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ABSTRACT

We want to estimate the vector of multinomial cell probabilities P
from incomplete data, incomplete in that it contains partially classified
observations. Each such partially classified observation is observed to
fall in one of two or more selected categories but is not t]assified fur-
ther into a single category. The data is assumed to be incomplete at
random. The estimation criterion is minimization of risk for quadratic
loss. The estimators are the classical maximum likelihood estimate, the
Bayesian posterior mode, and the posterior mean. An approximation we
develop is used for the posterior mean. The Dirichlet, the conjugate
~prior for the multinomial distribution, is assumed for the prior distri-
bution.

We show these three estimators to be approximately equal in large
samples. We thén study risk in small- and medium-size samples through
Monte-Carlo simulation studies for the trinomial distribution. Samples
are of size 25 and 50, percentage of incomplete data varies around 15
and 40, and probabilities range from the center of the probability sim-
plex P2 to one of its corners. Probabilities equal the means of the
prior distributions for varying prior parameters or are randomly gen-
erated from these distributions. Pribrs used in the Bayesian estimators
are the correct prior, a uniform prior, and a perturbed prior. The EM
jterative algorithm of Dempster, Laird, and Rubin (1977) is used to eval-
uate all three estimators.

Results inaicated that the relationship between the probability p
being estimated and the prior parameters B used in the Bayesian estima-

tors was one of the most important factors in determining which estima-



tor was preferable. If the mean E of the Dirichlet distribution given
the prior parameters ? was within a fairly wide range of P then the pos-
terior mean was the best estimator of p. If the mean was far from P,
then the maximum likelihood estimate was best. Between these extremes
was a region in which the posterior mode was often best when p was toward
a corner of P2. The maximum likelihood estimate and posterior mode were
equally best at a corner. When the best estimator was used, risk was
usually reduced by one-fourth to one-third over that of the next best
'estimator and by one-third to one-half over that of the worst estimator.
However, the reduction in risk was sometimes substantial. The largest
reduction occurred at the corner E=(O,0,1); the risk of the posterior
mean was as much as 33,000 times larger than the risk of the posterior
mode or maximum likelihood estimate.

As the percentage of incomplete data increased, the risk of. the
three estimators did not greatly increase and the'relationship among
the estimators changed little. As sample size increésed, risk and the
difference in risk between estimators usually decreased.

Because numerical evaluation of the exact posterior central moments
is generally unfeasible, we also develop approximations for elements of
the posterior mean and covariance matrices. The best of three approxi-
mations considered for the posterior mean is based on a first-order
Taylor-series expansion of the exact posterior mean that has accuracy of
order O(n'l). ‘Because terms in the expansion are then approximated, the

final approximation, called the Taylor-series approximate posterior mean,

is not necessarily accurate to order O(n—l). However, we show that this

ii



approximation asymptotically equals the exact posterior mean. Further,
we give two conditions which guérantee that the error between the exact
posterior mean and an iterative solution of the Taylor-series approxi-
mate posterior mean is of magnitude O(n'l).

Approximations used for elements of the posterior covariance matrix

3/2

are based on Taylor-series expansions accurate to order O(n ~'“). When

the iterative solution for the Taylor-series approximate posterior mean
has accuracy of magnitude O(n'l), then the Taylor-series approximate pos-
terior variance and covariance can be evaluated noniteratively to have

_3/2). These approximations can also be eval-

(n—3/2)

accuracy of magnitude O(n
uated iteratively. However, insurance of accuracy of magnitude 0
then depends on satisfaction of the two conditions discussed for itera-
tive solution of the Taylor-series approximate posterior mean.

An important.property of the Taylor-series approximations is that;
as the percentage of incomplete data goes to zeré, they go to the exact
posterior moments. In addition, the relationship between the Téy1or4
series approximate posterior mean and the posterior mode parallels their
complete-data relationship.

In the same Monte-Carlo simulation study used for the risk study,
the Taylor-series approximation for the posterior mean was usually accu-
rate to at least four significant figures; that for the posterior vari-
ance, to at least three significant figures; and that for the posterior
covariance, to at least two significant figures. In practice, the Tay-
lor-series approximations will generally be more accurate than numerical

evaluation of the corresponding exact posterior moments.
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CHAPTER 1
INTRODUCTION

1.1 Overview:

This thesis is concerned with simultaneous estimation of the vector
P of cell probabilities from incomplete multinomial data where the criterion
of goodness is minimization of risk for gquadratic loss. As is well known,
the posterior mean will minimize expected risk. However, complete-data
results indicate that for at least boundary probabilities, the maximum
likelihood estimate might be a better estimator. Hence, we study both
estimators for specified values of P. In addition, we investigate a third
estimator, the posterior mode, which has some advantages of each of the
other two estimators.

Because numerical evaluation is generally unfeasible, we also develop
approximations for the posterior mean and covariance matrices. Therefore,
part of this thesis concerns derivation of the approximations and proof of
their accuracy. |

In the next section, we define the risk problem and detail reasons for
'choosing the posterior mean, maximum 1ikelihood estimator, and posterior
mode. We begin by defining special notation for the incomplete-data pro-
blem. We also outline a robustness study concerning use of the correct
prior in the Bayesian estimators. In the third section, we review the
literature of estimation from incomplete multinomial data.

Chapter 2 describes the estimators. First we derive the exact posterior
mean and central moments and illustrate the problems in their numerical
computation. Then we give derivations for the mode estimators, the maximum

1ikelihood estimate and posterior mode. In Chapter 3, we develop truncated
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Tay1or-series approximations for the exact posterior mean and covariance
matrices. In Chapter 4 we prove the asymptotic, large-sample, accuracy
of these approximations. For these large samples, the posterior mean,
maximum likelihood estimate, and posterior mode are all approximately
equal; hence, there will be little difference in their risks.

We then turn to small-sample behavior of the estimators. For small-
and medium-size samples, we investigate (1) the accuracy of the Taylor-
series approximations for the posterior mean and covariance matrices, (2)
which of the Taylor-series approximation, maximum Tikelihood estimate, and
posterior mode best approximates the posterior mean, (3) which estimator
best minimizes risk for quadratic loss at specified values of P and (4)
how robust results in (3) are to use of the correct prior in the Bayesian
estimators. Because we could not answer these questions analytically, we
performed Monte-Carlo simulation studies for the trinomial distribution.
In Chapter 5 we discuss the design and relevant computational procedures
for two such studies. Chapters 6 and 7 give results of these two stud%es
and guidelines for practical implementation of the results.

In Chapter 8 we summarize the main research of the thesis, draw con-

clusions, and recommend areas for future study.



1.2 Problem Statement:

Assume that we have a k-dimensional Dirichlet prior

k+1 k+1 k+l v.-1
gplv) = [F(Zv,)/mr(v)l T p, ', (1.1)
- i=1 i=1 i=]

where vi>0 and p takes values in the k-dimensional probability simplex

k+1
= . > = LV . . .
Pk {(pl,...,pk+1).pi O’iflpi 1}. The Dirichlet density is the conjugate
prior for the mu]tinomia]kdistribution. Assume also that we have complete
+
data x=(x1""’xk+l)’ n= g Xy denoting nonnegative integer sample values
~ i=1

of the random vector ¥=(X1,...,Xk+1) having the k-dimensional multinomial
distribution M(n;p) with density
k+1 k+l x,
h(xlp) = [ni/ T x,!1 mp, *. (1.2)
- i=l ' 4=l

Thus, the k+1 components of X réspective1y denote the number of the n
observations that fall in k+1 mutually exclusive categories Cl""’ck+1'

Suppose, however, that n observations are made on k+1 mutually exclusive
categories but that some of these observations are only partially observed
in that each of these observations falls in one of two or more of the k+l
categories but cannot further be classified into a single category. That is,
for some of the n observations one knows only that the observation falls in
one of 1. particular categories for 1414k+1 but not which one of these 1
categories. This set of categories among which an observation is shared is
called a pattern of incomplete data.

We denote such a set of categories as C suffixed by the indices of the

sharing categories. For example, if an observation is known to fall in one



of categories Ci’ Cj’ or C], for 14i,j,14k+1, but cannot be specified

further, we write that the observation falls in Cij More commonly, we

1’
write the total of all such observations falling in Cij1 as zijl or Z{i,j,1}
where, following a few more comments, we elaborate on these two z subscript

notations. Corresponding to the use of x=(x1,x2,...,xk+1), we write

f=(zl’22"'"212’213""’212...k) [or (z{l},z{z},...,2{1,2},2{1’3},...,
k})] to denote the vector of incomplete data. Thus, z=(21,22,23,
) represents the vector of incomplete trinomial data having, for

201,2,..

212°%13°%23

example, z, completely specified observations falling in C, and z.., incompletely

2 2 13
specified observations such that each observation is known to fall in one of
C1 or C3 (C13) but is not specified further.

However, we need some way to abbreviate notation for summing and multi-
plying over all collections containing a particular integer in forthcoming
equations. The least cumbersome approach is to adopt set notation and then,
for convenience and to parallel complete-data notation (i.e., complete-data
notation is Xq not x{l}), drop braces and commas where possible. Therefore,
in the next few paragraphs, we formally define the set notation used.

We first note that we want the notation to allow for dividing the data
into separate multinomial groups in the Hocking and Oxspring manner to be
described in the next section. Although we observe data in the general,
unrestricted, form Z 22?""212""’212...k’ where the completely specified

data 21’ 22,...,2 need not be subdivided, we use the Hocking and Oxspring

k+1
restrictive form in writing the likelihood for the exact posterior central
moments in Chapter 2 and for some of the asymptotic proofs in Chapter 4. Thus,
for each incomplete-data pattern, we create notation to allow for enough

artificial completely specified observations to complete a multinomial group.
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For example, if we observe Zys Zps 235 2495 and z)3, We can treat the
data in the Hocking and Oxspring manner as coming from three independent
distributions, one trinomial and two binomials as follows: V1¥Z1s Voo
Vai ¥10721p0Y35 and W137Z13s Wp3 where Voty=Z, and V3tys©Z3. Here,
Vis Vos and ) have a trinomial distribution with probabilities pl,‘pz,
and P3s Yio and Y3 have a binomial distribution with probabilities
(p1+p2) and p3; and Wiz and w, have a binomia} distribution with
probabilities (p1+p3) and p,.

Therefore, for k the dimension of a multinomial distribution, let §
be a nonempty subset of {1,2,...,k+1} and let P be the set of mutually
~exclusive and exhaustive subsets §. For example, for the trinomial dis-
tribution we could have the following P and §:

{{1},{2},{3}} containing $l,l={1}f 32’1={2}, and 53’1={3};
o {{1,2},{3}} containing 31’2={1,2} and 32’2={3};
3 {{1,3} {2}} containing 31’3={1,3}' and 82’3={2}; and
{{1},{2,3}} containing 8, ,={1} and 3, ,={2,3}.

1,4 2,4

~ X ~
n ] n

hﬁ
n

Define $,P to be the set element $ in the set P. Suppose that there
are BS.P elements in §,P. Let 2g p be the number of observations such
that each observation falls in one of the BS,P categorieé Ci for ieg, but
is not further classified into a particular one of these'BS’P categories
if B$,P>1’ Incomplete muitinomia] data is data of the form 29 p for 3
containing more than one element; i.e., B$,P>1‘

Thus, for the example given in the third preceding paragraph, we have

that zg p =201}, (013,023, (311 221, ({1}, 23, (33} 231, {41}, {21, (3}Y)
“vvaavahe Zgp =21 ), (01,2}, (3312231, 11,2}, (31)) = (V122¥3)s and
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E$ap3=(z{1.3},{{1.3},{2}}’2{2}.{{1,3}.{2}}) - (w13,w2).
We note that while we are deriving the posterior distribution of

p in Chapter 2 or calculating its 1imit in Chapter 4, we will use the P
subscript. For all other purposes, however, we discard the P subséript
and work with only the sufficient statistics of the Hocking and Oxspring
observed data, defined by

2g = Egz Zg pr (1.3)

Thus, in our trinomial example the sufficient statistics are
207313, {010,123, 43} 2(2)72(2),{{1},{2}, 031 202}, {{1,3}.{2})"
213Y°2(3),1{1}, 2}, (312031, ({1,2}.43}}* (1,2 2(1,2},({1,2},{3}}*> @M

2{1,3Y°%(1,3},{{1,3},(2}}
We let z denote the vector of all ZS’ Therefore, as in our earlier

discussion, z is our vector of observed data. Similarly, n=I ZS denotes
the sum of all the observed data. Finally, we define Pg as the sum of
probabilities p; for i in 8. Thus, p 4,=p3 and p{3;5,6}=p3+p5+p6.

In summary, we use set notation because it is the least cumbersome
mechanism for writing sums and products over all sets (or co]lectidns).
containing a particular 1ntéger. The use of set notation also aids
derivations of exact posterior central moments in Chapter 2 and calcu-
lation of limits in Chapter 4. On the other-hand, where possible we
delete the braces and commas to simplify equations and to parallel
complete-data notation (i.e., complete-data notation is X3 not x{i}).
For example, we usually write P12 instead of P(1,2}' We also mix the

simplified and full notations. For example, we usually write
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zi+D§iZDpi/pD rather than z{i}+ Dgizopﬁ}/pD where Dgi means the sum
over all those multiple-integer sets that contain i. Thus, in the
trinomial example, I means the sum over all sets {1,2} and {1,3} that
contain the integeroi% Note that we define D as a set containing more
than one integer unless otherwise specified. That is, D can not denote
the set {i} for any i.

Finally, we assume that the incompleteness of the data is random.
That is [see Rubin (1976)], incomplete data is not a function of the
values that would have been observed.

In this thesis we are interested in minimizing risk. Risk is def-

ined as expected loss with respect to, in this work, the distribution of

z given p; that is, for some estimator é of Ps
r(p:f) = ELL(p.3)] = T L(p.§) hizlp), (1.4)
k

where r(g.é) is the risk of é, L(E,é) is the loss function for p,
Zk={(zl""’zk+1’212’213""’212...k): each z component is a'nonnegative
integer and the z components sum to n}, and h(glg) is the density of z
given p-

In (1.4), the risk function depends on the value of the generally
unknown probability p. As Zellner (1971,p25) points out, it is
impossible to find an estimator.é that minimizes risk r(g,é) for all
possible values of p. He gives as an example that the vector p=b of

~ o~

constants will have minimum risk when p=b; hence, as p varies over Pk’
the minimizing estimator varies.
Therefore, a common practice is to choose as an estimator that one

that minimizes the average risk E[r(g.é)], where
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Elr(p,p)] = 5 r(p,p) o(p) dp
add P P’ ap
=/ [T L(p,p) h(z|p)] g(p) dp (1.5)
P 7, cIP pJ ap
=2 [/ L(p,p) flplz) dp] q(z)
7, P, Pic) Q¥ <

for g(E) the prior density of p, f(glg) the posterior density of p given
z, and q(z) the marginal density of z.
Now, the estimator minimizing the term in brackets in the last line

of (1.5) also minimizes expected risk. For quadratic loss

(1.6)

0
™M
-
o
.I
o

this Bayes estimator is the posterior mean. We uselquadratic Toss (also
called mean squared error) for the loss function because of its mathematical
tractability, frequent past usage, accuracy in approximating other loss
functions [see Mood and Graybill (1963,p165) and DeGroot (1970,p227)], and
physical interpretation. The emphasis in quadratic loss is on minimization
of the overall scatter of the estimates from the true value rather than
concentratidn on a few extreme departures. In particular, the quadratic-
loss criterion allows bias in an estimator if the variance is compensatingly
small.

As noted just before (1.5), however, the posterior mean will not

minimize risk in (1.4) for all values of p. Hence, there might be ranges

~
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of p for which other commonly used, and easily calculated, estimators

~

improve on the posterior mean. Further, as Zellner (1971,p26) notes,
many sampling theorists object to use of the prior density g(g) (because
it is never known in practice). Thus, they do not consider the minimal
average risk property of the posterior mean to be important.

Therefore, besides the posterior mean §. we also investigate two

other estimators to minimize risk for at least some values of p. The

~

first estimator is the maximum 1ikelihood estimate §. We include it
because it is a classical estimator that is often used., In particular,
it is frequently used when one has no prior knowledge. For complete
data, the maximum 1ikelihood estimator E=§/n is the unique, minimum

variance unbiased estimate of p. Hence, any estimator having smaller

~

risk than p must be biased. However, Johnson (1971) has shown that p

~ ~

is admissible. That is, there does not exist any other estimator b

~

having at least as small a risk for all values of p. and strictly smaller

~

- risk for at least one value of p.

~

The maximum likelihood estimate p is admissible because no other

~

estimators have smaller risk when all but one of the p components are
. k+1 ~

near zero. Since the risk of p equals 1- % piz, the risk is close to
~ i=1

Zero when p is near a corner of the Pk simplex. Hence, if the

incomplete-data case parallels the complete-data case, we would expect
the maximum 1ikelihood estimate ﬁ to have smallest risk when all but one
of the p components are near zero and the posterior mean to have smallest
risk furthest from the boundary; i.e., at the center of Pk'

We also include the posterior mode E. It is an in-between estimator

in that, like the maximum 1ikelihood estimate, it is a mode and, like the
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posterior mean, it is a Bayesian estimate and utilizes prior knowledge.
Unlike the posterior mean, however, the posterior mode can have zero
components for a nonzero prior. Hence, it is a strong competitor for
the maximum 1ikelihood estimate for extreme values of Ps those values
near a bdundary of the Pk simplex.

Finally, we note that the posterior mean minimizing expected risk
depends on knowledge of the prior g(g). In practice, we would not know
the true prior g(g). At best we would have some estimate of g(g) that
has, in general, undeterminable error. To investigate how robust our
results are to use of the correct prior, we compare the three estimators
by using two wrong priors, as well as the correct prior, in their calcu-
lations in the small-sample trinomial simulations. Note that' the
maximum likelihood estimate, not being a Bayesian estimate, is the same
for all three studies.

For the first wrong prior, we choose the uniform prior with vector
of parameters (1,1,1) because of its common use when one is uncertain of
prior knowledge. The uniform prior gives equal weight to all components
of p. For this prior, the posterior mode equals the maximum 1ikelihood
estimate. For the second wrong prior, we choose the vector of parameters
IOX[3/10+(.09,.05,-.14)], where v is the correct prior. This prior
perturbs the three components of P by .09, .05, and -.14, respectively.

Hence, we call it the perturbed prior.
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1.3 Literature Review:

To date, most of the published work on estimation from incomplete
multinomial data has concerned maximum Tikelihood estimation.' In 1958
Hartley presented an iterative method for calculating maximum likelihood
estimates from those sets of discrete data for which a maximum-1ikelihood
procedure is available for the corresponding complete-data sample. Because
his method was later generalized and clarified by Dempster, Laird, and
Rubin (1977) in a paper described at the end of this section, we do not
further discuss Hartley's method now. Hartley gave examples for the
Poisson, negative binomial, and binomial distributions. Hartley also pro-
posed calculating the large-sample covariance matrix of the maximum
Tikelihood estimates by using the calculus of finite differences. He used
the iterates from the maximum-1ikelihood-estimate algorithm to estimate
the second derivative of the log likelihood function via the standard
finite difference'formula. |

Blumenthal (1968) considered maximum-1ikelihood estimation from
incomplete multinomial data for the special case in which a category does
not share data with more than one group of categories. That is, for the
k-dimensional multinomial population, if category Ci shares data with
category Cj for j in some subset P of the k+l indices of E,lthen Ci does
not share data with any category Ch for which h is not an element of P.
For the binomial case, Blumenthal also investigated the problem of non-
random missingneés.

Hocking and Oxspring (1971) considered the case in which data comes

from populations all related to the same "parent" population. In a related
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population, at least one parameter is the sum of two or more probabilities
from the parent population. Those parameters for the related population
that are not such sums, exhaust those probabilities of the parent popula-
tion that are not elements of these sums. Hocking and Oxspring derived
the maximum 1ikelihood estimates and their large-sample covariance matrix
in the usual manner (e.g., the large-sample inverse covariance matrix is
the Fisher Information for E)‘ They developed an iterative algorithm for
solution of the resulting nonlinear equations.

A simple case of the Hocking and Oxspring situation is that of a
parent population having probabilities Py> Pos and P3 and a related pop-
ulation having probabilities p1+p2 and p3. In general, however, we do

not have sample information given twice on category C That is, we

3"
have sample data given for Py Pos p3, and p1+p2 and do not have data on
C3 broken into two groups to help estimation.

Sundberg (1974) developed maximum-1ikelihood theory for the general
prob]em of incomplete data from an exponential family, of which the multi-
nomial distribution is a member. He proved that the derivatives of the
log Tikelihood with respect to the natural (exponential) parameters can
be written as the difference of an unconditional and conditional expecta-
tion of the complete-data sufficient statistics. He noted that this form
for the first and second partial derivatives was first discovered in un-
published work by Martin-Lof. [However, Efron (1977) noted that this
form was implicit in Fisher's 1925 paper.]

Dempster, Laird, and Rubin (1977) extended Sundberg's work to the

general case where the problem need not involve an exponential family.

They called their algorithm the EM algorithm because it consists of an
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expectation step followed by a maximization step. Although this is the
same algorithm proposed by Hartley (1958), Dempster, Laird, and Rubin
generalized the algorithm, clarified the techniques, improved the mathe-
matics, and extended the history and usage of the algorithm. They proved
that the EM algorithm converges to a local maximum or a saddle point when
the 1ike1ihooq is bounded and the matrix of second partial derivatives of
the complete-data 1ikelihood is negative definite with nonzero bounded
eigenvalues. They also gavé a formula for the rate of convergence close
to a stationary point. Finally, théy showed how the EM algorithm can be
used to calculate a posterior mode. |

We describe the EM algorithm in the next chapter where we use it to
calculate the mode estimators, the maximum Tikelihood estimate and the
posterior mode. We‘a]so use the EM algorithm for solution of the approx-

imation we develop in Chapter 3 for the exact posterior mean. -



CHAPTER 2
THE ESTIMATORS

2.1 Introduction:

In this chapter we give formulas for the estimators. In the next
section we derive the posterior central moments. We begin with known
formulas for the complete-data case and then, utilizing notation defined
at the beginning of Séction 1.2, derive elements of the posterior mean
and covariance matrices for the incomplete-data case. We then illustrate
these derivations with an example and discuss difficulties in the numer-
ical computation of these exact moments.

In the last section, we give derivations for the mode estimators
based on theory from Sundberg (1974). We then show how values of these
estimators are calculated with the EM algorithm of Dempster, Laird, and
Rubin (1977). The first part of the section discusses the maximum
Tikelihood estimate. The second part details results for the posterior

mode.
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2.2 Posterior Central Moments:

For the k-dimensional Dirichlet prior g(p) in (1.1) and complete-data
sample §=(x1,...,xk+1) from the multinomial distribution with density (1.2),

the posterior distribution of p given x has the k-dimensional density

k+1  k+1 k#¥l v,-1  k+#l  k+#l x,
(M{zv)/TT(v)ITp, " [nl/ T x!TTp, "
f(plx) = i=1 i=1 i=1 i=1 i=1 (2.1)
~~ v, -1 X

feeeSTR(20 /M) M T [nt /M ! 1Mp, Tap

k+1 k+1 k+1 x.+v -1
[P(n+ £ v.)/ T O(x;+v.)] mp, ' !
=1 ' el T =1t

Thus, the posterior distribution is again k-dimensional Dirichlet, this
time with parameters xi+vi for 1£i£k+1.

As is well known, the posterior mean of P given X is

- k+1
E(ps[x) = (x;+v;)/(n+ 2 vj). (2.2)
j=1
Similarly, the posterior covariance matrix has elements

k+1

var(pilx) = (n+ Zlvh+1)'1 E(piIX) [1-E(pi|x)] (2.3)
: he 2 %
and
k+1 1
cov(p;sPslx) = -(n+h§1vh+1) Ep;1%) Elpslx). (2.4)

The vector of posterior means (2.2) is the Bayes estimator for quadratic

loss defined in (1.6).



..16_
In general, for 1 a positive integer,

1-1 1-1  k+l
x) = T (xgtv+q)/ T (n+ T v +q) (2.5)
g=0 g=0, h=1

so that, from multinomial expansion and substitution of (2.2) and (2.5),

the 1N moment of pilf about E(pilx) is

i fx],+\)_i )‘] 1-3-1 x1_+\)i+q
(-1) (j) Kn+2v I n+zvh+q
J

E{[pi—E(pilg)l]lx} =
~ h q:O

™M —

0

j . (2.6)
]) <xi/n+vi/n) 1-j-1 xi/n+(vi+q)/n

e I
1+th/n q=0 1+12vh+q)7n

-1
where we use the convention that T f(q)=1 for any function of q.
q=0

2.2.2 1Incomplete Data:

Recall the notation defined at the beginning of Section 1.2. Let p
again have the Dirichlet prior denéity g(p) of (1.1). Further, assume that

given p, and thus all pg, each ES P has the multinomial distribution

z

= ] z,P
hp(zg plP) _[(zzp Zz’P)'/zgp 24 p!] qPs (2.7)

Then, the likelihood of the total incomplete data z given p is

~

h(z|p) = g‘hp(gz’plg). (2.8)

The posterior density of p given z is therefore

~ o~ ~ ~

f(plz) = glp) h(z|p)/Sp, 9(p) hiz|p) dp. (2.9)

k
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To evaluate f(glg), recall that Pg is Pg and that Pg is a sum
z
Thus, we can rewrite pz 8 as a multi-

of probabilities; i.e., pz
Je Z$

$

nomial expansion. For example, if p$=p1+p3+p5, then we can write Pg

as

3 .
(py#o5tg) B = 1 ( i)( -1 zge
173'F5 =0 i= 0 p1 p3 Ps . (2.10)
Rewriting the posterior density (2.9) in this manner, multiplying
resulting terms times each other and the prior, and collecting terms

yields the numerator as a sum of w terms of the form -

M-l Y. Y(k+1)17]
€1y P, oo Pra (2.11)

where 1£1£y, w=I(z +1) for D containing more than one integer, < is a

function of theD1ncomplete data only (hence, not a function of p), and

k+1 k+1 k+l -

JZIY ]-n+121v1_m. That is, Zly =M is the sum of the prior parameters
v; plus the total number of observat1ons and thus is independent of 1.

[See following Section 2.2.3 for an example.]

Hence, each term (2.11) of the numerator can be written as a Dirich-
let density times a coefficient that is not a function of p Therefore,
integrating the numerator with respect to p to evaluate the denominator
yields thaf the posterior density of P given z is
k+1l Y]I w k+1

¢ I P /UL [cg T r(y.])/r(m)]}. (2.12)
1 j=119 1=1 ' j=1 I

[ e IR

f(plz) =
] .
w  k+l
Let B= I ¢, T P(Y ). Then the posterior mean of P; given z is
1=1 "j=1 ' -
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1Y ' k+1
E(pilz) =m z c]F(yi]+1) hid P(y.])/B. (2.13)
~ 1=1 j#id
Similarly,
2 v k+1
E(pi |z) = [m(m+1)] pX Clr(Yil+2) II F(y.])/B (2.14)
~ 1=1 AT
and
: I k+1
E(p;pylz) = [m(m+1)] " % ¢qT(y44+1)T(yq+1) T T(v.;)/B,(2.15)
1=1 j#i.h 9
for variance and covariance calculations
a2 2
var(p;|z) = E(p;"|2) - [E(p;]|2)] (2.16)
and
cov(ps,p,|z) = E(p;p,|2) - Elp;|2z) E(p,l2), (2.17)
respectively.

2.2.3 Example:

We now give an example for a small artificial data set to illus-
trate derivations given in Section 2.2.2. We also want to indicate
difficulties that would be encountefed in.numerically evaluating these
e]ements of the exact posterior mean and covariance matrices for
larger or more compiex data sets unless one has unusual computing
equipment.

We created the data in the more restrictive form of Hocking and
Oxspring to show how their form relates to ours. Suppose that we ‘have

observed the fo]iowing data on three categories Ci’ 12143,
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C1 C2 C3 ni
2 3 3 8
4~ 3 7 (2.18)
o, A 4
19 = n

where the arrows denote the two categories between which the incompletely
specified observations fall. The amount of incomplete data is 32% of

the total sample size. In the notation of Section 1.2, we have that,

-~
n

| = (1L2LG, 8 =01}, 8, =(2}, §; ,(3);

-~
|

2 - {{132} {3}}3 81,2={192}9 22’2‘:{3},

-~
L]

5= LL3) @21, 8, 4=(1,3), 3, =021

z{l}=2, 2{2}=3+2=5, 2{3}=3+3=6, 2{1’2}=4, 2{1,3}=2, 2{2’3}=0,
z=(2,5,6,4,2,0), and n= 3 ZS 2+5+6+4+2=19,
3

From (2.7) and (2.8), the likelihood of z given p is

~

oz) = 243+3): 2 3 3 g4+3)' 2 (2+2)! 2 2
L(B’E) 213131 1 P2P;3 p{1 2} P3 “7ToT P{1’3} P>
_ 874! 2 5 6 4 2
= gry3iaizizrzT Py P2 Pz (P*Pp)” (pytps)”. (2.19)

Suppose that we have a uniform prior g(pl,p2)=2; that is, v:=1 for
12143 in the Dirichlet prior (1.1). Then, the posterior density of P

given the incomplete data z is
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2 5 6 4
pl pz P3 (p1+p2) (p1+p3)2

1 1-p ’
2 2 5 6 4 2
SO Jo Py Py P3 (Py*py) (py*P3)” dpy dpy

Through expansion, multiplication, and collection of terms, the numerator

f(plz) = (2.20)

of the posterior density (2.20) can be written as

4 2
2 5 6 4 a_ 4-a 2 b 2-b,__2 9 8 3 8 8
pl pz p3 (a50<a) p1 p2 )(bfo(p) pl p3 )'pl p2 p3 +4 pl p2 p3

4 7 8, 5 6 8 6 5 8 9_7
*6p; Py P3 *4P TPy P3 1Py Pp Pt 2(p13p2 P3 +4p14p28p37+

(2.21)

5 7 7., 6_6_7._ 7. 5 17 4 9 6 8 6
6Py Py P3 +4py Py P3 tPy Po P3’) *Py Py P3 +4p15p2 P3

6.7 6 7.6 6

8 5 6
Pp P3 *4P; Py P3

+6p1 +p1 Po p3 .

Adding v;-1=1-1=0 to each exponent in (2.21), we have that the

numerator is a sum of wFH(ZD+1)=5X3=15 terms of the form
. D

Yyi=1  Yoq-1  yaq-1
11 2] 31
“GPh . P2 P3

3 3 .
with I Yip =t L vy = 19+3 = 22 for all 121415, Integrating the

i=1 i=1 '
numerator (2.21) with respect to p to evaluate the denominator yields
the posterior density (2.12) of p given z.

The smaller the variance of a distribution, the better a-point

estimate, such as the mean, is as a descriptor of the distribution.
Therefore, as a rough indication of how large the variance is, we define

a sample coefficient of variation
: L
C.V.(p;12) = [var(p,|2)1¥/E(p,|2). (2.22)

[Note that the coefficient of variation is usually defined as a standard
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deviation of an estimator (not a distribution) divided by the
estimator. ] |

Calculating the mean (2.13), variance (2.16), covariance (2.17),
and sample coefficient of variation (2.22) yields results shown in the

following Table 2.1.

TABLE 2.1
EXAMPLE 2.2.3 RESULTS

moment i 1 2 3
E(p;|2) 0.241202 0.384927 0.373871
var(p; |z) .011921 .012725 .011203
C.V.(p;]2) 4527 .2931 .2831
cov(pl,p2|5)=-0.006721, cov(pl,p3|5)=-0.005199

cqv(pz,p3|5)=-0.006004

As expecfed, the samp]e“coefficient of variation is highest for Py

because category 1 has the highest proportion of shared data. [Compare
(212+zl3)/(zl+212+zl3)=.75 with 212/(22+212)=.44 and 213/(z3+zl3)=.25.]
The posterior variance of Py is larger, in proportion to the posterior

mean of Pys than is that of Py OF Py to their respective posterior means.

In general, we have the following problems in evaluating the exact

posterior central moments:
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(1) 1large number of terms - hence, pocket calculators and many desk
calculators cannot be used; .

(2) rounding errors (in the large number of terms to sum, the products
of gamma functions and factorial-like constants Cys approximations
for the gamma functions, and final divisions, sums, and subtrac-
tions) - hence, computers must carry many figures of precision;
and

(3) 1large magnitude of terms (each term is a product of génera]ly large
gamma functions and factorial-like constants c]) - hence, computer§
must have an unusually large range of values unless much extra
computer programing and execution cost, time, and storage are used.

In the next few paragraphs, we discuss these problems and give several

illustrative examples. An example of an unusual electronic computer

that can be straightforwardly used to calculate these moments in small

enough samples is diécussed in Sections 5.4 and 5.10.

The example given in the last section is among the smallest data
sets one could have. Yet, even for it there are 15 terms in each of thé
numerators for E(pIIE), E(pyl2), E(plzlz): E(922|§). E(P32|5)s E(Plpzlf)s
E(p1p3|5), and E(p2p3|5). The denominator, the same for all calculations,
also had 15 terms. Hence, there were 135 terms plus all the multiplica-
tions within terms, additions, divisions, and subtractions to evaluate
the final moments. For a trinomial sample having incompletely specified
observatioﬁs 212=zl3=223=9, the number of terms in each numerator (and

the one denominator) is 1000. Hence, there are a total of 9,000 terms

to evaluate, not including any multiplication within terms, addition of
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the 1000 terms, and subtractions and divisions for the final moments.

Finally, for a trinomial sample having incompletely specified obser-
vations 212=16, zl3=17, and 223=17 (corresponding to 50% incomplete data
in.a sample size of 100 and 15% incomplete data in a sample size of 330),
there would be 5,202 terms in each numerator (and the one denominator)
for evaluating the posterior mean and covariance matrix. Thus, the total
number of terms, excluding the multiplications within terms, addition of
the 5,202 terms, etc. would be 46,818,

To evaluate these moments even on a large electronic computer can be
difficult. Because of the gamma function in the terms, we need a
computer having an unusually large range. In the second example, a term
of (g)(g)(g) r(35) r(40) r(32) = 10:134 would exceed the range of most
electronic computers. Most have ranges smaller than 10'100 - 10100. Yet,
depending on the prior, this is a term for a sample size of only 100, and
this is only one of 1,000 terms. We can circumvent the range problem by
dividing each term of tﬁe numerator and denominator‘by a large value;
hence, scaling down the terms. However, doing so takes more computer
programing and execution time, cost, and storage. Further, it also
creates problems with roundoff error. We might also have to sca]é down
more than once, depending on the values involved. Each successive such
scaling involves increasing cbst and roundoff error.

The cost and time involved in evaluating these moments is important.
The loss in precision, however, is critical. For the third examp]e, a
computer carrying even eight significant-figure accuracy will yield an
answer for the exact solution that can be counted on for only one or two

significant figures. [The large loss in precision owes to rounding errors
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in approximations fof the gamma functions, in the several mu]tiinca-
tions within each term; in the additions of the 5,202 terms'(roundoff
error is approximately v5202 or 2 to 3 significant figures), in the
final divisions, additions, and subtractions, along with roundoff error
from any divisions necessary to scale down the magnitude of terms to fit
within the range of the computer.]

If a computer carries six significant-figure accuracy, which is
common, one might not get any accurate evaluation. Hence, any canned
computer program would be particularly susceptible to wrong usagé and
interpretation. Someone not understanding the numerical problehs‘or
heeding any package warnings might use it on a six significant-figure
“single-precision accurate computer and think his answers were correct.

On many large electronic computers, one can use double-precision
significant-figure calculations. However, doing so would usually at
least quédruple the cost. Further, on those large electronic cohputers,
és well as those numerous kinds of desk and pocket calculators, not
_ allowing double-precision calculations, or enough single-precisipm
'accuracy, there is no way to obtain an accurate evaluation of the exact
posterior mean and covariance elements.

One driving factor in these problems is the large magnitude of the
terms. The other driving factor is the number w=H(zD+1) of these terms
in each numerator of E(pijlz).' As either sample gize or percentage of
incomplete data increases, w increases. For a sample size of 200 and
percentage of incomplete data of 50% with 212=zl3=33 and 223=34. the

number of terms in each numerator for the moments is 40,460. Hence, the
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total number of terms for just the numerators (excluding multiplica-
tions and gamma approximations involved in each term) is 364,140.
However, if we consider the same sample size and percentage of incomplete
data for a 5-nomial ﬁaving, say 212=15. 223=34, 225=16, z35=3, 2123=15,
and 21234=17, the number of terms in each numerator is 645,120 and the
total number of terms for just the numerators (with same preceding
exclusions) is 5,806,080. Hence, the problems illustrated for the tri-
nomial data samples, as well as the cost, increase in somewhat factorial
manner as the number of multinomial dimensions increase.

Finally, it would be nice to have a short, easily remembered and
easily evaluated, formula for at least the posterior mean. As Hoaglin
(1977) notes, such a formula is valuable. It can be evaluated by pocket
calculators anywhere. The maximum 1ikelihood estimate and posterior
mode, to be given in the next section, both have short, easily remembered
formulas. Although these formulas can often be evaluated by pocket calcu-
lator, they are not simple to evaluate in general. However, they are
very easy and inexpensive to program for computer evaluation. In parti-
cular, they do not have the three computational problems just outlined
for the exact posterior mean. We find in Chapter 3 that we can derive a

similar, although approximate, formula for the posterior mean.
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2.3 Mode Estimators:

2.3.1 Background:

In this section we show how the maximum 1ikelihood estimate and pos-
terior mode are derived. First consider the complete-data equivalent X
of z. Let zD(i) denote the (unknown) number of the z, observations that
fall in category Ci‘ Then, for 1£i€k+1,

_ (i)
X, = 2, + Iz . (2.23)
T g D

For the theory of this section, we want to express the compTete-data
density
k+1 k+1 x,
h(x|p) = (nt/ £ x.1) T p, (2.24)
- i=1 1 §=1

in terms of exponential-family parameters. Therefore, for 1€i2k, define

| ¢i = 1n(pi/pk+1). (2.25)
k+1
Definition (2.25) and T pi=1 yield that
, i=1
kK ¢, .
Prap = 1/(1+'21e h (2.26)
. 1 =
and : ¢i k ¢,
p; = e /(l+ e Jy. (2.27)
j=1

For 1<i¢k, define the sufficient statistics for p as
t.(x) = x,. © (2.28)

Then h(x|p) can be written in exponential-family form as

h(x|¢) = b(x) expl¢ t(x)']}/a(¢) | (2.29)

¢
1}
14

k+1 kK 65 k+1
for b(x)=n!/ T x.! and a(¢)=(1+ T e )  since I X=n.
~ j=1 " ~ j=1 i=1
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2.3.2 Maximum Likelihood Estimate:

For the multinomial distribution, the likelihood is the density.
Thus, we seek to maximize h(z|¢), the incomplete-data density (2.8)
rewritten in terms of the exponential parameters ¢. From Sundberg (1974),

the first and second partial derivatives of the log 1ikelihood are

dloglh(z|9)1/3¢ = -E[t(x)[¢] + E[t(x)]z,9] (2.30)

and

32109[h(zl9)]/(8989') = -cov[t(x)[¢] + cov[t(x)]z,9]. (2.31)

At the maximum of the 1ikelihood, the vector(2.30) of first partial deriv-

atives is zero, so that

E[t(x)}e] = E[t(x)]z,0]. (2.32)
Since
E[t,(x)]¢] = np., (2.33)
and, from (2.23),
E(z;12,¢) = z, (2.34)
and
E(zD(i)Ig,?) = 25 P./p (2.35)

where, again, Py~ z pj, evaluation of (2.32) yields that the maximum
' jeD

Tikelihood estimate 6i of py is

p. = [Zi+ Tz

; L pi/ﬁD]/n. (2.36)

D
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To solve the nonlinear system of equations arising from (2.36), we
use the EM algorithm of Dempster, Laird, and Rubin (1977). The algorithm
is divided into two steps. In the expectation step (their E-step), the
complete-data sufficient statistics E(f) are estimated by finding a solu-

tion to

£ 001 V=ere(x) 12,01, (2.37)
S(141)

-~

In the maximization step (their M-step), is determined as the solu-

tion of the equations

e |91 = (£00)1¢1), (2.38)
Thus, translating back from ¢ to p, we estimate an initial value ﬁi(o)
of 61 for 14i<k. We then substitute Q(O), together with z, into the right-
hand side 2.+ I ﬁi(o)/ﬁo(o) of (2.37) and evaluate for [E(f)](o). Given

(0) D31
[t(f)] , we then solve (2.38); i.e., we solve

np = t(x0 » (2.39)
)

=[t(x)](0)/n. We then successively repeat the E
(1)

for ﬁ(l); hence, Q
and M steps until convergence; that is, until successive values of §
agree to the desired number of significant figures.

Since we are concerned only with finite values of z, the 1likelihood
h(z[@) is bounded. Hence, the first condition of Dempster, Laird, énd
Rubin (1977) for guaranteeing convergence of the EM algorithm to a local
maximum or saddle point is satisfied. Further, the complete-data multi-
nomial distribution is a member of the regular exponential family. Hence,
the last convergence condition is simply that the eigenvalues of cov[E(f)lg]‘

be bounded above zero on some path joining all 9(]). From Graybill (1969,
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pl87), the eigenvalues A are the solution to the characteristic equation
k k

[1- = p.2/(p.-k)] I (p;-A) = 0. (2.40)
=11 e ]

In general, we want (2.31) to be negative semidefinite.
Dempster, Laird, and Rubin (1977) give the rate of convergence of the
EM algorithm. For the multinomial distribution the rate of convergence is

the largest eigenvalue of

covlt(x)]2,0091 tcovit (167, (2.41)

(t) (1)

for ¢ , provided that this eigenvalue is

~

the converged estimate of 9
less than 1. As expected, when the percentage of incomplete data is small,
the algorithm converges rapidly. As the percentage of incomplete data

increases, the number of iterations increases. Dempster, Laird, and Rubin
also note that, since the allocation of incompletely specified observations
often varies across different components of P, certain components of p may

converge rapidly while others may converge slowly.

2.3.3 Posterior Mode:

The derivation for the posterior mode of p given z is similar to that
for the maximum likelihood estimate. For the posterior mode, however, the
priok must be included in the maximization.

Recall from (2.9) that the posterior density of p given z is

f(plz) = g(p) h(glg)/fpkg(g) h(z|p) dp. (2.42)

From definition (1.1) of the prior g(E), that piece of 1og[f(p|3)] from

(2.42) that depends on p is the same as that piece of 1og[h(E|E)] that
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depends on p except that, for 1£i<k+l, z is replaced by (Zi+vi'1) and,

hence, n is replaced by n+%§1vj-(k+1) . Therefore, from (2.36), the
posterior mode E of. p givenJélis given by

2 2,2 k+l

p; = (21-+v1.-1+D§iszi/pD)/[n+j§1vj-(k+1)] (2.43)

for 1%i2k+1., As for the maximum likelihood estimate, we evaluate the non-
linear system of equations arising from (2.43) by the EM algorithm. The
comments in Section 2.3.2 concerning convergence also hold for the poster-
ior mode. In general, the prior should reduce the effect of incomplete
data so that convergence should be somewhat faster for the posterior mode
than for the maximum likelihood estimate. The numerator for the conver-
gence matrix in (2.41) is given in Appendix 4D.2 for the maximum likeli-
hood estimate. Derivation for the posterior mode is similar. Calculating
second partial derivatives of the two log likelihoods for the cohp1ete-

(t)yy-1

data case yields for elements of {cov[§(§)|? in the denominator of

(2.41):

for the maximum likelihood estimate -

511 = n-17, Mg, ()
and _ : (2.44)
/\" A t
PRI npk+1( )
and for the posterior mode ]
. k+1 ’
231 _ 2 (t), . ~(t)i2,.2 (t) ) 2 (t),2
5§ = [n+j§1vj-(k+l)] S PRSP S VAL PR R R A IR AR i
and (2.45)
Ag 2 J‘+1 A A
519 = tor x v (1)) [y vy 11718 (P2,

j=1
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In most céses, the brior parameters v, are greater than 1; hence, the
denominator in (2,41) fs usually ]argef for the posterior mode than for
the maximum Tikelihood estimate. Which of the posterior mode and the
maximum likelihood estimate actually has the faster rate of convergence,
of course, depends also on the relative sizes of the numerators in (2.41).
Note from the "-1" term that it is possible for (2.43) to be nega-
tive. If so, the mode occurs at a boundary point; i.e., the posterior

mode is zero. Also observe that if v.=1, for 1£i£k+1, then the poster-

jor mode and the maximum likelihood estimate are identical.



CHAPTER 3
APPROXIMATIONS FOR POSTERIOR MEAN AND COVARIANCE MATRICES

3.1 Introduction:

As discussed in Section 2.2.4, numerical evaluation of elements of
the mean and covariance matrices of the posterior distribution of P
given incomplete data z is unfeasible for all but those cases having
only a small number of incompletely specified observations. Therefore,
we seek approximations for these posterior moments.

In the next chapter, we prove that the limiting central moments of
P given z are corresponding moments of the limiting distribution. In
particular, the 1imit of the posterior mean is the mean of the limiting
posterior distribution. We also prove that the mean of the limiting
posterior distribution is the maximum likelihood estimate (2.36).
Finally, from equations (2.36) and (2.43), the posterior mode equals the
maximum likelihood estimate in the 1imit and, hence, equals the limiting
posterior mean. Therefore, two natural candidates to approximate the
exact posterior mean are the maximum likelihood estimate and the pos-
terior mode. However, there are also problems in using.these estimates
as approximations. |

The maximum likelihood estimate is best known for being good in
large samples; it.is not necessarily good in small samples. In
particular, if a value of z; has been observed that has very small
probability for given Py then the maximum likelihood estimate will be
poor if the sample size‘is small. For example, if Py = .20 ahd we

observe z; = 10 in a sample of size 25, then the maximum likelihood
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estimate ﬁi = .40 is a poor estimate of P Further, the maximum
likelihood estimate is the correct estimate for an estimation criterion
of choosing that value of p that maximizes the likelihood (2.8) and not
for an estimation criterion of minimizing expected risk (1.5). Finally,
the maximum likelihood estimate has no place for a prior, which is
important in all but those cases in which the current data is of large
enough sample size, or significantly greater relevance, to drown out
past information. |

The posterior hode (2.43) does incorporate the prior. However, the
posterior mode is the correct estimate for an estimation criterion of
choosing that value of P that maximizes the posterior density given the
prior density g(g) and observed data z and. not for an estimation cri-
terion of minimizing expgcted risk. Finally, from equation (2.43) we
observe thét, for small enough prior Vis @ component of the posterior
mode si can be approximately zero even though an Qbservation (zi=1) has
been observed.

A different approach for approximétihg the exact posterior mean E
is to note that the posterior mean of the complete-data Dirichlet
density with prior parameters (vl,...,vk;vk+1) equals the posterior mode
of the complete-data Dirichlet density With prior parameters (v1+1,...,
vk+1;vk+1+1); that is, from (2.2)

k+1" k+1

(x;+v;)/(n+ T vi) = [x;#(v;#1)-1]/[n+ £

+1)-(k+1)]. 3.1
I I pr-(e)) ()

Therefore, paralleling the incomplete-data posterior mode (2.46), we

could estimate the incomp]ete-data exact posterior mean (2.13) by
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+

B; = (Zi+“i+0§i2051/50)/("+§§i”j)' (3.2)
A very important‘property of approximétion (3.2) is that as the propor-
tion Dg.zD/(n+ZvJ.) of incomplete data goes to zero, approximation (3.2)
equals ;he exact posterior mean (3.1).

However, there are problems with this approach to obtain (3.2). We
find in this chapter that the relationship between the posterior mean
and posterior mode for complete data does not hold for incomplete data.
Thus, (3.2) is an approximation and this approach does not enable us to
assess its accuracy. Finally, from consideration of the definition and
from small-sample examples (one given at the end of this chapter), we
do not expect the large-sample covariance matrix of the posterior mode
or maximum likelihood estimate to be a good approximation for the exact
posterior covariance matrix. Therefore, we seek another type of approach
for estimating the exact posterior -central momentsz

As noted, both the pdsterior mode and maximum likelihood estimate
are derived from consideration of an estimation criterion other than
minimization of expected risk (1.5). Therefore, one way to seek another
approximation is to start with the desired estimation criterion; that is
begin with the exact so]utiohs for the posterior mean and covariance
matrices. However, approximating exact solutions (2.13) - (2.17) for
the posterior moments given incomplete data is difficult because of the
number and structure of terms. An alternative method starts with exact

solutions (2.2) - (2.6) for the posterior moments given complete data

and then transforms these solutions via conditional probability to the
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incomplete-data case, making any necessary approximations along the
way.

In this chapter. we follow the above approach to derive approxima-
tions for the posferior central moments by making extended use of
coﬁditiona] probabi]ify and first-order Taylor-series approximations.
Section 2.2 gives the posterior moments given complete data. | Therefore,
for incomplete data z we substitute fictitious complete data consistent
with z and write the results of Section 2.2;1. Then, twice applying
known lemmas on conditioning, we average results from the complete-data
step over the posterior distribution of the unknown, substituted, com-
plete data. At this point we still have unknown terms in the
expressions. For these, we use Taylor-series approxfmations. The
resulting approximation for the posterior méan‘is equation (3.2); hence..
as the percentage of incomplete data goes to zeho,_the approximation
goes to the exact posterior mean. From (2.36) and (2.43), neither the
maximum likelihood estimate nor the posterior mode has this important
property. Also, since asymptotically (3.2) equals.the maximum 1ikelihood
estimate (2.36), it equals‘the 1imiting exact posterior mean. Further,
since Taylor-series expansions are used, we can assess the accuracy of
the approximations. Finally, we can use the same approach to approxi-
mate elements of the posferior covariance matrix. Doing so, we find the
same important property in the resulting approximations that they go to
the exact posterior variances and covariances as the percentage of
incomplete data goes to zero. Note that, since the Tay]or-ﬁeries

approximation (3.2) for the posterior mean is also a posterior mode
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[for the prior vi+1], it can be gva]uated by the EM algorithm discussed
in Section 2.3.2.

In the next section, we derive the Taylor-series approximations for
elements of the posterior mean and covariance matrices. Intermediate
calculations are giyen in Appendices 3A, 3B, and 3C. Section 3.3 alge-
braically illustrates the resulting approximations for the trinomial
distribution. Section 3.4 concludes the chapter with a comparison of
the Taylor-series approximations, maximum likelihood estimate, and the

posterior mode on the small-sample data set given in Section 2.2.3.
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3.2 Derivation of Taylor-Series Approximations:

3.2.1 Posterior Mean Vector:

Again let D denote the set. 3 from Section 1.2 containing more than
one element and, for ieD, define zD(i) as the number of the zp observations
that fall in category i. If zD(i) were known for all i and all D, then the
data would be complete and the posterior centfa] moments would directly
follow from Section 2.2.1. Therefore, assume that we know all zD(i) and
denote the vector of this unknown information by u. Thus, u is the vector
of all zD(i) for all D and all 1<i=k. For example, in Section 2.2.3 we
would have that E=(212(1)’213(1)) and E=(21322’z3’212’213’223)' Given

z and u, then, for 1£i¢k, we have complete data

X = I zz(‘) = 2.+ 3 zD(’). (3.3)
Bi Dai
k+1
Thus, from Section 2.2.1, recalling that m= Z vj+n, we have from (2.2) the
=130
posterior mean
- - ., (1) :
E(pilf,g) = (xi+vi)/m = (zi+D§ﬁzD +Vi)/m' . : (3.4)

To obtain moments of p given only the observed data z, then, we average

result (3.4) over the distribution of ulz. To do so, write the posterior

~ o~

density f(plz) as

f(p|z) = s &(p,ulz) du
~ ~ s~ (3.5)

s g(plz,u) h(ulz) du

for £(p,ulz) the joint posterior density of p and u given z and 9(E|E’B)

and h(ulz), conditional densities.



_38-

From (3.5) we obtain the following standard lemma [see Parzen (1962,
p55) or Rao (1968,p79)] on conditioning, which we write in terms of gen-
eral random variables V and W because we apply the lemma to one other den-

sity besides f(plz):

Lemma 3.1: For random variables V and W, and where the variable under the
expected-value sign E is the variable with respect to which the expecta-

tion is to be taken: E(V)=5[E(VIW)], var(v)=ﬁ[var(vlw)]+v;r[E(V|W)],

and cov(V =E[cov(V1;V2|W)]+cov[E(V1|W),E(VZIW)].
W

V,)
1°°2 W
By using Lemma 3.1 and (3.4) we have, defining rib=pi/pD, that

E(p|2) = E [E(p;lz,u)]
~ Elz ~ o~

-E{l s zz(‘)+v.]/m}
|z 2> !

~

L2+ 2 Bz I2ywv;1m | (3.6)
>j ‘

[E(ZD(i)lg,g)]}/m

"
—~

N
<+

<

—to

<
[ne]
—m

lz.+v.+ Tz, E (r. |2)]/m.
T o D Plf iD'Z

The first line of (3.6) follows from applying Lemma 3.1 to E(p,[z); the

second line, from complete-data posterior mean (2.2); and the third line,

from separating out that part of L 23(1) that is already known. The
FER] .
fourth line of (3.6) follows from applying Lemma 3.1 to E(zD(1)]§); and

the last line, from the complete-data multinomial specification.
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In Appendix 3B we show through Taylor-series expansions that
- -1

Tz(riDIE) E(p;1z)/E(pplz) + O(n "), (3.7)
where the symbol 0 giving the order of magnitude of the error is defined
in Appendix 3B. Details are given in Appendix 3B. Therefore, substitu-
ting (3.7) into (3.6) and collecting terms yields, for 515E(pi|z) and
the error €; to be determined in Chapter 4, that

P = (Zi+vi+D§iszi/pD)/m ey (3.8)

Dropping the error term in (3.8) yields, for 1%i2k, the Taylor-series
approximate posterior mean vector 6; i.e.,

p; = (zi+vi+DZ.szi/pD)/m- ' (3.9)
3i

Observe that (3.9) is the same approximation (3.2) obtained by
paralleling the complete-data relationship between the exact posterior
mean and the posterior mode.

Calculations for Taylor-Series Approximate Posterior Mean: For

those categories i that have only comﬁ]ete data, the Taylor-series
approximation is the exact posterior mean (2.2). For those categories i
that have incomplete data, we use the EM jterative algorithm of Dempster,
Laird, and Rubin (1977) described in Section 2.3.2 since (3.9) is a
posterior mode for the prior Bi=“i+1' Thus, for those categories i

that have incomb]ete data, s denoting the number of iteration, and

5 (s)=5.(s)/5n(s), (3.10)
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we approximate the exact posterior mean from (3.9) by the iterative

algorithm

2 (s+1) _ 2 (s)
P = [Zi+vi+D§12DriD 1/m. (3.11)

To begin (3.11), we use the data z, prior parameters Vs and any
other available information to choose an initial estimate 51(0), 1%1%k,
and thus an initial estimate of %iD(O)' Substituting ?iD(O) into the
right-hand side of (3.11), we evaluate (3.11) to obtain 51(1) and ﬁiD(l)
for all i referring to categories havihg incompiete data. Using ﬁiD(l)’
we then reevaluate (3.11) to calculate 61(2). We continue in this
cyclic fashion until results from successive iterations agree to the
desired number of significant figures.

Note that the system of k equations arising from (3.9) for the
Taylor-series approximate posterior mean is nonlinear. Thus, as for
the maximum likelihood estimate (2.36) and the posterior mode (2.43), -
the number of solutions to this system can range from zero to infinity.
[See Ortega and Rheinboldt (1970,p2).] If there are solutions, none
need be in Pk. If a solution is in Pk’ it need nof be close to the
exact posterior mean. However, since (3.9) is a posterior mode for the
prior §=3+1, Dempster, Laird, and Rubin (1977) give conditions (dis-
cussed in Sections 2.3, 4.3.2, and 5.8.3 and Appendix 4E) under which
an iterative solution for (3.9) conVerges to a local maximum in Py
Hente, when these conditions are met, there is at least one solution in

P In Chapter 4 we give conditions under which an iterative solution

K
converges to within a small error of the exact posterior mean. We also

speculate that this solution, when it exists, is given by the global
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maximum in Pk’ which is found by choosing that one of the local
maximum in Pk that maximizes the likelihood.

When there are only a few patterns of incomplete data, the non-
linear system of equations arising from (3.9) for the posterior mean
vector can sometimes be solved analytically. Several solutions will be
obtained but usually all but one will fail to satisfy the constraints
055.51 and k;161=1. Examples of analytic solutions for the asymptotic

i .
i=1
posterior mean and covariance matrices are given in Appendix 4D.5. -

3.2.2 Posterior Covariance Matrix:

For approximating elements of the posterior covariance matrix, we
follow the same procedure given in the last section. For the complete-

data step that lead to (3.4), we obtain

var(ps|z,u) = {E(p;|z,u) [1-E(p,|z,u)]}/(m+1) (3.12)
and
cov(p;,p,|z,u) = - [E(p;|z,u) E(p,|z,u)1/ (m+1). (3.13)
For the conditioning step that lead to (3.6), we obtain
2
var(p:|z) = I [zpvar(r.,|z)+ £ 22z, cov(r.p.r.fz)]/[m(m+l)]
ilz Di D E'E iD'< Qi D™Q Elf iD* iQ'=<
Q7D (3.14)
+{ I (zp/m) E [riD(l-riD)|§]+E(pilg)[l-E(piIg)]}/(m+1),
D31 BIE

and, for h#i,
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cov(p,sp,l2z) = Z % zDzQ/[m(m+1)]'COV(PiD’YhQIE)

D3i Qzh plz
. - (3.15)
-[ = (zz/m) E (r. r.ol2)*+E(p.|z)E(p,.|2)]/(m+1).
D3i.h D ~I§ iD hD'< 1|~ h|~

Derivations for (3.14) and (3.15) are given in Appendix 3A.
Finally, for the ratio-approximation step that lead to (3.8), we
have, with ratio moments given in Appendix 3B and substitutjon details

for (3.14) given in Appendix 3C, that

. N 42, o -
514 7 ok, (eo/mUzpm 1)/ (m1)1/By LBy G+F; L P10 5572y054+205. 2 559 1)
1>

+ 3T (z/m)lzg/ (m1)1/ (Bypg) By lBgdy 4By B 849148y I [By 3 85-Bgdy 1)

D>i Qs Neq jep lleg
D
+ B (2g/m)BBy/By° + By (1-5;)1/(m1) + 65 (3.16)

Dai
and, for h>i and D denoting D minus the integer h,

Gip = 5. 3 (2p/m) 20/ (m+1)1/ (3,25, %)

(BB, By T 8:r14D. T [Py & 3.0-podsr ]}
Dsi Qsh P*"@"ih Th i1- " h 177Q"jh

len jep Meq Y

Do PiPh Pp *PpPpOin~PhPp.Z O557PiPp. 2 O5n*PpPy L Zm°j1)

PP, 1/ (m1) + 6., (3.17)

where 5115V3V(P1|E)a aihEcov(pi,phlg), P and f) denote D and Q, respec-
tively, minus the integer over which they are summed (so that p is D
minus i and @ is Q minus h or Q minus i depending on the definition of Q
given under the summation sign), and, again, 5iEE(pi|E) so that

pij=pi+pj‘ The terms 611 and 61h represent the error made by
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approximating posterior moments of the ratios rsp in equatfons (3.14)
and (3.15), respectively.

Dropping the error terms in (3.16) and (3.17) and then solving the
resulting nonlinear system of equations for 1%2i%k and i<h#k yields the
Taylor-series approximate posterior covariance matrix with elements éii
and éih' Note that, as for the Taylor-series approximation for the
posterior mean, the Taylor-series approximate posterior covariance matrix
goes to the exact posterior covariance matrix as the percentage of

incomplete data goes to zero.

Calculations for Taylor-Series Approximate Covariances: Thus, to

solve the nonlinear system of equations for the Taylor-series approxi-
mate posterior covariance matrix, first note that for those categories

that have only complete data,

5;4 = B;(1-B;)/(m+1) (3.18)

and, for category h also having only complete data,

G = -BiBy/ (me1) (3.19)

in agreement with (2.3) and (2.4), respectfve]y. Recall that §i=5i and
. Bh=5h fn this case of complete data.

For those categories i that have incomplete data, results are a
nonite}ative est{méte of 61h for'category h having only complete data and
a choice of iterative and noniterative estimates for elements aij for
category j, as Wei] as 1, having incomplete data.

For category h haviné only complete data and category i having

incomplete data, we approximate cov(pi,phlg) by
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S = B3 B/ (me) (3.20)

z (t)

for P; denoting the converged estimate ﬁi(s) from (3.11). Approxi-

mation (3.20) is noniterative in éih'
For i and h referring to categories that have incomplete data and
for s again denoting the number of iterations, we can write (3.16) and

(3.17) as iterative algorithms. To do so, we drop the error terms 6ih

and write 3, on the left-hand side of (3.16) and (3.17) as §., (5*1)

and aih on the right-hand side of these equations as ﬁi(t) and

(t)

~and bi

2 (s)

Cin , respectively, for 61 denoting the converged estimate from

(3.11). These equations are given for the trinomial distribution in

the next section.

To obtain initial estimates éii(O) and é.h(o), we assume, for the

first iteration only, that the ratio r 55 /5 is nonrandom. With
.14),

this assumption, we have from (3.11), (3 and (3.15) that

LR ALIE AL ))+Dz (zp/m) ¥ D F D sm) (3.21)
3i
and

5.0 = 5.5 (Ve s (zy/m) %iD(t)%hD(t)]/(m+i). (3.22)

Dai,h
The second procédure for estimating elements of the posterior
covariance matrix for those q categories that have incomplete data is
noniterative in aij' for both i and j referring to cqtegories having
incomplete data; E]h coefficients of Blh’ and Eij a term that is not a

function of G]h for any 1 or h, we can write equations (3.16) and

(3.17) as
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6., = r I [Z rad ]+b + 8., (3.23)
157 03 qaj 160 heg 1M 1P 1

where we note that d.j also contains terms in 01 [for example, second-
order terms in the approximation for E(r D]z are terms in 011]
Thus, we can write (3.23) as a linear system of q(q+1)/2 equations

in the q(q+1)/2 unknowns 811 and aij:

1 (3.24)

where § is the q(q+1)/2x1 vector of 513 for both i and j referring to
categories having incomplete data, E is the q{(q+1)/2xq(q+1)/2 matrix of
the E]h, E is the q(q+1)/2xq(q+1)/2 matrix with Eij on the diagonal and
0's elsewhere, 1 is the q(q+1)/2xq(q+1)/2 identity matrix, Sp is the
q(q+1)/2xq(q+1)/2 matrix containing those terms in 6 . that are terms
in g, Sg is the q(q+1)/2xq(q+1)/2 matrix containing zeros on the off-
diagonal and the remaining terms of Gij divfded by Bij on the diagonal,
and 1 is the q(q+1)/2x1 vector containing all 1's.

The Taylor-series approximation éij for these. terms aij of the
covariance matrix is then given from (3.24) by dropping the error terms

Sp and GB’ substituting the converged approximation p (t) from (3.11)

for p in A and B yielding the matrices A and B, respectively; and

I Qe

computing ¢ as

(3.25)

Qe
1

! Il

10
—

The tradeoff between the two procedures to approximate elements of
the posterior covariance matrix for those categories that have

incomplete data is the cost of the one-time expense of the larger-
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dimensional operation (3.25) in the noniterative procedure versus the
cost of iteratively evaluating the smaller-dimensional [q(gq+1)/2]x1
covariance vector written directly from (3.16) and (3.17). In the next
section we illustrate these Taylor-series approximations by writing them
for the general case for the trinomial distribution. We conclude the

chapter by giving a numerical example.
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3.3 Algebraic Trinomial I1lustration:

Suppose that, having taken minimization of expected risk as the cri-

terion for choosing a point estimate of the posterior distribution of

21329323521 9>21337p3)s We
want to calculate elements pl, p2, and p3=1-p1-p2 of the posterior mean

p= (pl,pz,pB) given incomplete trinomial data z= (z

vector. Suppose also that, for the same estimation criterion, we have past
estimates Bi calculated from a recent data sample of size n and prior

parameters 51, whence we calculate new prior parameters

k¥l
=(n+ & \) )p.. (3.26)
'I i°
j= =1 J

If we had no information other than z, we could set vi=1 to obtain a
uniform prior.

Recall that p J( )=6i(s)+§j(s) and that ¥, (s )=§i(s)/61j(s). Then,

ij
from (3.11) jterative estimates of elements of p are given by

2 (s+1)_ (s),, & (s)
By =lzptophzyofy, vz 3 ) /m
and (541 ( ( (3.27)
2 (st X
by )-(z 2,492,751 S)’“223‘”23 *)/m.

To choose an initial estimate 51(0) to calculate ﬁij(O) for (3.27), we
use the previous estimate 51, theoretical results (such as from genetic or

(0)

engineering laws), and/or current data. Then, calculating r. for

ij
1¢1,j43 and substituting results into the right-hand side of (3.27), we
iterate on (3.27) until results converge.

To estimate the posterior covariance matrix, we have from (3.16) and

(3.17) that
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. 2 e e ae !
G (zlz/m)[(zlz--l)/(m+1)]{p2 G149 [B16,5-20,8,,11/Py,

ik Ze e a4
H2)g/m (25~ 1)/ (1) 1py 0y #5, [F1833-2551 313/

~ ~ o~ ~ A ~ ~ ~ A ~ ~ 2
+2(z12/m)[213/(m+1)J{p2[p3011-p1913]+p1[p1023-p3012]}/(p12p13)

+(20,/MB B,/ (Byp) 2+ (2, 5/MB B/ (By)° + By (1B M/ (1) + 6,

4

~

By, = 2yp /nlme1) 1B, By 425,55 5By 55,0/},
#2125/ (1) 15, (33 8,8 3145, 18,8585, 11/ (5 )
v2y,2, 3/ (1) 1B, 135,051 148, 1B, 5Byopg 11 (B8 5)0 (3.28)
42 32,3/ (1) 13 B3 -3 3 148, [B 933P 1} (B 58 3)°

T o N R B
- Hzyp/mUByPoPy, By 01128 Po01pmPy "Bp ) Brp + PyPpl/ (ML) + 8y,

~

] 5.2 45 (55255 11/5. 0
S3p = (29/M(21p- 1)/ (LIR8540, [Py511-29181,1 /Py,

Y 2n ~ o o~ . 4

o 2
+2(2p/M) [ 25/ (1) 1B [B38,97B 58,3 14D, 18 ,8,3-P81,11/ (B )P p5)

2

S ox g N ox oy 2L ~
+{(212/m)p1p2/p12 +(223(m)p2p3/p23 + p2(1-p2)}/(m+1) + 622’

To estimate the posterior covariance matrix by the iterative procedure,

we iterate on (3.27) until the convergence condition is met on, say, the tth

N e e (8) . e (1) (1) .
iteration. Then, for fi By s fij'pij , and gij ?ij , e rewrite (3.28)

as
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2 (s+l) _ 2 2+ (s) 2 (s), . 2: (s)
011 T 2y /Im(m )1, %Gy 26 6y, e 5 HE,

(s) (s)

4

+2132/{m(m+1)]{f132311($)+2f f

171301 #f

22 4
1 % 'Hf5

#2221 3/ [m(m+1) 4 2

z (s) 2 (s) . 22 (s)
13911 Mlfo-frglogy HF1 56, 1 (8 )

2 2+ (s) 2 (s),. 22 (s) 2 4
G P PP R S FCR S22 F1ff1 VF,

22 (s) 2 (s).. 22 (s) 2 4 .
+(Zl3/m)[f13 011 +2f1f13012 +f1 Gy -f1f3f13 ]/f13 _fl(l-fl)}/(m+1)’

5125 = 2 Bt )10, 25 Shage p 5 (816 25

s) 4
11 1'2%2 "-f1 By " 'MAY,

(s} far (s) .22 (s)
2'13%11 #FylF5F,06), e 55 M(f1of13)

+212213/[m(m+1)]{-f 2

*21923/ I 1) 11,28, e 1,008 Ve 5 yy0e ¢ 2

2'f23 1'23%2° 12723 (3.29)

2 (s) 2 (s) 2 (s) 2
*213%53/ IMML)ILE ) 381 2 el F 426 065 17030, M (F5F5)
(s)

(s)

22 (s) 2
- Uzpp/mi-f, 50, e .50,

22 2 4
-fl Gs +f1f2f12 ]/f12 + f1f2}/(m+l)’

) - 21 /Inm 1) 106, %8, (oo 3, (e 25 ()

2. |

2 (s) s). . 4
23%12 *f23 05y M/ f,g

v2p3 /In(m1) 10, %) Sz ¢

+2212223/[m(m+1)]{-f223 (S)+f2[fl- 2

.+ (s) 2 (s)
F231012 " #F 153005 "}/ (F1F 53)

2= (s)
Gy -Tfof,

11

2: (s)
-{(zlz/m)[f2 Gyp -2f,f

s (s)
172912

2 4
]/f12

2 (s)+2f £ 2 (s) . 2: (s)

+f 4
2 °11 2 23°%12 23 992

2
+(z,/m)( fof3fyy 1/f,5 -f,(1-5,)1/ (me1).

(0)

where we calculate initial estimates éii(O)

and éij from (3.21) and (3.22)

as
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&11(0) [ (1-F1)+(2) ,/m)9y,(1-9, ) )4 (2, 3/m)g; 4(1-g,5)1/ (1),

1}

Qe

§

12(0) = - [fF)4(z),/m)9)59,9 1/ (m+1) (3.30)

5050 = [F,(1-F,)+(21 /Mg,y (19, 1+ (2,5/m) g, 5 (1-0,0) 1/ (1)

After evaluating (3.30) we iterate on (3.29) until results converge.
To estimate the posterior covariance matrix by the noniterative pro-
cedure, we substitute in equations (3.28) for 613, 623, and 633 in terms of

G115 Oppo and Tpos collect terms, and rewrite equations (3.28) as

"y (1-Fy 0 (21/m)gy )90 H(213/M)9 383, 1/ (ML) + 7y,

. 2 2 2
= 1 (14002191 /F19*213/F13) 2150901/ F15) 213/ Fy 37 1/ Im(me 1)1
§ 2
+281,[(213913/F1 37295915/ F15)(21 5951 /152937130421 591,951 /F1,
2
‘213913/f13 ]/[m(m+1)]

~ 2 2 2
8,5[(215915/F197213913/T13) 7= 295(915/F15)7+213(9,3/F13)7] /Im(m+1)],

' 2
f1f2[1+212/(mf12 )1/ (m+l) + 10

= ' 2
= 810029950/ 15%213/F130(2939,5/F 537219859 /F1 50421 5(959/F15) 71/ [m(me1) ]

- 2 2 2 2
48 {140 (29, F 1 /5,42, (128 /6,5 (20,6 /61,42y 5 (1-2F,) /6 05) - (3.31)

2 2
2) f15 +213223(f12-2f1f2)/(f13f23) 1/ [m(m+1)7}

+21,(21,-2)91,9y;

5 ' ’ 2
p [ (215910/F 15253/ T30 (2139 3/ 37270915/ F1,)4215(95 /1) 71/ [m(m+1)],
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and

SR (1 )4 (21 p/m)91 5951+ (253/M) 9930351/ (mH1) + 1y

o ) 2
= 0110(212951/1572539,3/F53)

2 2
-212(921/f12) '223(923/f23) ]/[m(m+1)]
§ 2
+281 5[ (29599511 5253/ F 93 (215951 /T 9=2539,3/ F 530421 59,5951 /1

2
-223923/f23 ]/[m(m+1)]

. 2 2 2
¥t 1215915/ %124 253/ T3 ) - 2100915/ F10) 293/ F 3 1/ Imim+ D11,

le

for Tij=6ij

(t)

plus the error made from approximating ﬁi by fiEpi

Dropping the error terms Tij, we have that equations (3.31) are three
equations linear in the approximations 311, 312, and 522 of the posterior
covariances 611, 612, and 622, respectively. That is, we approximate

elements of the posterior covariance matrix by

5 = Kt g | (3.32)
where 8=(811,812,622), é is-the 3x3 coefficient matrix of G from the.

right-hand side of (3.31), and § is the 3x1 column vector of constants

given on the left-hand side of (3.31).
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3.4 Numerical Example:

a

We now compare the Tay]dr-series approximations for elements of the
posterior mean and covariance matrices with approximations given by the
maximum 1ikelihood estimate and by the posterior mode on é small sample.
We use the exahple given in Section 2.2.3. Initial estimates for the

0)=;33(0)=3/8. The condition

5+1)_6.(5)|
1

iterative algorithms were 5i(o)=1/4 and 52(

for convergence was that the absolute relative difference Iﬁi(

/b-(s) (s)

i denotes the sth iteration of approx-

be Tess than 0.001 where 61
imation 61. Because a uniform prior was used, the posterior mode equals
the maximum likelihood estimate.

Results from these approximations are given in the following Table
3.1. The Taylor-series approximations are by far the better approxima-
tions for elements of the posterior mean and covariance matrices. Fur-
ther, they are excellent approximations for such a small sample. For
example, values of the Taylor-series approximate pdsterior mean differ
from the three corresponding elements of the exact posterior mean by only
0.3%, 0.1%, and 0.1% in percentage absolute relative difference 100x
|51'51|/51' Corresponding percentage absolute relative differences for

the maximum likelihood esimate (= posterior mode) are 9.7%, 3.8%, and

2.4%, respectively.
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3.5 Summary:

In this chapter we considered three different approximations for
elements of the posterior mean vector and one approximation for elements
of the posterior covariance matrix. The maximum likelihood estimate (2.36)
and posterior mode (2.43) were considered because they asymptotically equal
the Timiting posterior mean. However, as discussed in the first section,
there are problems with using these two estimates to approximate the
posterior mean. We then derived an approximation by conditioning twice
from the complete-data posterior mean and using Taylor-series expansions
for the unknown terms. An important property of the resulting Taylor-
series -approximation is that as the percéntage of incomplete data goes to
" zero, the approximation goes to the exact bosterior mean. Neither the
maximum 1ikelihood estimate nor the posterior mode has this property. The
Taylor-series approximation also relates to the posterior mode (2.43) in
the same manner that the comp]ete:data poéterior méan relates to. the
complete-data posterior mode. Because the Taylor-series approximation is

thus a posterior mode (for B.=v.+1), we were able to solve its nonlinear

Q.

system of equatiens by the EM algerithm diseussed in Section 2,3.2.

i
33
(G
D
=
ol
—t
D
cot
[¢e2)
n
Q-
e}
Nod
[$+1)
[
3
ot
®
-3
o
Qv
-3
‘—P
w

Approximatigns for the posterier mean and thej

~

[N)

are given in the follgwing Table 3.2,
The same approach of eonditiening and using 1 ylgr:§grig§ expansions

was alsg used to derive appreximatiens fer elements of the pgsterior co-

variance matrix, The resulting appreximatigns alse have the important

property that as the percentage of jpcemplete data goes to zere, the approx-

(’N

covarignee matrix. We

F
showed hew to solve the system of eguations frem the appreximations either

&I
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iteratively or noniteratively, once the posterior mean has been app}oximated.
We illustrated the Taylor-series approximations algebraically for the

trinomial distribution and then compared them numerically with the maximum

likelihood estimate and the posterior mode for a uniform prior on a small

sample.
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APPENDIX 3A |
CONDITIONAL DERIVATIONS FOR TAYLOR-SERIES APPROXIMATIONS
FOR POSTERIOR COVARIANCE MATRIX

3A.1 Posterior Variance:

For 14i4k and Q, like D, denoting § containing more than one

element,

var(p;|2) T [var(p;|z,u)] + var(E(p;|z,u)]

o[ ofz

- 2 -1 (i)
= E {[m"(ml)] “[z,:,+ L 2 +v; 1m-(z
| (i} D= D {i}

[ =
N

(1) -2 (i)
+ Iz v, YIMm “var[z,.,+ £ z v ]
D3i D ulz i g3y 0

: {[m"z{i}*vi)][Z{i}*“i+DZ.E(ZD(i)IE)]‘(Z{i}*Vi)

x L E(z (1)|z) E[( Z ZD(1)IZ) ]
Dai ) (3A.1)
+(m+1)var( z.zD(l)lz]}/[mz(m+1)]
D2i

= (}m [z{ }+v + 2oz E ( Dlz)]}{z{ 3ty

D2i “p|z
Iz ]z)} - E (1-r;5) 2]
Do DEI~ iD AL |E "ip'* "D
+z,“var(r, lz) +5z cov(r.n,r: |z)}
D pIZ iD 03] D Q BIE . D 1Q
Q#D
+(m+l) T zy E [r1D(1 r. D)|z]+z var(r Dlz)

D2 “p|z

~ ~ o~

+Q§1ZD Q COV(r1D.rIQIZ)1)/[m (m+1)],
Q7D el
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because

Bz, 12) = £ 16(zy{ ) 1p2)1 = 25 E (rypl2) (3A.2)
plz plz

and

el 2 2, 2)%1 = 1 (61(zy V2) 200 3 E(z )zQ(i)Iz)} '
D=i Q2i -

D2i
Q#D
- (i) (1) ,112
= Z E .
Da_(var(zD l§)+[ (zp'']2)]
o COV(z zQ |2)+[E(z" 7 |2) ][E(2 Ig)]ﬂ
Q#D
E [var(z (‘)lz,p)]+var[E Iz,p)]
031 plz plz
s E [E(zy{ V2,010
plz i
+ZI (E [co (i), (1) »p) 1]
Q21 \p|z v(zp' Tz lza)
Q#D ~ ~ '
+c?v[E(ZD(i)Ig,g).E(ZQ(i)If,g)] (3.3)
- PRIz
+LE [E(zp D |z 1 CE ez 2, p)]}i]
plz plz |

=z {zj E [ry (1- -rip)l21+z, var(r |2)+2 [ E ( [z)]

o
lN

~ o~

+ % [Z2nzacov(r. nar:nlz)+znza E (r.o]z) E (rinl2) 1}
o oraghy o iql2)*2p 0, inl2) £ ("igl2

[ =]
!N

=% {z, E [r;o(1-r, )lz] + 2 var(r |z)
D>i D El iD iD D PIZ iD
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+3I2z cov(r roolz)}+ [ 2z, E ( z ]
Q=i b*Q iD Ql ) D3i D plz "il2)
Q#D el T
and
var( T z (1)|z) = T [var(z 0(1)|z) + I cov(z (1) ( )|z)]
D2i D3i Qi
Q#D
= I ( E [var(z (1)|z p)] + var[E(z (1)|z,p)]
D3i \p|z plz
+3r {E [cov(z (1>,z (1)|z P)] (3A.4)
Q3 p
Q#D aE

+ cov[E(z (1)|z,p) E(z )lz.p)]})
plz o

2
+ I {z E [rin(l-r. )|z] + 2" var(r, |z)
031 EIE 1D 1D ~ D plz D

+ Iz cov(r r.nlz)}.
Qai D Q iD Ql
- Q#D el

since cov(z (i ),z (1)) =0 for Q#D.
Therefore, combining terms in (3A.1) and recalling (3.6),
var(p;[2) = I {z 2/[m(m+1)] var(r, spl2)* £z Q/[m(m+1)] cov(r.p,r, le)}

" Dai p|z 031 p|z

Q7D (3A.5)

+ {E(p;12) [1-E(py2)] + = (zp/m) T rip{i-rip) [213/(m1).
piz



_60_

3A.2 Posterior Covariance

Finally, for 14i,h4k,i#h, and Q defined as in 4A.1, we have that

cov(p;,pp|2) = UTZ[COV(pi.phlg,g)] + 3?;[E(pilg.g).E(phI§,g)]

~ o~

2 -1 (i) (h)
- m"(m+1)] * E {[z,.\*+ & 25" 4y [z, \+ L 2 +v, ]
EI { } D31 {h} Qah Q h

-2 (i) (h)
+m “cov[z,.\«+ I 2 V.42, 1t L Z +v, ] (3A.6)
UIZ {1} D3i D 1 {h} Qah Q h

{(z;1+v,.) £ 2z E ( 2)+(z v, Yz, to Z z, E ( |z)]
thy™n) I DElE Fipl2)* (2 pvyd 2yt QBlE g

- ¢ z, E (r, |z)+ I Lz 2 [cov(r.n.r.n|2)

+ E (r, E ( m+l z >
l (r.pl2) | Fhgl2)1-( )[031 QathzQ ETZ(r‘D Fhg!2)

- I 25E( |z)]}

because

E[(zz(‘))(zz“‘))] 2z Bz VM)

u|z IEY D=2i Q=h

I £{E [cov(zD(i),zQ(h)lz.P)]
D2i Qah plz T
+cov[E(z (’)IZ.p) E(z (h )Iz,p)]

elz (3A.7)

(1) (h)
[E(zy' '/ |zsp)] E [E(zy' "/ [2,p)]
D olz qQ %P

1}
'
e}
N
o
—m
——~
-
-de
o
-
=
o
N
Soags”
+
M
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x {eov(rinarpolz)+ E (riplz) E (r 0]2)}

and

(),

r I {E [cov(zD(i),zQ(h)lg.g)]

cov( I zD(i), X zQ
D3i Q=h plz

ulz Da2i Qzh

+ch[E(z (i )Iz p) E(z (h )Iz,p)]} (3A.8)
plz

=- ¥ 2z
1D

0 T iD hD|z)+ L Iz Qc<|)v(r D,rholz).

Plz D>i Q=h

Therefore, combining terms in (3A.6) and recalling (3.6),

ACOV(pi.phlg) 2; o (zD/m)[zQ/(m+1)];<|>\Z/(r D-thIZ)
(3A.9)

-[ Z E ( +E E +1
o 20/ (0ol &6 2)E(Ry ) ().
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APPENDIX 3B
APPROXIMATIONS OF RATIOS AND THEIR MOMENTS

3B.1 Introduction

For ieD, consider the ratio riD=p1./pD for pD=j§Dpj. Define

ej=[pj-E(pj|g)]|g and let ey be the vector of e; for jeD. Let
E(p|z) = (E(pyl2)s ««osE(p |2)). Define P to be D minus the integer i.

Let dD(wi’ il wj,) be a vector function of dimension equal to the number
jep '
of integers in D and be defined by

dD(w., T wW.y) =W,/ Z W, (3B.1)

' jep d v jen d
(Thus, for D={1,2,3} and i=1, P={2,3} and dD(wl,ngwj.) = dD(wl’WZ'w3)
= Wy/(wy W, tw3) 1. Then, for €D, ‘

z wj/( ) wj)2 for 2=i
adp(Wys T wy,)/awy = (3P 7 3D~ (38.2)
Jep -wi/( T wj)2 for #i
JjeD
To characterize errors in the ratio approximations, we define the

Landau symbols O and o and their stochastic parallels 0p and op. [See

Bishop, Fienberg, and Holland (1975,chpt.14), Cox and Hinkley (1974,

chpt.9), Cramer (1951,chpt.12), and Schmetterer (1974,p17).] Let ||y]
k+1 -
denote the length (.z 2)}i

of the k-dimensional vector y.
i=1 h

Y5

Definition 3B.1: For {an} a sequence of real numbers or vectors and

{bn} a sequence of positive real numbers
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a. an=0(bn) if there exists a number K and an integer n(K) such that
if n exceeds n(K) then ”anll < Kb,
b. an=o(bn) if for every e>0, there exists an integer n(e) such that

if n exceeds n(e) then ”anll < eb.

Definition 3B.2: For a(x) and b(x) continuous functions of the real

number or vector x.

a. a(x)=0(b(x)) as x-—»y if, for any sequence {xn} such that x —=y,
a(x,)=0(b(x,));

b. a(x)=o(b(x)) as x-=~y if, for any sequence {xn}»such that x =y,

a(xn)=o(b(xn)).

Definition 3B.3: For random variable, or vector of random variables,

Vn and sequence {a } of positive real numbers

a. Vn=0p(an) if for every n>0 there exists a constant K(n) and an

integer n(n) such that if n3n(n), then P{]|V [|/a K(n)}*1-n;

b. Vp=o,(a;) if for every >0, ;iz P{]|v, II/a %€} = 1.

Lemma 3B.1: For O, o, Op, and op as just defined:

a. For the nonzero constant c, 0(cxn)=0(xn) and o(cxn)=o(xn).
b.  0(o(x,))=0(x,); o(0(x,))=0(x,)5 0(0(x))=0(x,); and o(o(x ))=o0(x,);

c. o(x )+0(y, )=0(lIx [+l l)s o(x,)0(y,)=0(x-¥,); and O(x )0(y,)=0(x,"¥,);

=0(a ~9) impli = -j+ = -j+h .
d. X O(an ) implies that Xn o(an ) but Xn o(an ) does not imply

3/4

that xn=0(an'j). [For example, let xn=c/n for ¢ a constant.];

and
e. a. through d. hold if 0 is replaced by 0p and/or o by op with the
exception that if a subscript p appears anywhere on the left-hand
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side of an equality in a. through d., then a subscript p must
also appear on the right-hand side.
To justify results from calculating the expected value of the error

terms, we have that

Lemma 3B.2: for j an even integer,
e Do -j/2
|e{ 1 (py, =By, )z} ¢ [EC T (p, =B, )z} = 0(n™'%)
=1 g g g=1 g '9¢

where again 5h =E(ph [2).
g g

A proof of Lemma 3B.2 is given in Chapter 4. Thus, Lemma 3B.2 gives the
magnitude of elements of the posterior covariance matrix and proves that
posterior central cross-product moments significantly decrease as their
order increases. Therefore, Taylor-series approximations in this
appendix are valid.

From definition 3B.2, we can write the first-order Taylor-series

expansion of dD(pilz’ 1 pjlz,) = riD|z about the value
T jep Y T ~
dp(E(p;12), T E(pyl2),) = E(py|2)/E(ppl2) = E(py]2)/ I E(py|2)
jep ~ jeb ~
as
riplz = E(Pi'E)/jEDE‘PﬂE) + ep [3dp/3E(p[2)1 + o(]lepll) (38.3)
as plz—E(p|z), for [adD/aE(glg)]' denoting the transposed vector of

3d0(”1’ | w-)/aw], for %eD, evaluated at w=E(p|z). That is, for 2D,
jep v - T
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= E(psl2)/L £ E(pj]5)12 for g=i

ady/9E (py|2) = (IO 3D (38.4)
- E(p;]2)/1 2 E(p.|z)2] for 2#i.
jeo -
By Tchebychev's inequality and the definition of Op,
pylz - Elp;12) = 0, (tvar(p; [211/2) . (38.5)

From Lemma 3B.2 we have that var(pi|§) = O(n'l). Therefore, by Lemma
3B.1, the error term in the first-order Taylor-series approximation

(3B.3) of riD|5 is
211/2)

o([ £ e,
jeD J

o[op(n'l/z)] | (38.6)

O(HSD”)

(n-1/2).

0
p
Because we know the magnitude of ep» We can also write (3B.6) as
_ -1
o(HgDH) = Op(n ). (3B.7)

Recalling from Lemma 3B.2 that the expected value of the error term
with respect to the posterior distribution of p given z is small rela-
tive to the first-order terms, we approximate moments of each ratio
rile by calculating expected values of the left- and right-hand sides
of each riDIE Taylor-series approximation.

Recall that E = (Eij) is the posterior covariance matrix of p

given z. Let ED denote that portion of I that pertains to jeD. That



and columng for 2¢p,
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3B.2 Posterior Mean:

Then, since E(SD)=9 and E[gD SD] = ED’ we have from (3B.3),
(3B.6), and (3B.7) that

riplz = E(Pilz)/jEDE(leg) tep [adD/aE(glg)]' + op(n'l/z) (38.8)

and

..]_/2
E(r, E(p;|2)/ = E(p;|2) +
(ripl2) (|t>,l5)/jéD (pj12) + o(n™"'%)

(38.9) .

£(p;12)/ 2 E(pylz) + o(n™h).
jed ¥

Note that we can write O(n'l) in the last line of (3B.9) because

o(n-1/2 1

) in the first line comes from an n~~ term. [Recall (3B.5) -

(38.7).]
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38.3 Posterior Variance:

Similarly,

riozlg = [E(pilg)/jioE(pjlg)]2 + [adD/aE(glg)]gD'gD[adD/aE(Elg)]'

(38.10)
+ 24{E(p;12)/ 3 Epy12) + o (n™/?)] ¢ [ady/aE(pl2))
JjeD
+ [E(py]2)/ 2 Elpl2)] 0p(n™%)) + g (n7h),
JG
so that
E(rinzlg) = [E(pilz)/.ZDE(pjlg)]z + [adD/aE(glg)JED[adD/aE(glg)J'
J€ ,
(3B.11)
+ 2[E(py]2)/ 2 E(plz )lo(n"/2) + o(n™1)
jeb
or
E(rpl2) = [E(p;12)/ ZDE(pJIZ)] e [adD/aE(pJIZ)]
2 T I [ady/3E(p; ado /oE 5.  (3B.12
+ LA [adp/3E(py|2) 1 [adp/3E(p,|2) 155, (38.12)
2>
+0(n71).

For use in Chapter 4, substitution from (3B.4) into (3B.12) yields

that

E = {2[E z +E z E z ]
(r1D |2) [.(lez) Do (p1|z)JeD a §50) - [E(p4]2) Jep 833

223 (38.13)
+ 1E(pyl2)1%4, )/ E(ppl2)1* + LE(p; |2)/E(pp|2)1° + 0(n”).
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From (3B.9) we have that

[E(r;pl2) 1% = [E(p;12)/ 2 E(py|2)1% + 2 [E(p;12)/ 5 Epy]2)] o(n/?)
Jeb Jeb (38.14)

+ o(n'l)
or

(E(r;pl2) 1% = (E(p12)/ 2 E(py12)12 + 0(n™D).  (38.15)
- JjeD
Therefore, from equations (3B.11) and (3B.14) we have that

var(r, |2) = (ady/aE(p|2)] &y [ady/aE(p|2)] + o(n™})

[ady/3E(p|2)] £ [ady/2E(p|2)]" + 0(n™%/?)

(38.16)

1

z [3dD/8E(p.Iz)]26.. +2 1 I [adp/oE(p;|2)]
jeD 350575 S e ji2
9>

x [ady/3E(py |2) 15, + O(n~>/2).

Substituting from (3B.4) into (3B.16) yields that

var(r.~[z) = {2E(p.|z) [-E(pylz) £ G., + E(ps|2) T £ G.,]
~|Dl~ (p-|,~ wl~ jen J-] -,I~ jeD er 32
2>

+ [E(py|2) 175, +[E(p;12) 12

. 4
Jﬁnojj}/[E(pDIE)] (38.17)

+ O(n'3/2).



_70-

3B.4 Posterior Covariance:

Similarly, for all cases except those for which i=h at the same

time that D=Q,
. = [E(p.1z)/ T E(p. E L E
ripthql2 = [E(p;12) i CHENN (Phlf)/EGQ (py12)]
+ gD{[E(phlg)/QEQE(pzlg)][adD/aE(glg)]'}

+ egIE(p;|2)/ 2 E(py]2) 1[ady/3E(pl2)] )
jeD - -
' l (3B.18)
+ [adp/oE(p|z)] ey eq [adg/2E(p|2)]

_]_/2
+o (n"'%) {E(p;]z)/ £ E(p;|z) + E(p,|2)/ = E(p,]|2)
p p1|~ jeD le"' hl~ R’GQ p2’|~

t e [3dD/8E(gl§)]' + ey [BdQ/aE(EIE)]'} + op(n'l),
Therefore,
E(r; = [E(p; T E(p: E T E
(r1Dth|5) [ (P1|5)/jeD (PJIE)] [ (phlf)/REQ (pzlg)]
+ [adp/9E(p|2)] Epg [adQ/aE(E|5)]'

(38.19)

"2) (E(py]2)/ 5 E(psl2) + Elpyl2)/ £ Elpy|2))
jeb 2€Q ~

+ o(n
+ o(n'l)

for EDQ being the matrix whose elements are ajz for all jeD and all
2€Q. That is, 3jz€§uo if and only if jeD and 2eQ. If kD is the number
of integers in D and kQ is the number of integers in Q, then the

dimension of EDQ is kakQ'
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Recall that P denotes D minus the integer i and let @ denote Q
minus the integer h. Then, substitution from (3B.4) into (3B.19) yields
that

E(riDthIE) = {E(pwlf)[E(Pglf)aih'E(PhIf)zgﬂaiz] (3.20)
3B.

- ~ 2
+E(pilg)jﬁw[E(phlg)zﬁﬂojz-E(pQIE)cjh]}/[E(PDIE)E(quf)]

+£(p;12)E(p, | 2)/[E(pp|2)E(pg|2) 1 + O(n”1).
From (3B.9) and (3B.19) we have that
E(rypl2)E(rgl2) = E(rypryial2) - [ady/3E(pl2)] Epg [adg/2E(pl2) ]
+ o(n71y, (38.21)
Therefore, from (3B.19) and (3B.21),

cov(rpsryol2) = [3dp/3E(p|2)] Zp deQ/aE(glz)]' + o(n™)

e, (8.22)

n

[adp/2E(pl2)] Epg [3dg/aE(p|2)]" + O(n

. -3/2
o [3dp/3E(p;]2)] [ady/3E(p,|2)] 53t 0(n™"%).

Substituting from (3B.4) yields that
cov(ripsryol2) = {E(pplg)[E(pﬂlg)ﬁih-E(phIg)lgqaizl
-+ E(p;|2) T [E z2) 1§, - E 2)G..1} (38.23)
(p,|~)jep (phL)zeQ ju - Elpgl2)5y,

/[E(leg)E(pQI5)12 +0(n3/2),
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APPENDIX 3C
INTERMEDIATE CALCULATION FOR VARIANCE

From (3.14)

var(pilg) =3 [znzvar(riD|E)+ X Zp2g gTz(riD,riqlg)]/[m(m+1)]

D3i D plz Q21 p|z
QD (3C.1)
+{ T (zp/m) E [rsp(1-ripl2) 1+E(p; [2) [1-E(p;|2) 1}/ (mH1).

b= = plz

Substituting from (3B.17), (3B.13), and (3B.23), we have, for P
denoting D minus the integer i and ) denoting Q minus the integer i,

that

var(p,|2) =D;(zD/m)tzD/(m+1)]/[E(polg)l“{zs(piIg)[E(pilz)jgD 2§D63g

2§
. 2. 2 ¢ =
- E(pDIE)j§D031]+[E(pDIE)] &;5+E(p412)] -§p°ii}

+ LT (zy/mlz/(m1)1/IE(pn|2)E(py2) 12
p>igsi D 4 T
0%

<{E(pp|2) [E(py|2)8; 5 - E(Pilé)lgqaiz]

‘ +E(pi|§) jED[E(piIE)QEQBJR - E(pﬂlz)aji]}

2
+£231(20/m) (E(pi |2)E(ppl2)/(E(pp|2)]

jep sep I*
2>J

. - 2 ) - |
‘{ZE(pilf)F(pwlf)ijoij + 2[E(py|2)]" = % G

+{E(ppl2)1%, ; - [E(pilg)]zjfwajj}/[E(leg)]4)
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+ E(pilg)[l-E(Pilf)]} /(m+1) + &,

for 61‘1 denoting the error in (3C.2) made by approximating posterior
moments of the ratios ip in (3C.1).

Therefore,

33y = n§1(zD/m)[(zD-1)/(m+1)]/[E(le§)14{[E(PplE)]zaii

*E(Pi|E)j§w[E(Pi|E)533'25(Pg|5)5ji+ZE(Pi|E)2§D55z]}

2>

+ L T (zn/m)[zn/(m+1) 1/ LE(pn|2)E(Py]2) 124E(Py | 2) [E(Py| 2)3; 5
. D31 Qsi D q PD'~) qu~ pm|~ Ql~ ii

W@ (3€.3)

E(py12) £ 51, % (0, 12) L (£, [2) 2 3y-Elpgl2)5y41)
| 2
+{D§1(20/m)E(p1lg)F(PpIE)/[E(PDIE)]

+ E(PiIE)[I'E(pilf)]}/(m+1) + Gii'



CHAPTER 4
ASYMPTOTICS FOR TAYLOR-SERIES APPROXIMATIONS

4.1 Introduction:

In Chapter 3, we used low-order Taylor-series expansions for un-
known terms in deriving Taylor-series approximations for the posterior
mean and covariance matrices. For these Taylor-series expansions to
allow accurate approximations, higher-order central cross-product
posterior moments of P must be substantially smaller than Tower-order
central cross-product moments. In this chapter we prove this condi-
tion. We then assess the accuracy of the Taylor-series approximations.
Because results are in terms of orders of magnitude or otherwise involve
limiting distributions, we call this chapter the asymptotics for Taylor-
series approximations. For the asymptotics we use théisamplingétheory
approach.A We fix the probability P and then study_the limiting distri-
bution of theAdata as the sample size n goes to infinity.

In the next section we determine the magnitude of the central
cross-product moments and show that this magnitude substantially de-
crease§ as the order of the moment increases. The first part of the
section gives results for complete data; the last part, results for
incomplete data. In the third section we assess the accuracy of‘the
Taylor-series approximations for the posterior mean and covariance
matrices. We begin by giving the accuracy for the ratio approximations
of Appendix 3B. .A summary concludes the chapter.

Five appendices give derivations used in the chapter. The first

appendix calculates the posterior central moments given complete
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multinomial data. The second appendix derives the limiting posterior
distribution given complete data. The third appendix calculates cen-
tral moments of the k-dimensional multivariate normal distribution,
giving results more general than found in the literature.' The fourth
appendix derives the limiting posterior distribution given incomplete
multinomial data. Finally, the fifth appendix gives the error in
evaluating a function by an iterative solution of an approximation to
the function. Note that techniques developed in the appendices are

applicable to distributions other than the Dirichlet or multinomial.
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4.2 Central Cross-Product Moments:

In this section we obtain the order of magnitude of central cross-
product moments given complete multinomial data x. We begin by obtaining
the order of magnitude of the 1th posterior central moment (2.6). To do

so, in Appendix 4A we write (2.6) in a Taylor series in (n+:Iv -1 about 0

h)
for enough values of 1 to detect a pattern for the low-order term in n'l.
We then extend moment results from Kendall and Stuart (1969,v1,pl48) for

Pearson distributions to prove by induction that for

11 = 1(1-2)(1-4)(1-6)+=+1 for 1 odd ,
and ol E(pilz)" K - (4.1)
o4y = var(pyfx) = ”i(l'“i)/("+jgivj)’
we have that
(1-1)!!01.1.]/2 for 1 even
EL(py-u,) ' [x] ¢ (4.2)

’ (]'1)1!!cii(]+1)/2(1'2“i)/[3u1(l'ui)] for 1 odd,

where the approximation in (4.2) means that we have given the lowest-order
term in n'l, [Recall from (2.6) that E[(pi-ui)]lx] is a function of n.]
Hence, noting the n in the denominator of 045 in (4.1), we have that

_ N
for 1 even

tim /2 €L (p-u) = (1) 10w (1w

e _ 5 (4.3)
and for 1 odd

vim 02 g (p ) T = (D10 (20 ) (11 U172,
oo : )

*Standard mathematical notation; for example, see Gradshtevy and Ryzhik
(1967,px1iii); . 1!! is not defined for 1 even.
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Therefore;
: O(n']/z) for 1 even
E[(pi_ui) |§] = (4~4)
o(n” 12y for 1 oda.
In Appendix 4A we also found that
O(n-(]+h)/2) for 1+h even

EL(p-y) (o)1) = (1+h+1)/2

o(n" ) for 1+h odd.

for 2%1,h%8.

However, the methods of Appendix 4A were unfeasible for evaluating
1
the general pth posterior central cross-product moment E[ T (ph Uy )| x]

g=1 "g "g ~
for léhgék and hg;‘h1 for at least one g. Therefore, to obtain general

results similar to those given in (4.4), we use the Helly-Bray Theorem

[Rao (1968,p97)1:

Theorem 4.1 (Helly-Bray Theorem): If the distribution function Fn con-

verges to the distribution function F, then
/g an > [ gdF

for every bounded continuous function g.

1
Since I (ph -uh') is bounded and is continuous in p, by Theorem 4.1

g=1 g g
1imits of posterior central cross-product moments equal corresponding
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moments of the 1fmiting distribution. The latter moments are usually
referred to as the asymptotic moments. [See Bishop, Fienberg, and
Holland (1975,p485).] Hence, we calculate the limiting distributién of
the posterior distribution of p given complete data X and then calculate
the central cross-product moments of this limiting distribution.

By using Stirling's approximation [Cramer (1951,p130)] for the log-
arithm of the gamma function, theorems from Graybill (1969,p8,170,184)
to calculate the determinant and inverse of the covariance matrix, series
approximations [CRC Tables (1962,p373)] for Tog(l+e) for-|s|<1, and
Tchebychev's inequality [Bishop, Fienberg, and Holland (1975,p476)] to
determine the magnitude of error in approximations, we prove in Appendix
4B that the k-dimensional Dirichlet density with mean H and covariance
matrix § differs from a k-dimensional multivariate normal density with

mean u and covariance matrix § by order of magnitude 0 (n'l/z). [Recall

p
definition 3B.3 of Op.] Rao (1968,pl04) gives the. following convergence

theorem involving densities:

Theorem 4.2: If the density fn(x) converges to the density f(x) as m,
then the distribution function Fn(x) converges to the distribution func-

tion F(x) as me,

Therefore, from Theorem 4.2 the limiting posterior distribution of P
given'complete data x is Nk(g,g).

To obtain central cross-product moments of this limiting distribution,
in Appendix 4C we multiply the multivariate-normal moment-generating func-

tion [Wilks (1963,p168)] by exp(-EE'), continuously differentiate the
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results with respect to E, and then set t to 9 in the differentiated
results. Doing so yields that the central cross-product moment for the
multivariate normal distribution is zero for 1 odd énd, for 1 even, is
a sum of 1-1 terms, each qf which is a product of 1/2 elements of the
covariance matrix and thus, from (2.3) and (2.4), is of magnitude O(n']/z).
Therefore, application of these results with the Helly-Bray Theorem

yields for the lth posterior central cross-product moment that

1
for 1 even, E[ I (P, My )[x] = O(n-]/z) (4.5)
9=1 "g g "
for 1£hgfk. For 1 odd, however, these results yield only that

1 .
for 1 odd, 1lim E[ I (ph -u )|x] = 0. (4.6)
me g=1 g g 7

Therefore, to calculate the order of magnitude for odd postérior central

cross-product moments, we have the following lemma:

Lemma 4.1: for 1 a positive integer,
1 1Al | | o
|EL T (p, -u, )Ix1] & [EL W (p, -w, )IxIl. (4.7)
g=1 "9 g - g=1 g g :

Proof:

First note that, since ha can equal hb for any léa,bél one of the 1
valueé of g, the density function f] for the 1th central cross-product
moment will be of dimension 1€afk.

In going from the (1-1)St to the 1th central cross-product moment,

the density function will remain the same if the additional variable Ph

_ . . 1

for Ph. M, is a variable of f] 1° In such case, the proof follows from
1 -

the fact that, for all g,
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h

-léph -y, €1, (4.8)
g g

Hence, the integrand for the 1% posterior central cross-product moment
is a fraction of that for the (1-1)St central cross-product moment and
(4.7) therefore follows.

If the additional variable Ph in going from the (1-1)St to the lth
central cross-product moment is not a variable of f]-l’ then for Pa the

a-diTensiona] simplex of the vector of those distinct probabilities Ph
in 1 Py and Pa_l"the (a-l)-dimensfona] subspace of Pa obtained by

deleting variable Py we have that
R 1
1 1
IE[glll(ph “up X1 = 17p Ty -y )fydp]

9 9 ag=l g g
- 1-1 1
=1/ I (p, -w ) /S(p, -u, )f.dp,_ 1dp| (4.9)
.Pa-lugél hg hg h1 h] 1 h1 ~
1-1 o 1-1
L -1 = -
€ lfp W Ap, -u )fy qdol = [EL T (p, -u )Ix]|

a-1g=1 "g "g : g=1 g g

is bounded by tff]dph'#if

1 1-1

since (4.8) yields that f(ph]fuh])f]dph]

From bound (4.7), magnitude (4.5), low-order terms for cross-product

moments IE[(pi-ui)a(pj-uj)blfll for 2%a,b8 from Appendix 4A, and results

(4.4) for E[(pi'“i)]lf] for 1 odd, we would expect that, in general,

1
L (py, -y, Ix1 = o(n” (M2
9=1 "g g

Note that for incomplete data, we can duplicate all complete-data

) for 1 odd.

results but one. We can not parallel proof from Appendix 4A that for odd

‘(1+1)/2).

1 of 3, 5, and 7 the cross-product moment is O(n Although we

expect this result based on all complete-data results and on incomplete-
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density as a product of complete-data Dirichlet densities, each having,
from Appendix 4B, a limiting multivariate normal distribution. Because
these densities are of differing dimensions and on differing combinations
pf variables, we do not immediately have that the resultant product of
these multivariate normal densities is a k-dimensional multivariate normal
density on the k components of P. However, by equating coefficients and
solving for unknowns, we then prove that, owing to the special relation-
ship between the first and each remaining product, the sum of exponents
from each Dirichlet in the product does form the exponent of such a density.
Following derivations in Appendix 4D, we have as final results for elements
Sii

ujs , and 513, respectively, of the asymptotic mean and inverse covar-

iance matrices

u; = (z;+ I zqus/un)/n, . (4.10)
i i Do D™’ 7D

ST = nuptuy )/ (g, - ogi 20/Up) (U Uy (upe )

Dok+1 o (4.11)
- I (zpfu)(ug-us)/(usun) - £ (zn/up) (ustuy 1)/ (usuy o),
D31 D""D'*7D i D gy D7D Tk+l 17k+1
DAk+1 - Dak+1
and
ij '
SY =nfu, .+ I (2 /un)/ust I (zn/uslun- 2 (znfun)/u, .., (4.12)
SOUCHR T L INIRIRG i I IS i I SO
D3i,] DA ,#J

for D a set $ containing more than one element, "D3i,j" meaning the set
D containing both i and j, and all conditions given under a summation sign
to be met simultaneously [for example, the first summation sign in (4.12)

means the sum over all sets D such that DAk+1 at the same time that D2i,j].
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Note that expressions (4.11) and (4.12) for elements of the asymptotic
inverse covariance matrix are simple [especially relative to expressions
(4D.12) and (4D.13) given by the traditional derivation]. Furthermore,
they parallel complete-data results given by the first term in each of
expressions (4.11) and (4.12). [Note that once we have expressions (4.11)
and (4.12) and thus know what to work toward, we show in lengthy reexpressions
in Appendix 4D that results given by the traditional approach can be
simplified to (4.11) and (4.12). Thus, the second approach might be use-

" ful in other kinds of problems to clarify and simplify any unwieldy results
given by the traditional approach.] ‘

From (4.11) and (4.12) we have that elements of the asymptotic covar-
jance matrix are O(n'l). Thus, paralleling (4.5) we have that

_ : |

for 1 even, E[ I (ph -Eh )|z2] = O(n']/Z), | (4.13)

g=1 g g o

Further, Lemma 4.1 holds for the case of incomplete data z as well as for
that of complete data X. Therefore, again paralleling the case for comblete‘
data, since Lemma 4.1 gives that the odd 1th posterior central'cross-hroduct
moment is bounded in magnitude by the even (1-1)St-moment,'from (4.13) the
" odd lth moment is of magnitude no greater than O(n_]/z)._.Therefore, con-
ditions for usiﬁg Taylor-series expansions in Chapter 3 are satisfied;

Note, from comparing (3.9) with (4.10), that asymptotically -the Taylor-

series approximate posterior mean equals the exact posterior mean.
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4.3 Accuracy of the Taylor-Series Approximatioﬁs:

4.3.1 Introduction:

To determine the accuracy of the Taylor-series approximations of
Chapter 3, we note that the only terms we approximated in the deriva-
tions were moments of the ratios. Therefore, we calculate the error
made in these approximations and then calculate the overall error made
by substituting these approximations into equations (3.6), (3.14), and
(3.15) for the posterior mean, variance, and covariance, respectively.
We also apply results from Isaacson and Keller (1966) to determine the
error made by iteratively solving the resulting equations and then

using the solution to approximate the exact posterior central moments.

The approximation for the exact posterior mean

P = (Zi+vi+D§iszi/pD)/m * ey | (4.14)

obtained by dropping the error term €; is

5i (Zi+vi+0§iszi/pD)/m' : (4.15)

Rewriting (4.15) as a nonlinear system of equations yields the Taylor-

serieé approximate posterior mean
61. = (21.+v].+DE.zD’B1./§D)/m (4.16)
31

' given in (3.9).
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We now give the asymptotic error in using (4.16) to approkimate
(4.14). We do so by first determining the error in approximating
(4.14) by (4.15) and then determining the error in solving (4.15) by
the EM iterative algorithm of Dempster, Laird, and Rubin (1977). We
look for conditions under which an iterative solution to (4.15) agrees
with (4.14) within some error bound. In the formulation of the itera-
tive process, we rewrite (4.15) as (4.16).

To determine the error in approximating (4.14) by (4.15), we must
determine the accuracy of the approximation of each ratio rip and its
first two moments. These accuracies are given in Appendix 3B in terms
of the 0 and o notations. Then, from (3.6) and (3.7), the exact
posterior mean 51 can be written as

[z;+v.+ T 2 E(r.,|2)1/m
i Dai D~ iD'<

o
-—de
n

]

(zy#vy+ 3 2By /Bpr0(n ) d/m (4.17)

o~ g -1
[z +v.+ £ zD./Pn)/m + O(n ).
i i Dai_D i’FD

Hence, the error €; in approximating (4.14) by (4.15) is O(n_l).
We next investigate how this error is affected by solving (4.15)
by the EM iterative algorithm. To do so, we find two conditions in

Appendix 4E whose satisfaction guarantees that

Iﬁi(s)-ﬁil £6/(1-2) + 2°[p-8/(1-2)]. (4.18)

In (4.18), & is a bound on the error made by approximating (4.14) by
(4.15) and, hence, from (4.17) is of magnitude O(n'l). The term X is a
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positive proportion less than 1; A differs from a constant by O(n-l).
Therefore, 6/(1-A)F0(n_1). The term Pg is a constant. Since s can be
made as large as desired, the right-hand term can be considered to be 0;
in particular, it can be made at least as small as O(n'l). Thus, from
(4.18), when the two conditions given in Appendix 4E are satisfied, the

error in approximating (4.14) by (4.16) is O(n_l); i.e.,

B.o= B+ 0(nh). (4.19)

The two conditions in Appendix 4E concern the region in which the
initial iterative estimate is chosen and a bound oh the partial deriva-
tives of the right-hand side of (4.16) with respecf to éj‘ If there
exists a neighborhood “é-g”m<p, for p>0, of P such that for all

probabilities in this neighborhood

max ,E |39 (B)/3B;1 £ 2 < 1,
1%i%k j=1
for
2 2oy KEL
91(g)=(zi+vi+D§izop1/p0)/(n+h§ivh),

and if an initial iterative estimate 61(0) is chosen within the inner
neighborhood H§¥§Hm<pofp-6/(l-k), where 8 is a bound on the error in
approximating the exact posterior mean by a first;order Taylor-series
expansion, then the iterative solution to the defining equation of the
Taylor-series approximate posterior mean ﬁ will converge to within &/(1-X)
=0(n-1) of the exact posterior mean.

If a neighborhood of the exact posterior mean can be found in which

the second condition is satisfied, then, for large enough sample sizes,



_87_

the first condition can be satisfied by choosing an initial iterative
estimate in a neighborhood within the first neighborhood. For moderate
percentages of incomplete data, the inner neighborhood is almost as
large as the outer neighborhood. In Appendix 4E, we show how to deter-
mine, in practice, whether the second condition can be expected to
hold; hence, we show how to approximate the size of the outer neighbor-
hood. Further, for incomplete trinomial data, Appendix 4E shows that

a root of the defining equations of the Taylor-series approximate
posterior mean that differs from the exact posterior mean by magnitude
O(n-l) exists in P,.

However, this root»need not be unique in P2. Moreover, as Ortegé
and Rheinbolt (1970,p2) i]iustrate with a simple case, a nonlinear
system of k equations in k unknowns may have no solution or may have
arbitrarily many solutions. Therefore, we now consider when the
Taylor-series approximate posterior mean for incomplete data from the
general k-dimensional multinomial distribution not only has a solution
but also has a solution that is in Pk and that diffe}s from the exact
“posterior mean by magnitude O(n-l);

Because the Ta&]dr-series appfoximate posterior mean can be written
as a posterior mode, it will always have at least one solution in Pk when
certain conditions, soon to be discussed, are met. However, none of
these solutions may be in the epm convergence region, which we define as
the region in which an initial iterative estimate can be picked so that
successive iterates are guaranteed to converge to within a small error
of the exact posterior mean. In particular, for k>2, there may not exist

an epm convergence region. That is, there may not exist a neighborhood
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of § such that for all probabilities p in the neighborhood

-~

m§x‘§ lagi(é)/aﬁjl * max Z.zD/m{1/§D+[B(D)-Z]ﬁilﬁoz} < 1. (4.20)
ij=1 i Dai
As the number k of dimensions, the percentage 1OOxgzD/n of incomplete
data, or the number B(D) of variables sharing incomplete data increases,
inequality (4.20) shows that this possibility increases.

The most likely values of E not to have an epm convergence region
are those in higher dimensions that have one or more components near
zero and/or a component near 1 when the percentage of incomplete data is
high. For example, consider incomp]efe multinomial data Zys Zps *t°
2100 217> and 2144410 where the percentage of incomplete data is

IOOX(zl.. /n}=50. Suppose that 510=.89 and ﬁi=‘01 otherwise. Further,

<10
suppose that the sample size n is large enough, or the sum Zvj of prior
parameters is small enough, that z, _ ;o/n * 2. j0/m % 5. Then, for

probabilities Si(s) near 51 and D={1,---,10}, one term in{(4.20) is

ggl...lo/w){lst(S)+[g(D)_2]510{s),[go(s)]z}

£ 0.5{1/.99+8x.89/(.99)°} = 4.14 > 1.

However, for probabilities having such small values for some components,
results of Chapters 6 and 7 indicate that the posterior mean is a
relatively poor estimator to minimize risk for quadratic loss; the
posteriof mode is much better. Hence, for tﬁis particular case, we

do not have to be concerned with not being able to find an epm conver-
gence region. This example illustrates, however, that the Taylor-

series approximate posterior mean needs more study in higher dimensions,



_89_

since the 1argesf factor, 8, in the last inequality is a function of
the dimension of the Pk simplex. |

When there does exist an epm convergence region, there can be a
problem finding it because there may be multiple roots in Pk of the
Taylor-series approximation. In particular, there may be multiple roots
in P, for which inequality (4.20) is satisfied. The problem then is
choosing among these roots. Since the Taylor-series approximation can
be written as

. k+1

By = [zy48;-1+ T 205,/By)/(n+ 2

B.-(k+1)], ' (4.21)
D 3i J J :

1

where Bi=vi+1’ the Taylor-series approximation is a posterior mode; i.e.,
(4.21) s in form (2.43). Thus, the Taylor-series approximate posterior
mean enjoys the convergence properties of the EM algorithm. That is,

i - (1) 4=
define ti(f) zi+v].+Dz;izD » 9 1n(pi/pk+1), and t as the number of
iterations required to meet convergence conditions. Then, since the

multinomial .distribution is a member of the regular exponential family,
é(s) ¢onverges in Pk to at least a local maximum if the eigenvalues of
cov[E(§)|?(S)], 14s4t, are bounded above zero. [See Section 2.3.] Tb
find a global maximum, choose that root that maximizes the 1ike1ih60d

function

zl+v1-1: 22+v2-1 . Z
Pp

. o a1l
P1 P2 < Prat

D

[ =]

From the complete-data relationship between the posterior mode and
posterior mean, we intuitively expect the global maximum to be in the

epm convergence region, or at least be the closest root to ?- However,
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this hypothesis has not been proved and neéds study. As for the two-
'dimensional case, however, Appendix 4E proves that if a root is in the
epm convergence region, then the error in using it to approximate the
exact posterior mean is of magnitude O(n'l). Note again that the O(n-l)
error mainly comes from using a first-order Taylor-series expansion to
approximate the exact posterior mean.

Observe, as we illustrate with examples in Appendix 4E, that the
two guaranteed-convergence conditions are sufficienf, not necessary.
That is, an initial iterative estimate can fall far outside the epm
convergence region and convergence to the exact posterior mean still
occur to within the same small error incurred when an initial iterative
estimate is chosen inside the epm convergence region. Moreover, as also
exampled, the error bound given by Theorem 4E.1 when these two conditions
are satisfied is extremely conservative.

Finally, one should not pick as an initial iterative estimate a
probability containing zero components becabse éi corresponding to those
components will be the same for all iterations. Further, any initial
iterative estimate that has components near zero may cause the conver-
gence process to be extremely slow for those components; see Section

5.8.4 for an example.

4.3.3 Accuracy of Taylor-Series Approximations for Posterior Covariances:

For those categories i and h that have only complete data, there
is no error in writing G.. of (3.18) and G of (3.19) for 544 and Gips
respectively. For those categories h having only complete data and

those categories i having incomplete data, we have from equation (3.15),
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Section 4.3.2, and Lemma 3B.1 that the error in writingAéih of (3.20)
for 8ih is O(n'z). For both categories i and h having incomplete data,
we have a choice of approximating the variance and covariance by pro-
cedures that are iterative or noniteratjve in aih'

For the iterative procedure, we first evaluate initial estimates

(0) o¢ (3.21) and &.,(O) of (3.22). Equations (3.14), (3.15),

ii ih
3B.9), and Lemma 3B.1 yield that the error in these approximations

Qle

(
éii(O) and éih(O) is O(n_z), provided that parallel conditions from

and 5., can be satisfied.

ih
To calculate the error in making (3.16) and (3.17) iterative

Appendix 4E for 34
algorithms, we note from the form of (3.14) and (3.15) and from approx-
imations (3B.9), (3B.12), (3B.15), (3B.16), (3B.19), (3B.21), and
(3B.22) that the largest error for éih(S) will come from approximating
var(riD|§) and cov(riD,thIE). [That is, the error in approximating
terms multiplied by 1/(m+1) in (3.14) and (3.15) is 1/(m+1) times the
error for those terms and in total is less than the error made in
approximating var(riolg) and cov(riD,thIE).] At the same time, note

—3/2).

from (3B.16) and (3B.22) that these errors are O(n Thus, if

parallel conditions from Appendix 4E are satisfied for 311 and éih’
then, recalling Lemma 3B.1, we have that the errors in approximating Bi.
and &., by 5 (s) and &. (S), respectively, are O(n'3/2).

ih i ih :

The second procedure to approximate the variance and covariance
for those q variables referring to categories that have incomplete data
is a method that is noniterative in aih' Recall from (3.23) that,

for both i and j referring to categories having incomplete data, 5]h

1.
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coefficients of 61h’ and b.. a term that is not a function of S]h for

1]
any 1 or h, in this procedure we write each 8ij as
.= % T [T I 3y Oy.1+b,.+6,.. (4.22)
1 Dsi gaj teD heq M MM 1A

In (4.22) 833 is an infinite series containing terms in E(eihlg)

and E(ei]ejhlg) for 1,h22 and ei=pi-bi. Thus, some of these terms are
in 5]h [for example, second-order terms in the approximation for
E(rile) are terms in 511]' Thefefore, we can divide 61j into a
component GA containing terms in 51h and a component GB containing the
remaining terms.

Doing so, we can write (4.22) as a linear system of q(g+l)/2

equations in the q(q+1)/2 unknowns g,; and aij:

[A+ 815 =811+¢gl] (4.23)

where § is the q(q+1)/2x1 vector of aij for i and j both referring to
categories having incomplete data, E is the q(q+1)/2xq(q+1)/2 matrix

of the &, B is the q(q+1)/2xq(q*1)/2 matrix with b, on the diagonal

iJ
and 0's elsewhere, I is the q(q+1)/2xq(q+1)/2 identity matrix, Sp is

the q(q+1)/2xq(q+1)/2 matrix containing those terms in 61j that are

terms in G, 8y is the q(q+1)/2xq(q+1)/2 matrix containing zeros on the
off-diagonal and the remaining terms of Gij divided by Sij on the

diagonal, and l is the q(q+1)/2x1 vector containing all 1's.

Now, from.(3B.16) and (3B.22), the terms var(riDIE) and

cov(riD,thIE) in (3.14) and (3.15) contain no terms in Gy and 04 5

that are not already included in 5. The terms E(riDIE) and E(riD,thIE)



-93-
do, however; in particular, the first terms dropped from their Taylor-
series expansions. Since these terms have coefficients that are con-
stant with respect to the sample size n and since E(riDIE) and
E(riD,th|g) in (3.14) and (3.15) are mu]tfp]ied by (m+1)'1=0(n-1),
by Lemma 3B.1 the component of Gij that goes on thé left-hand side of
(4.23) is O(n'l)XGij. Thus, all terms in §, are O(n'l).

To determine S, we first note from (3.14) and (3.15) that we can

~B
write (4.23) as

1 (4.24)

~ . -1 ~ :
[A+ 68,16 = (ml) " F[I+8]1

for E=(m+1)§, because all terms in E come from those terms in (3.14)
and (3.15) that are multiplied by 1/(m+1). As discussed for the itera-

tive estimate, the largest error in approximating terms in (3.14) and

-3/2

(3.15) comes from the 0(n ) error in approximating var(riDlg) and

cov(riD,rholg). As discussed following (4.23), this error contains no
terms in aij and thus is in that part of éij that belongs to §,. Since

the diagonal terms of §p are terms from Gij divided by corresponding

1 ?=0(n'1) F, we have that 88 i3

STh= oM E = 0n72). Recall that off-

diagonal terms of E=(m+1)'
= o(n™/%) [o(n) F
diagonal elements of §B are 0.

Therefore, we can write (4.24) as

-— o —

(Rij + O(h’lﬂ 5= (1) 1. (4.25)
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At this point, recalling from equations (3.16) and (3.17) the
form of A and F we substitute p (t) for p in A and F, where Bi(t)
again denotes the converged estimate pi( ) from (3.11). We denote the
resulting matrices as 3 and E, respectively. If the two conditions of
Appendix 4E are satisfied, so that 6i(t)=51+0(n'1) for 14i<k, then,
from Lemma 3B.1, the error in approximating 5 and E by é and E,
respectively, is O(n-l).

In this case, (4.25) can be rewritten as

(i..+0(n'1» 5= (m1)7 F..+0(n"1) 1+0(n

(4.26)

To solve for G, we must invert the coefficient matrix of & in
(4.26), which matrix we assume to be nonsingular. To determine the
error made by approximating the result by ﬂ'l, we use the following

Temma:

Lemma 4.2: If A and A are h-dimensional square matrices such that

1 -1 -1

A=A+0(q) and A™" and A™" exist, then A =5-1+0(q).

proof:

Define K.. and A.. to pe the cofactor of ﬁ.- and A.., respectively.
Then, ﬁ. 1 -O(q) for all i and j implies that A A (q). Thus,
- d I
from Lemma 3.2, A1JA1J A1J ij =0(q) so that det(A) et(A) ZI(AIJ 15 13 lJ)
=0(q). Therefore, since a matrix inverse is the transposed matrix of
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cofactors divided by the determinant, we have that, for §#q,

[ =]
1]

s et (M1 (Ayy)' = tdet(mpo@) 1t (A, 0(@)

det(h) (A;;)' + 0(a)

=l 0(q).
Thus, assuming that A and A exist (i.e., their determinants are

not zero), solving for G in (4.26) and applying Lemmas 3B.1 and 4.2,

we have that

. .
- C. . . _ 0 \ - 0
5= (m+1)7! (A].J. Lio(n 1)) Fﬁ+0(n1)\\ 1+0(n"1/2) 1
: . , . 1
, r-: , , = ’-'v\: 172 0—
(4.27)

n
Qe
+
P Y
o
—
3
L}
(58]
~
N
S
e

Therefore, for both i and j referring to categories having incompiete
data, the errors in approximating the vector of aij by the procedure
that is noniterative in Gij‘are, like those of the iterative procedure,

of order O(n-3/2).
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4.4 Summary:

In the first part of this chapter, we proved that the posterior
central cross-product moments satisfy the conditions for a first-order
Taylor-series expansion to be an-accurate approximation of the exact
posterior mean. We also proved that asymptotically the'Taylor-series
approximate posterior mean equals the exact posterior mean.

In the second part of the chapter, we studied how fast the
Taylor-series approximate posterior mean approaches the limit, the
exact posterior mean, and then investigated the accuracy of the
Taylor-series approximate posterior variance and covariance. We began
by showing that the Taylor-series expansions for elements of the exact
posterior mean and covariance matrices are accurate to order O(n-l) and

. O(n’3/2

), respectively. However, because the exact posterior moments in
these expansions are then approximated, the errors in the final approxi-
mations, which we called the Taylor-series approximations, are not
necessarily of magnitude O(n'l) and O(n'3/2), respectively.

Nearly always, the Taylor-series approximate bosterior hean will
be evaluated iteratively. For this type of evaluation, we gave two
sufficient conditions guaranteeing accuraéy of the Taylor-series
approximate posterior mean to thekexact posterior mean within order of
magnitude O(n'l). If there exists a neighborhood llé'?”ufps for p>0,
of § such that for all probabilities é in this neighborhood
k

max I |agi(§)/a§.| £21<1,
124k j=1 ~0

for
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o ] . k+1
g.(p)=(z;+v.+ T 2 p./Pn)/ (n+ T v ),
i LERR N D™i"*D h=1 D

(0)

and if an initial iterative estimate 51 is chosen within the inner
neighborhood ”é-?”w<p05p-6/(1-k) where 6 is a bound on the error in
approximating the exact posterior mean by a first-order Taylor-series
expansion, then the iterative solution to the defining equation of the
Taylor-series approximate posterior mean é will converge to within
O(n-l) of the exact posterior mean. We also showed how to determine,

in practice, whether these conditions can be expected to hold.

Further, for incomplete trinomial data, we showed that there does
exist a root in P2 of the defining equations for the Taylor-series
approximate posterior mean that differs from the exact posterior mean
by magnitude O(n_l). We then investigated when the Taylor-series
approximation for incomplete data from the general k-dimensional multi-
nomial distribution has a solution that differs from the exact posterior
mean by magnitude O(n'l). Because the Tay]or-séries approximate
posterior mean can be writtén as a‘posterior mode, it always has at
least one solution in Pk if the eigenvalues of the covariance matrix
of the complete-data sufficient statistics are bounded above zero.
However, none of these solutions may be in the convergence region for
the exact posterior mean (”epm convergence region"). In particular,
for k>2, there may not exist an epm convergence region and we gave an
example of such a case. In this example, many components of g were
very small. Since results of Chapters 6 and 7 indicate that the

posterior mean is a poor estimator to use to minimize risk for quad-

ratic loss when components of E are very small, the posterior mode being
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much better, absence of an epm convergence region was considered un-
important for this particular cause (because the posterior mean would
not be calculated).

When there does exist an epm convergence region, there can be
trouble finding it, because there may be mu]tip]e roots in Pk of the
defining equations for the Taylor-series approximate posterior mean.
The problem then is choosing among these roots. We showed how to
find one choice, the global maximum. Although it was not proved, from
the complete-data relationship between the posterior mode and posterior
mean, we intuitively expect the global maximum to be in the epm conver-
gence region, or at least be the closest root to §.

We also noted that the two guaranteed-convergence conditions,
conditions given by Lemma 4E.1 on the initial iterative estimate and on
the partial derivatives of the posterior mean, are sufficient but not
~ necessary. We gave two illustrations in Appendix 4E where these'condi-
tions were not met but the iterates correctly converged. Further, as
also illustrated, the error bound givén by Lemma 4E.1 is extremely
conservative.

Finally, for those categories having 6n1y complete data, there is
no error in using the Tay]or-séries approximation for the exact
posterior mean.

Recall that elements of the Taylor-series approximate posterior
covariance matrix can be evaluated by procedures that are noniterative
or iterative in elements of the posterior covariance matrix. The
Taylor-series abproximate posferior mean is used in both procedures.

When the error in the Taylor-series approximate posterior mean is O(n'l),
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then the noniterative procedure yields approximations for elements of
the posterior covariance matrix that are accurate to order O(n'3/2).
If, in addition to the O(n-l) accuracy in the Taylor-series approximate
posterior mean, parallel conditions given in Appendix 4E are met for
the Taylor-series approximate covariances, then the iterative procedure
also gives approximations for elements of the posterior covariance

—3/2). Under these same condi-

matrix that are accurate to order 0(n
tions, when one of categories i and j has no incomplete data, then the
error in the Taylor-series approximate variance and covariance is O(n'2).
For both i and j having only complete data, there is no error in
approximating the exact posterior variance and covariance by the

Taylor-series approximate posterior variance and covariance,

respectively.
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APPENDIX 4A
POSTERIOR CENTRAL MOMENTS GIVEN COMPLETE DATA

4A.1 Introduction:

In this appendix, we determine orders of.magnitude for the pos-
terior central moments. To do so, we prove by induction an expression
for the lowest-order term in (n+k;1\)h)_1 of the 1th posterior central
moment E[(pi'“i)]lf]‘ We first z;%ermine, in Section 4A.3, the
expression for the first twenty-one central moments, enough moments to
determine an algebraic pattern. Then, in Section 4A.4, we extend

‘moment results from Kendall and Stuart (1969,v1,pl148-150) for Pearson
distributions, proving that if the expression is true for any two
successive values of 1, it must also be true for the next higher value
of 1. | | |

We conclude Appendix 4A in Section 4A.5 by generalizing this method
to cross-product moments. Order-of-magnitude results are given for
forty-nine cases. Because of the variety and complexity of possible
results for the Towest-order term in (n+th)'1, we do not further use
this method. Instead, we describe a different.apbkoach'in Section
4.2.1 Qf the main text. Although fhe different approach gives orders
of magnitude for even cross-product moments, it gives only bounds for

odd cross-product moments. Hence, results of Section 4A.5 are especially
important for odd cross-product moments. |

In Section 4A.2 we describe a symbo1ic computer system used to

facilitate algebraic operations in the last three sections.

Remark: The usual procedure to calculate moments is through the
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chéracteristic (moment-generating) function, cumu]ants,.or factorial
moments. However, in this case, calculation of the posteriof central
moments (2.6) was easiest done directly. As might be unsurpris%ng in
such case, none of the three usual procedures aided in obtaining the
1imit of these moments. The moment-generating function led directly to
expression (2.6) for the 1th posterior central moments; that is, differ-
entiating exp(-E'E)¢(E) with respect to t, for ¢(E) the moment-generating
function, and setting results to 0 gfves (2.6). Thus, use of the
moment-generating function was not he]pfu] in reexpressing (2.6) to
obtain its 1imit. Calculation of the logarithm of the moment-generating
function to obtain the cﬁmu]ants (for purpose of translation back to the
- central moments) also did not aid in bbtaining the Timit of the 1th
central moment (2.6). Consideration of factorial moments, often useful
for digcrete distributions, was unfruitful for this continuous

distribution.



-102-

4A.2 Symbolic Computer System:

In this section we describe a computer system used to facilitate
algebraic operations in the remaining three sections. In Section 4A.3
we use this system to expand the first twenty-one central moments,
E[(pi_“i)]lf] for 12121, 1in a Taylor series in (n+2\)h)_1 about the
point (n+2vh)-1=0. In Section 4A.4 we use the computer system to alge-
)—1 and.uiEE(pilf) a system of four

h:
equations in four unknowns to enable, for all 1, the (1+1)St

braically solve in terms of (n+ZIv
central

moment to be written in terms of the two preceding, 1th and (1-1)St,
moments. In Section 4A.5, the computer system facilitates evaluation of
crqss-product moments E[(pi-ui)](pj-uj)h|§] for 2<1,h<8.

The computer system used is MACSYMA* (Project MAC's SYmbolic MAnip-
ulation System), developed by the Mathlab Group, Project MAC at M.I.T.
(Massachusetts Institute of Technology). MACSYMA is a versatile inter-
active computer system for manipulating algebraic or symbolic expressions
as well as for performihg high-pre;ision numerical ca1cu1ations. MACSYMA
is written in LISP (a list procession programing 1énguage used for non-
numerical applications) for a Digital Equipment Corporation PDP-10 computer
with a KL10 processor and 500k 36-bit words of memory. The PDP-10 computer
is located at the Laboratory for Computer Science at M.I.T. and is known
as the MC (MACSYMA CONSORTIUM) computer. A Tlarge variety of ﬁomputer

terminals at NASA, Langley Research Center, allow access to MACSYMA.

*This work is supported by the Defense Advanced Research Projects Agency
work order 2095, under Office of Naval Research Contract #N00014-75-C-0661.
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MACSYMA can algebraically differentiate and integrate analytic
expressions, take limits, solve systems of linear or polynomial equations,
expand functions in Taylor series, manipulate matriées and tensors, factor
complicated polynomials in many variables, plot functions, and calculate
Laplace transforms. The system has "built-in knowledge" of many commonly
used mathematical functions. Operations are done in rational, not floating-
point, arithmetic. Thus, round-off error does not exist. Additional
information can be found in MACSYMA manuals (1975a,1975b,1976) by the
Mathlab Group at M.I.T.
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4A.3 Derivation of General Expression:

In this section we determine an expression for the lowest-order
k+1

term in (n+ % vh)_l of the first twenty-one posterior central moments.
h=1
We do so by writing the 1th central moment [recall (2.6)]
ST TR AN il L )
E[(p;-n;) |x] =] Z (-1 —_— I — 4A.1
i " b j=0 i n+Z\)h q=0 n+th+q ,
ktl kt1 4
in a Taylor series in (n+ £ v, ) ~ about the point (n+ & v ) "=0.
h=1 N h=1
Recall from (2.2) that
k+1
i = (xg*v)/(n+ 3 o) (4A.2)
: h=1
and let
111 = 1(1-2)(1-4)(1-6)...1 for 1 odd*, | (4A.3)
ktl 4 ' :
r=(nt2 vh) . (4A.4)
h=1
k+1
Si =[n+ § h‘(X1+V1)]/(X1+V1)
h=1
= (1'U1)/uia (4A.5)
and
yi = pi-ui- (4A'6)
Then

*Standard mathematical notation. For example, see Gradshteyn and Ryzhik
(1967,px1iii). Note that 1!! is not defined for 1 even.



_ -1
s.+l = My s
2 _ 2
sy -1 = (1‘2“1)/“1 R
s-/(s-+1)2 = ps(1-ps)
1 1 1 17?2

and the variance is given by

055 = rsi/ L) (5;+1)°] = vy (1-ny)

since

r/(1+r) = 1/(n+zv, +1).

h

h

Rewrite the 1" central moment (4A.1) as

T 95 j=1 14q/(x;+v.)
ey 1) = w2 ()1 (1) —
S j=0 3/ q=0 1+q/ (n+Iv, )
1 .oy j-1 :
] 1-3 1 r
=yu. I (-1) () I [1+s.q =——]
1 §=0 3/ q=0 17 1+gr
since
1+q/ (x;+v;) q[-1/(n+2v, )+1/(x;+v,)]
i 900 iy
1+q/(n+Zv, ) 1+q/(n+2v, )
q (n+zv, )-(x:+v.)
=1+ h™ 5 30| /114(n+Ev,) )
n+Iv X:+v h
h i i
_ r
Define

f(r) = r/(14qr).

(4A.7)

(4A.8)

(4A.9)

(4A.10)

(4A.11)

(4A.12)

(4A.13)

(4A.14)
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Expanding f(r) in a Taylor series in r about the point r=0 yjelds that

(-1)971g3-1,3, (4A.15)
1

neo 8

r/(1l4gr) =
J

Substituting (4A.15) into (4A.12) and, by using MACSYMA, expanding
ui]E(yi]|§) in a Taylor series in r about the point r=0 yields for low-
order terms for the first twenty-one central moments results given in
Table 4A.1. Note that all results must be multiplied by “i]’ To get the
lowest-order term in r, we discard all tﬁose terms in the inner-most set
of parenthesis, except for céses 1=2 and 1=3. The following pattern is

detected for 1%1%421:

(1-1)!!31]/2r]/2ui] for 1 even

E(yi]lf) = | | (4A.16)
(1-1101(s-1)s, T2 (0072, 13 or 1 odd,

where the approximation "=" in (4A.16) means that only the lowest-order

term in r is given. As a check on these formulas, note that for 1=20

and 1=21, (8A.16) yields 19!!s11°r11°u.2° and (20x21!!/3)(si-1)s11°

]
11 21
i My

, respectively, both of which agree with results in Table 4A.1.
To simplify results we multiply numerator and denominator of

(4A.16) by (1+r)"/2 for 1 even and by (1+r)1*1)/2 gor 1 odd. Then,

substituting into (4A.16) from (4A.2) - (4A.10) and again giving. only

the lowest-order term in r=1/(n+2vh) yields that, for 141421,

(1-1)!!0].1.]/2 for 1 even
E(y; ' |x) = (4A.17)

("1)‘!!(1'2“1)011(]+1)/2/[3“1(1'“1)] for 1 odd.
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14
16
18
20
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15
417
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TABLE 4A.1

LOW-ORDER TERMS* FOR FIRST 21 CENTRAL MOMENTS E[(pi-ui)2|x]

low-order term

315 r

3465 r
45045 r
675675 r
34459425 r
654729075 r

~2

-

4

-

42

-

56

-

770

-

60060

-~

210210 r
4084080 r

87297210 r10
6110804700 ril

+ 2)
+ 26)

+ 68)

+ 140)
+ 250)

+ Si)
+ 351)
+ 3s.)
+ 351)

+ 351)

406) + 3Si)
616) + 351)
296) + Si)
410) + Si)

50 s. + 6) + 5

115 s, + 22) + 5

si7 (r(3668
si8 (r(5192
si9 (r(2362

(Si'l)
(51'1)
(Si-l)

* all results must be multiplied by‘uil

s. (r( 2 5.8 - 8 s.

] 1 1
3 2 2

S5 (r( 26 s;” - 79 S
a4 3, v 2

S; (r( 68'51 - 184 S
5 514 (r(140 s1.2 - 355 S:
6 si5 (r(250 Siz - 608 s,
7 5. (r(406 s;2- 959,
8 si7 (r(616 si2 - 12 s,
9 si8 (r(296 s,° - 673 s,
10 ¢ 9 (r(810 5.2 - 920 s,

1 i | A
2 (s.-1) s (3r-1)

: i

3 o

(si-l) S5 (r( 6 5;2 -
4 2 2

(si-l) S5 (r( 22 i -
5 3

(si-l) S (r( 472 s;° -
6 (s5-1) si4 (r( 916 Siz -
7 5, 2

(si-l) ¥ (r( 314 S; -
8 (s.-1) 5.5 (r(2674 5,2 -

1 1 1

9

w
]

1970 s
3335 s,
1042 s,
7675 s,

10810 s,

14695 s
6470 s,

+ 472) + 45
+ 916) + 45
+314) + 9
+2474) + 45
+3668) + 45
+5192) + 45
+2362) + 15

Si)
Si)
s;)
s;)
s5)
s;).
s;)
s;)

s;)
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4A.4 Validity of General Expression:

In the last section we derived expression (A.17) for the 1th pos-

terior moment for 121421, hence proving the expreSsion true for these
values of 1. 1In this section, we prove that if the expression is true
for any two successive values ofll, it must also be true for the next
higher value of 1. Having done so, we will have proved that expression
(A.17) holds for all positive integer values of 1.

h posterior central moment of

In (4A.1) we are-calculating the 1t
P Since the posterior distribution of p given x is the k-dimensional

Dirichlet D(x1+v "Xk+“k;xk+1+vk+1)’ then the marginal posterior

10
distribution of P; for 14712k is the one-dimensional Dirichlet
- k+1 k+1 .

V. g AV . AV, A4v.)). i ,
D(x1+v1,j§i(x3 vJ)) or beta Be(x1 V"jii(XJ vJ)) [See Wilks (1963
pl73-179).] That is, the posterior density of P; given x is

k1
K+l k+1 Xitvi-1 jii(xj+vj)-1
f(p1.|X)=I‘[ z (xj+vj)]/{r(x'i+\)'i)r[ z (xj"'\)j)]}p.i (1'p1') .
- Jj=1 J#i (4A.18)

Now, the beta distribution is known as one of the Pearson distri- A
butions [Kendall and Stuart (1969,v1,pl48)]. A Pearson distribution is

defined as any frequency function f(w) for which

df(w)/dw = (w-é)f(w)/(b0+b1w+b2w2) | (4A.19)

for some a, bo, bl’ and b2. Kendall and Stuart derive the general
moment for a Pearson distribution in terms of lower-order moments. We
now generalize their method to the case of central moments. Note that

we treat the most common case, f(0)=f(1)=0. However, results also hold
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when one or both of f(0) and f(1) are not zero. Thus, results also
hold for J-shaped, U-shaped, and flat beta distributions. [See also
Kendall and Stuart (1969,v1,p151).1]

Therefore, cross multiplying (4A.19), adding and subtracting
powers of n=E(w), and multiplying both resulting sides by (w-n)] yields

that

(w-n)] [(b0+nbl+n2b2)+(b1+2nb2)(w-n)+b2(w-n)2] df(w)/dw dw
(4A.20)
= (W-n)] [(w-n)+(n-a)] f(w) dw.

Integrating the left-hand side of (4A.20) by parts over the range of the

distribution, we find, assuming that the integrals exist, that

(o] e o]

b2)+(b1+2nb2)(w-n)+b2(W-n)2] fw) 1 - s f(w) {1

-00 -0

(w-n)! {[(bytnb +n?

x(bgtnb b, ) (w-n) "L (1+1) (bg-2nb,) (w-n) M+ (1+2)b, (w-n) *13 dx  (4.21)

=J (w-n)]+1 f(w) dw + (n-a) ? (w-n)] f(w) dw.

For the beta density (4A.18), f(P1|§) is positive for 0<p;<l. Thus,
" in equation (4A.21) we fep]ace endpoints -~ and +~ by 0 and 1, respec- .
tively, and w, n, and f(w) by pilf’ Wi, and f(Pilf)’ respectively. We
then note that, since f(1|§)=f(0|5)=0 and, for any positive integer j,

Tim p.J=1 and lim p13=0,
p1.++1 p_i->+0

Tim p1.‘] f(p[x) = 0. (4A.22)

+1
Pi7%o

Therefore, the first term in equation (4A.21) is O.
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" Hence, recalling from Section 4A.3 the definition Yi=P;Hj s we

can write (4A.21) as

1bg#byug s 0,1 ECy; THx) + [01#1) (by=2byu ) #ug-ad E(y; ' [x)

(4A.23)

]+1|

+ [(142)by*1] E(y, 7 |x) = o.

Thus, if we knew bo, bl’ 52, and a we could use (4A.23) to calcu-
late any (1+1)St central moment in terms of the 1th and (1—1)St central
moments. To calculate bO’ bl’ b2, and a, we successively let 1=0, 1,
2, and 3 in (4A.23), substitute results from Section 4A.3 for E(yij]§)
for 24j44, and set E(y 1|x =0, E( 10|§)=1, and E(y11l§)=0 to obtain
four equations in four unknowns bO’ bl’ b2, and a. Solving thése four

equations with MACSYMA yields

—_
L]

ar/[(2r-1)(s;+1)°1,

o
"

1 Y‘(Si‘3)/[(2r'1)(51+1)],
(4h.24)

o
1

o = - r/(2r-1),
and

[+%)
1]

(rsi+r-1)/[(2r-1)(si+1)].

Substituting results (4A.24) into equation (4A.23) and collecting

“l)

terms in E( 1- 1| )s E(y llx , and E(y yields that

E(y; *2x) = T 1(s;%-1) Ey;'[x) + siE(yi]'llg)]/[(1+1r)(si+1)2].
(4. 25)

Therefore, we can use (4A.25) to show that if expression (4A.17)

holds for the 1th and (]-1)St central moments, it must also hold for
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the (1+1)St moment. Because we have different expressions for 1 even
and 1 odd we have two cases. By using (4A.17), (4A.25), and (4A.2) -

(4A.10), we have that, to the lowest-order term in r:

for 1+1 even:

]+IIX) = 1r[(512-1)(1-1)1!!(l-zui)/3 r°11(]_1)/2(1+r)(]'1)/2

ts5(1-2) 110, (D2 140y (=172 (a1 (5. 41)2)
(4A.26)
1!!oii(]-1)/2(1+r)(]'1)/2{1(1-1)r2(1—2u1)2/3+rui)}/(1+1r)

1oy, P20 T2 {1000 (1-0) (1-20) 2/ L3 (10 ) 1) 7 (1917)

*
(1+41)/2
1!!011

for 1+1 odd:

x
S
1
et
~5
—
—~
wn

20 (-1 tto V2 (1) s (1-2) (1-1) 11 (1220, ) /3

xoii(1-2)/2(1+r)(]-2)/2]/[(]r+1)(si+1)2]
| (4A.27)
101-1) oy, 2004 /2 0r(1-20,)+(1-2) (120, ) /317 (1417)

il

1(1-1)!!0111/2(1+r)]/2(1<2ui)r/3 (3+1-2)/(1+1r)

](]+1)!!Oii(]+2)/2(1'2U1)/[3Ui(1'ui)]*.

Therefore, from results of Sections 4A.3 and 4A.4, expression

(4A.17) 1is true for all positive integer Va]ues of 1.

*
These expressions are actually divided by a finite constant c(1) where
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1 if ]<n+2vh

c(1) =¢ 2 if 1=n+th

>2 if 1>n+3v, .

(172 (11ap).

The constants c(]).arise from evaluation of the term E=(1+r)
Since r=1/(n+2vh), then r<1. Henge, the numerator of & can be accurate-
ly approximated by the first two terms of the series expansion

(1+r)(]+1)/2 - ; ((1+1)/2) .
4 3=0 J

’1+[(1+1)/2]f+{(1+1)/2][(1#1)/2-1]r2/2!+...;

When 1r<1 (i.e., 1<n+£vh), then the term 1/(1+1r) in g can also be accu-
rately approximated byithe first two terms 1-1r of a series expansion.
1-1r+(]r)2-(1r)3+---. In this case, & can be accurately approkimated
by 1+[(1+1)/2-11r, the low-order term in r resulting from the multipli-
cation of the two series. Therefore, in this case of 1r<l, expressions
" (4A.26) and (4A.27) are correct as given. When 1r=1 (i.e., T=n+gv, ),
however, then £=(1+r)(]+1)/25{1+[(1+1)/2]r}/2 and eXpressions (4A.26)
and (4A.27) must bé divided by 2. When 1r>1 (i.e., 1>n+2vh),.then
e>(1+r) #1725 <o that expressions (4A.26) and (4A.27) must be divided
by some constant larger than 2.

However, the interest iﬁ Chapter 4 is in very large n; in
" particular, the limiting case'n+w. For these cases, 1<n<n+2vh and
- ¢(1)=1. Therefore, to'avbid carryihg around a term that is 1 in the

cases in which we are interested, we do not include it. Further, the

limit taken in (4.3) in the main text is not affected by c(1).
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4A.5 Cross-product Moments

The method of the preceding sections readily extends to cross-
product central moments E( Il ¥; |§). We can write these cross-product

g=1 'g
moments as a nest of expressions where each expression is similar in

h

form to the 1M central moment (4A.12) with the exception that each term

of the sum is multiplied by results of inner nests.
For example, for 14i,j%k; j#i, 1, h positive integers; and, again

“17(X5+“i)/(“+z”h) and yi]=[pi—ui}]; we have that -
1. 1-a 1 l-a _a
; LEO“” * (o) m "i}
| ho b [\ . h-b b
XLEO(-I)‘ (b) Hj Pj]l
1

. u " : (-.l)l'a(-»l)h'bi (;) (2) " (4n.28)

E(y; 'y, 1)

X

T a=0 b=0

3 xi+Vi -a [x.+v.\-b
: nvah n+2vh

Y ) 1 )
T (x,+v.+q.) T (x.+v.+q.
q;=0 i i qj=0 AR
at+b-1
I (n+Zv +qp)
qb'o )

X

since

b r(x.+v.+a)r(x.+v.+b)r(n+2vh)
E(pap IX) = 11 J ) ]
I L% T r(xi+vi)F(xj+63)F(ﬁ+th+a+b)

(4A.29)

: -1
In (4A.28) we again use the convention that 1 f(q)=1 for any function
. ' q=0 -
~f of q. Now, we can write the last two lines of (4A.28) as
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a-1rf q. 1 b-1T g. 1
A R +$ Lo+ Q—I%_
q;50 L MVilge0 L %™y )
+ —_—
qi=0 " nFIvy | g =2 L n+Zv, |
a -1 1+q, /(x v, )\ [b- 1+q /(x +v )
= _0 T+, /(n+zv‘) 1+(h+q )71h+zvh) (4A.30)
J
a-1 -7\ fbet ]
= H= [1 Si93 Tra. r] n [1+(sjqj-a) TITETTETF}
9;=0 9,70 . "
where, again,
= (n+2vh)'1.

and

= [(n+2vh)-(xj+vj)]/(xj+vj) = (1-u;)/u;.

The first term of the last line of (4A.30) was derived in (4A.13) and
the second term has a similar derivation.
Therefore, we can write (4A.28) as

: 1 a-1
. h -
E(‘y'i]yj If) = Ui]Ujh 20(‘1)] 2 (;) I 0 [1+S1q1 mjl
a= q.=
i

(4A.31)

x 2(-1)“"’ (h)bﬁl [1+(s.q.-a) r ]
b=0 b qj=0 3 1+qu+a5r

Using MACSYMA, we can evaluate the (4A.31) factor in braces for -
enough values of h tb establish a pattern for the low-order term in r
for h even and odd. We can then use the method of Sectionh4A.4 to show

that this pattern is valid for all values of h. The procedure can then
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be repeated for the remaining factor of (4A.31).

Because we will have cross multiplication between the th factors
of (4A.31),.however, we must know not only the lowest-order term in r
but also the next lowest-order term in r. In general, for each addi-
tional variable Y in (4A.31) we must know an additional low-order term
in r.

Further, the two lowest-order terms in r for the (4A.31) factor in
braces will be a function of "a"‘from the first factor, so the final
result for (4A.31) in terms:of the low-order term in r will be more
complex than that of (4A.17).

Therefore, the variety of possible fesu]ts and greater complexity
of intermediate evaluations, espgcia]ly those of paftern recognition
and algebraic manipu]étions, makevthis method generally unfeasible for
cross-product moments. Hence, we adopt another approach, to be dis-
cussed in the main text, to evaluate the magnitude of cross-product
moments.

We conclude this section by noting that éva]uation of (4A.31) for
2€1, h€8 yields that | |

0(n-(1+h)/2) for 1+h even -

E{[pi-uill[pj-uj]hlg} = ‘(4A.3?)

-O(n'(]+h+1)/2). for 1+h odd.
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APPENDIX 4B

LIMITING POSTERIOR DISTRIBUTION GIVEN COMPLETE DATA

Cox and Hinkley (1974,p399) prove in general that when the data has
an exponential-family distribution and the conjugate prior is used, the
limiting posterior distribution is multivariate normal with the vector of
maximum likelihood estimates for the mean. The inverse covariance matrix
of this limiting distribution is the negative matrix of second partial
derivatives of the log likelihood evaluated at the maximum 1ikelihood
estimates. In this appendix we prove this theorem in detail for our complete-
data cage where the data has a multinomial distribution and the conjugate
prior, the Dirichlet, is used.

From (2.1) the posterior distribution of p given complete data is
k-dimensional Dirichlet. Therefore, we prove that the limiting Dirichlet
is'k-dimensfona1 multivariate normal with'mean and covariance matrices those
of the Dirichlet. We proceed by proving that the log Dirichlet converges
to the log multivariate normal as the sample size indefinitely increases.
Important aids will be Stirling's approximation for the logarithm of the
gamma function and‘fheorems from Gfaybill (1969) on patterned matrices.

From (2.1) the posterior density f(Elgf of the k-dimensional variable
p given complete data x is, in the notation of Wilks (1963,p178), that for
the Dirichlet distribution D(x1+v1,...,xk¥9k; xk+1+vk+l); i.e.,

k+1 k+1 k+l x +y -1-

f(plx) = (1L 2 (o)) T Plxpvuy)) TPy hohe, (48.1)

1 h=1

{
where Xp is the number of observations falling in category Che Vh is thE

real, positive parameter for the prior density (1.1) of P and pk+1=1-hzlph.



-117-

k+1
As the sample size n= I x

h=1
vi/n approaches zero.

h increases, xi/n approaches a constant and

For the Dirichlet D(x1+v1,...,xk+vk;xk+1+vk+1), recall (2.2) - (2.4)
that the mean vector u of p|x has elements, for 194k,
k+1 )

v
h=1 D

P (xi+vi)/(n+ (48.2)

and that the covariance matrix §=(oij) of p|x has elements, for 1<i<k,

k+1
Oii - Ui(l'ui)/(N+h§1Vh+1) | (4B°3)
and, for i<jsk,
k+1
o055 = uiuj/(n+h§1vh+1). (48.4)

Now, (n+2vh+1) I is of a matrix pattern treated by Graybill (1969),

who gives its determinant and inverse. Applying Theorems 1.5.4 and 8.4.3
of Graybill (1969,p8,184) to (n+2vh+1) T yields that
' k+1 K
det(z) = T u./(n+2vh+1) (4B.5)
Y=l |
for "det" denoting determinant. Applying Theorem 8.3.3 of Graybill (1969,

pl70) yields that the inverse §_1 = (013) of L has, for 14i<k, elements

ii
o

(n+Zvp+1) (uatiy )/ (g 4 g) (48.6)
and, for i<j<k,

01J

(n+Zv, 1)/ g (48.7)
By dropping.the term O(q'l) in Stirling's formula [Cramer (1951,p130)]

log[T(q)] = (g-%)log(q) - q + %log(2m) + 0(q'1) (4B.8) .
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for the logarithm of the gamma function for q positive and real, we Can

approximate the logarithm of the Dirich]et density (4B.1) as

k+1
Tog[f(plx)] = (n+2vh-%)1og(n+2vh)+%log(2n)- b [(xi+vi-%)1og(xi+vi)
S i=1
: k+1
+#3log(2m)]+ I (x;*+v.-1)Tog(p,)+ O(n” h
i=1
(4B.9)
k+1 k+1
= .z (x]+v )]og{(x +v, )/[(n+Zv )p 1}+5l0g{ T (x, +v1)
i=1 , i=1
k+1 -1
/L (ns3v) (20)D-og( T py) + 0(n).
"-
Now, for 1£i<k+l, Tlet

where we define Mt and O 41, k+1 by (4B.2) and (4B.3), respectively.
Then, for 1£j<k+1,

E(z) = 0, (48.11)
var(zi) =1, (48.12)
and, for 1%i€k, i4j%k,
cov(zi,zj) = /(0110JJ)L. (4B.13)
Thus, from (4B.10),
Pi = Hi*Zi/04;
(4B.14)

1]

1
M (1+zi{(1-ui)/[u1("+2vh+1)]}2
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From Tchebychev's inequality [Bishop, Fienberg, and Holland

(1975,p476) ] and (4B.3),

Py -y = 0p(voy4)
. (4B.15)
= Op(n ).
Thus, the term
S Zi Vxl-ui)/[ui(n+2vh+1)]
(4B.16)

L]

(pi-ui)/ui

in the second line of (4B.14) is Op(n'%). Therefore, for large enough

n, (4B.16) is bounded in absolute value by 1, so that [CRC Tables (1962,
p373) 1,

log [1+e,] = ei-sizl2+op(n'1). | (48.17)

Hence, from (4B.2), (4B.14), and (4B.17), we have that, for 14i%k,

Tog “i/pi -log [1+ei]

(4B.18)

2 -1

Therefore, substituting (4B.18) into (4B.9), we have that,
k+1 k+1

log f(p|x) = (x1+vi)[ei-e12/2] +3 log{
1

/Ln+zv, ) (2% 1) - Tog

no+

AV,
. (x1 v1)

1 i=1

K41 (48.19)
II

) +o0 (n'l).
i " P

1




-120-

For the first of the four terms in (4B.19) we have, using (4B.3) and
(48.10), that

k+1 k+1
.§ (xi+vi)€i = (n+ZVh)i£1(pi'ui)

i=1 (4B.20)

= 0.

For the second term in (4B.19) we have that

k+1 2 k+1 2
-‘E (xi+vi)€i /2 = [’%.E Zi (I'Ui)][(n+zvh)/(n+zvh+1)]
i=1 i=1 (48.21)
2 2(1em) + 007
=457 z.(l-p;) + 0 (n
R

since, from (4B.15) (or meaning of standardized variable), 212=0p(1) SO
that 0(n") £2,%(1-y) = op(n'l).
In (4B.21) we can write Zk+12(1'“k+1) in terms of 212 and My for

1%i€k as

2 i} 2
Zgay (Iiar) = (29410 (g ) /iy

= (n+2vh+1)[1§1(ui-pi)]z/uk+1 (4B.22)
k 9 k-1 k
- (n+zvh+1)[i§1(ui-pi) +21§1 jii(ui-Pi)(uj-pj)]/uk+1
= l}52.2(1--“.);1./“ +2k£1 ‘;: y
j=1 1 LA RS 5 S} jei 1 d

x[ui(l-ui)uj(l-uj)]%/Uk+1 3

since »

(Ui'Pi)z{(N+ZVh+1)/[ui(l-ui)]}ui(l-ui)

2
(n+8vh+1)(ui-Pi)
B.
Zizui(l-ui) (4 23)
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and, similarly, for j#i
L
(ﬂ+EVh+1)(ui'Pi)(uj-Pj) = ZiZj[ui(l-ui)Hj(l-Hj) 1= (4B.24)

Therefore, substituting (4B.22) into (4B.21) and recalling (4B.6)
and (4B.7), we have that

k+1 k
- T {x5%v;)e, /2 = %[ Lz (1 - ) (1+uy /“k+1)
i=1 1=1
k-1 k ( ) (
2 X T z,z:[u (1, M (1 ST )]2/u 1+0 (n )
i=1 j>i i%J i J k+1

K
= =u(nezy +1) 0 T (ps-u) 2y ey )/ (uguy ) (48.25)

i=1
+2 L % (ps=u; ) (ps-us)/up 41 + 0 (n77)
i=1 j>i i P10V R Pk+l p

= -5 (p-) 7 (pw) + 0 (n7h).

Now, from (4B.15) we have that

k+1 k+1 o
Mpy = T ug+0 (n79). (4B.26)
i=1 j=1 ' P

Therefore, by using (4B.2), (4B.5), and (4B.26), we can write the
last two terms of the log Dirichlet (4B.19) as
k+1 k/2 k+1
Tog{[ T (x;+v, )]‘/[(n+2vh)2(2n) I p;1}
i=1 j=1 !
k+1
/2 R g B0y (71 (meze) 7
=1 (48.27)

log{(2m) [(n+2vh+1)/(n+2vh)]

Tog ((2n)k/2[1+o(n‘k’2)]{[det(g)]%+op(n'(k*1)/2)})'

k/2

Tog ((2m)*/?[det(z) 1% 140 (n" %1}
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Therefore, substituting (4B.20), (4B.25), and (4B.27) into (4B.19),
taking the antilogarithm of the result, and noting that

exp[op(n'l)] - 1+op(n'1), (48.28)

we have that

F(plx) = ((2m)*/?(det(2) %140 (%) 13" exp(5(p-1)z ™ (p-w) ' DI1+0 (071

(48.29)
((2m) /2 1det(2) 1% expLp-) 2™ (p-)) [130, (0”1,

Rao [1968,(xv)pl04] proves that if the density of a random variable
converges to some density, then the distribution of the random variable
converges to the distribution for the limiting density. Therefore,

;12 D(x1+v1,...,xk+vk;xk+1+vk+1) = Nk(B.g); . (48.30)
that is, the limiting k-dimensional posterior distribution of p given
complete data X is k-dimensional multivariate normal with mean and

covariance matrices those of the Dirichlet.
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APPENDIX 4C
CENTRAL MOMENTS OF k-DIMENSIONAL MULTIVARIATE NORMAL DISTRIBUTION

4C.1 Introduction:

Let Xp,...5%, have the k-dimensional multivariate normal distribu-
tion Nk(y,g) with the 1xk mean vector u and kxk covariance matrix
§=(°ij)’ Anderson (1958,p39) gives the second and fourth central moments
of this distribution. Lindley (1965,v1,p95) and Schmetterer (1974,p76)
~ give the 1th central moment for the one-dimensional distribution. In
this appendix we derive the general central moment of the k-dimensional
distribution. We conclude the appendix by illustrating the formula for
the first six central cross-product moments and by showing it equals
formulas from Anderson, Lind]ey, and Schmetterer for their specialized
cases. ‘

Because the moment-generating function of the mu]ti?ariate normal
 distribution exists, we work with it rather than the characteristic
function to avoid using the extra, compiex, variable /-1. To obtain
central moments, we multiply the moment-generating function ¢(t1....,tk)
by exp(-EH'), continuously differentiate the results with respect to t,
and then set t to 9 in the différentiated results. [See Lindley (1965,vl1,
p92) or Jeffreys (1939,p74).]

An alternative approach is to calculate cumulants Kil"'ik and then,
from the cumulants, central moments. Straightforward calculation yields

results of Anderson (1958,p39) that KO...OijO...0=“j for 14j%k,

. k
for 1£j,14k, and «. ; =0 for z i.n2.

K . . =0 .
0...01j0...01 0...0 “j1 Tyaeesniy j=1 J

1
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From Kendall and Stuart (1969,v1,p70) we can therefore wrife the first
ten central moments E[(pi-ui)]lgl for 141£10. The method to extend
these results to the general central (cross-product) moment, however, is
no briefer than the method using moment-generating functions that is

given in the next section.
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4C.2 Theory

From the characteristic function given by Anderson (1958,p36) and

Wilks (1963,pl168), we can write the moment-generating function ¢(t1,...,

tk) of the k-dimensional multivariate normal distribution as

L p' +tzIt

¢(t1,...,tk) = e T, (4C.1)
Defining
_ -ty
f(tseenaty) = e ™ 7 (ty,...ut,), (4c.2)
we have that
Bty
f(tl....,tk) = e
( k 2 k-1 k 5
I t.,"0,,+2 I rt. t, o..
i e2 -i:l 1 1 i=1 J->_i 1 J 1J .
(4C.3)
Hence,
k .
af(tl”"’tk)/ati = (t.i LI jgi tj oij) f(tl,...,tk). (4C.4)
Define
: (4C.5)
C. =t,o0,.+ L t. o,. 4C.5
i i i j#i J TiJ
and rewrite (4C.4) as
3f(t1,...,tk)/3ti = Ci f(tl"'.’tk). (4C06)
Now, for all 1%4i,j=k,
aci/atj = 044 (4C.7)
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Then,

2 -~
) f(tl""’tk)/(atiatj) = 045 f(tl....,tk) +C, af(tl,...,tk)/atj,

(4c.8)
3 =
) f(tl,...,tk)/(atiatjatk) = oij Bf(tl,...,tk)/atk+cik8f(t1,...,tk)/atj

(4C.9)
+ €, azf(tl,...,tk)/(atjatk),

and
4 - 2
3 f(tl,...,tk)/(atiatjatkatz) = Oija f(tl,.-.,tk)/(atkatz)

2
+ 03 A2 (t e uty )/ (3E508,)

2 (4C.10)
+ 0123 f(tlgco.’tk)/(atjatk)

~ a3
+ cia f(tl,...,tk)/(atjatkatz).

Continuing in this fashion, we have in general that, for léhgék
and m a positive integer,

2-2 (T ot )
h, 3 “f(t;,...,t, )/( T 5t
i 1 kK=o P

#i
. m (4c.11)

2-1
3V F(ty,. st )/ WAL, )
1 K n=2

a“f(tl,...,tk)/( T 3t
1

+C
hy

We use the double subscript h_ rather than a single subscript h

g
because ty is meaningless for k<h#g and we want a convenient way of
allowing all possible permutations of the k integers and their

. powers j for 1£j%a.

Now, odd central moments are 0 because the multivariate normal
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distribution is symmetric about the mean.l For & even and

Yo T X, T H o (4c.12)
hg hg hg .
we therefore have from (4C.11) that the zth central moment E( I Yp )
g=1"9g
is
% ) 42 8
E(Ty, )= Zo 3 “f(ty,...ot )/( 13t ) (4C.13)
g=1"9g i=2 "1 m=2 ‘m |t=0

m#i

th central moment is

Therefore, each of the 2-1 terms in the &
a variance or covariance times an (2.-2)nd central moment. Evaluating

the second central moment (4C.8) at t=0 yields that

2
E(nNy, )=o0o . (4C.14)
g=1Ng N1y
. . th L .
Hence, by induction the £~ central moment E( I Yh ) is a sum of -1
=1 g

terms, each of which is a product of those /2 elements of the

covariance matrix that are indexed by the subscripts h That is, for

g.
(i) i, =1, (4C.15)
and .
(i) ( 2j-1 _ 2j-18 (2-2) 2j-2_ 25-1)
11' i : = min 2X H 6- ,3)( H . 9e0e J_ X H 6 3 J- ),
2j-1 b=2 122’ pzp  1pe3 p=p 1p12J-2

where 2%4j%2/2 and

lalso because C, (0) = 0; f'(0) = 0; and by induction all odd moments
; !
are zero.
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is defined to be the one complement of the Kronecker Delta symbol

ib.q
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0 if ip=q
1 if i fq

1-5, _ = (4C.17)

ipq

61 q [see Feller (1968,v1,p428), Korn and Korn (1968,p544), or CRC
b'
Standard Math Tables (1962,p501)], we have that
( : ) :
E(Ny )=2% o , I o N
g=1'"g 1,72 My, 11 "M, paigg g3 g
1971 Va7l
for j<4 for j<g-3
x I g h
12701 T9-1T7y
1971
for j<a-1
| 2 Q(3) L - Q(5) 2
=. X ) z ) z ) Z_ ) z ) Z. (4C.18)
772 gz iy 03 gy
13f1j 14f1j 15#1j 16#1j
for j<3 for j<4 for j<5 for j<6
Q(2s-1) ¥
.oz L
;T25'1=? 125>125-1
Tps-1?1y  Tos?i;
for j<2s-1 for j<2s
o Q(2-1) % |
. z z (o o cee0 o0
e L .5 %hhe hoh h,  h, h, h, °
W2 21 1y gy s T T
12-1#1j 12#1j
for j<&-1 for j<&

where
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25-2 2s-2 2s-2

Q(2s-1) =s + I 6, + I I 8, S,
j=2 138 a=2 b=z 1a°8 Tpestl
b#a
25-2 2s-2 2s-2 2s-2
+-oo+ z . Z LU . Z H Gi b’
3572 354172 Jps-2%2 =3y’
Js41Ps | Jps.p?d
for a<2s-2
for 61 s the Kronecker Delta symbol. For example,
J'!
Q(3) =2+ 612’2
and
4 4 4

Q(5) =3+ 1 &, + I I 6, 8 4
P gz iy g
igtia |

(4C.19)
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.4C.3 I11lustrations

From (4C.18) the first six central moments of the k-dimensional

multivariate normal distribution Nk(E’§=(°ij)) are, for 14a,b,c,d,e,f%k,

5
E(y,) = Elypypye) =E(my, ) =0, (4c.20)
g=1"g
L}
E(y,Yp) = o4ps (4c.21)

and

- Elya¥pYoYaYeVs) = Pablocd%er*Oceds octIde!]

+dac:["bdoef'*c’be(,jdf+oyb1’ode]-+ °ad[°bc°ef+°be°cf+°bf°ce] (4c.23)
¥ oae[obcodf+°bd°cf+°bf°cd1 + 0,519 c%4e*OpdOe e cd] -
fhus. fpr N3(g.§),
| E(y12y2y3) = 011053 + 201,073 | (4C.24)
ahd
E(y,®) = 150;,°. (4c.25)

We note that the second and fourth moments agree with Anderson
(1958,p39) and that the &th central moment for % even is
- 2/2 /2,1 100820 4 oy 1
E(y;7) =11 (2§-1)7 04577 = 0557 "00/(2 (2/2).1, (4C.26)

J=1
paralleling results for the one-dimensional normal distribution from

Lindley (1965,vi,p95) and Schmetterer (1974,p76).
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APPENDIX 4D
LIMITING POSTERIOR DISTRIBUTION GIVEN INCOMPLETE DATA

4D.1 Introduction:

In this appendix we calculate the 1imiting k-dimensional posterior
distribution of p given incomplete data z. We calculate this Timiting
distribution in two ways. In the traditional approach, given in Section
4D.2, we note that the prior density is continuous in P and the likelihood
is regular. Therefo}e, thg limiting distribution for the posterior density
f(EIE) is multivariate normal with the vector of maximum likelihood esti-
mates for the.mean. The negative matrix of second partial derivatives of
the log likelihood, evaluated at the maximum likelihood estimate, is the
large-sample inverse covariance matrix. Therefore, rewriting the log
likelihood in terms of exponential parameters, using theory from Sundberg
(1974) to calculate the first and second partial derivatives of the log
likelihood with respect to these exppnentfa] parameters, and transforming
results back to P gives e]emenfs of the'asymptotic posterior mean and
covariance matrices. However, results for the asymptotic inverse covariance
matrix are very long and comp1icéted expressions that dd not easi1y simpljfy.

Therefore, to obtain simpler expressions and, moreover, equations
paralleling those for complete data, in Section 4D.3.we also derive the
limiting posterior distribution another way. We rewrite the posterior
density as a product of complete-data Dirichlet densities, each having,
from Appendik 3B, a Timiting multivariate normal distribution. Because
these densities are of differing dimensions and on differing combinations
of variables, we do not immediately have that the resultant product of

these multivariate normal densities is a k-dimensional multivariate normal



-132-

density on the k components of p. However, by equating coefficients and
solving for unknowns, we then prove that, owing to the special relation-
ship between the first and each remaining product, the sum of exponents
from each Dirichlet in the product does form the exponent of. such a denéity.

As part of this proof, we check that the k-dimensional inverse matrix
in the exponent is positive definite and symmetric;\ hence, a covariance
matrix. We also obtain the nonexponential term for the Timiting mu]ti;
variate normal distribution and prove that the limit of the denominator of
the posterior density (the marginal distribution) is 1. The essential step
for the latter is that the limit of the integral that is this denominator
can be taken inside the integral.

We begin this nontraditional approach by first considering, in Section
»4D.3.1 the case having at least one category, say Ck+1’ for which all data
is complete. For this case we derive e1ement5 of the asymptotic mean and
inverse covariance matrices as functions of a number of unknown ratios and
as a large nonlinear system of equafions. In Subsection 4D.3.2 we rewrite
 the moments to eliminate these ratios and reduce the non]inear-system of
equations. As resu]té, we get the maximum likelihood estimate for the -
asymptotic mean and very simpTe expressions for the asymptotic.covariance
matrix that parallel expressions frbm the complete-data case. fn_Subsection
4D.3.3 we extend proofé from the preceding two subsections to the general
case allowing incomplete data on all categories. The expréssion for elements
of the asymptotic mean vector is identical to that of Subsection 4D.3.2.
Expressions forie1ements of the asymptoticrinvérse covariance matrix are
: those of 4D.3.2 plus terms for.thosg pafterns of incomplete data that index

the dependent variable. -
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In Section 4D.4 we simplify results given by the traditional approach
in Section 4D.2 for the inverse covariance matrix. Note that it is only
by knowing results of Section 4D.3 and by using much algebraic manipulation
that we can simplify these equations to those given by the nontraditional
approach. The algebraic manipulation is so extensive that numerous human
erfors occur. Hence, knowing the final result at which to aim is critical.
It allows continual checking and correcting of various parts of the
equations. |

Therefore, the nontraditional approach will be useful in other kinds
of problems when the traditional approach gives unwieldy results. Because
we are piecing together densities of different dimensions and on different
combinations of variables, the notation for the nontraditional method in
Section 4D.3 is necessarily complicated. However, for most types of pro-
blems, notational difficulties would not exist.-

Section 4D.5 concludes the appehdix;with three examples allowing,
with the help of the MACSYMA-Symbo]ic co%buter sysfem, exact solution of
the nonlinear system of equations for.the asymptotic mean. We also give
numerical illustrations for the asymptotic mean, inverse covariance, and
covariance matrices. Note that the exact solutions can be used for the
Taylor-series approximate posterior mean and the postgrior mode, as well
as the asymptotic mean, which is the maximum 1likelihood estimate. Because
an exact so]ution'exists only in very spetial cases and is expensive,
however, it cannot generally be used. A general method to solve the non-
Tinear system of equations is the EM iterative algorithm of Dempster, Laird,

and Rubin (1977) discussed in Section 2.3.2.
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4D.2 Traditional Approach:

The prior density g(g) in (1.1) is continuous in p and the likelihood

h(glg) in (2.8) is regular. Therefore [Cox and Hinkley (1974,p401)], the

limiting distribution for the posterior density f(p|z) is multivariate

normal with the vector p for

z.+ L z.p./p.)/n (4D.1)
( i Dai D" D)

]

Py

from (2.36) of maximum likelihood estimates for the mean u and the matrix

(- " 1oglh(z|p)1/(3p3p" )} _g  (40.2)

for the inverse covariance matrix.
Recall that the multinomial density is a member of the exponential

family, where we define the exponenfia1-fami1y paraheters
65 = 109(p,/p,q1)- | (4D.3)

As in Section 2.3.1, let

t.(x) = 2.+ 3 2z, (1) " (4D.4)
v~ T pai D .
for zD(i) the (unknown) number of the z; observations that fall in category

Ci' Then, as noted in Section 2.3.2, Sundberg (1974) proves that
32109[h(§|9)]/(3Q39') = -cov[t(x)|9I+cov[t(x)|z,¢], (40.5)

where h(z|¢) is the likelihood h(z|p) written in terms of ¢ instead of p-
Since the first partial'derivatives are zero at the maximum 1ikelihpod
estimate, application of the chain rule to the negative of (4D.5) with |

evaluation at p=6£g yields
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2

T I Y LN
3p.93p. a=1 3p, |b=1 34_9¢, 9p.
iJ p=u i a ‘b " p=u
(4D.6)
k 3¢a' k : (ot | ) ( | ) 3¢b
= % —( Z [cov(t_,t |d)-cov(t_,t |z,9)]—
a=1 Pi \b-1 a’>’b' a’ b'I’l Bpj
p=u
Now,
nua(l-ua) for b=a
cov(ta,tb|¢) = (4D.7)
N . )
Luiliw nuaub for b#a
and
X zDua(uD—ua)/uD2 for b=a
D=2a
cov(t_,t IZ,Cb):] = (4D.8)
a’’b'.’s =u 2 ‘
p=u. - L zguu/ug for b#a.
Daa,b a
From (4D.3)
(ugupqq)/(uguy 4g)  for 3=i
3./93p.] = ' (4D.9)
LR R o
~ l/uk+1 . for j#i.

Applying Theorem 8.3.3 of Graybill (1969,pl170) to (4D.7) yields that

(uifuk+1)/(nuiuk+1) for j=i

0(1)ij = (4D.10)
uk+1/n for j#i

for 0(1)13 the 1,jth element of'{[cov(tlg)] Hence, we note from

B=E}
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(4D.9) that, for all 1<i,j<k,

- 1J
a¢i/ap5]p=u n°(1) . (4D.11)

Substituting from (4D.7) - (4D.9) and (4D.10) - (4D.11) into (4D.6)
and writing 821og[h(glg)]/(3g9g') to mean {azlog[h(glg)]/(agag')}p=u,

-~

yields that

;321og[h(3|?)]/(3uiaui) = (ui+uk+1)2[n(1-ui)_oz-(ZD/UDZ)(UD-ui)]/(uiuk+12)
21 .

2. u /u 2]/u 2, ; u In(l-u_)- 2 (z,/u 2)
D" D k+1 a#i @ 3" paa D"D

K
+2(u,+u, o) T [-nu+ 2
Tkl oy D>i,a

_ K '
~ 2 2
“lugrug)t B Gt T 2ty g N

= (0t T(1-u)- 2 20050 ) /% (o) (40.12)

k )
f2(ui+uk+1)[fn(l—u.-uk+1)+ Lz ugzplug )]/uk+1

! afzi D=21,a

_ k
+{n(1-ui=uk+1)- -u

o 2
£ z5(u-u_)]/u
afi DD "a’’"D

[
3 psa
-n(l-u;=u, )2+ ; u_l g' (z zyulu 2)]}/u 2
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Similarly, for the i,jth element of the asymptotic inverse covar-

iance matrix, we have that

-Szlog[h(gi?)l/(auiauj) = (”i+“k+1){["(1‘”i)“Dﬁﬁzo(“n'”i)/“02]

k .
2 2
Ment g 2z /u "1+ 2 ul-n+Z 2. /u1}/u

2
+(uj+uk+

k

Ju 2]+ ) ub[-n+ T

+y {u . [-n+ T zD D 2
J ' b#i, ] D3j,

z./u."]
D31, 3 p D0

(4D.13)

Hugtuy )

[n(l-uj)— z.ZD(UD-uj)/UDB]/UJ}/uk+12

D3j

Kk
2. . 2
+35 o {u,-nt 3z 2z u."J+(u.tu, ) [-nt Tz /u "]
afi,J a D3i,a D 3 Tkt D=a,j b™"D

2 2 2
+ 2 uf-nt I 2 /u"J+[n(l-u)- £ z (u,-u_)/z, 1 /u .
b, j b D3a,b DD a" paa 0D a’D k+1
b#a :
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4D.3 Nontraditional Approach:

4D.3.1 Theory:

From (2.9) the k-dimensional posterior density of p given incomplete

data z is

f(plz) = glp)n(zlp)/s, kg h(z|p)d (4D.14)

for the Dirichlet prior (1.1)

k+l  k+l k+l v,-1
g(p) = [T( I v}/ T r(v)] T p,
~ i=1 i=1 i=1

and the likelihood (2.8)

z
h(zlp) = {[( Z zg p)!I/ T zg pll 1 Py

SQP}.
P gep 57 ' gep gep

Here p takes values in the k-dimensional probab111ty simplex Pk=
~ k+1
{(pyseevsPrL.q): P, 0, I P =1}; v.>0; 3 is a nonempty subset of {1,2,...,k+1};
1 k+1 o1 i
P is a set of mutually exclusive and exhaustive subsets %; 2,P is the set

element § in the set P; 85 p is the number of elements in 3,P; $ p 1 i
the number of observations such that each observation falls in one of the
BZ,P categor1es Ci for i€, but is not,further classified into a particular
one of these BZ,P éategories if 3$,P>1; and z is the vector of z$ pog 8 p

Since ZZS P=zZ and we can cancel from the numerator and denominator of
“the posterigr density (40.14) any terms that are not a function of P, we can
write the postefior density (4D.14) as

k+l v,-1 z k+1 v.,-1 2z

;.
flplz) = Tp, ' Tpgy 275, [ Wp. ' Tp, Pldp. (4D.15)
S R R
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In (4D.15) the second product is over_a11 distinct 8. Thus, the product
is over k+l sets $i={i}, 1=i=k+1, containing one element and k sets
zk+1+i’ 1¢i=k, containing more than one element. FEach of the k latter sets
correspond to a different pattern of incomplete data. From these k+l4x
sets, we will make k+1 Dirichlet distributions D(1) for 1214x+1.

To do so, reorder the terms'{n (4D.15) so that the first k+l multi-
plicands are those terms pizz+vi- » 1£i=k+1, for which $={i} contains only
one element. Denote the remaining x sets g, those sets contafning more
than one element and indexing a unique pattern of incomplete data as

z r..zZ,.
Q1,1) for 2<1%c+l. For 2¢14c+l, multiply po(y 4 L1y p 11 ti}

for all i#Q(1,1), where the ratio 0<ri]<1, Z r.i<l, is to be determined.
' 1=2

Define Q(1,2),...,Q(1,k-q{1)+2) as the k-q(1)+1 sets indexing the riZes)
where q(1) is the number of categories among which Z9(1,1) is shared.
Define Q(1) as the set of these k+2-q(1) mutually exclusive and exhaustive
subsets Q(1,j) for 1<j=k+2-q(1). |

For example, for z= (21,22,23, 12,213) we have that k=2, k=2, q(2)
—q(3) 2, Q(2,1)={1,2}, q(2,2)={3}, qQ(3,1)={1,3}, q(3,2)=1{2}, qQ(2)={{1,2},
{31}, and Q(3)={{1,3},{2}}. |

z
Now, for 2=21<«k+1, we have multiplied p0(1 1) Q(]’l)-in (4D.15) by
AV |
Py i1 {1}f0r i#Q(1,1). Accordingly, for each i¢Q(1,1) multiply P; e
-r.,z
in the product of the first k+l terms by P; il {1}. This process yields
the posterior density (4D.15) as
k+1
o+
k+1 . (1 152r11)2{1} v;-1 K+l ZQ(],I) . Pi]Z{i}
flplz) = | T p; T 1Pq(1,1) . P
i=1 1=2 1¢Q(]’1)

(4D.16)

/1p (numerator) dp.
K .
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Multiplying and dividing (4D.16) by

A L N A A ISR (40.17)

for the first set of multiplicands in (4D.16) and, for 2£1%k+l, by

Iz +D(1)+1]/[r( P(r )] (4D.18)

Y‘ Z

for each of the remaining k sets of multiplicands yields the numerator and
integrand of the denominator of (4D.16) as a product of x+1 Dirichlet

densities, where the 1th density has dimension
D(1) = k-q(1)+1 (4D.19)

for gq(1) again the number of elements in Q(1,1); that is, for num denoting
numerator, jSeQ(1,1) for 14s€k-q(1), and, paralleling notation‘from Wilks
(1963,pl78), d(xl,..;,xk;xk+1) denoting the k-dimerisional density of the
Dirichlet distribution D(xl,...,xk;xk+1),
k+1 K+l ' K+1 :
num(f(p|z)] = d[(l-]§2r11)2{1}+v1,...,(1-]§2rk1)z{k}+vk,(1 k+1 1)Z{k+1}
K+l ’

+vk+l] | d[zQ(]’1)+1 r

Ve 1Z,. 1t +1;
1=2 311 {Jl}

9 ..’r

. Z,.. '
Ie-q()" Yk-q(1)?

rk+1’]z{k+1}+1]. o : (4D.20)

In (4D.20) we assume that there is at least one category, say Ck+1’ on
which all data is complete. The completely generalized case of at least
some data being incomplete on all k+1 categories is more complicated.

Therefore, the general case is deferred until Section 4D.3.3 where we out-
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line the basic conversion of that case to the one of this section and give '
results for the mean and covariance matrices. For shorthand, we refer to
the k+1 densities on the right-hand side of (4D.20) as simply d(1), d(2),
.,d(k+1), respectively. Note that i in (4D.20) is often zero for most
1£§<D(1) and 251=k+1,

Since the 1imit of a product is the product of the limits of the mul-
tiplicands and (Appendix 4B) the limiting Dirichlet distribution is multi-
variate normal, the limit of the numerator (4D.20) of the posterior distri-
bution is a product of multivariate normal distributions. That is,

K+l -
1im[ (4D.20)] = ™ , o0 )(u( ) ~(1)) | - (4p.21)
Moo 1=
where E(])=(ui(])) and §(])=(°1j(])) are the D(1)xl-dimensional mean and
p(1)xD(1)-dimensional covariance matrices of p given data
m(]) (1, 1) 1¢Q(1 1)[V112{.}+1] (4D.22)

if 2414c+1 and

(1) - k+1 k+1 ) (10.23)
m = 1le(l 122r11)z{i} v, ] )
if 1=1. Thus Wilks(1963,pl79) ; for 1£i<k+1,
1 :
LD S (1),
.' ‘[(1 ]zzr'l])z{ }+\) ]/m (40.24)
for 2¢1€K41,
(M . (1).
Wy (20(1,1)+1)/m : (4D.25)
for 2414x+1, 2£i4D(1)+1, and iq ¢Q(1,1) for lfji_15k+1,
LA (s +1)/m(1); (4D.26)

Ji- 1] { i- 1
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and, for 1£i4D(1), i<j¢D(1), and 1£14k+],

o 1w (W My M) (4D.27)

and

cij(]) - ui(])uj(1)/(m(‘)+1). (8D.28)

In most of this appendix we find it more convenient to refer to
elements of the 1th mean, covariance, and, particularly, inverse covar-
jance matrices for 241%k+l in terms of sets § and T, for § and T each one
of the D(1)+1 sets q(1,1), 0(1,2)z{ji_1},..,0(1,0(1)+1)s{jp(])}; T#3.

Accordingly, for 2€1%¢+1, define

u{i}(]) - (ri]z{1}+1)/m(]), (4D.29)
ul(]) for $=Q(1,1)
UZ(1) : M _ (4D.30)
U{i} for $={1},
088(1) = uz(])(l-uz(]))/(m(1)+1), (4D.31)
and, for T#3,
ozT(1) = - uz(1)uT(])/(m(])+l). (4D.32)

Because the multivariate densities in (4D.21) are of differing dimen-
sions and on differing combinations of the same random variable p, we db
nbt immediately. have that product (4D.21) is a k-dimensional multivariate
normal density on the k components of p. However, we now show that, owing
to the special relationship between d(1) and d(1) for 1>1, product (4D.21)

is also multivariate normal in the limit.
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To begin, sum the k+l exponents in product (4D.21). For (4D0.21) to
be normal, we must be able to write this sum as the exponent of a normal
density; that is, we must be able to write

k+l (1 )

L (p

WMz oMy = pans™ip-u: (40.33)
1=1 ~ - ~ '

~ o~ o~

for 9‘~‘1 and S -1 positive definite and symmetric, where E(]) is the k-
dimensional vector (pl”"’pk) if 1=1 and the p(1)-dimensional vector of
pQ(],l)’ pQ(],Z)”"’ and pQ(l,D(1)) for the 1th Dirichlet densjty in
(4D.20) if 1>1. »

Expanding the right-hand side of (4D.33) yields, for Sij the i,jth
element of §_1 for 141, j%k,

k .. k-1 k k k-1 k

z (pi-U.)2511+2 Iz (pi~U.)( -u )S R P, SIS p.p,S"Y
i=1 1 i=1 j>i LA i=1" i i=1 j>i i
_ - (4D.34)
k k 1 k ' k 2 i k-1 k i
-2l z p; UIS pX (u1p tusp, )S J]+[ z u; s'42 1 U .S J]
j=1 ! i= 1 J>i Ji i=1 =1 j>i ' J

¢

Expanding the left-hand side of (4D.33) yields, for~o(1)1J the i,jth ele-
. 2 -1 ‘
£ &
ment of 2(1) for 1—1,J-k-and 9(1) that element of §(1) referenced
by the sets % and T in Q(1) [recall (4D.30) - (4D.32)], '
k-1 k

k . .
s, ()42 i (1), _. (1) ij
1_fl(pi W, 91) +2121 J51(p TRRICHtY )9(1)
‘(4D.35)
k+1 ‘
- (1),2_ 33 o Wy L, D) 2T
+1£2[$20(1) (p? ERRND +2$£Q(1)-T£Q(1) (pz '8 )(pT broeay
g#{k+1} T(1)>8(1)

T#{k+1}

In (4D.35) 8(1) means the first element of the set $. Thus, if $={4}, then
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$(1)=4. 1If $=Q(1,1), the $(1) is the first of the q(1) linearly ordered
elements of Q(1,1). Hence, if Q(1,1)={2,3,9}, then $(1)=2,

Recalling that p$=1z Pjs We expand coefficients of o(])ij and o(])ST
for all i, j, 8, and T to write (4D.35) as

k 2 k-1 k k
(LGP L GaPiPs T SoiPiCoo (4D.36)
where, for
1 if A and B both true
Spp = , (4D.37)
: 0 otherwise,
the coefficients Ci; in (4D.36)'are, for 14i4k,
.. K+l
- ii 831,
for j>i, ‘
.. K+l )
=2 S I (B ansOr PP 4 5 8y w0y
G5 2log) THE, 360(1)( $21,83°(1) 7 req()#1 %) )]
T#3 (4D.39)
.. k .. k+l
- (1) i (1) - 1] - (1) 88
Cns: = =2{u: "o + I u:' o + [ & (8qu. .U ol ‘
01 ) i (1) iR (1) "2 geq(1) P1.82178 m
_ M (4D.40)
3Ty 1.
HETINC LR Tl AR PR
T#3
and _ )
3 .. k-l . .
oo = I, (g oy ez 2wy 1o
i=1 =1 j>i (4D.41)
k1 )2 88 (M. (1), $T,
'+ { z [(u()o +2 I U o -1}
2 geq(n) P ) Tragy BT

k+1 T(1 1
O &
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3T _ T8

where ¢ o
Then, equating coefficients of P; in (4D.34) and (4D.36) yields
that, from the coefficients of p1.2 for, 14i€k:

T .o K+l .
Neg, M 33 |
S 0(1) +1§2[$63(])6$9i,$310(r) 1, (40.42)

and, from the coefficients of pipj’ for 1=i%k, i<j<k:
. K+l

= 0pqy 9 Sqms qa s
(SVRRSANE AL T SHE)

il 53 , 3T)1.

TES(])6$31,T3jO(])
T (4D.43)

1 are finite

Hence, elements of the inverse covariance matrix §'
linear combinations of variances and covariances and thus are of the
same order of magnitude as the comprising variances and covariances.
Therefore, from (4D.27) - (4D.28) and (4D.31) - (4D.32), elements of S,
if S exists, are O(n'l). |

Continuing to equate coefficients of Pi» we have that, from the

coefficients of -2p,, for 14i4k,

k i3 k .. K+l |
1J = (1) 1J _ (]) 2%
jElujS jzluj °(1). +1§2[$e§(])(5331,zai“s o) (4D.44)
| 1 T
¥ g3 Tai“T( 0(1)$ )]

Substituting from (4D.42) and (4D.43) into the left-hand side of
(4D.44) yields the left-hand side as

k . K+l

S u.op9+3z = (8qa: q.s0 23, T S i Ta:0 zT)]
j=1 J (1) ]=2 zeo(]) 3910390 (]) TkQ(]) 5313T>J (])
J#i ' T#8 : (4D.45)
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.. K] ’
i 38
* ujlogy) +1§z(ze3(1) poii’() )}
k .. K+l k
i 23
170 T G ey g2 9B
) |
g7
+ z Z .6 . . ]}'
TéQ(])(j=1uJ 391’T530(1) )
T#3 J#i

Equating coefficients of c(l)1j, 1i,j=k, o(])$$, and 0(])$T on the
left-hand side (4D.45) of (4D.44) with those on the right-hand side of
(4D.44) yields that

from the coefficient of o(l)ij
ug = ui(l); (4D.46)
“from the coefficient of 0(])$$
§ (1 ; u.d - (4D.47)
$21,821%8 T 2)°3°801,895° '
therefore,
ug't = 1w, (4D.48)
h[3]
so that, from (4D.48),
uz(]) = ¥ u-(]); (4D.49)
jeg J

and

from the coefficient of o(])ST

(1 -
= I 8q_; U, = I U,
je1 2217200 et

J#

8951, T#iMT

v
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so that, echoing (4D.49),

1 1 ‘
“T( ) - JETPJ( ) (4D.50)

The last step in equating coefficients of Ps is checking that for

values (4D.46) for uy, (4D.42) for S'1, and (4D.43) for s'J, the constant

k 2 i k- 1 k
term T u.°S '+2: I Usus .S 1] from the right-hand side (4D.34) of
i=1 i=1 j>i ' J

desired identity (4D.33) equals the constant term (4D.41) from the
left-hand side (4D.36) of (4D.33).

Substituting for Uss Sii, and Sij in the constant term of
(4D.34) yields that

k k-1 k k okl
2.11 ii_ (1),2 ii
Zu,S"+21 I u.us T ( [ s ]
i=] i i=1 J>'IU1 J i=1 u ) 0(1) 1=2 $€Q(]) $3'| 331 (]) )
k-1 k el
(1), (1) ij
+2i§1 ji'iui UJ' [0( +122 ch(])(6$3i ,$3j0(])
: 3T
Hren) Bt )]
T#8 (4D.51)
k o k-1 k !
(2 Fiop g (M, (D 43,50
'i=1 u1 9 1) 1‘_1 J->.iu1 uJ 0(1) ]'—'2 SeQ(])
R (1))2°(1)$$ 23 (2w ))0(1)$TJ}.
i€ TeQ(1) des ' jeT d
T(1)>8(1)

Thus, since (4D.49) gives that z M3
jed

from the right-hand side of (4D.33) equals the constant term (4D.41) from

(1)=u$(]), the constant term (4D.51)

the left-hand side of (4D.33).

Remaining in our proof is to show that 9 usl £] and that §;1 is

positive definite and symmetric. From equation (4D.46) for Uy
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definition (4D.24) of ui(]),'and bounds on ratios riye 1£€k,

2%14k+1, we have that gégél. Before proceeding to the remaining proof,
we note that §’1
-1

being positive definite and symmetric implies that
§=(§'1) exists [Graybill (1969,p318)] and is positive definite and
symmetric [Anderson (1958,p337)]; hence [Dempster (1969,p41)], Sisa

covariance matrix.

1

The matrix §' is symmetric because, from (4D.42) and (4D.43), each

element Sij of §'1 is a finite sum of elements from inverse covariance
matrices §(])'1, each of which is symmetric by definition of covariance.
From Dempster (1969,p4l), the matrix §'1 is positive definite if and
only if X§-1¥'>0 for all k-dimensional xfg. Thus, let y be any k-
dimensional vector such that y#0. " Then,

k k

ij
L ZIy.y.S
j=1 j=1" "9

k k .. K+l

1J : 33
151 jilyiyj[o(l) +]§2 Seé(])(6$3i,$3jo(1)

-1,

yS

~

<

gr
+%eé(1)6$31’T3j?(]) )] (4D.52)

T#3
k k .. ktl Kk

ij 38
I IyVy.y. +2[z Zy.y: & (8qu: .0
o1 2 ) 15t g Vigeqy $21823°00)

+

8T,
L 8qii Tas )],
TeQ(1) $3i ,TaJo(l)

T#8

Since y#0 and the inverse covariance matrix 2(1)'1 is positive
v k k .. -
definite, the first term I I yiy.o(l)lJ in the last equality in
i=1 j=1 'Y
(4D.52) is positive. It therefore remains to show that the remaining
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term is nonnegative. We can write this term as

K;]. I;: ; [ % y.y.(ssa. 330(])$$+ hX y_y.6$ : Ta -G(])sT]

1=2 i=1 j=1 geQ(1) 1-J #?1:%3 ;;g(]) 73 821,T2]
K+l

= E[ z (Z y12)0(])$$+ z (Z z yy)g(])ST] (40.53)
1=2 3€Q(1) ie3

TeQ(1) i€§ jeT
" T#3

K

r[ £ z w$wT0$T
1=2 8eQ(1) T<q(1)

10,

for Wg = i£$yi and wr = jiTyJ’ since every matrix g(])"l, 2£14¢c+],
is positive definite so that the term within brackets is nonnegative
[positive unless WS = 0 for all $eQ(1)] and since the sum of k non-
negative numbers is again nonnegative. Therefore, the matrix §'1 is
positive definite.

Thus, for values (4D.46) for Uy (4D.42) for Sii, and (4D.43) for
Sij, equality (4D.33) holds; that is, we can write the sum of exponents
in the limiting numerator (4D.21) of the posterior density as the
exponential term of a k-dimensional multivariate normal density.

Now, the limit of the posterior density (4D.16) is the 1imit (4D.21)
of the numerator divided by the 1imit of the denominator. To calculate
the 1imit of the denominator, first note that a Dirichlet density is
continuous 1in p. Further, from (4B.29), Appendix 4B, a multi-
dimensional Dirichlet density uniformly converges to a multivariate
normal density. Therefore, the product (4D.20) of Dirichlet densities,
the numerator of .the posterior density, is continuous in P and

uniformly converges to a product of multivariate normal densities on the

closed and bounded k-dimensional set Pk. Thus [Buck (1965,p186),
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Bartle (1966,p67)], we have for the denominator of the posterior density
(D.5) that

lim fp  num (f(plz)] dp = Ip Tim {num [f(p|z)1} dp. (4D.54)
nso "k - - K n-o - ~

. k+1
Therefore, canceling coefficients I (21r)'p“)/2[det(2(]))]'1/2
1=1 -

in the limiting numerator and denominator of the posterior density and

)™ 1det(s) 1712

multiplying both by (27 yields the 1imiting denomina-
tor as 1 and the limiting numerator, and thus the limiting posterior
density, as the density of the k-dimensional Nk(9’§) multivariate
normal distribution with elements of the mean and covariance matrices
given by (4D.46), (4D.42), and (4D.43), respectively.

Rao [1968,(xv)pl04] proves that if the density of a random variable
converges to some density, then the distribution of the random variable
converges to the distribution for the 1imiting density. Therefore, we
have proved for all cases but that in which all k+1 categories have some
incomplete data, which casé will be considered in 4D.3.3, that the limit

of the k-dimensional posterior distribution of p given incomplete data z

is k-dimensional multivariate normal.

4D.3.2 Special Case:

In Section 4D.3.1, elements (4D.46), (4D.42), and (4D.43) of the
asymptotic mean vector u ahd inverse covariance matrix §'1, respectively
were expressed in terms of unknown ratios ripe 1£i£k+1, 2414¢+1, and
incomplete data z. In this subsection we eliminate these ratios and

derive expressions for elements of the asymptotic mean and covariance
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matrices in terms of the asymptotic means and the data z. Again we assume
that there exists at least one category, say Ck+1’ on which all data is
complete. The next subsection treats the general case allowing all
categories to have some incomplete data.

Recall from Section 4D.3.1 that for k different patterns of in-
complete data, we separated the numerator of the posterior density into
k+1 Dirichlet densities d(1), 1414k+1. For the first density we had
complete data on all k+l categories Ci, 15i£k+1, and for each of the
remaining Dirichlet densities d(1), 24kék+1, we had exactly one of the
k sets of incomplete data. Recalling from (4D.19) that D(1) is the
dimension of the 1th Dirichlet density for 241%4k+1, note in (4D.20) that
for each of the last « Dirichlet densities, there are D(1)-1 unknown
ratios rj 1 1£i£9(1)-1. Thus, there are a total of «k[D(1)-1] unknown
ratios s ], 1494D(1)-1, 2£14cH],

From (4D.24) - (4D.26), (4D.29), (4D.30), (4D.46), (4D.48), and
(4D.49), elements u; of the asymptotic mean vector u are expres;ed in
terms of these k[D(1)-1] unknown ratios. Letting 1 range from 2 to K+1;
we could derive a system of «[D(1)-1] nonlinear equations in the k[D(1)-1]
annown ratios, from which solution the asymptotic means could be
evaluated.

However, an easier approach to evaluate these means is to reexpress
them in a way that eliminates the ratios altogether and leads to a sys-
tem of just k nonlinear equations in k unknowns, the unknowns then
being the means. In such an approach, we will have evaluated the means
in a one-step, rather than two-step, process and the nonlinear system to

do so will be much simpler.
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Recall that ri]=0'for any Dirichlet density d(1) for which
category i has incomplete data. From (4D.49), for 2£14¢+1,
W= g () (4D. 55)
heQ(1,1)
For m(l) and m(]) defined in (40.22) and (4D.23), respectively, substi-
tution from (4D.24) and (4D.25) into (4D.55) yields that
1) > (1)
(z +1)/m( = T (1 ~zr. )z, tv.1/m
Similarly, use of (4D.49), (4D.24), (4D.26), and Prsr=1-

(4D.56)

z Pqs
3eQ(1)

for all 1, yields that, for 2£i£D(1)+1, g#{k+1}
(D) 2o S (1)
(rji]z{j }+1)/m = [(1 gzer g)z{J } J 1/m (4D.57)

Hence, ignoring terms 1 and Vh that go to zero as the sample size
n increases, we have from (4D.56) and (4D.57) that, for 24i4D(1)+1,
2¢1%¢+1, and léjiék+1,

(1, (1) . <l

m "/ /m zz(k+])/heq%],l)(l A hg)z{h}

= (4D.58)
SRR LNE
whence, defining =z u; for all sets §, we have from (4D.46) that
(1) .
m =z / I u
2q(1,1)Y(1,1)°
Therefore, from (4D.24), (4D.46), (4D.48), and (4D.58), for 1£i4k+l
k+1 k+l

and n—Ile{ }+ z ZQ(] 1) the sample size,
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k+1 ( )
u, = (1- Tf r. ) Z¢s }/m
k+1
- (1)
= [Z{i}/n][ n(1- ]er )?/m

k+1 K+l
= [z{i}/n][(m(1)+ z m(]))(l- ) ri])/m(l)]
1=2 1=2

k+1 k+1 k+1
= [Z{i}/n][(l- L ri])(1+ hX m(])/m(1)+ T m(])/m(l))]
1=2 1=2 1=2
Q(1,1)2i Q(1,1)=i
( K+l ) k+1 k+1
= [24.1/n](1- 2 v, . ){1 I z / I [(1- = )z ]
{i} 1=2 il 1=2 (] 1) €Q(]’1)' g= zrh {h}
Q(1,1)>i
K+l K+l (4D.60)
+ 152 ri]/(l-]izri])}
Q(1,1)3d
k+1
= {Z{ } z [(1 z P ) { }/m(l)]
Q(1,1)2i 1=2 1
k+1

/ T -zr mtD1,

) }/n
heq(1,1) g=2 " “{h} Q(1,1)
= [z;.,+ 2 (u / I u, )z 1/n
U psi 1 gep J

+Iz pYs /uD]/n
D2j

= lzg5

Note that (4D.60) is the maximum Tlikelihood estimate (4D.1).
Successively setting i=1,...,k in equation (4D.60) yields a system

of k nonlinear equat1ons to solve for the k unknowns uss 1414k, where
k+1

we also have the constraints 0‘ £1 and " I u; =1. Some of the numerous
j=1 !

approaches for finding a numerical solution are outlined in Scheid

(1968,chpt.25). As discussed in Section 2.3.2, Dempster, Laird, and
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Rubin describe an algorithm for an iterative solution. Examples allowing
exact solution are given in Section 4D.5.

Noting from Graybill (1969,p170) the form of elements of the inverse
covariance matrix §'1 and recalling (4D.27), (4D.28), (4D.31), (4D.32),
and (4D.42), we have for large n that

i_ i Q(1,1),Q(1,1) {i},4i}
T N an ) IMRCEL
- 1 1
- ) +o(1,1)§1m( QL A R

(4D.61)
/{ug(1,1)Y+1)

= H(U +uk+1)/(u uk+1) DZ (ZD/UD)(UD u., )/(u uD)
since
(1) ., 55
m = n- n-( £z /u + Z Zn/Upn). (4D.62)
] 2 Daj D D? D*"D

Similarly, from (4D.43) and for "Q(1,1)»7,j" beneath a summation

sign meaning Q(1,1) containing both i and j,

1J-m(1)/u z ])(u +u,, 1)/ (u Up,q)+ pX m(])/u
=(n- zp/up)/u, 4t 2 Jup)(ugtup 4 )/ (upuy o) 4D.63
(n 091’J %D ”D) Yk+1 091’J(ZD Up/tp™k+1// MDYk (4D.63)

n/u z (zp/up)/u
k+1* D51, p/Yp//Yp-

Note how simple final results in (4D.62) and (4D.63) are, especially .
compared with corresponding equations (4D.12) and (4D.13) from the tra-
ditional approach in 4D.2. Furthermore, final results in (4D.62) and
(40.63) parallel results (given by their first term) for complete data
[See Graybill (1969,pl71).]
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4D.3.3 General Case:

As long as there is at least one category having no incompletely
specified data, we can apply the methods of the preceding sections. That
is, if category Ck+1 has some incomplete data, we can change the dependent
variable from P41 to any variable p% for which category Ci has only |
complete data. However, there are cases in which no category has only
complete data; i.e., -all k+l categories have some incomplete data, so
that such a variable dbes not exist. In this section, we extend-theory
from the preceding sections to this remaining case.

The only time there are problems using the theory of the preceding
subsections is when Q(1,1) contains that element, say k+l, that indexes
the dependent variable for d(1). To handle these instances, we have two

approaches. In the first approach, we write pQ(] 1) as 1- & ( )pj and
’ jeQ(1,1

then proceed with the methods of 40.3.1 of equating coefficients of
powers of p, on the Teft- and right-hand sides of (4D.33). A simpler
approach is making pQ(],l) the dependent variable and then proceeding as
in 4D.3.1 and 4D.3.2.

The first approach requires more types of cases than the second
approach and, unlike the second approach, requires transformation of
formula for the inverse covariance matrix before allowing proof that this
matrix is positive definite. Hence, we pursue the second approach.
Therefore, if Q(1,1) contains k+1, then we make pQ(1,1)’ instead of
PQ(1, kg+l)? the dependent variable.

Following this approach and the procedures of 4D.3.1 and 4D.3.2

yields for elements Uss 511, and S]J, respectively, of the mean and

covariance matrices
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u; = [Z{i}+D§{ZD(ui/uD)]/n’

. . okH] L
st _ 0(1)11+KZ ( - {i},{i}

1=2 q(1,1)45 (1) + Q(1,1),0(1,1)
Q(1
Q1

(1) k+1 )
-y i sy )/ (ugu kep* I 1 Z (us+

1=2 Q(1,1)4i e/ (050, )
Q(7,1)pk+1

+ z m(])(u +y )/( (])

Q(1,1)ai 0(1,1) Tken1 “0(1,1)“k+1)+o(1 1)1

RN G Q(1.1)%1

X(UQ(],1)+ui)/(UiuQ(],1))}

= n(“i+”k+l)/(ui“k+1)‘ I (ZD/”D)(“

DAi D>
D3k+1 Dk-+1
(UD'ui)/(uDui)‘Dgi (ZD/UD)(U +U )/(U Uk+1)
D3k+1
and
.. .. k+1 .
sU=o e 0, L A PR CI )
12 Q(1,1)5i 0(1,1)zi (
Q(7,1)2k+1 (1, 1)3; Q(1,1)3j
2oy (W0 ety <
Q(l 1)i Q(1,1)34,5 (1) 1=2
Q(1,1)=j Q(1,1)3k+1
(1) . K+1 o
=m

s o)

D‘uk+1)/(u0uk+1)- ) (ZD/UD)

(8]

(4D.64)

(4D.65)

{1}, {5}

| L v+ a0, -
1=2 1,1 i,j k+1 .. Q(],l) K+
A1, 1)gis NP1 Q(1,1)54,
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I m(])/u
1,1)3k+1 Q
1,1)34,/3

A ICRINTSL (1,1)
(

Q
Q
[ z m(])kl/u
)-m(])( T 1+ T 1+ z 1)/

Q(1,1)31,§ Q(1,1)31 Q(1,1)#i
Q(1,1)35 Q(1,1)3]

Us1]

= nfu, .+ % (z/u)/u- 2 (z./us)/u, .+ %
k+1 pgper 00 D7D gy DUDTT KA kg
D>i,] | DB, 4]

(zD/uD)/uD,

+ /u + )
o1, 105+1 Q1) g1 1)ake1 0(1,1)81,%5 Q(1,1)
Q1 ke

(4D.66)

where "Dai,j" means D containing both i and j, "DAi,j" means D not

containing i and j together (ie, D can contain one or neither of i and j

but not both), and all conditions under a summation sign are to be

met simultaneously, since, as in Section 4D.3.2, the procedure yields

that, for 2€14k+1,

™= 0,1 Y%0,1)
and
K+l
m(l) =n- I m(])
1=2
for '
u =z u

0(1,1) jeq(1,1) 3

(4D.67)

(4D.68)

(4D.69)

Proof of positive definiteness of S-1 will parallel that given in

(4D.52) and (4D.53) of the last section with the following modification.

Note from the first equality of (4D.65) and (4D.66) for s'! and 513,
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respectively, that no direct contribution is made to Sii and Sij from
those sets Q(1,1) simultaneously containing both i and k+l. Thus, we
must modify (4D0.53) by adding ##k+1l under both $eQ(1) and TeQ(1) every-
where in (4D.53). Therefore, the sums within brackets in (4D.53) for
these particular sets Q(1) will involve only that submatrix of §(])-1
referring to those variables not indexed in Q(1,1)2i,k+1. But since this
submatrix is also a covariance matrix, it is positive definite; thus, the
remaining proof will follow like that of (4D.53).

Remaining proofs for the limiting posterior distribution are identical
to those of Sections 4D.3.1 and 4D.3.2. Therefore, for all cases the
limiting posterior distributfon of p given incomplete multinomial data z
is multivariate normal with expressions for elements of the mean and
inverse covariance matrix given by (4D.64) - (4D.66). Note that, as in

Section 4D.3.2, expressions (4D.65) and (4D.66) for elements of the inverse

covariance matrix are simple and parallel those for complete data.
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4D.4 Equivalence of Results:

In this section, we show how results (4D.12) and (4D.13) for the
asymptotic inverse covariance matrix given in 4D.2 by the traditional
approach can be simplified to those, (4D.65) and (4D.66), respectively,
given by the nontraditional approach in Section 4D.3. Because of the
large amount of algebraic manipulation (and, thus, possible error)
involved, knowing results (4D.65) and (4D.66) to work toward is very
important.

To show that (4D.12) equals (4D.65) for Sii, divide (4D.12) into
the four groupings - complete-data term, sum of all terms for which
D#i,D2k+l, sum of all terms for which D2i,03k+l, and sum of all terms
for which D>i,Dak+1 - given in (4D.65). Note in making this division
that there are no terms for which D#i,D#k+l; the one combination for
which there is no contribution in (4D.65).

In (4D.12) we can rewrite the complete-data term as

gt )7 QU VHE(U U ) (Tmug)-2u; (Bou gty g (Toug=t g D170 )
(4D.70)
= n(ugtuyq)/(ugupg)
since the term inside braces is one.

For the sum of those terms in, (4D.12) over those sets DAi, we have

; u [- 2% z(u,-u_)/u 2, ; z z u /u 2. ) z.(u.-u_)u 2
ati @ Dsa,3i 00 2 D puiapsab DD D pogpi DD @D
DFk+1 D#i,pk+1 Da2k+1
4D.7
vro (1 2 /”02)]/“k+12 (4D.71)
b#i,a D=2a,b ,

D#1,3k+1

k .
2
=-Zul?Z (zn/u ") 1/u
ati 2 Dsa,zi D D7 k#l
Dak+1
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= 2
- - D§1 [(ZD/UD )( aED ua)]/uk+1
Dak+1 azk+l

= - Dii (ZD/UD)(uD-uk+l)/(uDuk+1)
Dak+1

since, inside the brackets in the first line in (4D.71), the first term
is the negative of the second because, for the restrictions D}i,k+1 on
D for these two terms,

Un-U. = I u,. (4D.72)

D "a beD b

b#1 ,a

From the last two terms inside these brackets, we pick up

' 2
-~ I ZpUp,./u (4D.73)
D2a,k+1 D K*1°°D

D3

since, for the restrictions Dpi,Dok+l on D for these two terms,

k
Up=u_. = I u.+u, .. ' (4D.74)
D “a beD b “k+l
b#i ,a

For the sum of those terms in (4D.12) over those sets D3i, we have
{-(u,+u )2/u L zn(un-u;)/u 2+2(u.+u ) ; I u.zn/u 2

i Tkt+l 1hai DD “i/7D i “k+l a#i Di,a a“D’ "D

+ ; u -2 zn(us-u_)/u 2, ; ( = znu/u 2)]}/u 2
afi @ Daa D 0 37D pgg aipeg,p DD KA

D31 D2
_ 2 2 )
={ Dgi zp/up [-(qD-ui)(ui+uk+1) /”1+2(”i+uk+1)(”D'”i uk+1)
Dak+1 . _ (4D.75)
2 2
-(ugtup g upmug-up )1+ R [-(up-uy) (ugruy )"/
Dpk+1
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#2(up=uy) (g )05 (Upru ) 137y

=- Dgi (ZD/UD)(ui+uk+1)/(uiuk+1) - Dgi (ZD/UD)(UD-ui)/(uiuD)
Dak+1 D#k+1

since, inside the braces in the first 1ine of (4D.75) we can divide the
first term into a sum over sets Dyk+l and a sum over sets DAk+l, we can
write the second term as
I z,/u 2( I u )+ I zh/u 2( Zu)l

D™D D™D a

D21 aeDd a D24 a€b
Dak+1 afi,k+1 DAk+1 afi - (4D.76)

2(utuy )

2 2
=2(u.+u, ) T zplup=us-ug,,)/us+ I zo(up-us:)/uns1,
e 55 UL Ry Rk {5 LA ISR IS I K

Dak+1 DFk+1

and we can write the last two terms as

2, k 2
Zuf- ¢ zD(uD-ua)/uD + 3 L zpup/up

a#i Dai,a b#1,a D2a,b,i
D3k+1 Dpk+1
k .
2 2 2
- I zn(up-u_.)/u "+ I I ZaU, /un-]/u
Dai,a D D 37D pui apsa,b,i DD D Uk
D3k+1 Dak+1 (4D0.77)

2

k .
2 2
-Zul I zudusS+t Iozn(ustu,,.)/us"1/u
a#i a Dsa,i D74/ 7D D>a,i D'Ui “k+1/°°D k+1
D?k+1 D3k+1
=-[u; I zn(up-u;)/u 2+(u.+u ) = zp(un-u;-u,.,)/u 2]/u 2
i, 00T T ) 2 20D e D

Dpk+1 D3k+1

since the first two terms inside brackets in the first line of (4D.77)

combine through
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3 .
= Iuy (4D.78)
beD
b#a

UD-U

and the last two terms combine through

k

= I u.tu (4D.79)
beD b "k+1°

b#a

Therefore, from (4D.70), (4D.71), and (4D.75), we have for Sii that

UD-U

(4D.12) from the traditional approach does simplify to (4D.65) from the
nontraditional approach.
Similarly breaking up terms given in (4D.13) for S‘j from the tra-

ditional approach, we have that, since

k k k
T uf(-nz u)=-nI u(l-u-u.,-u.-u,,,)
afi,i & bfi,i 0 afi,j 2 8 1 Ik
b#a (4D. 80)
= n[ ; u 2-(l—u.-u.-u )2]
a#i,j a 17 "k+l?

the complete-data term in (4D.13) is
_n{(ui+uk+1)[(1—u )-(u. +uk+1) (l'ui'uj'uk+1]+uj['“i'(1'ui'uj'uk+1)

Hugrupy ) (L-ug)/ug 14 (1-ug-ugmup g ) T-ug=(ughuy )= (1-u,- J’“k+1)+1]}/“k+12

(4D.81)
= n/uk+1.

Noting that we will find no contribution for the case ka+1,i,j,
we divide each of the ten sums over sets D in (4D.13) into the five
casesf D§k+1, D?i,j; D?k+l, D?i,j; D3k+l,i, ij; D3k+1,j, qfi;
D3k+1, Dfi,j.
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Doing so and then combining results for the ninth and tenth sums,

we have for the five cases that

1
D¢E+1(ZD/UD)(uk+1 up) " L-(u; +uy) (up-uy-us )+(u ey (ug-u;-us)
D21, '

+u, (uD U,-u, ) (u, +uk+1)(u - )+u (u D'ui'uj)+uiuj
+uytup ) (ug-uy-ug )+(u +uk+1)(u ) - (g i) (upyy )]

= Z (zD/uD)/uD, (4D.82)

DPk+1
D31,

0s §+IZD/(“D”k+1) [-(ugrughug,y)lup “1 Uy U (U U ) (gt U=y y)
D>1,

+u (up-u; - “Upyq)-(us +uk+1)(uD uJ)+u (up-u, - -Up 41 )¥Y; uj

+(ui+uk+1)(UD'Ui'uj’uk+1)+(ui+uk+1)(uj+uk+1)'(uj+uk+1)(uD'ui)]

= - I (zp/un)/u (4D.83)
D3k+1 D/ "D/ Tk+1?
D3i,j

L ZD/(uDuk+1) [ (U +uk+1)(uD k+1)+ui(uD-ui-uk+1)

Dak+1,i
D
Hugrug g ) (up=u-up,g ) -(upug) (ugtuy )]
= - I (zp/up)/up qs (4D.84)
Dok+1,1 DD/ Tk+1



2
g 2 {ugu ) {-(ug¥ ue ) AU ya(u ty Yug Y Upa)
D?\g?l.,a plkrl D k¥l 3 £ V3 TS LAY kL
i
(ustu k+1) (a3t slug™ 3 mn
- (zpf/Y A (40.85)
Dhi 5 3 o'k 1
PPkl
and, for the last cases
‘; ua&\;: ub( T zbluoz)- PN z‘)(uﬂ-ua‘)luoz'Uukﬂ2
atid bl D’Jq,b D?a,\«:l
p#a ppid opi P (40.86)
p2k+l
= -1 .(zlu)(u-u Y/ (ugh ).
Dﬁ,?j o/’ p VKl Pkl
pak+l
Tnerefore: from (AD.BO) - (&b 86)» W€ ave 1) ghat (av 13) from
jonal approach simp‘ﬁﬁe xo (4D g6) from the nontrad\’uona\
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4D.5 Examples Allowing Exact Solution:

When the nonlinear system (4D.64) of-equations for the asymptotic mean
involves a polynomial in the mean componénts of degree less than 5, then an
exact algebraic solution exists for the asymptotic mean and, hence, for the
asymptotic posterior covariance matrix. In this section, we give three
examples. For the first two examples, we give exact algebraic solutions as
well as numerical evaluation for a dgta set. Thé second example requires
use of the MACSYMA symbolic computer system. We conclude the section With
a numerical example for the most general case for the trinomial distribution.
This general case requires solution of a 5-degree po]ynomia], For one data
set, we use MACSYMA to evaluate the five roots. The usual probabi]ity
constraints 0%p.<1 and g

i=1
all solutions but one.

pi=1, albng with the nature of the data, preclude

Note that the analysis in this section holds for the posterior mode
.and the Taylor-series approxihate posterior mean as well as for the asymptotic'
posferior mean, which is the maximum Tikelihood estimate. In general, we
do not use the exact solutions because they are too expensive and, as Sust
- discussed, Ho]d only for specjél cases. Instead, we use the EM iterative
- algorithm df Dempster, Laird, and Rubin (1977) discussed in Section 2.3.2
to evaluate elements of the maximum‘1ike1ihood estimate (hehce; the asymptotic
posterior mean), posterior mode, and Taylor-series approximate posterior
mean. |
For this section we drop the braces in the set notations {i}. Hence,
we write z, rather than z{i};
For the first example, we calculate the asymptotic mean and covariance

matrix of p given incomplete trinomial data §=(zl,22,z3,212). Expression
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(4D.64) gives two equations

i]

up = (2)+z)5uy/up5)/n
(4D.87)

uy = (2y%21,u,/uy,)/n

to solve for the two unknowns uj and u,. Note that u;+u,=1-z./n and that

u3=1-u1-u2=z3/n. Solving (4D.87) for uy and u, yields that

u 21[1+Z12/(21+22)]/" | _
and ) (40.88)
Uy = 22[1+212/(21+22)]/n.

From (4D.65)Vand (4D.66), elements of the asymptotic inverse posterior

covariance matrix are

511 = n(u1+u3)/(u1u3)-212u2/[ul(u1+u2) 1,
1 : : .
S = njugrzg o/ (upruy)’, | | o (40.89)
and
522 = n(u,+u.,) ) u,/fu (u‘+u )2]
= n{ugtug)/(uug)-zypUy/Tupluptuy )l

For data having values zl=105, 22=98, z3=200, and 212=200, evaluation
of (4D.88) and (4D.89) yields

u, = .32, u3 = .33,

and : (4D.90)

sl . 3142.9, 512 -2,072.8, and % = 3,224.3.

Hence, elements Sij of the asymptotic posterior covariance matrix S have

values
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4 = 6.3261°%.  (4D.91)

= 6.4900"7, S 4

S =4,5748"°, and S

11 12 22
From (4D.91) the standard deviations /5117025 and /5,,=.025 are 7.1%
and 7.6% of Uy and Uys respectively.

For the next example, consider incomplete trinomial data z=(21,22,
23,212,213). From (4D.64) the asymptotic mean is the solution of the

following nonlinear system oflequationé

up = (29%29,Uy/U15+2) 3u; /Uy 5)/n

and (4D.92)
Uy = (2p+z5u5/up5) /0

where u3=1-u1-u2 [=(z3+zl3u3/u13)/n]. Substituﬁing'for us in (4D.92)

and solving with MACSYMA yields in the following Table 4D.1 the three

algebraic solutions for Uy and Uy

=200, z.,=200, z,,=200, z

Substitution of data zl=100, z =200, and

2 3 12 13
~n=900 into the three solution sets yields the three solutions u,=u,=0;
u1=u2=1/3; and u1=-1/3, u2=2/3. Consideration of the constraint ui=0
eliminates the third solution. Consideration of the data eliminates the
first solution. Therefore, there is only one satisfactory solution;
u1=u2=u3=1/3. |
Note that results given in Table 4D.1 were expensive to obtain and
utilized the maximum amount of computer memory available. Yet, these
results were for only two patterns of incomplete data. Further, each of
these patterns ({1,2} and {1,3}) involved only two categories (Cl,C2 and
Cl’CB’ respectively). A total of only three variables (pl, Pos and p3)
was involved. Hence, an algebraic solution can be obtained only in very

special cases. .
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For the last example, consider incomplete trinomial data z=(zl,22,z3,

212,213,223). For elements of the asymptotic mean and inverse covariance

matrices, equations (4D.64) - (4D.66) yield

up = (29%29,U5 /U %2, 3u, /Uy )/,
(4D.93)
Up = (254215Up/t 5429315/ Up3)/Ms  and
sl - ny /(uquy)-2, ,u,/(u u 2)-z u,/(usu 2)-z /(uju,)
13/ (UgU3)=253u,/ (ugu,37) -2y 5o/ (Uguy 5 7)-24 3/ (ug u3),
12 |
S°° = n/u3 12/u12 -213/(u3 13) 23/(u3u23), (4D.94)
22 2
™7 = nuyg/ (upu3)-2zy 3/ (uguy 5 %)- -25Uy/ (UpUy ") =255/ (U,u5),

respectively. Note that (4D.93) is a nonlinear system of equations

involving fifth powers of the means. Therefore, we do not obtain the
exact algebraic solution. However, suppose that 21=3’000’ 22=4,4OO,
z3=10,000, 25 zl3=3,400, and 253
these values into (4D.93) and setting u3=1-u1-u2 yields, with the aid of

=5,000, =4,000. Then, substituting

MACSYMA, the five sets of solutions:

=u,=0; =0.8151925, u,=0.852957431;

up=u, uy u =-0.52547874, u

1 2

u,=0.20089479, u u,=0.73063732, u,=-0.51744858.
1 2 1779 2

Consideration of the constra1nts us 20 and ¢ u1-1 eliminates all solutions
i=1
except the first and fourth. Consideration of the data eliminates the first

9 =0.75930824;

=0.29789739; and

solution. Therefore, the only satisfactory solution to (4D.93) is

u,=.2008948,  u,=.2978974 =.5012078. ~ (4D.95)

1 2 » U3

Substituting solution (4D.95) into (4D.94) yields for the asymptotic

. . . -1
inverse covariance matrix S ° the elements
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sl - 1.2050%, s = 5.9004%, and % - 1.1638°, (4D.96)

whence elements of the asymptotic covariance matrix S are

_ -6 _ -5
R 512 =-4.6934 ~, and 522 = 1.1008 ~. (4D.97)

_ -6



-171-

APPENDIX 4E

ERROR PROPAGATION

In this appendix, we study the error incurred when the iterative so-

lution to an approximation

B = 6(p) (4E.1)
is considered as a solution to the function
b = o(p) (4E.2)

being approximated. In particular, we consider the approximation (4E.1)

where

2y L 42 © 1444
G,(p) = (zi+vi+D§iszi/pD)/m, =ik, (4E.3)

for the function (4E.2) where

. 2 2 2 1 N
(Zi+vi)/m+0§izD/m{pi/pD+§[a (r]Q)/(agag )]§+h.o.t.}

QT
~—
1l

| (4E.4)

In (4E.4), "h.o.t." denotes higher order terms in the Taylor-series ex-
pansion of p about the exact posterior mean p [see Appendix 3Bl, where,
however, evaluation of the partial derivatives is now made at 5, not p.
The term (r]Q) denotes the matrix of ratios r1Q=p]/pq.

Note that no element of the matrices of partial derivatives is a

function of the éampie size n. For example, elements of [32(r1Q)/(aEQE')]6

are given by, where 1 and j are elements of the set Q,

2 3



=172~

82r

) ) 3
]Q/(ap,apj) (2p] pQ)/pQ ,

and

\2p 2 3
Q/ap = -2p]/p0 .

For j€Q, 82r Q/(ap ap )=0 for any q.

From (4.13), elements of the posterior covariance matrix § are of
magnitude O(n-l) and from Lemma 3B.2, elements of the higher order terms
are of successively decreasing order of magnitude. Therefore, the error
€; in (4E.4) is of order O(h'l) for all i; i.e.,

e, = o(n"hy, 19k, (4E.5)

We use the following lemma and proof derived from Theorem 3, page

92, and Theorem 2, page 111, of Isaacson qnd Keller (1966):

Lemma 4E.1: Suppose, for 14i¢k, that we have approximated 5 (ﬁ) by
a function Gi(ﬁ) in such a way that the error 61(6) in Gi(ﬁ) js bounded

by some value 6>0. Suppose, further, that we use the iterative scheme

given by

(s+1) | G(é(s)) | (4E.6)

L TNe

to calculate a root of G(s). Note that (4E.6) can also be written as

(s+1) _ o (s)) 4+ e(s) (4E.7)

~

e

b
where |ei(5)| <§ for all i.

From Appemdix 38, one root of gi(ﬁ) in (4E.4) is the exact posterior
mean g, which we now study. Suppose that in all intervalsllé-glpr,
where Hé'éILEIT?fklﬁi_ﬁil and p>0, g(p) satisfies

k

max I |8g () /ap | € X <1. (4E.8)
i J=1 ~
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Let the initial iterative estimate 5(0) be any point in the fo

sphere § QIL pg for O<py*p- -8/(1-1). Then the iterates 6(S) of (4E.7)

~

lie in the interval ||p-p|L5p and
15-BIL, ¢ 8/(1-1) + A°[py=6/(1-1)] (4€.9)

S
where A >0 as s-.

. ~& ~£
By assumption, E p |Lo‘p0 Therefore, || p- E L p0+6/(1 A)‘
(1) £1< : xR g
Assume that p* '/ for 1£1£s-1 are in [[p-p|| %e. Then,

15501 € Hotp)-ra(ps M ywels-Hy

(4E.10)
< lte-9 L + .

2(s-1)

Now, for any two points p and p in'llé-EH 2o, Taylor's theorem

yields that )
o, (B)-9;(5) = 2 os, CRVE- NG
J

I3
~

~p.), for 1%i4k, i
P pJ), or 1£i4k (4E.11)

where 5(1) is a point on the open line segment joining § and g. Thus, '
5(1) is in Ilﬁ-élL and

('l) A L &
llagi(i 1790 x| P4 ]

(o]
—
©
~—
]
(=}
—
=1
~—
1N
nemtx

IN

o k () .
p-ll, = lag;(e""")/05;] (4E.12)

IN
>

Since the inequality holds for each i,



la(B)-a(B)|, < » |I6-plL. ‘ (4E.13)

Therefore, from (4£.10) and (4E.13),

(s-1)

L3

[ M + 6

2||p(S -2) “|L + 28 + 8§

LT

'é(S)lL

In

A

in

I3, + 2% 4 a8 + 6

A ||~(0)_5|L + X 15 + eee + A8 + § (4E.14)

in

S
Po

IN

+ 8[(1-2%)/(1-2)]

S

IN

Moy * §/(1-1) - A38/(1-1)

N

Po * §/(1-1)

IN

(1)

Therefore, all the iterates p' ’ 1ie in lp-pll 20 and the iteration

process is defined. Finally, from the last inequality involving s,

(s)IL
(S)!

tN

§/(1-1) + xs[po-a/(1-x)]; (4E.15)

(=14

15-

i.e.,

IN

15,75, 8/(1-1) + A°[p(-8/(1-))] (4E.16)

for all 1=i<k.

This lemma shows that the exact posterior mean E satisfying (4E.4)

can be approximated by the Taylor-series approximate posterior mean 6

~

from (4E.3) to an accuracy determined essentially by the accuracy of the
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(

implies that Ei-ﬁi is small,

errors &>¢.(p)=g

1

¢ O
¢ TRe

i )-ei(é) in (4£.4). Thus, 81(6) small for all i

From (4E.5), ei(§)=0(n_1) for. all i. Thus, 6=0(n-1). From (4E.4),
k 'y '3 k 4 s 2 -1
max I |3g,(p)/3p;| = max{ 3 z/m[ % [3(p;/Pp)/3p;| + 0(n 7)1}
ig=l ' b 43T el J
= max % zp/m[ (50—5.)/502|+ ) |—5./5DZI] + O(n-l)
i Di ! jeo !
) J#i (4E.17)
L 8,8 s 82 -1
=max £ z./m[(p,-B.)/P, + Z P./P."] + O(n ")
3 D> D D i D jeD i""D
J#i
= max I z/m{1/B+16(D)-215./B, %1 + o(n” 1)
i D3 !

for B(D) the number of elements in D.
In general, there is no Quarantee that there exists a neighborhood

of E in which (4E.8) is satisfied everywhere within the neighborhood.
If there is, we call the largest such neighborhood the -epm (exact-poster-
ior-mean) convergence region. [See the following Figure 4E.1 for an
illustration of an epm convergence region. ] | |

' Note, however, that for the trinomial distribution B(D)=2. Hence,
the second term [B(D)-Z]ﬁi/ﬁn2 in (4E.17) is zero and

k . . -
max I |agi(5)/8§.| = max g (ZD/m)/ffD + 0(n 1),
1292k j=1 ~ 1€i4k D2i

Further, recall from Sections 1.2, 2.2.3, and 4D.3 that Z can be consid-
ered as coming from related multinomial populations. For example, z=
(21,22,23,212) can be considered as coming from a trinomial distribution

with Vi=Z1s Vo=Zy, V3 and a binomial distribution with Y1521 and Y3
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Figure 4E.1 GUARANTEED-CONVERGENCE REGIOH FOR THE EXACT POSTERIOR MEAN
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where v3+y3=z3. For n12=212+y3, then, le/n = (212/n12)(n12/n) = (nlz/n)

(n—l/Z)’ where 612 is the maximum likelihood estimate.

Xplz = (n12/n)ﬁ12+0p
Therefore, for any incompletely specified data z

-1/2)

D,

zp/m = (nD/n)ﬁD + 0p(n , (4E.18)

so that, for the trinomial distribution, we can write (4E.17) as

k
max T |9g,(B)/oB.| = max 3 (ny/n)B, /By *+ O (n"1/2y, (4E.19)
144k j=1 '~ I i Dai - P

Because I n.<n, I n./n<l. Therefore, for large enough sample size n,
D>i 0 Dai D

the bound A £ qu_%llagi(ﬁ)/aﬁjl is less than 1 if éD is close enough to
ﬁD. Since for ;1% values of E (which never has zero components because
the prior parameter v never has - zero combonents) there does exist a neigh-
borhood such that 50/50 will be close to 1 for all values of ﬁD in this
neighborhood, for the trinomial distribution there exists an epm conver-
gence region. For higher dimensions, however, there need not exist an
epm convergence region and we give an example of such a case in the main
text, Section 4.3.2.

Observe that, anytime (4E.19) is satisfied, the term &/(1-1) in

(4€.15) is 0(n'1). Since p, is a constant, 6/(1-2)=0(n"!

), A<1, and, in
particular, s can be assumed as large as desired, the term As[po‘d/(l-x)]
jn (4E.15) can be assumed to be zero. In particular, s can be assumed

large enough that A is small enough that this term is of magnitude no

h.

Therefore, if there exists a neighborhood

‘greater than 0(n~

5-5|L<p around p such

that A in (AE.8) js satisfied and, further, the initial iterative esti-
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(0)

mate js chosen in the neighborhood H6-5|L<poép-6/(1-k)ép, then the

1

AT

error in the Taylor-series approximate posterior mean B is 0(n "), i.e.,

51 =B+ o(n'l). (4E.20)
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Comments: Since.6=0(n'1), for large enough sample sizes, the Py neighbor-
hood cén be closely approximated by the p neighborhood. In turn, we can
determine whether the iterates can be expected to be within the epm con-
vergence region bounded by p, where condition (4E.8) must hold, by check-
ing, first, whether the following inequality

K

max I |agi(§)/3§.| % max I zD/m{1/60(5)+[B(D)-2]§i(S)/[5D(S)]2} <1 (4£.21)
ig=l ' i Dai

(s)

holds for every iterate 51 , q%s¢t, for t+l the number of iterations
required for the convergence condition to be met and q the number of the
first iteration that begins an unbroken succession of iterations satisfy-
ing (4E.21). If (4E.21) does not successively hold after some number of
iterations, then different initial estimates can be tried and inequality
(4€E.21) reevaluated.

Second, if (4E.21) holds for sets of iterates converging\to different
values [i.e., to differeht roots of (4E.4)], more than one of which is in
' Pk’ we must determine which root, if any, is in the epm convergence region.
[See Section 4D.5 for two examples of mu]tip]e roots, one having three
roots and the other having five roots, for the asymptotic posterior mean
for incomplete trinomial data.] As discussed in the main text, Section
4.3.2, the global maximum Within Pk is conjectured to be the root that is
in the epm convergence region or at least closest to g. Hence, of those
iteration sequences satisfying (4E.21) and converging to different roots

in Pk’ we choose fhat one for which the likelihood fun;tion

- - 1
. zl+v1 lz 22+\)2 1 . 5 z
D D

. D
P1 P2 TPkl

21 k41"



-180-

is a maximum.

Note that the conditions on the partial derivatives and initial
iterative estimate are sufficient but not necessary. Finally, we give
three examples that show that Leﬁma 4.1 gives very conservative bounds
on the error ||§(t)-§|h and on the guaranteed-convergence neighborhood of
E- For these examples we use the data f=(2’5’6’4’2’0) given in Section
2.2.3 where we calculated the exact posterior mean as §=(.2412,.3849,.3739).

l<p=.11 of
For all probabilities p in this p neighborhood, m?ngilagi §)/aéj|=(4/22)

/612+(2/22)/513 < .56 < 1 and. a bound on the error made by approximating

For the first example, consider the neighborhood

p-p :
(

~

the exact posterior mean by a Taylor-series expansion is 6=0.035. Thus,

8/(1-1)=0.080. Suppose that we choose an initial iterative estimate E(O)
in the region bounded by poép-G/(l-A)=.11-.08=.05. Then the iteration pro-
cess is guaranteed to converge to w{thin 8/(1-1)=.08 of the exact posterior
mean. However, for any initial iterative probability (including that one
whose three components each differ from the three corresponding componenfs
of § by .11) chosen within this Po neighborhood, the maximum difference
between the converged iterative estimate and the exact posterior mean was
0.003, more than 25 times smaller than the 6/(1-1)=.080 error bound given
by Theorem 4E.1. |

Now consider as an initial iterative estimate for p=(.2412,.3849,.3739)

~

the value 5(0)=(.05,.10,.85). For this value,

2
3 |agi(6)/aﬁjy = (4/22)/.15 + (2/22)/.90 = 1.21 +,10 + 1.31 > 1.

~

j=1

Hence, conditions of Lemma 4E.1 are not satisfied, However, use of this



-181-

initial iterative estimate gives successive iterates, as shown in the

~
-

following Table 4E.1, that do converge to within a small error of p

The initial iterative estimate (0

~

failed condition (4E.8) because
612=.15 was smaller than zlz/mé(nlz/m)(ﬁlz/ﬁlz). Note from this example
that small values of BD will.be particularly troublesome in keeping the
term (zD/m)/éDé(nD/m)ﬁD/ﬁD less than 1.

In this example Hé(o)-§|L=max(.19,.28,.48)=.48. Thus, the largest
value of p for a guaranteed-convergence neighborhood of § must be smaller
than .48. In the next example we choose as an initial iterative estimate
§(0) a probability §(0)=(.90,.07,.03) that is even further. away from ﬁ.

For this estimate, I|§(0)-§]L=max(.66,.31,.34)=.66. [See also Figure 4E.2.]

Since .66>.48 of the last example, this initial iterative estimate cannot

be in a guaranteed-convergence neighborhood of p. Yet, for this estimate,

~

2 :
max I |agi(6)/aﬁj| = (8/22)/.97+(2/22).93 = .29 < 1.
ij=1 ~ : ‘
Futher, as shown in Table 4E.1, the sequénce of iterates arising from this

initial iterative estimate also converges to within a small error of the

exact posterior mean.
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(s8°‘01°“50°)
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TABLE 4E.1

1
CONVERGENCE EXAMPLES FOR OUTSIDE INITIAL ESTIMATES

SECOND EXAMPLE THIRD EXAMPLE

8 (Blg  (By)g By (by)g
0 .0500 . 1000 .9000 .0700
1 .2020 .3939 .3930 .2858
2 .2283 .3929 .2917 .3493
3 .2374 .3877 .2598 - .3718
4 .2391 .3870 .2488 .3798
5 .2413 .3851 .2448 . 3826
6 .2421 . 3845 .2433 .3836
7 .2420 . 3846 .2428 .3839

1

Initial iterative estimates chosen outside the
guaranteed-convergence sphere of Lemma 4E.1 ‘

for the exact posterior mean E=(.2412,.3849,.3739).

2
Iteration number



CHAPTER 5
SMALL-SAMPLE STUDIES OF APPROXIMATIONS FOR POSTERIOR MOMENTS
AND OF ESTIMATORS FOR MINIMIZING QUADRATIC LOSS

5.1 Introduction:

In the last chapter, we showed that for 1argé sample sizes the
Taylor-series approximations should be very close to corresponding exact
posterior moments. We now consider how well these asymptotic properties
hold in small- and medium-size samples. We also compare the Taylor-
series approximations with the posterior mode and maximum-likelihood
estimate to determine which best approximates the exact posterior mean
for these smaller sample sizes. A1£hough all three approximations will
be very close for very large sample sizes, we expect differen;es in the
most commonly encountered sample Sizes.

We then turh to our main interest and report which of these three
estimatprs best miﬁimizes expectgd quadratic loss (risk) for specified
values of the Dirichlet probabilities. Note that we do notAinclude the
exact posterior mean in the risk stddy. Results from the approximation
part of this‘sma11-samp1e stUdy showed that there was no difference be-
tween the Taylor-series approximation and the exact posterior mean that
would alter conclusions from'using the Taylor-series approximation for
the exact posterior mean. Since the exact posterior mean becomes in-
creasingly expensive as the sample size and/or percentage of incomplete
data increases, we used the Taylor-series approximation for the exact
posterior mean. Therefore, in our mnemonics, we refer to thenTaylor-

series approximation as APM (approximate posterior mean).
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In Figure 5.0 we give expressions for.the three approximations for
the exact posterior mean and estimators for minimizing quadratic loss.
These equations were presented in Chapter 1 or derived in Chapter 3.
The mnemonics APM, PMD (posterior mode), and MLE (maximum 1ikelihood
estimate) in parenthesis are used throughout these next three chapters.
They are especially useful in presenting results in the next two chapters.
For the risk study, we attach suffixes RO, Rl, and R2 to these mnemonfcs
to denote the three robustness studies for use of the original, unjform,
and perturbed priors,-respective]y. in the Bayesian estimators.

In Summary, we are intefested in four main questions: (1) how
well the Tay]or—series expansions approximate the exact posterior mean
and covariance matrices; (2) which of three estimators (Taylor-series,
posterior mode, and maximum Tikelihood estimate) best approximates the
exact posterior mean; (3) which of these three estimators best minimi-
zes risk; and (4) how robust results from (3) are to use of the wrong

-prior in the Bayesian estimators. Because we were unable to éolve these
problems theoretically, we used Monte-Carlo simulation studies. Hence,
results will be only indicativé, not conclusive.

In this chapter, we discuss designs and compytationa] procedures
for two Monte-Carlo studies. In the next two éhapters, we discuss

results from these studies.



-186-

FIGURE 5.0

APPROXIMATIONS FOR EXACT POSTERIOR MEAN
AND ESTIMATORS FOR QUADRATIC LOSS

Taylor-Series (APM)

k+1
b. = [z, *v.* T (§./B.) 2, 1/[n+ £ v.]
3 {i} i D3 | D" D j=1 J
Posterior Mode (PMD)
~ Aa k+1
ﬁ'l - [Z{]}+V1-1+D§](p1/p0) ZD]/[n+J§1VJ'(k+1)]

Maximum Likelihood (MLE)

p. = [z,.+ I (./6,) z1/n
i (i} 03i | D’ “D

Note that k=2 for trinomial simulation study. Also note that
braces in 2043 are henceforth dropped.
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5.2 Special Notation and Mnemonics:

Notation:

P; ith element of Dirichlet generator probability vector

ﬁi ith element of exact posterior mean

61 ith element of Taylor-series (T.S.) approximate posterior mean (APM)

61 ith element of maximum likelihood estimate (MLE)

Si ith element of posterior mode (PMD)

ﬁi ith element of.comglete-daFa mgximum.likglihood estimate (used
mainly for variance reduction in estimating mean squared error)

6i ith element of dummy estimator é, which is used when descriﬁing
properties or formula that pertain to more than one of the above
estimators '

éi | ﬁi-pi for 51 any of above'estimators 51, By 61, and B,

éi ﬁi-ﬁi for 61 }any of above estimators 51, 61, and %i

Note that we are using p to denote both any value of the simplex
P2 = {(bl,pz,pB): Ofpl,pz,p351; p1+p2+p3=1} and a particular va]qe of P2.
The context in which p s used should make clear the particular meaning.
Further, note that both p -and g' are Dirichlet probabilities. The p
either is set to the expected value of the Dirichlet distribution of p
given v (note Design 1 in following Section 5.4) or is generated from
this distribution (Design 2). In either case, we shall refer to p as

the generator. The P refers to the posterior mean of the Dirichlet

~
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distribution of p given the incomplete data z. Thus, for Design 1,

p is the prior Dirichlet mean and E. the posterior Dirichlet mean.

Mnemonics: Note that the following mnemonics might appear in lower-case,

as well as capital, letters:

ApPC Taylor-series approximate posterior covariance
APM Taylor-series approximate posterior mean

EPC exact posterior covariance

EPM exact posterior mean

MLE maximum likelihood estimate

MSE mean squared error

PID percentage of incomplete data

PMD posterior mode

SS sample size
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5.3 Criteria of Goodness:

To determine how good an estimator was either for estimating an
exact posterior moment or for minimizing quadratic loss, we used several
criteria. The main criterion for judging the accuracy of approximations
for the exact posterior moments was percent relative difference. To
judge among the estimators for estimating the exact posterior mean, we
also used mean squared error E[(ﬁ-é)'(ﬁ-é)]. 0f course, for judging
which estimator best minimized quadratic loss, the criterion was the
mean squared error E[(E-é)'(g-é)]. Estimates of mean squared error
(mse) are discussed in Section 5.9.

Addi tional heasures of goodness were also considered in Chapter 6
where we studied the estimators in detail. For example, among addi-
tional calculations were the frequency distributions of the number of
iterations, deviations, and percentage relative difference. Criterion

of goodness are included in the listing of tables in Chapters 6 and 7.
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5.4 Computer:

Computers used for the simulation were a CDC (Control Data Corpora-
tion) 6600 and Cyber 175 with 60-bit words.  Single-precision calcula-
tions were accurate to about 14.5 significant figures; double-precision
calculations, to 29. The programing language was Fortran Extended,
Version 4.6. To minimize execution cost, recommendations from the NASA,
Langley Research Center "Computer Programing Manual", (1975,vl,sect.8)
were incorporated.

Main incorporations were the passing of parameters among programs
through COMMON rather than calling sequences and a reduction in a num-
ber of otherwise large D0O-LOOP indices. Owing to fhe latter, program
statements and number of variables increased. Number of dimensions on
a variable decreased. Among other inclusions were use of "IF (A-B)
10,20,20" instead of I"IF (A.GE.B) 20,10", collapsed dimensioning for
array initializations, and special procedures for arithmetic operations.

Unless otherwise noted, all programs were written by the author.

A Tisting of most of these programs is given in Credeur (1978). An

index precedes the Tlisting.
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5.5 Factors in Experiments:

In investigating the four issues outlined in the Introduction, we
were interested in the effects of variation in prior parameter Vs the
Dirichlet probabilities arising from the distribution of p given Vs
sample size (SS), and percentage of incomplete data (PID).

Owing to cost constraints, we limited the number of these varia-
tions. For percentage of incomplete data (PID) we chose 15 and 40. We
already knew from Chépter 3 that for 0% incomplete data, the Taylor- |
series approximations (APM and APC) exactly equaled the posterior mean
and posterior covariance, respectively, whereas the posterior-mode
(PMD) and maximum-1likelihood-estimate (MLE) approximations did not.
Thus, for investigating the first two introductory questions concerning
estimators for the exact postérior mean and covariance (EPM and EPC)
matrices, we essentially had PID for values 0, 15, and 40.

For sample size (SS) we chose 25 and 50. For these values and
ranges of PID we were able to calculate the exact posterior mean and
covariance matrices. As noted‘in Chapter 2, for sample sizes much
larger than 50, calculations for the exact values would be expensive,
especially for those cases in which PID=40.

To set values of the prior parameter v, we first considered values
we wanted for the Dirichlet probabilities arising from the distribution
of p given the prior. We wanted roughly to cover the range of probabili-
ties from (0,0,1) to (1/3,1/3,1/3). We picked four values (.01,.01,.98),
(.10,.10,.80), (.20,.30,.50), and (1/3,1/3,1/3) as focal points to be
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investigated. Now, usually one has a prior because one has a prior
sample. If the size of the prior sample is small relative to the size

of the current sample, then the prior has little effect on the estimators.
~If the prior-sample size is relatively large, the current data has

little effect. Therefore, because we chose current sample sizes of 25
and 50, we set the size of the prior data at 10, two-fifths and one-

fifth the current information, respectively. Thus, values of the prior

parameter v were chosen as 10 times the prior mean we wanted.

3 3
That is, since E(pilv)=v1/ L vy and I vj=10, then
~ J=1 J=1
v; =10 x E(pily). (5.1)

Setting E(BIB) to the four focal points gave values of v as (.1,.1,9.8),
(1,1,8), (2,3,5), and (10/3,10/3,10/3).

The simulation study was done in two stages, as follows. In the
first stage, which we called Design 1, we fixed the value of the
Dirichlet probability at the expected value of the.distribution of P
given each one of the four prior parameters v. In the second, Design 2,
we generated 10 values of the Dirichlet probability from each qf fhe
fixed values of v. Designs 1 and 2 are illustrated in Figures 5.1 and
5.2, respectively. A summary design is given as Figure 5.3.

Results from Design 1 allowed at least some of the four Introductory
questions, especially those concerning the exact-posterior-moments com-
parisons to be satisfactorily answered. Because cost was less, more
details were studied. The second design, Design 2, allowed us to

determine how Design 1 results were affected by our choosing a special

probability, -the expected value of P given v. As we moved away from the



LEvEL 8°
Dirichlet
p variation*

[v=(0.1,0.1,9.8)]
py= (-01,.01,.98)

LEVEL C
% incomplete
data variation

LEVEL D
sample size.
variation

LEVEL E
trinomial-data
generation

x = complete data

z = incomplete data
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FIGURE 5.1
DESIGN 1

[v=(1.0,1.0,8.0)]
p,=(.10,.10,.80)

$5=25

PID=15

():,Z_)"'(X,Z) (x,2) -

PID=40

(x,2)

[v=(2.0,3.0,5.0)]
p47(.20,.30,.50)

$5=50

*level A is not present in this design (see Design 2 and Summary Design)

'g is expected value of Dirichlet probability distribution given v

This design yields 6400 [=4x2x2x200x2rep1]) data sets and requires generation of 240,000 [=4x2x(25+50)x200x2rep1)

uniform random numbers.

This design constitutes sets of full factorials:

a. for epm comparisons:

b. for gquadratic-loss comparisons:
pmd, and mle)

# of
levels

[v=(10/3,10/3,10/3)] 4
py=(1/3,1/3,1/3)

2 replic.;
200 trials
per replic.

4XZZX3 with 2 replications per cell (last factor level 3 refers to estimators apm, pmd, and mle)
4XZZX3 with two replications per cell (last factor level 3 refers to estimators apm,



LEVEL A »=(0.1,0.1,9.8)
prior-parameter ~

variation

LEVEL 8 . [4
Dirichlet 2 “10

p generation

JLEVEL €
7 incomplete-
data variation

LEVEL D
sample size
variation

LEVEL E
trinomial-data
aenzration

x = complete data

z = incomplete data

This design yields 64,000 [=4-10-272-200-2repl) data sets and requires generation of 2,400,120 random numbers [ie.;

v=(1.0,1.0,8.0)

(5’3)...
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FIGURE 5.2

DESIGN 2

Y=(2'0'3'O‘5'0)

/\

§8=25 §5=50

/\

PID=15 PID=40

N

{x,2) (f,g)-’~(§.g)

Y=(10/3'10/3'10/3)

variables for 40 3-dimensional Dirichlet random variables + 2,400,000 = 4x10<2x(25+50)=x200x2repl. uniform random numbers].

. .
each Dirichlet p requires generation of 3 gamma random variables

This design constitutes sets of nested factorials:

a. far epm comparisons: 4-1012213 with two replications per cell
b. for quadratic loss: 4-1012213 with two replications per cell

# of
levels

2 replic.;
200 trials
per replic.

120=4x3*x10 gamma random
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FIGURE 5.3

SUMMARY DESIGN

LEVEL A v=(0.1,0.1,9.8) v=(1.0,1.0,8.0) v=(2.0,3.0,5.0)
prior-parameter - ~ -
variation \ \
' \
\ \
\ \
\ \
\ \
\ \
LEVEL B ! \
Dirichlet PlL.eP10 Peip  P1 .. Plo0 Pexp P1... P10

p generation

LEVEL C §5=25
% incomplete- .
data variation

LEVEL D PID=15 P10=40
sample size
variation

LEVEL E (x,2) -+ (x,2){x,2) --- (x,2)
‘trinomial-data -~ R - -
generation

x = complete data

2 = incomplete data

# of
levels

v=(10/3,10/3,10/3) s

P10 ?exp 1041

2 replic.;
200 trials
per replic,

Total designs yield 70,400 [=4x11x2x2x200x2replic] data sets and require generation of 2,640,120 random numbers

{ie.; 120=4x3*x10 gamma random variables for 40 3-dimensional Dir

uniform random numbers].

'each Dirichlet p requires generation of 3 gamma random variables

ichlets +2,640,000 = 4x11x2x(25+50)x200x2replic
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expected value in Design 2, using probabilities randomly generated
from fixed Vs how did Design 1 results change?

To measure the variation in the probabilities p associated with a

~

prior v, define a centrality norm
2 3 2
¢(p) = £ I (py=py)°. (5.2)
i=1 j>i
Values of C(E) for Design 1 are given in the following Table 5.1. Note

from Table 5.1 that as p moves from a corner of P2 toward its center,

~

C(E) decreases from 2.00 to 0. Centrality measures for generated

Dirichlet probabilities in Design 2 are given in Table 7.1 in Chapter 7.

TABLE 5.1
CENTRALITY MEASURES FOR DESIGN 1
Y E(plv) Cp)
(0.1,0.1,9.8) (.01,.01,.98) - 1.88
(100’1.0’8'0) (olO’clO’-go) -98
(2.0,3.0,5.0) (.20,.30,.50) .14
(10/3,10/3,10/3) (1/3,1/3,1/3) .00

Factors SS and PID were quantitative; we considered v and p to be
qualitative. In Design 1 all factors were fixed. In Design 2, p was
random and remaining factors were fixed.

Once we fixed the factor levels, we generated the trinomial data.
In the next section, we discuss how we chose the number of trinomial

simulations and, in Section 5.7, how we generated the data. To allow a
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control variate and thus a better mean-squared-error (mse) estimate
for. the risk study, we generated complete as well as incomplete data,
For the exploratory robustness study, the two priors used besides
the original v prior were the uniform prior and a perturbed prior.
Values of both are given in the following Table 5.2. The uniform prior
- is frequently used when one is uncertain of previous information. It
gives equal weight to all three trinomial categories. The perturbed
prior not only differs in magnitude from the correct prior v but does

so in a skewed manner. The change to the first component is

TABLE 5.2
PRIORS FOR ROBUSTNESS STUDY

Robustness Set Type Value
RO origina1‘ v
R1 uniform ' (1,1,1)
R2 perturbed IOXI2/10+(.09,.05,-.14)]

approximately twice that to the second component and two-thirds that
to the third component. The first two components increase; the third

decreases.
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5.6 Determination of Number of Simulation Trials and Replications:

Because mean squared error was the major overall "goodness" measure,
the main criterion for choosing the number of trinomial simulation trials
was that the standard errors of the average estimated mean squared errors
be small relative to the difference between the mean squared errors. For
this purpose, 200 trials was enough; for just comparisons among approx-

imations for the exact posterior mean, fewer trials would have been
'needed.

As noted in Section 5.3, we were also interested in the deviations
of the estimators from the exact posterior mean (the "EPM deviations").
One deviation, or error, measure was the average. However, the number
of simulation trials needed to make the standard errors of the average
deviations small relative to the difference between the average devia-
tions was prohibitively expensive. Results of Design 1 gave that the
average APM deviation was a couple orders of magnitude smaller than the
average PMD and MLE deviations. Hence, the difference between it and
either of the average PMD or MLE errors approximately equaled the PMD
or MLE deviation, resbective]y. However, even for a number of trials
as large as 200, the standard error of the average deviation roughly
equaled the respective average deviation. (A1l EPM deviations averaged
zero to varying number of decimal places.) Therefdre. the APM-PMD=PMD
and APM-MLEZMLE differences were not always larger than the standard
errors of the PMD and MLE average deviations. (They were, however,

much larger than the standard errors for the average APM deviation.)
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To estimate the experimental error in estimating averages,
including the mean squared errors, we repeated each set of 200 trinomial
simulation trials once. [Recall Figures 5.1 - 5.3.] Cost considera-
tions precluded more than two replications. Although each of the 200
trinomial simulations can be called a replication, for differentiation,
we reserve this term for these two repetitions. The two replications
also provided another check that 200 trinomial simulations were enough.
There was little difference between results for each of the two
replications.

To determine the number of simulation trials to use in generating
Dirichlet probabilities in Design 2, we were guided mainly by cost
constraints. We took only 10 trials. Results of Chapter 7 show how

surprisingly good 10 trials were in terms of theoretical expectations.
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5.7 Data Generation:

For Design 1 we must generate complete and incomplete trinomial

data. For Design 2 we must also generate Dirichlet probabilities.

5.7.1 Uniform Random-Number Generator:

e — o —— . — " — Gt e G—— —— o —

As do most other generator algorithms, algorithms to generate
trinomial and Dirichlet data depend on a uniform random-number generator.

For this generator, we used the multiplicative congruential generator
x; = 43490275647445 x_ mod(2%8) (5.3)

from Ahrens and Dieter (1974,p223). Uniformly distributed variables Uy

were then calculated by

_ 48 :
ug = x;/2°, | (5.4)

The multiplier 43490275647445 is congruent 5 mod(8); therefore,
from Knuth (1969,p18,93), the generator (5.3) has méximum period of 246
and we can apply the Spectral test of Coveyou and Macpherson (1967).
The Spectral test is currently the most powerful test of the randomness
of a random-number generator., By using a computer program written}by

Golder (1976,pl173) with corrections by Hoaglin and King (1978), we

calculated the Spectral Numbers Cs» 245, as
Cz=2.839, c3=2.095. C4=1.819, cs=0.987. (5.5)

Since Cos Cqs and'c4 all exceed 1 and Cg is almost 1, the generator is
very good in terms of the Spectral test, a theoretical test. Therefore,

it is most likely good in terms of any empirical tests.
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As an empirical check on the generator, however, we ran a number
of 95% Confidence-Interval tests on the sample means and standard
deviations, chi-square tests, serial-correlation tests, Kolmogorov-
Smirnov tests on the cumulative frequency, and did plots on the density

and the cumulative distribution. The generator did well on all.

5.7.2 Dirichlet Random-Number Generator:

To generate a Dirichlet random vector, we used the following

theorem from Wilks (1963,p179):

"If XyseensXpyq are independent random variables having gamma distri-

butions G(vl),...,G(vk+1), then for
Yi = X/ (xphox,), 144K, | (5.6)

(yl,...,yk) has the k-variate Dirichlet distribution D(vl,...,vk;vk+1).”

Therefore, to obtain one random vector p» from a Dirichlet distribution
with k=2, we must generate three independent gamma random variables. To
do so, we used algorithm GT from Ahrens and Dieter (1974,p229).

We checked the Ahrens-Dieter GT algorithm by doing 95% confidence
limits on the sample means and standard deviations, plots on the density
and cumulative frequency, and Kolmogorov-Smirnov tests on the cumulative
distribution. We then performed these same tests on the Dfrich]et
probabilities P calculated from these gammas.

Other than the standard deviations, the generators performed well.

As shown in the following Table 5.3, for the gamma random variables, the
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TABLE 5.3-

PERCENT REJECTIONS IN 95% NORMAL® CONFIDENCE INTERVALS FOR GAMMA AND MARGINAL DIRICHLET
RANDOM VARIABLES

(300 TRIALS, 200 OBSERVATIONS PER TRIAL, EXPECTED PERCENTAGE IS 5)

N
=
w

PRIOR PARAMETER  SEED  GENERATOR ML M D1 sD2  SD3

l
I
l

(0.1,3.5,6.4) 21153  Gamma 542 3% 4y 77% 1124 9%
Dirichlet 53 4 4 69 3 3

(0.1,0.1,9.8) 21197 Gamma 5 4 4 71 70 9
Dirichlet 5 5 5 68 69 45

(0.1,0.1,9.8) 21153  Gamma 4 6 5 73 72 9
Dirichlet 3 5 5 68 68 56

(0.5,0.5,9.0) 21143  Gamma 4 4 4 44 44 10
Dirichlet 5 5 5 34 31 17

(1.0,1.0,8.0) 31153  Gamma 2 5 4 26 35 13
Dirichlet 3 4 4 19 20 9

(10/3,10/3,10/3) 21153 Gamma 5 5 4 14 16 17
Dirichlet 2 5 3 3 4 5

(2.5,3.0,4.5) 22213  Gamma 3 4 3 20 17 15
Dirichlet 4 7 6 3 3 3

21113  Gamma 6 6 2 17 19 13

Dirichlet 5 4 3 6 6 5

21111  Gamma 5 6 4 18 21 10

Dirichlet 5 5 5 6 5 -2

21313  Gamma 3 6 3 14 16 13

Dirichlet 3 2 2 3 4 1

21153  Gamma 2 4 4 15 13 11

5 3 5 4 2 3

Dirichlet

1
Normal approximation is used for the confidence intervals.

2

In 300 trials (sets of generations), 200 observations per trial, from gamma(0.1),
the sample mean M1 (calculated over 200 observations) fell outside the 95% normal
confidence interval 5% of the time (approximately 15 of the 300 trials).

3

In 300 trials, 200 observations per trial, from beta(0.1,3.5+6.4)=beta(0.1,9.9),
the sample mean M1 fell outside the 95% normal confidence intervals 5% of the
time. .

[
In 300 trials, 200 observations per trial, from gamma(3.5), the sample standard
deviation (calculated over 200 observations) fell outside the 95% normal confidence
intervals 11% of the time.
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standard deviations routinely exceeded the 95% confidence limits more
than 5% of the time and became increasingly worse as we moved from 10/3
in the center of the 2-dimensional simplex P2 to 0.1 or 9.8 at a corner.
The same trend was observed for standard deviations of the marginal
Dirichlets except that the percentage of rejections was much smaller and
the standard deviations were good for points away from the boundary.
This behavior may be due either to (1) a poor fit of the generated data
to the theoretical curve or (2) to the normal approximation, which we
used, for the confidence intervals for the standard deviations being
poor for the sample sizes we:used. |

For three reasons, we accepted the latter explanation. The first
reason is that, as noted, for‘probabilities away from the boundary,
marginals from those Dirichlet random vectors generated from these gammas
did have standard deviations falling in the 95% confidence intervals all
but 5% of the time. [See results in Table 5.3 for non-boundary probab-
ilities corresponding to prior parameters 3.5, 6.4; 10/3, 2.5, 3.0, and
4.5.] The second reason is that the gamma and the Dirichlet marginals
performed well on the other tests (and the gamma geﬁerator had been
studied by Ahrens and Dieter). The third reason is that the sample
kurtosis for those random variables near a boundary was very high.
Therefofe. from Snedecor and Cochran (1968,p.89), the variance of the
sample variance was much larger than it would have been had the popula-
tion been normal. One calculation gave that the varianée of the sample
vgriance over 300 trials, 200 observations per trial, for a gamma
generation of 0.1, was about 16.5 times as large as it would be in a

normal population. Hence, we could not expect the normal approximation
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for the 95% confidence limits for the standard deviations to be good
in these cases.

Therefore, we accept reason (2) [that the normal approximation for
the 95% confidence intervals for the standard deviations was poor] for so
many standard deviations falling outside the 95% confidence intervals,
especially for boundary probabilities corresponding to prior parameters
0.1 and 9.8. We did not calculate the exact standard deviations (and
then test them). However, since the remaining tests (and Ahrens and
Dieter's work for the gamma) showed that the gamma and, more important,
the resulting Dirichlet variables were well generated, we considered

the Dirichlet random-number generator to be good.

5.7.3 Trinomial Random-Number Generator:

Given some value of P and some percentage PID of incomplete data,
we next generated the trinomial complete data §=(x1,x2.x3) and incomplete
data 5=(21’22’Z3’212’213’223)' |

We first recalled that PID/100 is simply the probability that an
observation was incompletely classified. Second, given that an observa-
tion was incomplete, the probability that it was unclassified between C1
and C, (i.e., the observation fell in C,,) was (p1+P2)/[(P1+P2)+(P1+P3)
+(p2+p3)]=(p1+p2)/2. Therefore, the probability that an observation was
incomplete and simultaneously fell in C12 was (PID/lOO)(p1+p2)/2.
Similarly, probabilities for €13 and C,5 were (PID/lOO)(p1+p2)/2 and
(PID/100)(p2+p3)/2, respectively, and the probability that an observation
was completely specified and fell in Ci» Cys or Cy was (1-PID/100)p1,
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(1—PID/100)p2, or‘(l-PID/IOO)ps, respectively.

Therefoke, to generate incomplete data z according to the likelihood
equation (2.8) for n observations, we could draw n uniform random numbers
Uss 14i4n. We would then use these six probabilities to establish inter-
vals that determined where an observation fell. For example, if
05u1<(1-PID/100)p1, we would increment z4 by one and, if (1-PID/100)£u1§<
(1-PID/100)+(p1+p2)/2XPID/100, we would increment z12 by one. .

However, we also wanted to generate complete trinomial data X for
use in Section 5.9. Therefore, we had to divide z12, z13, and z23 into
proportions that fell into completely specified categories Cl’ C2, and
C3. To do so, we noted that if an observation fell in C12’ then with
probability pl/(p1+p2) it belonged in C;; similarly, for C,; and Cs3
Therefore, we divided the z12, z13, and 223 intervals, exampled in the
last paragraph, into two by the ratios p;/(p,+p,), py/(p1*p3),» and
p2/(p2+p3), respectively.

Finally, we set to 0 each element of the compTete data X and the
incomplete data z. We then created dummy variables Yi» Yo Wis W3s Vo,
and Va and initialized them also to 0. From the uniform-random-number
generator described at the beginning of this section, we drew n uniform

random numbers Us s 14i4n. Then, letting h=PID/100 and pij=pi+pj’




-206-

if . add 1 to

Oéui<p1(1-h) z

pl(l‘h)éui<p12(1‘h) Zy

plz(l-h)éu1<1-h Z3
1-h£ui<1-h(1-p1/2) ¥y

£

1-h(1-p1/2)—ui<1-h(1—p12/2) | Yy
l-h(1-p12/2)5ui<1-h(l-pl-p2/2) Wy
1-h(1-p,-p,/2)#u;<1-h/2(1-p;) - . Wy
l-h/2(1-P1)501<1-h/2(1-P12) . Y5
lfh/2(1-p12)-ui<1 V3.

At the end of this process we calculated the complete data x as:

X1 = 1t
Xo = ZotyotVy o - (5.7)
X3 = Z3+W3+V3,
and the incomplete data z as
2, = 74 ‘ 210 = Y1tY2
22 = 22 ) 213 = W1+W3 (5.8)

This trinomial random-number generator performed well on the same
kind of empirical tests used for the uniform, gamma, and Dirichlet
random-number generators. Note that to perform empirical tests on these
four generators, we used routines from the NASA, Langley Research Center,
and the IMSL (International Mathematical and Statistical Libraries, Inc.)

computer-program libraries.
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5.8 1Iteration Considerations:

In this section we discuss the following considerations concerning
the iterative algorithms: initial estimate, convergence criterion,
problems, and conditions for convergence.

L]

Note here that we used the method that is noniterative in G for

~

approximating elements of the exact posterior covariance matrix.

5.8.1 Initial Estimate:

To use iterative algorithms for the maximum likelihood estimate,
posterior mode, and Taylor-series approximated posterior mean, we needed
initial estimates. Becaﬁse a major concern of this work was approximating
the exact posterior mean, we used the exact posterior mean for the ini-
tial estimate. Thus, the number of iterations for convergence was
another measure of which estimator best approximated the exact posterior

mean.

In general, the convergence criterion was

abs(bi(“+1)-bi(2))/bi(“) £0.0001  for i=1,2 (5.9)

for 61 denoting one of APM, PMD, and MLE and & denoting the number of
iterations.

This criterion gave stability in the 61 estimate to at least three
significant figures for all cases and to at least four significant

figures for nearly all cases. The expected p for Design 1 were ordered
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so that the first two of the three components were less than 0.50.
Hence, for most cases the absolute difference between successive itera-
tions for the first two components of an estimate was less than
0.0001x0.50 = 0.00005 and thus the estimate was stable to the fourth
significant figure. The exceptions, which were accurate to the third
significant figure, involved those relatively rare cases resulting from
generated trinomial data yielding estimators having one of their first
two components greater than 0.50.

An artificial example of these exceptions would be trinomial data
generated from 92=(.20,.30,.50) that yielded an estimator :(£)=(.10,.60,
.30). The largest absolute difference (acceptable for convergence)

(2+1)  Lould be

between 52(2) and 52(£+1), the second component of p
.00006 *+ .0001; ie, the fourth significant figure would be off by at
most 1. |
To avoid division by 0 (infinite result) and other small numbers
- (2)

(possibly long iterations), whenever P; was less than or equal to

0.10, we used the convergence criterion
abs(p, 415, (M) < 0.00001 for i=1,2. (5.10)

This criterion was equivalent to the first one (5.9) for 61(2) = 0.10.

Recall from Sections 2.3 and 4.3.2 that the EM algorithm converges
in P2 to a solution of the likelihood equation if the eigenvalues of the

covariance matrix of the complete-data sufficient statistics are bounded
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above zero. Hence, under these conditions the posterior mode and
maximum likelihood estimate converge to at least a local maximum. Since
the Taylor-series approximate posterior mean can be written as a pos-
terior mode (for the prior §=y+1), it also converges to at least a local
maximum. The question, howéVer. for the Taylor-series approximate
posterior mean is whether it converges to the exact posterior mean.

This question also app]fes to the maximum likelihood estimate and to the
posterior mode when they are used as approximations of the exact pos-.
terior mean.

In Appendix 4E we addressed this question and determined conditions
under which an iterative solution to the Taylor-series approximate pos-
terior mean E agrees with the exact posterior mean E within a small
bounded error. We proved that if there exists a neighborhood
”é-?leE max |§.-51|<p, for p>0, of the exact posterior mean such that

1£i£k

for all values p in this neighborhood

1Tl =

k .
max I lagi(ﬁ)/aﬁjl £ir<1,
i =1

where
2 ) k1
9;(p) = (zi+vi+D§1szi/pD)/(n+j§1vj),
and an initial iterative estimate B%(O) is chosen within the inner sphere
"E'PILn£°0’ for 0<poép-6/(1—k), of this neighborhood, then the Taylor-
series approximation will converge to within §/(1-)A) of the exact

posterior mean, where & is a bound on the error in approximating the

exact posterior mean by a first-order Taylor-series expansion. We also
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showed how to determine, in practice, whether these conditions can be
expected to hold. Note that the same conditions apply to the posterior
mode and maximum likelihood estimate except that 91(5) is replaced by

-~

the appropriate function.

5.8.4 Problems:

convergence took a large number of iterations for the maximum Tikelihood
estimate and the posterior mode. A few cases took over 200 1terafions.
As noted in Section 6.3, the largest number of iterations was 293 for
the maximum likelihood estimate.

for the maximum likelihood estimate, posterior mode, and approximate
posterior mean are generally expected to have multiple roots. However,
as noted in Section 5.8.3, whenever the eigenvalues of the covariance
matrix of the complete-data sufficient statistics are bounded above
zero, an iterative solution for any of these three estimateé converges
to a local maximum. Therefore, to insure that the local maximum is a
global maximum, we should choose that root that maximizes the Tikeli-
hood. For the approximate posterior mean, we should choose that root
that maximizes the posterior density given the prior §=Y+l; i.e., that

root p for which the 1likelihood function-

¢ e

1 2z
I
D

zl+v1-1 22+v2-1...

1 By Pr+1

TSR D

D

e
e

is a maximum. Although it has not been proved, from the complete-data
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relationship between the posterior mode and posterior mean, we intu-
itively expect the global maximum to be in the convergence region of
the exact posterior mean g, or at least be the closest root to E.
As illustrated by examples in Section 4D.5 and discussed in Sec-
tion 4.3.2, however, for trinomial data we usually expect only one
root to satisfy the constraints 055151, for all 14i£3, and 1Elf)1.=1 for
51 any one of the three estimators. Further, exploratory calculations
showed that the iterative algorithm for the approximate posterior mean
converged to the same solution for a wide range of initial estimates.
Finally, all three iterative estimates were close enough to the exact
posterior mean and the generator Dirichlet probability that we did not

expect a different root as the global maximum. Thus, we did not seek

more than one solution.
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5.9 Estimates of Mean Squared Error:

Recall that we defined the error éi=5i-pi for 14743, ﬁi referring
to one of estimators APM, PMD, and MLE and P; referring to the generator
Dirichlet probability vector. We want to estimate the mean squared
error

2,22

mse(+) = E[&,%+8,%+3,] (5.11)

of estimator p.
For N denoting the number of simulation trials, the most common
estimate of the mean squared error (5.11) is
N 3, , .
mse(+) = I L ey /N, (5.12)
j=1 1i=1
where éij is éi on the jth simulation trial. We called (5.12) the "regu-
Tar" or "usual" mean-squared-error estimate. |
For estimating mean squared errors of estimators for minimizing
expected quadratic loss, we used two Monte-Carlo techniques to redﬁce
the estimate's variance. In both, we took advantage of any covariance
of the quadratic-loss estimators APM, PMD, and MLE with the complete-
data maximum-1ikelihood estimate ﬁi=xi/"’ for X; denoting fhe number of
the n (25 or 50) observations falling in category i. We called the two
resulting estimates the control-variate mean-squared-error estimate and
the regression mean-squared-error estimate. Both are discussed by
Kleijnen (1975,Part I,Chpt.III). ‘
Let éij denote‘éi=ﬁi-pi on thethh3simu1ation trial and,

paralleling (5.12), define mse(~)=I I éij’ Then all three mean-
Jj=1 i=1
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squared-error estimates can be represented in the form:

mse_est(+) = mse(+) + b{E[mse(=)] - mse{~)} (5.13)

where
3, 3 3,
E(mse(~]) = E( £ &°) = £ [p;(1-p;)1/n = [1- L p.“I/n. (5.14)
X x i=1 i=1 i=1

For the regular mean-squared-error estimate, b=0. For the control-
variate mean-squared-error estimate, b=1. For the regression mean-
squargd-error estimate, b is the regression coefficient bre in the linear
regression of .gléiz on .gléiz' Kleijnen (1975) discusses the gen-
eral case for a1;onstant b ;St necessarily equal to 1.

Note that, in terminology of Kleijnen (1975), the regression mean-
squared-error estimate is also a control-variate estimate. However, the
latter term is often used to denote our b=1 case and, to differentiate
between the b=1 and b=bre case, we follow this practice.

If the regular estimate of the mean squared error and the regular

estimate of the complete-data maximum-1ikelihood-estimate mean squared

error are positively correlated such that

var[mse{~)] < 2 cov[mse(~),mse(+)] < var[mselfSJ + var[mse(+)]}, (5.15)

then the control-variate estimate mse(*) of the mean squared error

will have smaller variance than the regular estimate because

var[mse(+)] = var[mse(+)] + var[mse(~)] - 2 cov[mse(),mse(-}]. (5.16)

Note that both the regular and the control-variate mean-squared-error

estimates are unbiased.
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The value of b that minimizes the variance of (5.13) is the regres-

sion coefficient

= cov[mse(),mse(~)]/var[mse(~)] (5.17)

br‘e

used in the regression estimate mse. For p the correlation coefficient

var[mse{+)] = var[msel-j] {1-p2[mse(-).mse(")]}. (5.18)

Hence, the variance of the regression estimate is less than the variance

of the usual estimate (5.12) by a factor depending on the correlation

3
between = é.2 and I 5.2. We estimate b__ by the least squares
i=1 i=1 " re
estimate
A N 3.2 3..2 N 3..2 2
b = z{[ ze..-mse(*)]x[ Z e,.“-mse(~)1}/ [ £ e.. -mse(~)]°.(5.19)
® =1 i Y i=1 1 j=1 i=1

Although the regression estimate of the mean squared error has

minimum variance, it is biased, because

A 3. A
E(7SE(7]] = Elmse(+7] + E(6 ) E( I %) - E[6,, mse(T1,  (5.20)
i=

1
and, since gre is a function of mse(-), the last term in (5.20) does not
equal the second term.

As Cochran (1967) notes, the amount of bias in the regression
estimate is difficult to determine. Kleijnen (1975) reviews ways to
decrease or remove the bias. However, implementation of these methods
can be expensive. More important, 200 simulation trials was enough to
remove most of the bias. Results showed that in most cases the regres-
sion estimate of the mean squared error lay between the unbiased control-

variate mse estimate and the unbiased regular mse estimate. Hence, in
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all situations but one, we used the regression-estimate mse since it
had the smallest variance.

The one situation in which we did not use the regression estimate
was in Design 2 for cases in which the denominator in (5.19) was zero.
This sometimes happened when two components of the generated Dirich]ef
probability were zero to at least three decimal places. In these cases
~ the complete-data maximum likelihood estimate was the same for all 200

trinomial simulations.
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5.10 Evaluation of Exact Posterior Mean and Covariance Matrices:

Recall from Section 2.2.4, the dimension, range, precision, and cost
problems that generally make numerical evaluation of the exact posterior
moments unfeasible.

In our simulation work, however, we
(1) had the smallest-dimension case, the trinomial,

(2) designed the simulation study to have sample sizes small enough for
the percentage of incomplete data, and
(3) were able to use a computer with good enough range and significant-
figure accuracy
to allow numerical evaluation of these exact moments.
For the trinomial case, the number of terms in each numerator and

denominator of the exact posterior moments is
number of terms = (212+1)X(zl3+1)X(223+1). (5.21)

For sample sizes of 25 and 50, percentages of incomplete data of 15 and
40, and probabilities roughly ranging from (0,0,1) to (1/3,1/3,1/3), the
number of terms (5.21) ranged from a low near 1 to a high of
approximately 512.

For the CDC 6600 and Cyber 175 computers described in Section 5.4,

294 322

to 10 This range is unusually large

76 to 1076.

the magnitude range is 10~
for a computer, many of which have ranges more like 10~
Therefore, with these special-purpose CDC scientific and engineering
computers, we could directly evaluate exact solutions for SS/PID

combinations as large as 402/50 or 335/60. The maximum SS/PID
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combinations that most other computers can handle is considerably
smaller. By "directly" we mean without much extra programing, execution
and storage cost, and additional rounding error for scaling down the
magnitude of the terms. As noted in Section 5.4, these CDC computers
have single-precision accuracy of about 14.5 significant figures. For
this machine accuracy, use of 11 significant figures for the gamma TI'( )
functions, and the SS and PID used in this study, our evaluations of the
exact posterior moments were accurate to at least 6 significant figures.
Because they could be evaluated directly, equations for the exact
posterior moments were programed in a straightforward manner. We used

z.. z : z
12 [z 13 /2 23 [z
L (;2) {zZ (tl):”) I‘(zl+v1+a+b) [ & ((2:3)I‘(zz+v2+212-a+c)

a=0 b=0 c=0 (5.22)

xr(z3+v3+zl3-b+zz3-c)]}

as a base for all moment calculations, increasing various of the inner
and outer sums to obtain numerators for the differént desired moments.
, For each set of data we called a function.GAM once to evaluate
P(zl+v1), F(zz+v2+zlz), and P(z3+v3+zl3+zz3). GAM returned the
gamma value from (1) exact values, (2) Abramowitz and Stegun (1970)
tables (accurate to 11 significant figures), or (3) from Stir]ing{s
Formula for those cases in which the formula gave an approximation
accurate to 11 significant figures. [Since Stirling's Formula is an
asymptotic formula, there exists some number of ferms beyond which the
accuracy decreases. For example, T(3) can not be accurately approxi-
mated by Stirling's formula to more than six significant figures; the

accuracy decreases beginning with the seventh term.]
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From then on, gamma terms in formula (5.22) and its variations were

evaluated by the relationship
T(y+1) = y T{y)

for both integer and non-integer values of y. Note that for approxi-
mately half the cases, the argument to the gamma function was non-integer.

The coefficient in (5.22) was calculated as

Z..
where ( 63) was set to 1.



CHAPTER 6

RESULTS OF DESIGN 1

6.1 Introduction:

In this chapter, we present results from Design 1. In the following
second section, we 1ist special mnemonics common to these next tWo chap-
ters. In the third section, we discuss characteristics of the estimators
arising from the trinomial simu]at{ons. In the fourth section, we review
results from approximations for elements of the posterior mean and covar-
jance matrices. As part of this review, we discuss which of the Taylor-
series approximation, posterior mode, and maximum likelihood estimate
best approximates the posterior mean. Finally, we investigaté results
from which estimator best minimizes quadratic loss. A summary section

concludes the chapter.
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6.2 Special Mnemonics:

In addition to the mnemonics defined in Section 5.2, we will also

use the following in these next two chapters:

APM APMRO (used in discussions concerning approximations for EPM,
for which there was no robustness study)

APMRO approximate posterior mean APM for robustness set 0 (original
prior used in Bayesian estimators)

APMR1 _pprox1mate posterior mean APM for robustness set 1 (un1form
prior used in Bayes1an est1mators)

APMR2 _pprox1mate posterior mean APM for robustness set 2 (perturbed
prior used in Bayesian estimators)

EST estimator

MLECD maximum likelihood estimate for complete data (used as contro]l

var1ate in risk study)

‘NU | prior parameter v
OPID gpsefved percentage of incomplete data
K P
PMD PMDRO (used'in discussioﬁs concerning approximations for EPM,

for which there was no robustness study)

PMDRO: 'Epster1or mode PMD for robustness set 0O (original prior used
" 1in Baye51an est1mators)

PMDR2 <'Epster1or mode PMD for robustness set 2 (perturbed prior used
in Bayesian estimators)
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6.3 Estimators:

In this section, we discuss a few properties of estimators from
the simulated trinomial data. Recall that for each combination of P,
SS, and PID we simulated 200 sets of complete and incomplete trinomial
data. From each set of incomplete data, we ca]bulated the estimators
EPM, APMRO, PMDRO, MLE, APMR1 [recall that PMDR1=MLE]}, APMR2, and
PMDR2. The RO, R1, and R2 suffixes refer to robustness sets RO, Rl,
and RZ, respectively. From each set of complete trinomial data, we
calculated the complete-data maximum likelihood estimate MLECD.

To examine the sampling distribution of the estimators, we calcu-
lated data summaries (extremes, hinges, and median), central values
(mean, median, and trimean), and spreads (midspread and range) over the
200 trinomial simulations. Prominent features were that the exact
posterior mean and Taylor-series approximate posterior mean had almost
identical distributions. So also did the comp]eté-data and ihcomplete-
data maximum ]iké]ihood estimates. - Since the priors were nonzero, EPM
and APM always had nonzero values. However, PMDRO, MLE, and MLECD had
a large number of zero values when g=(.01,.01,.98).

The number of iterations for convergence is given in Table 6.1. As
expected, the number of iterations increased as the percentagé of
1ncomp1éte data PID increased. The largest change was for Pys for the
origina] prior, the number of'iterations approximately doubled. Direc-
tion of sample-size effect was consistent only for APMR1. For this

estimator, the average number of iterations decreased from 2% to 15%

as SS increased.
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One factor affecting the average number of iterations for estima-
tors at pq was that 169 of the 9,600 (48x200) sets of six iterative
estimators for P4 required more than 15 iterations. The maximum likeli-
hood estimate constituted most of this 2%. The largest number of itera-
tions was 293 for the maximum likelihood estimate. The large number of
iterations occurred when one or more components of the simulated. in-

complete data z was zero.
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6.4 Approximating Posterior Moments:

6.4.1 Posterior Mean:

Our most important measure of the goodness of an approximation was
the percentage absolute realtive difference. In Table 6.2 we give the
proportion of 200 trinomial simulations for which the percent absolute
relative difference for each of the three components of an approximation
was less than specified amounts.

With a few exceptions at P and Pys for all cases the percentage
absolute relative difference between the Taylor-series approximate pos-
terior mean (APM) and the exact posterior mean (EPM) was less than 1%.
That is,

Iﬁi-ﬁil/ﬁi x 100 < 1 for 1€i43,
so that

~

|35 | < 0.01 x B,

for all three components 51, 14143, Hence, the approximation was
accurate to at least two significant figures. The few exceptions are
studied later in this section.

Moreover, when PID=15, the APM approximation was accurate to at
least three significant figures for nearly all cases and to at least
four significant figures for the majority of cases. When PID=40, the
approximation was accurate to at least three significant figures for
most cases.

As sample size increased from 25 to 50, the APM approximation

generally improved for Pos P3» and Pg- For Pq it slightly worsened.
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The reason is that there were a ngmber of cases for Py and Py where APM
was identical to EPM for SS=25. As the amount of sample data increased,
the possibility of a perfect approximation lessened. As already indi-
cated, as PID increased from 15 to 40, the APM approximation worsened,
least for Py and most for Py in terms of three- and four-significant
figure accuracy.

In general, the posterior-mode (PMD) and maximum-1ikelihood-estimate
(MLE) approximations were not accurate to even two significant figures.
The main exception was at Pa when SS was 50. There the posterior mode
agreed to two significant figures for approximately one-third of the 200
trinomial simulations.

Analyses later in this section showed that even in the few problem
cases for P1 and Pys APM was a much better EPM approximation than either
PMD or MLE. Also, analyses found no bias, mean-squared-error, iteration,
or other problems favoring PMD or MLE over APMf Finally, Table 6.2
showed that, except possibly for the APM problem cases, APM was far
superior to PMD and MLE in approximating the exact posterior mean in
terms of percentage relative difference. Therefore, following a few
comments in the next paragraph, we henceforth concentrate only on APM |
as an approximation for EPM.

Because the exact posterior mean (EPM) was never zero and PMD and
MLE were, PMD and MLE were poorest approximations for BIE(.OI,.OI,.QB).
The better of PMD and MLE was MLE for Py and P, and PMD for P3 and Py
However, note that even for Pg> when PMD improves in its approximation,
it is far inferior to APM. Plots given later in this section

illustrate these comparisons.
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In Table 6.3 we present the bias for the first component of the
three apbroximations to the exact posterior mean. For PID=15 and PID=40,
the bias was estimated over the 200 trinomial simulations by ég:(ﬁlj-ﬁlj)
/ZOOEE(bl)-E(ﬁl) for bl the first component of one of the thrg; approxi-
mations APM, PMD, and MLE. The complete-data (PID=0) bias is given for
all estimators except for the posterior mode at 915(.01,.01,.98).

Recall that the prior used in the Bayesian estimators for P1 in Design 1
was 215(0.1,0.1,9.8). For the pair PioV; having such small values for
i=1,2, a solution to the likelihood equations usually does not exist in P2.
[Note that E[(xi+vi-1)/(n+2vj-3)] < 0 for vi=0.1, p1=.01, and n=25 or 50,
since E(xi)=npi.] In this case, the posterior mode occurs on a boundary.
Hence, §i=0 for i=1,2. Thus, the likelihood equations are not used to
define the posterior mode; therefore, the bias can not be analytically

calculated from the 1th

solution (2.43) to the likelihood equations.
Although the bias was small for all épproximations, it was one to
three‘orders of magnitude smaller for APM. For APM, the bias was smallest
in absolute value for Pa- For PID=15, it was largest in absolute value
for Py O Py for PID=40, it was largest in absolute value for Py Or P3-
As sample size increased, the bias generally decreased. The bias was
positive for Py and P3 and of both signs for Py and Pg- Note that, for
Pys Py> and Pg> results for the second component of the bias were the
same as those for the first component of the bias. Results for the

second component, .30, of ps were similar to those for the first and

second components, both .33, of Py
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Although the estimated biases were small, the individual errors
constituting the estimated biases could be large. To investigate this
possibility, we calculated data summaries, central values, and spreads
over 200 trinomial simulations for the errors of APM, PMD, and MLE in
approximating EPM. In general, as sample size increased, error decreased;
as PID increased error increased; and as p moved from the corner Pz
(.01,.01,.98) to the center 345(1/3,1/3,1/3) of the P2 simplex, the error
decreased.

The central values, especially the mean, often differed because the
distribution of the errors was not symmetric. To examine this asymmetry,
we studied the proportion of the 200 simulations in which the first com-
ponent of the error was of a given sign. Results showed, for SS=25,
that for 92, P3s and Py approximately one half of the APM errors were
negative. The remaining half were zero or positive. For P> however,
almost three fourths of the errors were negative.  As sample size in- |
creased to 50, the errors remained roughly split as half negative and
half positive for P3 and Pg- For Pos however, the error was approximate-
1y two-thirds negative and one-third positive. For Py it was close
to 92% negative, 4% positive, and 4% zero. As expected, the distribution
of the APM error was much tighter than those for the PMD and MLE errors.

Finally, the smallness of the midspread relative to the range for
all but the {SS=50,PID=40} case (as well as values of the hinges rela-
tive to those of the extremes), indicated that most of the APM errors
clustered close to zero and that the extreme values were few and unusual.

We next studied these extreme vé]ues. In particular, we investi-

gated those cases in Table 6.2 that showed a percentage absolute relative
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difference greater than 15. All these cases occurred at El£(.01,.01,.98).

First, all these cases had empty (0) cells for z4 and Z,- Second,
all these cases occurred for PID=40. However, the observed PID is not
necessarily 40. We called this observed percentage of incomplete data
OPID. Those cases having high percentage relative difference usually
had very high OPID (often in the 50%). Finally, for these cases, the
incomplete data was "inconsistent" with the completely specified data
and,.perhaps less important, with the sampling model. That is, under
the sampling model with 21=ZZ=0 and z4 large, we wou]d expect Zqp small
Iand 2135223. Examples are shown in Figure 6.1, where the estimators
;are given in successive order as fhe exact posterior mean, Taylor-series
approximate posterior mean, maximum likelihood estimate, and posterior
mode and where, again, §=(21,22,z3,212,213,223).

In all three examples, the percentage of incomplete data is very
high, 60%, 56%, and 50%; respectively. Further, the data are inconsis-
tent. To see the inconsistency, compare the generated data z with the
expected value of the data given the sampling model. Recall, from
Chapter 5, especially Section 5.7.3, that the sampling model is a
function of P, PID, and SS. Expected values of z are given in each
example. The most noticeab]e-discrgpancy between the expected and
generated data is in the re]ationshfp between Z43 and Z,3- The expected
values are identical. The observed values, however, differ greatly.

In example 1, Zq3 is approximately one-half Z535 in example 2; Z:3 is
more than three times Z533 and in example 3, Z;3 is almost twice Z,3-
Thus, the probability of observing any data set in these examples,

given the sampling model, is small.
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FIGURE 6.1
WORST APM APPROXIMATIONS FOR EXACT POSTERIOR MEAN

1. OPID=60*, SS=25,‘§=(0,0,10,1,5,9), E(z)=(.15,.15,14.7,.1,4.95,4.95);

~

Estimators Error % abs rel diff

0188,.0246,.9566)

.0138,.0304,.9558) (-.0050, .0058,-.0008) ( 26.6, 23.6,0.1)

p=(
p=(
§ (.0001,.0625,.9374) (-.0187, .0379,-.0192) ( 99.5,154.1,2.0)
§=(0, 0, 1 ) (-.0188,-.0246, .0434) (100.0,100.0,4.5)

2. 0PID=56*, S5=25, E=(0,0,11,1,10,3), E(z)=(.15,.15,14.7,.1,4.95,4.95);

~

Estimators Error % abs rel diff

.0266,.0168,.9566)

TN
1]

.0351,.0102,.9547) ( .0085,-.0066, .0019) ( 32.0, 39.3,0.2)
.0666,0, .9334) ( .0400,-.0168,-.0232) (150.4,100.0,2.4)

IO T TR
1}
— — — —
o
-

0, 1 ) (-.0266,-.0168, .0434) (100.0,100.0,4.5)

3. 0PID=50*, $$=50, 5=(0,0,25,2,15,8), E(z)=(.3,.3,29.4,.2,9.9,9.9);

~

Estimators "Error % abs rel diff

§=(.0275,.0186,.9539)

§=(.0369,.0105,.9526) ( .0094,-.0081,-.0013) ( 34.2, 43.6,Q.1)
§=(.0571,.0001,.9428) ( .0296,-.0185,-.0111) (107.6, 99.5,1.2)
§=(.0262,0, .9738) (-.0013,-.0186, .0199) ( 4.7,100.0,2.1)

*PID=40 for all three examples
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In practice, one does not know the population model and thus can not
check for consistency in the same manner. However, if one calculates the
expected value of the data using the estimator 5 and OPID (the observed

~

percentage of incomplete data), rather than p and PID, one finds the same

discrepancy between 23 and Z53 (even though b is a function of z).

These expected values for the three examples are:

1. E(EIQ,OPID)=(.28,.37,14.35,.22,4.88,4.91

O

E(z|p,0PID)=(.21,.46,14.34,.22,4.85 4.

(=]

)
3)
E(z|p,0P1D)=(1.00,0.,14.00,.33,5.00,4.67)
E(z|p,0PID)=(0.00,0.,15.00,0.0,5.00,5.00)

2. E(Elg,OPID =(.29,.18,10.52,.30,6.88,6.81)

E(z|p,0PID)=(.73,0.0,10.27,.47,7.00,6.53)

)=(.
E(z|p,0PID)=(.17,.17,10.78,.31,6.93,6.75)

)=(.

)=(

E(z|$,0P1D)=(0.0,0.0,11.00,0.0,7.00,7.00)

3. E(z|p,0PID)=(0.69,.47,23.85,.58,12.27,12.16)
E(z|p,0PID)=(0.92,.26,23.82,.59,12.37,12.04)
E(z|p,0PID)=(1.43,.00,23.57,.72,12.50,11.79)
E(z|p,0PID)=(0.66,0.0,24.35,.33,12.50,12.17),

respectively. Therefore, to indicate whether data are inconsistent, an
approach that can be used in practice is to compare the data with the
expected value of the data given OPID and any of these four estimators.
For the Taylor-series approximate posterior mean (APM), the second
and third examples had the highest percentage absolute relative difference

of all cases. The second example is the one case keeping the proportion
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from being 1.00 in column 7 of Table 6.2 for "% abs rel diff < 25".
Note that, as also found in the remaining cases, the posterior mode and
maximum likelihood estimate were even worse approximations than was the
Taylor-series approximate posterior mean.

As an extra check that the Taylor-series approximate posterior mean
was the best approximation for the exact posterior mean, even in the
rare cases just illustrated when the percentage relative difference was
high, we calculated the proportion of 200 trinomial simulations when
an estimator was best. Because it is possible, especially with three
estimator components bj’ 15j£3, for an approximation to be minimum with
respect to one criteria but not with respect to another, we used two
different criteria to determine when an estimator was best. For a
squared-error criterion, for each of the 1#4i£200 trinomial simulations,
we chose the approximation that had the smallest squared error,

3
z (p:.-P )2. For a relative-difference criterion, for each of these

=1 ijPij

200 simulations, we chose the approximation having the smallest absolute
relative difference .§1|51j'§1j|/5ij' Note that the divisor in the
latter criterion wasJ;ever zero. By both criteria, for all sets of B;
PID, and SS variations, and for both replications, APM was always - a
better approximation for EPM than were PMD and MLE.

Relating to the squared-error criterion, we next investigated in
Table 6.4 the mean squared errors of the approximations. Since APM
always had the smallest squared error for each of the 200 trinomial
simulations, it é]so had to have the smallest mean squared error [often

called the average mean squared error]. However, we were also

interested in order-of-magnitude comparisons among estimators and how
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mean squared error varied with P, SS, and PID. Mean squared error (mse)
is often used for comparison among estimators because it measures estima-
tor variance as well as bias.

As for the bias, we also calculated the mean squared errors for
the complete-data (PID=0) estimators. Note that, as discussed for
Table 6.3, we could not analytically calculate the mean squared error
for the posterior mode at Py For PIﬂzég and PID=40, mean squared error
was estimated by the "usual” estimate = (bi-ﬁi)z/ZOO. We did not use

J=1
any variance-reduction techniques, such as discussed in Section 5.9, in

estimating these mean squared errors because the control variate p for
the risk study was not expected to be helpful for the exact-posterior-
mean study. Further, the mean squared error was not as important in
the exact-posterior-mean study as it was in the risk study. Hence, the
greater care in its estimation was not necessary. Finally, the differ-
ence between the regular APM mean-squared-error estimate and either of
the regular PMD or MLE mean-squared-error estimates was so large that
use of a variate-reduction technique was not expected to alter results
concerning differences. .

Results of Table 6.4 show that the APM mean-squared-errof estimate
was 1% to 6 orders of magnitude smaller than those for PMD and MLE.
Mean squared error increased i to 2 orders of magnitude as PID increased
from 15 to 40. It usually decreased as SS doubled. For easier
comparison of APM with PMD and MLE, average bias and mean-squared-error

ratios are given in Table 6.5. Note from Table 6.2 that the bias ratios

are only for the first component of an estimator.
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Finally, recall Table 6.1 showing the number of iterations re-
quired for convergence of the iterative approximations. Since the ini-
tial iterative estimate was the exact posterior mean, the number of
iterations was some measure of which approximation was best. By this
measure also, the Taylor-series approximate posterior mean was the
superior approximation.

We next performed an analysis of variance (ANQVA) on the bias and
on the mean-squared-error data. From theory in Steel and Torrie (1960,
pl57) and Snedecor and Cochran (1968,p324-5,329) and from examples of
Dempster, Schatzoff, and Wermuth (1977,p77) and Gunst and Mason (1977,
p616), we expected errors from an ANOVA on the original mean-squared-
error data to exhibit enough nonnormality and inequality of variances
to yield too many false significant F tests. Therefore, for protection
against this occurrence, along with improved additivity of the model,
we transformed the mean squared errors to natural logarithms. Doing so,
however, meant that all mean-squared-error results are interpreted in
terms of the log(mse) rather than more naturally in terms of the
original data. However, for the risk study we do give an approximate
translation of results from logarithms back to the original data.

Note that, although an ANOVA is concerned with all factors affect-
ing bias and log(mse), we are interested only in those significant
effects involving the estimators. Note also that usually one studies
residuals from the ANOVA model to detect failure to meet assumptions
and to Tearn whether any transformation might correct the failure.
However, Scheffé (1967,p363) generally recommends against transforming

data to reduce nonnormality in analyzing means. He does so because
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. interpretation of results concerning transformed data is often difficult.
We have already transformed to logs. Thus, further transformation, even
if warranted, would lose more in ease of interpretation than would be
gained in improving assumptions, especially since the F-test is already
fairly robust against assumptions. Therefore, we do not ana]yée the
residuals. '

Results from the bias ANOVA, along with significant values, are
given in Table 6.6A. The presence of high-order significant interactions
affects conclusions about lower-order interactions and the main effects.
For the EPM bias ANOVA in Table 6.6A, the main effects for P (E) and
estimator EST and the two-factor interaction PxEST are so highly signi-
ficant relative to the remaining effects that, together with previous
bias results, we expect the remaining significant two-factor and three-
factor interactions to mean only that effects of EST, P, and PxEST vary
with SS and PID.

Plots in 6.6B confirm this hypothesis. As sample size SS ihcreases
or PID decreases, the average bias (summed over those factors not
appearing in the plot) slightly decreases. Approximation APM has zero
average bias. So also, approximately, does MLE. The most striking
effect of these two plots is the poorness of the posterior mode as an
approximation for the exact posterior mean for all but Pg> and especial-
ly for Pys in terms of average bias.

‘In Table 6.7A we present F values in the ANOVA for natural
logarithms of the estimated mean squared errors given in Table 6.4.
Since estimator EST has such huge significance relative to other fac-

tors, it will be at least partly responsible for the significant
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higher-order interactions. The significant estimator two-factor
’interactions are plotted in Table 6.7B. The larger the negative value
of'1oge(mse), the better the approximation. Thus, plots in 6.7B show
that mean squared error decreases slightly as SS increases or PID
decreases and that APM is the superior approximation. Approximation
APM is poorer at Py than at the remaining values of p-

The three-factor interaction PxPIDxEST was significant at the 10%
level. The effect of PID on the PxEST plot given in 6.7B was that, as
PID increased from 15 to 40, differences between APM and either of MLE

and PMD decreased and all approximations slightly worsened.

6.4.2 Posterior Covariance Matrix:

In this subsection, we discuss results from Design 1 concerning how
well the truncated Taylor-series expansion approximated elements of the:
posterior covariance matrix.

Note first that elements of the Taylor-series approximate posterior
covariance matrix were calculated by the method that is noniterative in
elements of the posterior covariance matrix. This method was described
in Section 3.2.8. After convergence of components of the approximate
posterior mean vector, we solved a linear system of equations for the
approximate variances and covariances. These approximations are functions
of the approximate posterior means. Thus, the accuracy of the posterior
variance and covariance approximations is a function of the accuracy of
tﬁe posterior mean approximations.

Data summaries, central values, and spreads over 200 trinomial

simulations were calculated for the covariance approximations for the
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first replication. In general, results indicated very good agreement
between sampling distributions of the Taylor-series approximations and
the exact posterior covariances. Agreements improved as p moved from
the corner Py to the center Py of the P2 simplex. Central values agreed
well for all values of P except Py> where, as noted in the last section,
the distribution of values was heavily skewed because we were at a lower
bound for the_first two components.

As for the posterior mean, the most important measure of the accu-
racy of an approximation for an element of the posterior covariance ma-
trix was the percentage of absolute relative difference. In Table 6.8,
we give the proportion of 200vtr1nomia1 simulations in which the percent-
age absolute relative difference of the Taylor-series approximation is
less than specified amounts. The column headings C11, C12, and C22
denote var(p1|§), cov(pl,p2|5), and var(pzlg), respectively.

Results show that the variance approximation was correct to at
least two significant figures for nearly all 200 trinomial simulations
when PID=15. When PID=40, the proportion of 200 variance approximations
accufate to at least two significant figures ranged from .83 to 1.00.
Further, for the majority of cases, the variance approximation was
accurate to at least three significant figures.

Excluding P> we find that the approximation remained excellent or
improved as p moved toward the center of the P2 simplex. Except for Py>
the approximation worsened as PID increased. Sample size SS had little
effect when PID=15 because the approximation was already excellent when
SS=25. When PID=40, the approximation remained excellent for Py >

slightly improved for P3 and Pys and slightly worsened for py as SS
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increased.

We next investigated the accuracy of the Taylor-series approximation
for the posterior covariance. Results in columns headed by "C12" show
that it was not as good an approximation as that for the variance. Even
so, for nearly all trinomial simulations, the covariance approximation
was correct to at least two significant figures. As for the variance
approximation, the covariance approximation remained excellent or improved
for P3 and Pa and became poorer for Py as the sample size increased. As
the percentage of incomplete data increased, the approximation worsened.

To examine relatively poorer results for Py and Pys We investigated
averages (over 200 trinomial simb]ations), percentage average relative
difference, average percentage relafive difference, and ratio of square
root of the estimated mean squared error to the average exact vaiue.

For P4 and Eé’ the covariance averages were approximately an order
of magnitude smaller than the variance averages. .In particular, for Py
the exact posterior covariances ranged in value from -O.4><10_5 to
-.ZXI0'4. It could be that values so close to zero were more difficult
to approximate. To support this hypothesis, we noticed that when covar-
jances roughly equaled variances, then the average percentage relative
differences were also roughly equal. For example, average percentage
relative differences for the approximate posterior covariance of Py anq
P, given z at Py and the approximate posterior variance of P given z at
P1s both at PID=15, were of the same magnitude and their average percen-
tage relative differences were also of the same magnitude.

For all but one case, the square-root ratio was less than 1.

Finally, the standard errors of the average variance and covariance
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approximations were large relative to the averages. Therefore,
statistically, we could not differentiate between the approximations
and the corresponding exact values.

We also investigated biases of the Taylor-series approximations by
examining data summaries, central values, and spreads over 200 trinomial
simulations. These results showed that the samp]ingAdistributions were
tight. Not only were the means, median, trimeans, and midspreads zero,
but also the ranges were zero to at least three, and usually four,
decimal places. |

In general, és sample size-increased, the bias decreased. As per-
centage of incomplete data increaséd, bias increased. As P moved toward
the center of the P2 simp]ex, bias decreased. Exceptions again occurred
at Bl-a"d Py because of the larger number of perfect approximations at
those values of p. .

To determine whether the Tay]or-sefies'approximafions generally
over approximated, we next investigated the proportion of biases having
a posifivé'sigh. A pbsitive'bjas is preferable for a variance approxi-
mation because we have definea bias as "apprbximation - exact". Thus,

if most of the biases are positive, then the approximation generally
prdvides an upper bound on thé exact posterior variance. |

Resu]fs showéd that the proportibn of positive biases was, as has_
,been'fbr other measures, a-fuhction of the position of B.in the P2

simplex. When p was near the center of the simplex, most of the biases

~

were positive. As p moved toward a corner of the simplex, the propor-

~

tion of negative biases increased. At a corner, negative biases

dominated.
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Although the large proportioh of negative variance biases at El is
not preferred, it_is not of concern as long as the percentage relative
difference of the approximation is small. At the end of this section,
we investigate cases where the percentage relative difference is greater
than 15.

For the covariance approximation, a negative bias was preferred.
Since the covariances were negative, a negative bias meant that the approx-
- imate covariance was larger in absolute value than the exact covariance. |
The controlling factor for the proportion of negative biases roughly
correlated with the sum of the two‘covariance elements. When the sum of
the two generator p components was 1ess than 0.75, the proportion of
negat1ve biases was 1arger than that of positive biases. When the ‘sum
was higher than .75, between .75 and 1.00, the opposite occurred. For
example, the‘proportiep of negative biases for cov(pl,pzlf) for . Elz
(.01,;01,,98) was near 1; that for cov(pl,p3|5) was near 0. As SS or
PID in;réased, the'propoftion‘of negative biases generally increased.

We new investfgate those variance and covariance approxihations
differing in percentage absolute relative value from the exact values
~ by more than 15%. In approximately one-third of these cases, the
Taylor-series approximation and the exact posterior meen also differed
in pefcehtage absolute relative v&]ue by more than 15%. We expected
this correlation since elements of:the postefior coveriance matrix were
functions of the approximate posterior means. In these situations,
approximations for the posterior variances were usually equal to or 1 -

10% points better than the posterior mean approximation; approximations
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for the posterior covariance, usually equal to or 1 - 10% points worse.
Part of the reason the covariance approximation was worse than fhe
variance approximation seems, again, to be that the closer the exact
value was to zero, the harder it was to estimate.

Recall from Section 6.4.1 that, in these cases of poorer approxi-
mations for the posterior mean as well as for the posterior covariance
matrix, the incomplete data z had zero observations for Z4 and Z5, the
true percentage of incomplete data TPID was usually very high, and the
incompletely specified observations 2155 2935 and z,5 were inconsistent
with the completely specified observations 295 Z9s and Z4 and with the
sampling modetl.

0Of the remaining two-thirds cases, three-fifths also had zero ob-
servations for 24 and z, and had inconsistent data. Most also had high
percentage of incomplete data. Of the last two-fifths of the cases, all

but two had percentage absolute relative difference less than 24. These

percentages were
(32,20,15),20,19,21,21,22,17,23,19,(41,24,18) ,15,17,19,16,23,22,16.

Two values of 15 are bresent because they were greater than 15.000.
Numbers in parenthese apply to the same set of data. All percentages,
except the 20,15 and 24,18 in parenthesis, are for cov(pl,pzlg),
the covariance of two very small values, each varying around 0.01. The
20,15 and 24,18 were values for var(pzlg),cov(pz,p3lg). Nearly all
of these cases occurred for data sets having one of z; and z, equal to

0 and the remaining value egual to 1.
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The values 32 and 41 enclosed in parenthesis were of concern. The
data for these values was E=(1’0’12’1’3’8) and E=(1,0,26,1,6,16), respec-
tively. Observed percentages of incomplete data (OPID) were high, 48%
and 46%, respectively. Further, the data was inconsistent for these two'
cases for a sampling model yielding E(E)5(0,0,15,0,5,5) and E(E)E(O,O,BO,
0,10,10), respectively. As for the three "problem" examples given in the
last section, under this'samp1ing model, with E(zl)=E(22)=0 and E(z3)
large, we would expect 2135223. Yet, both cases had Zy5 approximately
three times as large as Z43-

In essence, when the posterior means of Py and Pos respectively,
were very small, we expected the posterior covariances of Py and Py to
be very small. Trying to approximate very small covariances, or covar-
iances of very small values, was relatively difficult, especially when

at least one of the two corresponding completely specified observations

z1 and z2 was zero.

6.4.3 Conclusions:

The Taylor-series approximation for the exact posterior mean was
excellent. 1In most cases it was accurate to at least three significant
figures; in many cases, to at least four. In the few exceptions, where
the percentage absolute relative difference ranged between 15% and 40%,
the data had zero values for two of the three comp]eteiy specified cells,
the percentage of incomplete data was usually very high (40% - 60%),
and the incompletely specified data was inconsistent with the completely
specified data and with the sampling model. Even in these cases,

however, the Taylor-series approximate posterior mean was a better
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approximation than the posterior mode or maximum likelihood estimate.
The posterior mode and maximum likelihood estimates were nearly always
very poor approximations for the exact posterior mean.

The posterior variance and covariance Tay]or-seriés approximations
were functions of the Taylor-series approximate posterior.mean. There-
fore, they were not quite as excellent as approximations in terms of
percentage relative difference; the error of the Taylor-series
approximate posterior mean was built into their errors. Nonetheless,
they were very good. In nearly all cases, they were accurate to at
least two significant figures; in most cases, to at least three. As for
the posterior mean, exceptions occurred for'inconsistent incomplete
data having zero values for any two of'the three completely specified
cells, especially when the percentage of incomplete data was high.
Exceptions also occurred for the posterior covariance apbroximation of
two components both having values near zero when the incomplete data
had zero observations for either one of the corresponding completely"
specified cells.

In general, the Taylor-series approiimate posterior variance was
a slightly better approximation than the Taylor-series approximate
posterior covariance, which was usually of values closer to zero.
Results indicated that the closer a value was to absolute zero, the
harder it was to approximate.

As expected, all approximations generally improved as sample size
increased or percentage of incomplete data decreased. An exception were

values near a boundary of the P2 simplex, where, for a sample size of 25,
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a number of approximations were perfect. As the sample size increased,
the possibility of a perfect fit lessened.

As p moved from a corner toward the center of the P2 simplex,
approximations generally improved in terms of all the measures that were
considered, except for those cases near the P2 boundaries_a1ready

having a perfect or near-perfect fit.
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6.5 Minimizing Risk for Quadratic Loss:

6.5.1 Introduction:

In this section, we report results from determining which of three
estimators best minimized risk, expected quadratic loss, for specified
values of p. Two of the estimators were the maximum 1ikelihood estimate
MLE and the posterior mode PMD. The remaining estimator was the Taylor-
series approximate posterior mean APM. Except at the end of this intro-
ductory section, we do not report results from using the exact posterior
mean EPM because these results were the same as those from using the
approximate posterior mean. We report APM results instead of EPM results
because we expect the Tay]or-seriés approximation to be more often used
in practice.

As discussed in the iptroductory chapter, Chapter 1, we were parti-
cularly interested in whether the maximum likelihaod estimate was best
for probabilities at the boundaries of the P2 simplex; the posterior
mean, otherwise. Therefore, the generators were chosen to represent one
extreme‘probability Bls(.OI,.Ol,.98), a probability near a corner of
the simplex, ana one probability 945(1/3,1/3,1/3) at the center. The
remaining two probabi]ities'gzz(.10,.10,.80) and E3E(.20,.30,.50) lay
between the boundary and the center. Hence, if the maximum 1ikelihood
estimate is best for Py and the posterior mean, for p,, we will be
particularly interested in whether Py Or P, Or some probability between
them is a crossover point for which estimator best minimizes risk.

As discussed in Chapter 1, we compare the three estimators by using

two wrong priors, as well as the correct, original, prior in their
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calculations. the that the maximum 1ikelihood estimate, not being a
Bayesian estimate, was the same for all three studies. We labeled
these three studies as RO (robustness study 0), Rl (robustness study 1),
and R2 (robustness study 2).

For the first wrong prior, in robustness study Rl, we chose the
uniform prior (1,1,1) because of its common.use when one js uncertain
of prior knowledge. The uniform prior gives equal weight to all compo-
nents of p. For this prior, the posferior mode equals the maximum
likelihood estimate. For the second.Qfong’prior, in robustness study
R2, we chose IOX[y/10+(.09,.05,-.14)], where y 55 the origiﬁdl prior.
This prior perturbs the three components of p by .09, .05, and -.14,

respectively. Hence, we called it the perturbed prior.  Values of the

original-prior mean p versus the wrong-prior means are given in Figure

~

6.2.
FIGURE 6.2
'PRIOR MEANS FOR THREE ROBUSTNESS STUDIES
R1 : : RO - R2

prior mean for : prior mean for prior mean for
uniform prior original prior perturbed prior
(1/3,1/3,1/3) ' : (.01,.01,.98) (.100,.060,.840)
(1/3,1/3,1/3) (.10,.10,.80) (.190,.150,.660)
(1/3,1/3,1/3) (.20,.30,.50) (.290,.350,.360)
(1/3,1/3,1/3) (1/3,1/3,1/3) (.423,.383,.193)

-The situation of having previous data but data that yields the wrong
prior is more realistically addressed by the perturbed prior in the R2

~study. In this study, we picked a wrong prior that was extreme relative
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to the correct prior. For example, if the original prior mean in
Figure 6.2 is 915(.01,.01,.98), then prior data giving a mean of
(.10,.06,.84) is unlikely [but not impossible].

Results of robustness study RO (original prior used in Bayesian
estimators) are given in the next section, Section 6.5.2. Those for
robustness study Rl (uniform prior used in Bayesian estimators) are
given in Section 6.5.3. Results for robustness study R2 (perturbed
prior used in Bayesian estimators) are given in Section 6.5.4. Section
6.5.5 summarizes these results for minimizing risk for quadratic loss.

Before leaving this section, we briefly discuss the mean-squared-
error (mse) estimates. Risk for duadratic loss is also called mean
squared error. As described in Section 5.9, we had three estimates of
mean squared error. These were the regular, control-variate, and
regression estimates. We found in Section 5.9 that the regression mse
estimate had the smallest variance. Nonetheless, for 200 trinomial
simU]ationé, the regression-estimate sample variance usually did not
differ greatly from that of the regular or control-variate estimates.
The differences were nearly always within one order of magnitude. The
main exception was a two orders-of-magnitude difference between the
control-variate and regression estimates for PMDRO at Py when SS=25.

Recall that the regress{on estimate is biased; the other two are
not.' However, in almost all cases the biased regression estimate lay
between the unbjased regular and control-variate estimates. In the few
exceptions, it was close to one of the two unbiased estimates. Hence,

its bias was negligible. Therefore, since the regression estimate had
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the smallest variance, we used it as the estimate of mean squared error,

the estimator's risk.

In this subsection, we discuss results from robustness study RO
where we used the original, correct, prior v in the Bayesian estimators.

In Table 6.9 we give values for the regression-estimate mean
squared error (risk) over 200 trinomial simulations for both replications.
For all PID and SS variations, the posterior mean has the smallest mean
squared error for P> P3» and Py’ the posterior mode, for Pq- Therefore,
results indicate that when the cd}rect prior is used in the Bayesian
estimators, the posterior mean is the best estimator for all probabilities
except those on a boundary of the Pz.simp]ex. For these boundary proba-
bilities, the posterior mode is the best estimator, although the differ-
ence between the posterior mode and the posterior -mean decreases as
sample size increases. The maximum likelihood estimate is a]ways the
worst estimator.

To determine significant effects 1n'Tab1g 6.9, we next present re-
sults from analysis of variancé on the natural logarithms of these mean
squared errors. Table 6.10A shows a huge‘F valué (22,461) for the main
effect of p, very large F values (2172 and 1654, respectively) for main
effects of sample size and estimator, and a high F value (92, 6df) for
the PxEST interaction. Hence, as Snedecor and Cochran (1968,p344) and
Steel and Torrie (1960,p207) imb1y, the significant three-factor inter-

action PxSSxEST might mean only that there is a minor change in PxEST as
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SS varies. Similarly, the 1arge F value for EST relative to thét for
the two-factor interaction PIDXEST might mean only that there is a minor
change in EST as PID varies.

Plots of PIDXEST and PxESTxSS in Part B of Table 6.10 generally
show this premise to be true. Values for the plots were calculated by
summing over nonpresent factors (including rep]icat{on) in Table 6.9
after natural logarithms had been taken. The PIDXEST.p1ot shows that,
summed over all factors but PID, APM is the best estimator and MLE, the
worst. As PID in;reases, all three estimators become worse.A The
PxESTxSS plots show that the posterior mean is best for Pys P3» and Pg
when SS=25. The posterior mode is besf for Pq- However, it does not
differ greatly from the posterior mean. When sample size 1ncreases'to
50, the posterior mode and posterior mean become approximately equal
at Pys P3o and Pg- The maximum likelihood estimate is everywhere the
worst estimator.

To determine how much risk in Table 6.10B is reduced by using the
best estimator, we made a rough translation from 1oge(mse) back to mse
in the following way. Let vl and v2 denote the risk of an estimator

for replications 1 and 2 (rl and r2), respectively. Then,
1oge(v1) + 1oge(v2) = 1oge(v1xv2).

Let wl and w2 denote the corresponding risk of a second estimator.
Then the difference between the summed natural logarithms in the plots

of these two estimators is

iobe[(lev2)/(w1xw2)]

1oge(v1xv2) - 1oge(w1xw2)

(]

1oge[(v1/w1)(v2/w2)]
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and

u

exp[1oge(v1xv2)-1oge(w1xw2)] (vl/wl)(v2/w2).

Table 6.9 shows that risk differs little between replications rl and r2;
j.e., vl*v2 and wl*w2. Therefore, we can approximate the ratio of the
risk of one estimator to that of another estimator by the square root

of the last equation; i.e., by
/{exp[]oge(levz)-1oge(w1xw2)]}.

Again note that 1oge(v1xv2) is the value plotted in Table 6.10B for an
estimator.

Uéing this basis, then, to roughly translate results from 1oge(risk)
to risk, we find that plots in.Table 6.10B show that use of the correct
estimator reduced risk by abouf one-fourth (almost one-half at 92) over
use of the next best estimator and by slightly more than one-half over
use of the worst estimator when the sample size (SS) was 25. Corres-
ponding reduction in risk when the sample size was 50 was 10% - 15%

(25% - 32% at 92) and 35% - 40%, respectively.

To study further the mean squared errors at pps we broke the mean
squared error into its 200 components corresponding to the individual
trinomial simulations. We then calculated which estimator had the
smallest squared error for each of these simulations. From results of
the last plot, we would expect the proportion at Pq to be highest for
the posterior mode. However, the proportion of simulations in which the
posterior mean had the smallest squared error was two to four times
higher than that for the posterior mode! This discrepancy indicates

that when the posterior mode is best, it is best by a much greater
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amount than when the posterior méan is best.

Finally, we investigated bias for the first two components for
those estimators having approximately equal risk, where bias was
estimated by ?g?(bij—pi)/ZOO for i=1,2. Results showed that, except
for the trimegg for P3» all central values (mean, median, and trimean)
for the errors bij-pi were smallest for the posterior mean, even at Py
For each of the first two components, all estimators at Py had
approximately one-half negative and one-half positive errors. Except at
Py proportions of negative errors were noticeably higher for the poster-
ior mode than for the posterior mean or maximum likelihood estimate.
Proportions for the latter two were always close and were often identical.
As p moved from the center toward the corner of the P2 simplex or as PID
increased, the proportion of negative errors for each component usually

increased. As sample size increased, proportions moved toward a 50/50

ratio.

In this subsection, we discuss results from robustness study Rl
where we'used the uniform prior (1,1,1), instead of the correct prior
Vs in the Bayesian estimators. For this uniform prior, the posterior
mode equals the maximum likelihood estimate. Hence, we have only two
estimators for this robustness study.

In Table 6.9 we give values for the regression-estimate mean
squared error (risk) over 200 trinomial simulations for both replica-
tions. For P3 and Pg for both levels of sample size and both levels of

percentage of incomplete data, the posterior mean has the smaller mean
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squared error, although differences tend to be small. For El,~the
posterior mode (maximum likelihood estimate) has the smaller mean
squared error. For Po> the posterior mode (mle) has the smaller mean
squared error for PID=15 and the posterior mean, for PID=40. However,
the difference at Py bétween the two estimators is very small.

Therefore, results indicate that when a uniform prior i§ used in
the Bayesian estimators, the posterior mode (mle) is the better
estimator for probabilities at or near a boundary of the P2 simplex.

The posterior mean is the better estimator for all other probabilities.’

To determine significant effects in Table 6.9, we next present in
Table 6.11 results from an analysis of variance on the natural Tlogarithms
of these mean squared errors. As for the original prior, F values for
PxEST and SS were S0 large relative to those for PxSSxEST that we
expected the significante for fhe latter to reflect mainly a variation
in PxEST for the two levels of sample size. The plot in Part B of
Table 6.11 shows this to be true. Estimators have larger negative
1oge(mse) at SS=50, but curves at the two sample sizes are similar.

The plot also shows that the difference between the two estimators at

Py is large relative to the difference at the other three values of p-
ana]]y, as expected, differences between estimators decrease as sample
size increases.

Using the rough translation given in Section 6.5.3 for ]oge(mse),
~we find that plots in Table 6.11 show that the largest reduction in risk
occurred at the corner probability Py At Py the risk of the posterior
mean was almost six times larger than that of the posterior mode (mle)

when . the sample size was 25; almost four times larger, when the sample
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size was 50. At Pys howevef, the risks of the estimators were almost
equal. For P3 and Pg> the risk of the postérior mean was about 25%
smaller than that of the posterior mode (mle) when the sample size was
25 and 15% smaller, when the sample size was 50.

As noted in Section 6.4.2, it is possible for an estimator to have
smaller mse but not have smaller squared error for most of the 200 tri-
nomial simulations. Hence, we next studied several estimator character-
istics for each of the 200 trials. Since Py seemed to be a crossover
probability for which estimator was better, results for p, were of spe-
cial interest. They showed that each estimator was better approximately
50% of the time in terms of squared error. However, in terms of per-
centage relative difference, the bosterior mean was the better estimator
for two-thirds of the trials.

An investigation of the estimated bjas found that central values for
the individual errors were smaller for the posterior mode (mle) than for

the posterior mean at p2."Further, in all cases, the posterior mode was

:sligh%Ty &loser to a 50/50 ratio of positive errors to negative errors
than was the posterior mean. The posterior mean had a higher proportion

of positive errors.

In this subsection, we discuss results from robustness study R2
where we used the perturbed prior IOX[3/10+(.09,.05,-.14)], instead of
the correct prior v, in the Bayesian eétimators. '
Table 6.9 gives values for the regression-estimate mean squared

error (risk) over 200 trinomial simulations for both replications.
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Results are similar to those for the uniform prior. The posterior
mean is best for P3 and Py- The posterior mode is best for Py and
usually best for Py vThe maximum likelihood estimate is the worst
estimator at Pps P3> and Py’ the posterior mean, at Py

Therefore, results indicate that when a very wrong prior is used,
the posterior mode is the best estimator for probabilities at or near a
boundary. However, the posterior mean will still be the best estimator
for probabilities away from the boundary.

To determine significant effects among varfab]es in Table 6.9, we
next performed an analysis of variance on the natural logarithms of the
mean squared errors. Significant F values are given in Table 6.12.
Plots of the significant PIDxEST and PxESTxSS interactions are given in
Part B of Table 6.12. The PIDxEST plot shows that, when summed over Ps
SS, and replication, the posterior mode PMD is the best estimator,
followed by APM and MLE. [However, when this analysis was done on the
original mean squared errors rather than on 1oge(mse), the posterior
mean, not the postérior mode, was best.] As expected, all estimators
worsen as the percentage of incomplete data increases. However, the
difference between estimators is almost constant as PID changes.

The plot of PxESTxSS shows that, when summed over PID and replica-
tion, the posterior mode is best for Pq and Pos the posterior mean is
best for Pg> and the posterior mode and posterior mean are equally best
for P3- Except. at P> the maximum 1ikelihood estimate is the worst

estimator. Estimators improve and differences between estimators

decrease as sample size increases.
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By using the 1oge(mse) translation given in Section 6.5.3; we find
that plots in Table 6.12 show that, as for the uniform prior, the largest
reduction in risk occurred at the corner probability Py At Elzthé risk
of the posterior mean was over four times larger than that of the pos-
terior mode when the sample size was 25 and almost three times larger,
when the sample size was 50. The risk of the maximum 1ikelihood estimate
was twice larger than that of the poéterior mode when the sample size
was 25 and about 64% larger, when the sample size was 50. At Py> the
risk of the posterior mode and posterior mean Qere almost equal. The
risk of the maximum likelihood estimate was close to one-half that of
the posterior mode when the sample size was 25 and about 72% that of
the posterior mode when the sample size was 50. At P3s the risk of the
posterior mean was only slightly smaller than that of the posterior mode
but was about one-half that of the maximum 1likelihood estimate when the
sample size was 25 and about 70% that of the maximum likelihood estimate
when the sample size was 50. At Pg> the risk was reduced about 20% by
using the posterior mean instead of the posterior mode when the sample
size was 25; about 12%, when the sample size was 50. The relationship
between the risk for the posterior mean and maximum likelihood estimate
was the same as it was for P3-

As for the original and uniform priors, we next examined several
additional properties of the estimators. The most important result was
that, when MLE or PMD had smallest risk, it was generally because, when
it had smallest squared error for one of the 200 trinomial simulations,
the difference between it and APM's squared error was much 1arger‘than
the difference when APM was best. This larger difference usua]]y'owed

to APM, having nonzero prior, never being zero.
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6.5.5 Conclusions:

We now conclude results from the three studies for minimizing risk,
and we recommend an operating rule. In this section, we are interested
in choosing which of the three estimators is best for minimizing risk
(expected quadratic loss). As anticipated from the introductory discus-
sion in Section 6.5.1, this minimizing estimator was a function of the
probability (or probability mean in the Bayesian framework) that was
being estimated. |

Summary results from these three studies are given in Tables 6.13
and 6.14. In Table 6.13 we give the ratio of the estimated mean squared
errors for the posterior mean to those of the posterior mode and to those
of the maximum likelihood estimate. A ratio of less than 1 means that
the posterior mean is best. in Table 6.14, we condense results from
Tab]e 6.13 and give the estimator having the smallest mean squared error
(risk). |

If we use the correct prior,'resu1ts indicate that the posterior
mean is best for all values of P except those very near a boundary of

the P, simplex. Even very near a boundary, results for the posterior

2
mean differed ]itt]é from those for the best estimétor, the posterior
‘mode, especially for a sample size of 50. [See Plot 6.108 and Table
6.13.]1 When the sample size was 25, risk was usually reduced by one-
fourth if the best estimator was used instead of the next best esfimator
and by one-half if the best estimator was used instead of the worst

estimator, the maximum likelihood estimate. These reductions decreased

to about 12% and 38%, respectively, when the sample size doubled.
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If we do not have, or want to use, past knowledge for estimating a
prior and 1nstead use a uniform prior, in which case the poster%or mode
equals the maximum likelihood estimate, then results indicate that the
posterior mode (mle) is best for points very near a boundary and, for
PID=15, those near a boundary. The posterior mean is best everywhere
else. The crossover point is approximately Ps> where estimated mean
squared errors for the posterior mean and posterior mode are almost equal.
[See Plot 6.11B and summary tables, Tables 6.13 and 6.14.] In this ro-
bustness study, the largest reduction in risk occurred at the corner
probability Py where risk‘waé reduced by five-sixths {f-the posterior
mode (mle) was used instead of the posterior mean when the sample size
was 25; When the sample size‘was 50, the reduction was three-fourths.
For P3 and 94,’risk was,reduced abéut one-fourth by using the posterior
mean instead of the posterior mddé (mle) when the Samp]e size was 25;
by one-seventh, when ‘the sample. size wés 50.:

"For an estimate 6f the pribr that*is yery poor, conclusions are
similar to those for the uniform prior. The posterior mode is best at
or near a boundary; the posterior mean, e1seWheré. The main difference
~.is that the crossover point is a little closer toward the center of Py
[See Plot 6.12B and summary tables, Téb]es 6.13 and 6.14. In particular,
observe how similar curves in Plot 6.12B are to those in Plot 6.108B.]

In this robustness study also, the largest reduction 1n_risk occurred
at the corner probability Py At Bl’ risk Was reduced by three-fourths
when the posterior mode was used instead of the posterior mean when the

sample size was 25. When the sample size was 50, the reduction was
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two-thirds. At the center Py of P_, risk was reduced by about 20% when

0
the posterior mean was used instead of the posterior mode when the sample
size was 25; about 12% when the sample size was 50. Otherwise, at Py and
93’ the risk of the posterior mean and posterior mode differed little.
Use of the best estimator instead of the maximum likelihood estimate
usually reduced risk by one-half when the sample size was 25 and one-
third when the sample size was 50.

Recall the centrality measure C(E) that we defined in equation (5.2).
This norm is a measure of the distance a probability is from the center

of the P, simplex. For the four values, plz(.Ol,.Ol,.98), BZE(.lO,.lO,

2
.80), 835(.20,.30,.50), and 845(1/3,1/3,1/3) of p in the simulation study,

centrality measurés were 1.88, .98, .14, and 0, respectively. In general,
,probabi]ities nearest a boundary have a centrality measure larger than 1.

When we used the uniform prior‘or the badly estimated prior in the
robustness studies, the crossover point for which estimator was best lay
between Py and 93."Between 92 and the crossover point, however, there
was little difference between results for the posterior mode, the best
estimator,‘and those‘for the posterior mean. Further, for priors that
are not as bad]y esfimated>as were those in the second robustness study,
we expect the crossover point to be closer to Py or, based on Plot 6.10B
for the correct prior, possibly between P and Po-

Since Py has a centrality measure of .98, we recommend,'as an operat-
ing rule, use of the poéterior mean if the centrality measure of P is less
than 1 and the posterior mode, otherwise. This operating rule is a func-

tion of p and in practice, of course, we do not know p. Hence, we can

~
~
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not calculate the exact centrality measure. However, for any estimate
? of the prior, we can approximate the centrality measure by C(E) =
C(v/kzlﬁj). In those cases having no estimate of the prior, we could
use a uniform prior and, thus, approximate C(B) by 0.

Note that the maximum likelihood estimate was everywhere the worst
‘ estimator when the correct prior was used in the Bayesian estimates.
Even when a very poor estimate of the correct prior was used [robustness
study R2], the maximum likelihood estimate was the worst estimator every-
where except very near a boundary where it was second best.

As sample size increased, thé difference between the estimators de-
creased. A sample size of 50 was large enough for some of the estimators
in some cases to be approximately equal. As the percentage of incomplete

data increased, all estimators worsened. However, the difference between

estimators did not significantly change.



-258-

6.6 Summary:

In this chapter we gave results of Design 1 in the simulation study.
In the first half we discussed Taylor-series approximations for elements
of'the posterior mean and covariance matrices. These approximations were
needed for the second hé]f of the study. In the second half, we reported
which of the posterior mean, posterior mode, and maximum likelihood esti-
mate best minimized risk for quadratic loss at specified values of the
population probability (or prqbabi]ity mean in the Bayesian framework).
Conclusions and recommendations were given at the end of éach of these
discussions.

Briefly, the Taylor-series approximations were excellent except for
some of those cases simultaneously having inconsistent data, zero obser-
vations for two of the three completely specified cells, and high percen-
tage (40% - 60%) of incomplete déta. Even in these rare cases, the
approximations are probably satisfactory considering the inherent uncer-
‘tainty associated with estimating nonzero probabilities from zero data.
In neér]y all cases, the approximation§ were accurate to at least two
significant figures. The approximation for elements of the posterior
mean vector was even better. In most cases, it was accurate to at least
four significant figdres.

The risk study indicated that the posteriqr mean is the best esti-
mator for all values of the probabi]ity p except those very near a bound-
ary of the P2 simplex if we use the correct prior in the Bayesian:esti-

mates. The posterior mode is best at a boundary. However, it does not
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differ much from the posterior mean. If, however, we use a uniform prior
or a bad estimate of the correct prior, then the posterior mode is the
best estimator for values at or near a boundary of the P2 simplex; the
posterior mean, elsewhere. By using the best estimator, risk was usually
reduced by one-fourth over that of the next best estimator and by one-
half over that of the worst estimator (nearly always the maximum Tikeli-
hood estimate) when the sample size was 25. Corresponding reductions
when the sample size was 50 were one-eighth and three-eighths, respec-
tively. At a corner ElE(.Ol,.Ol,.98), however, the reduction was much
larger when an incorrect prior was used in the Bayesian estimators; the
risk was reduced by as much as five-sixths when the posterior mode was
used instead of the posterior mean.

In the last section 'we gave the following operatfng rule for deter- -
mining which estimator to use {n practice: use the posterior mean if the
centrality measure calculated from your estimate of the prior is less

than 1; otherwise, use the posterior mode.
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TABLE 6.3

DESIGN 1.

FIRST COMPONENT.

BIAS OF APPROXIMATIONS FOR EXACT POSTERIOR MEAN.
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APM
PMD
MLE

APM
PMD
MLE

APM
PMD
MLE

tandard errors.

in parenthesis are s

Values

.10-4.
jal s

is written as

.000010

e.g.,

ion

tific notat

in scien

Note that values are given

For PID=15 and PID

*

6.4.1

mon

[see Sect

lations

mu

Tnom

200 tr

ons over

ing deviat

ted by averag

=40, bias is estima

Values were not calculated (see main text)



TABLE 6.4

DESIGN 1.

MEAN SQUARED ERROR OF APPROXIMATIONS FOR EXACT POSTERIOR MEAN.

s

$S=50

=25

Diri-
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TABLE 6.5
BIAS AND MSE RATIOS FOR EPM COMPARISONS. DESIGN 1.
Sample Size §5=25 . $S5=50
% Inc. Data PID=15 P1D=40 PID=15 PID=40
Replic. No. rl r2 rl r2 rl r2 rl r2
*
g_ Aggrox.
A.  RATIO OF BIAS{APM) TO BIAS(PMD) AND BIAS(MLE) FOR EPM COMPARISONS
Py PMD 13 -2 -.21.-2 .87 -2 .44 -2 -.24 -2 .43 -3 11 -1 .42 -2
MLE 69 -1  .45-1. -.52-1 .89 -1 .81 -1 -.10 -1 .14. 0 .55 -1
p, PMD .33 -3 -.25 -3 .25 -2 -.18 -2 -.26 -3 -.18 -3 .37 -2 .30 -2
b MLE 41 -2 .19 -1 14 -1 -.14 0 12 0 -.60 -2 .12 0 .38 -1
p, PMOD .64 -3 -.10 -2 .35 -2 -.48 -2 -.57 -3 -.53 -3 .81 -2 .83 -2
b MLE 35 -2 .22 -1 24 -1 .32 -1 -.58 -2 .92 -2 .16 1 .45 -1
p, PMD .48 -2 .70 -2 2 -1 .89 -1 17 -2 .41 -2 .47 -1 .18 -1
MLE A1 -2 .17 -2 .30 -2 .19 -1 .44 -3 .11 -2 .13 -1 .45 -2
B. RATIO OF MSE(APM) TO MSE(PMD) AND MSE(MLE) FOR EPM COMPARISONS
py  PMD .28 -3 .45 -4 .20 -2 .31 -2 ©.93 -4 .15 -3 .34 -2 .12
" MLE 13 -2 .23 -3 .68 -2 .71 -2 A7 -2 .24 -2 .23 -1 .76 -2
p, PMD .78 -6 .24 -5 .64 -4 .58 -4 .15 -5 .12 -5 .50 -4 .84 -4
b MLE .18 -5 .59 -5 .10 -3 . .92 -4 71 -5 .48 -5 .13 -3 .24 -3
py  PMD 64 -5 .12 -4 .22 -3 (20 -3 .87 -5 .53 -5 .27 -3 .27 -3
MLE 15 -5 .27 -5 .80 -4 .37 -4 32-5  .22-5 .84 -4 .87 -4
p, PMD .36 -4 .31 -4 .67 -3 .69 -3 .37 -4 .32 -4 1 -2 .92 -3
MLE .18 -5 .16 -5 .29 -4 .31 -4 .25 -5 .21 -5 .68 -4 .57 -4

* ) . r
Dirichlet probability (expected value of the Dirichlet distribution of p given prior parameters

Yy

Vps Vqs and Vgs rgspect1vely)



SOURCE

p
SS

PID

EST

PxSS
PxPID
PxEST
SSxP1D
SSXEST
PIDXEST
PxSSxPID
PxSSxEST
PxPIDXEST

SSXPIDXEST
PxSS=PIDxEST

ERROR

TOTAL

D.F.
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TABLE 6.6A
ANALYSIS OF VARIANCE FOR ESTIMATED EPM BIAS

SUM OF SQ.

5
IOOO\T\JCNO\QJI\)NHO\(»OJNHI—'QJ

O
(S,]

.658393 -3
.539909 -4
.794404 -5
.211893 -2
.686198 -4
.634564 -5
.104191 -2
.219305 -5
.879171 -4
.642627 -5
.452496 -6
.114745 -3
.125370 -4
.135775 -5
.621923 -6

.521696 -4

.423455 -2

* Significant at 10% level.
*** Significant at 1% level.

Note that exponential notation is used for the third and fourth

columns;

for example, .00423455 is written as .423455 -2.

MEAN SQ. F
.219464 -3 201.924 *xx
.539909 -4 49.676 *x*
.794404 -5 7.309 ***
.105946 -2 974.787 *x
.228733 -4 21.045 ***
.211521 -5 1.946
.173652 -3 159.773 ***
.219305 -5 2.018
.439586 -4 40.445 *x*
.321314 -5 2.956 *
.150832 -6 .139
.191242 -4 17.596 ***
.208950 -5 1.922 *
.678876 -6 .625
.103654 -6 .095
.108687 -5



.02

.00

-.02

bias -.04
-.06

-.08

.02
.00

bias -.04
-.06

*
Values are
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6.6B PLOTS OF PxESTxSS AND PxESTxPID lNTERACTlONS*.

P~EST#SS

$5=25

\ /
yd
'l
) 1 ] 1
T T ¥ T
Py 22 P3 Ps
$5=50

e
7
-
l\\ /
-~
s -~
\/
] 1 ] Jo
1 L] Lf i
P &) D3 2}

sums over nonpresent factors, including replication.

.02 -+
.00 4

-.02 j
-.04

-.06 -
-.08 4
-.10 |

PxESTXPID

+ APM
- PMD
a MLE

P10=15

.02

Py P2

PID=40




TABLE 6.7A
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ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED EPM
MEAN SQUARED ERROR

SOURCE

P

SS

PID

EST

PxSS

PxPID
PxEST
SSxPID
SSxEST
PIDxEST
PxSSxPID
PxSSxEST
PxPIDxEST
SSxPIDxEST
PxSSxPIDxEST
ERROR

TOTAL

D.F.

SUM OF 3SQ.

O
(8]

ey
ICOO'\I\)ONO\Q)I\)I\)P—‘ONQ)WNI—II—JW

.127603
.354935
.569041
.199362
.191251
.886197
.121670
.162900
.219450
.540537
.242087
.317632
.984097
287500
. 228965

.386696

.228533

* Significant at 10% Tevel.
** Significant at 5% level.
*%*x Significant at 1% level.

QO O O N P O W O = ™ MDD D N

-1
0
1

.425343
.354935
.569041
.996812
.637503
.259399
.202784
.162900
.109725
.270269
.806956
.529387
.164016 0
.143750 -1
.381608 -1
.805617 -1

MEAN SQ. -

N = O N OO W N N

! ]
Pt

52.
440.
706.

12,373.
.913
.667
251.
.022

13.
335.
.002
.657
.036
.178
474

797
575
342
269

713

620
480

*kk
*k*k
*kk
* k%
*k%k
*k

*kk

*kk

*kk
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in scientific notation

For PID=15 and 40, mean squared error is estimated by the regression estimate [see Section 5.9]

*Values were not calculated (see main text)

Note that values are given
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TABLE 6.10A

ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED RISK
FOR ROBUSTNESS SET 0 ‘

SOURCE

P

SS

PID

EST

PxSS
PxPID
PxEST
SSXPID
SSXEST
PIDXEST
PxSSxPID
PxSSXEST
PxPIDXEST
SSXPID*EST
PxSSxPIDXEST
ERROR

TOTAL

o .
Ioooamoxoxwmr\:-—-cswwmo—a»—aw

D.F.

SUM OF SQ.

O
(&,

.147185
.474330
.645378
.722603
.697938
.717094
.120826
.535130
.628491
.768419
.883219
.155608
.824202
.433219
.127261

.104847

.162192

*** Significant at 1% level.

_= O = W

.490617
.474330
.645678
.361302
.232646
.239031
.201377
.535130
.314245
.384210
.294406
.259346
.137367
.216610
.212102
.218432

MEAN SQ.

22,460.
2,171.
295.
1,654.
10.
10.
92.
24,
143.
17.
.348
.873
.629
.992
.097

11

893
526
460
071
651
943
192
499
864
589

dkk
*kk
*kkx
*kk
kkk
*kk
*kk
*kk
-

*kk

*kk
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TABLE 6.11A

ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED RISK
FOR ROBUSTNESS SET 1

SOURCE

p
sS

PID

EST

PxSS

PxPID

PxEST
SSxPID
SSXEST
PIDXEST
PxSSxPID
PxSSXEST
PxPIDXEST
SSxPIDXEST
PxSSxPIDXEST
ERROR

TOTAL

D.F.

SUM OF SQ.

INwwawb—'i—‘HwNWD—‘l—lb—‘.w

[@)]
w

427955 2
779571 1
.766894 0
129177 1
.196884 0
.115092 -1
.866720 1
.107157 -1
.122873 -1
.570937 -2
.802564 -2
.244437 0
.131641 -1
.326823 -3
.523357 -2
.919024 -1

619173 2

* Significant at 10% level.
** Significant at 5% level.
***x Significant at 1% level.

MEAN S5Q.

.142652 2
779571 1
.766894 0
129177 1
.656280 -1
.383639 -2
.288907 1
.107157 -1
.122873 -1
.570937 -2
.267521 -2
.814791 -1
.438803 -2
.326823 -3
174452 -2
.287195 -2

4967

2714.
.029
449.

22.
.336
1005.
.731
.278
.988
931
28.
.528
.114
.607

267

.065

429

789
851

959

371

*k%k
*kk
*k*k
*kk

*kk

*kk

*k

*kk
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6.118  PLOT OF PxESTxSS INTERACTION®

+ APM
A PMD=MLE
$S=25
-10 -
-15 4
1oge
-20 -
mse
-25 4
-30 -
| | 1 1
T T T
P P2 P3 Pa
SS=50
-10 -
_15 o
log
& 20
mse
-25
-30
L | ! |
T T T 1
P P P3 Ps

*
Values are sums over PID and replication
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TABLE 6.12A

ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED RISK
FOR ROBUSTNESS SET 2

SOURCE

P

SS

PID

EST

PxSS

PxPID
PxEST
SSxPID
SSEST
PIDxEST
PxSSxPID
PxSSxEST
PxPIDxXEST
SSxPIDxEST
PxSSxPIDxEST
ERROR

TOTAL

D.F.

SUM OF 5Q.

=Y
‘(I)C\NO\O\QQNNI—'O\WWI\JO—‘D—‘W

(Yol
o

.106983
.697137
.755904
.320158
.577776
. 266412
.613926
422372

.249801

.449282
.118694
.198784
.121991
.569427
.943908

.122429

.124833

** Significant at 5% level
*** Significant at 1% level

_ O = W

MEAN SQ.

.356610 2
697137 1
.755904 0
.160079 1
.192592 -1
.888039 -2
102321 1
.422372 -1
.124901 0
.224641 -1
.395645 -2
.331307 -1
.203318 -2
.284714 -2
.157318 -2
.255061 -2

13981

627

.332
2733.

296.
.610
.551
.482
401.

16.

48.
.807

214
361

162
560
969

1.551

12

.989
.797
.116
.617

*kk
Kok
*kk
*kk
*kk
*k
*%k
*kk
Fkk

*kk

*kk
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TABLE 6.13

RATIO OF MSE(APM) TO MSE(PMD) AND MSE(MLE) FOR QUADRATIC-LOSS COMPARISONS.

Sample Size §5=25 $5=50

% Inc. Data PID=15 PID=40 PID=15 P1D=40

Replic. No. rl r2 rl r2 r] r2 rl

Ei Estimator

A. ROBUSTNESS SET O (ORIGINAL PRIOR USED IN BAYESIAN ESTIMATORS)

Pa

PMD
MLE

PMD
MLE

PMD
MLE

PMD
MLE

*
PMD

PMD
PMD
PMD

PMD
MLE

PMD
MLE

PMD
MLE

PMD
MLE

.14 1 .14
.47 0 .48
.58 0 .60
.48 0 .48
.80 0 .80
.47 0 .47
.82 0 .82
.47 0 .47

B. ROBUSTNESS

.55 1 .56
L1001 1
79 0 .80
g7 0 77

C. ROBUSTNESS

.41 1 .41
.20 1 .21
1101 .12
.64 0 .69
.92 0 .92
.56 0 .59
.82 0 .82

.58 0 .58

*For uniform prior, PMD=MLE

+Dirichlet probability

1 .14
0 .43
0 .52
0 .39
0 .75
0 .39
0 .79
0 .40

oo

.13
.4

.48
.39

.77
.40

.79
.40

o0 o0

oo,

.10
.67

.78
.67

.89
.66

.89
.67

[=R=)

oo

.12
.66

73
.67

.87
.66

.89
.67

L1
.60

73
.61

.84
.60

.87
.59

SET 1 (UNIFORM PRIOR USED IN BAYESIAN ESTIMATORS)

1 .64
1 .98
0 .73
0 72

SET 2 (PERTURBED PRIOR USED

1 .50
1 .21
1 11
0 .55
0 .90
0 .49
0 .79
0 .52

1
0
0

-0

oo

.63
.95
.76
.72

.44
.21

.11
.55

.92
.52

.79
.53

1
0
0
0

1
1

.37
11
.90
.88

IN

.28
.18

11
.82

.95
.76

.89
.76

.38
.10
.88
.88

.36
.10
.85
.84

BAYESIAN ESTIMATORS)

[=N=)

.31
.19

.10
.78

.94
71

.89
.72

1
1

o0

.25
.17

.10
.72

.92
.65

.87
.68

(= =] O

oo

oo

.11
.60

.65
.60

.85
.60

.87
.60°

.38
.92
.86
.85

.28
.18

.96
.66

.94
.68

.87
.70

o o ©o

-

[=X =]
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TABLE 6.14

ESTIMATOR HAVING SMALLEST AVERAGE ESTIMATED MEAN SQUARED ERROR
FOR QUADRATIC-LOSS COMPARISON.

Sample Size S5=25 $5=50

% Inc. Data PID=15 PID=40 _ PID=15 PID=40
Replic. No. rl  r2 rl r2 rl  r2 rl  r2
Dir. Prob.

A. ROBUSTNESS SET O (ORIGINAL PRIOR IN ESTIMATORS)

Py pmd pmd pmd pmd pmd pmd pmd pmd
Py apm apm apm apm apm apm apm apm
P3 apm apm apm -apm apm apm apm apm
Py apm apm apm apm apm apm apm apm

B. ROBUSTNESS SET 1 (UNIFORM PRIOR .IN ESTIMATORS)

1

Py pmd pmd pmd pmd pmd pmd pmd pmd
922 - pmd pmd apm apm pmd pmd apm  apm
Ps apm apm - apm apm apm apm apm apm
Pa apm apm apm apm apm apm apm apm

C. ROBUSTNESS SET 2 (PERTURBED PRIOR IN ESTIMATORS)

P pmd pmd pmd pmd pmd pmd pmd pmd
922 pmd pmd pmd pmd pmd pmd pmd apm
Py apm apm  apm apm apm apm  apm apm
Py apm apm  apm apm apm apm  apm apm

pmd = mle for uniform prior

2
pmd and apm are nearly equal for all conditions for Py for

Robustness sets 1 and 2. Recall Table 6.13.



CHAPTER 7
RESULTS OF DESIGN 2

7.1 Introduction:

In this chapter, we report results from Design 2. We want to know
whether risk results from Design 1 depend on the very special choice
used there for the trinomial generator probabijlities. Recall that each
of the four trinomial generators was the mean of a prior Dirichlet
distribution. This chapter reports what happens when, instead, we
choose probabilities randomly generated from the Dirichlet distribution
for these trinomial generators. [See Figures 5.1 - 5.3 for a comparison
of Design 2 with Design 1.]

Note that, except for a brief discussion in the next section, we do
not report work on the Taylor-series approximations. Results of Design
1 show that risk conclusions depend on the value of the generator P.
However,‘the accuracy of the Taylor-series approximations, although
depending slightly on the value of the generator P, was good for all
values of p. Rare exceptions occurred at some of those boundary va]ues.
that gave empty cells for the completely specified data when the percen-
tage of incomplete data was high. Although some of the calculations
discussed in Section 6.4 for Design 1 were repeated for Design 2,
results were identical to those already reported.

Other than the generator probabilities p, factors in Design 2 were
the same as those in Design 1. There were four values of the prior
parameter v: v =(.1,.1,9.8), v,=(1,1,8), v5=(2,3,5), and v,=(10/3,10/3,

10/3). Sample sizes were S5=25 and SS=50. The percentage of



-280-

incomplete data PID varied around PID=15 and PID=40. The three estimators
were the posterior mean (approximated by the Taylor-series expansion),
the posterior mode, and the maximum likelihood estimate.

As in Design 1, we had three robustness studies, one each for use in
‘the Bayesian estimates of the original prior v, the uniform prior (1,1,1),
and the perturbed prior IOX[3/10+(.09,.05,-.14)]. Note, again, that the
maximum 1likelihood estimate was the same for all three studies.

Recall from Section 5.6 that cost constraints limited to {p the
number of Dirichlet generations of P given each of the four values of v.
Values of these probabilities, generéfedAb&'the procedures described in
Section 5.7.2, are given in Table 7.1." As expected, the generated values
varied around the means (.01;.01,;98);.(.10,.10,.80), (.20,.30,.50), and
(.33,.33,.33) of the prior distributiqn of p given Vis Vo5 V3, and Vg
respectively. Table 7.1 also gives the centra]ity measure C(B) for each
generated value of P- In Design 1, this centrality measure became the
basis for deciding which estimator to use for minimizing risk. Recall
from Table 5.1 that centrality measures for the prior means of the dis-
tribution of p given the four values of v are 1.88, .98, .14, and 0,
respectively. Note, then, in Table 7.1 that centrality measures for v
ranged from 1.39 to 2.00 (the highest possible value). Thosé for Vo
ranged from .06 to 1.94; for V3, from .05 to 1.05; and, for Vg from 0
to .38. Centrality measures for the prior mean of the distribution of p
given the four values of the perturbed prior IOX[3/10+(.O9,.05,-.14)]
are 1.16, .48, .01, and .09. [Recall Figure 6.2 for perturbed-prior

means. ]
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Results from the three robusfness studies are reported in the next
section and concluded in the last section. Appendix 7A gives the
complete-data (PID=0) risks and estimated risks (with associatee standard
errors) for PID=15 and PID=40 for the three estimators, three robustness
studies, four values of v, and‘ten_Dirichlet probabilities p. Tukey
" data summaries, central values, and spreads were calculated for the risk
estimates over the ten Dirichlet generationef The averages, with stan-
dard errors, are given in Table 7A.7. We note here that the posterior -
mean had the smallest average, even at vy, when the original prior was
used in the Bayesian estimators. This result fs important because it
means that the sampling distribution, even though based on only ten
probab111t1es, agreed with the theoretical distribution at least in terms
of which estimator minimized average risk. [Recall Section 1.2.]
Appendix 7A also gives the ahalysesjof-Variance results for the three
'robustneés studies and plots of two of their interactions.

In the remainder of this section, we briefly discuss computational
aspects peculiar to Design 2. Since we were investigating which estima-
tor best minimized risk for quadratic loss, the criterion forAchoosing
among estimators was the estimated mean squared error (risk). After we
discussed estimated mean squared error in Design 1, we studied the
estimators in detail, especially at those values of p for which two or
more estimators had approximately equal risk. In Design 2, we studied
only estimated mean squared error and results from the analysis of
variance on its natural logarithms.

In Design 1, we used the regression estimate for the mean squared

error. Where we could, we also used the regression estimate in Design 2.
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However, we could not calculate the regression estimate for some cases
when the prior was 315(.1,.1,9.8). In these cases, the complete-data
maximum Tikelihood estimate was the same for all 200 trinomial %imu]a—
tions. Hence, its sample variance was zero. Therefore, the deﬁominator
for the regression mean-squared-error estimate in (5.19) was undefined.
The problem cases were those in which C(B) was 1.9993, 1.9999, and
2.0000. These three cases were those in which the generated Dirichlet
probabilities were approximately:(0,0,1). The probabilities were
(.00000 004,.00011,.99989), (.00000 9,.00000 QOOOO 0003,.99999 1), and
(.00000 3,.00000 00000 001,.99999 7), respectively. Note that there were
no problems in calculating regression estimates of the mean squared
error for the generated Dirichlet probability p=(.01,0,.99), for which

~

C(E)=1.9182w Further, for the case in which C(B)=1'9993’ the regression
estimate was undefined for only half the cases. Hence, it was only when
the population probability was almost identically (0,0,1) that the
regression estimate did not exist.

In these cases of undefined regression mse estimate, we used the
control-variate estimate. However, the control-variate estimate was
negativé several times for the posterior mode when the generated Dirich-
let probability was approximately (0,0,1). Although this happened only
in cases where the regression estimate was defined, it happened for a
Dirichlet probability which had an undefined regression estimate for
most of the SS, PID, and replication variations. Hence, the control-

variate estimate was used for most variations and, for consistency,

would have been a better choice than the regression estimate for the
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remaining cases. [See the fourth generation for PMDRO in Table 7A.3

for inconsistent mean squared errors resulting from use of the two
different estimates.] The control-variate estimate was negative because
the posterior mode had a regular mse estimate a couple orders of magni-
tude smaller than either the true or regular-estimate complete-data mean
squared error and the regular estfmate was larger than the true value.
[See equation (5.13).]

The inconsistent mse estimates for PMDRO at 95(0,0,1) affected
results in the ANOVA. Variations among PID and SS levels were as large
as 100. This large variation gave rise to unnaturally large effects of
SS and, particularly, PID relative to those for estimator. Further, the
ANOVA model had an additional factor v, ten levels (instead of one) for
p within v, and p as a random factor instead of a fixed factor. There
fore, the ANOVA model was more complicated than that for Design 1.
Hence, its results were more subject to error.

Therefore, as a precaution against reaching wrong conclusions, we
studied certain interactions, especially the PwNU interaction (PwNU)xSS
xPIDxEST, independent of their significant effects in an ANOVA. An ad-
ditional reason for investigating this particular interaction was that
we wanted to insure that any lack of significant effect for PID was
accurate. FEven more important, we wanted to know how any lack of
significant effect related to absence of any change in 1oge(mse) for the
two levels of PID. That is, PID could show no significant effect in the
ANOVA model strictly because the other factors had huge effects relative
to PID. In this case, there could still be a large change in 1oge(mse)

for the two levels of PID.
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Recall that in the last chapter we found that the Taylor-series
approximation APM for the posterior mean was usually accurate to at
least four <ignificant fiqgures. In these cases, the APM mean-squared-
error estimate was a good approximation for the EPM mean-squared-error
estimate. It was usually accurate to at least three significant figures.
The rare cases in which the Taylor-series approximation was not as good,
however, were cause of concern for how well the APM mse estimate approx-
imated the EPM mse estimate. These cases occurred several times in
Design 2 at v when the generated Dirichlet probability was approximately
(0,0,1). However, even though a few of the 200 frinomia] simulations
yielded poor approximations for the posterior mean, the APM mse estiméte
was an unusually good approximatidn for the EPM mse estimate. It was
nearly always accurate to at least five significant fiqures. The reason
is that in thdse cases (the majority of the 200 trinomial simu]ations)
in which the approximation was not poor, the appréximated posterior mean
agreed extremely well with the exact posterior mean. Therefore, the APM
mse estimate, an averége over the 200 trinomial simulations, was a vefy

good approximation.
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7.2 Results:

In this section we briefly give results from Design 2. We begin by
giving, in Table 7.2, the risks averaged over the ten Dirichlet genera-
tions of p. For estimated risks, those for PID=15 and PID=40, we also
averaged over the two replications. Note that averaged risks for PID=0
are not given for the posterior mode (PMD) at NE As in Design 1, we
could not analytically calculate the complete-data risk for values of P
containing one or more very small components when Y=(0.1,0.1,9.8). In
these cases, a solution to the likelihood equations may not exist in P2.
[Note that (Xi+vi_1)/(n+zvj_3) is negative when Xi=0 if v1=0.1.] If not,
the posterior mode occurs on the boundary. Hence, Si may equal 0 or 1

but the ith

solution (2.43) to the 1ikelihood equation can not be used
to calculate the risk.

We are interested in how much risk increases as the data becomes
incomplete. Table 7.2 shows that in 34 out of 44 cases, the averaged
risk increased between 5% and 12% as the percentage of incomplete data
(PID) increased from O to 15. The highest increase, 20%, was at a sample
size of 50 for v for the posterior mean (APM) when the perturbed prior
was used in the Bayesian estimators. As the percentage of incomplete
data increased from O to 40, the averaged risk increased between 17% and
50%. Individual values showed greater variation than the averages given
in Table 7.2. Occasionally, the complete-data risk was even greater than
the risk when approximately 15% of the data was incomplete. In these

cases, however, the complete-data exact value was nearly always within a

standard error of the PID=15 estimated value. These cases probably occurred



-286-

when the observed percentage of incomplete data was on the low side of
15%. [Recall that, for a sample size of 25, when PID=15 the observed
percentage of incomplete data could be 0%, 4%, 8%, 16%, 20%, or 24%,...]
Finally, note that, as sample size decreased, the averaged risk decreased
by roughly one-half.

To compare the difference between estimators, we divided the averaged
risk for the posterior mean by that for the posterior mode and that for
the maximum likelihood estimate. Results given in Table 7.3 show that,
with small exception, the averaged risk was smallest for the posterior
mean for all variations in prior parameter, percentage of incomplete
data, and sample sizes when the correct prior was used in the Bayesian
estimators. The exception is that the posterior mode had, to two signif-
icant figures,.the sahe risk for v and almost equal risk for Vg- [Re-
call Table 7.2.] As P moved from the ¢enter of the P2 simplex toward
a corner (from vy to Yl)’ the advantage in using the posterior mean over
the posterior mode increased. The advantage in uging the posterior mean
over the maximum likelihood estimate was greatest at the center or a
corner of PZ' At Vi the risk of the pqsterior mean‘was almost one half
that for the posterior mode or maximum likelihood estimate for a sample
size of 25. For other values of the prior parameter v, percentage of
incomplete. data PID, and sample size SS, the averaged risk of the pos-
terior mean lay between 70% and 100% of that for the posterior mode and
maximum likelihood estimate. _

When a uniform prior was used in the Bayesian estimators, the pos-
terior mode equaled the maximum 1ikelihood éstimate. For this case,

results of Table 7.3 show that, in terms of averaged risk, the posterior
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mean was the best estimator at v, and 34, in the middle and near the

center of P2. The maximum likelihood estimate (=posterior mode) was

the best estimator near a boundary of P2; i.e., at Vi and V- ;The
maximum difference near the center of P2 was only 70% (relative to the
smallest value). At a boundary, however, the averaged risk was between
two and three times smaller for the maximum likelihood estimate (=poster-
jor mode) than for ‘the posterior mean.

When the perturbed prior 10x[v/10+(.09,.05,-.14)] was used in the
Bayesian estimators, the posterior mode had the smallest averaged risk,
except at the center of the P2 simplex, where the posterior mean was |
slightly better. The largest difference between estimators was at v
where the risk of the posterior mean was 40% larger than that for the
posterior mode.

Note that for all three priors (correct, uniform, and perturbed),
there was very little difference between estimators as the percentage
of incomplete data changed. As sample size increased, the ratios moved
toward 1; 1i.e., the difference between estimators decreased.

As discussed in Chapter 1, however, we were most interested in
difference in risk as a function of the individual values of p. To
investigate this relationship, we first performed an analysis of variance
on the natural logarithms of the estimated mean squared errors (risks).
The F values from these analyses are given in Tables 7.8A, 7.9A, and
7.10A for use of the correct, uniform, and perturbed prior (robustness

study RO, R1, and R2), respectively, in the Bayesian estimators. By far

the most significant effect in all three ANOVAs was that of p within v

-~
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(Pw.NU), usually followed by (Pw.NU)xEST. Further, in all three robust-
ness studies, (Pw.NU)XESTxSS was significanf at the 1% level and there
was a three-way (xPID) or four-way (xPIDxSS) significant interactfon of
(Pw.NU)XEST with PID in each analysis. o

Following the ANOVA tables 1n‘Append1x 7A are plots of significant
or otherwise important (recall Introduction) interactions. These plots
indicated that there was little chénge in the difference between estima-
tors as the percentage of incomp1ete data (PID) increased from 15 to 40.
Further, although the difference between estimators decreased as sample
size increased, the shape of the estimator curves for the two sample
sizes was nearly the same. Therefore, we summarize results from these
analyses by giving in Tables 7.4, 7.5, and 7.6 plots of the (Pw.NU)xSS
xPIDXEST interactions for only SS=25 and PID=15. Note that the horizon-
tal axis is the centrality measure of the generated p. The vertical
axis is 1oge(risk) [51oge(mse)]. Recall from Chapter 6 that, becausé
we used two replications, thé square root of the exponential of a diff-
erence between logarithms approximately equals the ratio of the risk of
the two estimators. Thus, any difference of 6 between two estimators in
the log, scale in Plots 7.4, 7.5, and 7.6 means that one of the two
estimators had a risk about twenty times larger than that of the other
estimator. |

There are three important factors to consider 1in these three p]ots:
the distribution from which the generated p comes, fhe value of the gen-
erated P and the value of the prior parameters used in the Bayesian
estimators. In all three plots, the distribution from which p comes is

the Dirichlet distribution given the prior v. The centrality measure of

the mean of this distribution is marked on the three plots by the arrow
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(+) for the four values of v. We call this prior mean the v-p&iqn mean
or the correct-prior mean. We call the mean of the prior distribution
given the prior parameters used in the Bayesian estimators the estimaton-
paion mean. The centrality measure of the estimator-prior mean %s marked
on the plots by an "x" when, in Plots 7.5 and 7.6, it differs from the
Y-prior mean. [Recall Figure 6.2 for estimator-prior means.]

Notice that the closer the Y—prior mean is to a corner or to the
center of the P2 simplex, the tighter the distribution of the generated
values of P Away from these points, the distribution is fairly wide;
for example, the distribution of P given 92 covers almost the entire
C(E) axis. .

Denote the estimator-prior mean by é. Plots 7.4 - 7.6 show that,
except for Vi there is a neighborhood of C(E) in which the posterior
mean is the beét estimator for minimizing risk, often followed by an.
outer one-sided neighborhood toward 2.00 in which the posterior mode is
best. Finally, in the tails of the distribution of P given the prior
parameters used in the Bayesian estimators, the maximum likelihood esti-
mate is best. |

Thus, the posterior mean was the best estimator most of the time.

In these cases, the posterior mode was usually next best. Other than
cross-over probabilities, the smallest difference between the posterior
mode and mean was at the center of the P2 simp1ex; There, the risk of
the posterior mean was reduced only 14% to 23% from that of the posterior

mode, whereas it was reduced 22% to 42% from that of the maximum likeli-

hood estimate.
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Except near the tails of the estimator-prior distribution or near
the E=(0,0,l) corner of P2, the difference in loge(mse) for theﬁestima-
tors was usually between -1.4 and 0.8; difference in risk ranged from O
to a 50% decrease. Use_of the correct estimator most often reduced the
risk by about one-third. At the tails, the maximum difference between
1oge(mse) for the three estimators ranged from 0.8 (1/3 increase in risk)
in Table 7.4 at C(p)=0.06 for v

~ ~2

to 1.9 (risk almost tripled) at C(E)
=1.05 for v, in Table 7.6 to 5.6 (risk increased more than 16 times) at
C(p)=1.94 for v, in Table 7.6. However, the largest difference between

estimators occurred for vy at the corner p=(0,0,1) where C(p)=2.00. At

~

this probability P values of 1oge(mse) for the maximum Tikelihood esti-
mate and posterior mode were equal. The large difference in 1oge(mse)
between this value and that for the posterior mean was 10.6, 20.8, and
18.9 for use 1h the Bayesian estimators of the correct, uniform, and
perturbed prior, respectively. These differences éorrespond to an in-
crease in risk of 200 times, 33,000 times, and 13,000 times the risk for
the maximum 1ikelihood estimate or posterior mode. Note, however, that
this enormous difference occurred only exactly at the (0,0,1) corner.

-3,.99989) also had, rounded off,

For example, the probability E¥(.4_7,.1
C(p)=2.00 but the multiplicative increase in risk in using the posterior
mean instead of the posterior mode was by a factor of 77.5, 992, and
854, respectively, for the three robustness studies. Thus, the increase
was huge but not of the order found when the first two componeﬁts had
more zeros. As p moved further from the (0,0,1) corner, the difference

~

in risks continued to drop sharply.
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In Figure 7.1 we give the ranges for each value of the estimator-
prior in which the posterior mean, posterior mode, and maximum likelihood
estimate was best. Note that the limits sometimes differ slightly from
the plots. In these cases, the difference between the 1imit and the .
correct value was small. We used.the wrong value to g}ve iimits in ;05
increments and to give agreement between slightly different values for
the limits for those estimator-prior means having centrality measures
of 0 and .01. [Recall that the éstimator-prior mean for all four plots
in Table 7.5 (use of the uniform prior) has centrality measure C(é) of
0 as well as one estimator-prior mean in Table 7.4.] Note in Figure 7.1
that, for the uniform prior, the region in which the posterior mean is
best is OéC(E)<.7O. Also note that the posterior-mode range for C(é)
=0.09 was unusually short; that for the maximum likelihood estimate began
sooner than results from neighboring values of C(é) would indicate.

Results from Design 2 indicate that if one is even reasonably con-
fident in the prior, then the best estimator to use is the posterior
mean unless the prior mean is at the corner of the P2 simp]ex,‘in which
case the posterior mode is better. Hencé, we recommend, for an initia]
try, use of the posterior mean if C(E)éiLS; thé posterior mode; other- -
wise.

In practice, one can replace p in Figure 7.1 by the estimator é
and interpolate in the intervals in Figure 7.1 to refine the estimation
protess. That is, if one uses the prior § with prior mean Bi=81/28j in
an estimator é, then one can compare C(é) with the regions given for

C(p) to determine if the best estimator was used. If not, then 5 can

~
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FIGURE 7.1
INTERPOLATION TABLE

if C(é) was and C(p) was _ ' " then best estimator was
0% and .01b 0¢C(p)<.20 .. posterior mean
.204C(p)<.70 posterior mode®
otherwise ) maximum likelihood estimate
b . .
.09 04C(p)<.20 posterior mean
.20£C(p)<.35 posterior moded
otherwise maximum Tikelihood estimate
.142 OfC(E)< .45 . posterior mean
_ .45¢C(p)<1.05 posterior mode
~ otherwise maximum 1likelihood estimate
.48b 0<C(p)< .85 posterior mean
.852C(p)<1.60 posterior mode
‘ otherwise maximum likelihood estimate .
.988 f 0<C(p)< .10 maximum likelihood estimate
10¢C(p)<1.45 posterior mean
1.454C(p)<1.94 . posterior mode
\{[1.945C(p)52.00 posterior mode]]®
b s . . R R e
1.16 [[ .o%c(p)< .30 maximum likelihood estimate]]
. [[.304C(p)<l.25 posterior mean]]e
1.25¢¢(p)<1.55 posterior mean
' ) 1.55%C(p}<£2.00 posterior mode
1.88% [[ o=c{p)< .90 maximum 1ikelihood estimate]]e
[[.90¢C{p)<1.25 posterior mean]1®
1.255C(E)<1.55 posterior mean
1.55¢C(p)%2.00 posterior mode
aSee plots in Table 7.4 cwhen uniform prior was used in Bayesian esti-

b .. mators, best estimator was the posterior mean
dSee plots in Table 7'6 instead of the posterior mode; see Table 7.5
Risk of posterior mode differs .

little from that of posterior

mean or max. likelihood est.

eextrapo]ated
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be diécarded and the recommended estimator used. For example, if one
has a prior g=(12,1,2), then the estimator-prior mean p is (.80,.07,.13)
which has centrality measureiC(é)=(.80-.07)2+(.80-.13)2+(.07-.13)2=.99.
Results of Figure 7.1 indiéate that if use of the posterior mean gives
an estimator é with C(é) between .10 and 1.45,'then the posterior mean
is the best estimator to use. If, however, C(é) is greater than 1.45,
then we should discard the posterior mean and use the posterior mode.
Similarly, if C(é) is less thén .10, we shQu1d replace the posterior
mean by the maximum 1ikelihood estimate.

Note that results of Designs 1 and 2 indicate that the maxjmum
likelihood eétimate, posterior mode, and posterior mean will usually be
close enough that their céntra]ity measures will differ little. That
is, C(é) should not differ greatly for the three estimators.. Finally,
we emphasize that the regiohs in Figure 7.1 are not exact. Further,
replacing P by the estimator é in Figure 7.1 makes the regions even
less e*act. Hence, regions in Figure,7.1_shou1d be cqnsidered only as

rough guidelines. Even so, their use can.still be expected to reduce

risk by 1/4 to 1/2 in most cases and by substantially more in many cases.
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_ 7.3 Conclusions:

Based on results from Design 2 summarized in the last section, we

revised the operating guideline from Design 1 as shown in the following

Figure 7.2:
FIGURE 7.2
OPERATING GUIDELINES
Given data z and prior pafameter v ;
Calculate prior mean p with component 51=v{/2vj‘ i
ok kel
Calculate ¢(p)=¢ < (pi-p.)
: Y §=1 j>i J
if for estimator 6 to minimize risk, use
OéC(§)<1.50 posterior mean (Taylor-series approx.)
1.504C(p)<2.00 posterior mode
calculate ¢(p)
compare C(b)'with C(B) intervals in Figure 7.1 for prior é
if C(p) is not in recommended interval, recalculate
~ estimator as recommended in Figure 7.1
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The gain in using the estimator recommended by these procedures is
usually a 1/4 to 1/2 reduction in risk. In many cases, however, the
reduction can be very large. The largest reduction in risk in this study
occurred when E=(O,0,1). For this corner probability, the risk of the

posterior mean was as much as 33,000 times larger than the risk for the

posterior mode or maximum likelihood estimate.
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TABLE 7.4

§5=25, PID=15. ORIGINAL PRIOR USED IN BAYESIAN ESTIMATORS.

+ APM
* PMD
" A ME

335(2,3,5)

loge

-15 4

L

N

«v,5(3.3,3.3,3.3)>

i

! ! 1 1Ly 1
T ) T T T <) i)
.9

T ¥ T T LI T Ll ¥ T 1 2
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
C(p)

325(1,1,8) »

4

! $ Il 4 I Il I Il i

L Il 3
I J 1 T T ¥ 1 | I 1

I 3 1
E181 T T

1.0 1.1 1.2 1.3 1.4 1.6 1.6 1.7 1.8 1.9 2.0

T T T T T T T T
©.8

¢(p)

.9

1 .
Values are sums over replication. Arrow (4) denotes centrality measure of expected value of p given v [See Table 5.1].

2
Horizontal axis for the three sets of values plotted at 2.0 for vy is rescaled to have values 1.9993, 1.9999, 2.0000. Note that vertical
axis is also rescaled. - ’
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TABLE 7.5

1
PLOT OF (Pw.NU)xESTxSSxP1D INTERACTION. SS=25, PID=15. UNIFORM PRIOR USED IN BAYESIAN ESTIMATORS.

mse

+ APM
A PMD=MLE

o Fx

loge
mse

o 4

Il l 1 [l J Il Il il il L }.
1 T T T ' LI

T T T T
.7 .8 .9 10 1,1.1.2 1,3 1.4 1.5 1.6 1.7 1.8
c(p)

o&
i

:‘25(1'1)8} - »

+

Il i ] ]

I i ) [l ]
T T T

°
o x

} L i
367 T ¥ T

¥ Ll
9 1.0 1.1 1.2 1.3 1.4 1,5 1.6 1.7 1.8 1.9 2.0

~
w
o
»n
@
S
) w -

¢(p)

'alues are sums over replication. Arrow (t) denotes the centrality measure of the expected value of p given v (see Table 5.1). Cross (x)

denotes the centralit

axis is also rescaled.

measure of the expected value of
2Hor{zontal axis for the three sets of values plotted at 2.

{see Table™5.2 and“Fiqure 6.2].

81ven the uniform prior (1,1,1)
Note that vertical

for v is rescaled to have values 1.9993, 1.9999, 2.0000.
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. TABLE 7.6
1
PLOT OF (Pw.NU)xESTxSSxPID INTERACTION. $S=25, PID=15. PERTURBED PRIOR USED IN BAYESIAN ESTIMATORS.

t APM
A MLE

« v3(2,3,5) > --v12(0.1,0.1,9, 8)<~--n=- === >

-7 -

-10 4
-11 4
12 4
13 4
.14 4
-15 4

109e
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1 .
Values are sums over replication. Arrow (4) denotes the centrality measure of the expected valué of p given v [see Table 6.11;
(x) denotes the centrality measure of the expected value of p given the perturbed prior 10x[v/10+(.097.05,-.14)] [see Table 5.2, Fig. 6.2].

M .
Horizontal axis for the three sets of values plotted at 2.0 for v 1s rescaled to have values 1.9993, 1.9999, 2.0000. Note that vertical
axis is also rescaled. e
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, : . TABLE 7A.8A -
ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED QUADRATIC-LOSS
MEAN SQUARED ERRORS FOR ROBUSTNESS SET O (ORIGINAL PRIOR IN ESTIMATORS)

SUM OF SQ. ' ~MEAN_SQ. - _F

SOURCE D.F.

NU 3 .251377 4 .837924 3 10.499 ***
S 1 896719 2 .896719 2 467.367 %+
PID 1 .644600 1 .644600 1 607.009 ***
EST 2 .156130 2 .780652 1 1.879
NUxSS 3 366810 0 .122270 0 .637
NUXPID 3 .255790 0 .852634 -1 8.029 **
NUXEST. - 6 - .527583 - 2 .879306 1 2.116 *
SSxPID 1 .124512 -1 124512 -1 - 118
SSXEST 2 .109549 1 547744 0 4.703 **

- PIDxEST 2 .156421 0 .782106 -1 14,588 *#
NUxSSxPID 3 .306224 0 .102075 0 .967

. NUXSSxEST 6 .348970 0 .581616 -1 .499
NUxPIDXEST 6 .921781 -1 .153630 -1 2.866 **
SSxPIDXEST 2 .181913 0 .909564 -1 .901
NUxSSxPIDXEST 6 .654974 0 .109162 0 1.081 |
Pw.NU 36 .287310 4 .798085 2 1672.306 ***
(Pw.NU)xSS 36. .690718 1 .191866 0 4.020 ***
(Pw. NU)=PID 36 .382294 0 .106193 -1 .223
(Pw.NU)xEST 72 .299159 3 415499 1 87.064 **+
(Pw. NU)xSSxPID 36 .380123 1 .105590 0 2.213 ***

-~ (PW.NU)xSSXEST 72 .838485 1 .116456 0 2.440 **+
(Pw.NU)xPIDXEST 72 .386013 0 .536129 -2 112
(Pw.NU)XSSxPIDxEST 72 - .727218 1 .101002 0 2.116 ***
ERROR - - 480 .229073 2 - .477236 -1
TOTAL . 959 . .590404 4

* Significant at.10% level.
** Significant at 5% level.
*** Significant at 1% level,

Note that the usual exponential notation is used for the third and fourth columns;
for example, 5904.04 is written as .590404 4.
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7A.88  PLOT OF NUXESTxPID INTERACTION*

+ APM
« PMD
A MLE
PID=15
.
] ! ! ] !
l ! I !
NUl NU2 NU3 U4
P1D=40

over P, SS, and replication.
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PLOT OF (Pw.NU)ESTXSSxPID INTERACTION,*

$5=25

NU=(0.1,0.1,9.8).

P1D=40

$5=25

1
} -
Pa B3 P 3]

$5=50

SS=50

P8

P

6

»
Halues are sums over replication. Hote that p's are ranked in terms of {ncreasing C(g); recall Table 7,1
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b MLE



-313-

7A.8C PLOT OF (Pw.NU)XESTxSSxPID INTERACTION, NU=(1.0,1.0,8.0).

+ APM
-« PMD
A MLE
PID=15 PID=40
$5=25
-6 -6
-7 4 -7
-8 4 -8
-9 4 -9 4
Tog, -10 -10 A
mse -}1 4 -11
-12 -12 4
-13 -13 4
-14 A -14 4
-15 -15
L Il 1 1. b i ! I I }
N T T T L} T T T T T
By B5 Pip Ry RBg Rz 23 By By By
55=50 55=50
-8 4 -8 o
-9 4 -9
-10 4 -10
-11 4 11 A
loge )
mse  ~12 1 -12
-13 4 -13 4
-14 -14 4
-15 -15 4
-16 -16 A
L 1. 1 1 1 1 1 g, 1 - L 1 1 1 1 1 1l ) S | 1
Ll 1 1] T T 1 1 t ¥ T ¥ T t T T T ) i v T
Pg B Pjgp Pg P P2 P3 By Bg P Pg Ps P10 P4 P B2 P3 % Bg P

-
Values are sums over replication. Note that p's are ranked in terms of increasing C{p); recall Table 7.1.



-7.0
-1.2
-7.4
-7.6
-7.8
-8.0
-8.2
-8.4
-8.6

Ioge

-8.5
-8.7
-8.9
-9.1
log, -9.3
-9.5
-9.7
-9.9
-10.1

'Values are sums over replication. Note that p's are ranked in terms of increasing c(g); recall Table 7.1.
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6.6 o
-7.0 4
-7.4
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-8.2
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-9.4
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KU=(2.0,3.0,5.0).

PID=40

-8.0 4
-8.2 1
-8.4 4
-8.6
-8.8 -
-9.0 -
-9.2 4
-9.4
-9.6 -

—+
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JABC  PLOT OF (Pw.NU)<ESTxSSxPID INTERACTION.”  HU=(10/3,10/3,10/3).
t aPM
- PMD
& MLE
P1D=15 PID=40
704 - bA——pe L $§25 -6.0 4 $5=25
-7.2 4 4 -6.4 4 Y
. o \a—o\n
-7.4 a3 -6.8 4 /\__‘
7.6 4 s 7.2 ot
log, -7.8 /5// 7.6 4 A
mse 8.0 /T 8.0 — - -f",
-8. //__,___,____/ ,1’"‘ . » *__.'1_..-4'
-8.2 4 Co 8ad 4t
-8.4 - *____1,.....‘.-'—-1'-"--1-' -8.8 1
-8.6 | s . J ! ! f | 4 ! 9.2 1 ' It ’ L 1 ! 1 ! s
T ] 1 ¥ T ¥ 1 T 1 B ] T ] L T T T T T L}
P; B3 By B2 B Pio Bo Bs B Py Py Py By P P Pyp P9 B5 By By
-8.0 4 $5450 7.8 4 $5=50
&
-8.2 - 804 Lt
-8.4 .| . A/A*.A -8.2 o &
5 "t
-8.6 - N -8.4 4 QB
. \a—--A . .
log, -8.8 - .'\’#'Tﬁ‘ -8.6 - -~ \\//a-T-'\P“&V/
mse T PG e B
-9.0 ~ o - d — L,
9.0 — T S - 88 APy
-9.2 - -9.0 4 +_,‘-+‘
hd 4
.9.4 -9.2 1
-9.6 I 1 1 1t 1 L L I 4 -9.4 A L 1 L 1 1 1 i 1 i I
L 1 1 ) T T T T T R L T T T T T T T T L
P7 B3 Py P2 % Pio %% B P B By B3 B P Bg Pio By B & B

*
Values are sums over replication. Note that p's

are ranked in terms of increasing C{p);

recall Tabie 7.1.
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TABLE 7A.9A

ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED QUADRATIC-LOSS
MEAN SQUARED ERRORS FOR ROBUSTNESS SET 1 (UNIFORM PRIOR IN ESTIMATORS)

SOURCE

NU

SS

PID

EST

NUxSS

NUxPID -
NUxEST

SSxPID

SSxEST

PIDxEST
NUxSSxPID
NUxSSxEST
 NUxPIDxEST
SSxPIDxEST.
NUxSSxPIDxEST
Pw.NU
{Pw.NU)xSS
(Pw.NU)xPID
(Pw.NU)XEST
(Pw.NU)xSSxPID
(Pw.NU)xSSxEST
(Pw.NU)XPIDXEST
(Pw.NU)xSSxPIDXEST
ERROR

TOTAL

* Significant at 10% Tevel,
** Significant at 5% level.
1% level.

*** Significant at

3
1
1
1
3
3
3
1
1
1
3
3
3
1
3

o

36

- 36

36
36
36
36
36
36

320

639

SUM OF SQ.
.723959 3
.865921 2
.678313 1
.103706 3
129282 1
.205667 -1.
.317635 3
.105919 -2
.185452 0
.818075 -2
.222064 -2
.160116 1
.172753 0
.169200 -3
.480949 -2
.751737 3
.841929 0
.219711 0
.575080 3
.110764 0
722642 0
.166521 0
.217426 -1
.100891 1
.257187 4

MEAN SQ. F.
.241320 3 11.567 *%*
.865921 2 3702.584 *x+
.678313 1 1111.425 %%+
.103706 3 6.492 **
.430939 0 18.426 ***
.685557 =2 1.123
.105878 3 6.628 *x*
.105919 -2 .344
.185452 0 9.239 ***
.818075 -2 1.769
.740214 -3 .241
.533721 0 26.588 *x
.575842 -1 12.449 *%*
.169200 -3 . 280
.160316 -2 2.654 *
.208816 2 6623.127 *xx
.233869 -1 7.418 *w
.610310 -2 1.936 **
.159744 2 5066.700 ***
.307677 -2 .976
.200734 -1 6.367 ***
.462560 -2 1.467 *
.603960 -3 .192
.315283 -2



-317-

78,98 PLOT OF NUxESTxSSxPID INTERACTION ™

t+ APM
- 4 PMD=MLE
P10=15 P1D=40
$5825 $5=25
-65 4 -65 4 '
-80 4 -80
-95 4 -95 4
]°9e -110 T -110 4
ase
-125 4 -125 4
-140 4 . -140 4
-155 4 -155
=
$5=50 : $5=50
-80 A - -80 4
-95 -95 4
-110 4 -110 1
'loge
-128 -125 1
mse
-140 4 -140 ﬁ
-155 -155 -
-170 4 -170
t t t t t t + t
KU1 NU2 NU3 NU4 NU1 N2 NU3 NUs

'Values are sums over P and replicatfion.
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loge

mse

L
*
7A.9C  PLOT OF (Pw.NU)xESTxSSxPID INTERACTION.
PID=15
S5e25
-5 J
TP B Aot vhidd it st A ST RS
-15 4
-20 4
=25
-30
-35 4
(} J I} i L 1 1 Il I 1
] 1 1 1] L -1 ] 3
By % 8 By Pg P By By B3 Py
5250
54
-10 4
S A R
<15 4
-20
.25 4
=30 4
-35
3 1 1 1 i1 3 l ] o
L T T T 13 L3 T ] L} ]

Py P 2 By B Pp By By B3 Py
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NU=(0.1,0.1,9.8).

+ APM
4 PMD=MLE
P10=40
55225
R Gt LT SR ORI
1 L 1 Il 1 I L 4 4 $
T T T T T ¥ T ! T M
B1 B B Py Bg 2 By B4 B3 Py
55250

WRRRant sttt SEE SRR 4

*
Values are sums over replication. Note that p's are ranked in terms of increasing C(g); recall Table 7.1.



-319-

L4
7A.9C  PLOT OF (Pw,NUIXESTxSS<PID INTERACTION.  NU=(1.0,1.0,8.0).
* ApM
8 PMD=MLE
‘ PI0=15 P1D=40
" 4 . $5=25 7 $5425
TR 20N
-8 4 . -8
-9 -9
109, -10 -10
mse -11 4 -1
-12 4 -12
-13 -13
-14 -14
— Il Il Il —t 1 i | J Il N ! J. N
T T T T T T T T U T T 1 R
B %5 Pyo P4 B. B2 B3 By Pg Py : Bg P5 Pio B % P2 B3 P %y Py
8 $$=50 8 $5250
-9 w -9 4
10 4 10 4
log, -11 - -11 4
me  -12 4 -12 4
-13 -13 -
-14 w SUN
-15 1 -15
I 1 4 i —t 4 1. i e N
T T L L

T L : =
Pg Bs P10 Pa B P2 B3 Py Bg By

o 4
w
o +
~

i
T
By P5 Piop P4 P B2

‘Values are sums over replication. Note that p's are ranked in terms of increasing C(g); recall Table 7.1,
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TA.9C  PLOT OF (Pw.NUYXESTXSSxPID INTERACTION. " NU=(2.0,3.0,5.0).

t APM
A PMD=MLE
P10=15 PI0=40
-7.0 4 6.5 4 §5=25

7.2 4 -6.7 -
7.4 4 -6.9
-7.6 <71 -
-7.8 j -7.3 4
tog, -8.0 -7.5 4
e g2 7.7
-8.4 -7.9 -

-8.6 - -8.1 - T

¥ ] ¥ 1 T T 1 t L) 1

Bs P9 P2 P8 P4 B5 PBo B1 B3 B Pg P9 B2 Bg 2% B B B B3 B

+
-8.5 4 A\\A/A\ $5=50 -7.8 q ) $5=50

-8.6 - -8.0 4
-8.7 - g -8.2 4
-8.8 1 -8.4
loge -8.9 - -8.6
™€ 9.0 -8.8 -
9.1 - -9.0 4
-9.2 ¢ -9.2 4

Sl U

Bs B B2 Bg B4 Bs Bo B2 B3 B . % B9 2 % 24 8% B0 1 % B

'Values are sums over replication. Note that E‘s are ranked in terms of increasing C(g); recall Table 7.1.
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Values are sums over replication.
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7A.9C NU=(10/3,10/3,10/3).
+ APM
4 PKD=ME
PID=15 PID=40

7.0 g e, §5225 6.5 + 525
7.1 4 -6.6
.7.2 -6.7
-7.3 - -6.8
-7.4 4 » -6.9 4 ///A
7.5 4 [ S, N 1.0 4

+ P - .
-7.6 4 3 -7.1 4 R S

N— ot o A
EXE - 7.2 4 / EaN
teeet et

7.8 1 f f ! n 1 1 1 ! 4 | =73 1 i1 s 1 ! ! ! ! 1 | i

T T T L] ) L) L) T L} L] L] T T T L} L} T T T L}

By By B P2 B P10 2 B B By B7 B P P2 B Pio P B P Pg
-8.2 4 5250 7.9 4 $S=50
-8.3 4 -8.0 4
-8.4 -8.1 4
-8.5 8.2 + Lot
-8.6 4 831y ¢
-8.7 - ss4 1
-8.8 4 -8.5
-8.9 4 -8.6 4t
-9.0 N N L N L N [ Y “I -8.7 1 ot N s L 1 31 3 L I

L) T T L} T T T T 1 1 T ¥ L ] ¥ L ] T T ¥

By By B B2 B Bio B9 Bs B By By B3 8 B2 B 2o B9 B B B

Note that p's are ranked in terms of increasing C(p); recall Table 7.1.



SOURCE D.F.
NU 3
sS 1
PID 1
EST 2
NUXSS 3
NUXPID = - 3
NUXEST 6
$SxPID 1
SSXEST 2
PIDXEST 2
NUxSSxPID 3
NUXSSEST 6
NUxPIDxEST 6
SSxPIDXEST 2
NUXSSxPIDXEST 6
Pw.NU 36
(Pw. NU)xSS 36
(Pw.NU)xPID 36
(Pw. NU)xEST 72
(Pw.NU)xSS=PID 36
(Pw. NU)XSSXEST 72
(Pw. NU)XPIDXEST 72
 (Pw. NU)xSSxPIDXEST 72
ERROR 480
TOTAL 959

* Significant at 10% level.
** Significant at 5% level.
*** Significant at 1% level.
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TABLE 7A.10A
ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED QUADRATIC-LOSS
MEAN SQUARED ERRORS FOR ROBUSTNESS SET 2 (PERTURBED PRIOR IN ESTIMATORS)

SUM OF Q.

.195478
.980437
.797488
. 964996
.102821
.184583
.251424
. 143585
.540025
.453269
.153708
.353239
.725311

.127573°

. 333265
. 178257
.282303
.370475
.781618
.282862
.219563
.474228
.304022

.332960 1

.498407

-0 O = O W O =

MEAN SQ.

.651592
.980437
.797488
.482498
.342735
.615277
.419040
.143585
270013
.226634
.512360
.588731
.120885
.637866
.555442
.495159
.784174
.102910
.108558
.785727
.304948
.658649
422252
.693667

N = N W

-1
-1

13.
1250.
774.
445
.437
.979
.860
.827
.854
.441
652
.931
.835
511
.315
7138.
11.
.484
1564.
.133
.396
.950
;609

w 0 = W o

e e ed

159
280
940

288
305

988

*kk

*hk

*dk

**k

kX

* ¥k

* k%

*k

*kk

* k%

* %

**k Kk

*k*k
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PLOT OF (Pw.NU)xEST=SSxPID lNTERACTlONf

7A.10C
PID=15
$5025
5 J
10 4
1§
«20 <
-zs-
=30 +4
.35 4
1. j I o = h ] 1 L L —t.
Y By Ly 1 ¥ ) Bl LS 1
Pr % B Pg Pg P2 Pgp P4 B3 Py
5 ) $5a50
-10 9 L
N evagpenaes et
-15 4 ¥
-20 4 \
.25 o
.30 4
=35 4
4ttt
Py Ps Py Pa Pg P2 P9 Pa P3 Pyo

NU={0.1,0.1,9.8).

+ APM
* PMD
& MLE

PID=40
55025
-5 4
-10 1
-15 A
=20 A
«25 o
=30 o
.35 4
L 1 L 3. L Il B I | 1 1
1 -t L Ll L] 1 U ) Y ) B
Py Ps P Pg Pg P2 P9 Py P3 Pyo
54 55050
“10 et
? peces oo npmaent
=15
«20
-25 4
-30 ﬂ
-3
N l Jd i L N 1
AN A Al ¥ A ] o Y R
Py Bs P P8 Ps P2 P9 Py Py Py

'Valuas are sums over replication, Note that p's are renked in terms of increasing C(g); recall Table 7.1.



-6
-7
-8
-9
log, .10

-12

-13
-14

-7

-9
-10

log, -1}

-13
-14
-15
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*
7A.10C  PLOT OF (Pw.NU)xXESTxSSxPID INTERACTION.

PID=15

5§25

~
L L [l A .| L L 1 L
L] T T T 1 T Ll 1 T
B9 B5 P10 B4 Ps B2 B3 B7 Bg Py

$5=50

1l { L ! T i 4 L

1 1 1 T T 1 T 1 1 L

Pg B85 P10 P4 ‘Ps P2 B3 B7 B8 B1

NU=(1.0,1.0,8.0).

PID=40

1 [l | Il (] i I} J. | [

T T T T 1 T T T T T

P9 B5 P10 24 Ps P2 B3 P72 Pg B

$S=50

1 L L 4 d L L L - H
T Ll 1 1] L] 1 ) T T T
B9 % Pio By B P2 Py Py Bg By

*Values are sums over replication. Note that p's are ranked in terms of increasing C(p); recall Table 7.1



-326-

7A.10C  PLOT OF (Pw.NU)XESTXSSxPID INTERACTION.” = KU=(2.0,3.0,5.0).
e
. PI0=15 PID=40 sme
-5.8 4 ssn28 -5.6 4 S$e28
-6.2 4 -6.0 *
-6.6 K 6.4 4
-7.0 4 -6.8 /.""
7.4 4 -7.21 et P
log, 7.6 - -7.6 4 ~ f——
wse g, | 0.0 4 ____‘_/"",p._“}::{ .
8.6 - 84d
904 ., Lo 884
T L L L Ll ) 1 o ) T L T T 1 L] ¥ T
. s B9 2 B8 B4 Bs 1o By By @ % % 2 Py B B R U B &
8.3 4 $5e50 7.8 4
-8.5 < -8.0 -
-8.7 - -8.2 4
) -8.9 A 8.4 -
. Togg -9.1 - -8.6
e 9.3 -8.8
9.5 - -9.0 {
9.7 < 9.2
-9.9 9.4 -

'v«lues are sums over replication. Note that p's &re ranked in terms of increasing c(g); recall Table 7.1,



7A.10C
P10=15
6.2 4 55025
-6.6 - +
/"’
7.0 p—d-b—-p _po. o4 /‘-\\ “/
7.4 & ”s\f__a
el /
tog, -7.8 R ~. !
e o LA . — K
mse  .g.2 Tt
8.6 -
-9.0 4
-9.4 ! \ i 4 PR I ! f 1
1 i 1 L] 1) ] ) 1 ] 13
2y By P2 B2 B 210 B9 B B By
-7.8 4 85050
-8.2 ) x
& b -t—— L. - ‘/‘ P
-8.6 - . by —b ; T}\\z/__/_ﬁ
— .. :
0.0 o gt T ;\,/f/
Tog, -9.4 -
™e 9.8 -
-10.2 -
-10.6 -
-ll.o y - L 4 4 L i 4. i M 1. 1
T T T T T T T T V
27 P3 By B2 B Bo By Bs Py By
*
Values are
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PLOT OF  (Pw.NU)xESTxSSXPID INTERACTION.”

5.8
6.2
6.6
-7.0
7.4
-7.8
8.2
-8.6
-9.0

-6.2
-6.6
-7.0
7.4
-7.8
-8.2
-8.6
-9.0
-9.4

NU=(10/3,10/3,10/3).
t AP
- PMD
4 ME
PiD=40

$8=50

sums over replfcations. Note that p's are ranked in terms of fncreasing €(p); recall Table 7.1.



CHAPTER 8
SUMMARY AND CONCLUSIONS

In this thesis we considered simultaneous estimation of the vector of
multinomial cell probabilities P from incomplete data, incomplete in that
it contains partially classified observations. Each such partially classi-
fied observation is observed to fall in one of twd or more selected cate-
gories but is not classified further. The estimation criterion was mini-
mization of risk E[L(B,é)] for quadratic loss L(B,é)=(g-é)'(g-é) for the
estimator é of P |

The estimators considered were the classical maximum likelihood esti-
mate @ and the Bayesian posterior mean § and posterior mode ﬁ. vWe chose
the maximum likelihood estimate because it is frequently used in practice.
In particular, the maximum likelihood estimate is often used when one has
nb prior:information. Further, Johnson (1971) proved that the complete-
data maxfmum likelihood estimate is admissible; that is, no other estima-
tor can have smaller risk everyWhere. The comp]ete-data maximum 1ikeTihood
estimate is admissible because it has very small risk at the corners of

the P, simplex. We chose the posterior mean because it minimizes expected

k
risk; hence, it must be best for at least some values of p. We chose the
posterior mode because it is an in-between estimator. Like the maximum
likelihood estimate, it is a mode and can have zero components for a non-
zero prior. Lfke the posterior mean, it can incorporate prior information.
A final reason for choosing these three estimators was that the max-
imum Tikelihood estimate‘ﬁ, posterior mode @, and a Taylor-series approx-
imation p of the posterior mean (discussed below) can all be evaluated

~

by the EM algorithm of Dempster, Laird, and Rubin (1977).  This was im-
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portant because these three estimators each constitute a nonlinear system
of k equations in k unknowns, for which the number of solutions may range
from zero to infinity. Further, as illustrated in Section 4D.5, any roots

that do exist need not be in Pk. Finally, when roots do exist in Pk there

can be difficulty in finding that one for which the 1ikelihood is a maxi-
mum. However, Dempster, Laird, and Rubin (1977) proved that if the eigen-
values of the covariance matrix of the complete-data sufficient statistics
are bounded above zero, then the EM iterative algorithm converges in Pk to
a local maximum. A global maximum is then found by choosing that root in

Pk that maximizes the 1ikelihood function

k+1 Z.+o, z
R D
P;
= D

i=1

~

where 5i denotes one of the three estimators p, P, and

~

I TRe

and where ai=0
for the maximum 1likelihood estimate and ai=vi—1 for the posterior mode
and Tay1or-series approximate posterior mean.

We showed these three estimators to be approximately equal in large
samples. To compare these estimators in small- and medium-size samples,
we used two Monte-Carlo simulation studies restricted, because of cost
constraints, to samples from the trinomial distribution. In the studies,
samples were of size 25 and 50, percentages of incomplete data varied
around 15 and 40, and probabilities ranged from the center of the P2 s im-
plex to one of its corners. In the first simulation study, we chose the
mean of the prior distribution, given one of four prior parameters, as
the probability to be estimated. In the second study we randomly generat-

ed ten probabilities from the Dirichlet distribution given each of the
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four prior parameters. For each proﬁabi]ity, in both studies, we then
generated 200 sets of complete and incomplete trinomial data from which
an estimate of risk was calculated. Because the prior is not known in
practice, we also explored how robust results were to use of the correct
prior in calculating the Bayesian estimators. Besides the correct prior,
wé also used the uniform prior and a perturbed prior in the calculations.
Results indicated that an important factor in determining which es-
timator was best was the position of P in the P2 simplex; in particular,
whether p was at a corner or in the center of P2. Another important fac-

~

tor was the relationship between the probability p being estimated and

~

‘the prior parameters B used in the Bayesian estimators. We studied this
relationship in terms of the difference between p and the mean p of the

prior distribution given B. The most satisfactory measure of this dif-

ference was the difference in the linear centrality measures C(p) and

2 3
C(p) of p and p, respectively, where C(p)= Zl X (pi—p.)z. Results in-
~ ~ ~ Y oi=1 i

dicated that, except at a corner E=(0,0,1), when the centrality measure
C(é) was within a fairly wide range of C(E)’ then the posterijor mean was
best. If the difference between the two centrality measures was very
large, then the maximum likelihood estimate was best. If the difference
was between moderate and very large, the posterior mode was often best
when the probability being estimated was toward a corner of P2. At the

p=(0,0,1) corner, the posterior mode or maximum likelihood estimate was

always far better than the posteribr mean.
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Based on these results, in Section 7.3 we recommended rough operat-
ing procedures to guide a practioner in choosing which estimator to use
for his data and estimated prior parameters. '

Risk was usually reduced by one-third to one-fourth when the best
estimator was used instead of the next best estimator and by one-half to
one-third when the best estimator was used instead of the worst estimator.
However, the reduction was sometimes substantial. Further, the reduction
in risk at the corner probability E=(O’O’1) was huge; the risk of the pos-
terior mean was as much as 33,000 times larger than the risk for the pos-
terior mode or maximum likelihood estimate. [The risk of the maximum 1like-
Tihood estimate and posterior mode were equal at E=(0,0,1).] As soon as
one moved-even slightly away from the corner, however, the risk difference
dropped sharply.

As noted, the posterior mean was the best estimator most of the time.
In these cases, the posterior mode was usually next best. Other than
cross-over probabilities, the smallest difference between the posterior

mode and mean was at the center of the P, simplex. There, the risk of the

2
posterior mean was reduced only 14% to 23% from that of the posterior mode;
whereas the reduction in risk from that of the maximum likelihood estimate
ranged from 22% to 42%.

As the percentage of incomplete data increased from 0 to near 40, the
risk of the three estimators did not greatly increase and the relationship
among the estimators changed little. As sample size increased, risk and

the difference between estimators usually decreased.

Because numerical evaluation of the exact posterior central moments
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is generally unfeasible, we also developed approximations for elements
of the posterior mean and covariance matrices. The best of.three approx-
imations considered for the posterior mean was based on a first-order
Taylor-series expansion of the exact posterior mean, which we accordingly

called the Taylor-series approximate posterior mean Approximations

TN
.

used for elements of the posterior covariance matrix were also based on
first-order Taylor-series expansions. An important property of the Tay-
lor-series approximations is that, as the percentage of incomplete data
goes to zero, they go to the éxact posterior moments. In addition, the
relationship befween the Taylor-series approximate posterior mean and

the posterior mode parallels their complete-data relationship. That is,
the Taylor-series approximate posterior mean for a Dirichlet density with
prior parameters (vl,-°-,vk;vk+1) equals the posterior mode for a Dirich-
let density with prior parameters (v1+1,---,vk+1;vk+1+l).

To determine the accuracy of the Tay]or-series'approximate posterior
mean, we first found that the Tay]or-serigs expansion of the exact poster-
jor mean had accuracy of magnitude O(n_l). Because terms in the expansion
were then approximated, the final approximation was not necessarily
accurate to order O(n—l). However, we showed that this approximation
asymptotically equals the exact posterior mean. Further, we gave two
conditions which guarantee that the error between the exact posterior
mean and an iterative solution of the Taylor-series approximate posterior
mean is of magnitude O(n'l). The two conditions, given by Lemma 4E.1,

concern the region in which the initial iterative estimate is chosen and

a bound on the partial derivatives of the Taylor-series approximation.
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If a neighborhood Hﬁ-glpr, for p>0, of the exact posterior mean p can

~

be found such that for all probabilities 5 in this neighborhood

k
max I Iagi(ﬁ)/aﬁ-| £ <1,
1£i¢k j=1 '~
for :
(B)=( 5./5,)/ ( < )
g.(p)=(z.+v.+ © z.p./P )/ (n+ £ v ),
TR T e DTETDT T g h

(0)

and if an initial iterative estimate Ps is chosen within the inner

neighborhood

§—§|L<pofp-6/(1-x) where & is a bound on the error in
approximating the exact posterior mean by a first-order Taylor series,
then the iterative solution to the.defining equations of the Taylor-series
approximate posterior mean § will converge to within O(n_l) of the exact
posterior mean.

If a neighborhood of the exact posterior mean can be found in which
the A bound is satisfied, then for large enough sample sizes, the second
condition can be satisfied by ;hoosing an initial {terative estimate with-
in the first neighborhood. Even for medium-size samples, the inner neigh-

'borhood is almost as large as the oUtér neighborhood if the percentage of
.1ncomp1ete data is moderate. In Appendix 4E, we showed how to determine,
in practice, whether the second condition can be expected to hold.

As for the condition for the EM algorithm, the conditions of Lemma
4E.1 need not be met; In fact, there may not even exist any neighborhood
of the exact posterior mean in which the A bpund holds, as we illustrated
for an 11-dimensional multinomial problem. However, Appendix 4E showed
that this was not the case for incomplete trinomial data; there does exist

a root in P2 of the Taylor-series approximate posterior mean that differs
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from the exact posterior mean by magnitude O(n'l). However, this root

need not be unique in P hence, finding it can be difficult. In these

0
cases in P2 and in higher dimensions, because the complete-data relation-
ship between the posterior mode and posterior mean was paralleled by the
relationship between the posterior mode and the Taylor-series approximate
posterior mean for incomplete data (i.e., the Taylor-series approximate

posterior mean can be written as a posterior mode), we intuitively expect
that that root that is in the guaranteed-convergence region of the exact

posterior mean, or at least the closest root to p, is given by whichever
k+l z,+v.-1 | 7p

~

root 1in Py maximizes the likelihood function 1 P L. By
' i=1 D
Finally, we gave examples showing that Lemma 4E.1 gives extremely
conservative bounds on the error between the exact posterior mean and the
converged iterative estimate and on the region in which an initial itera-

tive estimate can be chosen so that successive iterates converge to with-

in a small error of p.

Approximations used for elements of the posterior covariance matrix

were based on Taylor-series expansions that were accurate to order O(n'3/2).

When the iterative solution for the Taylor-series approximate posterior
mean has accuracy of magnitude O(n-l), then the Taylor-series approximate
posterior variance and covariance can be evaluated noniteratively to have

'3/2). These approximations can also be evalu-

(n-3/2)

accuracy of magnitude O(n
ated iteratively. However, insurance'of accuracy of magnitude 0
then depends on satisfaction of the two conditions of Lemma 4E.1, where
g(é) is replaced by the proper function.

In the same Monte-Carlo simulation used for the risk study, the
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Taylor-series approximation for the posterior mean was usually accurate
to at least four significant figures; that for the posterior variance,
to at least three significant figures; and that for the posterior covar-
iance, to at least two significant figures. 1In practice, the Taylor-
series approximations will generally be more accurate than numerical
evaluation of the corresponding exact posterior moments.

Note that, although the maximum likelihood estimate and posterior
mode asymptotically equal the exact posterior mean (and, hence, the Tay-
lor-series approximate posterior mean), neither was a good approximation
of the exact posterior mean in the small- and medium-size samples studied
in the simulation. Further, as the percentage of incomplete data goes to
zero, neither go to the exact posterior mean. Finally, neither relate to
the posterior mode in the same manner that the complete-data posterior
mean relates to the complete-data posterior mode.

Among areas for future work are extensions of the simulation study
to (1) more priors for the distribution of the data and for use in the
Bayesian estimators, (2) investigation of the use of the linear central-
ity measure C(B)’ and (3) higher dimensions on Pk.

Between Design 1 and Design 2, nearly all types (corner, noncorner
boundary, center, and in-between) probabilities were covered in the sim-
ulation studies. We do not expect different results for different values
of the same type of probability. For example, we expect results for the
probability (1,0,0) to be similar to those for the corner probabi]ify
(0,0,1). One type of probability not covered was the middle of a side;

e.g., (.00,.51,.49). However, this probability is further from a corner
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than were the side probabilities (.00,.15,.85), (.04,.00,.96), (.00,.07,
.93), and (.18,.00,.82) that were included in Design 2. Therefore, we
expect the posterior mean to be the best estimator for a middle-of-a-

side probability for even more values of the prior parameter 8 used in

the Bayesian estimators than were for these four. The effect of the size
of the "prior-sample size" Zvj relative to the size n of the current data
sample was also thought to be adequately addressed. If the ratio Zvj/n

is much smaller, then the prior will have little effect on results. If
the ratio is much larger, then the data will have little effect. It
might, however, be valuable to Took at more types of priors. For example,
why were the results for the posteribr mode when C(E)=.O9 in Design 2

[see Figure 7.1 and Vg plot in Table 7.6] inconsistent with results for
the posterior mode for neighboring values of C(E)? Was this inconsistency
because probabilities near the center of P2 were more sensitive to use

of wrong priors than probabilities elsewhere in PZ?' [Recall the tightness
of the prior distribution of p given 245(10/3,10/3,10/3).]

To examine risk as a function of individual values of p, we used the
linear centrality measure C(E)' This measure reduces a probability in
essentially two-dimensional space to one dimension. Thus, there are many
probabilities p that map into one value of C(E)' It could be that the
values of risk for these many probabilities differ greatly. If so, then
C(E) would not be useful for measuring fisk as a function of P in partic-
ular, for describing the relationship between risk, the value of the
probability being estimated, ahd the prior used in the Bayesian estima-

tors. For those probabilities that were studied in P2’ however, C(p) was
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a very good measure, as evidenced by plots in Tables 7.4 - 7.6. Risk was
a smooth function of C(E) and for nearly all values of p that had the
same C(E)’ the risk, for a given estimator and prior, was approximately
the same. A slight exception did occur, however, for the posterior mode
and posterior mean at v for the probabilities p=(.23,.42,.35) and E=(.08,

~

.61,.31), both having C(p)=.44, when the correct prior was used in the

~

Bayesian estimators. [See Vs plots in Table 7.4 and Pg and P1o in the
v plot in Table 7A.9; however, note that the risk was the same for these
two probabilities when the perturbed and uniform priors were used. Hence,
the unequal results when the correct prior was used could be due to a poor
estimate of'risk for one of these probabilties.] Thus, there might be
other problems in using C(E) in P, that were not encountered in this study.
Would there be any problems in using C(p) in higher dimensions? A good
linear measure of p is even more important in higher dimensions, where

~

risk could otherwise be much more difficult to re]dte to P in a simple
manner, Note that, in P2, C(E) was a much better measure of p for use
in analyzing risk than was the maximum, minimum, component differences,
absolute component differences, or component-squared sums. Either the
relationship between risk and these other measures was less smooth than
that with C(E) [recall plots in Tables 7.4 - 7.6] or, unlike with C(E)’
usually more than one value of risk corresponded to one value of these
measures.
We are especially interested in how results from the simulation

study carry over to higher dimensions. However, note that several numer-

ical problems found in this study are likely to be even worse in higher
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dimensions. There will almost surely be more multiple roots of the defin-

ing.equations for the estimators. If there are more in P, , then there

K’
will be greater difffcu]ty locating the global maximum. More initial
iterative estimates will have to be tried to insure thét a11 local maxi-
.mum are found and then each of these local maximum will have to be check-
ed to see if it is the root that maximizes the likelihood. Since Pk be-
comes increasingly large as k increases, the»search for all local maximum
could be Tong. Hence, study is needed to examine the roots found by the
EM algorithm. Are there many in Pk or are all but one outside of Pk?

For incomplete trinomial data in Appendix 4D, there was one and only one
root in P2 out of three to five roots for the maximum likelihood estimate
.(asymptotic posterior mean), excluding the root (0,0,1).which was elimi-
nated upon consideration of the data. _

Since there are more components to a brobabi]ity in Pk, convergence
problems may increase. Finding an inftia] iferativé estimate that has
eacﬁ component close to the corresponding Component of p is more diffi-
cult in hfgher dimensions; e.g., trying to approximate 11 components
entails more error than trying to approximate only two components. Under

o k+1
what conditions is 01/_2 Gj from the estimated prior or, in many cases,

_ j=1 .

z.+ Lz (z,/ % z,) agood initial iterative estimate? Thus, how sensi-
D3 D*™1 jG-D D .

tive to the initial iterative estimate is convergence of the EM algorithm

in higher dimensions? How does the number of iterations increase with an

increase in the number k of dimensions? Are there more problems in higher

dimensions satisfying the conditions guaranteeing that the EM algorithm

will converge to a local maximum in Pk?
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Similarly, there may be more problems in approximating the exact
posterior mean in higher dimensions. We showed by example in Chapter 4
that in higher dimensions it will be increasingly difficult to find a re-
gion of the exact posterior mean in which an initial iterative estimate
picked guarantees convergence of the EM algorithm to within a small error
of the exact posterior mean. However, we also showed by examples in Ap-
pendix 4E that this lemma gives extremely conservative bounds on the
guaranteed-convergence region. Initial iterative estimates were picked
far outside the guaranteed-convergence sphere and the EM algorithm still
converged to the exact posterior mean within the same small error. How
much does the conservatism of the guaranteed-convergence region carry
over to higher dimensions? 1In particular, when there does not exist a
guaranteed-convergence region, are there any initial iterative estimates
for which the EM algorithm will converge to the exact posterior mean with-
in a small error? If the Taylor-series approximate posterior mean is a
poor approximation in higher dimensions, can a good approximation be found?
As illustrated in Section 2.2.4, as the number of dimensions increases, the
exact posterior moments become increasingly expensive to evaluate. Thus,
good approximations become increasingly important. Finally, when multiple
roots of the defining equation of the Taylor-series approximate posterior
mean exist in Pk’ is, as speculated, the root that is closest to the exact
posterior mean that root that maximizes the 1ikelihood function?

Finally, we assumed in this work (recall Section 1.2) that all incom-
plete data was incomplete at random. Anothervarea of study, therefdre,
concerns incomplete data where the incompleteness of an observation is not

random but instead depends on the value that would have been observed.
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