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NOTATION 

A parameter appearing in equation (B3) 

b impact parameter 

B parameter associated with detailed balancing (eqs. (B5) and (B6)) 

c molecular speed 

most probable molecule speed, _-a 

c, most probable molecule speed at the initial temperature T1 . 

C exponent in selection rule (eq. (7)) 

d strength associated with intermolecular potential 

E kinetic energy 

Er rotational energy, kOrJ(j + 1) 

f distribution function 

g relative speed 

I moment of inertia 

j rotational energy level 

jo average energy level where OrJo(jo + 1) Te 

k Boltzmann constant 

m magnetic quantum number; also molecular weight 

Mr momentum, 2r 

N number of simulated molecules within the cell 

n number density 

P rotational transition probability 

P modified rotational transition probability 

Q collision cross section 

R intermolecular distance 
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t time
 

T temperature
 

u x component of velocity
 

v y component of velocity
 

V interaction potential, or velocity
 

w z component of velocity
 

a index of power associated with point centers of repulsion model,
 
(eq. (6)), V(R) = d/R6 .
 

A rotational level jump
 

(r characteristic rotational temperature
 

A relaxation time, (eq. (16))
 

p reduced mass
 

V collision frequency
 

a effective collision diameter
 

T characteristic collision time based on equilibrium translational
 
temperature, 1/(nz7rc 2 co)
 

X deflection angle defined in equations (2) or (10).
 

Q solid angle
 

Subscripts:
 

e equilibrium
 

i,j rotational states
 

max maximum value
 

r rotational
 

t translational
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Superscript
 

vector
 

after
 

(k) jth momentum
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SUMMARY
 

Theoretical studies of translational and rotational energy relaxation in
 
diatomic gases are described. The direct simulation Monte Carlo method is
 
employed to solve the Boltzmann equation for a rotationally excited highly
 
nonequilibrium gas. The gas investigated is homonuclear diatomic nitrogen,
 
and the semiclassical model of Itikawa is incorporated for the transition
 
probability that describes rotation-translation energy interchange.
 

The details of energy interchange between the translational motion and
 
the rotational energy levels of the gas are examined for spatially uniform
 
flow without boundary interactions (the "box" calculation) with a variety of
 
initial conditions. The results show:
 

1. The assumption that relaxation occurs via-successive local Maxwellian
 
velocity distributions, which is a commonly used basis for finding approximate
 
solutions of Boltzmann equation, is not valid for gases that are initially in
 
highly nonequilibrium states. This is especially true for initial conditions
 
that involve low translational and high rotational temperatures.
 

2. The energy distributions for such transitions show bimodal (or double
 
peak) relaxation patterns; the secondary peak ("satellite peak") appears around 
the Maxwellian elastic peak in the velocity distribution early during the
 
relaxation period. The secondary peak is due to inelastic collisions and is
 
analogous to the rotational Raman effect accompanying Rayleigh scattering.
 

3. The rotational energy distribution also shows bimodal relaxation
 
effects: In addition to thermal equilibrium Boltzmann peak, a weak peak also
 
appears at the high rotational energy levels. When the rotational energy
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distribution is a delta function, however, relaxation proceeds only as a
 
single-peak distribution. One, therefore, concludes that single- or double
peak relaxation depends on the type of initial distributions assumed.
 

4. Relaxation of the velocity distribution to equilibrium Maxwellian
 
occurs relatively fast while the rotational energy relaxes more slowly. The
 
relaxation time depends not only on equilibrium temperature, but also on
 
initial velocity and rotational energy distributions.
 

Close correlation of the relaxation between the box models and fluid
 
flows, such as, sound absorption, shock wave, and free-jet expansion experi
ment are described. Also presented are brief preliminary results of a shock
 
wave showing translational and rotational energy relaxation structure.
 

A 16-mm movie film displays examples of the relaxation effects of the
 
"box" model with a variety of initially specified velocity and rotational
 
energy distributions.
 

INTRODUCTION
 

A knowledge of internal energy transfer mechanisms at the molecular level
 
is valuable for an accurate understanding of many important nonequilibrium
 
problems that occur in high-speed gas dynamics, acoustics, laser transmission,
 
detonation, combustion, pollution, and atmospheric physics. For example,
 
collision-induced rotational transitions play a major role in establishing the
 
population inversions leading to gas-dynamic laser action, and also in evalu
ating the effects of highly nonequilibrium energy transfer in rarefied gas
 
flow about spacecraft entering the planetary atmosphere.
 

In the present paper, several new and important results are presented on
 
internally excited translation-rotation energy relaxation. These results are
 
obtained by solving the Boltzmann equation by the Monte Carlo direct simula
tion method, which previously has been applied successfully to monatomic
 
(without internal rotational relaxation) gas flow problems (refs. I to 3).
 
An important feature of the simulation method is that it provides insight into
 
the effects of collisional relaxation at the microscopic level. In particular,
 
the instantaneous internal energy distributions can be continuously observed
 
throughout the relaxation processes. To ensure that these distributions be
 
meaningful, however, it is essential that the rotational transition probability
 
function, used in the method, display certain features; namely, (1) probability
 
must be conserved, (2) probabilities relating transitions to and from pairs of
 
definite states must satisfy "detailed balancing," and (3) probabilities, when
 
used in the simulations, must yield the correct asymptotic behavior of the dis
tributions (refs. 4 and 5).
 

The Monte Carlo method itself can be described briefly as follows (see
 
refs. 2 and 3 for details): The flow is determined by following a statistical
 
sample comprising several thousand molecules that are allowed to collide with
 
each other. The phase space coordinates that involve trajectory and rotational
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variables are known at every instant. These coordinates are allowed to change 
only during a collision; the modeling of these intermolecular encounters is, 
of course, the essential part of an accurate simulation. To account for these 
sampling encounters, a-molecule and a near neighbor are each selected at 
random as are also their impact parameter and relative orientation angles 

all in a manner representative of typical molecules undergoing similar 
encounters. They are accepted for a collision or rejected according to a 
selection rule that is dependent on the collision cross section. Since the 
initial coordinates, that is, relative velocity, impact parameter, orientation
 
angles, and pair of rotational quantum states, are known, the final rotational
 
quantum states can be computed. This involves computing the transition prob
abilities of all quantum states that are accessible from the known initial
 
states and then selecting randomly from this resulting distribution.
 

The procedure used here for the "translational" interactions parallels
 
other investigations (refs. 1 and 3) which-treat of monatomic gases only. The
 
procedure is different, however, from those investigations that have treated of
 
translation-rotation interactions. All investigations are easily categorized
 
under the following descriptions: (1) semiempirical, (2) classical, (3) semi
classical, and (4) quantum mechanical. Within these categories, the semi
empirical treatment includes an energy sink (ref. 6) and rough spheres and
 
loaded spheres (ref. 7) to model the translation-rotation collision processes.
 
While such methods do not appear to be satisfactory for highly nonequilibrium
 
flow, they adequately describe near equilibrium steady flows. The classical
 
models (refs. 8 and 9), although consistent with the classical direct simula
tion Monte Carlo procedure used here, necessarily include approximations to
 
make the models tractable for studies of the type considered in this report.
 
The approximations yield appropriate macroscopic behavior for a nonequilibrium
 
example, but do not adequately provide limiting microscopic behavior. In
 
particular, individual molecular encounters that violate energy and momentum
 
conservation can occur.
 

Semiclassical methods (refs. 4, 5, and 10) appear to have physically
 
realistic bases. The simplified model of Pearson and Hansen satisfies limit
ing equilibrium behavior, but, during a calculation, the model causes a drift
 
in the answers that violates energy equipartition (ref. 4). Itikawa's model
 
is more rigorously founded, allows for treatment of molecular collisions (ref.
 
5), and also satisfies conservation of probability and appropriate detailed
 
balancing. Itikawa's model, therefore, satisfies the desirable characteristics
 
of the ideal model that we described earlier; our investigations described in
 
this paper depend on this model. Our intent, then, isto extend its applica
tion to even more general problems.
 

As regards the fourth category of the model (i.e., quantum mechanical
 
models), the author is not aware that truly quantum mechanical results are yet
 
viable. Such descriptions are difficult to obtain analytically, and to apply.
 

In this paper, we treat translation-rotation interactions for a spatially
 
uniform gas far removed from solid boundaries. We are concerned only with a
 
basic understanding of translation-rotation relaxation behavior in highly
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nonequilibrium situations. In fact, it is our belief that the Monte Carlo
 
method is best suited for studies of the type described in this paper.
 

The results presented are based on calculations involving three differ
ent basic types of initial conditions: (1) equilibrium, (2) nonequilibrium
equipartition (i.e., equipartition is satisfied, but distributions are
 
perturbed), and (3) nonequilibrium-nonequipartition (i.e., both the equiparti
tion and the distributions are perturbed). Also included are the results of
 
monatomic gas simuiations (rotational relaxation effects frozen) to assist com
parisons with coupled translation-rotation relaxation simulations. To further
 
assist the understanding of the Monte Carlo method, the essential mathematical
 
relations are also given in this report.
 

FORMULATION AND PROCEDURE
 

The essence of the Monte Carlo procedure is described briefly in the
 
Introduction. Introduced in this section are several analytical relations
 
that assist both the understanding and use of the method. Appendices A and
 
B provide supplementary analysis to the procedure and appendix C is a listing
 
of the computer program that was used in the procedure.
 

Governing Equations
 

The study described in this paper concerns the temporal and spatial relaxa
tion of the velocity and rotational energy state distributions that character
ize a statistical sample representing several thousand molecules. If we assume
 
that the molecular distributions themselves are diagonal and independent of the
 
degenerate rotational m substates, the Boltzmann equation (or Wang, Chang
 
and Uhlenbeck equation, see ref. 11) that relates the temporal and spatial
 
behavior of the distribution functions f. can be written
 

a(nf +f ft2r (2i + l)(2j + i) f f 3V, (1) 

at + vi " f =. (2' + 1)(2j' + 1) j' -iiJ 
i t 4ij 

where n is the number density, fi = fi (x, V, t) is the distribution func
tion which depends on time t, position 5t, velocity V,and rotational state
 
i, da/d9 is the differential cross section corresponding to solid angle Q.
 
External forces are assumed to be absent. The Monte Carlo procedure is used
 
to effectively solve this equation by means of a probabilistic sampling pro
cedure. Implicit within the equation and procedure are the conventional fluid
 
dynamic conservation laws (i.e., conservation of mass, momentum, and energy;
 
see, e.g., ref. 11).
 

Of greatest interest for the study given here is the "box" calculation
 
wherein the gas is spatially uniform, has constant density, and is stationary;
 
that is, the gas is entirely contained within an "imaginary box" that has unit
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volume and noninteracting boundaries (sketch (a)). The procedure, in this case,
 
concerns interactions in a closed system. Energy conservation is applied
 
directly (i.e., exact energy conservation is imposed on the interacting pairs
 
of molecules) and "random sampling" ensures that, over long periods of time,
 
the number of molecules contained within the box remain constant. These con
cepts are treated in greater detail in the subsequent discussion.
 

MODEL MOLECULE 

o *o~o~oo BACKGROUND MOLECULES 
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Sketch (a)
 

The "box" calculation has general utility since such a calculation, wnen 
started with an appropriate set of initial conditions, provides insight into 
mechanisms in the more general flow situation as found in sound absorption, 
normal shock wave, or free jet expansion experiments (see table 1). In addi
tion to the "box" calculation results, a simulation is also given for steady 
one-dimensional shock wave flow. This result is preliminary and demonstrates 
the capability of the method for simulating more complicated flows. 

Collision Parameters
 

The essence of an accurate simulation is the random or probabilistic
 
sampling used to select the interacting (colliding) molecular pairs, to deter
mine whether a reaction occurs, to find the resulting "states," and then to
 
advance the time interval for the next collision, and so on. To provide
 
insight on this entire collision process and to arrive at a criterion for
 
evaluating certain of the parameters required" to define a collision, it is
 
worthwhile to briefly review the classical representation of the equivalent
 
process, and to observe how such relations depend on intermolecular potential.
 

A classical representation (ref. 7, ch. 8) is given by'
 

X(b,g) = iT - 2 T (b dR/R 2 )/rl - (bfR) 2 
- V(R)f(l/2)pg 2 (2)

RC
 /
 

Q- (g) = 2w f (1 - cosY x)b db (3) 
0 

where V(R) is a spherically symmetric intermolecular potential, X(b,g) is
 
the encounter deflection angle, which depends on impact parameter b and on
 
g relative velocity of approach, p is the reduced mass, Rc is the distance
 

of closest approach, and Q(U)(g) is the £th "momentum" transport cross sec
tion, which also depends on relative velocity (for studies reported here,
 
£ = 1). The collision frequency, v, is then given by
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V= nQU)g (4)
 

With this relation, the collision time, At, between encounters and the elapsed
 
time, t, are given, respectively, by
 

At =N2v
 
(5)


t = Ati
 

where N is the number of particles in the "box."
 

Collision.-For cases in which the intermolecular potential is inversely pro
portional to the power, 6, of distance between colliding molecular pairs, we
 
can readily calculate a frequency ratio (e.g., ref. 5)
 

gmax) /(6)
 

where Vmax and gmax are the maximum possible values in a cell. The dimen
sionless ratios of frequency and relative approach velocity are related through
 
6. If the collision process can be represented by symmetric inverse power-law
 
potentials, then equation (6) is a valid representation for all collisions
 
and can be used as a criterion to decide whether an "encounter" is a "collision."
 
The representation, therefore, serves as a "selection rule" for encouhters.'
 

For the Monte Carlo results displayed in this report, we have arbitrarily
 
picked intermolecular potentials with 6 = 4 (i.e., '"axwellmolecules").
 

Of all encounters that are collisions, we must further categorize those
 
which are elastic from those which are inelastic (i.e., those which yield
 
rotational transitions).
 

Inelastic collision.-Not all collisions result in a rotational transition.
 
For example, some interacting pairs nay have insufficient relative energy to
 

'Actual intermolecular potentials have a more complex behavior than the
 
idealized 6 potential upon which equation (6) is based. Relations equiv
alent to equation (6), but based on more accurate representations for the
 
molecular potential, can be found in reference 12. The expressions were
 
derived recently and, hence, were not available for the simulations described
 
in this paper.
 

6
 



induce a transition. To separate such events from those which result in
 
rotational transitions (i.e., inelastic collisions), we introduce a relation
 
similar to that given above but with a different value for the exponent,
 
that is,
 

(7) 
max i kgmax 

where the subscript i denotes inelastic collision. The appropriatevalue to
 
use for Ci, however, is based on simulation results. We require that simula
tions, which start with Maxwell-Boltzmann distributions that satisfy equiparti
tion, must yield nondrifting results. A value of Ci = 0.431 yields this
 
desired behavior. The procedure used to evaluate Ci is also described in
 
reference 5, but in greater detail.
 

Collision Dynamics
 

In the previous section, the parameters required to determine the occur
rence of a collision are given. In this section, we describe the procedure
 
for finding the trajectories after a collision. A collision, of course, also
 
can be accompanied by rotational transitions in either or both colliding pairs
 
of molecules. These rotational transitions can also petturb the particle
 
trajectories. In this section, we describe the relations that ensure colli
sion symmetry (i.e., a collision is invariant with its inverse) and that enable
 
rotational transitions to be more precisely determined.
 

The relative velocity and impact parameter after a collision are obtained
 
by knowing the onset energy and momentum. The relations are given by
 

(g')2 = g2 _ (E, - E ' -E E) (8)

11 11 ii r2 ; 

and 

[gb - (M'I - M1r + M,2 -M2)/J] 
b' = g, (9) 

where Er and Mr are the rotational energy and momentum before a collision
 
and a prime distinguishes the corresponding values after a collision. We
 
assume that rotational transitions only slightly perturb the relative velocity
 
and impact parameter.
 

The deflection angle, given by equation (2), is actually dependent on the
 
functional behavior of the intermolecular potential, but, for finding the
 
limiting trajectories, we assume that the infinite-rise potential (i.e., a
 
"billiard ball" collision) is adequate., The corresponding deflection angle is
 
given by
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x(b) = 2 C-1(%) (10) 

where a is the effective diameter of the rigid-spherical molecule. The 
slightly perturbing effect of inelastic collisions resulting from the rota
tional transitions is accounted for by the following average:
 

(b) = X(b) + y(b') (11) 

X~b 2 (1 

To completely specify a collision, however, it is also necessary to give the
 
orientation angle E, which references the collision plane with respect to
 
some arbitrary coordinate plane (see, e.g., ref. 13, p. 36). The velocity
 
components before and after the collision can be related (e.g., ref. 13)
 

g (12a)
gx = cos - _ g.cos s snX) 

gy = 8L[g cos + (gg o + g gz sin s) sin X/vrg l (12b)
03 g9 y zxj 

, = 9 'cos cos - g g (/F9 X + (g g s sin 0) sin (12e) 
g Lz z y x -

We impose conservation of linear momentum to find the resulting velocity com
ponents after a collision. There results
 

u2 2 (ul +u 2 + g)
 

1 + ')v (13a)
 

W2 - (W(W1 2 +v2 = 2 p+ w2 + gy)z
 

u = u? -g
1 2 gx 

v' = - ' (13b)

1 2 -y
 

W1 = w2 gz
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Rotational Transition Probability
 

To describe inelastic collisions, also needed, in addition to the trajec
tory parameters introduced in the previous sections, are expressions which
 
relate the probability of transition between initial and final rotational
 
energy states (i.e., the rotational transition probabilities). As was pointed
 
out in the introduction, the semiclassical probabilities derived by Itikawa
 
(ref. 5) are used. A brief description of their properties follows.
 

We describe an interaction where rotational transitions occur from levels
 
(i,j) to (1',j') by 

N2 (i) + N2 (j) N2 (i') + N2 (J') (14) 

The collision trajectory itself, as described earlier, is determined classi
cally: Given an analytical relation for the trajectory, the amplitude of the
 
rotational transitions can then be determined from quantum mechanical con
siderations. By appropriately combining the trajectory with an expanded set
 
of Schroedinger equations (e.g., see ref. 5), the amplitude of the rotational
 
transitions can be obtained by solving a set of coupled differential equations.
 
In order to reduce the rank of the system, the effective potential method of
 
Rabitz (ref. 14) is employed. The method eliminates the dependence of the
 
interaction matrix on the magnetic quantum number, m. The resulting coupled
 
set of ordinary differential equations are then solved by using the exponen
tial approximation (see ref. 15). What is important is that the method treats
 
an interaction regardless of its "strength," and, in addition, allows for the
 
likelihood of all transitions, including those with multilevel jumps. The
 
simultaneous transitions for both colliding molecules (i.e., rotation-rotation
 
as well as rotation-translation) are also taken into account. The precise
 
formulation used is given in reference 5.
 

Some important properties of the probabilities that pertain to the Monte
 
Carlo simulation method are described briefly in appendix B. If a collision
 
is inelastic as selected by equation (7), the transition of pair's molecular
 
states are then determined by the Itikawa's rotational transition probabilities.
 

RESULTS AND DISCUSSION
 

In this section, Monte Carlo simulations are described for a stationary
 
homogeneous molecular gas (i.e., for a "box" calculation). The simulations
 
differ depending on the choice of the initial distribution functions (see
 
table 1). The initial conditions fall under three general categories:
 
(1) complete equilibrium, (2) nonequilibrium, equipartition, and (3) non
equilibrium and nonequipartition. We use the term nonequilibrium here to
 
denote that either the velocity distribution, ft, or the rotational energy
 
distribution, fr, are non-Maxwellian.
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The first case, that is, complete equilibrium, tests the method, as well
 
as the internal parameters, for self-consistency. The velocity and rotational
 
energy distributions should remain constant for extended periods of calcula
tion. That is, the internal energy distributions should remain Maxwellian and
 
equipartition should be inviolate (e.g., refs. 4 and 5).
 

The second case, where the velocity and rotational energy distributions
 
are specified to satisfy energy partition (i.e., the fraction of energy dis
tributed between translation and rotation is proper, but where the distribu
tions, themselves, are non-Maxwellian) provides a test on whether the procedure
 
has an internal driving mechanism that will yield a relaxation to equilibrium
 
within a physically realistic time.
 

The third set of initial conditions, where the initial distributions
 
violate both equipartition and are highly nonequilibrium states, allows-even
 
more complex investigations. For example, one can study the relaxation
 
processes to equipartition as well as how the velocity and rotational distri
butions interact during the relaxation. In effect, these simulations with
 
varied starting conditions give qualitative information on the coupling of the
 
energy distributions and quantitative data on the rates of relaxation.
 

In table 1, the specific choice of initial conditions for the simulations
 
described in this paper are listed. These results are also useful in providing
 
qualitative information that can be used to interpret results in several
 
equivalent experiments. The experiments are sound absorption, shock-waves,
 
and free-jet expansions (ref. 11). Table 1 lists the simulation and the
 
related experiment type. The simulations are described in the discussion that
 
follows.
 

Initial distributions: complete equilibrium.-The first test of a good method
 
for simulating solutions to Boltzmann's equation is that Maxwellian energy
 
distributions, both in velocity and in rotational energy, not change for
 
extended calculation periods. In figure la are given the results of such a
 
simulation. The results show sets of paired figures for progressively increas
ing times corresponding to t/t = 0.0, 1.0, 5.0, and 10.0. One figure in the
 
pair is a snapshot of the rotationa' energy distribution function,,fr, plotted
 
versus rotational energy level j at a definite time t/T, and the other
 
figure is the velocity distribution function, ft, plotted versus velocity
 
c/c0 , where co is the most probable molecular speed defined by = i,co 

m is the molecular mass, and Te is the equilibrium temperature associated with
 
the "box" model. We observe that, although small fluctuations occur around
 
the dotted curves (which represent the true Maxwellian distributions) during
 
the calculation period, these fluctuations do not grow (ref. 5). In fact,
 
figure 2b shows the results of the same calculation, but where the time average
 
of the distributions, given by
 

t
 

r or t t 0rr r or t dt (15) 
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are plotted. We observe that the fluctuations are negligible in the second
 
group of "snapshots." These simulations illustrate that, indeed, the pro
cedure is stable over long calculation periods. The next case tests the
 
capability,of the procedure to drive arbitrarily specified initial distri
butions to the Maxwellian limit.
 

Initial distributions: non-Maxwellian velocity and rotational effects frozen.-

The Monte Carlo method allows for considerable flexibility regarding the
 
precise specification of the initial distributions. For example, one can
 
freeze the rotational relaxation effects and investigate only the relaxation
 
of the velocity distribution. The next example is of this type. In figure 2
 
are displayed the resulting time history for relaxation of the velocity
 
distribution function, starting with two different initial distributions. In
 
figure 2a are displayed the relaxation processes that correspond to initially
 
letting every molecule have a speed equal to /3V- c0 . The dotted curve is a 
Maxwellian distribution characterized by the temperature Te = 320 K. In 
this example, the "Dirac delta function" type of initial distribution should 
relax to coincidence with the dotted curve. The rotational energy, of course,
 
is ignored. We observe that the distributions are largely equilibrated by 
the instant t/T = 1 (the area differences between the solid and dotted 
curves correspond to the number of molecules that still have initial velocity 
Y97 c0 and remain to be "equilibrated"-i.e., about 10 percent of the 
total). At t/T = 2.0, the distribution is established and very little change 
occurs thereafter. One concludes from this simulation that the procedure leads
 
to the correct Maxwellian limit, as indeed it should. In figure 2b, the ini
tial distribution is slightly different. In this case, the energy, corre
sponding to kTe, is distributed at two separate initial velocities: co/2 and
 
Yi1/2 c0 . The rotational energy is managed in the same manner as the example
 
in figure 2a. The result for this case is nearly the same. In fact, little
 
difference can be observed in a comparison of the relaxation history. At the
 
instant t/T = 1.0, roughly the same fraction of molecules remain to be
 
equilibrated as in the first example. The distribution appears to be estab
lished by the instant t/T = 2.0 and changes very little thereafter.
 

Initial distributions: Maxwellian velocity and equipartition.-Our next
 
simulation, figure 3, illustrates the relaxation effects that occur when the 
initial velocity distribution is Maxwellian and the rotational distribution, 
which satisfies energy equipartition, approximates a delta function centered 
at Jo = 10 (i.e., every molecule has kTe rotational energy in the 10th 
energy level). This rotational level also represents the probable rotational 
energy level for a Boltzmann distributions at temperature kTe (i.e., jo is 
found from k8r J0(j0 + 1) = kTe, where er(N)2 = 2.9 K and Te = 320 K). 

Since our investigation concerns homonuclear nitrogen, only rotational
 
transitions that satisfy the multiples of Aj = ±2 are allowed. At the first
 
instant displayed in figure 3 after relaxation begins (i.e., at t/T = 0.5),
 
we observe a double peak appearing in the velocity distribution. This behavior
 
is very similar to the Stokes and anti-Stokes lines that appear in Raman
 
scattering (ref. 16). The position of these peaks can be calculated (see
 
appendix A) and appear at the velocities c/c0 = 0.91 and 1.1, respectively.
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These peaks appear because the rotational energy is "dumped" into a narrow 
energy band. The transitions, Aj = ±2, are most probable compared to multi
level transitions, IAjIi4. This effect results in two perturbations appearing 
in the velocity distribution about the most probable velocity c0 . 

Initial distributions: Maxwellian velocity (Tt > Te) and nonequipartition.-

The simulation displayed in figure 4 demonstrates the relaxation effects caused
 
by violating equipartition. Rotational energy states are assumed initially to
 
be unexcited; the energy is contained entirely within the velocity distribution
 
which is Maxwellian (Tt = 534 K). The fact that single level (Aj = ±2 for
 
homonuclear molecules) rotational transitions are the most likely compared to
 
multilevel (IAjI 4) transitions is also apparent here.' After relaxation begins,
 
we observe that the lowest level rotational states populate first. The gain in
 
rotational energy appears to be at the expense of the molecules with velocities
 
that correspond to the most probable velocity co or higher. As the time t/T
 
increases, energy continues to be "dumped" from the translational to the rota
tional mode as demonstrated by the downward drifting velocity distribution and
 
the upward drifting rotational distribution: These processes become less
 
efficient as energy is "dumped" to higher and higher rotational energy levels.
 
This is apparent because, as the width of the energy level increases, the
 
energy interchange between the rotational and translational mode becomes even
 
less efficient. We find, then, that considerable time is required to populate
 
the uppermost rotational energy levels. In fact, the velocity distribution 
appears to be nearly equilibrated by the time t/T = 20.0, while the rotational 
distribution is still relaxing at t/T = 50.0. 

The simulation demonstrates that the step-wise populating mechanism
 
implicit within the Itikawa model leads to relatively slow relaxation to a
 
Boltzmann rotational distribution. Of course, if multiple level transitions
 
were more effective, the rate of relaxation to a Boltzmann rotational distri
bution would be greatly enhanced. These features are characteristic of
 
translation-rotation transitions, and they are apparent in all simulations
 
involving translation-rotation interactions.
 

The simulation displayed in the next figure, figure 5, differs from this
 
example in that rather than follow the populating of the rotational energy
 
levels from an initial state of "excessive" translational energy, we follow
 
the depopulating of the rotational energy levels from an initial state of
 
"excessive" rotational energy. Of course, 'excessive" refers to the manner
 
in which that energy is initially distributed relative to the distribution
 
that satisfies equipartition.
 

Initial distributions: Maxwellian velocity (Tt < Te) and nonequipartition.-

In figure 5a, we observe that, at the initial instant prior to relaxation,
 
the rotational energy is stored in a Boltzmann distribution (Tr = 793 K) which
 
peaks near the most probable levels j = 10 or 12 (i.e., fr(x) is maximum at
 
x = 11.16). The velocity distribution, however, peaks at low velocities,
 
c*/c0 = 0.135.
 

Several interesting features can be observed during the relaxation pro
cesses. We note that a satellite peak (refs. 16 and 17) develops on the high
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sides of the velocity distribution (i.e., c/c0 0.44), and this peak forms at
 
the expense of rotational energy near the most probable levels j = 10 or 12
 
(as exemplified by the "dip" in the rotational distribution). This peak con
tinues to grow as rotational energy is converted to thermal motion. Again, one
 
observes the effect of the inefficient coupling of translational and rotational
 
energy interchange with the higher rotational energy levels. This effect, of
 
course, results in the appearance of a second peak at the higher rotational
 
levels. This effect of double peaks is also discussed by Polanyi and Woodall
 
(ref. 18). The peaks remain in the distribution until quite late during the
 
relaxation process (say, t/r = 50.0). We also notice that, by this time, the
 
velocity distribution has nearly equilibrated to Maxwellian, and this occurs
 
before the rotational distribution becomes Boltzmann, similar to what occurred
 
in the previous example, figure 4.
 

Also interesting is a comparison of how close the distributions approxi
mate the Maxwell-Boltzmann distribution during each instant of the relaxation
 
processes. Such comparisons are displayed in figure 5b. Here, the dotted
 
curves are "local Maxwell-Boltzmann" distributions rather than the asymptotic
 
limiting equilibrium distributions displayed heretofore. The dotted distri
butions are determined by matching the energy, in both the velocity and
 
rotational modes, with the simulation results. These results illustrate that
 
the actual distributions found by the simulation deviate significantly from
 
local Maxwell-Boltzmann distributions. This demonstrates that the popular
 
methods that rely on expansion procedures involving local Boltzmann distribu
 
tions for solving the Boltzmann equation can be unreliable. In fact, the
 
double-peaked results displayed in figure 5 illustrate that appropriate distri
butions can have rather complex non-Boltzmann functional behavior.
 

Initial distributions: Maxwellian velocity (Tt < Te) and nonequipartition.-

The simulation displayed in figure 6 is very similar to that displayed in
 
figure 3; the initial rotational energy distribution approximates a Dirac
 
delta-function, but the simulation differs in that the constant rotational
 
energy assigned each molecule violates equipartition. Here we have an initial
 
dumping of the rotational energy into the 16th rotational energy level. The
 
velocity distribution, however; is Maxwellian. At the onset of relaxation,
 
we observe the "anti-Stokes" Raman scattering effect appearing in the velocity
 
distribution, that is, the appearance of a satellite peak (using the relations
 
in appendix A with j = 16 and Aj = -2, we find the peak location to be
 
c/c0 = 0.55). The pumping mechanism by which the high rotational energy is
 
converted into thermal motion also appears conspicuously in this example (see
 
ref. 17). The single step transitions from the 16th to 14th level (Aj _ -2)
 
occur first with the quanta of rotational energy being preferentially absorbed
 
by the very low-speed molecules. As this process proceeds, the number of
 
molecules in the 14th level approaches equality with the number in the 16th
 
level. Simultaneously, the "anti-Stokes Raman" peak broadens as the slow
 
speed molecules are "pumped" into this region. As the relaxation progresses,
 
the lower lying rotational levels are successively populated while the "anti-

Stokes Raman" peak becomes increasingly broad.
 

Contrary to the previous example, figure 5a, the rotational distribution
 
relaxes continuously with one one peak. The velocity distribution, however,
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similar to that in figure 5, displays a slow relaxation to the Maxwellian
 
distribution. The relatively large energy in the high rotational states, the
 
slow relaxation experienced in these statds, and the strong coupling of these
 
Teveli with the'slow molecules all appear to contribute to inhabiting the
 
relaxation of the velocity distribution to Maxwellian.
 

To show the manner by which the local distributions compare with local
 
Maxwell-Boltzmann distributions during the relaxation processes, the dotted
 
curves are again introduced in figure 6b, as was done in figure 5b. Again,
 
we observe that the distributions do not approximate Maxwell-Boltzmann distri
butions during each instant of the relaxation.
 

Relaxation of Average Rotational Energy
 

The results displayed in figures 1 through 6 illustrate, in particular, 
the manner by which an initial energy distribution relaxes to the final 
Maxwellian distributions. Also interesting is the manner by which the "average 
energy" approaches some asymptotic constant value. Such results are given in 
figure 7. In this figure are displayed four curves. Three curves display the 
average energy relaxation associated with initial distributions, which are 
Dirac delta-function type, and the fourth displays results with an initial 
distribution that is Boltzmann with high rotational temperature. The essential 
feature is the comparison of results between curves that have high and low 
initial rotational energy (e.g., cases 4 and 5). Because the coupling between 
translation and rotation is efficient for the lower levels, the slope of these 
curves is greatest. Also, interesting is case 3 which illustrates that even 
though the initial distribution satisfies energy equipartition, the system is 
not bound to satisfy equipartition during the subsequent instants as the rota
tional distribution asymptotically approaches a Boltzmann distribution. Addi
tional simulations all illustrate the downward shift (as illustrated in the 
figure for j = 10) followed by the upward relaxation to "equipartition." 

Figure 7 can also be used to define a useful relaxation time that charac
terizes the simulation results.- Such a definition, of course, is not exactly
 
clear because the relaxing curves are not exponential. One can resort to the
 
definition given by (e.g., ref. 11)
 

A = [(Er)e - Er(t)]/(dEr/dt) (16)
 

This definition, however, is impractical when the energy difference in the
 
bracket is small. One can also define the relaxation time to be that time when
 
the bracket expression has reduced to l/e of its initial value (e.g., ref. 13).
 
On the basis of this latter definition, it turns out that A:--32 is satis
factory for both curves labeled j = 0 and j = 16. This value also seems to
 
be consistent with the simulation displayed for all three initial delta func
tions of rotational energy distribution (i.e., j = 0, 10, and 16) in figures
 
3, 4, and 6. In these figures, we can see that the relaxation appears to be
 
ndarly ceased at the same instant between the two displays of the distribution
 
function at t/T = 20 and 40.
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The relaxation of translational energy is not shown here since, for our
 
"box" calculation, conservation of energy Et is directly related to the
 
average rotational energy Er via the relation
 

Et/(Et)e = 5/3 - 2/3 Er/(Er)e (17)
 

at each instant during the relaxation processes. The subscript e denotes
 
the asymptotic limiting energies associated with equilibrium.
 

Shock Wave Structure
 

The previous examples, figures 1 through 6, rely on the "box" model, which 
is based on the assumption that the distributions have no spatial dependence. 
The Monte Carlo method, of course, has potential for much greater geneality. 
We can effectively introduce a spatial dependence into the distributions and 
study more complicated problems, To demonstrate this effect, results of simula
tions for a normal shock wave structure are displayed in figure 8. For this 
example, the number of molecule in the sample size was not increased and, 
therefore, the curves are not exactly smooth. 

In this figure are displayed the translational and rotational temperatures
 
(based on average energy) and density at seven distinct instants of time. As
 
one might expect, the translational temperature develops an overshoot. As the
 
rotational mode is excited the high translational temperature decreases and
 
.approaches an asymptotic steady value.
 

This example is included to demonstrate that such simulations that involve
 
both elastic and inelastic collisions are possible. More refined shock shapes
 
than those displayed in figure 8 will require a considerable increase in the
 
number of molecules within the statistical sample and in computation time,
 
thus, no attempt has been made to check the convergence of the solution.
 

CONCLUSIONS
 

The Monte Carlo simulation method described in this report, including the
 
use of the Itikawa model for representing inelastic collision processes, is a
 
viable scheme for studying translation-rotation interactions. The method can
 
provide very useful qualitative and quantitative information on the relaxation
 
processes associated with at least relatively simple topological systems (i.e.,
 
one-dimensional and quasi one-dimensional systems). On the basis of experience
 
gained here, it is not expected that the method will be considered viable at
 
this time for more complex topological studies (i.e., three-dimensional flow
 
simulations), because current and foreseeable computer resources appear insuf
ficient to allow economical processing of the increased sample size that will
 
be required in such studies.
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The method, however, is very useful in its present form to visualize
 
fundamental gas kinetic behavior as demonstrated by the results presented in
 
this paper. A review of the simulations given in this report shows the -fol-
lowing results:
 

1. Single step (Aj = ±2 for homonuclear molecules) transitions are the
 
significant mechanisms of intermodal energy transfer rather than the multistep
 
transitions (i.e.,. IAj 4 for homonuclear molecules).
 

2. The coupling of translation-rotation transitions is the most effi
cient for low lying rotationally excited molecules and is least efficient for
 
the highly rotationally excited molecules.
 

3. The "relaxation time" required for molecules to reach an asymptotic
 
steady-distribution in both the velocity and rotational states is dependent on
 
the initial distributions.
 

4. Relaxation occurs via a successive set of distributions that are not
 
Maxwell-Boltzmann (nonlocal Maxwellian).
 

5. Initial rotational distributions with high rotational energy and
 
that are far removed from satisfying equipartition lead to the appearance of

"satellite peak" on the velocity distribution via a mechanism that is similar
 

to the Stokes Raman effect accompanying the Rayleigh scattering.
 

Subsequent studies should quantitatively compare characteristic relaxa
tion times found by the Monte Carlo methods with similar times obtained
 
experimentally. Of course, only qualitative comparisons are given here.
 

The simulations reported in this paper certainly demonstrate that the
 
method is viable for studying translation-rotation interaction processes and
 
that some revisions are necessary in existing analytical methods.
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APPENDIX A
 

ESTIMATE OF SATELLITE PEAK POSITIONS IN THE VELOCITY DISTRIBUTION
 

Certain types of rotational energy distributions can couple strongly
 
through the collision processes to perturb the velocity distributions. In
 
these cases, peaks occur (on the velocity distributions) that are analogous
 
to the Stokes and anti-Stokes rotational Raman effects which accompany Rayleigh
 
scattering. The satellite peaks have been observed experimentally (refs. 16
 
and 17). In one case (example 1) energy is "dumped" into a narrow band of the
 
rotational energy levels; a pair of "satellite peaks" then appear around the
 
maximum in the velocity distribution during subsequent relaxation. In another
 
case (example 2) a similar effect occurs when the velocity distribution has a
 
peak at low velocities ("cold gas") and the rotational energy is peaked at the
 
higher levels. Here, however, only one "satellite peak" appears in the
 
resulting velocity distribution. The nature of these peaks is such that their
 
position can be readily estimated without solving the Boltzmann equation.
 

The relative velocity, g', of a pair of molecules after a collision can
 
be found from equation (8) and is given by
 

g' = g /l - AEr/(I/2 pg2 ) (Al) 

where AEr is the change in rotational energy during a collision, and p is
 
the reduced mass. We assume that only one of the pair of colliding molecules
 
transfers rotational energy during the interaction; the rotational transitions
 
correspond to j + j ± A, that is, 

AEr(j + j± A) = ErQi ± A) - Er(j) 
(A2)= A - (A ± (2j + l))k Or 


where k is Boltzmann's constant, and Or is the characteristic rotational
 
temperature which corresponds to a single transition. We introduce the fol
lowing notation
 

velocity corresponding to the initial Maxwellian peak: e*
 

ct
velocity after rotational-translational interaction: 


=
reference velocity: c0 /2kTe/m
 

and, in addition, the approximations g = 2c* and g'_-2 c'; we then obtain
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c',c* AEX / 1/2 ji(2 c*)2] 
O -kTe, [i/2 m0 2 

T. /Lx+ 0 
- L A(A ± (2j + 1) (A3) 

where we have used P = m/2 and (c*/c0)
2 = Ti/Te. We recall for homonuclear 

diatomic molecules, such as molecular nitrogen, that multiples of IAI = 2 
rather than single transitions IAI = I are allowed. In the analogy with 
Raman scattering, the positive sign corresponds to "Stokes" and the negative 
sign to "anti-Stokes" effects. In the discussion above, example 1 displays
 
both Stokes and anti-Stokes effects; example 2, however, shows only anti-

Stokes effect.
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APPENDIX B
 

MODIFIED ROTATIONAL TRANSITION PROBABILITY
 

In the Introduction, we listed several properties that the rotational
 
transition probabilities must satisfy to ensure their proper behavior for the
 
Monte Carlo simtilation method: (1) probability must be conserved, (2) proba
bilities relating transitions to and from pairs of definite states must satisfy
 
"detailed balancing," and (3) the probabilities, when used in the simulations,
 
must yield the correct asymptotic behaviors of the distributions. The third
 
property has been covered in the text (also, see refs. 4 and 5). The first
 
property, that is,
 

I i, j,P(i,j -, ;g = 1 (BI)I ~ +~ i',j'; g) =1(i 

is satisfied by Itikawa's relations (refs. 5 or 11) as is also collision
 
symmetry, given by
 

P(i,j - i',j'; g) = P(i',j,- i,j; g') (B2) 

To ensure the satisfaction of the second property listed above, we
 
introduce the modified transition probability, P, given by
 

•B(i,j; i!,j')
 

j + i',j'; g) = A(g) (2i + l)(2j + 1) P(ij + i',j'; g) for (i,j) # (i',j') 
(B3) 

This relation also satisfies the "principle of detailed balancing" given by
 

=
(2i + l)(2j + l)?(i,j + i',j'; g) (2i' + l)(2j' + l)P(i',j' + i,j; g') (B4) 

where A = A(g) and the symmetric function B(i,j; I'., j') are arbitrary rela
tions that have functional behaviors as indicated in the parentheses. Several
 
example relations of B(i,j; i',j') are
 

B(i,j; i',j') = [(2i< + l)(2j< + 1 )]a (B5) 

or
 

B(i,j; i',j') = [(2i + l)(2j + 1)(2i' + l)(2j' + 1)]1/2 (B6)
 

The notation i< is used to designate the smaller value of either i or i.
 

and similarly for j<.
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Note that equation (B3) is obtained from equation (4), since g .g'
 
implies A(g) =-A(g'). Itikawa's expression derive& in reference 5 is a
 
specific -examplatf the more general probability relation that is displayed 
here (e.g., Itikawa assumes A(g) = t and a = 1 in equation (B5)). It can 
be shown that the modified transition probability given by equation (B3) also 
satisfies "conservation of probability" and "detailed balancing." 

It is worthwhile to comment that equation (7) in the text, which is the
 
selection rule for inelastic encounters, was based somewhat on heuristic
 
arguments and yielded qualitatively satisfactory results. We expect, however,,
 
that more accurate representations that will be based on more convincing physi
cal arguments, whiah will involve A(g) above, can be obtained for this
 
equation.
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APPENDIX C
 

PROGRAM LISTINGS
 

The entire program for the "Gas in an Imaginary Box" calculation is
 
listed in this section.
 

Program listings consist of sample control cards, correction cards, main
 
program listings, and sample input-data cards. Many unused cards are still
 
in the listings, but are marked by a comment symbol "c," "c*," etc.
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REPRODUCIBILITY OF THE
 
ORIGINAL PAGE IS POOR
 

* 	 SAMPLE CON T ROL CARDS 

YOSHX, O50O0. STOP9, X6363,YOSHIKAWA
 
ACCOUNT, STGKKY,T4606.
 
AUDIT, 	 ID=YflSHIY AWA. 
ATTACHTAPEII,FILE702,ID=YOSHIKAWA,PW=STrGKKY,MR=1,CY=2.
 
ATTACH,OLDPL, ITILIBSOURCF,TO=YoSHIK&WAMR=t. 
UPDATE ,F.,
 
FTN,I ,R=3,OPT=2,PL=1O0000.
 
ATTACH,IMSL, IMSLLtBID=AMESLIB.
 
LIBRARY(IMSL)
 
RE ,U EST,TAPE9, *PF. 
RFQUFST, TAPE1O,*PF.
 
LDSF T,MAP=X. 
LOAD,LGO.
 
NOGOMAIN.
 
RE TU N, LG0. 
MAIN. 
CATALnG,TAPE9,DXXXq03,TD=YOSHTKAWAPPW=STGKKY,MR=1 ,RP=999,CY=2.
 
CATALOG,TAPEIO,DXXI03, O=-YOSHTKAWA,PW=STGKKY,MR=IP=999,Cy=2.
 
AUDIT, ID=YnSHIKAWA.
 
eX IT.
 
CA'r) LOG, :A PE9 ,OXXX'?03, ! C-YOS.HTKAWA, PW=STG.KKY, MR=I, RP=999,CY=2 •
 

CATALOG,TAPE1O,DXXI03, TD=YOSHIKAWA,0VW=STGKKY,MR=I,RP=999,CY=2. 
AUDIT, Ir=YOSHIKAWA. 
II 

* 	 PROGRAM LISTING 
* 

*IDENT,CORrFCT
 
*I -INI$$.18 
C 	 OTHER RANDOM GENERATION 

KRAN=50 
DO o JP=I,KRAN 
R=RANF (0) 

50 CONTINUE 

*DECK 	I4ONT$$
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REPRODUCIBILITY UF i'Ui 

-ORIGINAL PAGTE IS POO11 

PROGRAM MONTEC(TNPUT,OUTPUTTAPE5=INPUT,TAPE6=OUTPUTTAPEY,TAPE8,
 
ITAPEY,TAPEIO,TAPElI)
 
COMMON /TTME/ TOTS,TF,TM,DTO,DTMTN
 
COMMON /CV MAX,MAX6,CIlRHO1
 
COMMON /CONST/ W,AVOMSF,CO
 
COMMON /RANDOM/ R
 
COMMON /ANSWER/ MOM,T(4),G,DVOLAIPOAROTI
 
COMMON /PART/ P(5001)
 
COMMON /CV1I/ABCC(40,40,9)
 
DATA ABCC/ 14400*0. /
 

C
 
C
 
C MONTE CARLO PROGRAM FOR GASES IN A BOX -REVISED BY K.K. Yoshikawa 
C 

JUMP=O
 
1 CALL INPUT(JUMP)
 

IF(JUMP.GT.0) GO TO 30
 
10 	CALL INITAL
 

CALL MOMENT
 
CALL OUTPUT(M)
 

30 IF(TN.GE.TM) GO TO 100
 
50 CALL JPAIRS
 

100 TM = TM DTM
 
200 TF(TM.LT.TS) GO TO 30
 
209 CALL MOMENT
 
330 IF(TM.LT.TO) GO TO 30
 

CALL OUTPUT(M)
 
TO=TO+DTn
 

340 IF(TM.LT.TF) GO TO 30
 
ENDFILE 10
 
CALL EXIT
 
STOP
 
END
 

*DECK INP$$
 
SUBROUTINE INPUT(JUMP)
 
COMMON /TIME/ TO,TS,TFTM.,DTO,DTMTN
 
COMMON /CV/ MAX,MAX6,C1,RHOl
 
COMMON /CONST/ W,A,VOM,SFCO
 
COMMON /RANDOM/ R
 
COMMON /ANSWER/ MOM,T(4),GDVOLAI,POA,ROT1
 
COMMON /PART/ P(50011
 
DIMENSION FC140)iFW(40)
 

C
 
C DATA INPUT FOR MONTE CARLO PROGRAM ALA BIRD
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C 
DIMENSION HED(18) 
READ(5,500) HED
 
READt5,501) MAX-,RH01,CO,WA,VOM,MOM,DTM,TS,DTO,TF,D,R
 

10 MAX6=5*MAX
 
AI=.25*W*D**2
 

120 POA=SQRT(3.14159/A)
 
200 C1=CO
 

DVOL = O.5*(W/(RHO*A))**2
 
SF = RHOI*DVOL/(MAX*W)
 
WRITE(6,600) HED
 
WRITE(6,601) MAX,RHOI,DTM,TS,DTOTF,CO,W,A,VOM,SF,D
 

500 FORMAT( 18A4)
 
501 FORMAT( 14/ 1OX5ElO.4,13/( 4EI0.4))
 
600 FORMAT(IHI 18A4)
 
601 FORMAT(* MAX=*115//50X*RHO1=*G15.6,*;DTM=*GI5.6,*;TS=*GI5.6,
 

1 * 	tTO=*G15.6//* TF=*G15.6,* CO=*G15.6,* W=*G15.61*; A=*GI5.6,
 
2*;VOM=*G5-6,* SF=*G15.6//* D=*G15.6)
 
Ir(MAX.LT.0) GO TO 300
 
RETURN
 

300 	READ(S) MOM,TG,DVOL,W,A,VOMSFCO,TO,TSTFTM,DTO,DTM,TNMAX,MAX6
 
i,CIRHOIP,At,ROTI,POA,ABCC ,R
 
REWIND 8
 
NTMO=(TM-DTM)IDTO+O.5
 

100 	READI7) TAUBARNTMMAX,COC2,EOEFCFW
 
WRITE(10) TAUBARNTM,MAX,COC2, EOEFC,FW
 
IF(NTM.LT.NTMO) GO TO 100
 
TF=TF+100.*DTM
 
JUMP=I
 
RETURN 
END
 

*DECK TNI$$ 
SUBROUTINE INITAL 
COMMON /TIME/ TO,TSTFTMDTODTMTN 
COMMON /CV/ MAXMAX6,C1,RHOl 
COMMON /CONST/ W,AVOMSF,CO 
COMMON /RANDOM/ R 
COMMON /ANSWER/ MOM,T(4),GDVOL,AI tPOA,ROTI
 
COMMON /PART/ P(5001)
 
COMMON/INIX2/ ERO
 

C 
C INTTIAL VALUE SUBROUTINE FOR EQUILIBRIUM BOX 
C 
C OTHER RANDOM NUMBER GENERATION
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C KRAN=10 50 OR 100 ETC.*
 
C On 50 JR=]-,KRAN
 
C R=RANF(0)
 
C 5-0 CONTINUE
 

ERO=O. 5**C ]*C 1
 
JO=SQRT( 1.+.99401E16*ERO)/2.
 

C CM=0.7071068'C1 ( 1/SCWT(21)*CI
 
C ISEED=411111111
 

TN=O.
 
P(I)=O.
 
DO 100 IM=1,4
 

100 T(IM)=O. 
C CALrULATION OF INITIAL VALUES 
C 1=0 
C 130 P()-P(11+1. 
e DO 200 L=2,4 
C* CALL RANDIJ(!X,IY,R)
 
C IX=1Y
 
C IL=T+L
 
C*200 CALL GAURND(IXCMv0.,P(TLI)
 
C 200 P(IL)=CM*GGNOF(1.ISEED)
 
C ROTATIONAL ENERGY 'AT UPSTREAM CONDITIONS
 
C CALL XDIST(IROT)
 
C P(I+6)=IPOT
 
C 400 P(I+5)=SO',T(P(I+2)**-2+P( S+3)**2+P(I+4)**2)
 
C 1=I+5
 
C IFCI.GT.MAX6) GO TO 500
 
C GO TO 130
 
C READ INITIAL VALUES FROM THE FILE 11
 

READ(11) P
 
500 CONTINUE
 

DTO=O)TO*DTA*. 99999
 
TS=TS*DTM* o99999
 
TF=TF*DTM* .9999
 
TO=TS+DTO
 
TM = DT-

RETURN
 
END
 

*DECK JPA$$
 
SUgROUTtINE JPATRS 
COMMON /TIME/ TO9TS,TFTMDTO,DTMTN 
COMMON /CONST/ WA,VOM,SF,CO 
CONO.MON /RAkNDOM/ R 
COMMON /ANSWdFR/ MOM,T(4),G,DVOLAIPOAROT1 
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COMMON /PART/ P(5001) 
C 
C 	 COLLISION PAIR SELECTION FOP, THE INVERSE POWER PO-TFNTTAL "TrCLS
-

C 

VP=.0
 
10 VM=P ()
 

NC=P(1) 
20 00 40 T=2,NC
 

J=5*1
 

TF(P(J).GT.VM) GO TOf 35
 
IF(P(J).GT.VR) VR=P(J)
 
GO TO 40
 

35 VR=VM
 
VM=P[J)
 

40 CONTINUE
 
50 GM=VM+VR
 
60 R=RANF(0)
 
80 JI=P(I)*P.1
 
90 PR=ANF(O)
 

110 	J2=P(1)*R+l
 
120 	IF(J.1.EQ.J2) GO TO 90
 

JI=5*J I-3
 
J2=5*J2-3
 

150 	C=SORT((P(Ji)-P(J2))**2+(P(Jt l)
 
1-P(J2+1) )**2+(P(J1+2)-P(J2+2) )*2) 

C PAIR SELECTION RULE: IF F!G/GM) > P., TAKE A PAIR 
C FOR GENEPAL CASE USE CCI THROUGH CC3 
C 	 F(G/GMt)=(G/GM)**C
 

R=RANF 0 )
 
FGBAR=(G/GM)*t0.4310
 
KELST=O
 

C KELST=l FOR MONATOMIC GAS 
IF(P.LT.FGRAP) GO TO 170 

CCI CELSTeO.215 FOR EXAMPLE' 
CC2 FGEL=(GIGM)**CELST 
C3 IF(R.GT. FGEL) GO TO 60 
CC* THIS PROGRAM IS SET UP FOR MAXWELLTAN MODEL CASE (FGEL=1.0) 

KELST= l
 
C END OF PAIR SELECTION RUL'E
 

170 CALL CRASH(P(Jl),P(Jl+I),P(JI+2),PIJIv+4),p(J2),
 
LP(J2+1),P{J2+2)P(J2+4),KGP.,KEL'ST)
 
IF(KGP.GE.I) GO Tl'60
 
P(J1+3)=SORT (P (J1)**2+P (J i 1 )**2+P (Jl-21)**2?


•P(J2+3)=SORT('P(J2)**2+P(J2+1)*--2+P(J2+2)**2)
 
260 OTN=2.*OnVOL/( PC I)**2*A*G*SF)
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270 TN = TN + DTN
 
280 IF(TN.LT.TM) GO TO 60
 
290 RE TURN
 

END 

*DECK CRA$$ 
SUBROUTINE CRASH(UI,Vt,W1, I1,U2,V2,W, 12,KGPKELST) 
COMMON /CONST/ W,A,VOt4,SFCO 
COMMON /RANDOMI R 
COMMON /ANSJER/ MOM,T(4)hG,DVOLAI,POAtROTI 
COMMO.NI/PRBOUT/PSUM(400),RRRRJlFIN,J2FIN 
REAL 1I,12 

C DIATOMIC PARTICLE COLLISION TRAJECTORIES 
C *ELSTTC COLLISION ; GO TO 700 

IF(KELST.EQ.1) GO TO 700 
G2=G*G
 
IF(l.GT.38..OR.I2.GT.38.) GO TO 7
 
ETP=O. 25*W*G2
 

C EXCLUlSICN OF NO ENERGY TRANSITION AT LOW KINETIC ENERGY 
CIO 70 1 

7 	KGP=1
 
RETURN 

1 	 R=RANF(O)
 
EPS=6. ?8318*R
 
KG P= 0
 
ER 1=4.0241E-16*T11*111+1)
 
.P2=4.0241E-16*12*(12+1)
 
RMI =S0RT(2.*AI*El Y
 
PM2 =SQRT(2.*AI*HR2
 

10 R=RANF(0)
 
50 V02=(VOM**2)*R
 

VO=SQRT(V02)
 
60 CONTINUE
 

IF(MUM.LT.100) GO Tr 100
 
R2=VO?*A/3.14159
 
GO TO 110
 

100 B2-Vfl*A/G**(4./mCM)
 
C 
C ROTATOR MOREL
 
C 
C TRA'JDITION PROBABILTTY FOR ROTATOR 1
 
C TRANSITTON PROBABILITY FOR ROTATOR 2 

110 CONTINUE
 
BB=SORT(R2)
 
LlO=I+O.l
 

uEPRODUC3BhY OF TEE 

ORIGINAL PAGE 1 pOOR 
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L20=12+0.1
 
120 R=RANF(O)
 

C SEE PROB. STATEMENT NO. 600
 
-R-RRR=R-

CALL LINKMCTL1O,L20,BBETR)
 
JJI=J1FIN
 
JJ2=JZ1lN 

130 	J1=2*JJI-2+MODOiLO,2)
 
J 2=2*J J2-2+MOD (L20,2)
 

C 
C 
C 

ER1P=4.0241E-16*J l*(J1+1) 
ER2P=4.0241E-16*J2*(J2+1) 

200 GP2=(G2-4.*,(ERIP+ER2P-(ERI+ER2))/W) 
IF(GP2.LT.O.O) GO TO 150 
GO TO 160 

150 IF CKGP.GE.1) RETURN 
KGP=KGP+1 
GO TO 10 

160 GP=SQRT(GP2) 
RMlP=SQRT(2.*AI*FR1P) 
RM2P=SQRT({.*AI*ER2P) 

205 BP=(G*BB+2.*CP.M1+RM2-RMIP-RM2P)/W)/GP 
IF(BP.LT.O.0) GO TO 10 
GO TO 710 

700 G2=G*G 
701 R=RANF(0) 

EPS=6. 28318*R 
710 R=RANF(0) 
750 V02=(VOM**2)*R 

VO=SQRT(VO2) 
760 CONTINUE 

IFC(MOM.LT.100) GO TO 800
 
B2=v12*A/3. 14159
 
GO TO 810
 

800 B2=V02*A/G**(4./MOM)
 
810 CONTINUE
 

BB=SQP T(B2)
 
860 GP=G
 
905 BP=BB
 

Jl=Il +.001
 
J2=12+.001
 

210 IF (MOM.LT.100) GO TO 220
 
VOP=BPPPOA
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IF(VOP.GT..99995) VOP=.99995
 
GO To 230
 

220 VOP=BP*GP**12./MOM)/SQRT(A)
 
230 XT=SCATER(VOMOM)
 

XI P=.SCATFR (VOP ,MOM)
 
250 XIB=.5*(XI+XIP)
 
260 GX=U2-U1
 

Gv=v2-VI REPRODUCIBITY OF THE
 
GZ=W2-W1 ORIGINAL PAGE IS POOR
 

300 	CE=COS(EPS)
 
5E=SIN(EPS)
 
CX=COS (X IB)
 
SX=SIN(XTB)
 
GPG=GP/G
 

350 	RTG=SORT({G2-GX**.2)
 
GPX=GPG* (G X*CX-RTG*SX*CE)
 
GPY=GPG(GY("X+(CGX*GY*CE+G*GZ*SE)/RTG*SX)
 
GPZ=GPG*(GZ*CX+(GX*G7*CE-G*GY*SE )/RTG*SX)
 

400 	U2=.5*(U1+U2+GPX)
 
V2=.5*(VI+V2+GPY)
 
W2=. 5* (Wl+W2+GPZ)
 
UI=U2-GPX
 
VI=V2-GPY
 
NW=W2-GPZ 

460 	Ii=Jl
 
12=J2
 
RE TUP N
 
END
 

*OECK LINK$$
 
SUBROUTITE- LINKMC (I112,BBETR)
 
DIMENSION PWAVE(20,20)?LABCSA(16)
 
COMMON /CMI/ PWAVEFKIN,LIO,L20,BIMP,NMAX,NPRINTLIPAR,IL2PAR
 
COMMON /CM2/ JEL1,JEL2,LABCSA,LLMAX,ISELCT
 
COMMON /CM3/ VA,VB, IPRTI,TIPRT2, 1 PRT3,IPRT4
 
COMMON /CMVRI/ VC,VALPHA,VC6,B8IMP, EEEE
 

C** 	 INPUT ** SELECTION FOR OUTPUT (0 FOR PWAVE/1 FOR P) 
ISELCT=1 

C** 	 INPUT ** MIN PRCBABILITY 
C** INPUT ** INITIAL ROTATIONAL STATES 

LIO=! I 
L20=1 2 

C** INPUT ** RELATIVE KINETIC ENERGY (IN EV) EKIN= ETR/1.602E-12 
EKIN=ETP*.6242197E+12 

C** INPUT * I (IN ANGSTROM)IMPACT PARAMETER 
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BIMP=PB*1. F08 
C** TNPUT ** MAX NO. OF TERMS IN EXP 

NMAX= 80 
C** 	 --NPUT -* INDEX FOR PRINT OUT 

IPRf1= I 
IPRT2= 1 
IPR'3= NMAX 1 
IPRT4= 0 

C** INPUT ** POTENTIAL PARAMETERS FOR SPHERICAL PART 
C -I V(R)= VC*EXP(-VALPHA*R)-VC6-IR**6 
C** V IN EV, R IN ANGSTROM 

VC=3440. 
VALPHA3 .160 
VC6=73.40 

C** INPUT -OTENTIAL PARAMETERS FCR PART-P 	 NON-SPHERICAL 
VA=.2
 
VB- .2
 
JMAX= 20
 

5010 CONTINUE
 
DO 5016 I=1,,JMAX
 
D 5016 J=I,JMAX
 
PWAVE(I,J): 0.0
 

5016 CONTI-NUE
 
C****-*** NPRINT
 

NPRUNT= NMAX
 
IF(EKIN.LE.0.001) EKIN= 0.001
 
IFIEKIN.GE.O.5) EKIN= 0.5
 
CALL PROB
 

5999 CONTINUE
 
RETURN 
END
 

*DECjK 	 P RO5 
SUBROUTINE PROB 
COMMON/PRBOUT/PSUM (400) , RRRR,-J.IF-IN,.J 2F IN 
COMMON IMV1/ AMATRX(20,20,9) 
COMMON /MV2/ VBB,VAARROTETOTvBRCVVALP 
COMMON /CMVR1/ VCVALPHAVC6,BIMP,,EEFE 
COMMON /NV3/ NCOUNT 
COMMON /CM1/ PWAVE,EKIN,Lt 0,L20,BBBB,'NMAX,,NPRtNT,,L1PAR,L2PAR 
COMMON !CM2I JELI,JEL2,LABCSA,LLMAX,,ISELCT
 
COMMON /CM3/ VA,VBTPRT,IPRT2,TPRT3,TPRT4,
 
DIMENSION PWAVEC(20,20)
 
OIMFNSION P00D(20,20),PEVNI20,20),PWAVE(20,,20)'
 
DIMFNSION AKSUMO(20,20),AKSUMI-(20,.20)
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'ITME4STMN LABCSA(16)
 
TCLOCK= 0
 
B! MP=BBRB
 
JMAX=20
 

=LMAX 2*JMAX-2
 
C**t**** ~rtflrEfl MASS
 

RMASS= 14.02
 
',
C* *** * ROTATIONAL CONSTANT
 

BRO"= O.?512F-3
 
VVALP= 0.045723*VALDHAZ SQRT(RMASS) 
VAA= 0.4472136*VA 
VBB= 0.2*VR*o.6298283 
ETOT= EKIN+ FLOAT(LIO*(LIO+1)+L20*(L20-i))*BRPT 
EB= ETCT/RROT 
FBI= SQRT(EB) 
LLMAX= INTtE'FU)+l

T
C***** PRIN 901-1
 
11 CONTTNUF
 

TFrLLMX.GT.MAX) LLMAX=LMAX
 
DO 18 T=1,JMAX
 
DO 18 J=I,JMAX
 
PEVN(T,J)= 0.0
 
PnD(I,J = 0.O 
PWAVE(I,J)= 0.0
 
PWAVEC(I,J)= 0.0
 
AKSUMO( I,J 1=0.0 
AKSUMI(I,J)= 0.0
 
DO 16 M=1,9
 
AMATRX(T,J,M)= 0.0
 

16 CONTINUE
 
18 CONTINUF 

LL1O= L10+1
 
L.20= L20+1
 
JELl= ILLIO+1)/2
 
JEL2=(LL20+1)/Z
 
L1PAR= MiOD(L1O,2)+l
 
L2PAP= MOD(L20,21+1 
CLO= FLOAT((2*LIO+I),.(2*L20+I))
 
PEO= 0.0
 

e - ' C*: .**, ' *** N= I 
?'I= 1
 

LLII= LLI0
 
LL2T= UL20
 
NCOUtIT= 0
 
rO 59 K=1,9
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CALL VMIATRX(LLIT,LL2T,K)
 
50 COINTINJF
 

LLIMN= MAXO((LIO-?,LIPAR)
 
-LLIFm-X= L Llt:O+2
 

LL2FMN= "'AXO(LL20-2,L2PAR)
 
LL2FiX= tL20+2
 
K= I
 
JJTI= (I.LLII+ )/.2
 
JJTI= (LL2t+l)/?
 
EM, 64 =1,3
 
LL2F= Lt20-4+2*I
 
DO 63 J=1,3
 
LLIF= LLIO-4+2*J
 
TF(LL2F.LT.1".OP.LLlF.LT.1) GO TO 62
 
JJFI= LLIF+I)/2
 
JJ2- (LL2F+1)/2
 
AKSUIMO (JJFl,JJS-2)= AMATRX(JJI 1,JJ 12, 1)
 

62 K=K+1
 
63 CONTIN'IE
 
64 CONTNUF
 

TOTPW= 0.0
 
DR 74 t.LF=LLIF'MTNLLI=mX,2
 
00 73 LL2F=LL2FMN,LL2MX,2
 
JJFI= (LLIF+1)1?
 
JJF?= (LL2F+I)/2
 
POR)(JJRF1,JJF2 )= AKSIM0(JJFI,JJF2)
 
PFVN(JJFI,JJF2 )= 0.0
 
IFUtLIF.EO.LLII.ANO.LL2F.TQ.L121) PFVN{JJF1,JJF2)=I.O
 
PWAVE(JJFl,JJ5?)= PODO(JJFIJJF2)**2*4.0+PEVN(JJCIJJF2)**2
 
D=PWAVE J.JFlJJF2)
 
LOI=LL ir-i
 
L02=LL?=-1
 

C***** PPTNT 902-I 
72 CONTINtJ-

TOTDW=T,"OTPW+P 

73 CfNTINUr 

74 CONT[NUE 
C** *' PRpNT 904-1 

75 CONTINUF 
IF(NMIAX.EO.l) GO TQ O 
N= 2 

C*** ******100) 
100 rUtrTNIUE
 

NCOJNT= 0
 
N2= 2*N-2
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LL2I !Nl='MA XO (LL 20-N2, L2 PAR) 
LL2IMX= IL?O+MI7
 
TF(LL2",'X.rF.LLMAX) LL2TMX= LLMAX
 
DO 149 Ll 2T=LL2TMN,tL21ix,?9, REPRODC]cMmffy OFT"
 
JJI2= (LL2I+])/2 ORIGINAL PAGE ISPOOR
 
E .?= S -'iEB-
CLPAT(LLI-.)**2)
 

=tl rA 1 TINT(E3?) +
 
LLI T=LL1O+N2
 
JJIl=( LLII+I)/2 
IF(LLMAX1.GE.L.AY ) LLMA-XI= LMAX
 
TF(LLII.GT.LLAAXI) GO TO 130
 
rn '114 K=5,8,3
 
CALL V"M.ATRX(LL1T,LL2I,K)
 

114 	C NT INUE 
00 11-0 K=z3__, ,3 
CALL VMATRX(LLlTL2T,K) 

L19 	 CD'N"I t'!7 t
 
I=(LL 1-2.LT.I) CO TO 125
 
A M ATrX(JJTI,JJ'!2,4) = AMATRX(JJI I- I,JJT2,A)
 
K=4
 
TF(LL,2I.9f.I.L20-N2.fp.LL2I.EO.LL20+N2) CALL VMATRX(LLIILL2I,K)
 
4l.ATPX(,JJT1,JJ12,7)= AlArRX(JJI-1,JJ2+1,3)
 

K=, 7 
IF(LL?T.t0.LL?0+N2-2.R.LL21.EQ.LL20+N2) CALL VMATRX(LLIT,-LL21,K)
 
TFttLI-P.LT.I) r(o Tfl 130
 
A"7AX(JJTI1,JJI?,1)= AMATRXfJJf1-1,JJI2-I,9)
 
K= 1 
TF{LLI.foF_.LL20-N2i2.R.LL2T1.FQ.LL20-NI CALL VMATRX(LL1I,LL21,KI 

125 	CONTINUE 
TF(LL2I-I.LT.1) 'G, TO 130 
AMA'RXfJJTI,JJI2,2) = AMATRX(JJI,,JJI2-1,8) 
K= 2 
IF(LL2T.F.LL?0-N?) CALL VMATPXLLIILLZ2,K) 

130 	 Cfi,'-TN!U 
LLLT=LL 10-fN?
 
JJI1= (LLI+'I)I?
 
IF(LLII.IjT.LIP&P) GO TO 14)
 

Pn 134 K=',8,3
 
CALL. V"4AV.QX(ILII ,LL2IK) 

134 	 CnNT T' tJE 
DO 139 K=1,7,3 
CALL W"ATRX(LL1I,LL2I,K) 

139 	 C .7ITTNtI F 
At"A-PX(JJT1,JJP ,6)= AMATrpX(JJ I+1,JJ12,4) 
K= A 
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TF ILL2 1.EO.LL20-N2.0P.LL2I.EO.LL20+N2) CALL VMATRX(LLITLL2, K) 
AMA'-Qx(JJ IiJJI2, 91= AMATRX (JJ 11+1IMMJI2Y I I 

K=9 
SI F. LL2 .. E.-..L-0ZO+N--2 .PP .-LL2-1!, E'.L 20NN2- CAL t VMATR XILLi L 21 , K3 

IF(LL2i-2.LT.11 GO T, 149, 
AMATRX(JJtiJJ!2,21= AMATRX(JJ11,JJ12-1,8)
 
K= 2
 
IF(LL2T.FQ.LL20-N2) CALL VMATRX(LLlT,LL21,K)
 
AMATRX(JJTI,JJT2,3)= AMATRX(JJII+1,JJT2-1,7)
 
K= "q
 

Tr(LL2T.EO.I L20-N2+2.OR.I.L21.FQ.LL20-N2) CALL VMATPX(LLITLL21,K) 
1I9 CONTINU 

C********* 150 
LLIlTN= MAXOLLIO-&2+2,LIPAR) 
LLITYX= LLIO+N2-'
 
TP(LL1ITtX.GE.LLPAX3 LLIMX= LLMAX
 
DO 19q LLII=LL1IMNLLIIMX,2
 
JJ T = (LLII+1)/?
 

-
EM3= SOrNEW FLQAT(LLII-I)**2)
 
LLMAXI=k'T (F32 )+I
 
LL2!= LL?0+N2
 
JJI2= LLT+I)/2
 
1F(LLMXI..M.LAX) LLMAXI= LtAX
 
JF{'L2T.,.LLMQX1) GO T 180
 
DO 164 K=5,q
 
IF(LLII.FO.LLlO+N2-2.ANO.K.EO.6) SO TO 163
 
CALL VmATRX(LLII ,LL21,K)
 
GO TO 164
 

163 rn -TNUE
 
AMArPX(jJTI,JJT2,61= AMATPXIJJI 1+l,JJ12,4)
 

164 CONTTI'IJE
 
I(LL21-2.LT. 1 GC TO 175
 
AMATRXfJJIIJJ12,2)= AMATRX(JJTI,JJT-1,8)
 
AMWTRX(JJIlJJT2, 3)= AMATRX(JJ!i+1,JJ 12-1,7)
 
IF(LLIT-2.LT.1) GO TO 180
 
AMATRX (JJIIJJ12,1)= AMATRX(JJI1-1,JJ12-1,9)
 

175 CONrINUE
 
!v(LLII-2.LT.! GOn TO.80
 
AMATPX(JJI1,JJI2,4)= AMATRXJJI1-1,JJI2,6i)
 

iRO CPNTINU!
 
LL21=I L20-N2
 
JJ12= (LL2I+1)/2
 
IPILL2I.L rL2PMP) GO TO 199
 
f n 
184 X=5,6
 
IF(LLIT.EO.LLlO+N2-2.AND.K.EO.6) GO TO 181
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CALL VMATRX(LL 1I,LLI,K)
 
GO TO I4
 

193 CnNfIIF
 
AMATRX(JJ11,JJI?,61= AMATRX(JJI1+1,JJ12,4)
 

184 CONTTNUE
 
DO 189 K=1,3
 
CALL VMATRX (LLIT,LL2TK)
 

18c 	CONTINUE 
-
AMATRX(JJIl,JJI2,5) AMATPX(JJIl,JJ12+1,2)
 

AMATRX(JJ1,JJ 12,9)= AMATRX(JJTI+iJJI2+!,1)
 
IF(LLIT-2.LT.t) GC Tf 10O9
 
AMATPX(JJIl,JJ 12,4)= AMtATX(JJI1-1,JJI2,6)
 
AMATP.XIJJI1,JJT2,7)= AMATRX(JJ Ii-1,JJT2+1,3)
 

C~****** 1s9
 
199 	CONTINUE
 

LLIFMX=LLIO+2 N
 
LL2FMX= LL,20+2*N
 
LLIF M N= LLIO-2*N
 
I(LLIFMN.LT.LIPAR) GO TO 201
 
LL 11=LL1cMN+2 

200 	CONTTNUE
 
LL2FM N=LL20-2*N
 
IF(LL2FMN.LT.L2PAR) GO TO 202
 
LL22= LL2FMN+2
 
GO TO 205 

201 	CONTINUE
 
LLIMN= LIPAR
 
LLI1= LIPAR
 
rO TO 200
 

202 	crnN i NUr
 
LL2FMN=L2PAR
 
LL22= L2PA?
 

205 	 CON'rIM UE 
LL22f= LL2FMX-2
 
IF(LL2FMX.LE.LLMA-X) GO TO 206
 
LL 2FMX=LLMAX 
LL2?F= LLMAX
 

206 	 CONTINUE
 
DO 249 L2=LL22 1LL22R;2
 
LLLLF= LLIFMX-2
 
EB2= %RT(Ef- FLOV-(L2-1)**?)
 
LLMAXIi= TNT(FB2)l":-RODjtrcmmvmrI r 
TF(LLMAXt.GF.LFLAX) LLMAXI= LMAX Djr G 0A1?p 
IF(CLLFMX.tGE.LLM4XI LLllF= LLMAXI
 
Dn 248 L1= LLI,LLUt1,2 "
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K1= 1
 
K2= 0
 
L22=t. 2-2
 
LII1= '_ -' 

IF(L2..,-.L2PAR) L22= L2PAR
 
T (Ll.LF.LLPA) LI1= LIPAq
 
IF(L?.U..L2PA2 I K1=4
 
IF(L1.L?.LIPAR) 12= 1
 
K= KI
 
Jl= (LI+1)/2
 
J2= (L?+1)/?
 
AK= AKSU0O(J1,J2)
 
L2D2=L ?+2
 
D0 219 IL2= L221L2P2,2
 
K= K K2
 
LlD2=t 1-+2
 
DO 218 LLI=LI1,L1P2,2

JJI= (LLI+11/2
 

JJ?= (LI 2+1)/
 
AKSLI',II(JJI,JJ2)= AK*AMATPX(J1,J2,K)+AKSUMI(JJ1,JJ2)
 
K= K-l
 

?13 CQrNTTrLJF
 
219 CONTT NIJE
 
fl****** tPRfj T fgF AIIX
 

22f) CC1NTNT
 
24p, rqtTTNIIE
 
749 CP'IN-TNIJ 

C**-***-X-" 250 
LLIPMX= LLI0+2*N 
-rnTPC= 0.0
 
TOTPW= 0.0
 
03 299 LL2P=LL2FN,LL2FMX,2
 
LLIIF= LLIFMX
 
F2= S0?)TCFB3- FLnAT(LL2F-1)**2)
 
LLMAXI= 1NT (FBS?)+1
 
IF(LLMAXI.GE.LMAX) LL.MAXI= LMAX
 
IF(LLIFIX.E.LLMX1) LLIIF= LLMAXI
 
Pfn 293 I.Lt1.rLUIFMN,LLlIF,?
 
JJFI= (LLIF+l)/2
 
JJF2= (LLP+I)/2
 
AKSIIM-I(JJclJJF2)= AKSIJM1(JJFIJJF2)/ FLIAT(N)
 
Th({fO'(N,2).NE.01 GO TO 294
 
AKSII(,'Jjj1,JJF2)= -4.0*AKSUJMI(JJFIJJF2)


=DcVVMJJr,JJr2) PEVN(JJF1,JJF2)+ AKSU.M1(JJF1,JJF2I 
DWAVF(JJF1,JJF?)= POODO(JJFI,JJF2)**2-*4.0+PFVN(JJF-t,JJF2)**2 
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Gn Tfl 205 
?q4 	 CONTT-,I

, F 2 )Onnq(JJc ] Jj DD{JJFIJJF2)+ AKSUMI (JJFi,JJ-2i 
PWAVE(J',1 , JJF?)= Dr)ro(JJF,JJF2hc*2* 4. O+PEVN( JJF I,JJF2)* 2 

295 CONTI NIF 
f= WAVI(JJpI ,JJF2)
 
LOI= LLIF-I
 
LO?= 	LL2

, :C :* g' -'** D' T OF PWAV
26 CO.{NT IUIE 

C** PPI'*I 902-? 
297 	 CON 'NIWJ
 

TOTPW= TOTPW+p
 
AKV)J.O0JJF,JJF?)= AKSIJvl(JJFI,JJF2)
 
-KSUI(JJFIJJF2I= 0.0
 

?2q CONTINUE
 
299 Cqn'IINUF
 

PE=P AV( JEL 1,,J EL 2)
 
nE1O= AR?(,-E1-PFO)/PEI)
 

C**: PRIN- 904-2
 
3904 	CONT TUt 

Tf( AD (Tf-pN-1.O) .L' .1E-3.AND.PF10.LT0.1E-3I GO TO 300 
IF(N.EQ.NMAy) GO TO 300 
N= N+1 
Do0= 	 oE!j 

GO TO i0t
 
mAo CONT TNIF
 

C*~*** -LAC7TIC 
C*- ******* FINAL PRIPIT 

IFLY(RT4.EO.I) rW) TO 325
 
-MCDR I IT=O
 
PMAX= O.lF-5
 

301 CON-i'rTtw'
 
C ' * -,* PPTNT 901-2 
C*****' PDTNtjT 91.0-1 

TMN= LL2cFN 
!MX=LL 2IMX
 
IF CPOD(LL2-FMX-LD AR,2).NF.0) IMX= LL2FTIX-1
 
Q ?19x-=ImM,IMX,2
 

=
LL? = 1*MX+I MN-T
 
J2= (LL2F+1)/?
 
ILI]F= LLIFrMX
 
EF32= 	 SPT(EB- FLOATILL2F-1)**2) 
LLMAXI= ?Nr(E,2)+t
 
IFCILMAX1.GS.LMAX) LLMAXI= LMAX
 

REPRODUCIpIrn OpI 

.3S 	 POOR 
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?F(LLIFMX.GE.LLMAXI) LLltF=LLMAX1
 

J IY)X= (L-I F I)/2
IF(JIMX.GT.161 JlMX=16
 

0-2==Lt2F -

C***- PRINT 911-1
 

TP{WPRINT.EQ.1) GO TO 319
 
LMIN2= MTIN0(L2O,LO21
 
CLIO= %LOAT(2*LMIN2+1)
 
JIM.N=(L1 PP,+I)/2
 
Fr 318 Jl=J'MN,JIMtX
 
LOI= 2*.1-3-4..+LIPAk
 
LMINI= MTNO(-L1O,LOl)
 
CLI= CL1O_-"LnAT(2*LMINtI)
 
P= PWAVE(JIJ2)
 
pC OPCT= CLI/CLO*P
 

TOTPC=TOTPC +PCOCCT
 
PWAVEr(J1,J2)= PCCRCT
 
IF(JI.EQ.JL.AND.J2.EO.JEL21 GO TO 318
 
IF(ISELCT.2E0,.0) POUT=P
 
I' (TSFLrT.EO.I) PC!IJT= PCORCT
 

318 CONTINUE
 
319 CONTINUE.
 

LABCCA(l)= LlPAP-1 
DO 320 1=2, 16
 
LABCS,(T)=L.APCSA(11)+I-1)*2
 

320 CONTINU 
C**** PRINT 912-1 
C IF(vPRINT.EQ.1) (9 TO 9906 
C***m--**** PRINT nF PCO'fCT WITH PELASTIC MODIFIED 

325 	CONTINUE
 
PC= 1.O-TOTPC+PWAVEC(JELlJEL2I
 
PWAVECiJFLIJEL2)= PC 
IF( ISFLCT.EC.O) PSUM(1)=PWAVE(JEL1,JEL2)
 
I'ISELCT -Eo.l) PUI(I)=PWAVEC(JEL1,JEL2)
 

C STATISTIC 140f)=ICATION OF ELASTIC COLLISION 
C RPRP : P(N)=PfN1-PSUM(1)/(l.-PSUM(1)) PBAP VS PP.RP. 

600 RPRP=( 1.O-PSUm(I) )*RRQR 
C IF(PRPQ'.GT.PSJM(1)) GO TO 1905 
C JIF7N=JEL1
 
C J2f-TN=J-L2
 
C GO TO 2001
 
IqO5 CONTINUE 

NN= 1 
N=1
 

le1O CPNTINJC 

REPRODUCBmh1ITh O
 

ORIGINAL PAGE IS POOR
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JIMN= JJFL1-N
 
1F(JIMN.LT.1) JlMN=l
 
JIMX= JELI+N
 
IF(JIMX.GT.JMAX) JIMX= JMAX
 
K=O
 
J2-JEL 2-N
 
IF(J2.LT.1) GO TO 1942
 

1920 CONTINUE
 
DO 1940 Jl= JIFIN,J1MX
 
NN=NN+I
 
IF!TSELCT.EQ.11 PWAVE(J1,J2)= PWAVEC(JIJ2)
 
CALL SUMP{JI,J2,NN)
 

C 	 TF(RRRR.GT.PSJM(NN)) GO "tO 1940
 
IF(PRRR.GT.(PSUM(NN)-PSUM(1))) GO TO 1940
 
JIFIN=J1
 
J2FIN=J2 
GO TO 2001
 

1940 CONTINUE
 
IF(K.EQ.11 GO TO 19950 

1942 	K=1
 
J2= JEL2+N
 
IF(J2.GT.JMAX) GO TO 1950
 
GO TO 	 1920 

1950 CONTINUF
 
J2MN= Jf:L2-N+1
 
TF(J2MN.LT.1) J2MN=1
 
J2MX= 	 JFL?+N-
IF(J2'X.GT.JMAX) J2MX= JMAX
 
K= 0
 
Jl= JELI-N
 
IF(Jl.LT.1) GO TO 1992
 

1970 CONTINUE
 
DO 1990 J2= J2MN,J2MX
 
,NN= NN+1
 
IF(7SELCT.EQ.1) PWAVE(JI,J2)= PWAVEC(JtJ2L)
 
CALL SUMP(JLJ2,NN)
 

C 	 IF(RRRR.LF.PSUM(NN)) GO TO 1985 
TF(RRPR.L. PSUM(NN)-PSUM(1))J GO TO 1985 
IF(ABS(I.0-PSUM(NN)).LT.I.0E-4) GO TO 1985 
IF!NN.GF.400) GO TO 1985 
GO TO 1990 

1985 	CONTINUE
 
J1F!N=J1 
J2FIN=J2
 
GO TO 2001
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Iq 9 0 CONTI NIJE
 
IF(K.EQ.l) GO TO 2000
 

1992 	 K=1
 
J1-= JELI+N
 
Iii.GT.JMAX) GO TO 2000
 
GO TO 1970
 

2000 CON T INUF
 
N= 11+1
 
GO rO I100
 

2001 	 CONTT UElJ= 

1000 	CONTINUF
 
RPF T IRN 
END
 

*DECK 	SUM$$ 
SUBROUTINE SUMP(JI,J2,NNN) 
COMMON/PRBOJT/PSIJM(400) ,RRRR,J 1FINJ2FTN 
CntIMON/CMl/ PWAVE,EKTNLIOLZO,.BBBB,NMAXNPRINT,L1PAR,L2PAR 
DIPANSION PWAVE( 20, 20) 
N=NNN 
pIJti {)= PSIIM(N-1 )+PWAVF(Jl ,J2)
 
RETIIRN
 
END
 

*DECK 	VM.AT$$
 
SURROUTTNE VMATRX(LLI,LL2,K)
 

C-***'k PEVISEP FOP R1OT 
COM1MON /MVl/ AMATRX(20,20,9) 
COvMiN /MV2/ VBBVAABROT,ETOT,BRC,VVALP 
COMMON /CMVR1/ VC,VALPHA,VC6,BIMP,EIJ 
COM!1 (, /MV3/ NCOUNT
 
CnrMMON/CVl/ABCC(40,40,9)
 
LIJ= 	 Li-i 
L2J= 	 LL2-1 
TF(K.GT.3) GO TO 1011
 
L21 L2J-2
 
TF(L2!.LT.0)' GO TO 1510
 
GO T 1100
 

loll TF(K.GT.6) GO TO 1012
 
L2T= L?J
 
GO TO 1100
 

1012 L21= L2J+2
 
1100 	CONTIN JF 

IF-WOD(K,3).NE.I) GO TO 1111
 
LIT= LIJ-2
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IF(LlI.LT.0) GO TO 1510
 
GO TO 1200
 

i111 	IF(tOD(K,3).NE.2) GO TO 1112
 
LIT= LIJ
 
GO TO 1200
 

1112 LIT= LIJ+2
 
1200 CONTINUE
 

4BC= ABCC{(LLl,LL2,K)
 
I'(ABC.NF.O.0) GO 'TO 1290
 

CALCULATION OF VEFF(L]I,L21 / L13,L2J
 
CCI= CG2O(LIT,LIJ)
 
CC2= CG?0(L21,L2J)
 
IFVK.LE.5) CS1GN= (-1.0)**(LIJ+L2J)
 
IF(K.GE.6) CSIGN= (-1.O)*: (Ll!+Ll1)
 
C= -LnAT((2L 11+1)*c(2*L2I+1)*(2*L1J+1)(2*L2J+1))'*0.25*CSIGN
 
B= VBB*CCI*CC2
 
A=O.O
 
I1!L21.NE.L2J) GO TO 1215
 
A= VAA*jCG1/ SQR( FLOAT(2*L21+I))
 
IFMAODfL2T,2)}.N-OF. A=-A
 

1215 IF(LIT.NE.LIJ) GO TO 1219
 
AA= VAA*Cl2/ SQPT( FLOAT(2 LlI+l))
 
IF(MOD(L1I,2L.1'F.O) AA=-AA
 
A= A+AA
 

1219 CONTINUF
 
ABC= C*fB+A)
 
ABCC(LLILL2,K)= ABC
 

1299 C ONT I.N"UE
 
WI= B9RT* FLOAT(LLIl*(LIT+I)+L2*(L21+1))
 
WJ=RRCT* FLOAT(LIJ*(L1J+1)+L2J*(L2J+1))
 
WTJ ABS(WI-W-J)
 
EI= FTOT-WT
 
EJ=E-TOT-WJ
 
IF(EI.LE.0,.O.OR.FJ.LE.0.0) GO TO 1510
 
E!J= 0.5*(EI+EI)
 
CALL POOT(RC)
 
BRC= 1.0-(. IPMP/RC)*2+VC6/EIJ/RC**6
 
EIJI= ETJ*BRC
 
IF(K.EQ.5) GO TO 1500
 
IF(LII.EQ.L2J.AND.K.EQ.3) GO TO 1500
 
!F(LI.EQ.L2J.AND.K.EQ.7) GO TO 1500
 
AIJ= VVALP* SORT(EIJI)/WIJ
 
EW= ETJI/WIJ
 
DBALPH= EW/ATJ
 
APAI= 1.570796327/AIJ
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F= EXP(-APAI)
 
rAIJ= 2.0*APAIT*F/(I.O-F*F)
 
AAA= ABC*DBALPH*FAIJ
 

149-8- CGNTI-NUE 
C*** 999 CHFCK PRINT
 

99q CONTTNUF
 
NCLJNT= NCOUNT+1
 

1499 CONTINUW
 
JJI= (ML1+1)/2
 

JJ2= (LL2+1)/?
 
AMATRX(JJ1,JJ2,K)= AAA
 
RETURN 

1500 CrNTINUE
 
AAA= ARC/VVALP* SQRT(EIJ1]
 
rO 7 1498
 

1510 CONTT'NUc 
AAA= 0.0 
(ZO TO 14Q9 
F NP 

'DECK CG $S 
FUNCTION CG2O(JI ,J?) 

C 00'RL= PPECI TON FUNCTION G20(J1,J2) 
IF(J2.t 0.J1+2.fr.J2.EQ.Jl-2) GO TO 8001 
!F(J2.EO.Jl) GO TO 8002 
C= 0.0 
GO TO 8100 

POOl CONTINIIF 
IF(J2.EO.JI+2) J=J1 
1F1J2.FO.J1-?) J=J2 
Xl= FLOAt J+2)/ FLOAT(2*J+5) 
X2= CLOAT(J+1)/ =LOAT(?*,J+3)
 
X3= 1.0/ FLOAT(2*J+I)
 
C= I(.5*X1*X2*X :)
 
Gn Tp roq
 

8002 CONTTNIJE 
J= Ji
 
X1= FLPAT(J+1)/ FLOAT(2*J+3)
 
X?= FLOATLJ)/ FLAT(2*J+l)
 
X3= 1.0/ FLnA-(2*;-J-1
 
C= - SORT(XI*X2*X3)
 

=
Son? IF(MOPJ,2).NE.0) r -C 
8100 CG?0=C
 

RFTI 'RN 
FND
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*DECK ROOS$
 

SUBROUTINE RnOT(P.C)
 

C***** REVISED 8/26/74
 
COMMON /CMVRV/ VC,VALPHAVC6,BTMPEKIN
 
RMIN= 1.12 
RRO= ALOGfVC/EKTIN)/VALPHA
 
IF(RPO.GE.4.1) RRO= 4.1
 

N=1
 
3099 CONTINUE
 

RP=P Q0 

3100 CON7TNUE
 
RL= FKTN*BIMP*2/RR**2
 
V= VC* EXP(-VALPHA*RR)
 
V1= -VALPHA*V
 
TF(VC6.FQ.Q.O) GO TO 3101
 
VP= 	 VC5/PpR**6 
V= V-V\ 
V1= VI+6.0*VR/PR
 

3101 CONTINUE
 
F= fV+RL-EKIN)/f2.0*RL/RR-V1) 
IF(ABS(F/RR).LT.0.1E-5) GO TO 3199
 

IFCN.GE.100) GO TO 3299
 
RR= RR+F
 
IX(PP.Lr.RMIN) GO TO 3900 
N=N+1 
GO TO 3100
 

3199 CONT INUF 
RC= 	RP
 
RETURN
 

3209 CONTINUE
 
WRTTE(6,998) RRIFRRO
 

998 	FORMAT(lHO//5X,14HERROR N GT 1O0,3X,3HRR=E13.5,3X,2El3.5//)
 
RR=RPO
 
GO TO 3199
 

3900 CONTINUE
 
RRO= 0.';*(PRO+RMIN.)
 
GO Tn 3099
 
END
 

*DECK OUT$$
 

SUBROUTINE OUTPIJT(M)
 
COMMON /TIME/ TOTSTFTMrOTDTMTN
 
COMMON /CV/ MAXMAX6,CI,RHOI
 
COMMON /CONST/ WA,VOM,SF,Cfl
 
COMMON /PANDOM/ P 

OF THE 
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CGMMftlN /ANSWER/ HOM,Tf4),G,OVOL,AI,POA,ROT1
 

COMmON /PART/ D(5001)
 
rOm±mPN /CVI/AEOC( 4a,40,-q-)
 
--T-MENS-ION FC{40) ,FW(40)
 

NVT=( T4-B1TM )/QTO+.5
 
TAI IFAE=O i* NTM*flTl/OTM
 
(tfl=T(2)/U'(l)*C!I.886227 

COC2=T(3)/(T( l)*1.5*CI*Cl)
 
EOE=.20482E-15"(4)/ (7(l)*W*C1*CL)
 
WRITE(6,600) COC,COC2,EOEJ,'AUBAR
 
DO 100 T=1,40
 
IC =)=0
 

100 	 FN14)0
 
fO_ = I. 0/C1
 
DO 200 T=5,,MAX6,5
 
JC=P(T)*COV*l0. +1
 
JW=P( T+1 )+1.01
 

IF(JC(.GT.40) JC=40
 
IT (JW.GT.40) JW=40
 
FC(JC)=FCJC)+I.
 
FW(JW)=FW(J') +1..
 

200 	 CqNT TNUE
 
DO 300 T=1,40
 
FC (T)=FC(T )/MAX


3 On FW (I)=FWI )/M,'AX
 
600 FflP!4AT( 5HOC.C=G13.6,IX6HCOC2 = G13.6,X6HE9E G13.61
 

11X7HTAU3AR= F5.1)
 

C 	 TM471- TS TO VLOT FC AND FW
 
WRI -0]) T AURARNTMMAXCOC2,EOE,FC,FW
 

C 	 THESE CARDS ARE FCR RESTART PROGRAM TIL NEXT ** MARKS 
WPITF(9) MO4,T,G,DVOL ,W,A ,VOM,SF,COTO,TS,TF,TM,DTO,DTM,TN,MAX 
lMAX6,CI,RHOI,P,AT,ROTI, POA,ABCC,R
 
END FTLE 9
 
RFWINO 9
 

c 1-, END OF THE RESTART PROGRAM 
PP TIJRM 
ENr)l
 

*DECtK 	X2$
 
SUBROLTINE X2DTST(TROT)
 
C'n1MNN /PANOM! R
 

Cflm'ON'/INTX2/ ERO
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C 
C TO DETERMINE THE ROTATIONAL FREQUENCY(OnM) FROM THE 
C X2-DISTRIBUTION(KAI-SQUARE) 
C 
C IROT= 1.*SORT(.25-2.48503EI5*ERO*ALOG(1-R))-.5+.5 FOR i-JUMP 
C IROT= .50*SQRT(.25-2.4850_3EI5*ERO*ALOG(I-R))-.25+.5 FOR EVEN JUMP 
C" IROT=2*T 
c 10 R=RANF (0) 
r_ 
r_ 

IROT= 
RE TUP N 

1.*SQRT(.25-2.48503EI5*EPO*ALOG(I.-R)) -. 1666 

c EN r 

*DECK SCA$$
 
F-UNCTION SCATERV(VO,MOM)
 

C 	 IF(VO .GS0.0) SCATER=2.*ACOS -VO) 
C 	 TF(VO.LT.O.O) SCATER=2.*(3.1415926+ACOS(-VO)) 

SCATE.P=2.*ACOS(VO) 
RETURN 
END
 

*DECK 	MOM$$
 
SURROUTI NE MOMENT 
COMMON /CV/ MAX,MAX6,C1,RHOI
 
COMMON /ANSWER/ YiOM,T(4),G,DVOLAT,POA,ROTI
 
COMMON /PART/ P(5001)
 

C 
C 	 COMPUTES DESIRED MOMENTS
 
C 

DO 200 T=I,MAX
 
LU=5*T -3 
T(1)I=T(1)+1 
T(2)=T(?1)P (LU+3)
 
T(3)=T(3)+P(LU+3)'*2 
T(4)=" 4)+P{LU+4 ),4'.,2+P (LU+4)
 

200 CONTINUE
 
RETURN 
END
 

C 
C 

C 	 SAMPLE INPUT DATA
 
C 
it 

C F(G/GM)-SELCT, ISELCT=1,C=O.4310,PC=O 
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1000 

3.0 
.12647?E-243632.3!3 .46519E-22.44272F-141.01-IO.i. 100

1,39- -F-8-3.33 F-I4 
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TABLE I.- INITIAL DISTRIBUTIONS AND FLOW CORRELATION
 

Energy
 

Figure Velocitya Rotationala partition Temperature Remarks
 

la & b ft=ftm (T) fr=frm (T) E t /Er=3/2 T=Te Uniform flow
 

2a & b ft#ftm frozen - - 

3 ft=ft(Tt) fr#frm Et/Er=3/2 Tt=T Sound
e 
 absorption
 

experiment
 

4 ft=ftm(Tt) fr=frm(Tr) Et /Er>>3/2 Tt>>Te>>Tr=0 Shock wave
 

5a & b ft=ftm(Tt) fr=frm(T) Et/Er<<3/2 Tt<<«T Free-jet
 
« r expansion
 

6a&b f=f (T) frfrE/E«3/2 T«T Chemical

tftTt rfr t/Er< 2 Tt<e fluorescence
 

experiment
 

af tm(T) and frm(T) denote translational and rotational Maxwell-Boltzmann
 

distributions with temperature T.
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t/Tr =0.0 t/-r= 1.0 

.2 

fr
 

O 20 0 20 
ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

0 2 0 2 
SPEED,C/CO SPEED,C/CO
 

t/= 5 0 t/-=100 
.2 

fr 

0 20 0 20
 
ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

ft 

0 2 0 2
 
SPEED, C/CO SPEED, C/CO
 

(a) Monte Carlo Results: ft(O,x) = Maxwellian where x = c/c0 ; 

fr(0,j) =Boltzmann; Tt = Tr = 320 K.
 

Figure 1.- Distribution functions for complete equilibrium.
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t/- =0.0 t/r=1.0 

.2 

0 20 0 20 
ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

~p ft[ 

0 2 0 2 
SPEED,C/CO SPEED,C/CO
 

t/T=5.0 t/T=O.O
 

.2 

fr.
 

0 20 0 20 
ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

0 2 

SPEED,C/CO SPEED, C/CO 
0 2 

(b) Time average of Monte Carlo results.
 

Figure l.- Continued.
 

REPROPUCThMM OF THE 
ORIGINAL PAGE IS POOR. 
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ti/T =2.0 
.2
 

f1
 

0 20 
ROTATIONAL ENERGY LEVEL, J 

ff. 

0 2 

SPEED, C/CO 

(b) Time average of Monte Carlo results - Concluded. 

Figure 1.- Concluded. 
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t/r=.O t/r:O.5-

fr. 

O 20 0 20 
ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

'
' 

" 
ft*I" 


0 2 0 2
 
SPEED, C/CO SPEED, C/CO
 

t/ '=l.O t/'T'=2.0 

fr .
 

20
 

0 P-0 0 20 

ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

0 2SPEED, C/CO SPEED, C/CO 

(a) Delta function initial velocity distribution: ft(O,x) I
 
at x =1/3/2. 

Figure 2.- Monatomic gas simulation (rotational effect frozen).
 

REPRODUCIBrITY OF THE 
,ORIGINAL PAGE IS POOR 
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t/r=3.0 t/-r=IO.O 

.2
 

.I
 

O 20 0 20
 
ROTATIONAL ENERGY LEVEL, J, ROTATIONAL ENERGY LEVEL, J
 

0 2 0SPEED, C/CO 2
SPEED, C/CO 

(a) Delta function initial velocity distribution - Concluded.
 

Figure 2.- Continued.
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lt o.o t/r= 0.5 

.2 

fr.I
 

[1 
'n 

0 20 .0 , 20 
ROTATIONAL ENERGY LEVEL, d ROTATIONAL ENERGY LEVEL, J 

02 0 2 

SPEED,C/CO SPEED,C/CO
 

=t/r - 1.0 t/-r=a.0 

.?_

fri
 

0 20 0 20 
ROTATIONAL ENERGY LEVEL, 4 ROTATIONAL ENERGY LEVEL, J 

0 2 0 2 

SPEED,C/CO SPEED,C/CO
 

(b) Double delta function initial velocity distributions;
 
ft(O,xl) = 1/2 at xI = 1/2 
ft(O,x2) = 1/2 at x 2 = 1/2. 

Figure 2.- Continued.
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t/T=3.0
 

.2
 

fr
 
.I
 

0 

[ 
20 

ROTATIONAL ENERGY LEVEL, J 

0
 
SPEED, C/CO 

(b) Double delta function initial velocity distributions - Concluded. 

Figure 2.- Concluded. 
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to' =0.0 t/ =.5 

2 " 

fr
 

0 20 0 20 
ROTATIONAL ENERGY LEVEL,J ROTATIONAL ENERGY LEVEL,J 

0 2 0 2 
SPEED, C/CO SPEED, C/CO 

t/r=i.O f/r=20 

.2 

I n 

0 20 0 20 
ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

02 0 2SPEED,C/CO SPEED,, C/CO 

Figure 3.- Maxwellian initial velocity distribution; delta function
 
rotational energy distribution (fr(O,x) = 1 at j = 10):
 

Equipartition satisfied.
 

REPRODUCIBILM 01 TOP 

ORGINAL PAGE IS PR0 
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t/r=o.tlr 5.0 


fr .0 "0 
. n 

0 20 0 20 

ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVELJ 

0 2 02 

SPEED, C/CO SPEED, C/CO
t/T =20.0 t/T =40.0 

.2 

.1a 

0 20 0 20 
ROTATIONAL ENERGY LEVEL,J ROTATIONAL ENERGY LEVEL, J 

0 2' 0 2 
SPEED, C/CO SPEED, C/CO 

Figure 3.- Continued.
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fr.i L 
t/T=100.0 

" • 

t/r= 120.0 

0 20 0 20 
ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

I 

0 2 
SPEED, C/CO SPEED, C/CO 

Figure 3.- Concluded. 

REPRoDUCmT OFo 2
 

5Q9 LAPA IS' T
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t0r=o.o t/r=.5 

o 20 0 20 
ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

-.A
0 2 0 2 

SPEED, C/CO SPEED, C/CO 

0 20 0 20 
ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

0 2 0 2SPEED, C/CO SPEED, C/CO 

Figure 4.- Maxwellian initial velocity distribution; delta function
 
rotational distribution!(fr(O,x) = 1 at j = 0):
 

Equipartition ,not satisfied.
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t/-r=5.O ftr =10.0 
.2 

fr I• o 

A 

0 20 0 20 

ROTATIONAL ENERGY LEVEL,J ROTATIONAL ENERGY LEVEL,J 

0 SPEED,C/CO 0 2SPEED,C/CO 

tr/=20.0 t/it=50. 

fr I1 

0 20 0 20 
ROTATIONAL ENERGY LEVEL,J ROTATIONAL ENERGY LEVEL,J 

0 2 0 2 
SPEED, C/CO SPEED, C/CO 

Figure 4.- Continued. 
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t/r=O0.O ., 	 t/r=120.0 
.2 	 ,-. 

200, 20" 

,RQTATIONAL, ENERGY LEVELJ ROTATIONAL;ENERGYLEVEL, J. 

0 	 :- "2 "O 
-, SPEED,.C/CO " SPEED,C/CO. 

Figure 4.- Cohcludea.
 

^2.
 

2-	 L
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t/r=O.o t/T= 10 

2 

0 20 020-

ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

It "'90" . ... 

0 2 0 2 
SPEED,C/CO SPEED,C/CO
 

t/=3.O t/r=5.0 

2 

fr I"• 

0 O 20
 
ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

0 2 0 2 
SPEED,C/CO SPEED,C/CO
 

t r 

(a) Comparison with equilibrium distributions..
 

Figure 5.- Maxwellian initial velocity distribution; Boltzmann
 
rotational energy distribution (T t = 6 K, T = 793 K):
 

Equipartition not satisfied.
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.2 

t/r=1O. t/r=50.0 

0 20 0 20 
ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

f
t "'.
 

0 2 0 2 
SPEED,C/CO SPEED,C/CO 

t/r=0.0 . t/T=130.0 

.2 .2 

fr 
I
 

0 20 0 20 

ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

ft[ 

0 2 0 2
 
SPEED, C/CO SPEED, C/CO
 

(a) Comparison with equilibrium distributions - Concluded.
 

Figure 5.- Continued.
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t/r=o 0 t/r = 1.0 
.2 

fr. 

0 20 0 20 
ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J 

.1 
ft, 

0 2 0 2 
SPEED,C/CO SPEED,C/CO 

t/T=3.0 I/T=5.0 
.2 

fr 

0 20 20 
ROTATIONAL ENERGY LEVEL, d 0 ROTATIONAL ENERGY LEVEL, J 

ft CI 

0 2 0 2 
SPEED, C/CO SPEED, C/CO 

(b) Comparison with local Maxwell-Boltzmann,distributions. 

Figure 5.- Continued. 

65
 



t/Tl10.0 t/T=20.0 

.2 

0 * 20 
*ROTATIONAL ENERGY LEVEL, J 

20 
ROTATIONAL ENERGY LEVEL, J 

ft 

I. a 

fI * 

0 20ROTATIONAL ENERGY LEVEL,J 0 20ROTATIONAL ENERGY LEVEL,J
 

0 2 0 2

SPEED,C/CO 
 SPEED,C/CO
 

(b) Comparison with local Maxwell-Boltzmann distributions - Continued.
 

Figure 5.- Continued.
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t/r=130 0 

2
 

fr
 

0 20
 
ROTATIONAL ENERGY LEVEL, J 

0
 

SPEED, C/CO 

(b) Comparison with local Maxwell-Boltzmann distributions - Concluded. 

Figure 5.- Concluded. 
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S f=.O t/O..O 
.2 

0 20 0 20 
ROTATIONAL ENERGY ROTATIONAL ENERGY 

LEVEL, J LEVEL, J 

ft 
. .. .. . . '. .. ... 

0 2 0
 
SPEED,C/CO SPEED, C/CO
 

..t/r=2.0 t/T-=4,0 

.2 

fr
 

- 0 20 0 20 
ROTATIONAL ENERGY ROTATIONAL ENERGY 

LEVEL,J LEVEL, J 

0
 
e O0
 

0 2 0 2 
SPEED, C/CO SPEED, C/CO 

(a) Comparison with equilibrium distributions.
 

Figure 6.- Maxwellian initial velocity distribution; delta function
 
rotational distribution tfr(O,x) = 1 at j = 16);
 

Equipartition not satisfied.
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Figure 6.- Continued.
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.Figure 7.- Relaxation behavior of average rotational energy for
a variety of initial distributions.
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Figure 8.- Preliminary 	study of shock wave structure.
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