate of the lag between completion

of the invention stage and the time that the new process is commercially produc-

ing and filling market demands.

2. Petroleum Refining

Studies of the rate of diffusion of technology in other industries are

quite scarce and have obtained less optimistic results. Enos, after examining

the diffusion of new production processes in the petroleum industry states,

"Giving each invention equal weight, we obtain for the sample of eleven observa-

tions an arithmetic mean interval between invention and innovation of 11.0 years

and a median of 11. For the sample of nine observations the mean is 12.8 years

and the median, 13. The standard deviations are 4.6 and 3.0 respectively. ,4

Thus, Enos indicates that there were significant lags in the adoption of new

production technology in the petroleum refining industry. The presence of these

delays, however, can be accounted for by the definitions of invention and

innovation that Enos uses. He defines invention as the original conception of

the new idea. Innovation, on the other hand, includes its subsequent development

and proof of technological and economic feasibility, as well as the establishment

of an effective market demand. If Enos' definitions of invention and innovation

are modified to coincide with the ones used in this report, the lags found in the

adoption of petroleum refining technology disappear. For example, he character

izes the Houdry process a semi-continuous process for the catalytic cracking of, 

oil and catalyst regeneration, as experiencing a nine-year lag between invention

(1927) and the first commercial application (1936). In describing this innova-

tion, however, Enos implies that technological feasibility was not established

until 1936. He writes, "By 1936 the difficulties in the design of the equipment

been --nme t o the n4 "t- wbere a comme rcia l installation could be made 3

libid l, P. 35.

2 John Enos, "Invention and Innovation in the Petroleum Refining Industry", in
The Rate and Direction of Inventive Activity, National Bureau of Economic
Research (Princeton: Princeton Univ. Press, 1962), p.,,306.

3 Ibid, p. 302.
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The difference in definitions adopted is also illustrated by the development of

fluid catalytic cracking.	 Enos finds a thirteen year lag between invention and

innovation for this new process (1929-1942).	 Yet, in describing the development

Ft of this process he states, "Odell's application for a patent on a process of

producing reactions using a fluidized bed of powdered catalyst was made in

1929....	 The majority of the developmental work, however, was carried out in the

a
five years, 1938-1942, preceeding the first commercial installation.' 	 There-

i fore, there is no evidence of significant barriers to the introduction of new

technology in this industry once technological and economic feasibility have

ry been established, and an effective market demand exists for the output of the

I.
new process.

3.	 Iron andSteel
k
fi

A final piece of information on the rate of diffusion of production tech-

„ ., nologies is found in a study of the iron and steel industry by Walter Adams and

Joel Dirlam.	 They examined the adoption in the United States of the oxygen steel

4

making process. 	 In describing the process they state, "Not only does it produce

T	 r^ top-grade, 'open-hearth' quality steel more quickly and efficiently than older

methods, but it entails lower investment (as well as operation) costs. 
112
	 Thus,

4 the new production process would enable a firm to manufacture the same output for

a a lower cost.	 Nevertheless, even though the technical feasibility of the process

had been proven by late 1950, and the process was embodied in an Austrian plant
4

which began large scale ̀commercial operations in 1952, adoption by the three.. g
major U.S. steel producers did not occur until 1964. 	 (U.S. Steel and Bethlehem

in 1964, Republic in 1965).	 Diffusion of this technology in the United States

was initiated by the smaller firms in the industry: 	 As Adams and Dirlam

describe, "...the innovator of oxygen steel making in the United States was the

twelfth largest steel company (McLouth) in 1954, to be followed by the fourth

largest (Jones and Laughlin) in 1957, the ninth largest (Kaiser) in 1958, the

nineteenth largest (Acme) in 1959, the tenth largest (Colorado Fuel and Iron) in

1961, the fifth largest (National) in 1962, and by the fifteenth largest

1Ib id	 pp. 303-304

2Walter Adams and Joel Dirlam, "Big Steel, Invention and Innovation," The
Quarterly Journal of Economics, May 1966, p. 169.
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r.
ry

(Pittsburgh), twenty-second largest (Allegheny-Ludlum), and the sixth largest
r

#.

F }	 (Armco) in 1963."*	 Thus, not only was the rate of diffusion of the oxygent,	

process very slow, the proportion of the industry's output produced-by this

 process was extremely low until the major producers began utilizing the process

in 1964 (less than 8% of industry output was produced by this process in 1963).
k

There are differences, however, in the conditions existing in the iron and

' steel industry and those expected in the photovoltaic supply industry.	 These
k.

differences may explain why delays in the diffusion process are observed in the

former industry, while no such lags are anticipated in the latter.	 In the first
r,

place, the iron and steel industry is a technologically stable rather than a
r

t'

research intensive industry, with innovations occurring rather infrequently.
j

Therefore, production techniques tend to be capital-intensive and require signi-

4
ficant investment.	 Furthermore, this capital has a long expected physical life-

span.	 In addition, the industry has been characterized by a relatively inflexible

wAf oligopolistic'market structure. 	 Encroachment on the market shares of the indus-

try leaders has not come from the entrance and growth of new domestic firms, but

rather from foreign producers. 	 Finally, the U.S. steel industry has been losing 
r= ^,

its comparative advantage over foreign producers for some time. 	 Thus,-theP	 g	 $	 P.^
domestic steel industry has been contracting--not a. situation conducive to rapid

^ h

and widespread adoption of new production techniques.	 Together, these conditions

F b	 have created significant barriers to the widespread diffusion of new production

p technology in the iron and steel industry.

Due to the stable technology, opportunities for new technologically based

firms to enter and challenge the established industry leaders have been limited.

The capital investment and large scale of operation required in order to effect-

f ively compete in this industry may have raised significant entry barriers.

.. Furthermore, the inability of a new firm to displace the industry leaders by

exploiting anew technology has reduced the incentive to incur the risks of

V innovation.	 The inflexibility of the market structure is verified by the fact

that even though the smaller firms adopted the more efficient oxygen steel making
E

technique up to eleven years before the three largest firms, these three firms

Ibid, p.' 183
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still maintained their domestic market dominance, presumably by remaining com-

petitively priced with the small firms. Thus, the industry leaders have not been

stimulated to adopt new production techniques by the potential entrance of new 	 x

technologically based firms. A major source of competition comes from foreign

producers. As Ault writes, "During the late 50's and 60's, the slowness of U.S.

producers to adopt BOG (oxygen process) appears to have contributed to the rapid

deterioration of their ability to compete in the world steel market during that

period." Competition from foreign producers, however, is limited due to import

quotas, tariffs and other artificial barriers to international trade. Therefore,

domestic firms are partially insulated from the competition provided by foreign

producers. As a result, the incentive provided by foreign producers does not

seem to have had a large effect.- Thus, even though the rate of new process

diffusion was quite slow in this industry, the causes of this tardiness would not

appear to apply to the anticipated photovoltaic supply industry. r	 '

' F.	 SUMMARY
8

To summarize the analysis thus far, both theoretical arguments and an

examination of case studies verify that no significant lags to the diffusion of

new production technology in the photovoltaic supply industry should be expected. a.

This analysis assumes that technological and economic feasibility have been

established and that an effective market demand exists for photovoltaic conver-

sion systems at the targeted price of 50^/peak watt. 	 Based on these assumptions,

` theoretical arguments indicate that research-intensive industries characterized

by a flexible, competitive market structure will not experience barriers to the

: diffusion of new production processes.	 Barriers are only expected if created by

government actions.	 Empirical evidence provided by case studies of the diffusion

t of production technology in other industries supports these conclusions. 'Diffu-^,

sion was found to occur rapidly in the semiconductor industry, which is charac-

terized as a research-intensive, competitive industry.	 Furthermore, lags in the

` diffusion of technology in the petroleum refining industry and the iron and steel

industry can be explained by differences in either definitions used or in the

David Ault, "The Continued Deterioration of the Competitive Ability of the U.S.

Ir Steel Industry:_ The Development of Continuous Casting," Western Economic
i' Journal, March 1973, p. 95:'
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economic and technological environment of the industry. Thus, both theoretical

and empirical evidence imply that industrialization of new production technology

will occur as rapidly as demand for the output of the new process warrants.

Evidence indicates that a delay of one to two years is a reasonable
estimate of the time between the establishment of technical, economic, and commer-

cial feasibility, and'the -moment the new process is commercially producing and
filling market demands. This interval is necessary to arrange financing, estab-
lish production facilities, train labor, obtain inputs, and initiate production.

Furthermore, new production processes will spread within the industry at approxi-

mately the socially optimal rate once the initial application of the technology

has occurred. This does not imply the immediate replacement of all existing
capital by capital embodying the new techniques. Instead, the spread of new

technology will be related to the rate at which capital of an older vintage

becomes economically obsolete and the growth rate of the industry. In a com-

petitive industry, however, the establishment of a new market price will occur

before the diffusion process has been completed. Therefore, significant delays
in the diffusion of new production technology, or in the establishment of a new

I
market price, are not expected in the photovoltaic supply industry.

The following section examines the 1986 500 MW ,peak/year production target
of the LSSA project in light of these conclusions.

G. OUTPUT TARGET

The introduction to this paper established three possible motivations for

the 500 MW peak/year 1986 production target set for the photovoltaic supply

jindustry:

(1) as an aid to assure the adoption of the new production technologies;

(2) as an ultimate test against which the photovoltaic program may be
judged a success or-failure--one percent of 'annual additions to total 1
United States electrical production capacity;

(3) as an aid in the attainment of the price goal through the learning
curve phenomenon.

i

We have argued that the first motivation for this target is redundant
t

sufficient output will quickly be forthcoming without government prodding. 	 t

I
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The other two motivations may have different implications for the disposi-

tion of the quantity output target. 	 If the target is an ultimate standard

against which the success of the program will be tested, then the target should

be shifted from the JPL/LSSA project to Program Headquarters at ERDA, as the

goal applies to the entire program, not just LSSA. 	 Furthermore, the target

should not be an operational goal whose attainment, by whatever means, is

required for success. 	 Rather,	 it should be a passive target, which, if reached

through the successful reduction in output price by the program and subsequent

production ai -id sale by private industry to ultimate consumers, is an indication

that those price reduction and demand stimulation activities were indeed

successful..	 Put differently, it should not be a target which can be met through

government production.

Finally, if it is intended as a tool to aid in the attainmentof the 1986

price goal, then it should be called a tool--not a separate goal of the program.

it should clearly be made subsidiary to and a part of the price goal of the

LSSA project.	 Furthermore, there is little justification for adopting any par-

ticular quantity if it is meant as a project tool. ,	Rather, the proper amount of

output for each year of the program should be derived through the same type of

analysis that derives the best amount spent on each of the other tools used to

reduce the output price.	 That is, it makes no more sense to specify, a priori,

the exact allocation of the output tool than to specify the exact amount to spend

on each of the other processes which hopefully will lead to price reductions.

This should be a project management decision, subject to change to arrive at the

best allocation of project resources to attain the price goal in as efficient

a manner as possible.	 Thus, in this case we recommend dropping the output goal.*

Hence, depending on the motivation behind the quantity output goal, we

recommend that either it be transferred to Program Headquarters as an ultimate,

passive standard against which the success of the Photovoltaic Program can be

testcd or that it be dropped altogether.

Section III proceeds with a discussion of the implications of this analysis

for the experimental plant plans of the LSSA project.

ORIONAL PAGE IS
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IJ See Section II.D.4 for a discussion of two further quantity-constraints on the
LSSA project arising from tests and demonstrations (the "X" and "Y" quantities).
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THE CONCORDE SYNDROME;

i. ...Recent experience strongly suggests that projects receiving
sizable government support are likely to suffer from an entirely
different dynamic, one where it becomes increasingly difficult to
cut off expenditures upon projects to which a government and its
bureaucracy have already made a heavy commitment of finance and
prestige.	 It is characteristic of such projects that firm and
essentially irreversible large-scale financial commitments are made
at a very early stage when the technical knowledge, necessary for
intelligent decisions is necessarily fragmentary, and when therefore

h the level of uncertainty is still very high. 	 I would not be entirely
surprised if, in ten years time, this propensity were to be referred
to as the "Concorde Syndrome". 	 In the meantime, I would suggest we
remain highly skeptical concerning the commitment of sizable public
funds to the final stages of commercial_ exploitation of a new

' technology..	 Although there is a_persuasive case to be made for
government support of basic research and for exploratory technologi-
cal development in some specific areas, such a case has little perti-
nence to decisions concerning the final development and commercial

o exploitation of new or improved products.
--Nathan Rosenberg, 1977*

A.	 INTRODUCTION

Section II argued that once the price objective (50^/peak watt) has been

achieved by the Technology Development branch of the Photovoltaic Program, any

government_ incentives ` to promote acceptance of the product should be aimed at

users _rather than suppliers.	 The major support for this assertion came from

evidence which showed that government efforts to promote supplier acceptance,-

kr- given the 50o/peak watt price and user acceptance (market demand), would be

redundant--supply will readily appear without any government prodding. 	 Further-

more, it was argued that the encouragement of user rather than supplier accep-

tance has several additional advantages, not the least of which is the promotion

•- of competition among photovoltaic suppliers.

i
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United States Congress, studies prepared for the use of the Joint Economic
Committee, U.S. Economic Growth from `1976`to 1986:	 Prospects, PIroblems, and

I' Patterns, (Washington, D.C.: 	 Government Printing Office, Jana 1977).
Technological Change, Vol. 9, P. 32.
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This conclusion has implications for several parts of the Low-Cost

Silicon Solar Array Project. In particular, the plans for government involve-
ment in supply technology demonstrations and commercial production are affected.

The present chapter examines the spectrum of issues related to such experimen-
tal plants, including pilot, demonstration and commercial scale production
plants.

The conclusions are that:

(1) Pilot Plants should be used as part of the Research and Development
t:	 effort. That is, they should be constructed whenever it is deter-
r

	

	
mined thev would be advantageous from a Technology Development
perspective.

2	 Demonstration Plants should be built only when the technology
is well in hand. They should be aimed at information production,
not information transfer. However, the information they produce
should be primarily, if not exclusively, economic (not
technological)

(3) Commercial scale production should not be undertaken as part of
the Photovoltaic Program.

These conclusions are advanced on the basis of 'both a priori reasoning

and a thorough analysis of previous federal efforts to promote a technology
through demonstration projects. The factors which have made such demonstra-

tions successful are analyzed and used to derive detailed recommendations for
the implementation of pilot/demonstration plants in the LSSA project.

The discussion proceeds as follows. First, the current'LSSA plans for
fJ

	

	 pilot, demonstration and commercial scale plants are reviewed in Section III.B.
Next, operational definitions of the various types of experimental_ plants are

derived, and the implications of these definitions are spelled out in Section
III.C. Sections III.D and III.'E discuss pilot plants and demonstration plants,

respectively, and Section IV presents conclusions and recommendations. Evidence

from 'a voluminous Rand Corporation study ,entitled Analysis of Federally Funded

Demonstration Projects* is used to support the analysis throughout.

r	 *Walter S. Baer, Leland L. Johnson, and Edward W. Merrow, Analysis of Federally
Funded Demonstration Projects, Three Volumes: Executive Summary (R--1925-DOC),
Final Report (R-1926-DOC), Case Studies (R-1927-DOC), (Rand Corporation,
April" 1976).
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B.	 LSSA PLANS

The most recent statements of Photovoltaic Program and LSSA Project plans	 j

are found in the National Solar Photovoltaic Program Plan: Draft. 1 Here, plans

are drawn for pilot and demonstration plants for the Silicon Material, the

Silicon Sheet Technology, and the Automated Array Assembly tasks of the Tech-

nology Development branch of the Project. Designs for two silicon material

(semiconductor grade and solar grade) "experimental facilities" are to be com-

pleted by July 1979 with operations beginning between March and June of 1981.

Designs for a demonstration plant (for silicon material) are to be completed by

February 1982, with operations_ beginning in October of 1985. Plans for the

Silicon, Sheet Technology are less specific: an experimental plant is to be

producing by June 1983 and a "mass production plant" is to be operational by

September of 1985. Finally, the Automated Array Assembly task will commit to the

design of an experimental line early in 1981, begin operation demonstrations in

early 1984, and have a mass production facility operational by late 1985.2

One fact stands out from these schedules: there will be no time to

evaluate the results of pilot (experimental) plant operations and use that evalu-
ation in the design of the demonstration (mass, production) plants. The demon-

stration plant designs are finalized at the time the pilot plants are scheduled

to begin operations. Several important implications of this fact will be

elaborated upon below.

There is also considerable confusion over the definitions and purposes'
of pilot, demonstration and commercial scale plants. Consider the following
statements taken from the plans forthe-Silicon, Material', Silicon Sheet, and

Automated Array Assembly (recently relabelled the Production Process and Equip-

ment Area) tasks respectively:

Establishment of process feasibility (including process size-
scale effects) will be followed by phases for the design, construction
and operation of experimental production facilities and pilot plants.

1The Photovoltaic Program Planning Group, National Solar Photovoltaic Program
Plan, unpublished document, July 1977. Although this document was never
accepted as a Program Plan, it nevertheless summarizes the views of many of the
prominent decision makers in the Photovoltaic Program.

Zlbid, Pp. 48-65.
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i

This will allow the technical and economic feasibility to be

'j established on representatively sized facilities.... 	 The design,
and construction of a pilot plant will take 2-1/4 years. 	 This
plant will be operated until commercial plants are well established.
The concurrent operation of the pilot plant and the commercial plant
will permit the pilot plant to be used for process optimization,
problem solving, and studies of process modifications. )	(Silicon
Material Task)

. t A final milestone in this task is the construction of an experi-
mental plant which incorporates the leading sheet processes into a
large-scale, solar array automated production' plant in FY85.	 The
plant may utilize multiple methods of sheet production rather than a
single growth method to foster industrial competition. 2	(Silicon
Shoet Task)

b
The experimental plant designed in the previous phase will be

l; constructed and operated, and its performance will be evaluated.
During the period of operation detailed evaluations of equipment and

t processes will result in modifications and optimization as required,.
G The technical and economic feasibility of large scale commercial

production facilities will be established.

The construction, operation and evaluation of the experimental
line is expected to take approximately three years....

s The final phase of automated assembly technology development is
to incorporate the knowledge and experience gained from the experi-
mental line into the design of a large scale commercial production
plant.	 The results of this phase represent the culmination of the

" - objectives and goals of the Low-Cost Silicon Solar Array Project.
The large scale commercial plant will be capable of demonstrating
the industry's capacity of more than 500 peak megawatts and a 20-
year useful life time at a price not to exceed $0,.50 per peak watt.3

• (Production Process and Equipment Area).
+,

The confusion between experimentation and commercial production in these state-

ments results from the pressure to develop new technology and meet the 500' MW
C

peak/year production goal simultaneously.	 Since the technology for producing
cheap electricity from photovoltaics is still undeveloped, experimental lines

(pilot plants) are considered essential to the development process.	 However,

LSSA management is constrained to guarantee meeting the 500 MW peak/goal by

r '

llbid, p.	 50.

r
2
ibi t, p. 56.	 PAGE ISORIGINS

3zbia, 63.	 1,00F. QUALITYp.	 OFr;
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I . IN

planning to construct a similar industrial capacity. Thus, the timing of the

pilot plants and commercial plants are collapsed to occur in parallel.1

This section argues that this is both unwise and unnecessary. Section C

begins this argument with definitions and statements of purpose for pilot,

demonstration and commercialscale production plants respectively.

7

: C.	 DEFINITIONS AND PURPOSES

_ The encyclopedia defines a pilot plant as:	 "...a scale model of a larger

w' plant or a portion thereof, built of engineering . materials'and operated for a

relatively short period of time to produce engineering design data for the

"2` process, or trial lot quantities, or both.

' According to section 1(c) -of the Demonstration Plants Act of 1958, P.L.
85-883, a demonstration plant is defined as: 	 "...a plant ofsufficient size and

a capacity to establish on a day-to-day operating basis the optimumattainable

f reliability, engineering, operating and economic potential."

K Thus, both demonstration and pilot plants are aimed at the generation of

information--the reduction of uncertainty.	 However, the types of information

they produce are quite different.	 Pilot plants are primarily concerned with the

resolution of technological uncertainties, while demonstrations are primarilyF
4 ,

• aimed at the reduction of economic uncertainty.

There are at least five sources of uncertainty which must be lowered to

manageable levels before private commercial production employing a new technology
` can take place.	 The 'Rand Study Analysis of Federally Funded Demonstration

' Projects has classified experimental plants according to their success at

r	 ' producing information which lowered the following uncertainties:

(1)	 Technological uncertainty:	 uncertainty as to the operating
characteristics and feasibility of a new technology.

x

4 lEven though the automated array assembly task speaks as though its plants will
be built sequentially, it is extremely unlikely that there will be enough time

• to utilize the results of pilot plant experimentation in the designs for the
commercial scale plant.

2Donald G. Jordan, Kirk-Othmer Encyclopedia of Chemical Technology,` Volume 15,
Second Edition, 	 (New York:	 Interscience Publishers, 1968T, p., 607.

^' 3-5	
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(2) Cost uncertainty: uncertainty with respect to the total per unit
costs of production.

(3) Demand uncertainty: uncertainty as to the market demand for the
product as a function of time and product price.

(4) Institutional uncertainty: uncertainty as to the competence and
relevance of the institutional arrangements, both internal to the

t'	 firm (organizational structure) and external (regulation).

(5) Externality uncertainty: uncertainty with respect to the level of
external benefits or costs associated with the technology. (External
benefits or costs are those costs or benefits imposed on individuals
not involved in the actual transaction. Examples include all types
of pollution and dependence on foreign oil.)

4.

	

	 The primary purpose of a pilot plant is to reduce the first of these--the

level of technological uncertainty. Although some information about the other

t ^	 four categories may be generated, a pilot plant is an important part of the

E	 research and development effort, and should be built whenever it is considered

ti
the most efficient manner in which to reduce the level of technological

uncertainty.

A demonstration plant, on the other hand, is aimed primarily at one or more

`	 of the other four categories of uncertainty. Although it may generate some
E	

_

technological data, it is built for the purpose of deriving reliable estimates
k

of unit costs, market demand, etc.
y

Thus, pilot plants and demonstration plants are distinguished by the

functions they perform. Furthermore, it is this functional distinction which
F

	

	
determines their optimal design parameters, operating; characteristics, political

environment, and funding arrangements.

A common mistake is to assume pilot plants and demonstration plants are

k differentiated primarily by size. Although a demonstration is often larger than

a pilot plant because their various functions call for different size operations,

it isthe different functions, not the different designs, which distinguish them.

For example, a pilot plant can never become a demonstration simply by making it
e larger--it only becomes an oversized and } poorly designed pilot plant. Such a

plant will be both a poor demonstration and an inefficient pilot.

x

I	 _	 ORIGINAL PAGE U3
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This emphasis of function makes it clear that pilot plants must precede

demonstrations. The output of pilot plant experiments is essential to the proper,

design and planning of demonstrations. It is not possible to make accurate

estimates of costs, demand, externalities or regulatory constraints until the 	 -

^`	 7 technology has become well defined. 	 Attempts at demonstrations before the tech-

nology is ready have resulted in inefficiently scaled experimental plants which
A X^;

function, poorly as either demonstrations or pilot ,plants and at great cost.

;. Examples of such failures are cited below.,

' The sequential transition from pilot to demonstration applies equally to

F the third step--commercial production.	 A commercial plant's primary purpose is

the production of physical output at the least possible cost per unit for sale in
^

w

an open market.	 Significant production will occur only when all five types of
.p

i uncertainty have been reduced, to acceptably low levels. 	 Not only is the technol-

ogy well in hand, reliability determined, etc., but accurate estimates of demand

and cost, externalities, and relevant organizational and regulatory constraints

' have been compiled.	 With this information a commercial plant can be designed to

produce at the least cost per unit (efficient scale, mix of resources, material

handling, etc.)	 Without this information, attempts at commercial production are

unlikely to succeed.	 Only luck can prevent the construction of an inefficient

plant.	 if such a plant is constructed, it will not survive in a competitive 1
w °^

,j market, as competitors will undersell it as soon as the missing information is ^.A

compiled and applied to the construction of subsequent plants.

Thus, the sequence--pilot, demonstration, commercial production--is of

utmost importance to the proper and successful introduction of anew technology.' #	 ..

i( Sections III.D and III.E present evidence on previous federally funded

y j demonstrations and the determinants of their success or failure.

D.	 PILOT PLANTS

As pointed out above, the primary function of a'pilot plant is to resolve

`' ? technological issues. 	 This has definite implications for their design and imple-

mentation.	 Consider the following result from a study of pilot plant experience'

in the chemical industry*:

Jordan, Chemical Encyclopedia, p. 610. y
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It is quite difficult to operate such pilot plants. They are
constantly plagued by relatively trivial mechanical difficulties that
arise because of the unknown characteristics of the process, the
experimental nature of the operations, and the intermediate -size of
the apparatus. Pilot plants are often required to work under condi-
tions that are far from optimum. The equipment is usually relatively
small so that it is easily upset, hard to control, readily plugged by
dirt or polymer, and so 'small that ordinary maintenance is not easy.
Heat losses can be high so that heat balances are difficult to make,
and material losses can be substantial so that careful attention to
detail is necessary before a good material balance is obtained. The 	 -j

i,	 engineers and technicians working on these pilot plants spend 85% of
 their time struggling with the apparatus in an effort to make it work.

The operations of 'a pilot plant are constantly interrupted by technological

problems. Alternative techniques or processes must be implemented to improve

performance or correct deficiencies. Thus, attempts to gather data on reliability

and cost from the pilot plant will be seriously handicapped.

Evidence as to the efficiency of conducting demonstrations either without,

T	 or concurrently with, a pilot plant can be found in the Rand Study referred to

earlier. Here, twenty-two federally funded demonstrations were classified as to

their level of technological uncertainty. Table 3-1 tabulates these rankings

against three distinct measures of success. Each project was judged as to its

level of success at (1) reducing the uncertainties in all five dimensions cited

above to acceptably low levels (information success); (2) producing a useful

a	 output or product (application success); and (3) stimulating ;subsequent di,ffusi<,,

k of the technology (diffusion success).

=	 Table 3-1 shows that in no demonstration where preproject technological

uncertainty was high was there success at either, reducing uncertainty to low`

levels or stimulating subsequent diffusion of the technology. And', although a

'	 number of projects with medium preproject technological uncertainty were judged'
t

information successes, in only 3 of 8 cases was the subsequent diffusion signi-

ficant. Thus, demonstrations conducted with high technological uncertainty are

highly likely to fail.

I	 The Rand study explains these results as follows*_:

The association between diffusion success and low or medium technology
t	 uncertainty is not surprising. The value of a demonstration project

in generating information useful to potential adopters' depends on its

{	 Rand, Analysis of Demonstrations, Vol. 2, pp. 46-47.
ORIGINAL' PAGE IS
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Y	 Table 3-1. Technological Uncertainty vs. Project Success

A.

a

,C t^

^'c

e

.S

INFORMATION SUCCESS
PREPROJECT TECHNOLOGICAL

NO YESUNCERTAINTY

Dial-A-Ride (computer)

HIGH
FPC
Savannah
PRT

Dial-A-Ride (manual)
ECG
Desalination (Freeport)

MEDIUM Yankee
RFD
Marisat
Resource Recovery
Desalination	 (Pt.	 Loma)

Breakthrough Connecticut Yankee
Minneapolis Corridor Godzilla

Shipbuilding

LOW Medicaid
Poultry Waste
Refan
Chicago Expressway
Hydraulic Knee

APPLICATION SUCCESS
PP.EPROJEGT TECHNOLOGICAL

LOW MODERATE HIGHUNCERTAINTY

HIGH
Dial-A-Ride (Computer) Savannah
FPC PRT_

Desalination (Freeport) Desalination (Pt.	 Loma) ECG
Marisat Yankee

MEDIUM RFD
Resource Recovery
Dial-A-Ride (manual)

Medicaid Breakthrough
Godzilla
Shipbuilding

LOW
Connecticut Yankee
Chicago Expressway
Minneapolis Corridor
Poultry Waste
Hydraulic Knee
Refan

DIFFUSION SUCCESS
PREPROJECT TECHNOLOGICAL

LITTLE OR NONE SOME SIGNIFICANTUNCERTAINTY

Dial-A-Ride (computer)

HIGH PRT
FPC
Savannah

Desalination	 (Freeport) Dial-A-Ride (manual) Yankee,

MEDIUM ECG RFD
Marisat Desalination (Pt,	 Loma)
Resource Recovery

Medicaid Connecticut Yankee Poultry Waste
LOW Breakthrough Godzilla Shipbuilding

Minneapolis Corridor- Chicago Expressway
Hydraulic Knee

• SOURCE:- Reprinted from Analsis of Federall	 Funded Demonstration Pro ects:-Final Re ort, Walter S. Baer, Leland L. Johnson,'
and Edward W. Merrow, 	 Santa Monica:	 Ran _Corporation,	 prl	 , pp.	 - 76.

s ORIGINAL PAGE IS
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operating reliability in a real-world environment. If the technology
i is not well in hand, there will be frequent breakdowns, delays, and

frustrations. Whatever would have been gained in the real environ-
ment, such as obtaining a better understanding of the demand for the
product, is thereby lost or at least severely compromised.

The highly uncertain technology with which pilot plants deal has implica-

tions for both their design and implementation. In general, pilot plants should:

(1) be as small as is technically feasible

(2) have a flexible design

(3) concentrate on the resolution of technical uncertainties

(4) keep a low political profile

Given that the technology is not well understood,, substantial changes in

the initial pilot facility must be anticipated. Therefore, individual process

units should be built at the minimum possible scale necessary to resolve techni-

cal'issues in order to minimize the costs of alterations, deign changes, ,etc.

Each process unit should be built keeping in mind the objective of scaling up to

commercial size. Thus, some readily scalable processes may be well-defined at

the _laboratory stage and need not be included in the pilot, On the other hand,

if process integration or product output (e.g. for technical or market testing)

are important, then all processes will have to be included.

Furthermore, each process should be deliberately designed with the possi-

bility of alterationin mind, so that subsequent changes are not hindered. Thus,

the pilot plant should be small and flexible.

Since the pilot plant is deliberately built with the anticipation of

changes, implying a small, flexible scale, it is unlikely that uncertainties with

respect to cost, product demand, externalities, etc. will be completely resolved.,

Hence', the pilot should concentrate on technical problems, although any useful

information concerning the other dimensions of uncertainty will, of course, be

utilized

Finally, it is desirable' that a pilot have a'low political profile. This

objective is facilitated by the small size and relatively small cost of demonstra-

tions. The effect of giving too much visibility to pilot plants, with their'

3-10



frequent shutdowns and frustrations, can be disastrous. There is a real danger

3 that such information will be interpreted as a sign of failure.	 A prime example

is the Freeport, Texas demonstration of the long vertical tube evaporation (VTE)

process for the desalination of ocean water conducted by the Office of Saline

Water (OSW) from 1961-1965. 	 Much of the impetus for undertaking the demonstra-

tion originated in Congressl:

It has been suggested that the processes that were demonstrated would
have been kept in the laboratory development phase for years if

S'I Congress had not mandated the demonstrations, which suggests that at
least some of the processes were not ready for implementation on the

' scale of a demonstration plant.

,P Furthermore, the plant remained in the political spotlight2

Although there were technical difficulties with the Freeport plant
(Demonstration Plant No. 1), it seems to have been a showpiece of the
demonstration plant program. 	 There were several visits by diplomats
and foreign technical teams to the -Freeport facility. 	 OSW became an

' international clearinghouse for desalting information...

' The principal objective of tar demonstration was identical to that of

a, LSSA3 c

The principles involved in the production of fresh water from saline
water at Freeport are fairly straightforward. 	 The technical problem
was never how to desalt saline water, but how to produce fresh water
from saline water cheaply.	 (italics added)

Unfortunately, however, the attainment of their price goal ($1.00/thousand 	 -r

gallons), which they successfully accomplished, involved, substantial technical 	 s

` difficulties which had to be resolved at the demonstration site. 	 These techni-

cal difficulties turned an actual success into a perceived failure 4 :	 r;

By the end of FY65,,nine development runs had been completed at the
Freeport facility.	 .... Some of these runs involved several parts'
each followed by a down period. 	 This pattern of frequent down
periods and the consequent failure of the Freeport_ facility to demon-
strate the potential for reliable operation turned out to be signifi-

' _cant in a way that probably was not expected. 	 A major promoter of

Ibid, Vol. 3, p. G-2.

2lbid,	 p.	 G-27.

3lbid,	 p. 'G-27.

41bid,	 p.	 G-22.,

sr	 f 3-11
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VTE technology,... explained that potential customers for
desalinization facilities have tended to avoid the VTE process
because Freeport's track record is interpreted as demonstrating
unreliability rather than as being evidence of the systematic
attempt to improve the process.

Another hazard which arises when political visibility is too high is the

likely imposition of severe time constraints. Table 3-2 shows that of the

demonstrations analyzed by the Rand study, the four judged to have been conducted

under significant external time _constraints were complete failures in both the

. 5

information and diffusion dimensions.
^

Probably the most infamous example of such political pressure arose at the

Morgantown demonstration of a Personal Rapid Transit (PRT) system':

The Morgantown project was badly hampered by the requirement to have a
prototype test and inauguration in October 1972 to phase properly with

°.^ the November presidential election.

The high technical uncertainty existing at the beginning of the
f program, combined with the stringent time schedule, contributed to

the projects' failure...

Thus, we have seen that a pilot plant is essential to the proper technical

development of a new technology.	 It ,should be built and operated as a small,

flexible experimental plant with low political visibility.

The federally funded attempts to skip -a pilot and jump straight into

k,
expensive, highly visible demonstrations have met with failure.	 Section III.E

addresses the question of what makes a demonstration successful, given that the

technology has been well defined.-

'. E.	 DEMONSTRATIONS AND COMMERCIAL PRODUCTION

A-demonstrat1on has been defined as an experimental plant s ecficall	 ^p	 specifically
$' constructed to lower uncertainty with respect to cost, demand, institutional

f_ restrictions and externalities. 	 The necessity of having a well-defined tech-

nology has been emphasized.	 Evidence was presented in previous sections showing

t that a high political profile and stringent time constraints are significantly

3 is
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INFORMATION SUCCESS
SIGNIFICANT EXTERNAL
TIME CONSTRAINTS

NO
YES

Desalination (Pt.	 Loma)Dial-A-Ride (computer)
Minneapolis Corridor Desalination (Freeport)

Chicago Expressway
Medicaid
Refan
Dial-A-Ride	 (manual)
ECG
Godzilla

NO Marisat
Shipbuilding
Yankee
Connecticut Yankee
RFD
Poultry Waste
Resource Recovery

- Hydraulic'Knee

'PC

YES Savannah
Breakthrough
PRT

APPLICATION_ SUCCESS

SIGNIFICANT EXTERNAL
TIME CONSTRAINTS LOW MODERATE HIGH

Dial-A-Ride (computer) Medicaid. Godzilla

Desalination (Freeport) Desalination	 (Pt.	 Loma) Dial-A-Ride (manual)

Marisat ECG
Shipbuilding
Minneapolis Corridor

NO Yankee
Connecticut Yankee
RFD
Poultry Waste
Resource Recovery
Chicago Expressway
Hydraulic Knee
Refan

FPC Savannah Breakthrough
YES PRT

DIFFUSION SUCCESS

SIGNIFICANT EXTERNAL
LITTLE OR NONE SOME SIGNIFICANTTIME CONSTRAINTS

Desalination (Freeport) Connecticut Yankee - Desalination	 (Pt.	 Loma)

Dial-A-Ride (computer) Dial-A-Ride (manual)' Shipbuilding

Minneapolis Corridor ECG Yankee

NO Medicaid Resource Recovery RFD
Godzilla Chicago Expressway
Marisat Poultry Waste

Hydraulic Knee

FPC

YES
Savannah
Breakthrough
PRT

P

t

it
2

Table 3-2. Time Constraints vs. Project Success

F	
SOURCE: Reprinted from Anal sis of Federally Funded Demonstration Pro'ects: Final !e port, Walter S. Baer, Leland L. Johnson, 	 r,

and Edward W. Merrow, Santa Monica: Rand Corporation, pri 	 pp. 54, 1 2- 83.
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related to demonstrations failures. This section discusses four additional

variables which appear to be correlated with demonstration project, successes,

namely:

(1) Share of federal funding

s	 (2) Initiative for demonstration
x'

(3) Strength of technology delivery system (TDS)
i

(4) All active components of TDS included in demonstration

The section concludes with a discussion of the usefulness of a commercial scale 	 <,
Y.	

plant to the attainment of the Photovoltaic Program goals.

As pointed out in the introduction, the primary objective of the
I

Photovoltaic Program is to promote the production and 'use `of cost-effective

photovoltaic devices by private industry. It is clear that in order for private

industry to undertake photovoltaic production, there must be a reasonable expecta -
tion of a competitive rate of ,return to such investment. Since a demonstration

!

	

	 is the last step in the development of a new technology before commercial

production, the level of interest displayed by private industry in a given

	

'	 demonstration is indicative of their assessment of the profit making potential

i	 for that technology. That is, a high level of private interest is an indication

E t	 that the technology is nearly ready for private commercial production. On the

other hand, no significant interest by private parties in a ` demonstration is a 	 =`

danger signal--the technology may be immature, the product too expensive, etc.

Evidence on the level of private interest in past federal demonstrations is

f :.	 presented in Tables 3-3 and 3-4. Here the (1) percentage of federal funding and

t	 (2)- project origin are plotted against three measures of project success. Even
r

though the correlation  is not overwhelming, successful projects appear more

likely to include 'a high level of private cost-sharing. 2 The three projects with

	

'r?	 100 percent federal funding were total failures at promoting subsequent diffusion

of the product. Furthermore, those projects that originated from or were

1Note that the argument is not one of cause and effect.
lµ	 2

Cost sharing; as distinguished from risk-sharing. A subsequent paper will
discuss in more detail the advantages and disadvantages of various forms of
cost and risk sharing. 	

_.

j.
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INFORMATION SUCCESS
SHARE OF

FEDERAL FUNDING NO YES

Breakthrough ECG
LESS THAN 50% Yankee

Connecticut Yankee

Minneapolis Corridor Chicago Expressway
Desalination	 (Freeport)
Refan
RFD

501 to 90%
Marisat
Godzilla
Shipbuilding
Poultry Waste
Resource Recovery
Desalination (Pt. Loma)

PRT Medicaid*

90% or MORE FPC* Dial-A-Ride (manual)
Savannah* Hydraulic Knee
Dial-A-Ride (computer)

APPLICATION SUCCESS
SHARE OF

FEDERAL FUNDING LOW MODERATE HIGH

Breakthrough

LESS THAN 50%
ECG
Yankee
Connecticut Yankee

Desalination (Freeport) PRT RFD
Desalination (Pt.	 Loma) Shipbuilding
Marisat Godzilla

50% to 90%
Poultry Waste
Resource Recovery
Chicago Expressway
Minneapolis Corridor
Refan

90% or MORE
FPC* Savannah* Hydraulic Knee
Dial-A-Ride (computer) Medicaid* Dial-A-Ride (manual)

DIFFUSION SUCCESS
SHARE OF

FEDERAL FUNDING LITTLE OR NONE SOME SI%fFICANT

LESS THAN 50%
Breakthrough Connecticut Yankee Yankee

ECG

Minneapolis Corridor Resource Recovery RFD
Desalination (Freeport) Godzilla Poultry Waste

50"'., to 90% Shipbuilding
'Chicago Expressway
Desalination	 (Pt.	 Loma)

FPC* Marisat Hydraulic Knee
Savannah* Dial-A-Ride	 (manual)

90% or MORE
PRT
Medicaid*
Dial-A-Ride (computer)

*100% federal funding.

SOURCE:	 Reprinted from Analysis of F
and Edward W. Merrow	 M.Tlly

d Demonstration P	
's	

Ein!
Ra

njet	 pp.	 9, Repor	 Walter S. Baer, Leland L. Johnson,
------ CS—anta orporation, April o'M76) : I// -/8.
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INFORMATION SUCCESS
INITIATIVE FOR

DEMONSTRAT ION NO YES

Minneapolis Corridor Godzilla
NONFEDERAL Shipbuilding

RFD
Resource Recovery
Poultry Waste
Chicago Expressway

Dial-A-Ride (computer) Dial-A-Ride	 (manual)
PRT Desalination (Freeport)
FPC Medicaid
Savannah Refan

FEDERAL
Breakthrough ECG

Marisat
Yankee
Connecticut Yankee
Desalination (Pt. Loma)
Hydraulic Knee

APPLICATION SUCCESS
INITIATIVE FOR --	 - —

DEMONSTRATION LOW MODERATE HIGH

Godzilla
Shipbuilding
RFD

NONFEDERAL Chicago Expressway
Minneapolis Corridor
Resource Recovery
Poultry Waste

Dial-A-Ride-(computer) Marisat Breakthrough
FPC Savannah Hydraulic Knee
Desalination (Freeport) PRT ECG

FEDERAL Medicaid Yankee -
Desalindtion	 (Pt. Loma) Connecticut Yankee

Refan
Dial-A-Ride	 (manual)

DIFFUSION SUCCESS
INITIATIVE FOR

LITTLE OR NONE SOME SIGNIFICANTDEMONSTRATION

NONFEDERAL
Minneapolis Corridor Godzilla Shipbuilding

Resource Recovery RFD
Chicago Expressway
Poultry Waste-

Dial-A-Ride (computer) Marisat Yankee

PRT Dial-A-Ride (manual) ' Desalination	 (Pt.	 Loma)
Desalination (Freeport) ECG Hydraulic Knee

FEDERAL FPC Connecticut Yankee
Savannah

Medicaid

Breakthrough

r
4

t
y

K"

t	
Y,,

i,.

L

i,.

h.

^d

r	 I'

f(

'w

^t

i

Table 3-4. Project Initiative vs. Project Success
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initiated by nonfederal actors enjoyed a significantly higher rate of success

rk in all three dimensions. 	 Thus, those projects which excited a high level of

nonfederal participation, either through cost-sharing or project initiation,

a ' proved to have ,a higher probability of success.

A good example of a federal demonstration that failed after ignoring the

danger signals arising from the lack of nonfederal participation was the Fish

Protein Concentrate (FPC) plant built in Aberdeen, Washington in 1971.	 The idea

' of producing a high protein concentrate for human consumption from small, bony

fish is intuitively appealing. 	 In 1963, the Secretary of the Interior reoriented

the R&D program on FPC conducted by the Bureau of Commercial Fisheries "toward

'. more rapid commercialization, in support of a U.S. foreign policy goal to expand

food _supplies in developing nations.-'' l	Even though the Bureau of Commercial

Fisheries' (BCF) research staff did not favor rapidcommercialization and wanted

to continue research on a wider front, the pressure from Congress was overwhelm-

ing:	 "As one new 'initiative' in the marine resource_ area the Marine Science

Council (MSC) seized upon FPC as a prime candidate for expanding government

action.	 It strongly supported legislation pending before Congress that would

specifically authorize federal fundsfor FPC demonstration plants."2'

The project arousedvery little interest in the private sector, however,

for two very good reasons:	 the technology was highly uncertain and the demand

` for the product was small. 	 Thus3:

The major food` processors contacted cited the absence of functional
properties as-a major barrier to their adoption of FPC, even if it,

f were cost competitive and readily available. 	 A very limited market

Ir for 'non-functional; protein exists in soft drinks, pet food and the
like.	 This demand ,could be met more cheaply by the use of soy protein
in one of its many forms., 	 Thus the demonstration produced a product

for which no clear _domestic market' existed.

r.
The plant was permanently closed 15 months after operations began.

The FPC demonstration also illustrates another problem with many federal

demonstrations:	 failure to include all active components of the Technology

lIbid, Vol.-2, p.	 109.

2 1bid, Vol.	 3, p. F 4-5.

3Ibi.d, p. F-27
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Delivery System (TDS) in the demonstration. Thus, the food processors were not

x	 actively sought after in an effort to shape the project to their needs.

The TDS includes:

.^;
1r,

(1)	 the sources of research funding

#^. (2) 	 the R&D performers

(3)	 the product manufacturers

;x
(4)	 the ultimate purchasers and users

Tables 3-5 and 3-6 show that both the strength of the TDS and the extent to which

, all active components of the TDS are included in the demonstration are importantr
correlates with the success of a demonstration. 	 A TDS is considered strong if

previous links have been forged between all members of the anticipated TDS.

`i I
^I 1.	 Commercial Production

The final step in the successful introduction of 'a new technology is, of
course, the construction of commercial scale plants.	 Since the original Project

Proposal explicitly called for the encouragement of competitive production by

private industry, 	 there would appear to be no motivation for the LSSA project

to consider commercial production. 	 This, however, is not the case.	 Because of

the 500 MW/year peak production goal, LSSA project management is constrained to

plan to produce at that rate. 	 Thus, even if a demonstration of the type dis-

cussed above would be unnecessary or premature by the 1986 deadline, the project

plans to go ahead with a large manufacturing plant or plants for the specific

purpose of guaranteeing the outputgoal.
u' a

;r
t 4

[..L

At best,, this plan is inferior, at worst, perverse.	 Even if we accept the

output goal as given, a superior way to guarantee its attainment is through

x procurements of the type currently' carried out by LSSA and called for in the

See Chapter 1, p. 1. 	 This desire is constantly reiterated. 	 See, for example,
i
r the August, 1977. 	 House and Senate _versions of the Federal Photovoltaic,Utliza-

tion Act where the encouragement of private competition is listed as a mayor
goal.

a ORIGINAL PAGE IS_
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INFORMATION SUCCESS

NO YESSTRENGTH OF TDS

Minneapolis Corridor Chicago Expressway
Refan
ECG
Shipbuilding

HIGH
Yankee
Connecticut Yankee
RFD
Poultry Waste
Resource Recovery
Hydraulic K,aee

Savannah Medicaid
Dial-A-Ride (computer) Marisat

MEDIUM Godzilla
Dial-A-Ride (manual)
Desalination (Pt, Loma)
Desalination (Freeport)

PRT
LOW FPC

Breakthrough

APPLICATION SUCCESS

LOW MODERATE HIGHSTRENGTH OF TDS

Resource Recovery
Hydraulic Knee
ECG
Shipbuilding
Yankee

HIGH Connecticut Yankee
RFD
Chicago Expressway,
Minneapolis Corridor
Poultry Waste
Refan

Dial-A-Ride (computer) Savannah Godzilla

h1EDIUM
Desalination (Freeport) Medicaid Dial-A-Ride	 (manual)

Marisat
Desalination (Pt.	 Loma)

LOW FPC PRT Breakthrough

DIFFUSION SUCCESS

STRENGTH OF TDS LITTLE OR NONE SOME SIGNIFICANT -

Minneapolis Corridor ECG Shipbuilding
Connecticut Yankee	 - Yankee

HIGH
Resource Recovery RFD

Chicago Expressway
Poultry Waste
Hydraulic Knee

Desalination (Freeport) Marisat Desalination ,(Pt. Loma)

MEDIUM
Savannah Godzilla
Medicaid Dial-A-Ride (manual)
Dial-A-Ride (computer)

Breakthrough
LOW PRT

FPC



DEMONSTRATION INCLUDED INFORMATION SUCCESS
ALL ACTIVE

NO YES'TDS COMPONENTS

Dial-A-Ride (computer) Chicago Expressway
Minneapolis Corridor Refan

Dial-A-Ride (manual)
ECG
Marisat
Shipbuilding

YES Resource Recovery
RFD
Desalination (Pt. Loma)
Desalination (Freeport)
Yankee
Connecticut Yankee
Hydraulic Knee

FPC Medicaid
NO Savannah Godzilla

Breakthrough Poultry Waste
PRT

DEMONSTRATION INCLUDED
ALL ACTIVE APPLICATION SUCCESS

TDS COMPONENTS

LOW MODERATE HIGH

Dial-A-Ride (computer) Marisat Refan
Desalination (Freeport) Desalination	 (Pt.	 Loma) Dial-A-Ride (manual)

YES ECG
Shipbuilding
Yankee
Connecticut Yankee
RFD
Resource Recovery
Chicago Expressway
Minneapolis Corridor
Hydraulic Knee

FPC Savannah Breakthrough
NO Medicaid Godzilla

PRT Poultry Waste

DEMONSTRATION INCLUDED DIFFUSION SUCCESS
ALL ACTIVE

LITTLE OR NONE SOME SIGNIFICANTTDS COMPONENTS

Dial-A-Ride (computer) Connecticut, Yankee Hydraulic Knee
Minneapolis Corridor: Dial,-A-Ride	 (manual) Chicago Expressway

YES
Desalination (Freeport) Marisat Shipbuilding

ECG Yankee-
Resource Recovery RFD

Poultry Waste
Desalination (Pt. Loma)

PRT Godzilla
FPC

NO Savannah
Medicaid
Breakthrough



i'' Photovoltaic Utilization Act before Congress.	 Procurement has several advantages

over direct government production;

.
(1)	 It promotes competition and efficient production.

.	 r (2)	 Costs of the program are well defined.

R (3)	 Demonstrations can be conducted on their own merits--not confused
with commercial production.

r,

Such a procurement program could specify certain technologies, if so desired, to

promote their use.

Demand stimulation (procurement), if conducted properly, promotes competi-

tion, since the number of potential suppliers is large. 	 Furthermore, efficiency

`a is promoted because only efficient producers will be able to supply at the

cheapest prices.

.r 2.	 Summary

This section has delineated four additional variables which are related to

successful demonstration projects. 	 Two of these, percent federally financed and

3d - origin of project, are indications of the level of private interest in the demon-
". stration., The final two deal with the strength and extent of involvement in theA

project of the Technology Delivery System.	 Also 	 the separate functions of

'^. demonstrations and commercial production were emphasized, and it wasrecommended

that the federal government not engage in commercial production.

rr These conclusions have important implications for the ` LSSA project.	 Since'

c - photovoltaics in civilian applications is virtually a new industry, the TDS is,

by definition, weak.	 Thus, it is quite important that any large demonstrations

include all major components of the system in an attempt to forge links among

them.	 Not only array producers, but ultimate users, including utilities,

farmer's co-operatives, etc. must be actively sought after to participate in

the demonstration.

R

^	 f
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We conclude with a warning emanating from the pre ptigious Nuclear Energy

j	 Policy Study Group (whose membership includes the economists Kenneth Arrow and

Hollis B. Chenery)*:

C, ...Thus there is little value in demonstrating clearly noncompetitive
r° f { technology unless the demonstration substantially advances the engi-

neering of the technology at a cost commensurate with the value of the
advance.	 'If the demonstration takes place before it is economically
justified, the government may have to subsidize the program at a high
level for a long time after demonstration, and the ultimate product may
also be inferior to that which would have resulted from continued

t , development.	 In addition, premature commitment to expensive demonstra-
tion programs can distort the balance of the federal energy program.
We believe that the government must exercise greater care in the future
before moving into the very costly phases of the development chain.

F.

i

^	 st II

LA.}} *
The Nuclear Energy Policy Study Group, Nuclear Power Issues and Choices
(Cambridge,, Mass.:	 Ballinger Publishing Company, 1977), p. 13.

i
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This document has attempted to anticipate some problems which may arise as

the LSSA Project attempts to transfer to the private sector the new technologies

developed within the Project.

The key roles played by product price and effective product demand at that

price were emphasized.	 The analysis went on to consider another potential

problem--the adoption of new technologies by photovoltaic suppliers.	 Innovation

and diffusion were defined and the determinants of the optimum rate of diffusion

were discussed.	 No impediments to the rapid diffusion of photovoltaic tech-

nology were expected from market structure, venture capital availability or

information flow impediments.

However, the inconsistency found in current program plans to encourage a

highly capital intense, automated technology in the presence of rapid techno-

logical change was stressed.	 It was concluded. that no push for final industri-

alization should be attempted until the technology was fully developed and

stable.	 Other possible impediments to rapid diffusion could arise if the project

attempts to subsidize or compete with private commercial production.	 It was

recommended that no commercial production of photovoltaic arrays be undertaken
J

by the-. federal government.

Thus, other than artificial impediments flowing from the conduct of the

program itself, no barriers to the rapid adoption by private producers is antici-

pated given attainment.of the product price and sufficient effective demand at

that price.	 This conclusion was supported by evidence from the semiconductor,

petroleum and iron and steel industries. 	 Further, it was recommended that any

subsidy to encourage the use of photovoltaics be applied at the demand side to

avoid any injury to the expected competitive market structure of the supply

industry.

In light of these conclusions, the 500 MW peak/year quantity goal was

reexamined.	 Three possible motives for the goal were identified.	 It was shown

that either the goal should be COMDletely dropped or moved to a purely passive

'INN4-1	 ORIG C01, QTJ^Ixal
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role at Program. Headquarters to function as an arbiter on the successor failure`
of the entire program.	 It was argued that direct government production to

satisfy the goal would not be useful.

( Section III discussed the relative merits of various forms of experimental

a production plants to the LSSA Project and Photovoltaic Program. 	 The functional

"I distinction between pilot plants (technological research and development) and

J
demonstration plants (cost, environmental, reliability, regulatory considerations)

Y

' was emphasized.	 The different types of information each plant is designed to

compile were pointed out and the improper distinction between such plants on the

.

+

basis of sizewas discussed.	 Thus, it was recommended that pilot plants be r

constructed whenever they would facilitate the R&D phases of the program, but

that demonstrations be delayed until the technology is well in hand.

Evidence from a voluminous study, Analysis of Federally Funded

Demonstration Projects, by Rand Corporation and John Tilton's book International

,.; Diffusion of Technology: 	 The Case of Semiconductors was used to support the

analysis throughout.

^ r
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