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A FIXED POINT THEOREM FOR CERTAIN OPERATOR VALUED MAPS

by D.R. Brown and M.J. O'Mnlley1

1. Introduction. Let H be a real Hilbert space, and let BI(H) denote
the space of symmetric, boundéd operators on H which have numerical range
in [0,1], topologized by the strong operator topology (that is, the topology
of point-wise convergence). It is well known [3], that if T ¢ BI(H)' then
there exists a unique S ¢ Bl(“) such that 52 = T. We represent S by

1
T?. The following theorem is due to John Neuberger [2].

Theorem A: Suppose w © H, P 1is an orthogonal projection on H, and L is
a (strongly) continuous function from H into Bl(“)' Let Q =P, and set
4

1 @
L(de)Q‘ asB,0.2..; : Than N} converges to an element
n n n n=o

n,

Qn+1 =1
1
Q € Bl(H) for which 2z = Q*w is a fixed point of P and a fixed point of L

in the sense that L(z)z = z.

In this paper, under the same hypotheses as Theorem A, we develop a
family of Neuberger-like results to find points 2z + H satisfying L(z)z = 2z
and P(z) = z. This family includes Neuberger's theorem and has the additional

"

property that "most" of the scquences {Qn} converge to idempotent elements
of BI(H)' The limit operator of Theorem A need not be idempotent.
Such theorems as those above not only play a valuable role in the search

for numerical solutions of partial differential equations, but are also useful,

in the finite-dimensional case, in attacking the problem of determining the nonzero

1Both authors received partial support under NASA contract NAS-9-15000.



fixed points of a function U:Rn——-9Rn. In particular, if x € Rn—{0¥, then

x 1s a fixed point of @ if and only if A(x)x = x, where A is the matrix

'valued function defined by A(x) = (llxi:_l)'ﬂ(x)'(xT). In fact, it follows
that this can occur if and only if A(x) 1is a nonzero symmetric idempotent.
It is a pleasure to record our indebtedness to H.P. Decell for the remark
immediately above, und to several other members of the University of Houston
Mathematics Department, particularly Phillip Walker, for helpful conversations

regarding the preparatiou of this paper.

2. Fixed Points of L(z). Recall that an operator is positive if <Ax,x> 2z 0

for all x € H, where , > is the inner product of MH. We presume familiarity

with the standard properties of positive operators as set forth, for example,
in [3]. By invocation of the Spectral Theorem, or, alternately, by a sequential

construction, it is possible to provide, for any T « Bl(") and anv positive

integer n, a unique operator Tl'n 3 BI(H) such that (TI/n)n = T. This notion

extends immediately to arbitrary positive rational powers of T by defining

r/s _

T Tl/s)r.

(

Moreover, by again appealing to the Spectral Theorem, it follows

<

that if {Qj} is a sequence in B (M)  converging strongly to Q, and t 1{is an

i 3
arbitrary positive rational number, then JOj' converges strongly to Q.

Finally, recall that the usual quasi-order detined for positive operators by
A £ B if and only if B - A is positive satisfies an additional anti-symmetry

condition, to wit: if A and B are positive and commute, then A £ B and

B < A forces A = B.



Lemma 1. Let Q ¢ Bl(n) and let  «« be a positive rational number other

s |
than 1. 1f Q(I = Q, then 0O = Q"; that is, Q 1is an idempotent.

Proof: Let « = r/s; the presumed equality is equivalent to Qr B QS. Without
loss of generality, assume r < s and that r is the minimal positive power
of Q which reoccurs in the sgquence {Qn}. From the fact that powers of an
operator descend in the quasi-order mentioned above, together with the limited
anti-symmetry of this relation, it follows that Qt = Qr for all integral t

+
between r and s. From Qr = Qr 1, it follows that Qt = Qr for all ¢t 2 .

/2 2
If r is odd, then (Q(r+1)’“)2 = Qr+1 = er = (Qr)“. By uniqueness of square
1)/
roots, of = Q(r 1)/2, whence r = (r+l1)/2 and r =1. If r 1is even, then
(erz)2 = Qr = (Qr)z, whence r = r/2, which is impossible for positive r.

=
Thus r=1 and Q= 0".

We are now ready to prove our

Theorem 2. Let w € H, let P be an orthogonal projection on H, and
let L:H———)BI(H) be stronglv continuous. Let «,8 be positive rational

0 (i 8 (o1
( ~ Ik o = = : =
numbers with a € [%,~). Set Qo P, and let Qn+1 QnL(an)Qn, n 032

Then {Qn}

B is a decreasing sequence of elements of BI(H) which converge

to an element Q € BI(H) such that
(1) if a >, then Q 1is idempotent and 2z = Qw satisfies
L(z)z = 2, and Pz = z, and

]
(2) if a =% and B > %, then z = Qw satisfies L(z)z = z and

PR e 3,

Proof: Fix a = ! and B - 0. Since Qo =P ¢ nl(n) and the range of L



is 1in Bl(“)' it follows inductively that Qn 3 Bl(”) for all n. Since

a2 1 Qlu < Q_; moreover (02“ Q Y. %> ® (QQJ QQI(OSh)Qa)x 2
. o . , = = - — ‘. y =
£ ’ n - n’ ’ n e ’ a = 2 " =

= | B . o B a o x 8 '
sQn(I - L(Qnu)an,x" = (I - L(an))an.an>. Thus, since 1 - L(an) 20, 3¢

>
follows that Q < Y. Hence we have
n+l n

hA

*) 8 50

In particular, the sequence {Qn) is monotnnicull& decreasing in the (operator)
interval /rom O to I. Thus we have by [3, p.318] that the sequence {Qn}
converges strongly to an element 9 ¢ BI(H). whence {Q;} converges to Qa

and {Qi} converges to Qf. Since L 1is continuous and operator multiplication
is jointly continuous in the strong topology on Bl(“)' we have bv uniqueness

of limits that Q = QQL(QBW)QQ. Also, from (*) and the closed graph of the

) 2
2o . a
relation 2, we have 0 <€ (Q < 0. Thus, since Q and Q° commute, we

have that Q = Qza. Moreover, since P = Qo' we have PQn = Qn. whence
PQY = Q' for all positive rational Y.

(1) Suppose «a > 's. By lemma 1, Q = 02, fror which it follows that
Q= QY for all positive rational Yy, and, in particular, Q = QL(Qw)Q.

let z = Qw, and fix x € H. Then <Qx,x> = <QL(z)0x,x> = <L(z)Qx,Qx>,
and since Q2 = Q, it follows that 0 = <Qx,Qx> - <L(2)Qx,Qx> = <(I - L(z))Qx,Qx>.
Therefore, since I-L(z) and hence (l-L(z))li belong to Bl(H), we have that
Q = L(z)Q. In particular, =z = Ow = L{z)Qw = L(2)z.

-

2 1 1
(11) Suppose a =%, 8 > '5. Let =z Q!w: then (O = QiL(z)Qs from
o] N, o

x,Q1x> also,

i 1 | %
L(2)0°x,x> = <L(2)Q*x,0%x>. Since <Qx,x> = <Q

b

< 1
X,Q%> = <(I-L(z))Qix,Q%x>. Now, as in (i), it follows

which <Qx,x> = <Q
's

we have 0 = <Q

x-L(z)Q



1

' b g

4 B} L Al
= L(z)Q°. In particular, z = Qw = Q’QB o= L(z)Q’Q' =

~

that Q
L(z)Qew = L(z)z. That Pz = z in both cases is obvious from the fact that

Y for all positive rational Y. This completes the proof.

Given a nonzero element 2z € H such that L(z)z = z, it is reasonable
to ask if our sequences are able to produce z. We note now that, by proper
selection of w and P, 2z 1is attainable from each of our sequences.
Specifically, if a and £ are fixed as in the ghcorcm, then let w = z
and let P be the orthogonal projection of H onto the line through z.
From the construction of the sequence (Qn). Q = PL(z)P, whence Q =P
If follows immediately that Qn = P for all n and thus Q = P. Hence
z=Qw="Pw (or z = QBw = P8w = Pw) is the fixed point yielded by our theorem.
While it is not reasonable to expect the praticioner to guess P so

accurately, these remarks do attach the virtue of theoretical completeness to

these processes.

3. Examples. (1) Suppose that « =1Y% and that vy, 6 € [%,®) such that
neither of Yy, § 1is an integral multiple of the other. We show that for fixed
weH and P, the Q and 2z obtained by using Y for B need not be the
same as those obtained by using ¢ for 8. Morecover, the limit operator Q in
this case need not be an idempotent, although it can be one. Assume § < Y.

Let k be the least positive integer such that Yy < k. Note 2 g k and
(k-1)8 < y. Let a be any number in the interval (0,1). Then

akG &t (-a(k-l)d < 35.



Define L:R—>[0,1] by

O % £ aY

L(x) = [(l-a)/(aY_a(k-l)é)].(x_aY) T S e (k=16

(k-1)¢
a :

Set P=1, w=1. Using Y for £ in the theorem yields Qo 1 and Q1 = a.

Inductively, Qn = a, so that Q = a. Hence =z = Qyw = aY'l =a' in this case.
: : 2
On the other hand, using & tor £ gives Q0 = 1, Ql =a, but Q, = a ""'Qk = ak.
: g &
Moreover, Qn = ak for n > k, hence Q = ak ikl gw ka = ak”'l = aké. By

the choices of a and k, the exponents Y and ¢ yield distinct operators
and distinct fixed points. Moreover, neither of the limit cperators determined

by Y and § 1is idempotent.

(2) Suppose that a > '3, so that any limiting Q obtained through the
theorem is idempotent. We show for fixed w ¢ H and P, that the resulting
limit idempotents may vary with the choice of £, as may the fixed points
determined in this manner. lo this end, let @ = 1 1in the theorem. Let

L:Rq~——9Bl(R3)be as follows: all image matrices are diaponal, where will

x 00
0 y O
0 0 -2
be represented as diag(x,v,z). We require L(1l,1,1) = diag(l,%,1),

L(1,%,1) = diag(l,%,%), LQ1,%,1) = diag(%,%,1), L(1l,y,z) = diag(l,y,z) for
(y,z) € [0,%] x [0,%], and L(x,y,1) = diag(x,y,1) for (x,y) ¢ [0,'5] x [ ,%s].
The extension theorem of Tietze (c.f. [1]) permits a continuous extension of

L to all of R3 into the diagonal matrices whose entries are in the interval
(0,1]. Let P = 13, the identity operator, and let w be the vector (1,1.1):

If B =%, 2 brief examination of the defining sequence of Qn's in Theorem 2
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shows that the limit idempotent ( = diag(l1,0,0), and 2z = Qw = (1,0,0). On

the other hand, if § = 1, then limit Q = diag(0,0,1), and =z = (0,0,1).

(3) With notation as in (2), suppose 8 = 1 is fixed. We show for
fixed w € H and P, that the resulting limit idempotents may vary with a,
as may the fixed points determined in this manner. Letting P = 13 and
we= (1,1,1) as in (2), we rcqhirc this time that E(1,1.,1) = L{l,%.,1) =
diag(1,,1), L(1,1/8,1) = 1(1,0,0) = diag(l,0,0), . and L(1,1/32,1) = L(0,0,1) =
diag(0,0,1). Extending as before, we have a continuous L defined on R3 into
the diagonai matrices with entries in [0,1]. For any choice of «a,
Ql = alaatl 1) 1f G-=1; Q2 = diag(1,1/8,1), Q3 = Qn = Q = diag(1,0,0),
z = (1,0,0). On the other hand, if a = 2, then Q2 = diag(1,1/32,1), Q3 = Qn =
Q = diag(0,0,1), z = (0,0,1).

It is easy to sce that a slightly more complicated definition of L would

yield a single example incorporating the features of all three prior illustrations.
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