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Introduction:

The position of an emergency transmitter may be determined by measuring
the Doppler shift of the distress signal as received by an orbiting satellite..
This requires the camputation of an initial estimate and refinement of this
estimate through an iterative, nonlinear, least-squares estimation.

A version of the above algorithm was inplemented at Goddard Space Flight
Center (GSFC) and tested by locating a transmitter on the premises and obtaining

observations from a satellite. The conputer used was an IBM 360/95. The po-

sition was determined within the desired 10 km radius accuracy.

The purpose of this project is to determine tﬁe feasibility of performing
the same task in real time using microprocessor technology. The least square
alcgorithm was implemented on an Intel 8080 microprocessor and the sane experi-
ment was run as at GSEC. -

The results indicate that a microprocessor can easily match the IBM im- J
plerentation in accuracy and be performed inside the time limitations set.
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Why Microprocessors:

Time is an inplicit restriction in any search and rescue mission. The
use of satellites and computers is dictated by that time limit. The use of
a big conputer to determine the position presupposes commnication between the
satellite and the computer. This conmunication introduces a time delay since '
the satellite is not always within radio visibility of an installation that
possesses both the communication and camputing power for this problem. Fur-
thermore the result has to be forwarded to a conmand center to do the dispatching.

Microprocessor utilization can alleviate this situation in two ways:
by giving cheap canputing power to communication facilities or by incorporating
the conputing power in the satellite itself thus eliminating this communication
coipletely.

Microprocessors offer light weight, small volume, low power processing.
Their speed is improving rapidly and their cost is going down. They are the

logical clwice for a satellite search and rescue system if they can perform.




Machine Configuration:

Strictly speaking there are three microprocessor configurations in

this project which we are going to discuss individually.

« Development system
. Mini:pal execution system

« Actual field configuration

Initially our development system consisted of an MDS-80 Intellec micro-
conputer by Intel with 16k bytes of RAM nenory and a resident ROM monitor.
Most of the floating point packagc .as developed in' machine langucge on that
system using the monitor's limited hexadecimal editor and debugger. The need

for more sophisticaticn became apparent. After several failures in exploring

altematives (as fancy as hooking up to a PDP 11 through a telephone line

for more storage) we were able to acquire a dual floppy disk drive by Intel.

q A spare line printer was attached to the system with minor hardware modifica-
3 tions and 16k bytes nmore RAM were added in order to support DOS. The enhanced
system had the power cf a mini-computer in software (assembler, editor, li-
brary manager, linkage editor, leader, and a sufficient file manager) at a
speed which was slow but acceptable. The floating point package was converted
to assembly language, and two rnore packages wi're developed: the I/O package

and the matrx manipulation package. Unexpected help came from the use of

ICE-80 (In Circuit Emulator), designed for a different application, as a
powerful symbolic debugger substituting for the monitor hexadecimal debugger.
| ¢ Out of this final version of the development system only a limited
f amount of resources were used for the fiml rin. Those define the minimal
execution system., The disk was only used for input of data. The essential

parts were:

» The CPU card

+ 16k Bytes of noory




* The console device and its interface

« Power supply: 12v, 5V, -5V, ground

Additionally, the line printer was used to produce a hardcopy version of

the results.

The actual field conf}guration would be the same if the machine vere

; located on the ground. Some kind of commnications equipment wouid be re-

| quired to provide the data input and, maybe, start the run autcmatically.
The configuration would be different, though, if the machine w-re located on

the satellite. The roquirenents for the satellite configuration would be:

* The CPU card

16k bytes of menory

An interface that can load the information in memory

A means to communicate the result to the world

« Power sypply: 12v, 5V, -5V, ground




The Floating Point Package:

Based on estimates of the number of operations required we were in-
clined to think that any floating point operations would have to be perfomea
by hardware and not by software since estimated times became prohibitive,

This floating point package was developed to help us count the actual number .
of operations rather than i'cl-’fonn them in an actual situation. The final run
proved our estimates wrong and the package gained new importance.

There are a nunber of representations of floating poing numbers dif-
fering in accuracy and range as a trade off to the number of bytes required
per number.  The one used was the ANSI format for FORTRAN which happens to
be inplemented by hardware as an option in IBM camputers. It consists of one
sign bit, a seven bit exponent (excess 64), and a 24 bit mantissa of hexa-
decimal digits. The accuracy is 6 hexadecimal ligits or approxinately 7.2
decimal digits. Specific operations were not timed although a more general
timing analysis appears in a later section. This forimt was chosen as opposed
to the BCD format because the space requirements are lower for the same
amount of precision, which in turn reduces execution time slightly. A man-
tissa of binary digits was not used because of the frequent need for normali-
zation.

Addition and subtraction take exactly the same time, whercas multipli-
cation is approximately equal to 22 addition -r«? division is approximately
60 additions.

Multiplication produces a 48 bit result nantissa which is then normalized
and rounded to 24 bits. This preserved the nunb>r or significont digits, or,
viewed from a different angle, is the same as a double precision multiply if
the two arguunts were expanded with zero Fill.

Division preserves the significant digits again by expanding the non-
tissa of the dividend to double precision and results in full single preci-

sion result. Normalization and rounding occur as in maltiplication.
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Accuracy is thus prescrved to tre single precision throwghout in a
nuncrically stable manner kecping the length of the number to 4 Lytes. The
cost is expensive nultiplication and, expeciallu, division. This dictates
a progranming style whereby division is avoided unless it is absolutely neces-
sary. The benefits, on the other hand, are nwwerically stable implementa-
tions whose results match the double precision to the extent possible as
will be seen when the results of the run are analyzed.

The square rvot function was inplemented by using a variation of Heron's
formula hased on the observation that the mntissa of any Noating point num-
ber will have a value of 1/16 to 1 (interpreted as a Maction). As a first
guess an approximation to a straight line connecting the two end points is
miwde. Experimentally, six iterations were found necessary to produce an
accurate result. A better first guess could inprove that significantly, but
time constraints did not allow us to pursue that direction.

Finally, input and output of flaating point mmbers turn out a much
nore serious task than first expected.  ‘The input routine rvcognized nunbers
with a miximum of ten integer and ten fraction digits,  ihis proved nore
than sufficient for our needs.  ‘The cutput routine produces a vigid scienti-
fic format with 10 fraction digits. When intempreting the results it should
e kept in mind that at most only 7 are significant.  The format was re-
tainad in case of future expansion of the mntissa. Both the input and output
routines could be better, but since their function is only tangential to the

project at and they were kept on the hare funct ional level,
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Matrix Operations:

All matrices in the system are defined as two dimensional, including
vectors. The First two bytes contain the number of rows and the number of
oolums in the particular matrix, respectively. This effectively lmuts the
number of observations to 256. Vectors have one of their dimensions identi-
~ally equal to 1. The next two bytes contain the address of the Ffirst byte
that follows the last byte belonging to the matrix. Adjacent elements in
a row of the matrix are stored as adjacent floating point numbers in mcmory.
Rows are stored sequentially starting from the first row in the fifth byte.

In an effort to minimize the number of address calculations in the least
squares algorithm the APL program we were supplied with, (LSQ), was converted
into FORIRAN, The calculations involved in the residual equations were all
grouped together inside one big loop. The advantage of such a scheme is that
once an offset is calculated it can be used to address all the needed elements
of the matrices inwlved in the calculation. When the time came though, to
inplament it using 8080 assembly language, it became all too apparent that
there were too many addresses to keep track of and too few registers to help.
Therefore, due to the limitation of addressing capabilities, routines were
inplemented for the various matrix operators in APL. This resulted in well
structured and very efficient code, the style being dictated by the instruc-
Lion set.

A mininmum nunber of matrix utility routines was nocessary. Matrices can
be created by specifying their dimensions, they can be filled with zeros, they
can be read from a device, they can be moved (copied) in storage.

There are four classes of operations by which matrices may be altered

involving the following argumnts.

« a4 constant and a matrix

- a vector and a matrix




+ two matrices (plus possibly a result matrix)

+ one matrix (for example, inversion)

In our particular application there was only one inversion of a 2 by 2
matrix involved. A sinple algorithm derived from Fuler's method is inple-
mented using fixed pivots. Execution time and tenporary storage are opti-

mized.
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Implamenting the Fxperiment:

Having developed the tools that were discussed in previous sections the
actual inplementation was straight forward. For reasons alrcady mentioned a’
routine was written to match the 1SQ routine* developed by Dr. Marini almost
statenent by statement.  The correspondence is indicated in the source pro-
gram by keeping track of the APL statement numbers. ‘The array names were
kept the same as much as possible and only one additional tenporary matrix
was required. ‘The program was written for a maximm of 100 observations.

All matrix operations as well as the square roet xeop track of the calls to
the floating point routines.

The whole package mikes limited use of two monitor routines, which can
casily be eliminated.  The reason they are there is hhcause software was
being developed in machine language and the manitor provided a lot of needed
help.  So, essentially, TSQ can be min conpletely independently.

The space raqirenents for this particular run was approximtely 16k
bytes, out of which 4k could e in RM and 12k in RWM. The exact nunbers
are as follows:

Codes: 3056 bLytes

Data: 10365 byles

Stack: 100 bytes (arbitrarily)
Total: 14121 bytes

Tnoorporated into the package were l'mu.- count ing routines that. Kept
track of the mmnber of additions, subtractions, mltiplications and divisions
rogquined during cach itervation,  The results will e analyzed in the next sec-
tion. The actual implementation would not raquire thero routines.  ‘The counting
overhead to each arithmetic operation is approximitely oqual to half the tine
of an addition.

* See Appendix C.




Interpreting the Results:

The final run converged and yielded five digits of accuracy. If conver-
gence is defined as a ratio of two succx.asive RMS residuals being close to 1 -
(in absolute) it was attained at the ninth iteration to within 0.00001.
Conparing these results to the run at GSFC (run at double precision, or 16
digits of accuracy) we notk the 5 digit accuracy of our result.

Numerical analysis gives us cnough tools to justify the loss of two signi-
Ficant digits in the course of the iterations. The main source of error ap-
pears to be the subtraction of the estimated range rates from the actuals.
The subtraction of the average residual equations could could contribute to
the error as well.

The measured execution time for this particular run was 62 seconds per
iterution. The microprocessor used was an 8080A by Intel. Adjusting for
counting the number of operations the true time becames 61 seconds. The
8080A CPU has a cycle time of 2 microscconds. If this system were actually
inplemented, the 8030A-1 CPU could be used which o/fers higher speed with
cycle time of 1.3 microseconds which could bring execution time down to 40
seconds [Hr each iteration giving approxim tely & iuinutes to reach conver-
gence. This figure is derived with no modification of the software. Since
it falls within our difinition of "real tim2", which was around 15 minutes,
it is definitely a workable solution.

Another altermative is, of course, to use hardware floating point units.
Two units that we are familiar with indi cau.a a disparily in execution times
of scveral orders of magnitude. Their .spccifications appear in Appendix B
for the purposes of the following analysis, 'typical' execution times for 8
digits of precision of the North Star Computers, Inc. FPB unit were used.
Our systcm indicated the following frequency of floating point operations
for cach iteration:

Additions - 3137




Subt ractions - 672

Multiplications - 2382

Divisions - 940

When trying to compute the time it would take io execute those instruc-
tions we noticed that the time it takes to access hardware floating point |
unit is more than twice than the time it takes to do the calculations. Namely,

we came up with the following nmumbers:

TIME (SEC) PURPOSE
0.35 perform the operations
0.825 input and output the nuwber form

FPB (8080A-1)

1.175 total time required

Therefore, use of hardware units make it possible to decrease the execu-

tion time by one order of magnitude.




Future Rescarchs

~ The parameters that have to be optimized in the seaich and rescue
mission consist of the accuracy of the position estimation and the time in
which it is perfommed. Proving the feasibility of a microprocessor -
implementation is far fram devising an optimal algorithm.
If the naulinear regression method is utilized there is a lot of
room for improvement in the inital estimate, a quantity that can affect
the whole outcame of the iterations. Secveral methods that are suggested
in Dr. Marini's paper can be explored. Furthemore, since the data
collection takes an appreciable amount of time an alaorithm should be devised
in which an estimate is upgraded with cach incoming datum. TE that algorithm
is good enough then the estimate could be the rosult itszelf,
A further cnhancament on the calculation tiem can be achieved through
parallelism. It can appear on two levels:
* The implementation of the least squares algorithm
« The grouping of data

The least s¢uares algorithm may be broken into parallel subtasks that
can be performed by different processors in parallel, especially floating
point operations.

The data may be grouped in clusters on which the least squares
algorithm is applied. The estimate provided by cach cluster is then processed
through least squares estimation itself. This method could be applied at
data collecticn. time too.



Appendix A

* Sample run at GSFC

* Sample run. at Columbia
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THE‘fECULTING POQITION Is:
n= -0 0LO3I4835210E+O2 Y=
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THE TRESULTING FOSITION 1S:
M= O E216947555E+83 Y= -0. 4912517547E+04
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Appendix B

Two typical hardwere floating point units

* FPB by North Star Camputers, Tnc.

* FPU by Cyberuetic Micro Systems
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*Sample use of the North Star FIPB for a divide operation with 8 digit precision
*In this example assame arguments aeeinomemory in forme

* Most significant byte (msb) digit pair

Susequent digit pairs follow the b

Exponent/sign byte follows Ish digit pair,

Pointer addiesses the exponent/sign hyte

*BC has left arg pointer
*DE has tight arg pointer
*HL has esult pointer

*The FPB receives its arguments by “pecking’ at the 8080 bus
*when the argument values are loaded to accumulator,
* Two jumperable “hardwired” addresses are required for signaling the FPB

*This routine may be generalized to perform any operation, at any precision,

I DIV LDA RSIRT

MVI A 8*161DIVOP
LLODAX D
pex n
LDAX D
DCX D
LLDAX D
DCX D
LDAX D
DCX D
LDAX D
LLDAX B
DCX B
LLDAX B
DCX B
IDAX B
DCX B
LDAX B
pecx B
IDAX B

This “hardwired™ refecence signals FPB to “wake up™

Specify precision and operation code to FPB
Fxponent/zign byte of right wmg

Advance pointer to next byte

Least significant digit paie of vight arg
Advance pointer to next byte

Most significant digit pair of right arg
[ xponent/sign byte of left aig

Least sigmificant digit pair of left arg

Most sigmificant digit pan of left ug

Now the Floating Point Board is performing the operation

LX! D, PDIN

FDIVI LDAX D

ORA A

JP FDIV
ANI EBITS
LDAX D
10OV M A
DCX H
LDAX D
MOV MA
NCX H
LDAX D
MOV M A
DCX H
LDAX D
MOV M A
DCX H
IDAX D
MOV MA
RZ

JMP ERROR

"Hardwired” address for receiving value from 1PB
Loop waiting for completion signal (sign bit)

The EPB is done whei. the sign bit becomes 1"
Loop f sign bit is stll “Q**

Cheek for enror, condition tested at end
Cnponent/sign of result

Store exponent/sign of result

Advance pointer,

Least significant digit pair of result

msh byte of result

Store it

Beturn of no error was detected

Goreport error (e underflow o divide by 0)




FLOATING POINT UNIT

PRICE LIST
MODEL QUANTITY
1 25 100
#1 $595.00 $535.00 $475.00
#2 470.00 425.00 375.00
#3 345.00 315.00 275.00

EXECUTION TIMES

FUNCTION

ADD, SUB

MuL, DIV, SQRT
TAN

LN, SIN, COS,—+POL
POWER

A1l sales FOB Palo Alto

TIME iN MILISECONDS (approximate)

225
846
1250
1720

CYREPNETIC MICRQ SYSTEAS

2460 ZMCARCADERO WAY
PALO ALTO, CA 94303

(415) 321-0410




Appendix C

The APL least squares program
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Microprocessor Utilization in Search & Rescue Missions
FINAL REPORT

Introductions

The position of an emergency transmitter may be determined by measuring
the Doppler shift of the distress signal as received by an orbiting satellite.
This requires the carputation of an initial estimate and refinement of this
estimate through an iterative, nonlinear, least-squares estimation.

A version of the above algorithm was implemented at Goddard Space Flight
Center (GSFC) and tested by locating a transmitter on the premises and obtaining
observations from a satellite. The conputer used was an IBM 360/95. The po-
sition was determined within the desired 10 km radius accuracy.

The purpose of this project is to determine the feasibility of performing
the same task in real time using microprocessor technology. The least square
algorithm was inplemented on an Intel 8080 microprocessor and the same experi-
ment was run as at GSFC.

The results indicate that a microprocessor can easily match the IEM im-

plementation in accuracy and be performed inside the time limitations set.
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Why Microprocessorss

Time is an inplicit restriction in any search and rescue mission. The
use of satellites and computers is dictated by that time limit. The use of
a big computer to determine the position presupposes communication beu;een the
satellite and the conputer, This commnication introduces a time delay since
the satellite is not always within radio visibility of an installation that
possesses both the conmunication and carputing power for this problem. Fuxr-
thermore the result has to be [orwarded to a command center to do th2 dispatching.

Microprocessor utilization can alleviate this situation in two ways:
by giving cheap camputing power to communication facilities or by incorporating
the computing power in the satellite itself thus eliminating this communication
conpletely.

Microprocessors offer light weight, small volune, low power processing.
Their speed is improving rapidly and their cost is going down. They are the

logical choice for a satellite search and rescue system if they can perform.




achine Configuration:
Strictly spcaking there are three microprocessor oonfigurations in

,. this project which we are going to discuss individually.

« Dovelopnent systoan
« Minimal execution system

+ Actual field configuration

Tnitially our developnent system consisted of an MDS-80 Tntellec micro-
conputer by Intel with 16k bytes of RWM mumry and a resident ROM nonicor,
Most of the Iloating point packige was developed in. nachiine language on that
system using the monitor's limited hexadecimal oditor and debugoer.  ‘The need
for nore sophistication became apparent.  After several failuwivs in esploring
altermatives (as fancy as booxing up to a PDP 11 through a teleplone line
for rore storage) we were able to aapire a dual floppy disk drive by Intel.

A spare line printer was attached to the system with minor hirdsore mndi fica-
tions and 16k Lytes more RWM were added in order to support m0S. The enhanced
system had the power of a mini—conputer in coftware (assonbler, editor, li-
brary :smmnager, linkage oditor, lcader, ard a safficient file monager) at a
spood which was slow but acceptable.  The floating point package was converted
to assoably language, and two nore packages were developed:  the I/0 package
and the matrix manipulation package.  Unexgacted help cauie from the use of
ICE-80 (In Circuit FEmlator), designed for a different application, as a
powerful symiolic debugyer substituting for .t'h-.? roni tor hexadecimal deqbugeer.,

Out of this final version of the developm nt systom only a limited
wount: of resources were used for the final run. ‘Mose define the minimal
exccution system. ‘The disk was only used for input of data.  The essential

parts were:

« e CPU card

« 1tk iytes of memory




* The console device and its interface

+ Power supply: 12V, 5V, -5V, ground

Additiorally, the line printer was used to produce a hardcopy version of
the results. '
The actual field ccnf%guratim would be the same if the machine were
located on the ground. ls:::ne kind of communications equipment would be re-
3 quired to provide the data input and, maybe, start the run automatically.
The conficuration would be different, though, if the machine were located on

i al
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the satellite. The requirements for the satellite configuration would be:
i * The CPU caxd

4 « 16k bytes of memory
* Aa interface that can load the information in memory

« A means to commn.cate th2 result to tiie world

* Power supply: 12v, 5V, -5V, ground




The Floating Point Package:

Based on estimates of the number of operations required we were in-
clined to think that any Floating point operations would have to be performai
by hardware and not by software since estimated times became prohibitive.
This floating point package was developed to help us count the actual number
of operations rather than ;.)erform *hem in an actual situation. The Final run
proved our estimates wrong and the package gained new importance.

There are a number of representations of floating poing numbers dif-
fering in accuracy ani range as a trade off to the number of bytes required
per number. The one used was the ANSI format for FORTRAN which happens to
be implemented by hardware as an cption in IBM computers. It consists of one
sign bit, a seven bit exponent (excess 64), and a 24 bit mantissa of hexa-
docimal digits. The accuracy is 6 hexadecimal digits or approximately 7.2
decimal digits. Specific operations wer~ not timed although a more general
Liming analysis appears in a later section. This format was chosen as opposed
to the BCD format because the spacc 2quirements are lower for the same
amount of precision, which in turn reduces execution time slightly. A man-
tissa of binary digits was not used because of the frequent need for normali-
zation.

Addition and subtraction take exactly the sane time, whereas multipli-
cation is approximately equal to 22 addition and division is approximately
60 additions.

Maltiplication produces a 48 bil result mantissa whi . is then normalized
and rounded to 24 bits. This presesved the number of significant digits, or,
viewed from a different angle, is the same as a double precision m .tiply if
the two arquments were expanded with zero fill.

Division preserves the significant digits again by exparding the min-~
tissa of the dividend to double precision and results in full single preci-

sion result. Normalization end rounding occur as in multiplication.




Accuracy is thus preserved o tme single precision throughout in a
nurerically stable manner keeping the length of the number to 4 Lytes. The
cost is expensive multiplication and, expeciallv, division. This dictates
a programming style whereby division is avoided unless it is absolutely neces-
sary. The benefits, on the other hand, are numerically stable implementa-
tions whose results match the double precision to the extent possible as
will be seen when the results of the run are analyzed.

The square root function was inplemented by using a variation of Heron's
formula based on the observation that the mantissa of any fleoating point num-
ber will have a value of 1/16 to 1 (interpreted as a fraction). As a first
guess an approximation to a straight line connecting the two end points is
mide. Fxperimentally, six itcrations were found necessary to produce an
accurate result. A better first guess could improve that significantly, but
time constraints did not allow us to pursue that direction.

Finally, input and output of floating point nunbers turm out a mach
nore serious task than first expected. The input routine recognized mmbers
with a maximum of ten integer and ten fraction digits. 7This proved norve
than sufficient for our neceds. The output routine produces a rigid scienti-
fic format with 10 fraction digits. When interpreting the results it should
be kept in mind that at nost only 7 are significant. The format was re-
tainad in case of future expansion of the mantissa. Both the input and output
routines could be better, but since their function is only tangential to the

project at hand they were kept on the bare functional level.




Matrix Operations:

All matrices in the system are defined as two dimensional, including
vectors. The first two bytes contain the number of rows and the number of
columns in the particular matrix, respectively. This effectively limits the
number of observations to .256. Vectors have one of their dimensions identi-
cally equal to 1. The next two bytes contain the address of the First byte
that follows the last byte belonging to the matrix. Adjacent elements in
a row of the matrix are stored as adjacent floating point nurbers in memory.
Rows are stored sequentially starting from the first row in the Fifth byte.

In an effort to minimize the number of address calculations in the least
squares algorithm the APL program we were supplied with, (LSQ), was converted
into FORTRAN. The calculations involved in the residual equations were all
grouped together inside one big loop. The advantage of such a scheme is that
once an offset is calculated it can be used to address all the needed elements
of the mawrices involved in the calculation. When the time came though, to
implement it using 8080 assembly language, it became all too apparent that
there were too many addresses to keep track of and too few registers to help.
Therefore, due to the limitation of addressing capabilities, routines were
inplemented for the various matrix operators in APL. This resulted in well
structured and very efficient code, the style being dictated by the instruc-
tion set.

A minimum number of matrix utility routines was necessary. Matrices can
be created by specifying their dimensions, they can be filled with zeros, they
can be read from a device, they can be moved (copied) in storage.

There are four classes of operations by which matrices may be altered

involving the following arguments.

- a constant and a matrix

- a vector and a matrix




! + two matrices (plus possibly a result matrix)
3

+ one matrix (for example, inversion)

In our particular application there was only one inversion of a 2 by 2

il o0

matrix involved. A sinple algorithm derived from Euler's method is inple-
] mented using fixed pivots., Execution time and temporary storage are opti-
mized.




1.

Inplerenting the Experiment:

Having developed the tools that were discussed in previous sections the
actual implementation was straight forward. For reasons already mentioned a
routine was written to match the LSQ routine* developed by Dr. Marini - ‘nost
statement by statement. The correspondence is indicated in the source pro-
gram by keeping track of the APL statement numbers. The array names were
kept the same as much as possible and only one additional tenporary matrix
was required. The program was written for a maximum of 100 observations.
All matrix operations as well as the square root keep track of the calls to
the Floating point routines.

The whole package makes limited use of two monitor routines, which can
easily be eliminated. The reason they are there is because software was
being developed in machine language and the nonitor provided a lot of needed
help. So, essentially, LSQ can be run conpletely independently.

The space requirenents for this particular run was approximately 16k
bytes, out of which 4k could be in ROM and 12k in RAM. The exact nurbers
are as follows:

Code: 3656 bytes

Data: 10365 bytes

Stack: 100 bytes (arbitrarily)
Total: 14121 bytes

Incorporated into the package were four counting routines that kept
track of the number of additions, subtractions, multiplications and divisions

raquired during each iteration. The results will be analyzed in the next sec-

'ion. The actual implementation would not require these routines. The counting

overhead to each arithmetic operation is approximately equal to half the time

of an addition.

* See Appendix C.




Interpreting the Results:

The final run converged and yielded five digits of accuracy. If conver-
gence is defined as a ratio of two succesive RMS residuals being close to 1-
(in absolute) it was attained at the ninth iteration to within 0.00001.
Camaring these results to the run at GSFC (run at double precision, or 16
digits of accuracy) we note the 5 digit accuracy of our result.

Nurerical analysis gives us enough tools to justify the loss of two signi-
ficant digits in the course of the iterations. The main source of error ap-
pears to be the subtraction of the estimated range rates fram the actuals.
The subtraction of the average residual equations could could contribute to
the error as well.

The measured execution time for this particular run was 62 seconds per
iteration. The microprocessor used was an 8080A by Intel. Adjusting for
counting the number of operations the true time becomes 61 seconds. The
8080A CPU has a cycle time of 2 microscconds. If this system were actually
inplemented, the 8080A-1 CPU could be used which offers higher speed with
cycle time of 1.3 mic.oseconds which could bring execution time down to 40
seconds for each iteration giving approximately 6 minutes to recach conver-
gence. This figure is derived with no modification of the software. Since
it falls within our difinition of "real time", which was around 15 minutes,
it is definitely a workable solution.

Another alternative is, of course, to use hardware floating point units.
™o units that we are familiar with indicatc; a disparity in execution times
of several orders of magnitude. Their specifications appear in Appendix B
for the purposes of the following analysis, 'typical' execution times for 8
digits of precision of the North Star Conputers, Tnc. FPB unit were used.
Our system indicated the following frequency of floating point operations
for each iteration:

Additions - 3137




Subtractions - 672
Multiplications - 2382
Divisions - 940
When trying to compute the time it would take to execute those instruc-
tiocns we noticed that the time it takes to access hardware floating point

unit is more than twice than the time it takes to do the calculations. Namely,

we came up with the following numbers:

TIME (SEC) PURPOSE

0.35 perform the operations
3 0.825 input and output the nurber form
] FPB (8080A-1)
q 1.175 total time required

Therefore, use of harcdware units make it possible to decrease the execu-

< tion time by one order of magnitude.




Future Research:

The parameters that have to be optimized in the search and rescue
mission consist of the accuracy of the position estimation and the time in
which it is performed. Proving the feasibility of a microprocessor
implementation is far fram devising an optimal algorithm.

If the nonlinear regression method is utilized there is a lot of
room for improvement in the inital estimate, a quantity that can affect
the whole outcome of the iterations. Several methods that are suggested
in Dr. Marini's paper can be explored. Furthemore, since the data
collection takes an appreciable amount of time an algorithm should be devised
in which an estimate is upgraded with each incoming datum. IE that algorithm
is good enough then the estimate could be the result itself,

A further enhancement on the calculation tiem can be achieved through
parallelism. It can appear on two levels:

- The implementation of the least squares algorithm
« The grouping of data

The least squares algorithm may be broken into parallel subtasks that
can be performed by different processors in parallel, especially floating
point operations. v

The data may be grouped in clusters on which the least squares
algorithm is applied. The estimate provided by each cluster is then processed
through least squares estimation itself. This method could be applied at
data collecticn. time too.




Appendix A

* Sample run at GSFC
* Sample run at Columbia
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Appendix B

Two typical hardware floating point units

* FPB by North Star Comnputers, inc.

* FPU by Cyberuetic Micro Systems




-

FPB DATA SHEET

EXECUTION TIMES 1.2.3

PRECISION DIGITS:_H___?_-___ 4 | 6 | 8
ADD best 1 1 1 1
typical '8 8 9 9
. worst | 10 [ 10 | 10 "
SUBTRACT best 4 4 4 4
typical 8 8 9 9
. _ worst 15 | 16 17 18
MULTIPLY best 5 5 5 5
typical 18 34 55 80
o worst | 51 125 228 382
DIVIDE best 7 7 7 7
typical 39 70 109 156
worst 62 | 139 229 310

1. Times given in microseconds
2. Execution times are a function of the input values
3. Tumes listed do not include transmission of input va'ues and result

Boara dimensions:
Model A: Sin. by 10,
Model B: 6% in. by 12in,

Power requitements:
Model A: 8V (unregutated) @1.7 A
Model B: 5V (regulated) @ 1.7 A

Board Construction:
R4 matenial, gold ple.ed edge connectors

Floating point number representation:
Byte 1: bit 7=sign (1-negative number, 0 positive number)
Lits 6-0 = exponent in excess 64 binaty repregentation
bits 7-0 = zero represents the zero value ’
Byte 2: bits 3.0 = least significant digit of value in BCD coding
bits 7-4 = next least significant digit of value

Byte n: bits 7-4 = most significant digit of value in BCD coding
bits 3 0 = next most significant digit of value

All values are nomalized.

_10 ¢ 12 | 14
1 1 1
10 10 "
1 12 12
LS L -
4 4 4
10 10 1
19 | 20 | 21
5 s | s
1M | 146 | 186
527 | 720 | 933
7 7 7
211 | 274 | 370
470 | 621 | 779 |

Other representations of BCD floating point numbers require a change in microcode and are availabls on

special order,




*Sample use of the North Star FPB for a divide operation with 8 digit precision
*In this example assume arguments are in memory in form:

* Most significant byte (msh) digit pair

* Susequent digit pairs follow the msh

* Exponent/sign byte follows Ish digit pair.

* Pointer addresses the exponent/sign byte

*BC has left arg pointer

*DE has right arg pointer

*HL has result pointer

*The FPB receives its arguments by “peeking” at the 8080 bus
*when the argument values are loaded to accumulator.
*Two jumperahle “hardwired” addresses are required for signaling the FPB

*This routine may be generalized to perform any operation, at any precision.

FDIV LDA RSTRT This “hardwired” reference signals FPB to “wake up”
MVi A 8*16+DIVOP Specify precision and operation code to FPB
LDAX D Exponent/sign byte of right arg
DCX D Advance pointer to next byte
LDAX D L east significant digit pair of right arg
DCX D Advance pointer to next byte
LDAX D
DCX D
LDAX D
DCX D
LDAX D Most significant digit pair of right arg
LDAX B Exponent/sign byte of left arg
DCX B
LDAX B Least significant digit pair of left arg
DCX B
LDAX B
bDCX B
LDAX B
DCX B
LDAX B Most significant digit pair of left arg

*  Now the Floating Point Board is performing the operation
LX! D,FPDIN “Hardwired’* address for receiving value from FPB

FDIV1 LDAX D Loop waiting for completion signal (sign bit)
ORA A The FPB is done when the sign bit becomes "1
JP FDIV1 Loop if sign bit is still “@"

ANI EBITS Check for error, condition tested at end
LDAX D Exponent/sign of result

MOV M,A Store exponent/sign of result

DCX H Advance pointer.

LDAX D Least significant digit pair of result
MOV M,A

DCX H

LDAX D

MOV M,A

DCX H

LDAX D

MOV M,A

DCX H

LDAX D mish byte of result

MOV MA Store it

RZ Return if no error was detected

JMP ERROR Go report error (i.e. underflow or divide by 0)
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FLOATING POINT UNIT

PRICE LIST
MODEL QUANTITY
1 25 100
£ $595.00 $535.00 $475.00
#2 470.00 425.00 375.00
43 345.00 315.00 275.00

A1l sales FUB Paic Alto

EXECUTION TIMES

FUNCT ION TIME IN MILISECONDS (approximate)
ADD, SUB 110
MUL, DIV, SQRT 225
TAN 846
LN, SIN, COS,-»POL 1250
PONER 1720

CYBEANETIC AICRO SYSTEAS

2460 EMBARCADERO WAY
PALO ALTO, CA 94303

(415) 321-0410
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Appendix C
The APL least squares program
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