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A FIXED POINT THEOkFM FOR CERTAIN OPERATOR VALL'PI) MAPS

by U.R. g rown and N.J. O'Nr11eyI

1.	 Introduction.	 Let H be a real Hilbert space, anti let B 1 (H) denote

the space of symmetric, bounded operators on 11 width have numerical range

in	 [0,1], topologized by the strong operator topology (that i's, the topology

of point-wise convergence).	 It is well known (31, that if T c B 1 (H), then

2

there exists a unique S c 
B1 

(11)	 such that S ` _ 'i . We represent S by

T 2 . The following theorem is due to John Neuberger 12;.

Theorem A: Suppose w t7 H, P is an orthogonal projection on P, and L is

a (strongly) continuous function  f rori II into R 1 (11) .	 Let Q o = P, and set

Q	 = Q^L(Q14w)0`, . 1 = U,1,2,...	 Then	 IQ I	 runverges to an element
n+l	 n	 n	 n	 n n=o

i

Q E B 1 (11)	 for which	 = Q'w is a fixed point of P and a fiXL'd point of I

in the sense that L(z )z = ...

In this paper, under the same h ypotheses as Theorem A, we develop a

famil y of Neuberger-like results to find points z , 11 satisfying L(z)z = z

and P(2) - z. This family includes Neuberger's theorem and has the additional

property that "most" of the sequences iQn } converge to idempotent elements

of B I W). The limit operator of Theorem A need not be idempotent.

Such theorems as those above not only play a valuable role in the search

for numerical solutions of partial differential equations, but are also useful,

in the finite-dimensional case, in attacking the problem of determining the nonzero	

^I
1

i

1 Both authors received partial ,upport under NASA contract NAS-9-15000. .1
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fixed points of a function 0:R	 ?R	 In pat-Licul:lr, if	 x E P. - {0 " then

x is a fixe,i . p int of (d	 if and onl y if A(x)x = x,	 whore A is the matrix

•r
valued function defined by A(x) = (1Ixii `)• V x) • (x ).	 In fact, it follows

that this can occur if and -inly if A(x) 	 is . ► nonzero svmmetrIc idempotent

It is a pleasure to record our indebtedness to H.P. Decell for C.L . remark

immediately above, ,ind to several other nr. • mbers of the University of Houston

*Mathematics Dt-partment, particul,lrly Phillip Walker, for helpful conversations

regarding the p repnratio,i of this paper.

2.	 Fixed Points of L(z).	 Recall that an operator is posit i-_ if	 Ax,x _ 0

for all	 x ^. H, •.:hire	 is the intior product of	 11.	 'we presume familia • ity

with the standard properties of pos+itive operaturs is si t forth, for example,

in ( i j .	 B y invocation of the Spectral Thc•orL'M, or , .:l ternateI , by a Sequent ial

construction, it is possible to provide, for ,mv T 	 B
I 
(H)and anv positive

in n
integer n, a unique	 •e opr.itor	 T L'n • B 1 (I1)	 such t11at	 (I. 

l 
	 )	 = T.	 Thie; notion

extends immediately to arbitrary positive rational powers of T by defining;

Tr/s - (T1/sir	
Moreover, by again appeaIinr to the Spectral Theorem, it follows

that if	 {Q	 is a segkicnco in	 11 1 (11)	 vonver
•
,, ;in} ,tronf;ly to Q, and	 t	 is an

J 
arbitrary positive ratiun.il number, then 	 !Q 

J
L	 convergk•s strongly to Qt.

Finally, recall that the usual gti.rsi-order derined fnr positive operators by

A = B if and only if B - A is positive satisfies an additional anti -symmetry

condition, to wit: if A and B 	 ire posit ivc and commute, then A ` B ar-1

B < A forces A = B.
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Lemma 1.	 Let Q t B 1 (II) and lot << be a positive rational number other

than	 1.	 if Q = Q, then c? = Q`; that is, Q is an idempotent.

Proof:	 Let .Y	 r/s.,- tfie presumed equality is equivalent to Q r = Q s .	 without

loss of generality, assume r < s and that r is the minimal positive pow--,r

of Q which reoccur;; in the sequence n

	

{Q }.	 From the fact tt:at powers of an

operator descend in the qu.isi-order mentioned above, together with the limited

anti-s ymmetry of this relation, it follows that Q t = Q r for all integral t

between r and s.	 From 
Q r - 

hr+1 it follows that Q t = Q r for all t ' r.

(r+l)/2 2	 r+l	 2r	 r 2
If r is odd, then (Q	 ) = Q	 = Q	 = (Q )	 By uniqueness of square

r	 (r+l)/2
roots, 0 - Q
	

whence r = (r+l)/2 and r = 1. 	 If r is even, then

	

r/2 2	 r	 r 2
(Q	 ) = Q = (Q )	 whence r = r/2, which is impossible for positive r.

2
Thus r = 1 and Q = ^.

We are now ready to prove our

Theorem 2. Let w c H, let P he an orthogonal projection on 1-1, and

let	 1 ' :II—OB 1 (11) be strongl y continuous.	 Let kx,B be ;p ositive rational

numbers with Ca E (' =•).	 set Qo = P, and let Qn+l = O'L(Qnw)Qn, n = 0,1, ,...

Then { Qn 1 li=o is a decreasing sequence of elements of B
l (H) which converge

to an element Q E B 1 (11)	 such that

(1) if cz > !, then Q is idempotent and z = Qw satisfies

L(z)z = z, and Pz = z, and

r^

(2) if tt - 1-2 and (3 _ i_,	 then z = Q^w satisfies L(z)z = z and

Pz = Z.

Proof:	 Fix et	 ! 2 and	 G • 0.	 Since t?o = 1' c B 1 (II)	 and the range of	 I.
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is in	 BI
 
(If ), it follows inductively

2a _ I. Q `	 Q	 moreover, 
n	 n	 n

'Q	
1,

- L(12^ 't,1Qnx,x	 (1 - I.(()^lw))

that	 Q r^	 BI(H)	 for all	 n.	 Since

Q,+1)x,x> - -(Qn l 	 Qn1.(Q^w)OR)x,x>

(t	 (1	 J
Q

n 
x,Q x > .	 Thus, sirlre	 i - L(Q 

n 
w)	 0, it

n 

follows that Qn+1 = Qn`t	 Hence we have

(*)	 Q	 < ti	 0 , n = 0,1,2,..:
n+l	 n

In particular, the sequence IQ n ) is monotonically decreasing; in the (operator)

interval :rom 0 to I. 'Thus we have by (3, p. 3181 that the sequence {0 )
it

converges strongly to an element	 B (H), whence {Q t ) converges to QaB,
	 n

y	 ,:
and { Q ` ) converges to Q'. Since I. is continuous and operator multiplication

n

is jointly continuous in the strong topology on B 1 (11), we have by uniqueness

of limits that Q	 Qn110 bw)Q 1 . Also, from (*) and the closed graph of the

relation	 we have 0 < 
Q_'1 

_ 11. Thus, since Q and 
Q t 

commute, we

have that Q = Q 2a . Moreover, since P = 0	 we have PQ =
n	

Q	 whence
o	 n

PQ ( = Q 	 for al l posit ive rat ion,il y.

(i) Suppose ^t > t4.	 By lemm.t 1, Q = 0 -', Cron which it follows that

Q = O r for all positive rational 	 y, and, in particular, Q = QL(Qw)Q.

Let z = Qw, and fix x ^ ll. Then <Qx,x- _ <QL(z)Qx,x> _ <L(z)Qx,Qx>,

and since Q 
2 

= Q, it follows that 0 = , Qx,Q ,' • - <L( 7 )Q X ,Qx> _ <(I - L(z))Qx,Qx>,

IS
Therefore, since I-1.(z) and hence	 (1-1.(z))` belong to B I (11), we have that

Q = 1.(z)Q.	 In particular,	 _ Ow - L(z)Qw = L(;!)z.

(ii) Suppose	 1 -t= ':, 
	

tw	
i..	 15

	

_ ^.	 Let z = Q ;	 h an Q = Q`L(z)Q` from

ti
which <Qx.,x -, _ <Q'L(z)Q'x,x- = L(z)Q'X ' O X>.	 Since -Qx,x> = <Q x,Q x> also,

we have 0 = <Q^^Ix- L(z)Q^-x,Q'x> _ <(I-L(z))Qt X,()
- X".	 Now, as in (i), it follows

1 J

I i

1
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that Q = i.(z)Q	 In particular,	 z = (,'w = Q Q	 w = 1.(z)Q Q	 w =

1.(z)Q 6w = L(z)z.	 That Pz - z	 in hot!I cases is obvious from the fact that

PQY = QY for all positive rational y, This completes the proof.

Given a nonzero element z c if 	 that 1.(z)z = z, it is reasonable

to ask if our sequences are able to produce z. We note now that, by proper

selection of w and P, z is attainable from each of our sequences.

Specifically, if a and b are fixed as in the theorem, then let w = z

and let P be the orthogonal projection of H onto the like through z.

From the construction of the sequence rQ11), Q 1 = PL(z)P, whence Q l = P.

If follows immediately that Qn = P for all n and thus Q = P. Hence

Z = Qw = Pw (or z = Q',w = P ew = Pw) is the fixed point yielded by our theorem.

While it is not reasonable to expect the praticioner to guess P so

accurately, these remarks do attach the virtue of theoretical completeness to

these processes.

3. F,xamples.	 (1) Suppose that ti	 i and that Y, d t; [^, W) such that

neither of Y, 5 is an integral multiple of the other. We show that for fixed

w e H and P, the Q and z obtained by using; Y for B need not be the

same as those obtained by using J, for 3. Moreover, the limit operator Q in

this case need not be an idCMpotent, although it can be one. Assume d < Y.

Let k be the least positive integer such that Y < i,	 Note 2 ^ k and

( k- 1)5 < Y. Let a he any number in the interval (0,1). Then

akb < aY < a (k-1)6 < c5
a.
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Def ine L: R	 (0, 1)	 by

1 ,.	 x _` aY

	

L(x) =	 i (l-a) / (aY-a(k-1) ) ]. (x-a r ) + 1	 aY < 	 = 
4 (k 1)d

(k-1)d
a	 a	 _ X.

Set Y = 1, w = 1. Us iuF y for G in the theorem y ields Qo = 1 and Q 1 = a.

Inductively, Qn - a, so that Q = a.	 Hence z = QYw = "1 T• 1 = a }	 in this case.

On the other hand, using ^S for R gives Qo = 1, Q 1 = a, but Q,^ = a ,...,Q k = a .

Moreover, Q = a 	 for n _ k, h<^nce Q = a 	 acid z = Qw = ak ` • 1 = ak6 . By
n

the choices of a and k, the exponents	 and b yield distinct operators

and distinct fixed points. Moreover, neither of the limit operators determined

by Y and b is idempotent.

(2) Suppose that n > •'2 i so that any limiting Q obtained through the

tlieorem is idempotent. l.e shuw for fixed w	 H and P, that the resulting

limit idempotents mz}- vary with the choice. of R, ns ma y the fixed points

determined in this manner.	 Vo this end, let (L	 I	 in the theorem.	 Let

L:R -Ili l (R 3 ) be as fulIows: all image matrices are diagonal, where 	 0 0 wiI'_

0 y 0

0 0 z

be represented as diag(x,v,z).	 We require L(1,1,1) = di1g(1,'4,1),

L(1,'j,1) _	 1,0,1:.,1) = dia;(' ,'_,1), 1 (l,v,z.) = diag(l,y,z)	 for

(Y,z) E- (0A]	 [0,!^],	 and	 L(x.y,l) = diag(x,y, l )	 for	 ( x , y ) t ( 0 ,'1) " ; .'<;•

The extension theorem of 'lietze (e.f. (11) permits a continuous extension of

L to all of R3 into the diagonal matrices who s e entries are in the interval

(0,1).	 Let' P = 1 3 ,	 the identity operator, ,end let w be the vector

If S _ Vic. _i brief examination of the defining sequence of Q
n
's in Theorem 2



— "— i d

7

shows that Lhe limit idempc,tent Q - diag(1,0,0),	 and	 = Qw = (1,0,0).	 On

the other hand, if	 t1 = 1, then limit Q = diag(0,0,1),	 and	 z _ (0,0,1).

(3) With notation as in (?), supposes	 = 1	 is fixed.	 [tie show for

fixed w E H and P, that the resultin g; limit idempotunts may vary with	 E,

as may the fixed point- determined in this manner. Letting P = I 3 and

w - (1,1,1)	 as in (2), we rcduire this time that 	 L(1,1,1) = L(1,'-,1)

diag(1, 11,1), I.(1,1/8,1) = 1.(1,0,0) = diag(1,0,0), 	 and	 L(1,1/32,1) = L(0,0,1)

diag(0,0,1). Extending as before, we have a continuous L defined on R 3 into

the diagon;ii matrices with entries in 	 [O,1].	 For any choice of a,

Q 1 = diag(1,4,1).	 If	 u =	 0,' = diag,(l,l/8,l), Q 3 = ^n = Q = diag(1,0,0),

z = (1,0,0).	 on the other hand, if a = 2,	 then Q, = diag(1,1/32,1), 
Q 3	 Qi
	 ^I

Q = diag(0,0,1), z = (0,0,1).

It is easy to seO that it siightly mere complicated definition of 1, wOuld

yield a single example incorporating the features of all three prior illustrations.
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