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I. INTRODUCTION

The earth's oceans have, in recent times, became an area for renewed study

and a candidate for investigational analysis. This, coupled with the use of satellites

as vehicles for the transport of experimental research instrumentation, has prompted

much of the activity; and, in fact, has been the impetus for some of the additional re-

search, per se.

One of these "renewed areas" is concerned with the prediction and the esti-

mation of ocean tides. In this regard there are analysts who have concocted "new"

mathematical models of the oceans and their driving influences. Still others have an

interest in these same, or similar, studies but are seeking new and different techniques

to apply in their modelling.

From a literature perusal it would seem that the most frequently used mathe-

matical approach in this work is one based on finite difference techniques. Of course

this is only the vehicle for solution; it has very little to do with the mathematical

model devised to describe the topography and physical character of the oceans and

their disturbances. Many of these models have only "small" differences in their

makeup — that is, they differ primarily in the representations used to describe cer-

tain physical characteristics of the real world problem situation. Others may include

different "influences" which introduce perturbations to the ocean body; and still others

will incorporate measurements, from observations, as a means to "adjust" the predicted

output from the ensueing computations. All things considered, the basic thrust for

these studies seems to be aimed at more accurate predictions for the global tides —

and, apparently, the present day goal is one of forecasting tides to within a ten centi-

meter accuracy.

Not all efforts are as ambitious and as far reaching as those noted above. Some

investigations are directed to more elementary tasks such as the predictions for lesser

Sized bodies of water; or, to the development of new techniques which might supplement

or even replace some of the more popular procedures.



It was in the spirit of these latter trial efforts that the study reported here was

undertaken. The basic aim in this work was to develop a method for determining the

fundamental tidal frequencies, for closed basins — of water — by means of an eigen-

value analysis. In this regard, then, the mathematical model which was to be employed ,

was the so-called Laplace Tidal Equations. Obviously these are not "new" equations

(LAPLACE, Pierre Simon, Marquis de (1749-1827)); however, the proposed procedure

for "solving" these was to represent a different and somewhat unique approach.

It was proposed that these mathematical statements, by Laplace, would be cast

in a format employing the finite element method. Once this model of the governing

expressions was in hand, it was proposed that solutions for the tidal frequencies be

pursued. This obviously would lead to an eigenvalue analysis, but to one which would

necessitate the use of some different mathematical machinery as the means to the ends

desired. Here, because of formulation, it was proposed that the eigenvalue extraction

algorithms residing in the NASTRAN program, would be put to use. The reasoning be-

hind this stemmed from the fact that NASTRAN was designed to handle large scale pro-

blems (structural problems) and it possessed the machinery necessary to do the large

eigen-analysis expected in this task.

Once the necessary software was in hand, an application of this scheme was to

be tested on candidate basins — natural basins. The obvious candidates for such a task,

were the Great Lakes. Thus the "proof of the pudding", so to speak, would lie in the

application of this procedure to a determination of the natural (fundamental) tidal fre-

quencies for the selected bodies in the Great Lakes system.

A first candidate for the study was selected to be Lake Erie. Subsequently, the

next chosen body of water, for examination, was Lake Superior.

In the following sections of this report the reader will find developments des-

criptive of the mathematical model used here; also, there will be discussions of the

•procedures tried and adopted; and, finally, some selected results acquired for the

exercising of this method will be noted and described.



The next sections of the report are given to a general discussion on the finite

element method, its history and its application in this investigation. Later, following

the report of selected results there will be a few statements concerning the outcome

of this work, and recommendations for subsequent efforts.



II. FINITE ELEMENT FORMULATION

II.1 Introduction

From a perusal of literature on the finite element method one finds that most pre-

vious work in this area has been based on the minimization of some function - a variational

statement. Basically, this can be traced to the fact that the finite element method (FEM)

was originally developed for use in structural mechanics, a field where variational principles

abound.

Contrary to the structures field, fluid mechanics is one area where there is, more

often than not, a scarcity of variational principles. Findlayson (see Reference (5)) in pre-

paring a summary for fluids, mentions such areas as perfect fluids, magnetohydrodynamics,

non-Newtonian fluids and the low Reynolds number problems as candidates for the variational

approach. However, in with these classifications he notes that there is no known variational

principles for the Navier-Stokes equations - pointing to the fact that these expressions con-

tain representations for both viscous and inertia forces in their makeup. In addition, it is

not apparent just what would be an appropriate function, for minimization, in the hyper-

bolic-type, vertically averaged equations (see Appendix A) which are often used for the study.

of tidal ponds and coastal water basins.

In at least one instance, found in the literature, there has been developed a type of

variational formulation for hydrodynamic equations. Mclver (Reference (11)) has constructed

an adjoint variational principle; however, his work does not have a direct (physical) useful-

ness due to the presence of the added adjoint variables. With the inclusion of these quantities

the problem "size" is doubled, in unknowns; accordingly the computational time and problem

complexity is increased substantially.

Among the various procedures used to solve problems described by partial differential

equations, probably the one most widely used is the method of weighted residuals. In this

procedure the unknown solution is simulated by a set of so-called "trial functions". The



constants, in these functions, are adjusted so that the final result provides a "best fit"

solution to the problem under investigation. To obtain values for the constants, the trial

functions are (first) substituted into the governing equations; however, since these func-

tions do not represent a true solution, residuals are formed. The constants are then ad-

justed so that the residuals, modified by chosen weighting functions, are "zeroed" in some

One of the most crucial operations here has to do with selecting the weighting func-

tions. Obviously there are any number of procedures by which these may be chosen; and,

obviously, each represents a different method of approach.

Among the more popular procedures are: (1) the Galerkin method; (2) a least

squares method; and (3) the method of moments. Of these three the procedure which has,

recently, found the most favor among "finite element" investigators is the Galerkin method.

One apparent advantage of this procedure is that in it the weighting functions are the trial

functions used in the simulation of the problem's solution (see References ( 3 , 5 ) ) .

Quite frequently the Galerkin method leads to a simpler and more direct formulation

than would otherwise be obtained by constructing the trial functions and subsequently going

through the minimization operation.

[As an interesting aside; when the governing equations are self-adjoint, the varia-

tional procedure and the Galerkin weighted residual method become identical. ]

It goes almost without saying that, because of its simplicity, and the success which

the method has enjoyed, the Galerkin procedure was chosen for use in the present investi-

gation. This method, which is used to simulate a solution, coupled with the finite element

technique, is well adapted for use here. As has been demonstrated elsewhere, (e.g., i

References ( 3 , 5 ) ) this combination of procedures is very well adapted to representing a

solution over a region having complex boundaries and continually varying bathymetry. Of

course, one consequence of these complications is that no analytic solutions are forthcoming



hence, numerical solutions will be produced, and these will be acquired through the use

of a digital computer. -

It is only in the more recent investigations of hydrodynamic problems that the FEM

approach has been adopted. Prior to that the usual method employed in acquiring solutions

was the finite difference (FD) approach. Necessarily both procedures (the FD and the FEM)

are applied to the same governing expressions; the main difference between them being

that the FD-method approximates derivatives appearing in the governing equations, while

the FEM operates through integrals developed from the same differential equations. A

second difference between these methods, and one not necessarily of small consequence,

has to do with the geometry used to subdivide the region over which a solutions is sought.

In the FD method, as a general procedure, and one almost universally employed, squares

(of uniform size) are utilized as subdivisions for the solution region. Contrary to this,

the FEM procedure most frequently uses triangles as subdivisions. These are, however,

not of a particular size or orientation. There are some specific conditions which must be

met (for and by these geometries); however, these are not described at present. Suffice

it to say, the triangular subdivisions are more readily and easily adapted to natural

boundaries (e.g., coast lines, shores, etc.) and are, therefore, more representative of

these bounds. In all cases and methods the subdivisions are finite in number; the tri-

angles, used in the FEM, are of much greater utility in satisfying grid refinements,

particularly where steep gradients are present. (That is, in regions where sharp corners,

point sources, irregular bottom geometries, etc., are present and need to be modelled or

accounted for in the formulations).

With an adoption of the FEM, as an approach to studying tides and circulation models,

one finds a most powerful tool for analysis. In this procedure a function - satisfying both

the boundary conditions and the governing equations - is approximated by piecewise con-

tinuous polynomials. This approach, coupled with the solution elements, is ready made

for the inclusion of numerical information, parameters of consequence, analytical relation-

ships, or whatever else (based on experience or experiment) may serve as part of a problem's



formulation. Such models should be truly predictive of a physical case and, of course, -

with boundary conditions included, as these arise, results should be indicative of ob-

served phenomena.

The approach which has been selected for this study makes use of the finite element

method, incorporating linear triangular elements and linear interpolation functions.

The problem statement is deduced from the two-dimensional, vertically integrated

equations of motion (see Appendix A); and, the Galerkin method has been used in develop-

ing the finite element equations. This implies a use of the method of weighted residuals. The

form of the dynamical equations of motion, utilized here, is that most frequently referred

to as Laplace's Tidal Equations. These expressions are introduced into the NASTRAN*

system, along with an appropriate conservation of mass expression, for the extraction of

eigenvalues and a determination of associated eigenvectors. It should be noted that within

the NASTRAN system there are several methods available for the eigenvalue extraction;

a brief description of these is included, herein, as Appendix B. Not all methods are use-

ful in this instance; also, as an aside, the complex FEER subprogram is not classed as a

"standard" method in NASTRAN, at this time.

In view of the impending use of these (somewhat) specialized hydrodynamics equa-

tions, described in Appendix A, it is deemed appropriate to comment briefly on them at

this point.

As shown in the appendix, the system of equations developed there are a specializa-

tion of the expressions for conservation of mass and linear momentum. These are expres-

sions concocted from the Navier-Stokes equations, and the continuity equation, with

simplifications, assumptions, and modifications (as noted there). The vertically integrated

"shallow water" model, usually employed in tides and circulations work, was developed in

about 1960. This system represents an attempt at simplifying the (otherwise) highly complex

*NASTRAN - a computerized system initially designed and developed for the study of pro-
blems in structural mechanics. .



three-dimensional expressions by an elimination of the vertical (third) dimension coordi-

nate. "Shallow water" here should be viewed as meaning that condition (within a fluid

mass) where there is little or no variation in dependent variables with "water depth".

Under this umbrella of assumptions the vertical velocity, within the fluid, is neglected,

and the momentum expression (in that direction) is replaced by a statement depicting the

variation of hydrostatic pressure with depth (the Boussinesq approximation). For most

circulation models the internal friction is replaced by surface and bottom frictional actions;

and, quite frequently, the convective acceleration terms are ignored. The argument for

this latter action is justified on an apparent order of magnitude basis - one which may or

may not be adequate. Some of the most recent models have retained these terms suggest-

ing that, in general, the real life situation may not justify the loseing of such terms (in toto).

Most applications of the above mathematical model have occurred in connection with

circulation determinations. Unfortunately, very little has been done to establish the

necessary and sufficient conditions for a well-posed problem; consequently an occasional

inconsistency has been allowed to arise in some problem situations.

This single layer, vertically integrated "shallow water" system does not properly

depict conditions when (say) the fluid density has a measureable variation over the water

depth; or, when local gradients are present. These latter conditions should more properly

be modelled by a multi-layered system, due to (say) density stratification. Some attempts

at multi-layered modelling are beginning to appear in the literature; however, the use of

such schemes is not wide spread at this time. One example of the need for (say) a two-

layer model would be the case where vertical mixing between the epi- and hypo-limnion

is reduced because of a (sharp) density gradient. (An example of such is the case of solar

heating in a closed basin). Here, the analyst could model the basin, in its depth, as having

a top and a bottom fluid layer, .physically separated, yet connected through the pressure

variation with depth.

It is proper to remark, here, that full three-dimensional models (of the ocean,

etc. tides) are very much a "dream" at present. This is not to be construed as a problem



in computational technique - though it would be a large task. Rather, at this time, there

does not appear to be a coherent means for handling both surface and internal waves, real

time wind and pressure distributions, turbulence exchange and boundary layer pheno-

menon. Indications, at the moment, tend to favor stochastic processes rather than

deterministic modelling, as the way to go, since flow fields and loadings do have a random

character.

The topical material, here and above, would seem to deviate from the thesis of

the investigation conducted and reported on in this document. As a justification for this

deviation, the excuse offered is that the formulation for tides and other hydrodynamic studies

departs (sometimes) markedly from the classical Navier-Stokes equations. If one is to

appreciate and understand why and how the variations come about, then some delving into

the background and evaluation of these events is justified.

Historically, Hansen (6) initially outlined the vertically averaged formulation almost

as it is known today. Many investigators have made use of his equations, almost without

modification, in their own investigations. Interestingly, Hanson did not include (surface)

atmospheric pressure or density variations in his model. He did, however, include vis-

cosity terms - using constant eddy viscosity coefficients - in the (horizontal) momentum

equations.

Pritchard (4) has developed a system of vertically averaged equations which are

quite like those shown in Appendix A. Both formulations contain the local and convective

acceleration terms, both have surface and bottom frictions, and both utilize the Boussinesq

approximation to replace pressure gradients with surface (wave form) gradients. Here

similarity ceases; Pritchard has included other terms in his formulation; these are ex-

pressions for pressure gradients due to fluid density. Neither of these developments, how-

ever, Incorporate other possible (and likely) content variations (e.g., those attributed to

salinity). Generally conditions such as these are defined through additional expressions

which must be coupled with and included in the equations system to be solved.



Some others who have contributed to the tides and ocean modelling literature

are, as examples: Dronkers (4 ), who reviewed the harmonic (analysis) methods for

tides prediction. (The thrust behind these methods is to use time series in order to

derive harmonic functions in known astrodynamic periods.. Basically, the input informa-

tion used here comes from observations data). Leendertse (10) made use of equations

very much like Hansens; but without eddy viscosity terms. In this work the importance

of central differences - for numerical stability and accuracy - was pointed to. Of course,

centered differences, in time, are not to be used for the convective terms if a tridiagonal

matrix is to be preserved. Abbott and his co-investigators (1) employed much the same

approach as Leendertse; however, they introduced a special, implicit time integration for

improved stability and conservation properties. A special feature (included here) allowed

for a change in grid size (used for the FD solution). Other procedures, which have been

employed in solving these problems include "characteristics methods" and, of course, the

relatively new "Finite Element Method". Also, solutions have been developed using semi-

analytic approaches; and a variety of schemes have been employed for the time and space

integrations needed to achieve desired solution results. (A bibliography worth perusing is

presented in Reference (3)). There are numerous persons who have contributed to this

topic's literature; investigators such as Hendershott, Plattzman, Laevastu, Simons,

Eckert, Defant and Proudman, are among the names which one will find in researching

this subject.

The foregoing remarks have been made as a prologue to this report; a description of

the investigation is discussed on the following pages. It should not be surmised that the

nature of the present study was a revision of tasks undertaken before. Insofar as can be

ascertained this work represents a different approach to the problem of determining "tidal

frequencies" for enclosed water basins. True, other approaches (see Platzmann) have been

reported for this undertaking; however, the procedure utilized here - expecially a use of the

NASTRAN system - is indicative of an application of existing software to the solution of a

problem type not for which the system was designed. It should be remarked that before

this collection of computer programs could be employed, it was necessary to transform

the particular governing equations into a format representative of the finite element method.

10



Having done this, the next move was to make use of selected algorithms for the extraction

of eigenvalues and the development of the associated eigenvectors.

In the next section a brief description of, and discussion on, the finite element

method (FEM) will be given. There, some of the history, evaluation and characteristics

of the method will be noted.

11



III. THE FINITE ELEMENT METHOD

III. 1 Introduction and General Remarks

The Finite Element Method (FEM) is a relatively new procedure which provides a

means for approximating solutions to real physical problems. Probably the most signifi-

cant impact which it has had on numerical methods can be traced to the use of subdivisions,

of the solution domain, and to the use of (approximating) polynomial expansions within each

subdomain.

For example, consider the situation of the single layered tidal equations being applied

to a fluid in a given solution region. First, this spatial domain - an area, in this case - is

divided into subregions; and, for each of these subdivisions a function - approximated by a

simple polynomial expression in the spatial coordinates - is introduced. In the parlance

of the FEM these expressions are known as "trial functions", "interpolating functions", etc.

The literature, to date, is not consistent insofar as nomenclature is concerned. Regardless

of name, these expansive functions are described in terms of the field variables - at specific

loci called "nodes" - where the nodes are (either) specific points on the element's (or sub-

domain's) boundary; or, possibly, locations within the boundary. Notwithstanding, the

nodal values of the field variable(s) plus the interpolating functions, for an element, com-

pletely define the "behavior" of the field variable(s) within the particular subdomain. As a

consequence, for the finite element representation, nodal values of the field variable(s)

become the new unknown(s).

Once these are found, then the interpolating functions are used to "define" the field

variables throughout the assembly of elements. An element being identified as a. shaped sub-domain.
r" • - . j ;

It should be noted that the choice of interpolating functions is not arbitrary because

of compatibility requirements which must be met for the problem at hand. Should these not

be satisfied, then convergence to a solution cannot be assured.

Another advantage to the FEM procedure is the inherent ability to formulate solutions,

for each of the individual elements, prior to putting them together as a representation of the



total problem. This operation obviously simplifies, and reduces, a complex problem to

the study of a series of much simpler problems. In this regard each subdomain (element)

has its own approximating polynomial - one which is independent of all other elements.

Thus, the entire solution (region) in systematically "assembled" by summing contributions

from each and every element.

A more elementary advantage, associated with the FEM, is the several ways the

analyst may formulate the required properties for these elements. In fact, there are four

basic, but different, approaches which could be used for this purpose.

First, there is the direct approach; this can be traced (back) to the direct stiffness

method used in structural analysis. Though quite straight forward this procedure Ls used

only for relatively simple problems. In practice the element properties for this method

may be described by means of the more versatile, and more advanced, variational approach.

The variational method, as implied, relies on the calculus of variations; and involves

the extremization of some functional. The application of this approach requires a knowledge

beyond the introductory level. While the direct approach can be applied to only simple geo-

metrics (element shapes); the variational approach is used for both simple and sophisticated

shapes. Unfortunately, this latter method is not useful in all instances. As noted in the

introduction, the variational method is not useful to many fluid mechanics problems (for

example) since an appropriate variational principle has not been developed for the more

general case.

The third, and more versatile, approach for deriving element properties is best

known as the weighted residual approach. This method commences with the governing equa-

tion, and proceeds without any reliance whatsoever on a functional or a variation statement.

This procedure extends the FEM (immediately) to those problem situations where no func-

tional is available. (Availability, here, resides in the fact that either a functional does not

exist, or that it has not been discovered).

13



A fourth approach (also) has been applied for real (physical) problems and situa-

tions. This method relies on a balance of thermal and/or mechanical energies for the

studied system. In this energy balance approach a variational statement is not required;

consequently the method considerably broadens the range of possible applications for the

FEM.

III. 2 Application Procedure for the FEM

Regardless of which of these approaches one would use, to describe the element

properties, the solution to a continuum problem, by the FEM, always follows an orderly

step-by-step procedure. These steps are:

(1) A discretization of the continuum - here the "solution region" is divided into
elements. A variety of geometric shapes may be used; also, it Ls possible to
utilize differently shaped elements for a given problem. The number, and
type, of elements used for a problem is a matter of engineering judgement.
Much of the "how" and "why" injected here is a direct consequence of exper-
ience - drawn either from personal knowledge, or from the findings of others.

(2) The selection of interpolating functions - for this task the investigators will
assign nodal locations and choose function types (to represent field ele-
ment variations). Here a field variable may be a scalar, a vector, or a
higher-ordered tensor. Quite frequently polynomials are chosen for the
interpolation function; these are generally the easier type to differentiate
and to integrate.

The degree of polynomial (selection) depends on the number of nodes employed;
the nature and number of unknowns at each node; continuity requirements im-
posed at each element and along the boundaries; and, the magnitude of the fLeld
variables and their derivatives, which may be unknown at the nodes.

(3) Determination of element properties - after the elements and the interpolation
functions have been established, the next task is to determine the matrix equa-
tions which will describe the element properties. Here, the analyst will
make use of one of the four methods (approaches) described above.

Note; The variational approach, if available, is often the most convenient.
However, the approach which is (ultimated) used will, generally, depend on
the nature of the problem at hand.

14



(4) Assembly of the elements - in this operation the properties, and characteristics,
of all the elements are systematically joined together. This forms the matrix
equations used in obtaining solutions for the entire system (or region). This
totality of equations will have a same form as those expressions describing the
character of each of the individual elements. Obviously, the collected equa-
tions will contain many more terms than the element expressions, since the
former relates to all nodes found in the full problem.

One note of consequence: Before these assembled equations can be used to
obtain a solution, they must be modified to properly account for boundary
conditions.

(5) Solve the system of equations - to this point in the development a system of
simultaneous equations has been obtained. These are (next) solved to obtain
node values for the unknown field variables.

(6) Make other computations - frequently the investigation will need, require, or
desire to have additional information developed from the solution (node) results.
(E.g., the velocity field, for a fluid dynamics problem, maybe desired. This
might be a calculation from a "solved for" pressure distribution, which would
have been the field variable).

These listed steps describe the procedure to be followed when solving a problem by

the finite element method. What has not been enumerated, as yet, is a categorical listing

of problem types solved by this procedure.

III. 3 General Applications of the Finite Element Method

Basically, there are three categories of problems solved by the FEM; these are set

down according to the nature of the solution.

Category one — equilibrium problems; problems which have time independent
solutions.

Category two — eigenvalue problems; these lead to steady-state solutions. Most
often, here, the analyst seeks to describe natural frequencies and modes of
vibration. This category of solutions can be descriptive of both solid and
fluid media.

Category three - propagation problems; these are, primarily, problems from
continuum mechanics; here a time dimension is added to the solution above.

15



The fact that the FEM can be used to solve most practical problems does not imply

that it is the most practical technique. Actually any of the various techniques, which would

apply, has its own advantage(s) and disadvantages. No one technique enjoys the distinction

of being "the best" for all problems.

Somewhat in contradiction to the above statement the FEM has received a marked

increase Ln its application to real world problems, since the early 1960's. By 1972 it had be-

come the most frequently used procedure for numerical solutions to continuum problems.

In all likelihood future attention, for the method, will be given to modelling nonlinear pro-

blems and situations.

III. 4 Geometric and Mathematical Considerations

The finite element method (FEM) and the Ritz method are, basically, equivalent

procedures. Both schemes make use of "trial functions" as a starting point for finding

approximate solutions; both employ linear combinations of these (trial) functions; and, both

seek that combination of functions which produce functional stationarity.

The major difference, here, is that the assumed functions, for the FEM, are not

descriptive of the entire solution domain. Also, and consequently, these functions do not

need to satisfy the problem's boundary conditions (at the element level). However, it is

essential and necessary that they do satisfy certain continuity conditions, to be subsequently

discussed; necessarily, not all of these conditions need be met at a same time.

III. 4.1 Element Geometry

For two-dimensional problems, as in the case of the tides models studied here, the

simplest and, probably most widely used element geometry is the 3-node triangle. This

selection is arbitrary; there are no constraints put on the choice of elements; however,

the triangle does enjoy significant utility, most likely because of its simplicity in mathe-

matical and geometrical applications. (For a more complete discussion of the choice of

elements, the reader is directed to appropriate sections of Reference (8)).
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III. 4.2 Assembly of Element Characteristics

The assembly process, whereby the characteristics of all "elements" are brought

together, is an ordered and orderly melding of the element properties based on specific

compatibility requirements for the nodes. The nodes represent the junction, or joining,

of adjacent elements. At each of these points the unknown nodal variables must be the same

for all elements having this locus as a common point. (Actually, this is an important

aspect of the FEM - it is the basis for the assembly process). In accomplishing the assembly

operation the values of each of the variables, for all elements joining at a node, are added,

algebraically; and, this sum is the variable value assigned to that node.

As an aid in distinguishing between the geometric meaning of an element and a set

of adjacent elements, joined at a node, the sketch (below) is given. There, the distinction

should be apparent; note that triangular elements are used to illustrate both of these situations.

SKETCH A. Illustration of a triangular
element (E), having nodes L, M, N

SKETCH B. Illustration showing several
elements, joined at Node N.
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HI- 4. 3 Coordinate Transformations

It was noted above that individual element characteristics are assembled in order

to develop those (corresponding) characteristics which describe the entire system, or pro-

blem. Sometimes, and especially in the case of complicated geometries, it is convenient

(and frequently expedient) to compute the individual element's characteristics using a set

of local coordinates. These are called local coordinates since they are typical to the indi-

vidual element and frequently are different for each of the elements.

Even though these (special) coordinates facilitate calculations for any given element,

they are not necessarily compatible with the (local) coordinates for all other elements.

Therefore, before the assembly of element characteristics can be carried out, it is im-
/

perative that all local coordinates systems be "transformed" into a common system which

is compatible for all elements. Such a universal system is referred to in the FEM litera-

tures as "global coordinates". After transforming the local coordinates to global coordi-

nates, the assembly process is carried out without difficulty.

Before entering into a direct application of the finite element technique to the pro-

blem at hand, it is felt that some general statements regarding the mathematics of this

procedure would be of value. Therefore, the next few paragraphs will address this topic

and, hopefully, provide some background, understanding and appreciation for this method.
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III. 5 A Generalized Mathematics Approach to the FEM

A broad variational approach is that procedure generally used in the derivation

of element equations for the finite element method. This is certainly the most convenient

procedure to use whenever a classical variational statement exists for a given problem.

Unfortunately, for many practical problems, and especially for the more general fluid

mechanics situations, classical variational principles are unknown. However, this

lack does not negate the use of a finite element approach for this class of problems;

rather, it suggests the need for more generalized procedures when deriving the ele-

ment equations. (See the discuss ion,, presented earlier, describing the four approaches

available for such formulations).

In the generalized approach which follows, the finite element equations are

derived by a direct and straight forward procedure. That is, the FEM is developed

from definitions alone - no recourse to variational principles, etc. is attempted at all.

III.5,1 A Direct Approach to the FEM Solution

One of the basic ideas in the FEM is a separation, or diversion, of the solu-

tion domain into a specified number of sub-domains (hereafter referred to as "elements").

These subregions are "joined" to one another only at "nodes" — i.e., common points,

or junctions, in the solution domain — and at loci on the element boundaries. This

concept allows one to reduce the total domain to a "patchwork" of elementary solution

regions, each of which is examined as a representative solution element. As a general

statement, the domain boundaries are selected to be straight lines - or, planes - conse-

quently, even though the real boundaries may be curved, these are approximated in the

solution region by straight lines and/or flat planar segments.

For the fluid mechanics problem to be examined here the nodes are regarded as

those loci where the fluid field properties are known. The solution region "elements"

and "nodes", however, do not represent a part of the fluid's problem, rather these are

only regions,- and parts of regions, through which the fluid passes.
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The mathematical interpretation given to the FEM requires that the definition

of an "element" be generalized; that is, that these sub-domains be considered not as

physical regions but more as mathematical entities. In this regard the elements are

not viewed as a physical part of the system, but must be thought of as part of the so-
/•

lution domain; one which is partitioned by lines or planes defining boundaries for these

elements. In fluids problems the elements are regions over which (say) the pressure

field exists and through which the fluid flows. Mathematically the totality of these

elements forms a mesh which represents a spatial (solution) domain rather than a

material one. Incidentally, it is through this consideration that one is allowed to

carry the ideas and concepts gathered from one problem area over into another.

Once the element mesh is described, for a physical problem, then the behavior

of the unknown field variable over each of the elements must be approximated by (cer-

tain selected) continuous functions. These functions are described in nodal values,

representing the variable. Of course, in some cases it is likely that these functions

may be described in terms of nodal variable derivatives rather than variable values,

per se. These derivatives can be of order greater than the first; however, from a

practical standpoint it is not likely that these will be greater than order two. Under

any and all conditions, these functions, which are described over the finite element(s),

are referred to under various names — interpolating functions, shape functions, or

field variable models. Lastly, it should be mentioned that the full collection of (say)

interpolation functions, for the entire solution domain, provides the piecewise approxi-

mations to the problem's field variable.

III. 5.2 An Example of a Piecewise Approximation

To illustrate a piecewise approximation, for the field variable, consider the

function 4>(x, y) — a two dimensional field variable.

The aim here is to illustrate how nodal values of <£ can be employed as unique

and continuous representations throughout the domain of interest. This will be done

by introducing the notation of an integration function.
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Let the domain (&) be sub-divided into elementary segments — each of area

A (not all the same size or shape) — with nodes at each of the vertices. It will be

assumed that $ varies linearly over each element; hence these planar areas will

(each) contain three nodal points and have three nodal values of the variable $. As

a consequence for each element (e) the variable will be described by:

t .y. (1)
J. £, 3

/e\
From this expression the constants a. are to be expressed in terms of the

coordinates, locating the nodes, and the nodal values of $ * (x,y). That is, for each

of the nodes (i, j, k) write:

(likewise for ( ). and ( ),).
j k

Next, solving for the or coefficients (via, say, matrix inversion); then sub-m . .(e)
stituting into the above^general expression, for v (x,y), it is found that:

a. +b.x + c.y a. -t-b.x + c.y a. +b. x + c, y

^- V -̂1̂  V

wherein

(with j, k following in cyclic order). Also, A is the representation of the element's

(planar) area.

Next, define a parameter N, where,

a +b x + c y
XT _ n n _ n - . . ' /> • ,
n= - 2A - ' n = l' J> 5 {)
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then let the field variable $ (x, y) be defined by:

(5)

L*kJ

consequently, for the element, the N ' is represented by a row vector,

Nj k (6)

(these quantities are, generally, referred to as the "shape functions" — they play a

most important role in the FEM — they are the, presently defined, linear interpola-

ting functions for the 3-node triangular element employed here!).

Therefore, over the solution domain (0), which is composed of P elements,

the full and complete representation of the field variable, over fr , is to be given by:

(7)

e=l

In this evaluation the nodal values of 4> are known, thus the full solution for

<J>(x,y) is obtained from the complete solution as represented by the surface of inter-

connected triangular elements.

Note that for this procedure there will not be discontinuities in $ since values

of this field variable — at any two adjacent nodes defining an element boundary — will

lead immediately to a linear variation along that boundary.

Even though the method outlined above has been for a particular interpolation

scheme, namely a linear system; and has been presented in reference to a specific

element type (triangular in shape); the expressions shown here are generally valid.
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That is, the method shown is valid for the more complicated element shapes, and for

interpolation functions which are (also) more complex in format.

The ideas described here are generally definitive of the finite element method;

however, the procedure does not allude to the "why" of the procedure. In the next few

paragraphs a more general mathematical basis for this scheme will be outlined.

III. 5. 3 The Galerkin Method

Weighted residuals is one of the methods used to obtain approximate solutions

for "systems" described by linear and non-linear partial differential equations. (The

procedure is not constrained to the FEM; it is, 'however, another means for formulating

the finite element equations).

Basically, in this operation, there are two steps involved. First, an assumption

is made regarding the behavior of the dependent field variable (s). This is done in order

that it might approximately satisfy the solution sought after.

The assumed solution is substituted into the partial differential equations; but,

being only an approximation, residuals are developed. These errors are, however,

required to vanish — in some average sense — over the entire solution domain.

During the second step, the equations from the first step are solved. These

are specialized, from the general functional form, to a particular function which be-

comes the approximate solution sought.

As an example we will demonstrate an approximate functional representation

for a field variable, <£, which is governed by the relationship;

f, (8)

over some specific domain, 0 . This solution region is assumed to be bounded by a

surface, L. The function, f, above, is a "known" relation in the independent variables;

also, here, we assume the existance of appropriate boundary conditions.
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As a first operational step, let the approximate solution (<5) be represented by

the following relationship :

m

N. C . (9)

(here, the N. are assumed (shape) functions while the C. are either unknown para-

meters, or unknown functions, of one of the independent variables. The "m" functions,

N. , are generally chosen so that they will satisfy the boundary conditions in global co-

ordinates).

Next, using <£ in the governing expressions, we then find that:

<(*) -f = B, (10)

where, ft, is the residual (error) resulting from this approximation.

Now, according to the method of weighted residuals, the C. are selected so

that ft is "small" over the entire domain (£>).

As a consequence of these procedures, there will (now) be "m" linearly in-

dependent weighting functions (W.) which are to satisfy the integral expressions:

J" [=£($) -f]W.d = t f f t W . d j 9 = 0, for i= (1, .... m). (11)
» l £> l

The result from this calculation implies that ft = 0, in some average sense.

The next step, in this procedure, is to solve the weighted equations (above)

for the quantities, C.. After this is done, we are able to provide an approximate

representation for the field variable, $., according to Equation (9). (One note of

caution should be injected here: there is a possibility that difficulties, in represent-

ing the solution, could arise since the subjects of convergence and error bounds —

for this approach — are not too well defined at the present time. It is found that

studies on these topics are indeed scarce).



Throughout the literature one will find that there are a variety of weighted

residual techniques available for use in the solving of practical problems. However,

the one most often employed in the derivation of finite element equations is the error

distribution principle; it is more generally known as the Galerkin Method.

In the parlance of present notation, for this method, the weights are chosen

to be the same as the approximating functions used to represent the field variable

Thus, we (now) have W. = N.; and, according to the Galerkin Method:

/[=£($) -f] N. d£ = 0, for i = (1, ..., m). (12)
&

Recall that in this expression the field variable, <J>, is approximated as shown in Equa-

tion (9).

Here, since Equation (8) is presumed to hold for any point in region >9 , it also

holds for a collection of points defining any arbitrary sub-domain (or element) in the

entire solution domain, & .

- (e)Recognizing the N. as interpolating functions (= N. ) over the element; and

noting the C. to be undetermined parameters (which will subsequently be the nodal

values of the field variable or its derivative (s)), then, by the Galerkin method, the

equation (s) governing the behavior of an element can be expressed by:

J r=d(<S (e ))-f (e )]N (e )dJ& (e ), for 1 = 1.. . . .A . (13a)
&(e> l

Here the superscript (e) suggests a restriction of the operation to one element; and,

also

*(e> =- U(e)J
(e)f = forcing function (over the element),

with '
•* = the number of unknown parameters assigned to the

element.
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Since it is required that the residuals vanish (see Equation (11)) then Equation

(13) can be rewritten as:

J (e)

r N
N

N

0,

0n

<i3b>

which is used to yield the finite element equations and the properties of each (or a re-

presentative) element.

Before assembling these equations, for the system, from the element equations,

quired that the N.

in the assembly process.

it is required that the N. quantities guarantee inter-element continuity; this is needed

Note that the higher the order of continuity, which is required for the interpola-

tions, the narrower the choice of functions which is available, for use. . Many inter-

polation functions provide continuity in value; fewer provide continuity in slope (the

first derivative); and, only a very few can ensure continuity of curvature. One means

of escaping this problem is to change the form of Equation (13a). When one applies the

idea of integration by parts, to the integral, an expression in lower ordered derivatives

is obtained. This allows the use of interpolation functions requiring lower ordered con-

tinuity. There is another (and added) advantage, here, also; when integration by parts

is possible, there is (then) available a convenient means to introduce natural boundary

conditions (to be satisfied at points on the boundary).

Having outlined the method which will be used here, we shall proceed (next) to

a discussion and description of expressions and operations described in terms of "natural

coordinates".

III.5.4 Natural Coordinates

The development here, given in terms of natural coordinates, is related to tri-

angular shaped elements outlined on planar surfaces. The goal is to choose a set of
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linear coordinates (say £.), particular to the element, which can define the locus of

a given point ((x , y ) say) -within the element and/or on its boundary (see the sketch

below).

The cartesian coordinates* of a point, in the element, are linearly related to

the local coordinates by the following expressions:

and

(14a)

(14b)

wherein the notation I ~ | infers a row matrix, {-} infers a column matrix, and the

sequence (1, 2, 3) must be interperted as the cyclic indication of nodes, described in

a counter-clockwise manner about the element's perimeter.

(0,1,0)

(0,0,1)

A sketch describing the relationship between local and global coordinates for a linear
triangle element (of area). The numbers, in parens, denote values for the local coordi-
nates at each of the nodes CO • Point "P" is an interior locus within the "element".

^Cartesian coordinates are the so-called "global coordinates" in this example. As such
they are usually suitable for most physical situations.
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In addition to these transformation expressions there is a constraint relation

imposed on the weighting functions. This is a requirement that the sum of the para-

meters must be unity; thus,

(15)

(for each element locus).

From this last relationship it is immediately apparent that only two of the

natural coordinates can be independent. Of course, in the global system there will be

only two independent coordinates since the area elements are planar configurations.

Collecting the above relations into a single matrix format, we write

1

X

y

_ . . ,

1 1 1

X X X
1 2 3

_yi y2 y3_

~*r
£

2

.43_

(16a)

or

(16b)

Obviously, in order to describe the vector elements {£} the expression

above must be inverted; i.e.:

(17)

assuming the matrix inverse does exist. When the inverse is obtained, it is described

to be:

[A]
-1 _ [Af

Det[A] '
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where [A] is the adjoint of [A] , and Det[A] denotes the matrix determinant,

a straight forward manner these quantities are easily obtained; and, interestingly the

determinant of [A] is found to be equal to twice the area of the (triangular) element;

that is, D e t [ A ] = 2 A .

Rewriting Equation (4), as follows:

then an appropriate relationship for the local coordinates, in terms of the global

ones, is:

V
t

2

_*3_

_ JL
2A

"l bl Cl

a b c
2 9 9^ ^

> "3 °3.

1

X

y

(18)

When this last expression is compared to (say) Equation (17), in expanded form, it

is found that:

o ^;

and

c. = x. - x.,
I If 1

JV I

(for i, j,k = 1,2,3 in cyclic order). These indices refer to nodes for the element

area.

III. 5.5 Interpretation of the Local Coordinates

An interpretation of these local coordinates (£.) is rather easily acquired,
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geometrically. Considering an interior point (P), in the element domain, then it

follows that at (x, y)^:

<"l+blVclV
(I9a)

(see the sketch below).

Sketch, for the element showing an interior point, P, nodes (T)
and a sub-element (triangle) area, A .

When the expression for £ is written in global (cartesian) coordinates, it

is found to be:

= 2A C(V3 (I9b)

with

, (twice the element's area). (20a)
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(Note also that 2A = b c - b c ).
JL & ij J.

Applying this description, for elemental areas, to the triangle formed by

"nodes" ("2) , (5) , and P, it is apparent that (now)

1

1

1

XP
X

2

X3

yp

(20b)

where A is the sub-area shown on the sketch above.

A comparison of expressions, and the expansion for £ (above), shows

immediately that

(21)

(a similar treatment would indicate that results for the coordinates 4 > £ would be
2 3

expressed in area ratios, also. The "appropriate areas" are described using nodes

(T) , P, (£) and (T) , (T) , P, respectively).

To better understand the meaning of these coordinates consider the locus P

on, first, the line between nodes (2} and (sj ; and, second, let P be coinci-

dent with node M.) . In the first case, £ = 0, since AT vanishes; and, in the second

case £ = 1> since A and A become identical. It follows, hueristically, that lines

of constant £ are parallel to the boundary line from (Y) to Q}) , with values vary-
JL

ing from zero to unity. (Similar results are obtained for £ and £ ). Thus, any
^ o

point P for the element is described in terms of the £ . — and these (natural co-

ordiantes) are defined, geometrically, according to intersections of the lines for the

£., as appropriate.
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III.5.6 Solution Integrals in Local Coordinates

It should be recognized that the primary objective here is to acquire a problem

solution rather than making an attempt at optimizing a method of solution. As a conse-

quence of this fact; we have chosen to work with one of the simplest geometric forms

as a representative of the sub-domain (element) shape. Also, we have selected a

simple expression for the interpolating (on trial) function. As a result of these choices

"the problem" will be expressed in terms of local coordinates and a "field variable".

The solution strategy, now, is to establish functional relationships for the typical ele-

ment, then to sum these (at each nodal locus) as a means to describe the contribution^)

from each and every element (appropriate to the node). The consequence of these

operations is a development of equations which will describe the full system.

It will be demonstrated, subsequently, that there are three basic integral forms

to be dealt with in the present analysis. Each of these is written in the transformed

(local coordinate) space; and, since each integral is to be evaluated over each sub-

domain, then the variables involved will be expressed in local coordinates.

These operations, noted above, lead to the following integral types — expressed

in local coordinates — and have solution forms as noted below:

(a) the integrals, linear in local coordinates, evaluated over an element,

lead to results of the form:

(22a)

(b) those integrals which are quadratic in the local coordinates have solu

tions of the form:

12
1 2 1

.1 12,

(22b)
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and (c) those which are cubics, lead to:

6 2 2 I 2 2 112 1 2

2 2 l l 2 6 2 | 1 2 1 .

2 1 2 j 1 2 2 | 2 2 6

(22c)

It is of more than passing interest to recognize that there is a generalized inte-

gral relationship, which has been developed, accounting for these expressions, and for

others. Evaluating a general integral, but employing a specialization for the integrands,

leads to results which have been tabulated (see Ref. (l)). This generalized integral

for the linear interpolation function, across a triangular element, can be expressed as

follows:

r , ̂
J §l

= (23)

where A represents the area of the element considered. Here the (a, jS, y) are ex-

ponents — as noted in the integral — and, according to Ref. (8)) , the integral's evalua-

tion, which depends on the integer values assigned to the exponents, leads to the follow-

ing results:

«/3y
= -i- r ta,~A J V

K

K

with the evaluations tabulated as follows:

(see next page)

! B\
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a+/S + y

0

1

2

2

3

3

3

4

4

4

4

5

5

5

5

5

etc.

a.

0

1

2

2

3

2

1

4

3

2

2

5

4

3

3

2

£

0

0

0

1

0

1

1

0

1

2

1

0

1

2

1

2

_j,

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1
1

K

1

1

2

1

6

2

1

12

3

2

1

60

12

6

3

2

fa
1

3

12

12

60

60

60

180

180

180

180

1260

1260

1260

1260

1260

This tabulation is included to aid in establishing the integral forms which will

be encountered subsequently. Needless to say, this description is valid only for

planar area (elements) having the triangular shape, and being spanned by the linear

interpolation functions.

The interested reader can expand these tables by incorporating higher ordered

functions and more complex element areas.
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III. 6 An Application of the FEM

In the foregoing sections of this chapter, an explanation and a development of

the finite element method was given. There the procedure was carried out in terms

of a general problem statement; in this section, however, the method is applied to a

specific problem. This problem, obviously, will make use of equations developed in

Appendix A; and, in particular, use is made of a reduced set of the equations of mo-

tion (see Equations (16) in the Appendix).

For purposes of reference, the particular expressions are noted below:

(a) the continuity equation (conservation of mass), but expressed in terms

of quantity of flow),

+ ( h u ) + - < * v ) = 0; (24a)

and (b) the conservation of momentum equations (more appropriately referred

to as dynamic expressions for the flow field)

= F (x, y, t) (24b)

and

^\r - ri F
G (x, y, t). (24c)

In these equations the quantities appearing are:

(u, v) = the (averaged) velocity components, indirections (x, y), respec
tively.

(x, y) = coordinates (described on the mean surface), referred to as
global coordinates.

the Coriolis parameter (= 2ft sin0, with 0 the latitude, and
£1 the earth's rotational rate).
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g = gravitational attraction (assumed constant in this stucy).

h = local depth of water, measured from the mean surface.

£ == local water height, measured from the mean surface.

F, G = a representation for general forces which may be acting on the
fluid (field).

A more convenient, and particularly useful, form of these expressions is des-

cribed below. Actually, these equations are the ones employed for the analysis.

First, as a matter of convenience, the flow rates q , q ) are defined; thesex y
given in terms of local depth and averaged velocity components; i.e.,are

q = hu and q = hv. (25)
x y

Next, the homogeneous forms of the expressions above are written (these are

in a form necessary to the eigenvalue analysis); that is:

(26a)

=0 (26b)

- ^ + f q x + gh — = 0. (26c)

These equations are to be manipulated; they will be recast into a finite element

format. Subsequently these FEM equations will be studied and used in the eigenvalue
\

extraction procedures.

III. 6 . 1 Tidal Oscillations in Shallow Water Basins (Formulation)

For th'e determination of eigenvalues, those values describing free oscillations
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in shallow water tidal basins, equations (26) are to be rewritten employing the finite

element approach. The resulting expressions, being a set of homogeneous differential

equations, are considered as descriptive of a "typical" element. Consequently, they

must be summed, in an appropriate manner, as required by the FEM, before the tidal

frequencies can be obtained by use of the (more or less) standard procedures for eigen-

value extraction.

When applying the finite element techniques we must first describe appropriate

natural coordinates (see Sections III. 5.4) ; denote the nodal (field) variables; and write

equations (26) using a proper notation for the eigenanalysis we wish to perform.

Defining, as natural coordinates, the vector {£} , typical to each (individual)

field element (per Section III. 5. 3); and, choosing as nodal variables the quantities

(U). {V},

representing the averaged velocities and the free surface heights, for each of the tri-

angular shaped sub-domains, then we define:

' 1*1

U
3 J

V

V

V

(27a)

(27b)

'3 '

(27c)
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For use in subsequent computations, we define the fluid depth (vector) as:

(27d)

3 J

(Here, the subscripts (1, 2, 3) denote vertices of the triangular area taken in a

counterclockwise manner).

This choice of variables, constituting a linear functional variation within the

element, renders the element compatible and complete, as described in earlier dis-

cussions. Thus, since we are dealing only with first order derivatives, in the govern-

ing differential equations, then only continuity of a nodal variable value across the

element boundaries, is required.

Following the ideas noted in Section III. 5. 2, it is apparent that for the Galerkin

Method, one of the requirements to be satisfied is:

=0,

and

= 0.

(28a)

(28b)

(28c)

Expressing these integrals, according to the FEM procedure, we will acquire the

equations representing this problem.

Casting (say) the first of the above expressions into a finite element form, it is

necessary to assume that Equations (27) hold, and that the derivatives (above) are ex-

pressed as follows:
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tt =

but withith q- = UJ (U }, then

or
5x

i
2A

U.

U

U,

(29a)

In a similar sequence of operations it is easy to show that:

L°1C2C
3J

u

1 U 3

(29b)

. Next, introducing Equations (27) and (29), etc., into Equation (28a) yields, for a

general element:

(e)

(e)

(e)

(e)

U

U,

(equation continued on next page)
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c c c l(e)

2A I 2 C3J
V,

(e)

d / 9 ( e ) = 0 .

After integration, the resulting expression is represented as:

r i<e> , . ,(«> r -,, ,(e) |- -.(e), ,<

KJ W +L BxJ{«} +[BvJ W

wherein

Also, in expanded form:

wherein

(e)
= <

Le.

(e)

(e)
u

u.

(e)

U
3 '

(e)

H • Iv.

(e)

r' e.4r —\~J

KJ s
(e)

60

a a a
11 12 13

a a a
21 22 23

a a a
31 32 33

(e)

(30a)

(30b)

(31)

40



= <6V2 Vh/'-

and

In addition, it is found that

fc ~1(e)--£.
J = 24 * 21

!2

32

(e)

(32)

wherein the elements of the matrix (b ) are given by:
rs

with 6 . representing elements of the Idem matrix, and the b being coefficients
ri s

describing the natural coordinates of the element.

In a like manner it is evident that the matrix

(e)

LB] ^

(e)
=1,2,3) (33)

with

wherein the c are coefficients used to describe the natural coordinates of the element,s
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Next, make similar substitutions into Equation (28b); then after integration the

resulting expression can be expressed by:

(e) (e) _ (e) (e) (e) (e)
{v} =0 (34)

with

A
—

(e)

12

2 1 1

1 2 1

1 1 2

(35)

Likewise, the corresponding finite element expression corresponding to Equation

(28c) is:

(e) (e) ^(e) (e) (e) _(e)LM] M +KJ {^ +fLM.i H -o- (36)

Collecting expressions, as .these refer to each of the elements, we have the set:

( e ) ( e ) (e) (e) r (e) (e)

W + L B J M =°«

and

KJ

(e) (e) (e) (e) (e) (e)
M ilH + B 1 1CK -f M iVY =

L J I J L x J I J L J l J

(e) (e) (e) ' (e) (e) (e)
[M] {v} +^B ] {c} +f[Mj {uj =0. (37c)

(37b)

Even though Equations (37) are descriptive of "the problem" for each and every

finite element, there is a more useful arrangement of these expressions. This alter-

nate formulation, for a unit element, is developed as follows:

First, defining a nodal variable, say 0 , to be:

u.

V
1 I

(38)

42



then it is convenient to recast Equations (37) into the compact form:

(e) , * \ (e)

(e)
0

I 0.

(e)
0 = 0, (39)

with

and -

r i
H S

(e) (e)

(r,s = l, 2, 3)

(r,s = l, 2, 3)

where the matrix [A] is real, symmetric and positive definite, while [B] is real,

skew symmetric in the Coriolis terms, but symmetric in all other terms.

To illustrate the formation of these two matrices, for a representative element,

the matrix compositions are shown below:

a
11

.

S31

V

A /
12

%

A/6

A/

12

"12

&22

a
32

A/12

A ,
6

A/12

A/12

A/6

A/
12

"13

S23

&33

A/12

W.«_m«MI

A,
T O

^\

6

.

A/
12

As
multipliers

for
the

vector
of

nodal
variables

U,

I U.

(40a)
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and

r -|e[B] ,

bu

cii

b21

°21

b31

c
31

bll

fA
6

b21

14
12

b31

14
12

Cll

14
" 6

1
C21

14
" 12

C31

14
12

b!2

C12

b22

C22

b32

C32

b!2

14
12

b
22

14
6

b32

14
12

!

C12

£4
~12

C22

14
6

C32

14
~12

b!3

°13

b32

C32

b33

C33

b!3

14
12

b32

fA
12

b33

14
6

C13

£4
~12

°32

_fA
~ 12

"

C33

£4
~.6

5)

As
multipliers

for
the

vector «
of

nodal
values

V
ui

V1

£
2

U2

Vn2

U
3

V
3

(40b)

Equations (40) represent the form of the finite element expressions correspond-

ing to Equations (28). These matrix expressions are valid for the finite elements

(individually) composing the solution domain. In order to "solve"the problem it is

(next) necessary to collect the totality of these finite element expressions, summing

them so that the influence of all elements is represented, and so the interaction of

these elements is accounted for. Thus, the influence from adjacent elements is accounted

for by algebraically summing the matrix components where the common nodal points are

apparent in the system.

ni. 6.2 The Eigenvalue Problem

Equations (39), after being summed for the individual elements comprising the

solution domain (JQ), represents the problem statement sought after in this formulation.
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These equations are, of course, written in global corrdinates, and can be expressed

(compactly) as:

[A] {$3 + OB]{$} =0 (41)

wherein [A] and [B] are the assembly of all matrices [A] and [B] , shown by

Equation (40). Also, here, {$} represents the ordered vector of all nodal variables

descriptive of "the problem".

Equation (41) can be used for an eigenvalue analysis quite easily. For instance,

let it be assumed that the "nodal variable", ^(t), is expressed, generally, as the

assembled vector,

f*(t)3 = {$}exp (-A(t), (42)

then, after substitution into Equation (41), the result is

(43)

which is a complex eigenvalue problem involving real matrices, [A] and [B] .

In order to solve this relationship, for appropriate eigenvalues, it is necessary

to employ some one (or more) of the procedures applicable to such a problem statement.

In the next section one such procedure is outlined, in theory; the application of this

method, and others, as these are present to the NASTRAN system is outlined in Appendix

B.

The one method described, next, is the so-called Inverse Power Method -

with shifts. This scheme is one of the several available to NASTRAN users.

HI.6.3 An Eigenvalue Extraction Method

One of the eigenvalue extraction procedures available in the NASTRAN system,
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and the one proposed, initially, for this problem is that method referred to as: The

Inverse Power Method with Shifts. The few statements noted below provide an ele-

mentary outline of this procedure.

In this scheme the basic idea is to shift a 'previous" eigenvalue problem, to

some (new) central point of interest in the eigenspectrum. In this regard, write

(analogous to Equation (43))

[B-X 0 A]{<1>3 = (X-XQ) [A]{$} , (44)

where X is the "previous" eigenvalue.

Now, writing this problem in its inverse form, we have:

(45a)
— .

O

or, defining a new matrix [c] , where

[C] = [B-X^]"1^],

then the expression above is replaced by:

[c] [<§} =r-f- {$). (45b)

Next, choose a random "starting" vector, say {v } , and perform the iterations

indicated below:
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tvk)-tc]{Vl)

where the vectors are normalized after each iteration.

Through this procedure the iterations converge to the eigenvector (x) , say,
s

which is closest to the shift point. The corresponding ratio between successive vectors

will be the eigenvalue (X -X ); that is,s o

f ' - ( { - <46>
This statement indicates the converged eigensolution for this problem's repre-

sentation.

III. 7 Boundary Conditions

Boundary conditions, for the current study of water basins, can be generally

classed as "open" or "closed". The open condition infers one where the boundary is

of a water-water type. In this case the fluid domain under investigation terminates at

an adjacent water body.

For closed boundaries the condition is simplest explained as a water-land type;

typically this would infer a shoreline.

For these two bounding conditions the state will be obviously different. On the

open boundaries it is most feasible to specify water heights and/or velocities; closed

boundaries, on the other hand, are best described by assigning a zero velocity normal

to the physic al boundary (e.g. , the shore).

A comment, of some interest at this point, regarding differences in boundary

conditions, as these apply to finite difference and to finite element methods, should be
\
made.
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The finite difference scheme, since it is associated with "squared" sub-domains,

is not difficult to treat. Here adjacent sides (of each sub-region) are orthogonal, hence

the velocity components are either nulled (for closed boundaries) or left "free" (if the

boundary is adjacent to another sub-domain). Open boundaries, in this scheme, would

be specified the same as noted above.

The finite element boundaries, being irregular (e.g., in this study the sub-

domains are triangular), makes it difficult to describe a "normal direction" at element

nodes. Generally the nodes are formed by adjacent line segments which intersect at

"odd" angles. Hence it is not possible to arbitrarily assign a properly directed normal

at a node. Certainely it would be incorrect to assign a direction which is orthogonal to

either of the intersecting line segments. Hueristically, one would be inclined to assign

a direction based on some "weighted average" of the normals at the adjacent linear

bounds. Giving consideration to the physics of the present situation it appears that an

appropriate weighting should be associated with the mass flow rates over the boundaries.

As a matter of fact this concept was introduced by previous investigators (see Reference

(15)).

A scheme, based on element geometry and flow conditions, is described (below);

this shows one means for determining a weighted, averaged normal direction. This

scheme is used in this study to describe the nulled velocity component at a "closed"

boundary node. (Incidentally, the method is programmed into the "preprocessor" which

develops and describes input data for current problem cases).

The sketches, shown below, indicate: (a) the probable assignment of "elements"

adjacent to a closed boundary; and (b) certain geometries associated with the assign-

ment of nodal normals.
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M = e +e
1 2

(a) SKETCH showing a closed
boundary and probably finite
element sub-domains.

(b) SKETCH showing conditions
needed to determine a nodal
normal at a concave node.

n

(b2) SKETCH depicting conditions
for normal determination at
a convex nodal point.

(b3) SKETCH graphically depicting
summed flow rates over adjacent
element boundaries.

In sketch (bl) the normal, at node B, is assigned by balancing the flow rate,

over line segment BC, against the flow over segment AB. The presumption being

that over one boundary the flow is into the interior region, while over the other (line)

the flow is directed outward. The condition which must be satisfied (by the proper

normal n) is simply stated as

cos (47)
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where L represents the line (length) AB, and L represents BC. Obviously, the
1 ^

interior angle ( M ) is defined as:

M = 6
1

+ Q
2 • (48)

Incidentally, these same conditions must be satisfied by convex boundary

corners (see Sketch (b2)). (Note: Sketch (b3) graphically illustrates this boundary

condition being satisfied — here the triangular areas depict the balanced noted above).

Obviously there are limits to be imposed,on this method for ascertaining a

normal direction. Generally speaking these limits are obtained from experience, not

from analysis.

Since, in the general case, we attempt to locate a nodal normal direction; and,

we null the velocity component in that direction; then we must retain the velocity com-

ponent which is orthogonal to the local normal (n). Retaining this one component des-

cribes the local velocity condition at the node.

Some analysts have chosen to null the full velocity at nodes which occur at a

"closed"bounding node. Experience, however, has indicated this is not a best repre-

sentation; hence the conditions described just above. Also, experience has indicated

that when the included interior angle is less than 77/2 it is acceptable (and frequently

advisable) to null the nodal velocity. The converse situation applies for convex corners

(see Sketch (b2)).
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III. 8 The Pre-Processor

Probably the most time consuming and error prone operation associated with the

present analysis (and other large scale problems of this class and type) is the prepara-

tion of input data for the NASTRAN system. Even for simple problems, such as the test

case, described elsewhere, the amount of labor involved in preparing the needed input

information is quite conducive to errors and mistakes. In order to reduce this deficiency,

and to make the associated work tasks as small as possible, a pre-processor algorithm

was built, programmed and used extensively.

The basic purpose of the pre-processor is to take the barest minimum of input

information, translate this into useful quantities needed for building and assembling the

matrices (required for NASTRAN operations) and to perform those other tasks which

can be automated for the problem.

In constructing the matrix components, for each "element" the input requirements

can be gleaned from a study of equations (40) and the associated parameters described in

Equations, (31), (32), (33) and (35). Of course a proper interpertation of the individual

components appearing there is assumed. In addition, the boundary conditions will be

accounted for by noting the type of boundary associated with each node, and solving for

the "closed"boundary conditions requirement (see Section III.7), as this occurs. Lastly,

when the individual matrices (see Equations (40)) have been developed, for each node,

the final step (for the pre-processor) is to assemble the appropriate elements accord-

ing to the commonality of nodes in the solution domain. While this may, at first, seem

to be a rather cumbersome and unyieldly task, it is not too difficult to perform if one

makes haste slowly and goes about this chore in a systematic manner.

Since, in the present problem, we are dealing with water basins which are

comparatively small (on a global scale) it is permissible to treat the Coriolis parameter

(f s 2Q sin0) as a constant. Likewise the gravitational acceleration is treated as a

fixed parameter; all other physical quantities, however, are nominally treated as

variables.

51



The general information required at each and every nodal point is the following:

nodal coordinates (x, y) — expressed in the so-called "global coordinate system"; the

local water depth; and an indication of the type of boundary associated with the nodes.

As noted earlier, we are (here) concerned with only two types of boundaries (open and/

or closed); all interior points are "general node" types. The general nodes play no

special roles in the assembly process.

In order to assemble the matrices, properly, and to build the input deck accord-

ing to NASTRAN requirements, it is necessary that each "element" be identified, and

that the nodes associated with each node be properly "numbered". (Recall that nodes

are "numbered" in a counter-clockwise manner about the elements — one cannot be

arbitrary in the sequencing and designation of nodes).

After all of this input information has been fed into the pre-processor, that sub-

program generates the needed quantities for each element; assembles the input matrices

— by summing contributions from all elements joining at each node; adjusts those para-

meters which are indicative of boundary conditions; and, generally, readies these data

for processing by the NASTRAN system.

Incidentally, due to certain requirements, for NASTRAN, it was deemed ad-

visable to separate the matrix [A] , after assembly, so that a part of this (symmetric)

array could be input as another matrix. (These are treated, internally, in an additive

fashion; hence the matrix assembly is not altered).

As noted above, the output from the pre-processor is simply the input data re-

quired for the NASTRAN system; and, in particular, the form of these data is consistent

with the requirements for the eigenvalue routines to be employed.

As an added step in the pre-processing operations, this subprogram was used

to construct the entire NASTRAN input deck — including NASTRAN routine calls, comment

cards, etc. — this greatly alleviates the investigator's work load and reduces one more

source of error in the operations.
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Before passing to the next section, it should be remarked that the pre-processor

developed here is quite similar to the many others used in NASTRAN operations. How-

ever, since the current operation represented a very new and unusual utilization of

NASTRAN, the investigators were unable to make use of other (available) pre-processors.

Hence, the one developed and employed for this study represents an added task in this

operation.
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III.9. The Test Problem

As a means for checking the formulation of this problem, and to ascertain whether

or not the system was operating in an error free fashion, a sample problem was designed.

This simple case was chosen prior to the completion of the pre-processor (sub-program)

hence all input information was produced by hand. This necessitated numerous parameter

calculations; the construction of matrices for each element, and, ultimately, the assembly

of the element matrices for the entire solution domain.

The problem selected was one which had a known analytic solution (obviously). How-

ever, in order to verify the program's operation, and to learn how to manipulate the

NASTRAN system, this case (selected) was exercised on the Goddard Space Center's

computational system(s).

As a general description of this test case, the following paragraph should suffice.

The tidal basin selected was square in shape; it had a fixed depth (overall); the

boundaries were assumed to be "closed"; gravity and the Coriolis parameters were

assigned fixed values each. The one primary variable in this example was the selec-

tion of nodes and the subdivision of the solution domain. Not having a criterion for

the selection of elements and element size, the procedure adopted was one of incre-

menting the element count and checking solutions for convergence to acceptable values.

Because of geometric symmetry it was not deemed necessary to vary element geometry

or size within the basin's bounding perimeter. Hence the elements were systematically

oriented and uniform in shape and size, for each sample case studied.

As an indicatian of physical dimensions and parameter sizing for the example

cases, the information noted below is given. This is representative of the sample solutions,

and is most probably the "best" results acquired during this phase of the investigation.
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III. 9.1 Problem Statement

The square basin, for this problem, was assumed to measure 6000 feet on each
2side. The water depth was so selected that the product "gh" would be set at 9600 ft /

2 -5sec ; and, the Coriolis parameter (f) was given a value of 6.0 x 10 rad/sec —

corresponding to a geographic latitude of approximately 27 degrees.

The geometry of this problem is sufficiently regular to allow the entire formula-

tion to be cast in (so-called) global coordinates. Each sub-domain (element) had a

same (surface) area; consequently the number of computations needed to describe

an element's input was minimal.

The solution domain, here, was divided into 32 elements; with 25 nodes being

assigned. The (general) geometry for this basin, separated into elements, is shown

in the sketch below.

22s

ir
18

30,
Z9

24-

x

SKETCH showing basin and designation
of elements

SKETCH showing basin and designation
of nodes.
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Note that in the problem shown here each element has an area (A) which can

be expressed by:

A - L2/32,

/
2

and with L = 6 x 10 ft . , this yields

III. 9.2 Analytical Results

As noted earlier the example selected, for verification of the method and the

solution proposed in this investigation, was a rectangular (square) basin of fixed depth.

The analytical solution for this case is found in Lamb (Ref. (9)), pages 282-2S4. ;

The sketch (below) depicts the notation employed here: other terms are described

in the text to follow.

SKETCH showing a rectangular basin with
sides of lengths "a" and "b".
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Modal frequencies for this rectangular basin, normalized by the parameter "gh"

where these quantities are gravity and water depth, respectively — are given by

o 2 2
B__ 2 / KI ,n\ _ f m = 1, 2, . . .= ~ - + f m = 1, 2, . . . n

{n -1 ,2 . , ; . (49>

with m, n depicting the modes, per se. The tidal heights, for these modal oscilla-

tions are expressed in Lamb, by
',

f A mir x nir y
£= A cos - cos — — -*- . (50)

mn a b v '

For the present case, the rectangular basin, the lowest modal frequency would

be expressed as (say)

for m = l, n = 0. . (51)

with the associated period, for the oscillation, being given by:

T10 = ^B (52)

III. 9.3 NASTRAN Results

The output, from NASTRAN, does not give the frequencies directly (see Appendix

B). Rather, values described from the NASTRAN eigenvalue routines, are related to

the (real) frequencies (e.g., quantities like those computed above) as:

A = ± i £. (53)

Since the NASTRAN output presents only the positive imaginary parameters, from the

. pair(s) above,i.e.,

(± 1 + i), (54)
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then the printed quantities, appearing from NASTRAN runs, would be arranged with

paired parameter terms like

<55>

As a consequence of this output format it is evident that there is an automatic

check on the roots being extracted b}r the various eigenvalue extraction methods avail-

able (and used) in the NASTRAN system.

III. 9. 4 Comparison of Results

In the foregoing paragraphs the test model, for this comparison ease study, was

depicted as a 25 mode, 32 element (solution domain) arranged over the square basin.

Suffice it to say that this arrangement was a final selection of the several geometries

considered. The basis for presuming this to be an adequate description for the solution

domain was the fact that the fundamental modal frequencies appeared to be converged

(with this choice of elements and geometry). This point will be illustrated, below, in"

the tabulation of results, where results for a 16 node model, and the 25 node model,

are both noted.

Before presenting these results, and comparing the NASTRAN values with the

analytic solution, a comment should be made concerning methods and methodoly used

here. First, the results tabulated below are the consequence of obtaining eigensolutions

via the DETERMINANT METHOD, in NASTRAN. This scheme (see Appendix B) is

obviously a more exact extraction procedure than any of the others available. (At the

time when these test case results were acquired, via NASTRAN operations, there was

no complex FEER routine in existance. This particular method was being developed, but

was not available for use until late in the time frame spanning this investigation. The

FEER method, however, was utlized in computing eigenvalues for the real tidal basins

near to the termination time of this work).
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The procedure found to be most expedient in the extraction of eigenvalues was as

follows :

A first estimate of where the eigensolutions resided (in a complex field repre-

senting the frequencies, X ..) was made using the HESSENBERG Routine in NASTRAN

(see Appendix B). Once a range for the eigenvalues was established, then a more (or

most) refined value could be obtained through the application of the DETERMINANT

Method. The philosophy behind this (seemingly cumbersome) procedure is explained

in terms of "accuracy" and "error bounds" for the routine. That is, the DETERMINANT

method is inherently the most accurate of the several routines, in NASTRAN, by virture

of its computational algorithm. The HESSENGERG routine, being a much faster pro-

cedure, is, nonetheless, less accurate because of "built in" error bounds residing in the

computational algorithm. As a consequence of this, and due to the fact that a fairly well

defined "search region" had to be prescribed for the DETERMINANT method, the approach

recommended (and used) for eigensolutions consisted of a combination of these procedures.

First, eigenvalues were acquired using the HESSENBERG algorithm. Next, these solu-

tions were refined by means of the DETERMINANT method procedure. (Incidentally, a

visual check on the accuracy of these solutions is made by studying the root structure

of the eigensolutions. Since the NASTRAN procedures print, as output, the eigenvalues

as \ (paired) parameters - see the expressions above - then a "converged" root

structure is one which lies on a 45 line through the complex plane representing these

solutions. Indeed, this fact was employed, throughout this investigation, to ascertain

the degree of refinement (or "exactness ", if such a term can be loosely implied) in the

eigensolutions.

In summary, then, the HESSENBERG algorithm was used (first) to "locate" roots

in the (frequency) solutions region. With a "confined" region known, the DETERMINANT

method was employed to refine the root structure (as acquired by NASTRAN).

One additional comment should be made, here, concerning the use of the various

routines available in the NASTRAN system. Initially, it was planned that the "INVERSE

METHOD - with shifts" would be the method to use for extracting eigenvalues. Ultimately
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this particular procedure was abandoned, for this investigation, because of its "eratic"

behavior during useage. The cause, or causes, of its anomalistic behavior (in eigen-

value determination) could not be ascertained — nor was much effort expended in the

search for such cause (s) — hence this procedure was abandoned as a candidate method.

This, as a consequence, played an obvious role in the eigenvalue extraction procedure

adopted for the current investigation.

The tabulation of eigenvalues, etc. listed below represents results taken from

NASTRAN runs (made) using the DETERMINANT method algorithm. (It is not deemed

necessary, or of use, to list the corresponding results acquired from the HESSENBERG

operations). In this tabulation one will find a listing for results obtained using a 16 node

model and results acquiared using a 25 node model. The two models are included to

illustrate the "convergence" of the solution for the more refined (25 node) case. Also,

results for this model are shown with and without Coriolis effects included. (The

analytical results, from Lamb, do not include the Coriolis influence). Remember that

all eigenvalues (here) were obtained using the DETERMINANT extraction routine.
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TABLE I

EIGENVALUES, AND RELATED DATA FOR THE SQUARE BASIN MODEL

Parameter

Eigenvalues, as
obtained from
NASTRAN

16 node Model
(with Coriolis)

1.3764 * 10

1.5701 * 10

1.5818 * 10

-1

-1

— 1

25 node Model
(with Coriolis)

1.59976 * 10

1.60051 * 10

1.73434 * 10

1.73464 * 10

1.89901 * 10

— 1

-1

-1

-1

-1

25 node Model
(without Coriolis)

1.60013 * 10

1.60013 * 10

1.73449 * 10

-1

-1

-1

1.73449 * 10

1.8901 * 10""1

-1

E igenfrequencies

V 2X*

(rad/sec)

3.78895 * 10

4.9304 * 10~2

-2

5.0042 * 10
-2

5.11845 * 10

5.12326 xlO

6.01589 * 10

6.01798 * 10

7.21248 * 10

-2

-2

-2

-2

-2

5.12086 * 10

5.12086 * 10

6.01693 * 10

6.01693 * 10

-2

-2

-2

_o

7.212501 * 10-2

Period of Oscillation T

T =

(in seconds)

331.66

127.44

125.56

122.755

122.640

104.443

104.407

87.115

122.698

122.698

104.425

104.425

87.115

By comparing the column results shown In Table I, it is quite evident that the

more refined model (25 nodes) predicts results which are quite different from those

acquired using the more coarse spacing. It remains, yet, to test these results against

the analytical predictions. Returning to Equations (49) and (52) it is seen that the
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frequency and period of tidal oscillations, in the test basins, are acquired from

. = ~ ,/ gh (m2 + n2) for m, n = 0, 1, ...i a v

and

T ,
1 ",

2 2wherein, for the present situation gh = 9600 ft /sec , and a = 6000 ft. ; the m, n

numbers represent the modal characteristics for this basin.

Since the fundamental mode of oscillation is the result most sought for and

expected here, then the modal characteristics are either (m = 0, n = 1) or (m = 1,

n = 0). After these mode shapes, the next shape would be described by the characteristic

pair (m = n = 1); and so on. Tabulated below are values describing the first three

(theoretical) modes.

TABLE II

ANALYTICAL RESULTS FOR A SQUARE TIDAL BASIN

Parameter Modal Frequency Modal Period
(rad/sec) _ (sec) _

Fundamental, 0 5.130199 * lo"2 122.474

£ 5.130199 * 10~2 122.474
-2

j8 7.25518 * 10 86.603

Comparing results in Table I and Table n it is seen that the 25 node model,

without Coriolis effect, yields results — for the fundamental mode — which are in ex-

cellent agreement with the theoretical prediction for this model basin.

Fortified with these results, the investigation was next turned to the task of

determining the fundamental mode shape, frequency and period for selected natural

basins. The two basins chosen for this study were Lake Erie and Lake Superior.

62



Before moving to the descriptions and discussions of the natural basins and

their free tidal modes of motion, some additional remarks regarding the test problem

are in order.

So far, for the test case we have looked at the basic modal frequencies, and the

attendant periods of motion only. It would be useful to have some idea of how the tides

might appear for these free modes.

In keeping with the results reported in Table I, Table III lists the normalized

tidal heights (data acquired from the eigenvectors produced with the eigenvalue analysis,

in NASTRAN) and the relative phase (taken with respect to node 1) for each of the nodes.

Note that in Table III the relative heights and phases are listed for each node, and for

the three periods (from NASTRAN results); T ^122.7 sec., T = 104.4 sec and T 2=

87.1 sec. These data are included here to point to the surface behavior, in free oscil-

lations, for the periods noted. As an added aid in clarifying these results, there are

two sketches (A and B), found, following the table, which show a representative plot

of the data in the columns headed by T = 122.7 sec. and 87.1 sec., respectively. On

the plots the positive relative heights are shown above the base rectangle and the nega-

tive values are plotted opposite in direction.

The shape of the relative amplitude-phase surface is readily seen in the two

sketches. The differences in these are obvious and need no comment. (Recall, however,

that the information depicted here is relative valued - the data were taken from eigen-

vector tabulations, for the modes indicated; there is no indication of true tidal heights

implied here).
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TABLE III

RELATIVE TIDAL HEIGHTS*, WITH PHASE, FROM NASTRAN RESULTS

Relative Amplitude and Phase for modes with Periodicity

Node No.** T=122.7 sec. . T=104.4 sec. T=87.1 sec.

1. 1.111 -0.62 -1.443
2. 1.03 -0.70 -1.127
3. 1.02 -0.012 0
4. 0.909 0.74 1.127
5. 0.93 0.60 1.443
6. 0.60 -1.03 1.127
7. 0.657 -0.42 0.722
8. 0.686 -0.014 0
9. 0.786 0.44 -0.722

10. 0.772 1.0 -1.127
11. 0.09 -0.607 0
12. 0.06 -0.72 0
1 3 . 0 0 0
14. -0.06 0.72 o
15. -0.09 0.607 0
16. -0.772 -1.0 -1.127
17. -0.786 -0.44 -0.722
18. -0.686 0.014 0
19. -0.657 0.42 . 0.722
20. -0.60 1.03 1.127
21. -0.93 -0.60 1.443
22. -0.909 -0.74 1.127
23. -1.02 0.012 0
24. -1.03 0.70 -1.127
25. -1.111 0.62 -1.443

*Tide heights are normalized, in the Eigenvector descriptions; the sign on each
normalized height denotes the relative phase (relative to node 1). These data are
for free oscillations without Coriolis effect.

**See sketches in Section 9.1 (here) for node loci on the square basin.
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SKETCH A. Graphical representation of the normalized, free oscillation tide heights
(and phase) for the mode whose period is T = 122.7 sec.
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SKETCH B. Graphical representation of the normalized, free oscillation tide heights
(and phase) for the mode with period T = 87.1 sec.
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IV. THE CLOSED BASINS STUDIED

IV. 1 Basin Models

The models of closed tidal basins, numerically studied in this investigation,

were three in number - the test basin, Lake Erie and Lake Superior. The test basin -

a square tank-like geometry, having a fixed depth - has been described and discussed

earlier. Lakes Erie and Superior are, of course, natural basins situated along the

central northeastern boundary between the United States and Canada. These bodies

of water are, for all intents and purposes, "closed" basins; in addition both have

irregular boundaries and are not uniform in depth.

The next few paragraphs will be devoted to a description of these water bodies,

with an aim of pointing out those features most pertinent to the present investigation.

(a) Lake Erie. The finite element model, which was constructed to represent

Lake Erie in this study, came from information found on the National Ocean Suryey

Chart No. 3. This chart is a polyconic projection of the lake, scaled at 1:400,000. Geo-

graphically, Lake Erie is situated between the 42nd and 43rd (north) parallels, be-

tween the latitudes of 79 - 83 west. A sketch of the lake and some of its geographic

landmarks is seen below.

Basically, Lake Erie has a rather smooth bottom contour. It does not have abrupt

depth changes, except in the near shore and (some) few bay areas; and, comparatively,

it is fairly shallow*. The maximum depth of the lake is near thirty fathoms (at the eastern

limb of the lake); and, it slopes (upward) to approximately seven fathoms at the western

end. (The "western end" here infers the western portion of the main body, not the ex-

treme western portion - from (say) Toledo to Pelee Island, above Sandusky). Over the

central portions of this lake, the depth is fairly uniform - varying from 10 to 13

fathoms in its off-shore regions.

*The mean depth of Lake Erie is 19 meters (Ref. (13)).
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(b) Lake Superior. Lake Superior was modelled using information obtained

from the National Ocean Survey Chart No. 14961 (formerly Chart L.S. 9M). This is a

Mercator Projection, scaled at 1:600,000 at latitude 47°30'N.

Lake Superior is a larger body of water than Lake Erie; it is situated between

the 46th and 48th parallels, and extends between the longitudes of 84 - 92 west.

(See a sketch of this lake, found below, for these and other details).
c"

Lake Superior has a more variable bottom topography than does Lake Erie. Also,

this basin is the deeper* of the two — having depths in excess of one hundred fathoms

over a sizeable portion of its area. The general contrasting differences in these two

bodies of water, aside from water depths, is found in the boundary features and the

average width to length variations. While Lake Erie is rather slender and nearly uni-

form in width, Lake Superior is more oval in character and has a pronounced curvature

to its lengthwise median line. For modelling purposes the boundaries and exclusions,

in surface topography, for Lake Superior, are more extensive than those for Lake Erie.

Additionally, these variations suggest a need for the finite element method's ability to

accommodate irregularities in element area sizes and arrangements, for modelling

purposes.

IV. 2 The FEM Models

The finite element (method) models, constructed to represent these two natural

water basins, are seen on Figures 1 and 2, below. There, Figure 1 shows the

arrangement of surface "elements" used to represent Lake Erie, while Figure 2 indi-

cates the arrangement for Lake Superior. An examination of these figures and the

two sketches (of the lakes) will provide the insight needed to ascertain which features

were included and which were excluded. A few comments, however, on each of these

models are appropriate here.

Comparing Figure 1 with Sketch 1, one sees that the extreme western end of

Lake Erie is excluded from the FEM model. The reasoning behind this stems from the

fact that the "bay" adjacent to Toledo - stretching to Pelee Island - is rather shallow,

*Lake Superior has a mean depth of 147 meters (Ref. (13)).
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and is separated from the main water body by islands above Sandusky (Ohio). It

was felt that these conditions were sufficient to imply a small to negligible response

from the (Toledo) bay region; hence that region would not significantly influence the

problem's output. Also, the land arm, opposite to Erie, Pennsylvania has been ig-

nored in the FEM model. The belief that this (water) region, behind the arm, was

sufficiently open to the main body of water prompted the action taken; also, the fact

that this bay region was not deep, and the bottom topography was regular, likewise

prompted the investigators to ignore this slender land mass.

The FEM model shown on Figure 1 represents that one which was more ex-

tensively exercised in this investigation. It, incidentally, was not the only model of

Lake Erie (constructed); there were two additional models described and examined

during the course of this investigation. (More will be said about these several models,

subsequently).

Next, looking at Figure 2 and Sketch 2 one sees that, here, more of the lake's

structure is included in the FEM model. In part this occurred because of the arguments

noted above; and, in part, these are included because of land mass size considerations.

For orientation purposes the FEM model is briefly described as follows: Moving

from Duluth, along the southern shoreline of the lake, toward Sault Ste. Marie, it is seen

that (first) the land — jutting into the lake — above Ashland has been included in the FEM

model. Next, the tongue of land west of Marquette has also been accounted for; and,

finally, Whitehead Bay — adjacent to Sault Ste. Maries — has been modelled into the
'\

solution region.

Moving around the northern shore, from Duluth to Sault Ste. Marie, it is evi-

dent that several of the natural topological features here are included in the FEM geometry.

First, Thunder Bay, and the adjacent irregular shorelines, are modelled. Likewise, an

exclusion of area — from the FEM model -,- representing Isle Royale, has been accom-
/

modated. Following the eastern shoreline, down toward Sault Ste. Marine, we note that

some of the larger irregularities are included, but that the small island (in the Lake,

proper) has been ignored. The investigators concluded that the analysis, here, was not
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sensitive to small land masses and that these could be ignored without inducing serious

error. By and large, the water around this island is deep; also the bottom contours

are fairly regular, by comparison, and the surface area, per se, is small in terms

of total water surface for the problem.

In summary, the two FEM models — shown here — for these two of the Great

Lakes (Erie and Superior) may be classed as follows:

Closed Basins
(Body Name)

Lake Erie
Lake Superior

Element
Shape

Triangular
Triangular

Interpolation
Fn.Used

Linear
Linear

No. of
Nodes

81
124

No. of
Elements

122
184

As indicated earlier these were not the only FEM models constructed and exa-

mined during the course of this study. Aside from the square basin test (case) there

were two additional models of Lake Erie, concocted; however, neither of these served

as a primary model in the investigation. Rather, the models noted (just above) were

those most extensively used throughout the eigenvalue analysis.

IV. 3 Other Models

Before leaving this section it may be well to describe the "other models " — of

Lake Erie — as a means of acquainting the reader with them, and to indicate some few

of the difficulties encountered in this work.

*
Generally speaking there were three separate model "sizes " developed and exa-

mined during the course of this study. One of these was a 'larger" model of Lake Erie,

while the other was a "smaller" model. Larger and smaller, here, must be reckoned

in terms of FEM model size (numbers of nodes and elements) in contrast to physical

size (obviously the lake's physical size remains an invariant in the analysis).

In the early production stages of the investigation a rather detailed FEM "map"

of Lake Erie was developed. This model, in its finished state, had three hundred and
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thirty one nodes; this translated into five hundred and eighty elements, serving as

the solution subdomain structure for the entire study region. The reasoning behind

such a "large" model was that with this muchidetail one should surely be able to re-

move any convergence and continuance problems which might (possibly) be present in

the analysis. Also, this much large scale input would surely check the main operating

program's supporting software, and would provide confidence in the investigator's

ability to handle macro-rsized inputs. While these aims were (generally) satisfied it

became apparent (not too quickly, unfortunately) that the size of the problem posed by

this model led to operational difficulties within the computer system. Some of these

problems were eventually solved, others were never completely resolved to any signi-

ficant degree of satisfaction. (More will be noted regarding this, subsequently).

The second model of Lake Erie, constructed primarily for exploratory studies,

and to achieve more rapid machine response, consisted of a FEM model consisting of

43 nodes and (thus) 58 elements. While this collection of sub-domains was not deemed

adequate for purposes of the investigational analysis it was, nonetheless, sufficient

for the needs of diagnostics and machine check-out.

This second model was developed when it became evident that a less sophisticated

computer operations requirement was the only answer for conducting diagnostics and

program checkout. In general, this model and the large-scaled one, covered a same

area in Lake Erie, but the CPU and I/O machine requirements were drastically reduced

for the lesser sized unit. Ultimately this mini-model became a "work-horse" for a

variety of study situations which were undertaken in attempts to resolve other difficulties

(both real and imaginary) which cropped up.

As an indication of the advantages gained by using the small-scale model, it is

worth noting the size of the "input" deck needed for the macro-model, in comparison to

that for the mini-model. Even though the input deck generations were automated (via

the pre-processor described elsewhere) the mere physical size of this larger system was

a deterant to the computational procedure. For comparison purposes, the "input" for the

331 node model was just in excess of 24 thousand cards. On the other hand, the input
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deck for the mini-problem was approximately 6000 cards. Also, the macro-problem

was one which required the manipulating (including the inversion) of matrices having

some nine-hundred plus degrees of freedom. Such a problem (size) required that the

computer (360/95 system) be dedicated, almost exclusively, to this problem's solution

when it was in the machine and operating. Obviously when problems of this size re-

quirement (per case run); coupled with long running times (up to an hour's operation),

are to be handled, the available computer operations time is severely restricted.

Generally, such an operational constraint is more factually translated into "week-end

runs" — only — and then when the machine can be made available.

In addition to these restrictions, it is equally evident that other limiting factors

must be considered. For example, the "checking" of the input, to ascertain that

what is "fed" to the computer is truly the information desired, can be and is a very time

consuming and tedious process. The sheer monotony of scanning twenty-four thousand

column entries, of data, is conducive to the committment of errors, also. Thus, the

"safeguards" in this operation are also "error sources".

The mere fact that the input is as extensive as it is likewise causes problems.

The handling of these data certainly cannot rule out the loss or misplacement of

cards; yet such a circumstance, when it occurs, immediately stalls the computational

procedure. Experience is a good teacher — and the investigators, in this work, were

taught a number of very good lessons. Unfortunately the bulk of these were learned at

the expense of time — operational time and delays.

IV. 4 Problem Dimensions

It has been mentioned, earlier, that the Laplace Tidal Equations, which govern

this study's analysis, are written here in the Ib-sec-ft system of units. In the initial

operations, when the test basin problem was being utilized, these were the actual di-

mensions used to evaluate terms in the input stream and elsewhere. However, when it

came time to construct the input for the actual (lake) basins it was apparent that these

same quantities could not be employed because of the resulting numerics evolving from

76



arithmetic operations used to describe the input parameters. The obvious solution to

this dilemna was to "scale" the input numbers and reduce the size of the problem's

parameters*.

Consequently, the following scheme was adopted for dimensioning the input;

these units were used by the pre-processor in developing an "input deck" for each lake's

problems.

Quantity Input Dimension Term Definition

4
(x,y) 10 Yards surface coordinates; i.e.,

("Big Yards") point loci, etc. for models

(h) fathoms ' bottom depth; measured
at node loci

(t) seconds time

With this .system of units used for dimensioning the physical parameters, the

pre-processor was written so that it computed a proper set of values for the variables,

etc. appearing in the governing equations. This meant that the appropriate scaling

laws were written into the pre-processor's algorithms, and that the generated output

decks was developed with the required (scaled) dimensions**.

Incidentally, in these problems the gravitational constant and the Coriolis para-

meter were (each) assigned a fixed value for the models constructed. Needless to say,

the value of "g" was universally assigned; however, the Coriolis parameter (f) was

given a numerical value appropriate to the latitude range for the model considered.

*For the sake of accuracy and input numerics it was necessary to go to the "extended size"
input block in NASTRAN. The input field, here, is approximately halved — the input
parameters are 16 characters in length compared to the usual 8 character length for
normal matrix input (see Appendix C for representative examples).

**At a later time point in the investigation the scaling laws were altered. This was done to
verify that some of the problems, which were noted in the program's operation, were not
a consequence of the scaling. After producing several check runs, with the new scaling
laws, it was evident that this was not the cause.
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IV. 5 Selected Results

During the course of this study the investigators were alternately running, or

attempting to run, sample cases of the closed basins. This was done to find the eigen-

values and, hence, the frequencies for these natural basin's free oscillations. As

noted earlier, the models studied (here) were varied (cronologically) from the macro-

sized model of Lake Erie (331 nodes), to the mini-sized model (43 nodes), to the

operational model (86 nodes). Finally, in the late stages of the study, an operational

Lake Superior model was constructed (this has been described in one of the foregoing

sections, here).
t

From a computer operational consideration the production sized Erie model was

limited to eighty-two nodes. This came about because of the scheme used to ascertain

estimates of the eigenvalues. Here the limit on model size was dictated by the allow-

able input to the Hessenberg algorithm (see Appendix B, and Conclusions). This state-

ment does not imply that the other models were not used. Actually, the mini-model

was extensively exercised for diagnostic purposes and for program check-out. Also,

it saw service during the study phase when the investigators were probing for possible

remedies to the relatively poor root structure. Recall that these roots were acquired

when the Coriolis parameter was included in the governing equations. The macro-model

was used, with NASTRAN, in the earlier stages of the study; when it was expected that

the eigen-analysis would proceed without difficulty. There were, however, problems

encountered; basically these were operational in nature; and, ultimately, it was

apparent that the system either became computer bound or that the (selected) eigenvalue

routine was behaving erratically. It was at this point in the investigation that the In-

verse Method, for eigenvalue extractions, was abandoned.

Near to the end of operations, after the complex FEER sub-program was operating,

the macro-problem was reexamined and results were obtained. Unfortunately, the root

structure (here) was likewise of not-acceptable-quality; consequently those roots (too)

are not reported herein.
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It has never been clearly ascertained where the difficulties lay with the use of

these various eigenvalue routines, in NASTRAN, and in the study of Laplace equations

containing a Coriolis influence. A number-of remedies and "fixes" were tried, in the

hope that some inkling of the cause could be uncovered. Unfortunately, there were no

clear indicators, and time and resources came to an end before an understanding

could be gained. The two remaining candidates trials, for alleviating these difficulties,

but which were not tried, are likely to be the most expensive of all. However, these

were not attempted. They would require an extensive modification to the program and

would necessitate the development of a wholly new input string. The essence of these

changes can be simply given as follows: It is expected that an explicit statement for

irrotationality needs to be included in with the governing equations; and, that some

relaxation of the globally defined nodal net should be included. Hopefully, with these

alterations, the eigenvalues could be brought into the expected range, and the problem

could be solved as initially intended.

The comments, above, provide some broad coverage of the problems encountered

during the course of this investigation. Passing now to the positive results, a few para-

graphs outlining these — with comments — will be written next.

Neglecting the Coriolis parameter, it was possible to determine eigenvalues and

to convert these results into meaningful information regarding the free oscillation modes.

Remembering that the Great Lakes models are those described in Section IV. 2, above,

and that comparisons are made with information presented in Reference (13), then the

following summary is given:

(a) The eigenvalues, obtained here, for the Lake Erie model, give the first

three free modal oscillations frequencies as:

£= 1.20215 xlO~4 rad/sec

P = 1.7617 x 10~4 rad/sec
and

fl = 2.46702 x 10~ rad/sec
O
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These frequencies denote free oscillation periods of:

T= 14. 518 hrs.

T = 9.907 hrs.
and

T = 7. 07 hrs. , . respectively.
o

Turning next to results from other studies, it is found that the observed periods

for the first three longitudinal modes of Lake Erie are:*

T =14.4 hrs.

T = 9.1 hrs.
and

T = 5.9 hrs. -
o

In that same reference Platzman calculated a period for the fundamental fre-

quency as:

T = 14. 86 hrs.

for Lake Erie. This can be compared to the period, calculated from a spectral

analysis, by Platzman and Rao**, which is reported to be:

T = 14.38 hrs.

The analyses conducted by Platzman, Rao and others, imply that the channel

approximation is not too much in error for Lake Erie (recall that this body of water

is "long and slender").

(b) The analysis for Lake Superior is not so well documented (in compari-

son to (say) Lake Erie). It is evident, from the geometry of this basin, that it is npt^

so amenable to the channel approximation. Nonetheless, Rockwell (Theoretical free

*Platzman, G.W. & D.B. Rao, Spectra of Lake Erie water levels, J. Geophys. Res.69,1964.

**See reference by same authors. In the past, spectral analysis has been the mainstay for
most investigators.



oscillations of the Great Lakes, in Proc. Ninth Conference on Great Lakes Research,

Pub. 15, Great Lakes Research Division, U. of Michigan, 1966) used this approximation

to obtain a "fundamental period for Lake Superior"; he reports this to be T = 7.49

hours. Subsequently, Platzman (using his resonance iteration method) obtained a period

of 7.84 hours. Following this work, Mortimer and Fee reported a fundamental mode

period somewhere between 7 .79 and 7.89 hours; in their analysis they used a spectral

analysis also. (Mortimer, C.H. and E. J. Fee, Free-Surface Oscillations and Tides

of Lakes Michigan and Superior. Special Report Center for Great Lakes studies, Univ.

of Wise., 1972).

In the present study, the eigenvalue analysis yielded periods for the first three

free oscillations of:

T = 14.637 hrs.

T =8.438 hrs.
and

T = 6.98 hrs.
o

The second period (here) is apparently that which corresponds to the values

obtained by these other investigators. In retrospect, this value is high by some seven

percent as compared to Platzman's resonance iteration method. Evidentally, the

period (T ) does not have a counterpart from either spectral analyses or from other

investigations. From a plot of the eigenvector results, the tidal amplitudes from this

period appear to be reasonable; and, the phase of the motion is well within the realm

of expectations. Why this mode would appear here, and not be accountable from other

studies, is not known.

This extra root type should not be passed over lightly. The eigen-analysis con-

ducted here was not always reliable; but the technique which was employed for those

determinations without Coriolis effect could not be faulted. As an illustration of the

method's sensitivity the following situation is mentioned.

81



During the study of Lake Erie there was one particular case where the eigen-

values (extracted) contained a root which could only be interpreted as a divergence.

Physically this appeared to be a case where the lake could be "emptied". Obviously
• 0 .

such a root type must be in error; and, after a careful examination of the input, it

was found that one boundary condition card (specifying a zero velocity at a water-

land type node) had been omitted (or deleted) from the deck. By leaving out this card

the lake had an "opening" where it could be dumped "•- thus the error in output; and,

correspondingly, the sensitivity of this analysis to such conditions and/or omissions.

As an indication of how the free surface responded to the oscillatory modes,

pseudo-plots of the tidal amplitudes (plus phase) have been constructed for the calcu-

lated mode types noted above. On the six figures to follow the relative amplitudes

(plus phase) for the tide heights at all nodes (of the models) are shown. These

figures are duplicates of the FEM nets shown on Figures 1 and 2, except that (here)

the internal connectors between nodes are eliminated. The noted (interior and exterior)

nodes are indicated by "dots", and the appropriate relative amplitudes and phase are

indicated (numerically) adjacent to each nodal location. These graphical depictions

are included here for reference purposes (only). The relative phase, at each locus,

is indicated by the sign assigned to each numerical indicator.

The first three figures are for Lake Erie (at the modal periods noted earlier);

and, the last figures describe the above conditions for the three modal periods noted

for Lake Superior.
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V. SUMMARY. CONCLUSIONS AND RECOMMENDATIONS

The p rocedure and methods employed in this study indicate that this scheme can

be used to obtain fundamental frequencies for free oscillations in closed tidal basin, but

with some restrictions.

The use of the Laplace tidal equations for this purpose is, certainly, not new.

However, the approach adopted here appears to represent a certain newness in at least

two aspects. One of these is the formulation of the problem by the finite element method;

while the second is the utilization of NASTRAN for solving an associated eigenvalue pro-

blem; these two items appear to be unique with this study. Even though the success

anticipated and hoped for at the initiation of the investigation was not fully realized, a

great deal was learned about the problem, in general, and about difficulties with large

scaled numerical (matrix) operations, in particular.

In the early planning stages of the investigation thoughts were given to the idea

of somehow adapting this technique to a similar study of the ocean tides. Now that a

familarity with the "full operation" has been gained, it is quite apparent that the present

approach cannot be suggested for a global tides analysis. The reasons for this are quite

simply given — this tides problem would quickly exceed machine capabilities, and the time

requirement would, in all likelihood, be prohibitive. Until late in the present study, when

the complex PEER algorithm (for eigenvalue extraction) was available, the time needed to

execute a "run" for one of the Great Lakes models was of the order of an hour, or more.

Recognizing that the lakes are relatively small bodies of water, by comparison, the time

requirement for ocean studies, with a conservative extropolation, is too extravagant for

consideration.

/

The use of NASTRAN, for the present eigenvalue determination, represented a

departure from normal applications of this program. Actually, only the eigenvalue sub-

programs were employed in this study; however, any success which was to be had here

required a comprehensive understanding of-NASTRAN and its operations. Fortunately

one of the investigators had that knowledge; and, as a matter of fact, it was through
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the use of his developed complex FEER algorithm which ultimately provided the

verification and confidence in those successes claimed here.

As noted earlier in the body of this report, the initial aim was to use the In-

verse Method, with shifts, for the eigenvalue extraction process. Unfortunately, this

approach had to be abandoned -- inconsistencies in results, and a growing concern re-

garding the method's operational integrity, led to a decision to change procedures. This,

of course, produced a new dilemma in that the other candidate eigenvalue procedures,

in NASTRAN, led to new difficulties; these, of course, were to have been circumvented

by using the Inverse Method, per se.

Briefly, the difficulties with the other two routines can be summarized as

follows: The upper Hessenberg routine, while it appeared to be working correctly,

and required a lesser time for the computation of eigenvalues, was space limited in

its application. That is, the size of the problems which could be handled, in NASTRAN,

using this algorithm, was much smaller than the (ideal) problems which the investigators

desired to use. Being "input-bound" by this method meant either abandoning the pro-

cedure, or reducing the size of the problems to be studied. Ultimately, the decision

made was to reduce the problem size and (at least) use this algorithm to acquire esti-

mates of the "correct" eigenvalues.

The difficulty experienced in using the Determinant Method, in NASTRAN, was

one of technique. Unless the "search region" (see Appendix B) could be rather carefully,

and precisely, defined the chance of "finding" roots was somewhat remote. That is,

the method (apparently) is quite sensitive in its search pattern, and does not "home-in"

on the root if there is an extensive search area to work on. This can be interpreted as

follows: If roots are to be found, by the Determinant Method, the search region must

be small; and, generally, in order to find "several roots", the region should be seg-

mented into several (sub) regions of search.

A root finding procedure was developed but not, unfortunately, until after a

number of trial operations had been conducted, and where only a degree of success
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was achieved. That is, roots were obtained by the Determination Method, for appro-

priately described search regions, but only after first finding approximate roots using

the Hessenberg Method. This meant solving problems twice — once, using a crude

model and the Hessenberg algorithm, followed by a more exacting procedure using the

Determinant algorithm, Incidentally, this technique was not discovered until fairly late

in the investigation. It came to light after it had been concluded that many of the

difficulties being experienced probably resided with NASTRAN operations and not with

the formulation, etc. of the model and other related developments.

Utlimately, and fortunately, the FEER algorithm became available and the

results which are reported here were checked. Thus the confidence needed to support

the other findings was gained, and the degree of success which has been shown was

verified. Interestingly, the models concocted for this study served, in part, as test

vehicles for the FEER program. Consequently FEER was used in this investigation well

in advance of its availability to the NASTRAN user community.

Probably the most disappointing consequence of this study was the inability to

achieve that degree of refinement expected from the eigenvalues extracted. That is,

using the Laplace equations for the actual lakes, studied, including Coriolis effects,

the roots which were extracted did not show the structure expected or desired. From

a study of the eigenvalues one would tend to conclude that the problem had a dissipation

term in the mathematical model. In essence, the NASTRAN roots showed a numerical

difference, in modulus, for the real and imaginary parts of the eigenvalues. Such an

occurrence was not expected (see the discussion on roots extracted, in the Test Problem

section); and was most disconcerting to the investigators. Suffice it to say, quite an

effort was given in search of the causes for this deviation of the roots. Unfortunately,

no concrete explanation or remedy was forthcoming. In attempting to trace the causes

for this, the analysis was checked, carefully, and cross-checked; the input data were

re-examined — even the scaling of the problem was changed in an effort to ascertain

whether or not an error could have been committed there. The Coriolis parameter

was altered, thinking that this might be causing something akin to frequency beating —
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and, other possibilities were explored in search for a cause to the dilemma. Needless

to say, the problem was not resolved; the roots obtained (with the Coriolis parameter

included) were felt to be not sufficiently clean to represent the problem, hence these

eigenvalues are not reported here. Only those roots acquired with negligible Coriolis

influence are listed in the body of this report.

There were other possibilities, which might have been explored, as candidate

remedies for this situation; unfortunately, there was not sufficient time or resources,

available, to pursue these tasks. Basically, these alternatives would have necessitated

major revisions to the program; these would have involved a new development for input,

and (of course) a complete rerun of all cases studied, to acquire new output information.

This finding is not felt to represent a negative result, rather it points to a con-

dition or conditions which were not foreseen and which could not be rectified under the

limitations which existed. Once the more obvious possible causes were discarded, the

remaining candidate conditions could only be examined insofar as existing constraints

would allow. Necessarily the quick response approaches were pursued first; when

these were eliminated then the more difficult ones were studied, but only to the limits

allowed. "

All things considered, the investigators believe that while the present approach

is a valid one, and that it does have the potential for success, it cannot be recommended

as a procedure for the study of ocean tides. At least not by the methods used herein.

The procedure employed in this investigation was too time consuming (however, the ad-

vent of the complex FEER routine considerably reduced the running time for all such

problems). In addition, the machine requirements (in core size needed) strains the

capabilities of even large machines. (This analysis was carried out on the GSFC 360

series machines; there the core requirements, for the macro-sized Lake Erie problem,

put severe limitations on the running of any typical case study. Incidentally, this con-

straint, and the fact that the input was an extensive as it was, hampered operations

throughout the entire time of the investigation).
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The present use of a finite element approach (for the tides problem, generally)

clear indicates its feasibility and its versatility as a viable candidate procedure for

solutions. There is good reason to believe that the existing difficulties can be over-

come — and that these do not reside with the approach used here. What is needed to

complete this work is adequate time and resources to diligently continue the effort

and to resolve the present dilemmas. Likewise, it would be prudent to alter this

approach, to something other than the direct assault procedure used here, if these

ideas are to be employed in an analysis of large tidal basins.

Much has been learned from this investigation; the areas where new and re-

newed efforts should be directed are (hopefully) indicated in this report. Some of

the pitfalls and problems which can exist with large programs (like NASTRAN), have

been encountered and noted — these should tell other investigators what cautions

they should take; and should point to the possible areas where difficulties are likely

to be found.
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APPENDIX A

GOVERNING EQUATIONS

A.I DISCUSSION

The two basic mathematical expressions, used to describe a fluid flow, are con-

servation statements; one for mass and one for linear momentum. In rather general terms

these equations may be written (in Einstein (summation) notation) as:

(a) for the conservation of mass:

(b) for the conservation of momentum:

du. du. dr. .

- -i dx. x. i x.
J i J

wherein

x., u. = are cartesian position and velocity components

p, p = mass density and hydrostatic pressure (for the fluid)

s,m. = fluid and momentum sources (sinks)

F. = "distance acting" forces (in component form)

T.. = body "contact" forces (local stress in component* form)

In the second expression above the r.. terms are nominally expressed in terms of

viscosity. Frequently, for natural circulation problems, there is included, in with the
j

direct visosity effects, terms which describe turbulent momentum transfer (between

*The stress components, denoted as Ty, include both normal and shear stresses. These
can be recognized by the designation given to the subscripts (i, j). In writing r^. the "i"
indicates a direction for the unit normal to the stressed cube face, while the "j" indicates
the direction of the stress component. Therefore, repeated subscripts (i=j) signify normal
stresses; the subscripts (i^j) denote shear stress components.
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fluid layers). In addition, for earth circulation models the cartesian reference frame

is attached to the geoid; thus there is added to the local and convective acceleration terms,

noted in Equation (2) above, the so-called accelerations due to Coriolis and centrifugal

effects. Incidentally, Equation (2), here, is frequently called the Navier-Stokes equation.

It has a similar form in elasticity; however, there the r.. are expressed in terms of the

Lame (after Gabriel Lame (1795-1870)) coefficients fa, X). These completely characte-

rize the (isotropic) material (body) and are explicitly related to Young's modulus and

Poisson's ratio. In fluid dynamics problems the coefficients (p, A) are regarded as the

first and second coefficients of viscosity; they do not have a direct correlation to their
2

elasticity counter-parts. (For example, in studies of a monotonic gas, A = - ~ \i; a
o

physically improbable relationship, but one which seems to work well in practice.)

Incidentally, the "form" of these equations assumes an Eulerian representation

for the motion (vice the Lagrangian form). Also, the the case(s) at hand it will be pre-

sumed that the chemical composition of the fluid mass is constant throughout the region

under investigation; and, that the fluid mass is (thermally) adiabatic. In this regard the

two expressions shown above adequately represent the fluid motion - however, it is under-

stood that these expressions will require some modification (based on additional assum-

ptions and considerations).

As a second concern the subject of boundary conditions has not yet been addressed;

this will place added constraints (or conditions) on the solution, as is frequently the case

in real world applications.

A.2 OSCILLATION IN TIDAL BASINS

In the determination of oscillatory modes for tidal basins it is necessary to infer

a rotating system of (cartesian) coordinates. Thus, included is an influence for Corolis

acceleration, compatible with other assumptions and conditions. Also, since the fluid

(here) is water is it not unreasonable (physically, and otherwise) to assume it to be in-

compressible; and, subsequently, to neglect its viscosity.
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Taking, as an orientation, a coordinate system with the (x,y)-axes tangent to the

geoid surface, and the z-axis vertical (or outward from the surface); and, neglecting all

source (sink) mechanisms; then, the equations which describe the problem, to this point

are:

(a) for the conservation of mass:

(3)

(b) for the conservation of momentum:

dr..
^-i
Sx.

. . .. . .
TT + u- r^ r~r^ + F- + ̂ -iL + P(f.u, - f, u.), (4)L 3t 3 9 x. J 9 x. i Sx. j Tc Tc 3 v '

wherein the f -terms are those appropriate to describe the Coriolis acceleration. (These

terms are noted below, for the earth as a rotating geoid. The origin of Coriolis accelera-

tion follows from the work of Gaspard Gustane de Coriolis (1792-1843); quite frequently this

term (in applications work) is deemed negligible in comparison to other terms present. In

the present case the Coriolis (specific) force is retained (in part) for motion in the tangent

plane, but is neglected otherwise). The influence, here, of the centrifugal action is disre-

garded throughout.

A . 3 CORIOLIS ACCELERATION

Consider the earth in rotation about its polar axis, and assume a locally fixed

cartesian frame as indicated below.

Denoting the rotation vector as:

£1 = £1 [cos 0 (x sinjS + y cos ]3) +z sin0] ,

where 0 = local longitude, j3 is the local aximuth angle and ( *) represent unit vectors;
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then the Coriolis acceleration can be expressed by:

2 Q x V = c0s j3 c0c

i— U w ~

(5a)

[x(w c0c j3-vs

+ y (us 0- we 0s

+ z c0 (v s j3 - u c

(5b)

wherein: (A) denotes unit vectors, for the local reference triad and u, v, w are com-

ponents of velocity parallel to this triad. The notation (s,c) \\sed here is shorthand for

sine and cosine, respectively. i
& C I -*> -y

8

equator

Sketch illustrating orientations, etc. applicable to the definition of Coriolis Acceleration.

Following the notation in Equation (4) it is apparent that the Coriolis acceleration

components are:
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(f ,f ,f ) =
x y z

COS0COS £-vs in0) , (usin0 - wcos0sin/J) , (vcos0sinj3

- u cos 0 cos j8)]. (5c)

Later, based on a relative order of magnitude of terms, these components will be reduced

to the following approximation:

(f ,f ,f ) s2[(-vsin0), (usin0), (-ucos0)] ft, (5d)
x y z

wherein it has been assumed that w « u , v and that j3= 0.

A. 4 THE TWO-DIMENSIONAL (VERTICALLY INTEGRATED) MODEL

In this analysis of tidal oscillations the "vertically integrated" set of (reduced)

Navier-Stokes equations are employed. The reduction, necessary to produce these expres-

sions, from (say) Equations (4), will be outlined below.

Adding to the assumptions stated earlier, it is presumed (now) that:

(1) w « u, v (a condition imposed on the velocity field);

(2) the Boussinesq assumption - for the fluid flow - holds true; i.e. , the predomi-
nant effect on pressure variation is due to changes in fluid depth - a hydrostatic
influence; and,

(3) the convective acceleration terms may be disregarded in contrast to the local
variations.

Following from these conditions it is a simple task to reduce Equations (3) and (4) to

the following set:

(a) for conservation of mass:

du Sv , 5w
dx By 3z

•= 0. (6a)
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(b) for conservation of momentum:

and

Su
at

at

d x d x xx d y xy

— T + — T
3x yx • ay J'

T
z xz

T - 2 p ( n s i n 0 ) u ,
yz ^^

(6b)

(6c)

<6d)

Equations (6) are to be integrated ('^vertically") through the fluid field to provide an

appropriate set of (what is now apparent) two-dimensional equations for the motion. (The

elimination of the convective acceleration terms is, in part, carried out to reduce the

obvious non-linearity which would otherwise exist. Also, this aids in maintaining numeri-

cal stability for the solutions, as well as simplifying the subsequent statement formats).

The sketch, below, will aid in visualizing the meaning attached to various integrals

which will follow:

fluid (field)
free surface

mean
surface

basin
bottom

Sketch Depicting a General Vertical Plane Bathymetry
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When Equation (6d) is integrated (vertically) the result is

p (x,y, z;t) = -pgz + f(x,y;t).

However, the surface condition on pressure requires that

p (x,y,z;t) - pQ = -pgz+f(x,y; t) ,

wherein p = surface pressure (at z = + £ ).

Combining these results leads directly to:

p (x,y,z;t) =pQ - p g ( £ - z ) , (7)

an expression describing the vertical pressure variation according to Boussinesq's assumption.

Making use of Equation (7), especially to describe pressure gradients, Equations

(6b, 6c) can be recast as:

T + + + p f V t (8a)
xx ay xy 3z xz ^ v '

.
^Tyx + a? T yy + ^ T yz" p f U f (8b)

where f (=2Qsin0) is the so-called Coriolis parameter.

0

In integrating Equations (6a), (8a) and (8b), the governing equations for fluid motion,

as specified here, use is made of Liebnitz's Rule*. Thus, e.g. , the integration of Equation

.(6a) is written as

*Liebnitz's Rule states (for a single variation operation):

-f t* f ( x , s ) d s = f f£ds+f (x ,b ) :
d x J v / J a x x ; d x

a(x) a
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C(x,y;t) C(x,y;t) C(x,y;t)
f» OU , r> OV , f> OW , .J — - dz 4- J — dz + J — - dz = 0.
-h(x,y;t) ax -h(x,y;t)ay -h(x,y;t)dZ :'

Introducing Liebnitz's Rule, the integrals are rewritten as:

-h

+ w(x,y,C;t) - w(x,y, -h;t) = 0. (9)

Note that the operation here is a vertical integration of (one of the) equations for

the motion. Similar operations are to be carried out on the momentum expressions.

Now, defining the vertically averaged velocity components (u, v) as:

s -h
and (10)

-, C
vdz,

then Equation (9) can be replaced by:

[u(x,y, -h;t) + v(x,y, -h;t) - w(x,y,-h;t)] = 0. (11)
ox oy
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In consideration of the physical problem, here, there are certain kinematic

conditions which must be accounted for in the solution. For example, and in regard

to the expression immediately above, the kinematics at the basin bottom and at the free

surface dictate that:

(a) at the surface:

rt) = [ |f

(b) at the bottom:

]^ , (12b)

wherein the bottom contour will be assumed to be invariant in time.

As a consequence of these added conditions, Equation (11) reduces to:

(13a)

and, if a linearization of this expression is introduced (as is necessary for the eigen-

analysis) a further reduction is achieved; namely:

(13b)

When the momentum expressions are (vertically) integrated, and Liebnitz Rule

is employed, similarly reduced expressions are acquired. For convenience (here) only

Equation (8a) will be manipulated - the results for both expressions will, however, be

noted below.

\
Symbolically, the integration of the x-momentum equation is represented by:
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C(x,y;t) £ C ar C
pr f^dz = - p g j t^dz + r -r^dz + r

-h(x,y;t) at -h 3x -h 3x -h

r Br C+ J _xz dz + f f v dz.
-h dz -h

Apply Liebnitz's Rule, it can be shown that:

p ud, -pu,x,y,f ,1, - pg (h + C ) + T^dz + T dz

- r (x,y,-h;t) - - ' ] +T ' (x,y,C;t)-T (x,y,-h;t) +pf f vdz.
. xy o y xz xz u ,

-n

Representing the (collected) stress terms by P (for convenience) and introducing the
X

vertically averaged parameters, write:

P ^ C(C+h)u] -pu(x,y,C;t)

recall that u, v are the vertically averaged velocity components, f is the Coriolis para-

meter, C is ^e free surface height (above datum),

represents the (integrated) fluid stress parameters.

meter, C is the free surface height (above datum), 'p is the fluid mass density and P
X

A linearization of this expression leads directly to the following result:

x

For the eigenanalysis, to obtain the natural frequencies of a "closed" tidal basin,

it is necessary to assume the fluid field to be both incompressible and inviscid. This
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added assumption supposes that the internal (viscous) stressing can be neglected, thus

P =0. (It is recognized that in eigenvalue problems a solution is obtained for the homo-
X .

geneous equations of motion). As a consequence of the linearization and the removal of

the stress terms, then the x-momentum (homogeneous) equation is;

(I6a)

A similar treatment of the y-momentum equation leads to the following reduced (homo-

geneous) form:

(16b)

Finally, writing (again) Equation (13b):

ar a - 9 -
—*- + — (hu) + — (h v) = 0 (16c)at ox oy

provides a full list of those differential equations to be employed in the eigenvalue solution.

These three differential equations describe the fluid motion in terms of (u, v, £),

as dependent variables, and in terms of time (t) and horizontal (planar) displacements

(x, y) as the independent parameters.

A.5 EQUATIONS OF MOTION. ALTERNATE FORMS

Digressing, for the moment, other forms of the vertically integrated hydrodynamic

equations are noted and discussed, briefly, for purposes made obvious during the dis-

cussions.

One form of the conservation of mass and linear momentum equations, used in

hydrodynamics studies, are as follows - these are found, developed, in Reference (2, 4):
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(a) the continuity (mass conservation) expression:

( = s* (17a)

c
wherein: q. = J v. dz (j = x,y) represents the local velocity flux, while "s" represents

3 -h ]

a local source (sink) horizontal flow rate (e.g. , a rainfall or sub-surface discharge); all

other parameters have been identified previously.

(b) the conservation of momentum (in a horizontal plane) expressions:

2 2 \

and

x
- S * 2 } , ' - (17b)

C H

a "a
— (C) + (k — W
Sy p y

q (q +
y x v;

3 . • (17c)

Here:

-5 i r
e

u d z = i - 5 ! r
c

TJ J H ' U J
H -h " H -h

and H is the local fluid column depth (S (C »~h) ) - Also, as before:

f = Coriolis parameter (2Q sin0)

g = gravitational constant.
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In addition:

k = dimensionless (surface) drag, or friction, coefficient

p , p = air, water mass density (respectively)a

W , W = (local) surface (or near surface) wind velocity componentsx Y

C = Chezy coefficient (used to describe bottom friction).

Note: The terms enclosed in curly brackets, { - 3, are substitutions introduced to account

for (local) viscous or "body stress" terms.

The above stated equations for fluid motion are most useful in the calculation of

flow direction(s) at corners on the boundaries of the fluid field.

There is a second form of these fluid flow equations, readily constructed from the

above, used only for cases of no mass source(s) or sink(s). These are:

°' <18a>

( }
C/ H

and

- w | w '+v

The parameters used in these expressions have been described above, and earlier.

It should be mentioned that both these sets of equations should give the same results

for the case of a constant depth (-h).

The primary difference between the expressions in (q , q ) and (u, v) (above) is
x • y • " " _ ' •

that the equations in (q , q ) contain lumped product forms for (uH, vH). As a conse-
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quence of this lumping (of parameters) there may be a selection made as to how these

terms are introduced into the finite element method (FEM) equations.

As an aside, the reader is directed to the forms used for convective acceleration

terms in the above expressions. For Equations (17) the a terms may be handled

differently in the finite element method formulations. Since these parameters are "lumped",

their representation, in an appropriate finite element function form, can vary. That is,

the u. q. quantities may be retained as single parameters; or, they may be considered

as a multiple of parameters. The second consideration would (obviously) lead to higher

ordered integration(s) for the FEM formulations. To reduce the mathematical complexity,

a general procedure, at least in first studies, is to make use of the lumped parameters in

the convective acceleration terms, and in the representation for bottom friction where

(obvious) non-linearities are present.

The equations discussed here are, necessarily, not applicable to the eigenanalysis

performed in this investigation. It is instructive, however, to review and study these

various forms, for the hydrodynamic equations, in order to view the kinds, levels and de-

grees of approximations which have been introduced into water circulation and tidal pre-

diction studies. What we have not mentioned, or seen, in this review is the multi-layered

modelling of tidal ponds or other bodies of water. Basically, this topic has not been brought

up because it does not "fit" the concepts used here. It is not necessary, or even advisable

to consider multi-layered modelling unless there are vertical variations in fluid field para-

meters which cannot be ignored; or, for cases where it is felt that this degree of refinement

and complexity will be needed for prediction accuracy. To date only limited analysis on

multi-layering of the fluid field has been carried out. For most studies the single (vertically

integrated) layer model — called a "shadow water" model - has been adequate. Primarily

this approach has been deemed sufficient in view of the small-vertical-variations in para-

meters (or the assumption of such) for the models. Until more experience has been gained,

or the need arises, it is not likely that multi-layer models will become widely used.
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APPENDIX B

EIGENVALUE EXTRACTION METHODS

>

B.I INTRODUCTION

Three methods for eigenvalue extraction are generally provided in NASTRAN.

This multiple of procedures is provided because no single method, or pair of methods,

has been found fully satisfactory with regard to efficiency, reliability, and (general)

applicability, for all situations. Today, the growth in technology is rather explosive,

particularity when one considers the digital computer. One consequence of this device

is that there are a variety and capability of eigenvalue extraction routines presently

available. In addition, it can be expected that new methods will be added (to NASTRAN)

as time goes on, and that old methods will be improved or discarded as new discoveries

are made. (Incidentally, one new procedure - known as the FEER method - is presently

being developed for incorporation into the NASTRAN system).

Most methods for algebraic eigenvalue extraction belong to one of two groups;

these are: transformation methods and "tracking" methods. In the transformation method

a matrix of coefficients is (first) transformed, while preserving the eigenvalues, into one

of several special forms (diagonal, tridiagonal, or Upper Hessenberg) from which the

eigenvalues may be readily extracted. On the other hand, in a "tracking" method the roots

are extracted, one at a time, by iterative procedures applied to the original (dynamic)

matrix.

Of the procedures present in NASTRAN one is classed as a transformation method

(the Tridiagonal Method), while the others (the Determinant Method, and the Inverse Power

Method with Shifts) are tracking methods.

The "effort" expended in tracking methods is linearly proportional to the number of

eigenvalues extracted. Consequently, the tracking methods are more efficient when only a

few eigenvalues are required; but are less efficient otherwise.
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The general characteristics of those methods used by NASTRAN, for eigenvalue

extraction, are compared in Table 1. The Tridiagonal Method, due to restrictions, is

available only for vibration modes of conservative systems; it is not to be used for com-
*

plex eigenvalue analysis . The other two methods are useable for all real and complex

eigenvalue problems currently "solved" by NASTRAN. Also, the Determinant Method is

available for future problem types where the coefficients are general functions of the

eigenvalues.

It is noted (see Table 1) that a narrow bandwidth, and a small proportion of ex-

tracted roots, favors the tracking methods. One example of this is the evaluation for the

lowest (few) modes of a system. When bandwidth is relatively large, and/or when a high

proportion of the eigenvalues is required, the Tridiagonal Method will likely be more

efficient (subject to the foregoing restrictions).

The Determinant Method, and the Inverse Power Method with Shifts, have the same

general characteristics in regards to current NASTRAN problems. The Inverse Power

Method is, however, a more efficient procedure except when the bandwidth is extremely

narrow. The main advantage in including both methods here is a redundancy in procedures.

(This can be most appreciated in those cases where one or the other of the methods fails,

as sometimes happens for any eigenvalue extraction procedure.

*For this reason the Tridiagonal Method is not discussed further in the following descriptions.
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B.2 COMPLEX EIGENVALUE ANALYSIS. FOR NASTRAN .

The form of a complex eigenvalue problem, using the direct formulation, is:

The vector (u } includes the set, u , degrees of freedom (at structural grid
ci a

points), and the set of "extra points", u , described later. The mass matrix, [M , J ,
e da

the damping matrix, [B . .] , and the stiffness matrix, [K, ,], may be real or complex.
da ad

All matrices may be symmetric or unsymmetric, singular or nonsingular. In any case

the eigenvalues, p., are acquired from a homogeneous solution of the form:

which is equivalent to

a.t
3e J sin(o;.t)

where (a., to.) are the real and imaginary parts of p., respectively.
J J • J

The form of a complex eigenvalue problem, using the modal formulation, is:

The components {u.3 contain modal coordinates (£.) and the set of extra points (77 ).

As in the direct formulation, there are no restrictions on these matrices.

In all solution procedures the eigenvectors are normalized to a maximum element

value of unity; or, to a value of unity for a specified element, depending on user option.
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B.3 THE DETERMINANT METHOD

B.3.1 Fundamentals of the Method

The basic ideas used here, for eigenvalue extraction, are quite simple. If the

matrix elements are polynomial functions of an operator (p) then the determinant can

be expressed as:

D(A) = .(p-p^Cp-pgX)? -P3) ---- <P~P n )»

where the p. are eigenvalues of the matrix.

In this method, the determinant is evaluated using trial values for p (selected by

some iterative procedure); and, a criterion is established to determine when D(A) is

sufficiently small, or p is "close" to an eigenvalue. Finally, an eigenvector is found

from a solution to the equation:

with one of the elements for {u} preset.

A most convenient procedure, used for evaluating the determinant of a matrix,

employs triangular decomposition. For this procedure let

where [L] is a lower unit triangular matrix (unity on the diagonal), and [U] is an upper

triangular matrix. (Recall that the determinant of [A] is the product of the diagonal terms

in [U]).

Two versions of triangular decomposition are provided. In the standard version

row interchanges are used to improve numerical stability. An optional version, available
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for real eigenvalue extraction only, does not use row interchanges. This version is

approximately four times faster than the standard (for banded matrices), but it suffers

the risk of numerical failure in that [A] is seldom a positive definite matrix.

The matrix [A] can be expressed as:

for real eigenvalue problems, and as

for complex eigenvalue problems.

The determinant method is not particularly efficient because of the large numbers of

triangular decompositions taken on the [A] matrix (when more than a few eigenvalues are

desired). The main strength of this method lies in its insensitivity to functional form for

the elements in the [A] matrix. Such a form could, for example, contain poles and zeroes;

or, be a transcendental function of p.

B.3.2 The Iterative Algorithm

*
Wilkinson's recent, but now (considered) standard, treatise includes an authorita-

tive discussion of polynomial curve-fitting schemes useful in tracking the roots of a de-

terminant. He shows that little is gained from the use of polynomials higher than second

degree. Consequently, Muller's quadratic method (Wilkinson, p. 435) is used in NASTRAN.

This algorithm's form, in our notation, is described below:

A series of determinants, D , D , D , are evaluated for trial values of an

eigenvalue (say p = p, , p, , p,). A better approximation to an eigenvalue is obtained
«t"~«- K~"J- K

by the following calculations: First, let

*Wilkinson, J.H., "The Algebraic Eigenvalue Problem", Clarendon Press, Oxford, 1965.
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and

6, si +x .
k k

Then, denote

so that

wherein

-2D. 6.
k k

with

Si = Di o^!2- D, ! 6i2 + Di (^ + 6i ) •k k-2 k k-1 k kv k k'

(The (±) sign in the above expression is chosen so as to minimize the absolute value of

X, n). For those cases where p , p , and p are all arbitrarily selected initial
1C i JL K K~l K"~-&

values (starting points), the starling points are arranged so that

Consequently the (±) sign is chosen to minimize the distance from p, to the closestK~rJ_ -_

starting point (rather than to p, ).
1C

In the real eigenvalue analysis, it is possible to calculate a complex value for

X from above. In order to preclude the occurrence of complex arithmetic, in a real
JK * J-

eigenvalue analysis, only the real part of X, - is used to estimate p . (The real

part corresponds to the minimum absolute value of a parabolic approximation).
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B.3.3 Scaling

In calculating the determinant of [A], some form of scaling must be employed

since the accumulated product will rapidly overflow or underflow (the floating point size)

in a digital computer. Accordingly, the accumulated product of the diagonal terms in

[U] is computed, and stored, as a scaled number

= dx!0n

wherein

The arithmetic operations indicated in the equations for X, - and g are carried out in

scaled arithmetic. The quantity X, is then reverted to its unsealed form.
1C iJL

B.3.4 The Sweeping Out of Previously Extracted Eigenvalues

Once an eigenvalue has been found (to a specified accuracy) a return to it, by the

iteration, can be prevented if the determinant is divided by (p-p!), where p'. is the

approximation to p..

Wilkinson states that the sweeping procedure is satisfactory provided all p! are

calculated to an accuracy limited only by round-off error.

In some instances there are known eigenvalues; thus calculations need not be made.

Also, the user may know other eigenvalues (e.g., those extracted previously, or those re-

sulting from transfer functions), which should be avoided. [A special data card (EIGP) is

available (in the complex analysis) to specify a location for any and all such roots. These

are immediately eliminated. ]

For problems with conjugate complex eigenvalues the conjugates (of extracted

eigenvalues) are also swept from the determinant.
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A danger exists in this procedure when roots are very near the axis of reals;

there the exact eigenvalue may be real. To avoid such a situation a test is applied to the

imaginary part of p.; the result being that the conjugate of p! is swept out only if

limp'. I :> 1000. 0(R ' ) ( € ) .1 i1 v max v '

B..3.5 The Search Procedures

Three initial values of p (starting points) are needed to initiate the iteration algo-

rithm. The determinant method is, basically, a root-tracking method that finds nearby

roots easily, and remote roots with difficulty. Consequently, it is not advisable to use the

same three starting points for all eigenvalues since eigenvalues are usually distributed

throughout a region of the p-plane.

In a real eigenvalue analysis, the starting points are distributed uniformly over

some interval of p. The user specifies lowest and highest expected eigenvalues (called

R . and R ). In addition, he estimates the number of roots in this range; thus themm max
starting points are located to coincide with R . , and with R ; all others are locatedmm max
uniformly between R . and R . As eigenvalues within this "range" are extracted,J mm max
some points are dropped and others added; thus the "search" is repeated.

Search procedures for complex eigenvalues are more complicated since the roots

are distributed throughout a region rather than along a line. Fortunately, in the present

analysis roots are found along a 45 line, in the imaginary plane, so that a set of start-

ing points are readily provided. In more general problems, rectangular search regions

should be located in regions as indicated on Figure B. 1. It is supposed that all eigen-

values within a search region will be extracted (within limits specified by the maximum

number of desired roots).

There can be as many search regions as needed; and search regions may overlap.

Each region is established by specifying coordinates for the end points (A., B.), and by
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Fig. B.I. Search Region, DETERMINANT METHOD
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giving a width to the region (£.). Problems with real coefficients have roots as either

"reals" or "conjugate complex pairs". Consequently it is inefficient to specify "regions"

in the lower half of the complex plane due to the existence of conjugate pairs.

The steps, in a search procedure for complex eigenvalues, are as follows:

(1). Select starting points equally distributed along A., B.. Note: points A.
and B. are not starting points. J J

(2). Find that starting point, in Region I, nearest the origin (see Figure B. 2),
it is denoted as ps]_. A line perpendicular to A^B^, midway between
and Psp (a point next nearest the origin) divides Region I into Regions
IA and IB.

(3). Selecting three starting points in Region IA, nearest line a-a', as an
initial set, proceed to extract roots. Next, go to Region IB; alternate
(back and forth) between the two regions until all starting points have been
used once; or, until termination occurs (for some other reason).

(4). When all starting points have been used once, go to Region II, etc. Sweep
out all extracted roots (in each region) before evaluating determinants.

(5). When all starting points have been used once, return to Region I, n, etc.,
and repeat the procedure above. Continue these operations until no new
roots are found in any pass through all regions, or until termination occurs.

When searching for either real or complex roots, the search is terminated if a root

is predicted to lie outside of the "local" search region.

The search for eigenvalues is terminated when all roots are found, through all

regions, or when the desired maximum number of roots have been extracted.

Failure to find additional roots generally occurs when all roots within the region(s)

have been extracted. Situations can occur for which some roots will be missed. . The most

common of these, in a complex eigenvalue analysis, is that one or more of the desired

roots is at a large distance from the region's centerline and several other roots are just
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Fig. B.2. Location of Starting Points, in a Region; DETERMINANT METHOD
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beyond the region's ends. The search procedure is likely to be attracted toward these

latter roots, in lieu of the former. Another possible cause of missed roots is a failure

of the iteration algorithm to converge. .

B.3.6 Convergence Criteria

Convergence criteria are based on successive values of the increment, h , for

estimated eigenvalues. No tests on determinant magnitude, or on any diagonal terms in the

triangular decomposition, are necessary or desired.

Wilkinson shows that for ht sufficiently small, the magnitude (of IL ) is approxi-

mately squared for each successive iteration (when using Muller's method to find isolated

roots). This leads to a very rapid rate of convergence.

If the number of iterations becomes excessively large, without satisfying a con-

vergence criterion, it is best to give up the search and proceed to a new set of starting

points.

B.3.7 Test for Roots Close to a Starting Point

Once an eigenvalue has been extracted it is tested for closeness to a starting point.

When found to be too close, the starting point is shifted. The reason being that the value

of the determinant, near to such a root, is small and contains considerable round-off

error. As a consequence the value of the swept determinant may be in considerable error.

B.3.8 Determination of Eigenvectors

Once an eigenvalue has been accepted, the eigenvector is determined by substituting

into the previously computed triangular decomposition of [A(p.)] . Since, for an eigenvalue,

[A(p )] {u} = [L(p )][U(p )] {u} = 0,
J J "" J

and with [L(p.)] nonsingular, only [U(p.)] is used for the eigenvector description. The

last diagonal term in [U(p.)] is normally the only one with a very small value.
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B.4 THE INVERSE POWER METHOD WITH SHIFTS

B.4.1 Introduction

The Inverse Power Method with Shifts is a particularly effective eigenvalue ex-

traction routine, for problem formulated using the displacement approach, when only

a fraction of the eigenvalues is required. The rudiments of this method are described

in Wilkinson*; there it is touted as a powerful method for refining the accuracy of eigen-

values (and eigenvectors) which have been approximately located by other methods. In

NASTRAN the method is used as a stand-alone procedure for finding all eigenvalues within

a domain specified by the user.

It is a well known fact that the standard inverse power method has a number of

defects particular to the solution of structural problems formulated by the displacement

approach. These include: awkwardness (of procedure) in the presence of zero eigenvalues

(rigid body modes);.slow convergence for closely spaced roots; and a deterioration in

accuracy, for higher modes, as more roots are found. These defects are eliminated, or

minimized, by a modification to the method, introduced and incorporated into NASTRAN.

Note: This procedure was found to be too difficult to use in the extraction of eigenvalues for

the tides problems. As a consequence the method was abandoned, early in this work, and,

consequently, it will not be described, further, at this time.

*Wilkinson, J. H., THE ALGEBRAIC EIGENVALUE PROBLEM. Clarendon Press, Oxford,
1965.
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B.5 THE UPPER HESSENBERG METHOD

B.5.1 Introduction

The Upper Hessenberg method can be used to extract eigenvalues (and describe

eigenvectors) for any general, real or complex, system of matrices.

The fundamental reference for this procedure is Wilkinson*. Algorithms, due to

Wilkinson, for complex matrices, have been automated and are available (in a modified

form) within NASTRAN.

The following outline shows a logical order of the calculations: Reduction to

Canonical Form, Reduction to Upper Hessenberg Form, the QR Iteration, Convergence

Criteria, Shifting, Deflation, and Eigenvector Description.

B.5.2 Reduction to Canonical Form

The Upper Hessenberg Method requires the eigenvalue problem to be set down in

canonical form; i.e.,

[A - XI] ( 0 3 = 0 .

First, Matrix A is reduced to Upper Hessenberg form (by means of transformation

techniques). This is performed, automatically, in the NASTRAN module CEAD.

Two equation forms are considered:

(1) [Mp + Bp +K] (U) = 0 (A general form)

wherein,

A =
-M"IK -M~IB

P= x ,
(continued)

nvilkinson, J. H., THE ALGEBRAIC EIGENVALUE PROBLEM. Clarendon Press, Oxford,
1965.
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Here:

U = The upper half of 0 . (The lower half of 0
contains the velocity vector, it is discarded).

2
(2) [Mp +K]{U} = 0 (the matrix B is missing, now).

A = [-M~1K],

, withlm(p)>0,

and

In (2) the decomposition of M is bypassed if it is an identity matrix. In order to reduce

to canonical form it is necessary that the matrix be nonsingular. (The order of the problem

is doubled when B is not a null matrix).

B.5.3 Reduction to the Upper Hessenberg Form

A given matrix [A] can be reduced to an Upper Hessenberg matrix [A ] by means

of elementary transformations. The basic algorithm, and two alternatives, are shown in

Wilkinson (pp. 354-355). The total number of multiplications needed, in the complete re-
3

duction, is approximately (5/6)n ; this is half the numbe

and one-quarter of the number used in Givens' reduction.

3
duction, is approximately (5/6)n ; this is half the number used in Householder's reduction,

B.5.4 The QR Iteration

The QR iteration [Francis*] is defined by Wilkinson, p. 515):

and

(s)
Here [Q ] is the product of (n-1) elementary unitary transformations (needed to reduce

*Francis, J. G. F., "The QR Transformation - a Unitary Analogue to the LR Transformation".
Parts 1 & 2, Computer Journal, Vol. 4, No. 3 (10/61) & No. 4 (01/62).
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/o\ ^S^

[A ] to an upper triangular form [R ] with positive and real diagonal elements); thus,

with

The transformation matrices [T ] are Givens' rotations (discussed in Wilkinson (p.
s

239-240), but in complex form for complex matrices). Iterations continue until the n

diagonal element (a | < e, the convergence test; at this point the smallest eigenvalue

X = a* . If the convergence proceeds so that |a _ |< c, before |a | < e,

then the t\vo smallest eigenvalues are the roots of

(s)
l,n-2

n, n-1

(S>n-l,n

n,n

= 0.

The roots will be complex for complex matrices; and will be either real or complex conju-

gates for real matrices.

B.5.5 Convergence Criteria

The convergence criteria suggested by Wilkinson (p. 526) is based on the Euclidean

norm of matrix I \A \ \ ' , i t is:1 ' o1 'E

for floating-point calculations with a mantissas of t binary bits. The Euclidean norm

(Wilkinson, p. 57) is obtained as

9 n n

|! = S E |a .
E ' - 1J

Decimal equivalents of the convergence criters (e) are used in NASTRAN.
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B.5.6 Shifting

Since the QR iteration converges to a smallest eigenvalue, the convergence can

be accelerated by shifting; i. e., by subtracting selected scalar matrices from the original

matrix.

(s) (s)The matrix [A ] is replaced by the difference [A ] -k [l] after each itera-
O O S

tion. In this difference k is an estimate of the eigenvalue. The shift eigenvalue (k )

is the root which makes (a* ' -p I or |a^ - q I a minimum.1 n, n s1 ' n,n s1

B.5.7 Deflation

When convergence to a single eigenvalue occurs, the Hessenberg matrix [A ] is

"deflated" by the elimination of its last row and column, thus the principal submatrix [A ] ,

(order one less) is the Hessenberg form used in seeking a next eigenvalue. If convergence

occurs to a pair of eigenvalues, the matrix [A ] is deflated by deleting the last two rows

and columns; then the principal submatrix [A ] (order two less) becomes the basis for
&

seeking a new eigenvalue. Each deflation removes either one or two eigenvalues depending

on the convergence tests.

B.5.8 Eigenvectors

The algorithm for discribing the eigenvectors, corresponding to each shift eigenvalue,

is the same (here) as that for the inverse power method. The interested reader should con-

sult the NASTRAN Theoretical Manual, or seek more descriptive information from

Wilkinson (Reference 1).
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B.6 THE FEER METHOD FOR EIGENVALUE EXTRACTION

B.6.1 Introduction

The complex Tridiagonal Reduction Method is an extension of the FEER* algorithm

for real eigenvalue analysis to the complex, algebraic eigenproblem formulation.

This method is used to find a specified number of eigenvalues located in the

immediate vicinity of a selected "point" in the complex plane; and, in addition, to describe

the associated eigenvectors. The eigensolutions are extracted from a symmetric, tridia-

gonal eigenmatrtx whose order is much less than that of the corresponding full-size

problem. As a matter of fact, the size of this canonical, reduced matrix is of the order

of the number of roots desired (even when the discretized system model possesses

thousands of degrees of freedom).

With regard to computational speed, the complex FEER method is somewhat slower

than the Hessenberg procedure, for small problems (of the order of one hundred or less

degrees of freedom), when all existing eigensolutions are to be obtained. However, this

procedure is more efficient than the Hessenberg when the number of requested eigensolutions

is much less than full problem size. It should be noted that for very large problems, the

required central memory, using the Hessenberg method, exceeds the capability of most

large computers; such a restriction does not exist for the Tridiagonal Reduction Method,

however.

The complex FEER method uses a single initial ''shift point"; hence only one matrix

decomposition is required for each such neighborhood chosen (in the complex plane). As a

consequence, the FEER procedure is more efficient than the Complex Inverse Power

Method, which nominally performs many shifts and decompositions for each chosen search

region.

The theory, and computational procedure, for a complex eigenanalysis differs from

that for real analysis as follows:

*FEER is an acronym for Fast Eigenvalue Extraction Routine.

128



1. Both left and right bi-orthogonal vectors must be described during the
process of constructing a reduced tridiagonal matrix.

2. The reduced tridiagonal matrix, though symmetric in form is, generally,
complex rather than real.

3. The calculated theoretical errors, for computed eigenvalues, are estimates
rather than upper bounds.

4. Eigensolutions which are closest to one or more specified (shift) points, in the
complex plane, are those found. All eigensolutions acquired from previous
shift points are swept out from the solution; this prevents their regeneration
while dealing with a subsequent (or current) shiftspoint.

B.6.2 Problem Formulation, Complex Eigenvalue Analysis

A general complex eigenvalue problem begins with an expression of the form:

[Mp2 + Bp + K] {u} = 0, (1)

where [M], [B] and [K] can be real or complex, symmetric or unsymmetric, singular

or non-singular matrices. A specified number of eigenvalues (p) located closest to the

specified shift point, X , in the complex plane, are to be found; in addition, their
o

associated eigenvectors {u} are to be described. Incidentally, there are no restrictions

regarding the multiplicity of eigenvalues in this procedure.

First, defining a "velocity vector":

{v}=p{u}, (2a)

and, a "shift eigenvalue":

X = p - X , (2b)

these are substituted into the expressions above. Then, after inverting, the resulting

form would appear as the expression:
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wherein

[A]{x}=A{x},

K ! B+AJVI, o

. ~x°l \ '

-1
O

I

-M

O

(3)

(4a)

and, where:

tx}- -
v

(4b)

(4c)

This development shows the eigenvalue problem in standard form. One implication

here is that the order of the eigenvalue problem is doubled when the [B] matrix is present

in the formulation statement.

For those cases where [B] is a null matrix (i.e., damping is absent) the formula-

tion reduces to:

[Mp + K] {u} = 0. (5)

For this statement the double-size eigenvalue problem is avoided when the mathematical
2

eigenvalue is defined as p . Thus, in place of Equation (2b) write:

and, consequently,

N 2 2 . 2
X -p -XQ , (6a)

2 ' (6b)
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Substituting these parameters into the reduced formula (above) and using the

inverse form, it follows that:

[K+X2M]~1[-M]{u} = Afu}. . (7)
o

Comparing this expression with Equation (3) we see that the standard form, for a null

[B] matrix, has, as coefficients,

[A] =[K+X^M]~ [-M], (8a)

and

{x] = [u}. (8b)

Since the eigenmatrix [A] is, generally, unsymmetric, then the eigenvectors,

{x) , are orthogonal to the eigenvectors, {x}, of the transpose eigenproblem; thus the

problem is also described by:

[AjT{x}=A{x}. o (9)

As a consequence, when A . ^ A . , then

rp

£x.} {x.} = 0; i#. (10)

This relationship shows the biorthogonality condition; the eigenvectors, {x.} and {x.}

are then referred to as the right and left eigenvectors, respectively.

B.6.3 The Reduction Algorithm

A reduction in the order of the eigenvalue problem, Equation (3), is effected through

transformations which are selected to be biorthonormal. (See Reference (1)* for a detailed

discussion).

*(1) Newman, Malcolm and F.I. Mann, "Complex Eigenvalue Extraction in NASTRANby
the Tridiagonal Reduction (FEER) Method", AMA Report No. 77-17, September 1977.
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As in the case of a real eigenvalue analysis (see Reference (2)*), the Lanczps

algorithm is used to construct the transformation matrices, vector by vector. This will

reduce the transformed matrix to a tridiagonal form with the eigenvalues accurately

approximated by those roots from Equation (3) having a largest magnitude (or, equivalently,

to the roots, p, which are closest to the specified point of interest, X > located in the

complex plane).

After the transformation has been affected (see Reference (1) for details) the reduced

eigenmatrix is found to be a tridiagonal and symmetric matrix.

The eigenvalues, and eigenvectors from the transformed system, are extracted

using the Q-R iteration algorithm; and, the eigenvector computational scheme is that

described in the Upper Hessenberg method for NASTRAN.

Before proceeding, the velocity vector {v.} is discarded (prior to any further pro-

cessing of the eigensolutions by NASTRAN). Additionally, any solution which fails the

FEER error test is rejected. Nevertheless, the number of accepted solutions will, in all

probability, equal or exceed the number requested by the user (when the reduced problem

size is chosen according to the criteria described below).

B.6.4 Criteria for Establishing the Reduced Eigenvalue Problem Size

The maximum number of finite eigensolutions, including any existing rigid body

modes, is equal to the rank, r, of the eigenmatrix [A] in the standard form. Thus, any

massless degrees of freedom, appearing as zero diagonal terms in the [M] matrix, will

result in singularities (and rank reduction). This could imply infinite valued physical eigen-

values. However, any such spurious roots are swept out of the problem in the complex

FEER process. Asa consequence there is a reduction to the available eigensolutions.

A further option, limiting the maximum problem size, is that the user is able to

request eigensolutions in the neighborhood of several shift points, (e.g., X , Xno , . . .)
01 \J£i

(2) Newman, M. and P. F. Flanagan, "Eigenvalue Extraction in NASTRAN by the Tridia-
gonal Reduction (FEER) Method - Real Eigenvalue Analysis", NASA CR-2731,
August 1976.
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located in the complex plane. Recall that for the Tridiagonal Reduction Method, all

eigensolutions obtained from a previous shift point are swept out of the problem to pre-

vent their regeneration at a current point. This implies a limit for the maximum possible

size of the reduced problem, also.

On the basis of numerical experiments, similar to those cited in Reference (1),

for the real eigenvalue analysis, it has been found that there is a real lower limit to this

maximum size of the reduced problem. As a practical lower limit on size, based on

accuracy of the associated eigenvectors, a value of twelve is used. Consequently, when

the user requests a total of (say) q eigenvalues, closest to a specified point in the com-

plex plane, the order of the reduced problem is initially set to

), (2n-f)]; for [B] ̂  [0] ,

or

= min[(2q + lO), (n-f)]; for [B] = [0] ,

where n is the order of the unreduced problem and f is the number of eigensolutions.

Although the total number of eigensolutions requested should not exceed the maxi-

mum, there is (usually) no simple way of discerning the upper limit for a complex problem.

However, the reorthogonalization tests are designed to automatically establish this upper

limit; and, if these tests fail there is an indication that a null vector has been generated.

B.6.5 Choice of the Initial Trial Vectors and Restart Vectors

Because of the inverse relationship between the computed eigenvalues, and the

physical eigenvalues, spurious eigensolutions corresponding to a zero are equivalent

to physical eigenvalues which approach infinity. Since these eigenvalues and their

corresponding eigenvectors are of no interest, and could cause numerical instabilities,

they are eliminated from the reduced tridiagonal problem. For more particulars on this

operation, the reader is referred to Reference (1).
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B.6.6 The Sweeping-out of Previously Obtained Eigenvectors and Reorthogonalization of
the Trial Vectors

As in the real eigenvalue analysis, successive trial vectors tend to degrade rapidly

as computations proceed in a finite digit machine. Consequently, the right vectors,

generated later in the analysis, are far removed from the orthogonality related to earlier

left vectors. Therefore, new vector pairs, as obtained, are reorthogonalized with respect

to all the previously obtained vectors. This procedure is carried out iteratively.

B.6.7 Error Estimates for the Computed Eigenvalues

Following a development similar to that in Reference (1), for a real eigenvalue

analysis, it can be shown that the difference between computed and true eigenvalue magni-

tude is proportional to the magnitude of the next off-diagonal term that would be generated,

if the reduced tridiagonal matrix [H] had been increased by one in its order, times the

last term in the reduced system eigenvector.
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APPENDIX C

PROGRAM INPUT AND CONTROL CARDS

The use of NASTRAN to solve for eigenvalues in a tidal modes problem repre-

sents a departure from normal operations in utilizing the program. The fact that

NASTRAN was designed to handle large sized analytically expressed problems, and that

it included several algorithms for eigenvalue extractions, prompted the investigators to

propose its use in this study. In addition, this program was designed and developed,

primarily, to handle problems which employed the Finite Element Method as a solution

technique.

The very nature of this application of the Laplace Tidal Equations, and the use

of the FEM, suggested a need for NASTRAN and its computational capabilities. In this

regard, however, it should be recognized that only a relatively small portion of the

program's versatility is being called upon here. To some degree this lessens the input

requirements, to the computer, even though the input stream (for the matrices to be

manipulated) is rather extensive.

Basically, here, there were three versions of the NASTRAN system utilized

during the course of this investigation. All of these were (obviously) available to users

of the GSFC (360/95) system. Initially the version used was one of the NASTRAN 15

series. Later, a McNeil-Schwendler (38) scheme was utilized; and, during the terminal

stages of the study, a modified 16.01 system was put to use. This (last) program was

modified to accommodate the FEER complex-eigenvalue routines; here the investigators

were able to take advantage of a most recent development in eigen-analysis, and did so

prior to the release of those algorithms to the general user community.

In the next few paragraphs some explanations will be offered to acquaint the

reader with the necessary JCL, etc. required to operate NASTRAN's eigenvalue ex-

traction routines.
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C.I NASTRAN OPERATION MODES

Before launching into these discussions it may be well to mention that two

"operating types" of NASTRAN were employed in this investigation.

One of these — referred to as NASFAST — is a less formal and all encompass-

ing version of NASTRAN. This modified program was developed at GSFC and is useable

on both the "usual" versions and the McNeil-Schwendler systems for NASTRAN.

First the JCL-control card set up will be described, for both normal and NAS-

FAST operations; then a discussion on input format and requirements will be given.

These remarks will certainly acquaint the reader with the "needs" of an investigator

in setting up an eigenvalue problem of this type.

(a) The NASFAST Program Operation. The "cards" needed for these run types

are listed below; some comments on these will be included following .the card notations.

Incidentally, the numbers, at left, are for future reference; input cards are not numeri-

cally identified. The control deck, etc. is left justified.

1. A "JOB CARD"
2. // EXEC NASFAST, PARM='NAME=GODDARD',REGION=400K
30 //STEPLIB DD UNIT=2314,DISPOSER, . . ,

// DSN=N2RSM.MSC38.LOAD.VOL=SER=DAGPAK
4. //FTtf70#l DD DUMMY
5. //SYSIN DD *
6. ID TIDAL, MODES
7. APP DISPLACEMENTS
8. SOL 7,0
9. TIME 3

10. DIAG 7,8,13,19
11. CEND
12. TITLE CARD
13. SUBTITLE CARD
14. LINE=70
15. CMETHOD=1
16. SPC = 1
17. LABEL CARD
18. M2PP=AMAT
19. K2PP=BMAT

(continued on next page)
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20. OUTPUT
21. DISPLA CEMENT (PHASE)=ALL
22. BEGIN BULK
23.

ENDDATA
/*

DATA
CARDS

Comments:

(1) Card 2. locates the "NASFAST" program and requests 400K of core
for operations.

(2) Card 3. identifies the operating program.

(3) Card 4. implies no decks are to be punched.

(4) Card 5. states control - cards are to follow.

(5) Cards 6, 7, 8 identify problem type and operation.

(6) Card 9. constrains the CPU time used prior to "shut-off".

(7) Card 10. denotes the diagnostics to be invoked.

(8) The next card signals an end to the controls.

(9) Titles and sub-titles provide printed statements, to be generated so
that identifications can appear in the output strings.

(10) Card 14. controls the output lines (printed) per page of output.

(11) Cards 15. and 16. describe which method, and group of (SPG) cards
are to be used in the solution. This suggests that input decks can be
set-up to handle multi-solutions problems.

(12.) Cards 18. and 19. allocate, or assign, space for the (input) matrices
to be operated on.
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(13) Next the output, to be generated, is identified here.

(14) Following the BEGIN BULK cards, the anatyst should introduce the
input to the system. These data include the "collected" (matrix)
parameters plus the cards for geometry, boundary conditions, etc.

(15) Finally, the termination cards appear — these are the ENDDATA, /* pair.

(b). The NASTRAN Program Operation. The more usual NASTRAN runs, and

especially those operating under the CHECKPOINT options are illustrated by the next

input string. (The CHECKPOINT option is used when it is uncertain, or desired, that

the program's computations be interrupted. At the interruption, information, within the

computational framework, is transferred to "storage" where it can be recalled, subse-

quently, for a continuation of the calculations procedure). Also, shown below, the input

deck is introduced to the program from tape — this is especially useful with the large

sized input connected with the "big" models of the basins. Other features are noted

by comments made for the control cards.

Once again, all cards are left justified and commence in column 1. A sample

deck is shown below:
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1. JOB CARD
o // "?XF C \ia.STRAN,

3 //STEPLI8 DO U;\IT=23lH»OIS3=ShH,VOL=SE3=NAST52»QSN=N2RSM.NAST1601.LOAD
4' //F-T-0-lF'00-l---00--iiSAC£-=(C-'a.-«-<-17^1).»PLSE-)-- ........... -------- ....... — - .................... ------------- - -------------
' //NPTP DO UNlT=2400-9»OISP=(NEw»KEEP) »LABEL=(t8LP)t

6' // ...... ________ ....... PC3=OE-N=3»OS?:=ZOJ:5E.E3IE»VOL=SER=33271 ....... ----- ................. - .....
n //OPTP DO UNIT = 2<*0 J-4.»QISP=<OLD*KE£P) »LA8EL= U »SLP> »

9 //SYSIN DO » •
10. i^ ER I E » MOOES --- ........ ....... — ..... --..._. ------------
n* ,A.PP DISPLACEMENT
_ r- o I -» A12. ,5OL 7»U — ........... — ...... —
is. .CHKPNT YES
14. ,TIME- 10 ................
15 DIAG 7
,6" OIAG--l-»8r-lb»19— ..... ----- ...... - ............ ---

RESTART ERIE , MODES , s/ ?/77,

18.
19. TITLE = FINITE ELEMENT MODEL FOR TIDAL MODtS IN LAKE ERIE
20*. SUBT-I-TLE ••-=•- REPRESENT AT -IGl^-V-I-A—T-v#Q-D I ME-N&IOteAL-—T-R-IANGULAR—FLU ID--ELEMENT-S-
21* MAXLINES = 1000000 '

23*. tCHO = NONE -:

24. CMETHOD-=1 — - - : -
25. 5PC =1 . • i
n it i* £} O — Ln 1 — — — T- —• — — - — — • — . iVQ B ™i w — ~"'Jr\J i " - - - -- . -- - . •-• - ^ - *.

27! SUBCASE. 1
28. LABEL-— CALCULATION- OF-LOWEST-FREOUENG-Y-MOUES -- 1— _-.-
29. M2PP = AMAT ;
30. -K2PP -=-6MAT -— - - - - - - -.1
31> SSSS5 DEPTH IN FA.TMOMb
32*. 55SSS—PLANFOR^t DIMENSIONS -IN- -10»000- YARD- UNITS— - - - - _...-
33] SSSSS TIME IN SECONDS DETERMINANT METHOD
34* OUTPUT - - '
35. DISPLACEMENT<PRINT»PUNCH) = ALL
36. B£GIN-3ULK - --•
37. / 23557 23559
38. EIGC 1 - OET- MAX —- —1.0-9 -I .._+E;
39. +EIG 5.0-3 5.0-3 1.0-2 1.0-2 1.0-4 3 3 j +EIG1
40. 4-FIG-l—-l.Or-2 1,0-2 2.0-2 2.0-2 1 .G--4 3- 3~
41. ENDOATA ' _j
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Comments: Those cards which are repeats of the foregoing ones will be noted by

reference.

(1) Following the job card(s), the call to NASTRAN, and desired machine
peripherals, plus core estimates are noted on 2.

(2) Card 3. identifies the NASTRAN version to be used; here operations
are to employ version 16.01.

(3) Cards 5. and 6. identify the tape onto which the CHECKPOINT data
are to be stored.

(4) Cards 7. and 8. note the "INPUT TAPE" for initiating the run. In
this case the raw data are called.from the "ERIE"tape — this was
generated by the Pre-processor program.

(5) Cards 9. through 12. are the same as before.

(6) Card 13. denotes.the use of the CHECKPOINT option in this run.

(7) Card 14. shows the requested CPU time (in minutes) to be expended
before the CHECKPOINT option is enforced.

(8) Cards 15. and 16. indicate the diagnostics requested for the run.

(9) Cards 17. are the RESTART deck generated by the CHECKPOINT
option. These cards, plus the tape called by cards 5. and 6. are needed
to reinitiate the computations in a future run operation.

(10) Card 21. is inserted to assure that the program will not be terminated
by machine limits on line printing.

(11) Card 22. is used to denote the line p rint per page output.

(12) Card 23. indicates that the input is not to be printed on output.

(13) Cards 24. through 27. are analogous to 15. and 16. of the former
program. Here more input types are specified than previously.

(14) Cards 29. and 30. are the same as before.

(15) Cards 31. through 33. are comment identifiers.

(16) Cards 34. through 36. are as before.
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(17) Card 37. indicates a range of deleted cards (denoted by count numbers);
cards 38. through 40. are the replacements.

(18) The last two cards are the termination indications for the input stream.

C.2 INPUT DATA DECKS

To illustrate how the input data (raw data) are formatted, for NASTRAN, the

following examples are shown and commented upon.

First, the "standard" matrix input will be shown. Second, the "expanded" for-

mat will be illustrated, with comments added.

(a) Standard Entries. The data string, below, was taken from a run made on

the test (square) basin used in this study. This illustrates the required format (for

matrices data and other input information).
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Comments: The input card count Is shown at left; the data fields are listed to the

right, with continuation counters shown at the far right edge. Note that the format

here shows 10 fields of eight characters each — this is a standard format; but, ob-

viously, is restricted in the numerical accuracy for the input.

(1) Card I. is a "spring" connecting nodes 1. for elements 12. and
13. This is a zero modules spring; the card is inserted to satisfy re-
quirements in NASTRAN; some "physical data" are needed in the input
sequence.

(2) Card 2. notes that Direct Matrix Input Groups are to follow. This
identifies the A-matrix group — later the B-matrix input will be indicated.

(3) Cards 3. through 5. describe the input elements, for the A-matrix's
first column^ with each row component indicated and the parameter value
noted (see Equation (40aj). Here Column 1 has entries in rows (1,1),
(2,1), (9,1) and (10,1) of the collected A-matrix. Cards 6. through 9.
show the input data in the second column (of the A-matrix), where the
second column is denoted as (1, 2) — the central element of the first
grouped matrix — again, see Equation (40a). (Values shown in the
third and eighth fields are the collected matrix elements for the elements
joined together from the sub-domain matrices). Note the last, and
succeeding first, entries (per card) indicate the continuation counters
for the row entries from the collected matrices.

This pattern is followed until the entire A-matrix is introduced to the program

via the input format shown above. Next, the same procedure is followed for the B-

matrix (see Equation (40b)). Below we find a sample of the B-matrix input. There the

entry for node (25), column (3), is shown; note that contributions occur from nodes

(hence rows) 16., 17., 24., and 25.. Formatting here is the same as previously

described for the A-matrix.
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î t

"Sb
o
CO

T3
G

e
xp

e
ct

e
d

 a
A

•+-*

i«^

O

B

9
fyj

o
0
5n
CD

ffi

S°

a
O

.2
3

"o
CQ

0

-I-1

CJ
• IHl

co
0

O
S3
CD

i-Q

w
^CJ

CO

O

'•i
o
o

f— H

0
,0

'?H
O
CQ
0

CQ

^
03
O

a
g
1
H
W
M
Q

g
CD
J3
H

S

o
,JJ

"03

0
CQ

be c- -f
C *^ i f\i

'0
^O I

' F

^i , j

x" :

r-t ^C f^)

O -<fM

CO

a
• (— 1 '- ;

C^ ^ o; cv

3^

^o•>_i
»>
^

HN — -.

II "̂

cT

J< O

•s
T5

03
t)
0

r— (

^W ^^-

CO

-1 %

.S : ;

O ro

•i— i

o
0

"oi <. t—
CD <

•4-> _ _ _ O

S -sj v; o c
-2 ^ 1 ̂  Z
'to ' 'f- '"'• '<-' ^
CQ

•i— < •

rH

1 l_ 1

C O it*

0

3
03

03

CO

x£»

^

1
— ,
r— (

C3

'?H
03

CM
S-

3

0
•g

C
0

CQ
S

£4
o
o
"̂»
p

Ti

1

'o
0
a
CO

"o

o
o

I
0
0

CO

03
0

1-1
O

en
0

H

.£

OJ

T3
O

0

4-1

^1
O

0

11
^..

GO

•a
03
O

fl
O

CQ
0
•7*
ij
a
0
rS

'CQ
-u
CO

I-H

0

•4-*

t*\
J3

T3
0
| ^

03
O

1
CQ
CD

Oa

0

II

0
5_i
0
w

•o
b
le

m
.

w

CO

5-1

O

c-
oo
to

03
O

C!
O

£>

O

03
^^^
CQ

O

S
c_)
"̂ ^

CQ
0

"S
d
0

"o3
0
5-1
0

0
5H
03

'o
&

'dc
03

to
OO
to

T3

3
O

g

in
d
ic

a
te

d
 <

*

&j
0f~j
5"0o
o
3-
t3
0
o

1
5-4

a0

CO

i03
O

03

T(
ttJ

0

•a00
I-H
1— 1

03

.S
EM

S

144.



(b)- Expanded Entries: Counter to the standard matrix entry format, there is

an expanded (or extended) format which is illustrated below. The reproduced data

string excerpts are shown,and comments offered.

BEGIN BULK
CELAS? 100 0.0 12 13

CM ASS? !<
C M A S S 2*
C W A S S -? *
CM A c: c •}•<•

CMASS2*
C M A 5 S 2 *
CTM A SS 2-^

j —

3
A
5

7
3
?

-rT7TCT27500E--05
3 7 5 0 0 C O O O O E + 0 0
37500COOOOE*00
?075147750E-05
75 00000000 E tOO
TS C Q C O O O O O P + O O
1198753058E-04
11 66666667E+01
llCCcoDo67f*'01

1
I
1
2
2
0

3
3
3

1
2
3
1
2

1
2

i 3

Comments: Following the "BEGIN BULK" card a CELAS2 (null spring) card appears,

followed by a series of CMASS2 cards. These are, again, physical data entries which

are needed for the NASTRAN input. Actually these "mass" cards are made up of num-

bers taken from the A-matrix diagonal elements — the element loci are indicated by

entries in the last two columns in each line of data. Necessarily this splitting of A-

matrix numbers is properly accounted for by the subsequent values used in the A-matrix

entries, per se.

To illustrate the nature of the expanded format an entry for one column of the

B-matrix is shown below. Here the 124th node is implied (by the DMIG card) and

column 3 of the collected matrix is indicated. Data entries from (adjacent) nodes are

indicated by the numbers in the second and third columns; the appropriate B-matrix

values are found in column 4; the last column lists the continuation identifier. The
0

continuations cards are "matched" in the last and first columns, respectively.
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O M I G '* G M A T
* UO <i 3 1 6
*B04317
* B 0 f- 8 I 3
* 6048 19
* G o^n 2 o
* B 0 A 3 2 1 - ~
* B048 2 2
•* BO&82 3

E I GC 1

GRDSET
GRID I
f* f? T D P

GR ID 3
GRID 4
GRID 5

121
121

122
123
123
124
124

PEER
? 1 .-2

- • -

MAX

1.

4.
7.
60

1 24
1
2
1
2
1
2
1
2

6.

e»
6.
1 Oa

.1
-o55l899!667E-06
-. 0

0.
-.8S55*37500E-06
-.0 - . - . - . - - _
-. 173524S167E-05
0*

30
456

12.

68<»
7. '
64,

*BO481 6
* BQTa 1T~
*B0461 3
4( 804 8JL9
*B04820~
*B04821
*O04822
*B04823

*EIG.

'

. •

Comments: The EIGC card (here) says this is the first solution type, that the FEER

extraction procedure is to be used; and that 30 roots are expected in the extraction

process. The location for a central point in the search region is given on the EIG

card.

Following the EIG cards is the set of GRID (node) descriptors. The entries

(here) are given (left to right) in terms of x, y, z expressed in the units chosen for

the global coordinates.
g

After the data cards comes a set of MFC cards. These are entries which are

needed to satisfy the oblique boundary condition of "no-flow over the boundary" (see the

section on Boundary Conditions). Following the MFC data will be an SPG set (if such

is needed); these too are boundary condition entries.

C.3 OUTPUT DATA

The basic output information is generally described as: (1) A listing of the

eigenvalues — listed in ascending order according to imaginary root components.

(2) A collection of eigenvectors, one for each root extracted. The eigenvectors can

be requested in various formats (the usual one called here listed amplitude and phase).
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Of course, with the output can be an ECHO of the input data string (see input

cards, above), and added printout according to the DIAGNOSTICS asked for in the control

deck. These data are very useful in searching out errors, and in learning about the

operations of various program procedures. The variety of output, its meaning and

utility are beyond the scope of this effort. The interested reader should consult the

operations and users manuals for NASTRAN.

It should be apparent that the NASTRAN system is one with a multitude of com-

plexities, many virtures and uses, and one with a multitude of opportunities for making

blunders and committing errors. To fully utilize the system requires much study and

"hands-on" experience. The uninitiated is cautioned to be wary - seek the advice and

guidance of the experts who know the system and its characteristics.
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