General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Final Technical Report
Total Body Calcium Analysis Using
The $^{40}\text{Ca}(n,\alpha)^{37}\text{P}$ Reaction

(NASA-CR-151675) TOTAL BODY CALCIUM
ANALYSIS USING THE Ca-12(n, ALPHA) Ar-37
Unclas
HC A03/MF A01 CSCL 06P G3/52 15632

MAY 1978
RECEIVED
NASA STI FACILITY
Final Technical Report

Total Body Calcium Analysis Using
The $^{40}\text{Ca}(\text{n},\alpha)^{37}\text{Ar}$ Reaction

Contract NAS9-13029 - 10/01/76 to 12/01/77

Submitted to: National Aeronautics and Space Administration
Johnson Manned Space Flight Center
Houston, Texas

Submitted by: Division of Nuclear Medicine
Department of Radiology
University of Washington
Seattle, Washington

Principal Investigators: Tom K. Lewellen, Ph.D.
Assistant Professor of Radiology

Wil B. Nelp, M.D.
Professor of Medicine and Radiology
Table of Contents

1.0 Introduction

1.1 Purpose of contract

1.2 Basis of technique

1.3 System overview

2.0 Activation Facility

2.1 Description of facility

2.2 Activation uniformity

2.3 Discussion

3.0 Gas Collection System

3.1 Description of system

3.2 Discussion

4.0 Gas Purification System

4.1 Description of system

4.2 Discussion

5.0 37 Ar Counting System

5.1 Description of system

5.2 Discussion

6.0 Excretion Rate

6.1 Measurement technique

6.2 Excretion rate data

6.3 Discussion

7.0 Accuracy of Measurement

7.1 Measurement technique

7.2 Summary of Data

7.3 Discussion
8.0 Precision of Measurement

8.1 Measurement technique

8.2 Summary of data

8.3 Discussion

9.0 Summary and Discussion

9.1 General

9.2 Factors affecting accuracy and precision

9.3 Recommendations

10.0 References

11.0 Papers Presented

12.0 Papers Published
1.0 Introduction

1.1 Purpose of Contract

The primary purpose of this contract is to develop a low dose neutron activation technique to measure total body calcium (TBC) in-vivo. The effort has included development of irradiation and processing facilities and conduction of human studies to determine the accuracy and precision of measurement attainable with the systems.

The primary motivation for the development of the technique was to provide a means to serially quantitate charges in total body calcium during long-term zero-g conditions and simulations of zero-g conditions (i.e. bedrest studies). The technique would also provide needed information in the study and management of metabolic bone disease such as osteoporosis.

1.2 Basis of Technique

TBC systems using total body neutron irradiation had already been developed at the time this contract was initiated. However, these systems, all based on slow neutron capture by 48Ca to form 49Ca, require a patient dose of 100-200 mrad (1-4). H.E. Palmer noted that 40Ca was about 500 times more abundant and thus if a suitable reaction involving 40Ca could be found, TBC measurements at significant lower doses might be possible.

The fast (n,α) reaction on 40Ca to produce the radioactive gas 37Ar, which in turn would be excreted through the lungs, became the reaction of interest. During in-vivo neutron irradiation, 37Ar can only be produced from 40Ca. Argon-37 decays by Auger electron emission (2.62 KeV) with a half-life of 35 days (Figure 1). The only other isotope of argon produced is 41Ar which is produced in less quantity than the 37Ar and is prevented from causing any interference during counting due to the short 1.8 hour half-life (5) (the 41Ar decays away prior to counting the sample).
PRODUCTION AND DECAY OF RADIOACTIVE ARGON

- ^{44}Ca
 - 2% Abundance
 - n, a to ^{41}Ar

- ^{41}K
 - 7% Abundance
 - n, p to ^{41}Ar

- ^{40}Ca
 - 97% Abundance
 - n, a to ^{37}Ar

- ^{37}Ar
 - ^{41}K

- ^{37}Ar
 - ^{40}Ca

$t_{1/2} = 1.83$ Hours
Beta Decay
Emits 1.29 MeV Gamma

$t_{1/2} = 35.1$ Days
Electron Capture Decay Emits
2.6 keV X-Rays and Auger Electrons

Figure 1
H.E. Palmer performed animal studies to determine the basic feasibility of a 37Ar TBC system. In rats, TBC was measured with an absolute accuracy of $\pm 3\%$ (6). These data also suggested that measurements of total body calcium in humans could be obtained with a neutron exposure of 10 mrad or less. These observations lead directly to the effort summarized in this report.

1.3 System Overview

The technique is based on collecting 37Ar exhaled in the breath following a uniform total body irradiation by 14 MeV neutrons. The 37Ar in the exhaled breath, which is directly proportional to TBC, is extracted and the radioactivity is quantitated in a low-background proportional detector system. The systems developed for human studies at the University of Washington are, for the most part, based on the systems originally described for animal studies by H.E. Palmer (6).

The 37Ar technique involves the use of four systems: 1) the irradiation facility consisting of the 14 MeV neutron generator and the patient enclosure; 2) the gas collection system consisting of a closed-circuit breathing system and sampling cylinders; 3) the gas purification system which isolates the argon in the breath sample using selective absorption; and 4) the argon-37 counting system consisting of low-background proportional detectors with appropriate shielding and counting electronics.

As discussed in other sections of this report, the systems currently in operation provide an activation uniformity of $\pm 2.7\%$ and an accuracy of measurement of at least $\pm 5.5\%$ and a precision of measurement of $\pm 2.7\%$ with a total patient dose of 10 mrads.
2.0 Activation Facility

2.1 Description of Facility

The basic facility is diagrammed in Figure 2, and consists of a 14 MeV neutron generator, a patient enclosure, dose monitors, a dose control system interfaced to the neutron generator control system, and necessary shielding.

The neutron generator is a Kaman Model A-711 producing 5×10^{10} neutrons/second into 4 H steroidions. The generator head is enclosed in a "pillbox" made up of high density concrete blocks (7). The exit part of the "pillbox" is equipped with a collimator (Fig. 2) made from borated water-extended resin. The collimator limits the area of the direct beam to a rectangle approximately 300 cm high and 250 cm wide at the patient position.

To provide optimal uniformity of 40Ca activation to all parts of the body and to allow for different body sizes, the patient enclosure was designed such that the patient is surrounded with water, keeping the total volume of the enclosure constant. A rectangular tank, 60.9 cm x 30.5 cm x 198 cm was made from 1/4" thick aluminum plate (Fig. 3). An adjustable lucite platform inside the tank allows the patient's shoulders to be positioned just below the top of the tank. The tank is mounted on top of a turntable to allow bilateral irradiation.

The radiation dose delivered to the patient is monitored during irradiation by two devices, a tissue-equivalent ion chamber and a LiI scintillator. The ion chamber, an 80 cc EG&G device used with a constant 5 ml/min. flow of tissue equivalent gas is used to turn off the neutron generator at a preset value (7). The dosimeters were calibrated against similar dosimeters used for neutron irradiation at the University of Washington cyclotron facility (8). Measurements with a graphite ion chamber indicate that the neutrons account for more than 90% of the 10 mrad patient dose.
Side panels of tank are 1 inch aluminum plate.

Front and rear panels of tank are 1/8 inch aluminum sheet.

Figure 3
2.2 Activation Uniformity

The uniformity of the neutron field in air was measured at the surface of the patient irradiation position by irradiating a series of aluminum pellets, 0.64 cm in diameter and 1.27 cm long, suspended in a grid pattern. The relative fast neutron flux was measured using the 27Al $(n,\alpha)^{24}$Na reaction. The results are shown in Figure 4. Except for positions within 50 cm of the concrete floor, the flux distribution varied only by $\pm 2\%$ over an area 203 cm x 203 cm, consistent with the expected $1/r^2$ distribution (5).

The activation uniformity inside the water filled tank was measured by irradiating vials filled with calcium nitrate solutions and quantitating the 37Ar produced. The 10 ml borosilicate glass vials were filled with a solution of 100 g of Ca(NO$_3$)$_2$·4H$_2$O per 100 ml water. Forty-five vials were positioned on three planes within the enclosure, such that both the center and sides of each plane were sampled at several depths. The vials were irradiated simultaneously (Fig. 5). Each vial was then removed and placed inside a gas tight container consisting of a 12 inch long, 1 inch I.D. tygon tube fitted with lucite end plates and containing 30 ml of water. The vial was broken and the 37Ar removed by bubbling helium through the container and routing the gas through the argon purification system described below. The 37Ar from each vial was then quantitated in a low-background proportional detector.

The results, as well as similar data obtained independently by Palmer (Palmer, Private Communication), are shown in Figure 6. For a bilateral irradiation, the uniformity of activation inside the water-filled enclosure was $\pm 2.7\%$, providing a mean yield of 1.21 pCi of 37Ar/g calcium per mrad dose.
Fast Neutron Flux at Patient Position-14 MeV Facility measured by Activation Analysis,
27Al(n,α)24Na Reaction Flux Measured in Air, No Moderating Material

$\frac{1}{r^2}$ Flux Distribution
if Source is Point Source

Figure 4
The concentration of the solution is 100 grams of \(\text{Ca(NO}_3\text{)}_2 \cdot 4\text{H}_2\text{O} \) per 100 ml water.
Bilateral irradiation

Relative activity (arbitrary units)

Unilateral irradiation

- U. of W. 14 MeV irradiation facility
- Battelle Northwest facility, corrected for geometry

Horizontal profile - composite of all sample locations

Figure 6
2.3 Discussion

For TBC studies, the patient is positioned in the tank, the door is sealed, and the tank is filled with lukewarm water. The face mask of the gas collection system is installed and then the bilateral irradiation is carried out (the turntable is rotated manually between the irradiations). The water is then removed using the large drain valve at the bottom of the tank, the patient dries off and dresses (wearing the face mask at all times) and is transported to a waiting room for the remainder of the breath collection period. The typical irradiation time, including the rotation of the enclosure, is four minutes.

The uniformity of activation for the 37Ar TBC system is excellent, significantly better than the uniformity attainable in 49Ca studies (7). The activation uniformity measured in our laboratories is generally better than has been reported for 37Ar studies at other laboratories using neutron beams from cyclotrons (9). However, since neutron beams produced from cyclotrons have a fairly wide energy spread width, a large portion of the neutron energies are near the rapid decrease in the (n,a) reaction cross section (Figure 7), a greater fall-off of activation with depth for cyclotron based irradiation facilities is to be expected.

For final data analysis, a precise comparator standard must be irradiated with the patient. This standard corrects all measurements for any differences in neutron fluence. The standard consists of a set of four aluminum disks, each 22.9 cm in diameter and 0.64 cm thick, positioned at the corners of a rectangle, 91 cm x 198 cm, centered around the patient enclosure. After each patient irradiation, the 24Na produced in the disks by the 27Ar (n,a) reaction is quantitated with the use of two opposing 9"
Figure 7

Cross section $\times 10^{-3}$ barns

Incident neutron energy (MeV)

Original page is of poor quality
diameter x 4" thick NaI(Tl) detectors. Typically 10^5 counts from ^{24}Na are obtained during a 1000 second counting period at four hours post irradiation.

3.0 Gas Collection System

3.1 Description of System

During the early feasibility studies, several breath collection systems were studied. The systems all had two basic features. First, to reduce nitrogen in the breath and hence reduce processing time in the purification system, the patient is maintained on a 25% O_2 - 75% He atmosphere for five minutes prior to and during breath collection. Second, the ^{37}Ar, as well as other gases, are trapped on Type 5A molecular sieve material cooled by liquid nitrogen at the end of the breath collection period.

In early systems, the O_2-He was continuously fed to the system and the patient's breath was collected without any recirculation. Because of the large volumes, these systems could hold breath samples of only 10-15 minutes. After the first ^{37}Ar excretion rate studies, it became desirable to collect samples of 1-3 hours in length and a closed-circuit system was designed (Fig. 8). The exhaled breath is recirculated, CO_2 is removed and O_2 is replaced as needed. Thus, the total volume of gas collected in each sample is a constant, independent of the amount of time the system is in use. The system includes an expansion bellows, the position of which is monitored by two reed relays which are used to open and close a solenoid valve to the oxygen supply, a circulating fan to reduce back pressure and keep a constant flow of air moving across the face plate of the mask, a soda lime cannister to absorb CO_2, bacterial filters and valves to allow the system to be flushed with O_2-He or put on closed-circuit operation. The rebreather is installed underneath a reclining wheelchair and the power is supplied by a 12-volt battery and charger system, making the entire system self-contained and mobile.
Figure 8

Neutron Generator

Soda Lime

Bellows

Bellows Position Sensor and Solenoid Valve Control

O_2

Circulation Fan

Filters

30% O_2
70% He

Douglas Bag

LN_2 dewar

Vacuum Pump

GAS COLLECTION SYSTEM
After the desired breath collection period has ended, the system is flushed with O₂-He and the exhaust is routed into a 100 liter Douglas bag. The gas in the Douglas bag is pumped through a 4 liter stainless steel sampling cylinder and a coil of copper tubing (Fig. 8) both of which are filled with Type 5A molecular sieve material. Since the cylinder is cooled by liquid nitrogen (LN₂), all gases except helium are trapped and the helium is pumped off, after which the cylinder can be closed off and allowed to warm up for storage prior to the gas sample being processed. The majority of oxygen, water-vapor, and CO₂ are trapped in the cylinder where the cross sectional area is sufficiently large to prevent "ice" blockage while the argon and any nitrogen are primarily trapped in the copper tubing.

The final gas sample volume to be processed is approximately 30 liters, regardless of the length of time used in collecting it.

3.2 Discussion

The system has proven to be quite reliable and well-tolerated by patients for up to six hours of continuous operation. The only long-term maintenance required, besides renewing the soda lime and gas supplies, has been periodic replacement of the bellows at about four-month intervals.

The use of a closed-circuit breathing system does raise the question of reabsorption of previously exhaled ³⁷Ar into body tissues. Since the solubility constants and diffusion rate constants for argon and nitrogen are similar (10), we used data on nitrogen absorption during the design study for the rebreathing system. Investigations of the rate of excretion from body tissues when the atmosphere the patient is breathing is suddenly shifted from normal to one with essentially no nitrogen content have been reported (11). The usual result is that 80-90% of the absorbed nitrogen is released in three hours.
Based on the nitrogen data, our assumption was that by using ultra-pure gases (argon content <0.01%) and a reasonably large volume in the rebreathing system that the stable argon absorbed in the body (normally at equilibrium with about 1% argon concentration in the atmosphere) will be rapidly excreted from the body, minimizing reabsorption problems.

Three patients being studied for excretion rate measurements (12) were irradiated twice over a period of about six months with breath samples collected with an open circuit system on one irradiation and a closed-circuit system on the other. The patients selected did not have a significant change of body weight between measurements. The excretion rates measured were the same (within a range of ± 5%) at each point in time for each patient. These results suggest that there was no significant reabsorption of 37Ar in the closed-circuit system when it is loaded with essentially argon-free gas.

4.0 Gas Purification System

4.1 Description of System

The purification system, a simplified diagram of which is shown in Figure 9, is based on absorption of undesired gaseous products. Copper columns maintained at $400^\circ C$ and previously reduced by hydrogen absorb oxygen, columns of soda lime, CaSO$_4$ and Aquasorb remove CO$_2$ and water vapor, after which remaining gases are first trapped on Type 5A molecular sieve material while residual helium is pumped off and then placed into a tube containing calcium at $600^\circ C$ to remove nitrogen. The last step is to transfer the sample into a tube containing calcium at $600^\circ C$ to remove nitrogen. The last step is to transfer the sample into a 30 cc proportional detector by means of a calibrated Toepler pump. The volume of gas transferred is measured and then, using calibrated volumes, sufficient stable argon and CH$_4$ are transferred to bring the proportional counter gas to a mixture of 90% Ar and 10% CH$_4$ at 1 atms. absolute.
Figure 9
4.2 Discussion

The entire purification procedure, including regeneration of the copper columns, takes approximately five hours, although only intermittent attention by a technician is required. The calcium furnace containing 550 g of calcium turnings, is sufficient for about 400 procedures before replenishment and is the only long-term maintenance item besides normal vacuum system upkeep and periodic replacement of the soda lime and CaSO₄ cannisters.

The system being completely manually operated does require great care in use to avoid inadvertent venting or contamination of the sample. As indicated in a more detailed schematic of the system (Fig. 10), the technician must exercise considerable care in operation. Future implementations of the ³⁷Ar technique would benefit greatly from fully automating the gas processing system.

5.0 ³⁷Ar Counting System

5.1 Description of System

The proportional detector is placed between two 9'' x 4'' NaI(Tl) detectors which act as cosmic ray anti-coincidence shields and the entire detector assembly is surrounded by four inches of lead (Fig. 11). The only unusual feature of the electronics is the inclusion of a pulse shape analyzer (Ortec Model 458) which is used to discriminate against noise based on the rise time of the pulses. A typical ³⁷Ar spectrum is shown in Figure 12 along with a spectrum of ⁵⁵Fe which is used to set the amplifier gain.

Two basic designs are used for the proportional detectors (Fig. 13). For the standard ³⁷Ar study (patient dose - 10 mrad) a 30 cc detector made out of oxygen free copper tubing is used. The detectors have an inside diameter of 15 mm with a wall thickness of 1.0 mm, Kovar feed troughs at the
Figure 11
Typical \(^{37}\)Ar Proportional Counter Energy Spectrum with \(^{55}\)Fe Spectrum Used for Energy Calibration

2.82 KeV from \(^{37}\)Ar Decay Inside Counter

5.9 KeV from External \(^{55}\)Fe Source

FWHM=0.78 KeV

2.94 KeV Argon Escape Peak

Channel Number (0.1 KeV per Channel)

Figure 12
PROPORTIONAL DETECTORS

Type I - Wall material stainless steel, brass or copper depending on application

1.5 cm

1 mm

MHV connector

Ball valve

0.0008 mil gold platted tungsten wire

Kovar seal

Calibration source window

Type II - Wall material zone refined quartz

0.0008 mil gold platted tungsten wire

0.999995 pure, 0.0005 in. thick copper foil

Teflon plug stopcock

Calibration source window

1.5 cm

1 mm

12.7 cm

12.7 cm

Figure 15
ends and a 0.0008 inch diameter gold-plated tungsten wire which is secured to the external portion of the seals with a silver-tin solder. A standard MHV connector is soldered to an extension on the copper tube and is also soldered to one of the Kovar seals. In addition, a 0.001 inch thick tin foil is soldered over a 3 mm hole in the center of the tube to allow the detector to "see" the 55Fe calibration source. The energy resolution of 55Fe is typically 17% and the background counting rate under the 37Ar peak is normally 0.1 cpm.

The second type of detector is used for multiple day counting. The basic design is identical to the Type I detectors except that the tube material is zone refined quartz glass and ultra-pure 0.0005 inch thick copper foil and is used to line the inside of the tube. The energy spectrum is the same as the first type of detector, but the background rate is normally 0.03 cpm.

5.2 Discussion

The system has proven to be quite reliable with the only major problem encountered being the slow build up of tritium contamination inside the detectors. The tritium, which is present in the Health Sciences environment, causes a slow increase in background counting rates. The problem is controlled through cryogenic trapping in the purification system and periodic pumping of the detectors with a titanium furnace (at 905°C) (7).

Potential applications of the 37Ar systems to regional bone mass studies on lowering the TBC dose to 1 mrad will require counting samples for 3 to 5 days. The counting system could be expanded to handle seven detectors continuously, thus allowing a sample to be processed and placed in a detector for counting at the rate of one per day. Design studies for such a system have been performed and discussed in recent reports (13).
6.0 Excretion Rate

6.1 Measurement Technique

Sixteen patients who were undergoing serial examinations of body calcium by the 49Ca technique at the cyclotron facility were studied during the early period of this research contract. The neutron beam produced at the cyclotron facility has a mean energy of 8 MeV and a full width at half maximum of 8 MeV and in these procedures, both the 48Ca(n,α)49Ca and the 40Ca(n,α)37Ar reactions are produced in-vivo.

Argon-37 excretion was measured by taking several samples of the exhaled breath at various times after irradiation. Continuous breath collections were not possible because the breath collection apparatus could not be used during the three, 12 minute total-body counting procedures after irradiation (for 49Ca). The 37Ar was processed and counted in early versions of the system previously described in this report. The breath samples were typically 10 minutes long.

One additional volunteer was studied for excretion rate at the 14 MeV facility when it was operational. The procedures were essentially the same as used at the cyclotron.

6.3 Excretion Rate Data

The combined data is shown on Figure 14. The vertical axis indicates the 37Ar excretion as a rate normalized to the TBC of each patient as measured independently by the 49Ca system. The data indicate the maximum rate of 37Ar excretion occurs essentially immediately. By six hours post irradiation, the rate has decreased to approximately 1% of the maximum value.

Figure 15 depicts the serial excretion rates from three individuals and is typical of that seen in patients when three or more serial samples are obtained. The data of Figure 15 represent the two extremes observed in the combined data plot of Figure 14.
Figure 14 - Argon excretion data

The diagram shows the rate of excretion of ^{36}Ar (dpm of activity/min kg body calcium) as a function of time after irradiation sample taken (hrs). The data points are categorized as follows:

- □ = Average of 10 points at $t = 0.5$ hrs
- △ = Average of 4 points at $t = 0.75$ hrs
- ○ = Average of 8 points at $t = 1.0$ hrs.
- ≡ = Individual patient data points

The plot also includes a dashed line representing the equation:

$$R = 4.99e^{-1.73t} + 0.174e^{-0.267t}$$

This equation is used to fit the data, which is renormalized for 1.4 MeV data. The graph is labeled Cyclotron irradiation facility, indicating the source of the data.
Data fits are all of the basic equation
\[-\text{Rate} = A e^{-1.73t} + B e^{-0.267t} \]

○ = Patient No. 9 - osteoporotic female
65 years old
A = 3.17 B = 0.760

● = Patient No. 6 - normal female,
26 years old
A = 4.57 B = 0.173

▲ = Patient No. G1 - normal male,
35 years old
14 MeV facility (data renormalized)

Figure 15 — Examples of argon excretion rates for individual patients
6.3 Discussion

The combined data can be described by a double exponential equation as indicated in Figure 14. The fast component of the descending limb has a T-1/2 of approximately 27 min. and the T-1/2 of the slow component is approximately 156 min. The individual data (Fig. 15) can be "fit" holding the T-1/2 values constant and adjusting the multiplicative constants of each exponential. Earlier analyses of this data (12) suggested that the fast T-1/2 values might be related to the surface area of bone, i.e. primarily turbecula bone. However, subsequent analyses has proven that such cannot be the case since models based on the excretion rate data and \(^{37}\text{Ar}\) yields measured during studies to determine the accuracy of the technique show that 81% of the \(^{37}\text{Ar}\) released is in the fast component and 18% is in the slow component (13). Since 90% of the surface area of bone is contained in turbecula bone which in turn comprises about 20% of total bone, the fast component could only contain 26% of the \(^{37}\text{Ar}\) released if the surface area theory was correct.

7.0 Accuracy of Measurement

7.1 Measurement Technique

A study designed to determine the accuracy of the \(^{37}\text{Ar}\) technique in measuring total body calcium (TBC) in humans was initiated during this reporting period. The study is based on measuring the TBC of a patient with the established \(^{49}\text{Ca}\) system at the University of Washington and comparing the TBC to the \(^{37}\text{Ar}\) yield from the same patient after irradiation at the 14 MeV facility. The original protocol required that the \(^{37}\text{Ar}\) exhaled during the first hour, the first three hours, and the first five hours post irradiation be quantitated and compared to the \(^{49}\text{Ca}\) TBC. However, after the first few irradiations, it
became clear that the 0-5 hour data will not be necessary since adequate accuracy can be obtained with the shorter breath collection intervals. As a result, the 0-5 hour collection period was generally not taken.

7.2 Accuracy Data

The study includes 10 normal volunteers and 4 osteoporotic patients (with documented compression fractures). The average age of the normal group is 57 years, with only one volunteer less than 30 years old. The group includes 6 males and 4 females. The volunteers ranged in height from 155 cm to 183 cm; in weight from 58.6 kg to 202.5 kg; and in TBC from 594 g to 1,137 g.

The data obtained to-date is listed in Table 1 and illustrated in Figure 16. The data shows a strong correlation between ^{37}Ar yield and TBC as measured using the ^{49}Ca technique.

7.3 Discussion

The correlation between the ^{37}Ar yields and TBC as measured by the ^{49}Ca technique is excellent ($r = 0.96$ for a one hour breath collection period, $r = 0.98$ for a three hour breath collection period). The least squares linear regression analysis describes the data well (the solid lines in Figure 16) and provides a standard area of the estimate (the dashed lines in Figure 16) for the regression which is within $\pm 5\%$. Thus, the TBC as measured by the ^{49}Ca technique can be predicted using the ^{37}Ar data to within $\pm 5\%$ (1 S.E.). The predictability by the three hour breath collection data is slightly better than the one hour data, as clearly shown by the data point spread in Figure 16.

For a one hour breath collection, the conversion of ^{37}Ar yield to TBC is:

$$TBC \ (kg) = 0.11 \left[^{37}\text{Ar} \ \text{one hour yield in pCi}\right] + 0.4.$$

For a three hour breath collection, the appropriate relation is:

$$TBC \ (kg) = 0.086 \left[^{37}\text{Ar} \ \text{three hour yields in pCi}\right] + 0.32.$$
<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Patient Sex</th>
<th>Patient Weight (kg)</th>
<th>Patient Height (cm)</th>
<th>Normal or Osteo.</th>
<th>Patient age (years)</th>
<th>^{44}Ca TBC (grams)</th>
<th>^{37}Ar Yield 0 - 1 hour pCi</th>
<th>^{37}Ar Yield 0 - 3 hour pCi/kg</th>
<th>^{37}Ar Yield 0 - 5 hour pCi/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-1</td>
<td>M</td>
<td>76.8</td>
<td>183</td>
<td>N</td>
<td>45</td>
<td>1099</td>
<td>8.2</td>
<td>7.4</td>
<td>10.5</td>
</tr>
<tr>
<td>G-2</td>
<td>F</td>
<td>77.3</td>
<td>163</td>
<td>N</td>
<td>26</td>
<td>820</td>
<td>5.8</td>
<td>7.1</td>
<td>7.8</td>
</tr>
<tr>
<td>G-3</td>
<td>M</td>
<td>88.7</td>
<td>171</td>
<td>N</td>
<td>49</td>
<td>1138</td>
<td>7.8</td>
<td>6.9</td>
<td>10.4</td>
</tr>
<tr>
<td>G-5</td>
<td>M</td>
<td>60.9</td>
<td>155</td>
<td>N</td>
<td>79</td>
<td>594</td>
<td>4.0</td>
<td>6.9</td>
<td>5.0</td>
</tr>
<tr>
<td>G-6</td>
<td>M</td>
<td>101.5</td>
<td>177</td>
<td>N</td>
<td>75</td>
<td>1005</td>
<td>NA</td>
<td>NA</td>
<td>8.8</td>
</tr>
<tr>
<td>G-7</td>
<td>M</td>
<td>81.6</td>
<td>178</td>
<td>N</td>
<td>66</td>
<td>1147</td>
<td>7.2</td>
<td>6.3</td>
<td>9.5</td>
</tr>
<tr>
<td>G-8</td>
<td>F</td>
<td>58.6</td>
<td>168</td>
<td>N</td>
<td>60</td>
<td>767</td>
<td>5.4</td>
<td>7.1</td>
<td>6.7</td>
</tr>
<tr>
<td>G-9</td>
<td>M</td>
<td>80.5</td>
<td>171</td>
<td>N</td>
<td>67</td>
<td>1167</td>
<td>7.7</td>
<td>6.6</td>
<td>9.9</td>
</tr>
<tr>
<td>G-11</td>
<td>M</td>
<td>79.9</td>
<td>175</td>
<td>N</td>
<td>55</td>
<td>1116</td>
<td>8.4</td>
<td>7.5</td>
<td>10.4</td>
</tr>
<tr>
<td>G-12</td>
<td>F</td>
<td>55.5</td>
<td>161</td>
<td>N</td>
<td>59</td>
<td>712</td>
<td>4.6</td>
<td>6.4</td>
<td>5.7</td>
</tr>
<tr>
<td>G-13</td>
<td>M</td>
<td>61.8</td>
<td>162</td>
<td>O</td>
<td>85</td>
<td>677.7</td>
<td>2.8</td>
<td>4.2</td>
<td>4.8</td>
</tr>
<tr>
<td>G-14</td>
<td>F</td>
<td>62.5</td>
<td>162</td>
<td>O</td>
<td>55</td>
<td>969.3</td>
<td>5.7</td>
<td>5.9</td>
<td>9.0</td>
</tr>
<tr>
<td>G-16</td>
<td>F</td>
<td>54.5</td>
<td>157</td>
<td>O</td>
<td>66</td>
<td>586.3</td>
<td>4.1</td>
<td>7.0</td>
<td>5.3</td>
</tr>
<tr>
<td>G-17</td>
<td>M</td>
<td>93.4</td>
<td>189</td>
<td>O</td>
<td>44</td>
<td>1129.9</td>
<td>7.7</td>
<td>6.8</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Table 1: Patient Data – ^{37}Ar Accuracy Study

<table>
<thead>
<tr>
<th>Mean</th>
<th>6.8</th>
<th>8.0</th>
<th>10.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>$\pm.46$</td>
<td>$\pm.5$</td>
<td>$\pm.73$</td>
</tr>
<tr>
<td>$%\sigma$</td>
<td>$\pm6.8%$</td>
<td>$\pm5.6%$</td>
<td>$\pm7.0%$</td>
</tr>
</tbody>
</table>
Figure 16

0-1 hour yield

$y = -0.34 + 7.06x$

$r = 0.96$

0-3 hour yield

$y = -0.28 + 9.09x$

$r = 0.98$

0-5 hour yield

$y = -0.18 + 10.70x$

$r = 0.99$
8.0 Precision of Measurement

8.1 Measurement Technique

A study to determine the precision of measurement of the 37Ar TBC system was undertaken. Six normal volunteers were irradiated, each three times over approximately two weeks. The 0-1 and 0-3 hour 37Ar yields were measured using the standard TBC procedure.

8.2 Precision Data

The 37Ar yields were determined for each of the measurements of each of the six volunteers. In order to combine the results from all six individuals, the mean yield for each of the three measurements for each individual was calculated. The yields for each individual were then expressed as the 37Ar produced relative to the mean yield for that individual.

The volunteers included 4 females and 2 males, ranging in age from 22 to 67 years old. The data is summarized in Table 2.

8.3 Discussion

The precision of the technique is quite acceptable at $\pm 3.3\%$ (1 S.D.) for a breath collection period of one hour and $\pm 2.4\%$ for a three hour breath collection. The slightly better precision for the three hour breath collection is most likely due to a combination of slightly better counting statistics and less biological variation due to slight changes in the excretion rate (see Section 6.2).

9.0 Summary and Discussion

9.1 General

The systems have proven to be quite reliable with the only major maintenance worry being the prevention of leaks, primarily in the rebreathing
<table>
<thead>
<tr>
<th>Patient Study No.</th>
<th>Sex</th>
<th>Age</th>
<th>Irradiation Date</th>
<th>37Ar Yield (picocuries)</th>
<th>Relative Yield*</th>
<th>37Ar Yield (picocuries)</th>
<th>Relative Yield*</th>
</tr>
</thead>
<tbody>
<tr>
<td>G - 4A</td>
<td>F</td>
<td>49</td>
<td>2-14-76</td>
<td>3.85</td>
<td>0.967</td>
<td>5.44</td>
<td>0.983</td>
</tr>
<tr>
<td>G - 4B</td>
<td></td>
<td></td>
<td>2-16-76</td>
<td>4.07</td>
<td>1.022</td>
<td>5.63</td>
<td>1.017</td>
</tr>
<tr>
<td>G - 4C</td>
<td></td>
<td></td>
<td>3-02-76</td>
<td>4.03</td>
<td>1.011</td>
<td>Lost</td>
<td></td>
</tr>
<tr>
<td>G - 10A</td>
<td>M</td>
<td>67</td>
<td>5-11-76</td>
<td>6.76</td>
<td>0.985</td>
<td>9.86</td>
<td>0.979</td>
</tr>
<tr>
<td>G - 10B</td>
<td></td>
<td></td>
<td>5-13-76</td>
<td>6.48</td>
<td>1.016</td>
<td>10.16</td>
<td>1.009</td>
</tr>
<tr>
<td>G - 10C</td>
<td></td>
<td></td>
<td>5-25-76</td>
<td>6.86</td>
<td>0.999</td>
<td>10.20</td>
<td>1.013</td>
</tr>
<tr>
<td>G - 15A</td>
<td>M</td>
<td>57</td>
<td>10-19-76</td>
<td>7.46</td>
<td>1.014</td>
<td>13.17</td>
<td>1.021</td>
</tr>
<tr>
<td>G - 15B</td>
<td></td>
<td></td>
<td>11-02-76</td>
<td>7.56</td>
<td>1.028</td>
<td>13.07</td>
<td>1.013</td>
</tr>
<tr>
<td>G - 15C</td>
<td></td>
<td></td>
<td>11-09-76</td>
<td>7.05</td>
<td>0.958</td>
<td>12.47</td>
<td>0.966</td>
</tr>
<tr>
<td>G - 18A</td>
<td>F</td>
<td>24</td>
<td>4-20-77</td>
<td>3.09</td>
<td>1.002</td>
<td>4.88</td>
<td>1.000</td>
</tr>
<tr>
<td>G - 18B</td>
<td></td>
<td></td>
<td>5-06-77</td>
<td>3.18</td>
<td>1.031</td>
<td>5.01</td>
<td>1.027</td>
</tr>
<tr>
<td>G - 18C</td>
<td></td>
<td></td>
<td>5-27-77</td>
<td>2.98</td>
<td>0.966</td>
<td>4.75</td>
<td>0.973</td>
</tr>
<tr>
<td>G - 19A</td>
<td></td>
<td></td>
<td>4-25-77</td>
<td>1.25</td>
<td>0.997</td>
<td>2.16</td>
<td>0.997</td>
</tr>
<tr>
<td>G - 19B</td>
<td>F</td>
<td>22</td>
<td>5-02-77</td>
<td>1.20</td>
<td>0.963</td>
<td>2.11</td>
<td>0.974</td>
</tr>
<tr>
<td>G - 19C</td>
<td></td>
<td></td>
<td>6-15-77</td>
<td>1.29</td>
<td>1.035</td>
<td>2.23</td>
<td>1.029</td>
</tr>
<tr>
<td>G - 20A</td>
<td></td>
<td></td>
<td>4-22-77</td>
<td>3.32</td>
<td>0.933</td>
<td>4.50</td>
<td>0.953</td>
</tr>
<tr>
<td>G - 20B</td>
<td>F</td>
<td>30</td>
<td>5-04-77</td>
<td>3.57</td>
<td>1.004</td>
<td>4.79</td>
<td>1.015</td>
</tr>
<tr>
<td>G - 20C</td>
<td></td>
<td></td>
<td>5-18-77</td>
<td>3.78</td>
<td>1.063</td>
<td>4.87</td>
<td>1.032</td>
</tr>
</tbody>
</table>

Combined S.D. = ± 3.3%

Breath Collection Interval (Hours Post Irradiation)
system due to normal wear of flexible joints and hoses. The question of potential health risks due to patient dose of 10 mrad has also been evaluated and found to be negligible (14).

The excellent correlation between the 37Ar yield and TBC as measured by the 49Ca system ($r = 0.98$, standard error of the estimate $\pm 5\%$) coupled with the patient dose of 10 mrad meet the primary objective of this contract to develop a low dose technique to accurately and precisely measure total body calcium.

9.2 Factors Affecting Accuracy and Precision

In addition to the usual problems of biological variance and the quality control of the collection and purification systems to prevent gas leaks, there are three major areas of concern in utilizing the 37Ar technique: 1) long-term trapping of 37Ar in bone crystal; 2) the incomplete collection of the 37Ar released and the cause of the excretion rate half-lives; and 3) the possibility of reabsorption of 37Ar from rebreathing system back into fatty tissues within the patient.

There have been several indications that some of the 37Ar produced in-vivo is retained (5, 7, 9, 12, 13). Estimates made by our group, H.E. Palmer, and others, which are based upon the amount of 37Ar obtained per gram of calcium from irradiated solutions of calcium as compared to the amount of 37Ar recovered from in-vivo irradiations of human subjects, indicate that 10 to 30% of the argon may be retained.

The accuracy data presented in Section 7 indicates that whatever retention is present is having no discernible effect on the application of the 37Ar technique. Some data recently obtained at Sloan-Kettering Cancer Center gives some indication of why retention is not a major problem. The data is an attempt
at measuring percent 37Ar retention vs. age in bone removed from amputated limbs. The experimental procedure involves sealing the "fresh" bone in a glass container filled partially with water. The sample is irradiated and helium bubbled through the container. The 37Ar then recovered is considered as the normally released fraction. The bone is then dissolved and heated in solution while helium is bubbled through. The 37Ar recovered is considered as the retained fraction. The normally released fraction, since it is still determined via a totally in-vitro procedure, does not completely duplicate the in-vivo process. However, the character of the change of percent 37Ar retained vs. age probably is representative of the in-vivo process.

The data is presented in Figure 17. A least squares fit to the data is also plotted in the figure. An analysis of this data (13) indicate that worst possible "error" or change to be expected over a 50 year span if corrections are not made for retention is 4%. The conclusion is further verified by plotting the 37Ar yields obtained in the accuracy study and correcting for retention using the Bigler data. Such a plot is shown on Figure 18. While the slope has changed, the standard error of the estimate is slightly worse, and hence, corrections for long-term retention of 37Ar are not necessary.

The second major concern, the incomplete collecting of all the 37Ar which is released in-vivo, is only a problem if the excretion at any point in time does not represent a uniform sampling of the body calcium, or if there are extreme variances in the excretion rate curves between individuals. The questions of the cause for the biological half-lives observed on the excretion rate data remains unanswered, except that it does not arise from simple trabecular and cortical bone compartments (Section 6). In view of the excellent accuracy data (Section 7), it appears that the observed 37Ar components are sampling the total body calcium rather uniformly.
Measurement of 37Ar Retention in Bone

$y = 2.187 + 0.11 \times x$

[Least squares fit of data]

Data from R. Bigler et al., Memorial Sloan-Kettering Cancer Center

Inert gas retained in bone (percent)

Age (Years)
Figure 18

Corrected using data from Bigler et al.

\[Y = \text{original yield} \]

\[Y = \frac{1.2187 + 0.0011 \times \text{age}}{} \]

\[r = 0.96 \]
\[r = 0.98 \]
\[r = 0.99 \]
The only major concern regarding the use of 37Ar is the possibility of reabsorption of 37Ar into the body from the circulating gases of the rebreathing system. This question has already been discussed in detail in Section 3.2, and based on the accuracy and precision data does not appear to be a major factor.

Further support for this conclusion can be obtained by correlating 37Ar yields versus weight and body size. Analysis of this type yield no correlation. Since reabsorption would presumably be more severe in "stout" individuals with more body fat, the lack of correlation would indicate that any reabsorption has no observable effect.

However, a direct investigation of the reabsorption question is planned by direct measurement of the reabsorption of 41Ar when introduced into the circulating atmosphere of the rebreathing system. Results of such measurements are expected to be published during 1978.

9.3 Recommendations

The results of the accuracy and precision studies clearly indicate that the 37Ar technique can be used to measure total body calcium in humans. The implementation of the system for large scale clinical studies or for research into bone metabolism would benefit from development of an expanded purification and counting system. The existing system has been assembled primarily as an engineering developmental system, and not as a high use system. During the past year and a half, no major changes in the design of the system have been needed to analyze the patient data, although several revisions to decrease system down time would be desirable.

We have designed a new purification system. The basic system design will be the same as the existing apparatus, but will include two complete purification
systems with cross connections at each major component. Thus, if all components are operational, two samples at a time can be processed. If part of one system needs repair, two samples could still be processed by appropriate sharing of system resources.

The new system would include provisions for the addition of automatic valve activators, as well as pressure, flow and temperature sensors which would allow the system to be run by a computer. Increasing throughput to four or six samples a day could be accomplished, if needed.

Other improvements in the new system would include: 1) no tygon or other "weak" vacuum materials will be used, 2) reduction of the copper columns will be done automatically without removing the columns from the system, 3) the addition of connection ports for the helium leak detector for preventive maintenance, 4) replacement of all brass valves and tubing with stainless steel to prevent mercury-induced material failures, 5) automatic liquid nitrogen level controllers for all dewars, and 6) a vacuum system providing higher pumping speeds.

If a new purification system is built, the counting system will also need to be expanded to handle the larger number of samples to be counted per day. The multichannel analyzer should be provided with a gated router to allow the collection of multiple spectra. Several more proportional detectors should be fabricated and a new cosmic-ray anti-coincidence shield should be fabricated to allow proper shielding of multiple proportional detectors. With a relatively modest expansion of the existing system, up to eight detectors could be operated simultaneously. Typically, one of the detectors would be a background monitor, while the remainder of the detectors would be available for sample counting.
Support of research at sites other than the University of Washington would be most efficiently implemented by installing activation facilities at the selected sites (or develop a mobile activation facility on a trailer) and sending the breath samples to the central processing and counting facility at the University of Washington.

7. Lewellen TK, Nelp WB: Annual report to NASA on work completed on total body calcium analysis under contract NASA-13029, October 1, 1973 to October 1, 1975. October 1975

11.0 Papers Presented

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Location</th>
<th>Date</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Measurements of Bone Mass</td>
<td>Nucl. Med. Post-Grad Seminar Colby College Maine</td>
<td>8/74</td>
<td>Dr. Nelp</td>
</tr>
<tr>
<td>2.</td>
<td>The Validity of TBC by NAA</td>
<td>FDA - Metabolic Advisory Committee</td>
<td>2/75</td>
<td>Dr. Nelp</td>
</tr>
<tr>
<td>3.</td>
<td>Dianabol and Osteoporosis</td>
<td>FDA - " " " "</td>
<td>2/75</td>
<td>Dr. Chesnut</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dr. Baylink</td>
</tr>
<tr>
<td>5.</td>
<td>Body Composition Studies Measuring Total Body Activation Products in Exhaled Breath</td>
<td>Sloan-Kettering Cancer Institute New York City</td>
<td>12/74</td>
<td>Mr. Palmer</td>
</tr>
<tr>
<td>7.</td>
<td>Efficacy of Dianabol in Osteoporosis as Determined by Changes in Total Bone Mineral Mass</td>
<td>2nd Annual Affiliate Conf. of the Center for Research in Oral Biology Seattle, WA</td>
<td>5/74</td>
<td>Dr. Chesnut</td>
</tr>
<tr>
<td>8.</td>
<td>Quantitation of Bone Mass in Osteoporosis - Recent Advances</td>
<td>XIIth European Symposium on Calcified Tissues - Copenhagen, Denmark</td>
<td>5/75</td>
<td>Dr. Chesnut</td>
</tr>
<tr>
<td>9.</td>
<td>37Ar Excretion as an Indication of Total Body Calcium</td>
<td>Sloan-Kettering Cancer Institute</td>
<td>6/75</td>
<td>Dr. Lewellen</td>
</tr>
<tr>
<td>11.</td>
<td>Gaseous Radionuclides Excreted in Expired Air after Neutron Irradiation and their relation to Body Composition</td>
<td>"</td>
<td>4/76</td>
<td>Mr. Palmer</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Event</td>
<td>Date</td>
<td>Author</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>12.</td>
<td>TBIVNA for TBC 40Ca(n,α)37Ar Breath collection, gas purification and analysis</td>
<td>2nd E. Kilbride Conf. on Prog. & Prob. of in-vivo Act. Anal. Glasgow, Scotland</td>
<td>4/76</td>
<td>Dr. Lewellen</td>
</tr>
<tr>
<td>13.</td>
<td>14 MeV TBNA 40Ca(n,α)37Ar The patient irradiation system-uniformity and dosimetry</td>
<td>"</td>
<td>4/76</td>
<td>Dr. Lewellen</td>
</tr>
<tr>
<td>14.</td>
<td>Nuclear medicine techniques in the evaluation of post-menopausal osteoporosis</td>
<td>SNM National Convention Dallas, Texas</td>
<td>6/76</td>
<td>Dr. Chesnut</td>
</tr>
<tr>
<td>15.</td>
<td>Measurement of total body calcium by 37Ar Excretion</td>
<td>"</td>
<td>6/76</td>
<td>Dr. Lewellen</td>
</tr>
<tr>
<td>16.</td>
<td>Measurement of total body calcium utilizing the 40Ca(n,α)37Ar reaction</td>
<td>NASA Radiation Safety Committee, JSC Houston, Texas</td>
<td>8/76</td>
<td>Dr. Lewellen</td>
</tr>
</tbody>
</table>
12.0 Papers Published

