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NOTATION

parameter appearing in equation (B3)
impact parameter
parameter associated with detailed balancing (eqs. (B5) and (B6))
molecular speed

2kT
most probable molecule speed, C—;rg
most probable molecule speed at the initial temperature T;.
exponent in selection rule (eq. (7))
strength associated with intermolecular potential
kinetic energy
rotational energy, kO,.j(j + 1)
distribution function
relative speed
moment of inertia
rotational energy ievel
average energy level where 0.j,(j, + 1) = T
Boltzmann constant
magnetic quantum number; aiso molecular weight
momentum, /ffE;
number of simulated molecules within the cell
number density
rotational transition probability
modified rotational éransition probability
collision cross section

intermolecular distance

iii



t time

T _ temperature

u x component of velocity

v y component of velocity

v interaction potential, or velocity

W z component of velocity

§ index of power associated with point centers of repulsion model,
(eq. (6)), V(R) = d/RS.

A rotational level jump

E)r characteristic rotational temperature

A relaxation time, (eq. (16))

u reduced mass

v collision frequency

o effective collision diameter

T characteristic collision time based on equilibrium translatiomal
temperature, 1/(nﬂ02c0}

X deflection angle defined in equatioms (2) or (10).

2 solid angle

Subscripts:

e equilibrium

i,3 rotational states

max maximum value

T -rotation;l

t translational



Superscript
= vector
after

(L 2th momentum



MONTE CARLO SOLUTION OF BOLTZMANN EQUATION FOR A
SIMPLE MODEL OF HIGHLY NONEQUILIBRIUM DIATOMIC GASES
Translational Rotational Energy Relaxation
Kenneth K. Yoshikawa®

Ames Research Center, NASA
Moffett Field, Califormia, 94035

and

Institute of Space and Aeronautical Secience
University of Tokyo, Tokyo, Japan (153)

SUMMARY

Theoretical studies of translational and rotational energy relaxation in
diatomic gases are described. The direct simulation Monte Carlo method is
employed to solve the Boltzmann equation for a rotatiomally excited highly
nonequilibrium gas. The gas investigated is homonuclear diatomic nitrogen,
and the semiclassical model of Ttikawa is incorporated for the tramsition
probability that describes rotation-translation energy interchange.

The details of energy interchange between the translational motion and
the rotational energy levels of the gas are examined for spatially uniform
flow without boundary dnteractions (the "box" calculation) with a variety of
initial conditions. The results show:

1. The assumption that relaxation occurs via- successive. local Maxwellian
veloeity distributions, which is a commonly used basis for finding approximate
solutions of Boltzmann equation, is not valid for gases that are initially in
highly nonequilibrium states. This is especially true for initial conditiomns
that involve low translational and high rotational temperatures.

2. The energy distributions for such tramsitions show bimodal (or double
peak) relaxation patterns; the secondary peak ("satellite peak") appears around
the Maxwellian elastic peak in the velocity distribution early during the
relaxation period. The secondary peak is due to inelastic collisions and is
analogous to the rotational Raman effect accompanying Rayleigh scattering.

3. The rotational energy distribution also shows bimodal relaxation
effects: In addition to thermal equilibrium Boltzmann peak, a weak peak also
appears at the high rotational energy levels., When the rotational energy

*Visiting staff. On leave from Ames Research Center during 1976-1977.



distribution is a delta function, however, relaxation proceeds only as a
single-peak distribution. One, therefore, concludes that single~ or double-
peak relaxation depends on the type of initial distributions assumed,

4., Relaxation of the velocity distribution to equilibrium Maxwellian
occurs relatively fast while the rotational energy relaxes more slowly. The
relaxation time depends not only on equilibrium temperature, but also on
initial velocity and rotational energy distributions.

Close correlation of the relaxation between the box models and fluid
flows, such as, sound ébsorption, shock wave, and free-jet expansion experi-
ment are described. Also presented are brief preliminary results of a shock
‘wave showing translational and rotational energy relaxation structure.

A 16-mm movie f£ilm displays examples of the relaxation effects of the
"box™ model with a variety of initially specified velocity and rotational
energy distributions.

INTRODUCTION

A Inowledge of internal energy transfer mechanisms at the moleculaé level
is valuable for an accurate understanding of many important nonequilibrium
problems that occur in high-speed gas dynamics, acoustics, laser transmission,
detontation, combustion, pollution, and atmospheric physics. For example,
collision-induced rotational transitions play a major role in establishing the
population inversions leading to gas-dynamic laser action, and also in evalu-
ating the effects of highly nonequilibrium energy transfer in rarefied gas
flow about spacecraft entering the planetary atmosphere.

In the present paper, several new and important results are presented on
internally excited translation-rotation energy relaxation. These results are
obtained by solving the Boltzmann equation by the Monte Carlo direct simula-
tion method, which previously has been applied successfully to menatomic
(without internal rotational relaxation) gas flow problems (refs. 1 to 3).

An important feature of the simulation method is that it provides insight into
the effects of collisional relaxation at the microscopic level. In particular,
the instantaneous internal energy distributions can be continuously observed
throughout the relaxation processes. To ensure that these distributions be
meaningful, however, it is essential that the rotational transition probability
function, used in the method, display certain features; namely, (1) probability
must be conserved, (2) probabilities relating transitions to and from pairs of
definite states must satisfy "detailed balancing," and (3) probabilities, when
used in the simulations, must yield the correct asymptotic behavior of the dis-
tributions (refs. 4 and 5).

The Monte Carlo method itself can be described briefly as follows (see
refs. 2 and 3 for details): The flow is determined by following a statistical
sample comprising several thousand molecules that are allowed to collide with
each other. The phase space coordinates that involve trajectory and rotatiomal
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variables are known at every instant., These coordinates are allowed to change
only during a collision; the modeling of these intermolecular encounters is,
of course, the essential part of an accurate simulation., To account for these
sampling encounters, a-molecule and a near neighbor are each selected at
random as are also their impact parameter and relative orientation angles —
all in a nmanner representative of typical molecules undergoing similar
encounters. They are accepted for a collision or rejected according to a
selection rule that is dependent on the collision cross section. Since the
initial coordinates, that is, relative velocity, impact parameter, oriemntation
angles, and pair of rotatiomal quantum states, are known, the final rotational
quantum states can be computed, This involves computing the transition prob-
abilities of all quantum states that are accessible from the known initial
states and then selecting randomly from this resulting distribution.

The procedure used here for the "translational" interactioms parallels
other investigations (refs. 1 and 3) which treat of monatomic gases only. The
procedure is different, however, from those investigations that have treated of
translation-rotation interactions. All investigations are easily categorized
under the following descriptions: (1) semiempirical, (2) classical, (3) semi-
classical, and (4) guantum mechanical. Within these categories, the semi-
empirical treatment includes an energy sink (ref. 6) and rough spheres and
loaded spheres (ref. 7) to model the translation-rotation collision processes.
While such methods do not appear to be satisfactory for highly nonequilibrium
flow, they adequately describe near equilibrium steady flows. The classical
models (refs. 8 and 9), although consistent with the classical direct simula-
tion Monte Carlo procedure used here, necessarily include approximations to
make the models tractable for studies of the type considered in this report.
The approximations yield appropriate macroscopic behavior for a nonequilibrium
example, but do not adequately provide limiting mieroscopic behavior. Imn
particular, individual molecular encounters that violate energy and momentum
conservation can occur.

Semiclassical methods (refs. 4, 5, and 10) appear to have physically
realistic bases. The simplified model of Pearson and Hansen satisfies limit—
ing equilibrium behavior, but, during a calculation, the model causes a drift
in the answers that violates energy equipartition (ref. 4). Itikawa's model
is more rigorously founded, allows for treatment of molecular collisioms (ref.
5), and also satisfies conservation of probability and appropriate detailed
balancing. Itikawa's model, therefore, satisfies the desirable characteristics
of the ideal model that we described earlier; our investigations described in
this paper depend on this model. Our intent, then, is to extend its applica-
tion to even more general problems.,

As regards the fourth category of the model (i.e., quantum mechanical
models), the author is not aware that truly quantum mechanical results are yet
viable., Such deseriptions are difficult to obtain analytically, and to apply.

In this paper, we treat translation-rotation interactions for a spatially
uniform gas far removed from solid boundaries. We are concerned only with a
basic understanding of translation-rotation relaxation behavior in highly



nonequilibrium situations. In fact, it is our belief that the Monte Carlo
method is best suited for studies of the type described in this paper.

The results presented are based on calculatioms involving three differ—
ent basic types of initial comditions: (1) equilibrium, (2) noneguilibrium—
equipartition (i.e., equipartition is satisfied, but distributions are
perturbed), and (3) nonequilibrium~nonequipartition (i.e., both the equiparti-
tion and the distributions are perturbed). Also included are the results of
monatomic gas simulations (rotational relaxation effects frozen) to assist com-
parisons with coupled translation-rotation relaxation simulations. To further
assist the understanding of the Monte Carlo method, the essential mathematical
relations are also given in this report.

FORMULATION AND PROCEDURE

L

The essence of the Monte Carlo procedure is described briefly in the
Introduction. Introduced in this section are several analytical relations
that assist both the understanding and use of the method. Appendices A and
B provide supplementary analysis to the procedure and appendix C is a listing
of the computer program that was used in the procedure.

Governing Egquations

The study described in this paper concerns the temporal and spatial relaxa-
tion of the velocity and rotational energy state distributions that character-
ize a statistical sample representing several thousand molecules. If we assume
that the molecular distributions themselves are diagonal and independent of the
degenerate rotational m substates, the Boltzmann equation (or Wang, Chang
and Uhlenbeck equation, see ref, 11) that relates the temporal and spatial
behavior of the distribution functions f; can be written

a(nf.) . .
— P LT . = o[ (21 +1)(2] + 1) B do .+ .3
TR P T Z: ./:[“ [(21' T+ D farfyr - EE| 8 g a0 4TV (D
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where n 1is the number density, £j = f£j (%, ?, t) dis the distribution func-
tion which depends on time t, position ¥, velocity ?, and rotational state
i, do/d@ is the differential cross section corresponding to solid angle .
External forces are assumed to be absent. The Monte Carlo procedure is used
to effectively solve this equation by means of a probabilistic sampling pro-~
cedure. TImplicit within the equation and procedure are the conwventional fluid
dynamic conservation laws (i.e., conservation of mass, momentum, and energy;
see, e.g., ref, 11).

Of greatest interest for the study given here is the "box" calculation
wherein the gas is spatially uniform, has constant density, and is stationary;
that is, the gas is entirely contained within an "imaginary box" that has unit



volume and noninteracting boundaries (sketch (a)). The procedure, in this case,

concerns interactions in a closed system. Energy conservation is applied

directly (i.e., exact energy conservation is imposed on the interacting pairs

of molecules) and "random sampling" ensures that, over long periods of time,

the number of molecules contained within the box remain constant.

cepts aré treated in greater detail in the subsequent discussion.
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The "box" calculation has general utility since such a calcutation, wnen
started with an appropriate set of initial conditions, provides insight intc
mechanisms in the more general flow situation as found in sound absorption,
normal shock wave, or free jet expansion experiments (see table I). In addi-
tion to the "box" calculation results, a simulation is also given for steady
one-dimensional shock wave flow. This result is preliminary and demonstrates
the capability of the method for simulating more complicated flows.

Collision Parameters

The essence of an accurate simulation is the random or probabilistic
sampling used to select the interacting (colliding) molecular pairs, to deter-
mine whether a reaction occurs, to find the resulting "states," and then to
advance the time interval for the next collision, and so on. To provide
insight on this entire collision process and to arrive at a criterion for
evaluating certain of the parameters required to define a collision, it is
worthwhile to briefly review the classical representation of the equivalent
process, and to observe how such relations depend on intermolecular potentizal.

A classical representatioﬁ (ref. 7, ch. 8) is given by’

wb,g) =1 -2 | (b ®/R)N = BDZ = V(L Dng? 2)
Re
Q(R)(g) = 2m f (1 - cos” b db 3
(]

where V(R) is a spherically symmetric intermolecular potential, x(b,g) is
the encounter deflection angle, which depends on impact parameter b and on
g  relative velocity of approach, u is the reduced mass, R, 1is the distance
of closest approach, and Q(ﬂ)(g) is the &th "momentum" transport cross sec-—
tion, which also depends on relative velocity (for studies reported here,

£ = 1), The collision frequency, v, is then given by



(2) .

Vv = nQ (4)

With this relation, the collision time, At, between encounters and the elapsed
time, t, are given, respectively, by

At =

ALY
<[

(5)
t= 20 At
i

where N is the number of particles in the "box."

Collision,—TFor cases in which the intermolecular potential is inversely pro-
portional to the power, 8, of distance between colliding molecular pairs, we
can readily calculate a frequency ratio (e.g., ref. 5)

(8-4)/6

v \_ {s '
S - (6)
max max

where Vp.. and gmax are the maximum possible values in a cell. The dimen-
sionless ratios of frequency and relative approach velocity are related through
§. If the collision process can be represented by symmetric inverse power-law
potentials, then equation (6) is a valid representation for all collisions

and can be used as a criterion to decide whether an "encounter" is a "collision."
The representation, therefore, serves as a "selection rule" for encounters.l

For the Monte Carlo results displayed in this report, we have arbitrarily
picked intermolecular potentials with § = 4 (i.e., "Maxwell molecules").

Of all encounters that are collisions, we must further categorize those
which are elastic from those which are inelastic (i.e., those which yield
rotational transitions).

Inelastic collision.—Not all collisions result in a rotational transition.
For example, some interacting pairs may have insufficient relative energy to

hY

!Actual intermolecular potentials have a more complex behavior than the
idealized § potential upon which equation (6) is based. Relations equiv-
alent to equation (6), but based on more accurate representations for the
molecular potential, can be found in reference 12. The expressions were
derived recently and, hence, were not available for the simulations described
in this paper. '



induce a transition. To separate such events from those which result in
rotational transitions (i.e., inelastic collisions), we introduce a relation

similar to that given above but with a different value for the exponent,
that is,

’ i

\,v. = (£ (7
g

max i max

where the subscript 1 denotes inelastic collision. The appropriate. value to
use for Ci, however, is based on simulation results. We require that simula~
tions, which start with Maxwell-Boltzmaun distributions that satisfy equiparti-
tion, must yield nondrifting results., A value of Cji = 0.43) yields this
desired behavior. The procedure used to evaluate Ci 1is also described in
reference 5, but in greater detail.

Collision Dynamics

In the previous section, the parameters required to determine the cccur-
rence of 4 collision are given. In this section, we describe ‘the procedure
for finding the trajectories after a collision. A collision, of course, also
can be accompanied by rotational transitions in either or both colliding pairs
of molecules. These rotational transitions can also perturb the particle
trajectories. In this section, we describe the relations that ensure colli~
sion symmetry (i.e., a collision is invariant with its inverse) and that enable
rotational transitions to be more precisely determined. .

The relative velocity and impact parameter after a collision are obtained
by knowing the onset energy and momentum. The relations are given by

1y2 = 52 g T - Y
(g™ g m (Bly — B Y EL Eﬂ) (8
and ]
[gb - @', ~M . +M', - M )/u
1 1 2 2
B! = T T - T T (9)

g

where E, and M, are the rotational energy and momentum before a collision
and a prime distinguishes the corresponding values after a collision. We
assume that rotational transitions only slightly perturb the relative velocity
and impact parameter.

The deflection angle, given by equation (2), is actually dependent on the
functional behavior of the intermolecular potential, but, for finding the
limiting trajectories, we assume that the infinite-rise potential (i.e., a
"billiard ball"™ ecollision) is adequate.. The corresponding deflection angle is
given by



x(b) = 2 cos_l (%) (10)

where ¢ 1s the effective diameter of the rigid-spherical molecule. The
slightly perturbing effect of inelastic collisions resulting from the rota-
tional tramsitions is accounted for by the following average:

Xy = XL XbD) o an

To completely specify a collision, however, it is also necessary to give the
orientation angle ¢, which references the collision plane with respect to
some arbitrary coordinate plane (see, e.g., ref. 13, p. 36). The velocity
components before and after the collision can be related (e.g., ref. 13)

1 - -
gl = gg— (g, cos X - /g% - gxz cos € sin ¥) (12a)

X

1 - -
g}'f = % [gy cos X + (gxgy cos € + g g, sin €) sin X/Vg% - gxz] (12b)

1 4 )
[ - A y: _ c N s = —
g, . [gz cos X + (gxgz cos g £ gy sin €) sin )(/s/gz gxz:l {12¢)

We impose conservation of linear momentum to find the resulting velocity com-
ponents after a collision. There results

|

v o T

u2 > (ul+u2+gx)

S § '

Ve =5 (vl+v2+gy) (13a)
W'=-]-'-(W +w, +g')

2 2 W1V T gy

W=y

vi=vé—g; (13b)
R

Wy =Wy =8,



Rotational Transition Probability

To describe inelastic collisions, also needed, in addition to the trajec~
tory parameters introduced in the previous sections, are expressions which
relate the probability of transition between initial and final rotatiomal
energy states (i.e., the rotational transition probabilities). As was pointed
out in the introduction, the semiclassical probabilities derived by Itikawa
(ref. 5) are used, A brief description of their properties follows.

We describe an interaction where rotational transitions occur from levels
(1,3} to (i',3") by

Ny(1) + N, (§) + N, (i") + N, (3") (14)

The collision trajectory itself, as described earlier, is determined classi-
cally: Given an analytical relation for the trajectory, the amplitude of the
rotational transitions can then be determined from gquantum mechanical con-
siderations. By appropriately cowbining the trajectory with an expanded set
of Schroedinger equations (e.g., see ref. 5), the amplitude of the rotational
transitions can be obtained by solving a set of coupled differential equatioms.
In order to reduce the rank of the system, the effective potential method of
Rabitz (ref. 14) is employed. The method eliminates the dependence of the
interaction matrix on the magnetic quantum number, m. The resulting coupled
set of ordinary differential equations are then solved by using the exponen-
tial approximation (see ref., 15), What is iImportant is that the method treats
an interaction regardless of its "strength," and, in addition, allows for the
likelihood of all tramsitions, including those with multilevel jumps. The
simultaneocus transitions for both colliding molecules (i.e., rotation-rotation
as well as rotation-translation) are also taken into account. The precise
formulation used is given in reference 5.

Some importamt properties of the probabilities that pertain to the Monte
Carlo simulation method are described briefly in appendix B. If a collision
is inelastic as selected by equatiomn (7), the transition of‘pair's moleculax
states are then determined by the Itikawa's rotational transition probabilities.

RESULTS AND DISCUSSION

In this section, Monte Carlo simulations are described for a stationary
homogeneous molecular gas (i.e., for a "box" calculation). The simulations
differ depending on the choice of the initial distribution functions (see
table 1), The initial conditions fall under three general categories:

(1) complete equilibrium, (2) nonequilibrium, equipartition, and (3) non-

equilibrium and nonequipartition. We use the term nonequilibrium here to

denote that either the velocity distribution, f{, or the rotational energy
distribution, f,, are non-Maxwellian.



The first case, that is, complete equilibrium, tests the method, as well
as the internal parameters, for self-consistency., The velocity and rotational
energy distributions .should remain constant for extended periods of calcula-
tion. That is, the internal energy distributions should remain Maxwellian and
equipartition should be inviolate (e.g., refs, 4 and 5).

The second case, where the velocity and rotational energy distributions
are specified to gatisfy energy partition (i.e., the fraction of energy dis-
tributed between translation and rotation is proper, but where the distribu-~
tions, themselves, are non-Maxwellian) provides a test on whether the procedure
has an internal driving mechanism that will yield a relaxation to equilibrium
within a physically realistic time.

The third set of initial conditions, where the initial distributions
violate both equipartition and are highly nonequilibrium states, allows-even
more complex investigations. TFor example, one can study the relaxation
processes to equipartition as well as how the velocity and rotatiomal distri-
butions interact during the relaxation. 1In effect, these simulations with
varied starting conditions give qualitative information on the coupling of the
energy distributions and quantitative data on the rates of relaxatiom.

In table 1, the specific choice of initial conditions for the simulations
described in this paper are listed. These results are also useful in providing
qualitative information that can be used to interpret results in several
equivalent experiments. The experiments are sound absorption, shock-waves,
and free-jet expansions (ref. 11). Table 1 lists the simulation and the
related experiment type. The simulations are deseribed in the discussion that -’
follows.,

Initial distributions: complete equilibrium.—The first test of a good method
for simulating solutions to Boltzmann's equation is that Maxwellian energy
distributions, both in velocity and in rotational energy, not change for
extended calculation periods. In figure la are given the results of such a
gimulation, The results show sets of paired figures for progressively increas-
ing times corresponding to t/T = 0.0, 1.0, 5.0, and 10.0. One figure in the
pair is a snapshot of the rotational energy distribution funcition,-fy, pleotted
versus rotational energy level j at a definite time ¢t/t, and the other
figure is the velocity distribution function, fy, plotted versus veloecity

c/eqg, where cg is the most probable molecular speed defined by cg = v2 kTg/m,
m is the molecular mass, and Ty is the equilibrium temperature associated with
the "box" model. We observe that, although small fluctuations occur around

the dotted curves (which represent the true Maxwellian distributions) during
the calculation peried, these fluctuations do not grow {ref. 5). In fact,
figure 2b shows the results of the same calculation, but where the time average
of the distributions, given by

fr or t . 5)

ot
Rl
H

H

o)

H

I
o
ot



are plotted. We observe that the fluctuations are negligible in the second
group of “"snapshots." These simulations illustrate that, indeed, the pro-
cedure is stable over long calculation periods. The next case tests the
capability of the procedure to drive arbitrarily specified initial distri-
butions to the Maxwellian limit.

Initial distributions: non-Maxwellian velocity and rotational effects frozen.—
The Monte Carlo method allows for comsiderable flexibility regarding the
precise specification of the initial distributions. For example, one can
freeze the rotational relaxation effects and investigate only the relaxation
of the wvelocity distribution. The next example is of this type.- In figure 2
are displayed the resulting time history for relaxation of the velocity
distribution function, starting with two different initial distributions., In
figure 2a are displayed the relaxation processes that correspond to initially
letting every molecule have a speed equal to v3/Z cg. The dotted curve is a
Maxwellian distribution characterized by the temperature Tg = 320 K. 1In

this example, the "Dirac delta function™ type of initial distribution should
relax to coincidence with the dotted curve. The rotational energy, of course,
is ignored. We observe that the distributions are largely eguilibrated by

the instant t/T = 1 (the area differences. between the solid and dotted

curves correspond to the number of molecules that still have initial velocity
¥3/2 ¢g and remain to be "equilibrated"—i.e., about 10 percent of the
total). At tft = 2.0, the distribution is established and very little change
occurs thereafter. One concludes from this simulation that the procedure leads
to the correct Maxwellian limit, as indeed it should. 1In figure 2b, the ini-
tial distribution is slightly different., In this case, the energy, corre-
sponding to kT,, is distributed at two separate initial velocities: ¢g/2 and
v11/2 cg. The rotational energy is managed in the same manner as the example
in figure 2a. The result for this case is nearly the same. Tun fact, little
difference can be observed in a comparison of the relaxation history. At the
instant t/t = 1.0, roughly the same fraction of molecules remain to be
equilibrated as in the first example. The distribution appears to be estab-
lished by the instant t/T = 2.0 and changes very little thereafter.

Initial distributions: Maxwellian velocity and egquipartition.—Our next
simulation, figure 3, illustrates the relaxation effects that occur when the
initial velocity distribution is Maxwellian and the rotational distribution,
which satisfies energy equipartition, approximates a delta function centered
at jpo = 10 (i.e., every molecule has kT, rotational energy in the 10th
energy level)., This rotational level also represents the probable rotational
energy level for a Boltzmann distributions at temperature LkTp (i.e., jp is
found from k@, jo(jg + 1) = kTg, where 8,(N)2 = 2.9 K and Tg = 320 K),

Since our investigation concerns homonuclear nitrogen, only rotational
transitions that satisfy the multiples of Aj = £2 are allowed. At the first
instant displayed in figure 3 after relaxation begins (i.e., at t/t = 0.5),
we observe a double peak appearing in the veloeity distribution. This behavior
is very similar to the Stokes and anti-~Stokes lines that appear in Raman
scattering (ref., 16). The position of these peaks can be calculated (see
appendix A) and appear at the wvelocities c/co = 0.91 and 1.1, respectively.
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These peaks appear because the rotational energy is "dumped" into a narrow
energy band, The transitions, 4j = %2, are most probable compared to multi-
level transitioms, |A3]>4. This effect results in two perturbations appearing
in the velocity distribution about the most probable velocity cg.
Initial distributions: Maxwellian velocity (Tt > Te) and nonequipartition,—
The simulation displayed in figure 4 demonstrates the relaxation effects caused
by violating equipartition. Rotational energy states are assumed initially to
be unexcited; the energy is contained entirely within the velocity distribution
which is Maxwellian (T; = 534 K). The fact that single level (Aj = %2 for
homonuclear molecules) rotational tramsitions are the most likely compared to
multilevel (|Aj|2ﬁ) transitions is also apparent here. After relaxation begins,
we observe that the lowest level rotational states populate first, The gain in
rotational energy appéars to be at the expense of the molecules with velocities
that correspond to the most probable velocity cg or higher. As the time t/T
increases, energy continues to be "dumped" from the translational to the rota-
tional mode as demonstrated by the downward drifting velocity distribution and
the upward drifting rotational distribution. These processes become less
efficient as energy is "dumped" to higher and higher rotational energy levels.
This is apparent because, as the width of the energy level increasés, the
energy interchange between the rotational and translational mode becomes even
less efficient, We find, then, that considerable time is required to populate
the uppermost rotational energy levels. In fact, the velocity distribution
appears to be nearly equilibrated by the time t/T = 20.0, while the rotatlonal
distribution is still relaxing at t/t = 50.0.

The simulation demonstrates that the step-wise populating mechanism
implicit within the Itikawa model leads to relatively slow relaxation to a
Boltzmann rotational distribution. Of course, if multiple level transitions
were more effective, the rate of relaxation to a Boltzmann rotational distri-
bution would be greatly enhanced. These features are characteristic of
translation-rotation transitions, and they are apparent in all simulations
involving translation-rotation interactioms.

The simulation displayed in the next figure, figure 5, differs from this
example in that rather than follow the populating of the rotational energy
levels from an initial state of "excessive" translational energy, we follow
the depopulating of the rotational energy levels from an initial state of
"excessive" rotational energy. Of course, Mexcessive" refers to the manner
in which that energy is initially distributed relative to the distribution
that satisfies equipartition.

Initial distributions: Maxwellian velocity (Tt < Te) and nonequipartition.—
In figure 5a, we observe that, at the initial instant prior to relaxationm,

the rotational energy is stored in a Boltzmann distribution (T, = 793 K) which
peaks near the most probable levels j = 10 or 12 (i.e., f,(x) is maximum at
x = 11.16). The velocity distribution, however, peaks at low wvelocities,
c*fcg = 0,135,

Several interesting features can be observed during the relaxation pro-
cesses, We note that a satellite peak (refs. 16 and 17) develops on the high
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sides of the velocity distribution (i.e., c/cg = 0.44), and this peak forms at
the expense of rotational energy near the most probable levels j = 10 or 12
(as exemplified by the "dip" in the rotational distribution). This peak con-
tinues to grow as rotational energy is converted to thermal motion. Again, one
observes the effect of the inefficient coupling of translational and rotational
energy interchange with the higher rotational energy levels. This effect, of
course, results in the appearance of a second peak at the higher rotatiomal
levels, This effect of double peaks is also discussed by Polanyi and Woodall
(ref. 18). The peaks remain in the distribution until quite late during the
relaxation process (say, t/t = 50.0). We also notice that, by this time, the
velocity distribution has nearly equilibrated to Maxwellian, and this occurs
before the rotational distribution becomes Boltzmann, similar to what occurred
in the previous example, figure 4.

) Also interesting is a comparison of how close the distributions approxi-
mate the Maxwell-Boltzmann distribution during each instant of the relaxation
processes. Such comparisons are displayed in figure 5b. Here, the dotted
curves are "local Maxwell-Boltzmann" distributions rather than the asymptotic
limiting equilibrium distributions displayed heretofore. The dotted distri-
butions are determined by matching the energy, in both the velocity and )
rotational modes, with the simulation results. These results illustrate that
the actual distributions found by the simulation deviate gignificantly from
local Maxwell-Boltzmann distributions. This demonstrates that the popular
methods that rely on expansion procedures involving local Boltzmann distribu-
tions for solving the Boltzmann equation can be unreliable. In fact, the
double-peaked results displayed in figure 5 illustrate that appropriate distri-
butions can have rather complex non~Boltzmamn functional behavior.

Initial distributions: Maxwellian velocity (Tt < Te) and nonequipartition.—
The simulation displayed in figure 6 is very similar to that displayed in
figure 3; the initial rotational energy distribution approximates a Dirac
delta-function, but the simulation differs in that the constant rotational
energy assigned each molecule violates equipartition, Here we have an initial
dumping of the rotational energy into the 16th rotational energy level. The
veloeity distribution, however; is Maxwellian. At the ongset of relaxation,

we observe the "anti-Stokes'" Raman scattering effect appearing in the velocity
distribution, that is, the appearance of a satellite peak (using the relations
in appendix A with j = 16 and Aj = -2, we find the peak location to be

c/cg = 0.55). The pumping mechanism by which the high rotational energy is
converted into thermal motion also appears conspicuously in this example (see
ref. 17). The single step transitions from the 16th to 14th level (4 = -2)
occur first with the quanta of rotational energy being preferentially absorbed
by the very low-speed molecules. As this process proceeds, the number of
molecules in the l4th level approaches equality with the number in the 16th
level. Siwmultaneously, the "anti-Stokes Raman' peak broadens as the slow
speed molecules are "'pumped" into this region. As the relaxation progresses,
the lower lying rotational levels are successively populated while the "anti-
Stokes Raman" peak becomes increasingly broad.

Contrary to the previous example, figure 5a, the rotational distribution
relaxes continuously with one one peak. The velocity distribution, however,
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similar to that in figure 5, displays a slow relaxation to the Maxwellian
distribution. The relatively large energy in the high rotational states, the
slow relaxation experienced in these sitates, and the strong couplking of these
Tevels with the slow molecules all appear to contribute to inhabiting the
relaxation of the velocity distribution to Maxwellian.

To show the manner by which the local distributions compare with local
Maxwell-Boltzmann distributions during the relaxation processes, the dotted
curves .are again introduced in figure 6b, as was done in figure 5b. Again,
we observe that the distributions do not approximate Maxwell-Boltzmann distri-
butions during each instant of the relaxation,

Relaxation of Average Rotational Energy

The results displayed in figures 1 through 6 illustrate, in particular,
the manner by which an initial energy distribution relaxes to the final
Maxwellian distributions. Also interesting is the manner by which the "average
energy" approaches some asymptotic constant value. Such results are given in
figure 7. In this figure are displayed four curves, Three curves display the
average energy relaxation associated with initial distributicons, which are
Dirac delta-function type, and the fourth displays results with an initial
distribution that is Boltzmann with high rotatiomal temperature. The essential
feature is the comparison of results between curves that have high and low
initial rotational energy (e.g., cases 4 and 5)., Because the coupling between
translation and rotation is efficient for the lower levels, the slope of these
curves is greatest. Also, interesting is case 3 which illustrates that even
though the initial distribution satisfies energy equipartition, the system is
not bound to satisfy equipartition during the subsequent instants as the rota-
tional distribution asymptotically approaches a Boltzmann distribution. Addi-
tional simulations all illustrate the downward shift (as illustrated in the

figure for 4 = 10) followed by the upward relaxation to "equipartition."

Figure 7 can also be used to define a useful relaxation time that charac-
terizes the simulation results. Such a definition, of course, is not exactly
clear because the relaxing curves are not exponential. One can resort to the
definition given by (e.g., ref. 11)

A =[(Ep)e - Ep(t)]/(dE,/dt) (16}

This definition, however, is impractical when the energy difference in the
bracket is small. One can also define the relaxation time to be that time when
the bracket expression has reduced to 1l/e of its initial value (e.g., ref. 13).
On the basis of this latter definition, it turns out that A = 32 is satis-
factory for both curves labeled j = 0 and j = 16. This value also seems to
be consistent with the simulation displayed for all three initial delta func-
tions of rotational energy distribution (i.e., j = 0, 10, and 16) in figures
3, 4, and 6. In these figures, we can see that the relaxation appears to be
néarly ceased at the same instant between the two displays of the distribution
function at t/tT = 20 and 40.
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‘The relaxation of translational energy is not shown here since, for our
"box" calculation, conservation of energy E; is directly related to the
average rotational emergy E, via the relation

Ee/(E)e = 5/3 ~ 2/3 B/ (E)e an

at each instant during the relaxation processes. The subscript .e denotes
the asymptotic limiting energies assoclated with equilibrium.

Shock Wave Structure

The previous examples, figures 1 through 6, rely on the "box" model, which
is based on the assumption that the distributions have no spatial dependence.
The Monte Carlo method, of course, has potential for much greater geneality.

We can effectively introduce a gpatial dependence into the distributions and
study more complicated problems. To demonstrate this effect, results. of simula-
tions for a normal shock wave structure are displayed in figure 8. TFor this
example, the nuwmber of molecule in the sample size was not increased and,
therefore, the curves are not exactly smooth,

In this figure are displayed the translational and rotational temperatures
(based on average energy) and density at seven distinct instants of time. As
one might expect, the translational temperature develops an overshoot. As the
rotational mode is excited the high translational temperature decreases and

.approaches an asymptotic steady value,

This example is included to demonstrate that such simulations that involve
both elastic and inelastic collisions are pogsible, More refined shock shapes
than those displayed in figure 8 will require a considerable -increase in the
number of molecules within the statistical sample and in computation time,
thus, no attempt has been made to check the convergence of the solution.

CONCLUSIONS

The Monte Carlo simulation method described in this report, including the
use of the Itikawa model for representing inelastic collision processes, is a
viable scheme for studying translation-rotation interactions. The method can
provide very useful qualitative and quantitative information on the relaxation
processes associated with at least relatively simple topological systems (i.e.,
one-dimensional and quasi one-dimensional systems). On the basis of experience
gained here, it is not expected that the method will be considered viable at
this time for more complex topological studies (i.e., three-dimensional flow
simulations), because current and foreseeable computer resources appear insuf-
ficient to allow economical processing of the increased sample size that will
be required in such studies.
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The method, however, is very useful in its present form to visualize
fundamental gas kinetic behavior as demonstrated by the results presented in
this paper. A review of the simulations given in this report shows the fol—
Jowing results:

1. Single step (Aj = *2 for homonuclear molecules) transitions are the
significant mechanisms of intermodal energy transfer rather than the multistep
transitions (i.e.,.|Aj|>4 for homonuclear molecules).

2. The coupling of translation-rotation transitions is the most effi-
cient for low lying rotationally excited molecules and is least efficient for
the highly rotationally excited molecules.

3. The "relaxation time" required for molecules to reach an asymptotic
steady-distribution in both the velocity and rotational states is dependent on
the initial distributions. .

4, Relaxation occurs via a successive set of distributions that are not
Maxwell-Boltzmann (nonlocal Maxwellian).

5, Initial rotational distributions with high rotational energy and
that are far removed from satisfying .equipartition lead to the appearance of
"satellite peak" on the velocity distribution via a mechanism that is similar
to the Stokes Raman effect accompanying the Rayleigh scattering,

Subsequent studies should quantitatively compare characteristic relaxa-
tion times found by the Monte Carlo methods with similar times obtained
experimentally., Of course, only qualitative comparisons are given here.

The simulatioms reported in this paper certainly demonstrate that the

method is viable for studying translation-rotation interactiom processes and
that some revisions are necessary in existing amalytical methods.
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APPENDIX A

ESTIMATE OF SATELLITE PEAX POSITIONS IN THE VELOCITY DISTRIBUTION

Certain types of rotational energy distributions can couple strongly
through the collision processes to perturb the wvelocity distributions. In
these cagses, peaks -vccur (on the velocity distributions) that are analogous
to the Stokes and anti-Stokes rotational Raman effects which accompany Rayleigh
scattering. The satellite peaks have been observed experimentally (refs. 16
and 17). In one case (example 1) enexrgy is "dumped" into a narrow band of the
rotational energy levels; a pair of "satellite peaks" then appear around the
maximum in the velocity distribution during subsequent. relaxation. In another
case (example 2) a similar effect occurs when the velocity distribution has a
peak at low velocities ("cold gas") and the rotational energy is peaked at the
higher levels. Here, however, only one "satellite peak" appears in the
resulting velocity distribution. The nature of these peaks is such that their
position can be readily estimated without solving the Boltzmann equation.

The relative velocity, g', of a pair of molecules after:a collision can
be found from equation (8) and is given by

g' = g /1 - AE./(1/2 ug2) (A1)

where AE,. is the change in votational energy during a collision, and U is
the reduced mass, We assume that only one of the pair of colliding molecules
transfers rotational energy during the interaction; the rotational transitions
correspond to j > j * A, that is, )

It

AE, (3 + 3 2 A) = E.(§ = A) - E.(3)

At Q2F 1)K 6, (42)

|

where k is Boltzmann's constant, and 6y 1is the characteristic rotational
temperature which corresponds to a single transition. We introduce the fol-
lowing notation

velocity corresponding to the initial Maxwellian peak: c*

veloeity after rotational-translational interaction: c'
reference velocity: cg = V2kTe/m

and, in addition, the approximations g~ 2c* and g'™ 2 ¢'; we then obtain
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et Le* /1 _ AE 1/2 p(2 e*)2 |
CO - C.'O‘ kTe y 1/2 :IDF_COZ

T, B
1 ]/1—%(Ai (25 +1))== (A3)
)/ T, _ ) i

where we have used W = m/2 and (C*/CO)Z = T;/Ta. We recall for homonuclear
diatomic moleculeg, such ag molecular nitrogen, that multiples of |A| = 2
‘rather than single transitions ]Al = | are alloweéd. In the analogy with
Raman scattering, the positive sign corresponds to "Stokes" and the negative
sign to "anti~Stokes" effects. In the discussion above, example 1 displays

both Stokes and anti-Stokes effects; example 2, however, shows only anti-
Stokes effect.
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APPENDIX B

MODIFIED ROTATIONAL TRANSITION PROBABILITY

In the Imtroduction, we listed several properties that the rotational
transition probabilities must satisfy to ensure their proper behavior for the
Monte Carlo similation method: (1) probability must be conserved, (2) proba-
bilities relating transitions to and from pairs of definite states must satisfy
"detailed balancing," and (3) the probabilities, when used in the simulations,
must yield the correct asymptotic behaviors of the distributions. The third
property has been covered in the text (also, see refs. 4 and 5)., the first
property, that is,

zii jtP(i’j - i',j'; 83 =1 (B11
»

is satisfied by Itikawa's relations (refs. 5 or 11) as is also collision
symmetry, given by

P(i,i + 1',4" g) = P(L",4" > 1,35 g") (82)

To ensure the satisfaction of the second property ligted above, we
introduce the modified transition probability, P, given by

§Yi s o 4T 51, g) = A(g). B(i,j; i!:j') P(i j > 41 j" g) for (i j) % (i' j')
> 23 Gi+ni+1 7 21 ’ ’

(83)

This relation also satisfies the "principle of detailed balancing" given by
(24 + 1) (2§ + DF@E, > 1',3% ) = (2i' + 123" + DPE', 5" + 1,35 g") (B4)

.where A = A(g) and the symmetric function B(i,j; 1", J') are arbitrary rela-
tions that have functional behaviors as indicated in the parentheses. Several
example relations of B(i,j; i',j') are

t

B(i,i; i',3") = [(2i< + D) (2j< + 1T? " (B5)
or )

B(i,3; i',3") = [24 + 1)(25 + 1) 21" + 1) (23" + 1 ]L/2 (B6)

The notation i< is used to designate the smaller value of either i or i1' .
and similarly for j<.
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Note that equation (B3) is obtained from equation (B4), since g~ g'
implies A(g) = A(g'). TItikawa's expression derived in referemce 5 is a
specific -example of the more general probability relation that is displayed
here (e.g., Itikawa assumes A(g) =1 and a =1 in equation (B5)). It can
be shown that the modified transition probability given by equatiom (B3) also
satisfies "conservation of probability" and "detailed balancing."

It is worthwhile to comment that equation (7) in the text, which is the
selection rule for inelastic encounters, was based somewhat on heuristic
arguments and yielded qualitatively satisfactory results. We expect, however, .
that more accurate representations that will be based on more convincing physi-
cal arguments, which will dinvolve A(g) above, can be obtained for this
equation.
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APPENDIX C
PROGRAM LISTINGS
The entire program for the "Gas in an Imaginary Box" calculation is
‘listed in this section. -
Program listings consist of sample control cards, correction cards, main

program listings, and sample input~data cards. Many unused cards are still
in ‘the listings, but are marked by a comment symbol "c," "e#*," etc.
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REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

%
o

* SAMPLE CONTROL CARDS

E 3

YOSHX, TO500. STOPO, X6363, YOSHIKAWA

ACCOUNT, STGKKY ,T4606.

AUDIT, ID=YNSHIKAYWA,. -
ATTACH,TAPELL+FILETO024ID=YOSHIKAWA,PH=STGKKY MR=1,CY=2.
ATTACH,DLDPL, ITILIBSOURCF, ID=YOSHIKAWA sMR=1.

UPDATE,F.

FTN,1,R=3,0PT=2,PL=100000.

ATTACH,IMSL, IMSLLIB, ID=AMESL 1B,

LIBRARY{TIMSL)

REQUEST s TAPEQ,*PF

REQUFST. TAPELD,%*PF,

LDSETyMAP=X.

LOAD,LGO.

NOGO,MATN,

RETUZN,LGN.

MAIN. -

CATALNG, TAPE9,DXXXQ03, ID=YOSHIKAWA,PU=STGKKY,MR=1,RP=999,CY=2,
CATALDGTAPELDDXX103, IN=YOSHIKAWA, PU=STGKKY,MR=1,RP=999,CY¥=2.
AUDIT, ID=YNSHIKAWA.

EXIT.

CATALDG, TAPETDXXXT03,y IC=YOSHIKAWA, PU=STEKKY s MR=1,RP=999,CY=2,
CATALGGSTAPE1ID,DXX103, TD=YDOSHIKAWA,PW=STGKKY,MR=1,RP= 999,CY~2.
AUDTT, IND=YOSHIKAWA.

1"

PROGRAM LISTING

g3k SF WO %

¥IDENT,CORRELT
*T INI$$.18
C QTHER RANDNOM GEMERATION
KRAN=50
NO 50 JF=1,KRAN
R=RANF (D)
50 CONTINUE

*PDECK MONT4H%
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http:INI$$.18

leNsReNel

REPRODUCIBILILY OfF ‘LHE
ORIGINAL PAGE IS POOR

PROGRAM MONTEC{ INPUT,0UTPUT,TAPES=INPUT, TAPE6=0UTPUT, TAPE7,TAPES,
1TAPEQ, TAPELIO,TAPELL)

COMMON /TIME/ T4 TS,TF,TH,,DTN,DTM, TN

COMMON /CV/ MAX,MAX64C1,RHOL

COMMON JCONST/ WA, VOM,45SF,CO

CCMMON /RANDOM/ R

COMMON /ANSWER/ MOM,7T{4),G,DVOL,AI+POA,ROTL

COMMON /PART/ P(5001) )

COMMCN /CV1/ABCC{40,40,9)

DATA ABCC/ 14400%0. /

MONTE CARLO PROGRAM FOR GASES IN A BOX ~REVISED BY K.K. Yoshikawa

JUMP=0 ,
1 CALL INPUT{JUMP)
~  IF(JUMP.GT.0) GO TO 30
10 CALL INITAL
CALL MOMENT
CALL OUTPUTIM)
30 IF{TN.GE.TM) GO TO 100
50 CALL JPAIRS
100 TM = TM+DTH
200 TF{TM.LT.TS) GD TO 30
209 CALL MOMENT
330 TF(TM.LT.TO) GO TO 30
CALL OUTPUT (M)
TO=TO+DTN
340 IF(TM.LT.TF)} GO TO 30
ENDFILE 10
CALL EXIT
sTOP
END

*DECK INPSS

SUBRDUTINE TINPUT [JUMP)

COMMON /TIME/ TO,TSaTFyTM4DTO,DTM, TN
COMMON /CV/ MAX,MAX6,01,RHO1

COMMON /CONST/ WsA4VOM,S8F,CO

COMMON /RANDOM/ R

COMMON /ANSWER/ MOM,T{4),G,DVOL,AI,POA,ROT]
COMMON /PART/ P(5001) '

DIMENSION FC{40); FW{40)

DATA INPUT FOR MONTE CARLO PROGRAM ALA BIRD
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http:IF(TM.LT.TF
http:IF(TM.LT.TO
http:TF(TM.LT.TS
http:IF(TN.GE.TM

10

120
200

500
501
500
601

DI MENSTON HED{18)
READ(S,500) HED _

READAS5 3501 ) MAXy RHB1,CO+W+A9sVOM,MOM;DTMy TS, DTD s TF4DoR
MA X6=5*MAX ‘
AT=.25HWRDH*K2

POA=SQRT[2.141597A)

C1=Co

DVOL = D.5%{W/ (RHO1%A) ) **2

SF = RHOIXDVOL/ {MAXEW)

WRITE( 6,600) HED

WRITE{6,601) MAX,RHD1,DTM,TS,DT02TFsCO oA VOM,ySF 4D
FORMAT(  18A4)

FORMAT( 14/  10X5E10.4,13/0 4E10.4))

FORMAT{1HL  18A%4)

FORMAT (% MAX=%T15//50X%RHOL=%G15.6 %5 DTM=%G15.6,%3TS=%G15,5,

1 % DTO=%G1l5.6//% TF=%Gl5.69% CU=%G15.69%F W=%kG15, 64%3 A=%G15.6,
2EIVOM=HG15.6,4% SF=*G15.6//% D=%G15.6)

IF(MAX.LT. 0} GO TO 300
RETURN

200 READ{8) MOM,T,56,0VOL W+AsVOM,SFyCOyTO TSy TFyTM, DTO,DTM, TN,y MAX, MAXE

1060

*DECK

[ N W W]

1,C1,RHO1,+P+AI,RO0TL,POA,ABCC,,R

REWIND 8

NTMO={ TM-DTM) /DTD40.5

READIT) TAUBARNTM MAX,COC2,EDEFCFHW
WRITE{10) TAUBAR,NTM,MAX,(C0C2, EQE, FC, FH
IFINTM.LT.NTMO) GO TO 100
TF=TF+100.%DTH

JUMP=1

RETURN

END

INI%S

SUBROUTINE INITAL

COMMON /TIME/ TO,TSyTFyTM,DTO,DTM, TN
COMMON /CV/ MAX,MAX6,C1,RHDL

COMMON /CONST/ Wy A,YOM,5F,CO

COMMON /RAMDOM/ R

COMMON /ANSWER/ MOM,T{4),G,DVOL,ATI,PDA,ROTL
COMMON /PART/ PL5001)

COMMON/INIX2/ ERO

INTTIAL VALUE SUBRGUTINE FOR EQUILIBRIUM BDX

OTHER RANDOM NUMBER GENERATION
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http:W=*G15.61

aReleNel

50

M

100

130

400

s NeNeEsleNeleRe

*DECK

KRAN=10 30 JR 100 E¥CS

o 50 JrR=14,KRAN

R=RANF {0}

CONTINUE

ERD=0.5%WKCIHL L
JO=SORT(1.+.994C1ELH*ERQ} /2.
CM=0.7071068%C1 { L/SORT(2)1%L]
ISeeEn=411111111

TN=0,

P{1}=0.

DO 100 IM=1l,4

T{IM)=0.

CALCULATION OF IMITIAL VALUES

I=0 :

PlLI=P{11+1.

DD 200 1L=2,4

CALL RANDUITX,1IY,R}

IX=1Y

TL=T+L

CALL GAURMD{IX,CHM+0.,P{TL])

PLTIL )=CHAGENDF { T-SEED)

ROTATIONAL ENERGY -AT UPSTREAM CQNDITIUNS
CALL X2DTIST(IROT)

P{I+6)=1IROT

PLI+n Y= SQQT(P[I+2)**?+P(I+31**2+P{I+4}**?)
I=1+5

IF{T.GT.¥»AX56) 50 TO 500

G0 TH 13D

RFAD TNITTAL VALUES FROM THE FILF 11
READ{11} P

CONTINUE

DTO=NTNEDTHR, 99999
TS=TS%DTM* , 99999

TF=TF%DTH%,9999

TO=T5+DTH

TH = DTH

RETURN

EMD

JPASS

SIBROUTINE JPATRS

COMMON /TIME/ T0,75,TFsT,DTC,DTM, TN
COMMON /CONST/ W, 8,V0M,SF,00

COMMON /RANDAM/ R

COMMDN FANSWFR/ MOM,T(4),G,DVOL, AI,PGA ROT1
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OO

1
1

10

20

35

40
50
60
a0
o0

10°

20

COMMON /PART/ PI5001)
COLLTSION PAIR SELECTION FDR THE TINVERSE POWER POTFNTTAL DATTICLES

VR=,0

YM=pP(5)

NC=P{1)

0N 40 T1=24+NC

J=5%]

TF{P(J).CT. VM) GO TN 35
IFIP(J1.6T.VR} VR=P(J)
G0 TO &40 )
VR =VM

VM=P{J}

CONT-INUE

GHM=VM+ VYR

R=RANF {0}

JI=P{1 )%E+1

P=RAMF {D)

J2=P {1 1%R+1
IF{J1.EQ.J2) G TO 90
J1=5%31-3

J2=5%42-3

150 G=SQRT{{PIJL)I~PIJ2}1%%2+{P{J1+1)

YOO

C

cCi
ce2
£es
CC*

C

1=-PlJIZ2+ 11 )% 2+4PLJ 1+2)-PLJ2+2) ) ¥%2)

PAIR SELECTION RULE: IF F{G/GM) > B, TAKE A PAIR
FOR GENERAL CASE USE CCY1 THROUGH CL3
FIG/GMI={G/GM) *x(

R=PANF{0)}

FGRAR={G/GM)**0D. 4310

KELST=0

KELST=1 FOR MONATOMIC GAS

IF{R.LT.FGRAR) GO 70O 170

CELST=0.215 FOR EXAMPLFE

FGEL={G/GM)*kCELST

IF{RLGT.FGEL) GO- TN 60

THIS PROGRAM 15 SET UP FOR MAXWELLIAN MODEL CASE {FGFEL=1.0)
KELST=]

END OF PAIR SELECTION RULE

170 CALL CRASHIPISLI,PLJI+1),P(J1+2),PLUL+4),P{d2),

IP{J2+1},PlJ2+2},P1J244) ,KGPLKELST)
IF{KGP.GEL1) GO T 60
PLILA3)=S0RTIP{JLI5F24P{ J1+1 ) %324P {J1+2)%%D }
PLIZH2)1=S0RTIPLI2IEH24PLI2+ 1) 5% 24P [ J2+2) %% 2)

260 DTN=2,%NVDL/{P11Y¥k2%A%G%SF)
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http:IF(J.1.EQ.J2
http:IF(P(J).GT.VR
http:TF(P(J).GT.VM

270
280

20

*DECK
C
c
C

7

1

10

50

60

100
c
c
r
C
C

110

TN = TN + DTN
IF{TN.LT.TMY GO TH &0
EL TURN

END

CRALS -

SUBROUTINE CRASH(UL,V1,W1l, I1,U2,V2442y 124 KGPyKELST)
COMMAON FCONST/ W, A,V04,S5F,CO

COMMCN /RANDOM/ R

COMMON /ANSWER/ MOM,T{4},64DV0OL4AT ,POA,ROT1
COMMON/PRBOUT/PSUM{400) ,RRRR«JIFIN, J2FIN
REAL 11,712

DIATOMIC PARTICLE COLLTSION TRAJECTORIES
*ELSTIC COLLISIOM 5 S0 7O 700
IF(KELSTL.ER.LY GO TO 700

G2=0%G .
IF{I1.6T.38..00.T2.GT.38.) 60 TN 7
ETP=0.25%W*G2

EXCLUSINN OF NO ENERGY TRANSITION AT LOW KINETIC ENERGY
GO 701

KGP=1

RETURN

R=RANF {()

CP5=6.28318%R

KGP=0

ER1=4,02415-16%T1%{T1+1)
CR2=4.0241E-16%12%( 12+1)

RM1 =SORT(2.%AT*ERL )

RM2 =SQRT{2.%AT*ER2 )

R=RANF {0)

V2= yOMstek 2 ) %R

VD=SART{(VD2)

CONTINUE

IF{MOM,LT.100) GO 70 100
R2=V(O2%A/3.14159

GG 1D 110

B2=VO2 %A /G4, /BCM)

ROTATOR MNNEL

TRAMDITION PROBABILTTY FOR ROTATOR 1
TRANSTITINON PROBARILITY FOR ROTATOR 2
CONTINUE

BB=SORT{R2]

L10=T1+0.1

F THE
EPRODUCIBILITY O
%RIGB&TAL PAGE IS POOR
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http:IF(l.GT.38..OR.I2.GT.38
http:IF(TN.LT.TM

YOV

120

200
150
160
205

700
701

710
750

760

800
810

860
905

210

L20=12+0.1

R=RANF {0}
SEE PRDR. STATEMENT NO. 600

RRRR=R

CALL LINKMC{L10,L20,B8B,ETR}
JJ1=JIFIN

JI2=J2FIN _
J1=2%JJ1-2+M0OD (L1 0,2)
J2=2%JJ2-2+M0OD (L 20, 2)

e s ot e e afe st sk ¢ sfe s sfeofeolesle ke iesdeste ool ool st ste s o Sfe sl el e

ER1P=4.0241E-1 6*J1*(J1+13
ER2P=4,0241E-16%J2%{J2+1)
GP2= (G2~ 4, % [ERIP+ERZ2P-{ERI1+ER2 } )} /W)
TF(GPZ.LT.0.0) GO TD 150
GO TO 160 .

1F (KGP.GEL1) RETURN
KGP=KGP+1

G0 TN 10

GP=SQRT(GP2)

RMIP=SQRT(2 .*AI*FR1P}
RM2P=SORT{>.FATRERZ2P)
BP={5¥BRB+2 . *%{RMI1+RM2-RM1P~ RMZP)/W)/GP
IF{RP.LT.0.0) 60O TO 10

G TO 210

G2=06G%G6

R=RANF{Q)

EPS=6.283138%R

R=RANF(8))

VO2=TYOMk#& 2 ) kR
VO=SQRT{vVD2)

CONTINUE

IFIMOM.LT.100) GO TO 800
B2=VN2#A/3.,14159

GO0 70 810
B2=VO2%A /5F%{ 4, /MANM}
CONTINUE

BBR=SQRT(B2)

EP=G

BP=RA

Ji=11+.001

J2=12+.001

IF (MOM.LT.100) GO TD 220
VOP=RP%P A :
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IE(VOP .6T..99995) VOP=.99995
GO ¥0 230
220 VOP=BPHGPxx{2, /MDOM) /SQRTLA)
230 XT=SCATER{VD,M0OM}
XIP=SCATER{ VNP ,MOM)
250 XIBR=,.5%{XI+XIP)
260 GX=U2-Ul
GV=V2-V1 REPRODUCIBILITY OF THE
GZ=W2-UW1 ORIGINAL PAGE IS POOR
200 CE=COS(EPS)
SE=SIN{EPS)
CX=COS{XIR}
SX=SINI(XIB)
GPG=GP /G
350 RTG=SORTIGZ-GX*%2)
GOX=GPEx{GXXCX-RTGXSX*CE}
GPY=GPG#H{GY* X+( GX*GY*CE+GHGZ*SE} /RTG* SX)
GPZ=0PGk (G 7HCX +H{GHFB7HCE-GEGY*SE }/RTG %5X)
400 U2=.5%{U1+U2+GPX)
Y2=.5%{V1+V2+GPY )
W2=, 5% (W1+W24+6P7})
U1=U2~-GPX
Y1=y2-5PY
Wl=W2~GP7
460 I1=J1
12=42
RETUPN
END

#DECK LINKSS
SUBRQUTINE. LINKMC(I1,72,88, ETR)
DIMENSTON PWAVE(Z20,20),LABCSATLG)
COMMON /TML/ PWAVE,FKIN, LlO:LZO;BIMPvNMAX;NPRINT;LIPAR L 2P AR
COMMON /CM2/ JEL1,JELZ2,1ABCSA,LLMAX,ISELCT
COMMON /CM3/ VA,VB,IPRT1, IPRT2,IPRT3,IPRTL
COMMON JCMVRY/ VO ,WALPHA,VC64BBIMP,FEEE
(% INPUT % SELECTION FOR OUTPUT {0 FOR PRAVE/L FOR P)
ISELLT=1
Lk INPUT % MIN PRCBABILITY )
Caeae INPUT = TMITIAL ROTATIONAL STATES
L10=11 '
L20=I2
3 INPUT %% RELATIVE KINETIC ENERGY {IN E£V) EKIN= ETR/1.602E~12
EKIN=ETP*,6242197E+12
C* TNPUT %% TIMPACT PARAMETER (IN ANGSTROM)
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http:IF(VOP.GT

Caox

e d
FEE

L

L%

5010

5016

BIMP=RB*1. F08
INPUT #*%  MAX NO. OF TERMS IN EXP

NMAX= 80

TNPUT *% INDEX FOR PRINT 0OUT
IPRTI= 1

IPRT2= 1

IPRT3= NMAX+1

1PRT4= D

INPUT ==k POTENTTIAL PARAMETERS FOR SPHERICAL PART
VIR)= VCEEXP(~VALPHA%XR}=VL&/R¥*6
Yy IN EV, R TN ANGSTROM

Vi=3440.

VALPHA=3.1460

VT6=73 .40

INPUT %% POTENTIAL PARAMETERS FCUR NOM-SPHERTCAL PART

VA=.2

VB:"QZ

JMAX= 20

CONTIMUE

DO 5016 I=1,JMAX

DN 5016 J=1,JMAX

PHAVE( I, J)= 0.0

CONTINUE

Carsdonsokle®  NPRINT

5999

*DECK

NPRINT= NMAX
IF{EXKIN.LE.0.001) EKIN= 0.001
IFIFKIN.GE.D0a5) EKIN= 045
CALL PROB

CONTINUE

RETURN

END

PRN%3

SUBROUTINE PRNOB
COMMON/PRBOUT/ PSUMITI400) 4PRRRy»JITFINyJ2FIN
COMMON /MVY/ AMATRX1290,28,9)

COMMON /MV2/ VBB,VAA,BROT,ETOT,BRC,VVALP
COMMON JCMVR1/ VC,,VALPHA,.WCE,BTMP.EEFE
COMMON /MV3/ NCOUNT

COMMON /CM1/ PWAVE,EKIN,L10,L20,B3BB,NMAX,NPRINT»L1PAR,L2PAR

COMMON JCM2/ JELI,JEL2,LABCSA,LLMAX, ISELCT
coMmon /CM3/ VA,VBy TPRT1,TIPRT2,1PRT3,IPRT4
DTMENSION PHAVEC{20,20)

DIMENSTON PODD{Z20,20)PEVNIZD,20) ,PHAVE(204520)
DIMENSTION AKSUMOI 20, 20) 5 AKSUMT(20,.20)
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http:VC6=73.40

NTMENSTOGN LABCSAL16)Y
1CLBCK= 0
BYMP=RBRR
JMAX=20
LMAX= 2%JMAX-2
Clokietidedeoksr REMICED MASS
BMASS= 14,02
Okl ROTATINNAL CONSTANT
BRN7= D.2512F~3
VVALP= 0.045723+VALDHA/ SQRT{RMASS)
VAA= D .4472136%VA
VYRB= (0,2%VR*0,562938283
ETOV= EKIN+ FLOAT{L1O{LI10+1)+L20x{L20%]))}=*BRNT
ER= ETCTY/RROT
FR1= SARTIER)
LLMAX= INTIERI)+1
L&%kx%x  PRINT 901-1
11 CONTTMUE
TRTILL®MAX GT JLMAX) LLMAX=LMAX
DD 18 T=1,JdMAX
DO 18 J=1,JMAX
PEVNI{TI,J}= 0.0
POADR{I » )= 0.0
PWAVE(I,.J)= 0.0
PWAVEC({T  J¥= 0.0
AKSUMDITI J¥=0,0
AKSUMI{T,J)= 0.0
DO 16 M=1,9
AMATRX{T,JM)= 0.0
15 CONTINUF
18 COMNTINUF
LLin= 1L10+1
LL.203= L20+1
JELLI= {LL1O+1Y /2
JELZ2=(LL20+1Y) /772
L1PAR= MOD(L1O,Z214]
L2PAE= RODI{L20,2Y1+1
CLO= FLOAT({2%L1041¥R{2%L20+1))

PEQO= 0.0
Ok gededede ks N= 1

MN=1

LLilI= LLiO

LtL21= LL20

NCAOUMT= 0

N 5N K=1,9
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CALL VMATRXILLIT,LLZT,K)
52 CONTIMNUF
LLIFMN= MAXOILL10-?,L1PAR)
LLLEMY= L1 1:0+2
LLZ2FMN= MAXOILL20-2,L2PAR)
LE2FMY= LL20+2
K= 1
JIT1= {(LL1T+13/2
JdIP?= (LL2I+1)/?
DO 64 I=143
LL2F= L1 20-442%]1
DO 63 J=1.3
LLIF= LLIO—44+2%]
IF{LLZ2F.LT.1.0P.,LLIFL.LTL.1) GO TO 62
JJF1= {LL1F+1}/2
JJIF2= {LL2F+1} /2 .
AKSUMO(JJF1,JdF2)= AMATRX{JIJIL,J012,K)
62 K=K+1
&3 CONTIMUE
&4 CONTIMUF
TOTPW= 0.0
DO 74 1LLIF=LLIRMN,LLI=MY, 2
DO 73 LL2F=LL2FMN,LL2FMX,2
JJIF1= {LLiF+1) /7
JIFP= (LL2F+1)/2
PONNIJIR1,JUF2 ) = AKSUMO{JJIFLI4JJIEDR)
PEVN(JIFY1,+JJIF2)= 0.0
TR{LLIT.EQ.LLITLANDLL2F.FQLLL2T) PEVN{JIJFL ,JIF2)=1.0
PUAVELJIFL, JUF2)= PNDD{JIFL,JIF2 ) %#2%4 O+PEVNIJIF L, JUF2) %2
P=DPWAVELJIF 1.+34F2)
LO1=LL1%-1
Laz2=L1L2%-1
Ok PRINT  902-1
T2 CONTIMLUE
TOTEW=TNTPU+D
73 CONTINUFR
T4 COMTINUE
Gk PRINT  O04-)
75 CONTINUF
IFINMAXLER.LY GO Tt 300
N= ?
%ok dedekk k&1 00
100 CONTTINUE
NCOIINT= O
NZ2= 2%N-)
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130

LL2T¥N=MANO ILL 2D =N2, L2PAR )
LE2IMY= LL20+M? .
TR{LL 2 TMXLGFLLLMAYY LE2THMX= LLMAX

DO 149 LI2T=LL2TMN,LL2IMX,? , REPRODUCIBILITY OF THE

JII2= {LL21+11/2
ERp= SART{EB- CLOAT(LL?T~1)%%2) ORIGINAL PAGE IS POOR

LLHAXY = TNT{S32)+1

LL1T=LL10+H?

JIT1={LL1I+13/2
IF(LLMAXILGELLMAY) LEMAX L= LMAX
TR(LLIT.GTLLLMAXL) G0 TO 120

PN 114 K=5, 8,3

CALL VMATRXILL1IT,LL21,K)

COMTT NS

DA 110 K=2,9,3

FALL VMATRXA{LLLIT,LL2T,X)

P CONTIMU=

T=ILLIT-2.LTL.1) O 7O 125

AMATEX{IITY ,JJT2,.4) = AMATEX[JIIL-1,0072.68)

K=%4 ’

TE{LL? .50, LL20-N2.NR.LL2T.50.LL20+N2)  CALL VMATRX(LL1T,LL2I,K)
AMATIXTJJTL, JJT2, 7= AMATRY{JJTIL-1,JdT2+1,3)

K= 7

IF(LL?2TWC0.LL20+N2=2,NR,LL2T.FQ.LL20+MN2) CALL VMATRX{LLLT,LL21,K)
TRILLPAT=2.LT.1) 4~ TN 130

AMATREA{IITL1,JJ12.1)= AMATRXIJIT1-1,0412-1,9)

K= 1

TRILEZ2TLENLLL20-N242 . 0RLL2TLEQLLL20-N2Y CALL VMATRX(LLLII,LL21,X)
CONTTINUE -

IFILL2T-",LT,.,1)} GG TN 13N

AMATRXTAJT] L 00172 ,2) = AMATRX{JITY,J0012-1,8)

K= ?

TR{LLDTLFQLLLPN-N?)Y  CALL VYMATRXILL1I,1L27,K)

CONTINUF

LLIT=LL1D-N?

JJil= {LL1T+1}Y /2

IFMLEIT A TLLIPARY) GN TO 1449

" 1%4 K=q1813

CALL VHATRY{LLLIT LLL21,K)

CONTINUE

DO 139 K=1,7,2

CALL VMATRX{LLLIILLL2I,¥%)}

» COMTTNUE

AMATPX{JITL,J01246)= AMATPX{JJTLI+L,J412,4)
K= 6
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TFILL2 T EQLLL20-N2.02.1L2T.50.LL204N2)  CALL VMATRX(LLIT,LL2T,K)
AMATRXI{JJIL o JJI2 .8 = AMATRXU{JJTILI41 ,JJ12%1,1}
K=" . -
CIELLL2 T, EQOLL2D+N2-2 A8 A L2 T ERJLL2D¥N2T CALL VMATR X{LLiT,LL 2T,K)
IF{LL2T-2.LF.1) GO TH 149
AMATRXY {JJIL,J012,2)= AMATRYA{JJIL,JJ12-1,8)
K= 2
TFILLZ2T.EQ.LL20-M?) CALL VYMATRXILLIT,EL2I,K)
AMATRX (JJT1,Jd72,.,3)= AMATRXIJJTILI+1,JJ17-1,7)
K= R - .
TE(LL2TEN I L2D-N2+2,O0RILL2TLEQ.LL20-N2) CALL VMATRX(LLIT,LL2I.+K)
149 CANTINUE
(e e B e 150
LLTT8K= MAXQ{LLIO-N2+2,L1PAR)
LLTTMX= LL10+N2-7
TEILLITMY GRLLMAXILLITMX= LL#AX
DO 192 LLIT=LLL1IMM,EL1THMX,2
JJ¥vi= {(LLl1+1)/?
ERP= SORT{EB— FLOATILLIT-1}#%2)
LLMAXI=THT (FR2}+1
LL2T= LLZD+N2
JJ12= (LL2T+1)/2
TEILLMAXT GE.LMAXY LLMAX1= LAY
TR{LL2T,.67T . LLMAXLIY GO 70 189
090 184 K=%,9
TE{LLITLFOLLLIDHNZ-2.ANDLKL.ERWG) 50 TN 163
CALL V¥ATRX(LLLII,LL21,K)
BTN 164
163 COMNTIMNUE ’ P
AMATRXIIIT1,0dT72,8)= AMATRXIJIJT141,J0412,4)
164 CONTINUE
IF{LL2T-2,LT.1) GE TN 175
AMATRXTJJT1,J012,2)= AMATRX{JIT1,3472-1,8)
AMATRXTJITL9JIT2,43)= AMATRXUJJTI1+1,4312-1,71
IF{LL1TI-2.LT,.1} 60 ™0 180
AMATRX{JJT1,3d12,11= AMATRX(JJI1-1,4372-1,%)
175 CONTINUE
IF{LL11-2.LT.1) G 70 .180
AMATRXY 1JUT1,J01204)= AMATERXI{JJT1-1,4J12,56}
120 CONTINUR
LLZI=1L20-N2
JIIZ2= (LL2T+13/2
IFILL2T.LT. L2280 GO T 1729
0 184 ¥=5,05
IFILLITLEOLLLIOHM2-2 ANDK.ENWE) GO TO 1823
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1ae3

184

i8¢c

CALL VAMATRX{LLIT,LL?I,.X)

GO 7D 1R4

CONYINUEF

AMATRX{JITL1,,JJ102,6)= AMATRXIJIT1+1,J412,4)
CONTINUE

DN 189 K=1,.3

CALL VMATRX(LLIT,LL2T.K)

CANTINUE _

AMATRX{JII1,JJ12, 3= AMATRX(JJI1,3412+1,2)
AMATRX{JIT1,J0712,9)= AMATRX{JJIT1+1.44dT72+1,1)
IF{LLTIT-2.LT.1)} GE TN 109
AMATPX{JJT1L,JJ12,48)Y= AMATRX{JJI1-1,4J12.5)
AMATEXTJJTL 0412, 7)= AMATRX{JJTI1-1,JJT72+1,3)

Coe%sdokiokots 199

199

200

202

205

206

CONTINUE
LLIFMX=LL10+2%N

LL 2FMX= LL20+2%N

LLIFMN= LL10-2%N
IE({LLLFYNLLTLLIPAR) GO T3 201
LL11=1t 1EMN+2

CONT INUE

LL2FMN=LL20—-2%N
IF{LL2FMNLLT.L2PAR) GO TN 202
LL22= LL2FEMN+2

gn TO 205

CONTINUE

LL1IEMN= L1PAR

LL11= L1PAR

GN TN 200

CANTINYF

LL 2FMN=L 2P AR

LL22= L2PAR

CONTIMUE

LL22F= LL2EMX~7?
IF{LL2FMY L LELLLMAX) GO TD 206
LL2FMX=LLMAX

LL22F= LLMAX

CONTINUE

DN 249 L2=LL22,LL22F,2

{L11F= LL1FMX-2

ER2= SNRT{EB~ FLOA™(L2~1}%%D)
LLMAXLI= INT{ER?) +1
TE{LLMAX1.GF.LMAX Y LLMAX1= LMAX
IFILLIFMX.GELLLMAXLY LL1I1IF= LLMAXL
DN 248 L1= LL11,LL11F,2 . .
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Ki= 1

K2= 0
L22=17-2
Ltil= Li-2

IF{L2.L7.L2PARY L 22= L 2PAR
TF{L1.LF.LLIPAR) L1l= [1PAR
IF{L2.17,.L2PA%) Ki=4%
IF{L1.L=.L1IPARY KP= ]
K= K1
J1= {L1+1)/2
J2= (L?+1)/2
A= AKSUHD{J1,42)
L2D2=1L2+2
Ny 219 LL2= 1L2241.2P2,2
K= K+K?
L1P?=L 1+2
oD 218 Lil=L11,L1P2,2
JJdi= {LLI+1Y/2
JJdz= (Ll 2+1Y/7
AKSUMI{JJY ¢ JJ2)= AKHAMATRX{J1,J2,K}+AKSUMLITJI1,d42)
K= K+1

218 CAONTINUE

219 CAONTINUD

Skt PRIMT OF AMATHRY

220 ONTINYS

2L 0 CONTTNNC

25Q CONTINUYS

Sk kakokEket 250

LLIF#X= LLI10+2%N
TATPL= 0.0
TATPW= 0.0 .
NG 2929 LIPF=LL2F¥N,LLZ2FMY,2
LL1IF= LLIFMX
ER2= SGRT{FR- FLOATILLZ2F—~1}%x2)
LLMAXI= TNT(EB2)+1 .
TFILIMAXL.GELLMAXY LEMAXI= LMAYX
TFILLIAMY,GELLLMAXL) LL1IIF= LLMAX1
298 | L1F=LUIREMN,LLLILIF,?
JIF1= {[LL1F+11)/2
JJIEZ= {LL2F+1) /2
AKSIIMI{JIET ¢ JJF2)= AKSUMI(JIFT,,JJF2) /7 FLDATIN)
1= (MON(N,21.N2,0) GD TO 294
AKSIMITJIRFL L JUF2) = —4,0%AKSUML {JJUF1 ,3JF2)
PoYM{JJdFl, Jd7 2 = PEYNIJIIFT L AJF2)+ AKSUMI{JIJF1,J4JF2)
PWAVELJIFL,, JJF2 = PONDUJIFL S JIFZ Y%¥D4 04PFYNL JIF Ly JIF23 %2
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G TP Pon
294 (CONTIMUT
EODNN{JICT L JIF2)= DODDIJIRLJIF21+ ARSUMI {JJFL, JJE21
PWAVELJAFL,JJF2)= POND{SIFL,JdF2 1552 %4 O+PEVYNIJIF 1, JJF2) %2
295 COMTINMLUF :
P= PRAVE(JIFT,JJF )
LDi= LELIF-1
LOP= L1271
Clowkdeokkssk P2INT OF PWAVE
296 COMNTINUE
Chskdekst PRINT  Qn2-=->
297 CONTINUF
TOTPH= TOTPW+P
AKCSHMOTJJFR L, J4F 2= AKSUMILUIFL,, JJF2)
LKSUMLIIJIF1,.0JF2Y= 0.0
298 LONTINUE
P90 CNMTTNUF
PE1=PHAVE{JEL1,JEL2)
PE10= ARS{{P=1-PEQ)/PE1)
Ltk PRINT  QD4-2
2904 CANTIMUS
TFIARSITNTPW—-1 .0) LT a0, 1F-3.AND.PFI0LLT.O0L1E=2) GO TO 300
IF{N,EQ.NMARY &0 70O 200
R=PM+1
!‘,!CO: DE}
GO T 100
300 CONTIMUF
Ck:: Haje Aol de ook ﬁLACTI q:
Codeefededolder FTINAL PRIMT
IFIIPETA.ENR.LY AN TO 325
MDRI_"!T:O
PMAX= 0.1F-5H
IN1T CONTIRMUF
CHadfkk  PPINT Q071-2
haokkk  PRTNT gIQ-1
TMN= LL?FMN
TMX=1 L 2F MY
TEIMOD{LL2FMYX-L2P AR, 2) JNFr.0) IMX= LL2FHMX-1
CA 219 T=IMN,TMX, 2
LLPF= TMYX+IMN-T
J2= (LLPF+1Y /2
LL1IF= LLIFMX
ER?2= SOPT{ER~ FLOATILL2FR-1 )%2)
LLMANLI= *NTI{E82)1+1
TR LMAXL.GTLLMAXY LLMAXL= LMAX

REPRODUCIBILITY op 7
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TRFILLIFMX.GELLLMAXTL ) LLILIF=LLMAX]
JIMX= {LL11F41)}/2
TF{JIMX.GT.16) JIMX=15
L02=LL2F =1
Coassdek PRIMNT  Qll-1
TRE{MPRINT.ERQ.LY GO TO 319
LMINZ= MINOIL2D0,102)
CL10= FLOAT(2%LMIN2+1)
JIMN={LI1BAR+I)/2
0 318 J1=sJ1MN,J1MX
L0l= 2%J1-3+L1PAR
LMINI= MIND(L10,101])
CL1= CLIDH=LNAT{2X MIN1+1)
P= PWAAVEIJ1,J2)
PCAPCT= CL1/LLO%P
TOTRO=TOTPC+PCORCT
PWAVEC {Jl,J2)= PCCRCT
TF{JL.EN.JFL1.ANDLJ2,EQ.JEL2Y GO TO 318
IFLISELCT.EQLDY POUT=P
TF{ISCLrT.EQ.1) PCUT= PLNORCT
318 CONTINMNUE
319 CONTINUT
LABCSA[1)= L1IPAR-1
DO 2720 T=2,1%
LABCSA(TI=LARCSATI)I+{I-1)=%2
320 CONTINUF
Cdeiek PRINT 912-1
C IF{MPRINTL.EQ.1) &0 7O 9906
CAdafkdkxxd  PRINT PP POORCT WITH PELASTIC MODIFIED
325 CONTINUE
PL= 1.0-TOTPC+PWAVECIJELLJEL2)
PRAVECIJELY,JEL2)= PC
IF{ISFLCTL.EC.O) PSUMIL)=PWAVE(JEL1,JEL2)
ISTISELCTLEDGL)Y PSUM{Y)=PWAVECIJELL,,JEL?)

C STATISTIC MONISICATION NF ELASTIC COLLISION
C RRPP 3 P{NI=P{N)=-PSUM(1)/(1.-PSUM{1)} PBAR VS RRRR
600 RPRP={1.0-PSUMI1) ¥kRESR
o TF{RRRRL.GT.PSIM{T)) GO T2 1905
c JIFTN=JFL1
C J2FTN=JfL2
o GN 72 2601
1905 CONTIMUE
MN=1
N=1

1910 CONTINDS

REPRODUCIBILITY OF THIE
ORIGINAL PAGE IS PQOR
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1920

1940

1942

1950

1970

1985

J1 MN= JFLlfN .
TRFIJIMNLLTLLY JIMN=1

JIMX= JEL1+N

IF{JIMX, GT JMAXY JIMX= JMAX
K=0

J2=JEL 2—-M

IF{J2.LT.1) GO TN 1942
CONTINUE

i 1940 Jl= JlM&leMX
NN=MN+1

IF{TISELCTLEQL1Y PWAVE(JL,J2)= PWAVEC({J1l,J2)
CALL SUMP{J1,J2,NN)
TRFIRRRRLGTLPSUMINNYY GO 70O 1940
[F{PRERLGT.{PSUMINN)-PSUMIL1))) GO TO 1940
JIFTN=J1

J2ZFIN=J2 -

GO 0 2001

CONTINUE -

TE{K.EQ. 1) GO TO 195

K=1

J2= JEL2+N

IF{J2.6T.JMAX)Y GO TO 1950
G0 70 1220

CONTINUF

J2MN= JEL2-N+1
TRIJ2MNLLT 1) J2MN=1

JZMX= JELZ+N-1

TF1J2YMXGT JIJMAXY Jd2MX= JMAX
K= G

Ji= JEL1I-N

IF{J1.LT.1) GO TN 1992
CONTINUE

DO 13990 J2= J2Z2MN,J2MX

NN= NN+1

IF{ISELCT.EQ.1)} PUHAVELJL,J2)= PHWAVEC{JL,Jd2).
CALL SUMP{J1,J2,NN)

IF{RRRR.LELPSUMINNI)} GO TO 1985
IF{RRRRLLF. {PSUM{INN)-PSUM{1)}})} GO TO 1985
IF(ABST1.0-PSUMINN}).LT.1.0E-4) GO 7O 1985
IFINNLGF.400} GO TO 1985

GO TR 1990

CONTINUE

JIFIN=J1

J2FIN=J2

GO TO 2001
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1990 CONTINUE
IFIK.EQ1Y GO TO 2000
1992 K=1
J1= JELI+N
IT1J1.6T.JIMAX) GO TO 2000
60 TO 1970
2000 CONTINUE
N=M+1
GO "0 1710
2001 CONTIMUE
1000 COMYINUF
RFTURN
END

#*DECK SUM$S ’
SURRDUTINE SUMPIJ1,J2,NNN)
COMMON/PRBROUT/PSUMI400) 4RRRR,JLIFIN,J2FIN
COMMON/CML/ PWAVE JEKTIN,L10,L20,BBBB, NMAXMPRINT,L1PAR,L2PAR
DIMENSTINN PWAVEL{ 20, 20)
N=NNN
PSIM (M= PSHM{N-1I+PWAVETJL,J2)
RETUHRN
END

#DECK VMAT4SS

SUBROUTINE VMATRX(LL1,LL2,K}
Caolkdd PEVISED FOR RNOT

COMMON /¥V1/ AMATRX{20,20,9)
COMMON /MV2/ VBSB,VAA,BRNOT,ETOT,BRC,VVALP
COMMON JCMVR1/ VO VALPHA,VC6,BIMP,ELJ
comMON /MY37 NCDUNT
COMMON/OVLI/ABCC{40,4049)
L1J= LL1-1
L2J= LL2-1
TF{K.GT.3} GO TN 1011
L21= 12J-2
TFIL2T.L7T.0)» GO TO 1510
G0 TN 1100

1011 IFIK.GT.6) GO T 1012
L27= L2J )
G TD 1100

1012 L271= L24%2

1100 CONTIMUE
TF{RODIK,3).NEL1) GO 7O 1111
L1T= L1J-2
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IF{L1T.L7.0) GO T3 1510
60 TO 1200

1111 TF(MOD(K,3).NE.2) 6O TO 1112
L11= L1J
GO TQ 1200

1112 L1l= 11J+2

1200 COMTINUE
ABC= ABCCILLISLL2,4K)
TS{ABC.NE.D.0) GO TO 1299

CALCULATION QF VEFF(L11,L21 /7 L1J,L2J )
CC1= C520{L1T,L1J)
CC2= CG20{L21,L2J)
TF(K.LE.5) CSIGN= [-1.0)%%(L1J+L2J)
IF{K.0Z.6) CSIGM= {=1,0)%k{L11+L21)
G=  FLOAT{{2%L LT+ 1)5{ 25021+ 1151 2% 1J+1)#{2%L2J+1) 1 %%0 . 25%CSIGN
B= VBB*(CL*0(2
A=O.D
I=(L2T.NE.L2J) GO TO 1215
A= VAAXCC1/ SQRT{ FLOAT(2%L21+1))
IF (MODTL27,2) .NE. D) A=—A

1215 IF({L1I.NE.L1J) 60 TN 1219
AA= VAAXCLZ/ SQRT{ FLOATI2%L11+1))
IF{MOD(L1I,2)4NE.0) AA=-AA
A= A+AA

1219 CONTINUF
ABC= C*{B+A)
ABCCILLI,LL2,K)= ABC

1299 CONTINUE
WI= BROT% FLOAT(LII®(L1T+1)4L2T%(L21+1})
WJ=RROTH FLOAT{L1JH(LLJ+1)+L2J%{L2J+1))
WId= ABSIWI-WJ)
Ei= ETAT-WI
EJ=ETOT-WJ o
IF(ET.LE.D.0.OR.EJ.LE.DNLO) G0 TO 1510
E1J= 0.5%{SI+EJ)

_ CALL RAOT{RE) _

BRC= 1.0-{BIMP/RC)#%2+VC6/E1J/RCH*6
F1Jl= ETJ%BRC
IF{K.EQ.5) 60 TN 1500
TF{L1T.EQ.L2J AND.K.EQ.3) GO TO 1500
TF(LIT.EQ.L2J.AND.K.EQL7) GO TO 1500
AlJ= "VVALP® SORTIEIJL1)/WIJ
EW= ETJ1/WIJ
DRALPH= EW/ATJ
APAI= 1.570796327/A1J
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1498
€ ek
099

1499

1500

1510

ROOT

2022

gone
ginn

F= EXP{-APAT)

FATJ= 24 O%APATHE /(1.0-F%F)
AAA= ABCHDBALPM%FATJ

CANT -NUE »

999 CHFCK PRINT

CONTINUE

NC OUNT= NCOUNT+1

CONTINUS

JIl= (LL1+11/2

JJ2= TLL2+1) 72

AMATRX{JIL, JI2,K) = AAA
PETIRN

CONTINUE

AAA= ABC/VVALP* SQRTIEIJI}
6O TO 14098

CONTTINQE

ARA= 0.0

GO TR 1459

END

L£58%

FUNCTIAOGN CG201J1,4J2)

DOUBLT PRECISTION FIUNCTION CG200J1,J2)
TF{J2.E0.J1Y 60 10 8002

= 0.0

GO TO 8100

CONTIMIE

IFLRE0.,41+2) J=J1

IFIJ2 .FQ.J1=-2) J=)?

X1= FLOATLI+2Y/ FLOAT{2%J+5)
X2= FLOATI{J+1)}/ SLOAT{Z2%J+3)
X3= 1.0/ FLOAT{2%J+1)

C= SQeT{1l,5%X1xX2&X3)

GN T 3097

CNNT TMUE

J= J1

X1= FLOAT{4+1)/ FLOATI(2%3+43)
X2=  FLDATUJ)Y/ FLOAT{P®J+1)
X3= 1.0/ FLAAT{2%J-1)

L= — SORTIX1%XZ2%X3Z)
TRIMON{J.2) MELOY = -0
LG20=C

RFTI'RM

~ND
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®DECK

CHsdok

3099

3100

RAOOSES

SUBROUTINE ROODTI(RCY
REVISED 8/28/74

COMMON JCMVRT/ VC,,YALPHA,VC6,BIMD, EKIN

RMIN= 1,12

RRO= ALOGIVC/EKIMI/VALPHA

IF{RFO.GEREW4.1) RRO= 4.1

N=1

CONTIMUE

RR=RR(

CONTINUEL

Ri= FKTIN¥BIMP*%2/RR%*x2

V= V= FXP(-VALPHA%RR)

Vi= —VALPHA*Y

IFIVESL.FQL0.0) 60 TO 3101

3101

2199

3299

993

3900

#DECK

VP= VYL 5/PR%%4

V= V-VyR

V1= V1+6,0%VR/DR

CONTTNUE -

F= [V+RL-EKIN}/ (2 ,0%RL/RR-V1)
IF{ABS{F/RR}.LT,0.1E-%) 61 TO 3199
IF{N.GELI00) 6N T 3299

RR= RR+F

ITIRRLLTLRMINY G TD 3900
M=N+1

GO TO 3100

CONTINUE

RE= RP

RETURN

COMTINUE

WRITE{6,998) RR,F,RRQ
FORMAT{1H0//5X,14HERROR N GT 100,3Xs3HRR=E13.5,3X,2E13.5//)
RR=RPO

GO TO 3199

LONTINYUE

RRO= Q.5%(RRO+RMIN)

G0 TN 3099

END

DUTSS

SUBRDUTINE OUTBUT {M)

COMMDN /TIME/ TO,yTSyTFsTHM,,DYG,DTM, TN
COMMON fCV/ MAXMAXS,C1,RHOL

COMMON /CONST/ W, 4,VOM,SF,CN

COMMON /RANDOM/ R

QEPRODUCTBELITY OF THE

43 ORIGINAT, RAGE 18 OO



COMMOM /ANSWER/ MIM,T14),G6,DV0L,AT,P0NA,ROTL
COMMON JPARTy DIS5ODLY)

roMYON JOVI/ZARTCL 404 40,9)

PTMENSTON FL{40), FW(40)

NTHM={ TH=-RTH) /DTN+.5
TAIRAL=0.1%NTM:EQTA/ DTM
COC=TI{2)/UT{LY5C1 1 ,8B86227
COC2=TI{3)/(T(1)%1.5%C1*C1)
EOF=.804R825-15%T{4) /{T{1 ) WkC1%C1)
WRITE{6,600) CHC,CNC2,E0E,TAURAR
DN 100 I1=1,40
EC{T)=D
1N EW{T)=0
€OF=1.0/01
DO 200 1=5,MAX645
JE=P{T)=®CN=%10. +1
JH=P{T+11+1.01
IF(JC.6T40) JC=40
TF{JW 56T 40) JW=40
FLUICY=FrlinI+1,.
FW{JWI=FRIJW) +1,
200 COANTTINUE
DO 300 I=1,40
FCLII=FC{T) /MAX
30N FWEIY=FWIT)/MAX
600 FAPHMATI SHOCNC=G13.56,1X6HCOC2 = Gl3w641X6HENE = (13 .6,
11X7HTAURAR= F5.1}

mXe

THIR TS 70 PLDT FC AND FW
WRITELIN) TAUBAR ZNTMGZMAX,COC2,5NE,FC,FW

2y

THESE CARDE ARE FfLR RESTART PROGRAM TIL NEXT #¥¥ HARKS
WRITE(LD) MOM,T,G,DVOL sWaA 3 VOM, SFLC O, TRy TSy TR THM 4 DTQyDTM,y TNy MAX,
IMAXG 2 C1 EHO1, Py AT ,ROT1,PDA,ABLC, R

END FTILE 2

REWIND 9

Ex END OF THE  RESTART PROGRAM

SFTURM

END

o

L3
|
a1
b
=

L X2%%

SUBROUTINE X2DTISTLIROTH
CAMMAN /EANDDM/ R
CNMMON /INTX2/ SRO
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sOO000

200

TO DETERMINE THE ROTATIONMAL FREQUENCY{DM) FROM THE
X2-DISTRIBUTIONI{KAI-SQUARE)

IROT= 1.%S0RT{,25-2.48503E15*EROXALDG{1-R}I1-.5+.5 FOR 1 -JuMp
IPROT= 50%SQRT(.25-2.48503E15%EROFALOGI1I-R} )-. 25+.5 FOR EVEN JUMP

IROT=23%1

R=RANF{D)

IR0OT=  1.#5QRT{.25-2.48503E15%ERO*ALOG(1.~-R)) —. 16606
RETURN

EMD

SCASS

FUNCTION SCATER{VO,MOM)

IF{VD.CERD.0) SCATER=2,.,%ACOS{VD}
TRIVO.LT.0.0) SCATER=2,%{3,1415926+AC0S(-VD))
SCATER=2.%ACOS{VD}

RETURN

END

MOM$ %

SURROUTINE MOMENT

COMMAON /CV/ MAX.MAX6,L1,RHD1

COMMON /ANSWER/ MOM,T(4),G,DVOL,AT,POA,ROT1
COMMON /PART/ P{S5001)

COMPUTES DESTRED MOMENTS

DO 200 T=1,MAX

LU=5%1-3

TIDI=T{1)+1

TI2)=T{?)4P (LU+3)
TI3)=T{3)+P{LU+3 %32
TUAI=TI4)+P (LU+4) %524P [LU+4)
CONT THUE

RETURN

END

SAMPLE TNPUT DATA

C F{G/GM)-SELCT, ISELCT=1,C=0.4310,PC=0
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1000
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TABLE I.,- INITJAL DISTRIBUTIONS AND FLOW CORRELATION

Energy
Figure Velocitya Rotational® | partirion Temperature Remarks
= : = = i 1 f
-la &b ft ftm(T) fr frm(T) Et/Er 3/2 T Te Uniform flow
2a & b ft%ftm fr=frozen - — - T - - - -

3 ftzftm(Tt) fr%frm Et/Er=3/2 Tt=Te Sound .
absorption
experiment

4 ft=ftm(Tt) fr:frm(Tr) Et/Er>>3/2 Tt>>Te>>Tr=0 Shock wave

52 & b ft=ftm(Tt) fr=frm(Tr) Et/Er<<3/2 Tt<<Te<<Tr Free—jét
expansion

ba & b ft=ftm(Tt) fr%frm Et/Er<<3/2 Tt<<Te Chemical-
fluorescence
experiment

aftm(T) and fym(T) denote translational and rotational Maxwell-Boltzmann
distributions with temperature T.
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(a) Monte Carlo Results: £+(0,x) = Maxwellian where x = c/co;
£,(0,j) = Boltzmann; T, = T, = 320 K.

Figure 1l.- Distribution functions for complete equilibrium.
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{b) Time average of Monte Carlo results.

Figure 1l.- Continued.
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(b) Time average of Monte Carlo results - Concluded.

Figure 1.~ Concluded.
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(a) Delta function initial velocity distribution: £¢(0,x) =1
at x = 3/2-

Figure 2.- Monatomic gas simulation (rotational effect frozen).
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(a) Delta function initial velocity distribution - Concluded.

Figure 2.- Continued.
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(b) Double delta function initial velocity distributions;

££(0,%7) = 1/2 at x3 = 1/2
££(0,x2) = 1/2 at xy = V11/2.

Figure 2.- Continued.
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{b) Double delta function initial velocity distributions - Concluded.

Figure 2.~ Concluded.

56



h'I' =0.0

L]
M p o

1 t/t=5

[

_ 20
ROTATIONAL ENERGY LEVEL,J

1 P

2
SPEED, C/CO
1 t/T=10
. * o
= .
o | ” | ﬂ — a f S s 0 8
20

ROTATIONAL ENERGY LEVEL,J

2
SPEED, C/CO

o 20
ROTATIONAL ENERGY LEVEL,J

SPEED, C/CO

1 t/t=20

hd .
. .
'nl'l” ﬂn:.l"t_.-
0 20
ROTATIONAI_‘ ENERGY LEVEL,J

0 2
SPEED, C/CO

Flgure 3.~ Maxwellian initial velocity distribution; delta functionm
rotational energy distribution (£,(0,x} = 1 at j =

10):

Equipartition satisfied.
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Figure 3.~ Continued.
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Figure 3.~ Concluded.

REPRODT
ORIG CIBTLITY OF ;

CRIGRL. PAGE 15 pog

LR S TN
L, -|~,sva:'..¢‘-3*::4§-\:-"‘wv-t
g
1 V.

B anny

59



(] /T=0.0 1 i/t=5
2 H a
; e ..
» - Tille .
r - -
I H oo * . 3 .
[ .Pc..- o . .fl..-
0 20 Q 20
ROTATIONAL ENERGY LEVEL, J ROTATIONAL ENERGY LEVEL, J

ff **%% e*%e
l“‘oa..._., Pl PPy
0 2 0 2
SPEED, C/CO SPEED, C/CO
il t/t=1.0 L NN t/T=20
2 M H
fr o e . i . .
I HM . i ‘.
. .
" I_ll"l - * P s aq ¥ |-|r'1' n * l. ® 2 a2
0 20 0 20

ROTATIONAL ENERGY LEVEL,J ) ROTATIONAL ENERGY LEVEL, J

= e.l...‘o-
0 2
SPEED, C/CO SPEED, C/CO

Figure 4.,- Maxwellian initial velocity distribution; delta function
rotational distribution!(f,(0,x) = 1 at j = 0):
Equipartition not satisfied.
¥
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Figure 4.- Continued.
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(a) Comparison with equilibrium distributions.
Figure 5,- Maxwellian initial wvelocity distribution; Boltzmann

rotational energy distribution (T, = 6 K, T; = 793 K):
Equipartition not satisfied.
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(a) Comparison with equilibrium distributions - Concluded.

Figure 5.~ Continued.
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{b) Comparison with local Maxwell-Boltzmann distributions.

Figure 5.- Continued.
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(b) Comparison with local Maxwell~Boltzmann distributions -~ Continued.

Figure 5.- Continued.
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{b) Comparison with local Maxwell-Boltzmann distributions ~ Concluded.

Figure 5,- Concluded.
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(a) Comparison with equilibrium distributions.
Figure 6.- Maxwellian initial velocity distribution; delta function

rotational distribution tfr(O,x) =1 at j = 16);
Equipartition ?ot satisfied.
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(a) Comparison with equilibritm distributions - Concluded.

Figure 6.- Continued,
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.Figure 7.— Relaxation behavior of average rotational energy for’
a variety of initial distributions.
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