INDEX FOR AERODYNAMIC DATA FROM THE BUMBLEBEE PROGRAM

L. L. Cronvich and G. A. Barnes

THE JOHNS HOPKINS UNIVERSITY
Applied Physics Laboratory
Laurel, MD 20810

NASA Purchase Order L-60036A
April 1978
CONTENTS

1. Introduction	1
2. Objective of Present Program	1
3. Approach	2
4. Conclusions and Recommendations	3
5. Conversion Table	3
6. Appendices	

Appendix A - Wing-Tail Interference

- I. Reverse Roll Investigation | A-1 |
- II. Downwash Program | A-7 |
- III. Generalized Missile Study (GMS) | A-11|
- IV. Miscellaneous Empirical Studies of Tail Effectiveness | A-19|

Appendix B - Tail-Controlled Supersonic Configurations with Low Aspect Ratio Wings

- I. Terrier Program | B-1 |
- II. Other Programs | B-8 |

Appendix C - Supersonic Airbreathing Configurations

- I. Integral Rocket-Ramjet Surface-to-Air Missile Program (IRR-SAM) | C-1 |
- II. Thrust-Augmented Rocket, Surface-to-Air Missile Program (TAR-SAM) | C-4 |
- III. Triton | C-6 |

Appendix D - Panel Loads and Flow Field Surveys

- I. Roll Reversal Investigation - Flow Inclination | D-1 |
- II. Bodies of Revolution - Normal Force Distributions and Wake Vortex Characteristics | D-2 |
- III. Very Low Aspect Ratio Lifting Surfaces | D-8 |
- IV. Generalized Missile Study (GMS) - Wing and Tail Panel Forces and Moments | D-12 |
CONTENTS (Cont'd)

Appendix E - Hypersonic Missile Configurations

I. Hypersonic Configuration Study E-1
II. Supersonic Combustion Ramjet Program (Mod II SCRAM) ... E-12

Appendix F - Unique Missile Configurations

I. Wrap-Around Surface Project F-1
II. Planar Missile Configuration F-6
Bumblebee Aerodynamics Data Program

1. Introduction

The Bumblebee program, initiated in 1945 by the U. S. Navy Bureau of Ordnance, was designed to provide a supersonic guided missile defense for the fleet. Such a program required research, and exploratory and engineering development efforts in many technologies, including supersonic aerodynamics. The Johns Hopkins University Applied Physics Laboratory was assigned the task of leading this effort in the various technologies and proceeded to establish programs to acquire sufficient knowledge to accomplish the required goal.

The Aerodynamics program included a fundamental research effort in supersonic aerodynamics as well as a design task in developing both test vehicles and prototypes of tactical missiles.

Much of the material to be cited in this document contributed to the development of the three surface-launched Navy missiles, namely, the ramjet-powered Talos, the rocket-powered Terrier with tandem booster, and the dual-thrust, rocket-powered Tartar.

Meanwhile, as technology progressed, improvements were introduced to the missile systems to keep them abreast of new threats. Such improvements required continuing aerodynamic investigations throughout the intervening period. Standardization of components of the Terrier and Tartar resulted in their replacement with Standard Missile Extended Range and Standard Missile Medium Range, respectively.

During this period of missile development, many tests were run to provide aerodynamic data needed for definition of the missile configurations. Sufficient time was not always available, however, to analyze fully all of the data and provide research reports, design charts, etc., which could prove useful for other organizations interested in supersonic aerodynamics. Nevertheless, a considerable amount of information transfer was achieved through Navy-sponsored symposia, meetings of the Bumblebee Aerodynamics Panel, and publication of classified documents.

During the past year, the NASA Langley Research Center expressed an interest in a possible transfer to NASA of some of the unpublished data from the Bumblebee program which might be useful to NASA in carrying out its planned Missile Aerodynamics Research Program.

2. Objective of Present Program

The objective of this current effort is to provide NASA Langley Research Center with sufficient information on the aerodynamic studies conducted in the Bumblebee program and on the availability of the data so that NASA can ascertain which data are relevant to their planned programs and then to devise a system for transferring the selected data to NASA.
3. **Approach**

To perform the task of providing information from data acquired over a period of more than 30 years, the following approach was used.

First, a survey was made of the major advanced and engineering development programs: Talos, Terrier, Tartar, Typhon LR, Typhon MR, Standard Missile ER, Standard Missile MR, and Triton; the exploratory missile development programs: TBRSAM (integral rocket ramjet), TARSAO (thrust-augmented rocket), SCRAM (supersonic-combustion ramjet); and the aerodynamics research programs: Downwash Program, Wing-Body Interference Program*, Generalized Missile Study, Hypersonic Configuration Study, Planar Configuration Study, and Wrap-Around Surface Project. This survey reviewed the aerodynamic work of a parametric nature rather than that related to a specific configuration because NASA's goal is to provide a broad-based data package to potential users.

In cooperation with NASA personnel, the following list of topics was selected as NASA program categories for which relevant Bumblebee aerodynamics data should be sought.

A. Wing-Tail Interference
B. Tail-Controlled, Supersonic Rocket Configurations with Low Aspect Ratio Wings
C. Supersonic Airbreathing Missile Configurations
D. Wing or Tail Panel Loads and/or Flow Field Surveys
E. Hypersonic Missile Configurations
F. Unique Missile Configurations

With these topics in mind, data from the relevant BB programs were catalogued as to configurations tested, including parametric variations, range of test conditions (Mach number, angle of attack, roll attitude, control surface incidence), type of data collected (axial force, normal force, side force, pitching moment, yawing moment, rolling moment, surface loads and moments, pressures, flow field surveys), present availability of the data, and a listing of documents containing any parametric analyses of the data. In addition, suggestions are made of data sets for which further analyses could profitably be made if approved by NASA.

A separate section has been prepared for each of the topics A-F listed above and these sections are presented as Appendices A-F.

* This program has been well-documented in the open literature and has not been included in the present survey. See Chapter 5, Vol. VII of High Speed Aerodynamics and Jet Propulsion, Princeton University Press, 1957, for listing of References.
4. Conclusions and Recommendations

This relatively limited survey of the aerodynamic data acquired in the Bumblebee missile program has uncovered several areas in which the existing data could be useful to NASA, Langley in its Missile Aerodynamics program.

Since many of the references listed in each Appendix as Reports on Data Analyses are single APL file copies, the following procedure is recommended for transfer of such data:

1. NASA, Langley personnel review this document and ascertain which portions of it will be most useful to the NASA research program.

2. A NASA representative spends some time at APL/JHU examining the file copies of the documents listed as Reports on Data Analyses and selects those reports which should be reproduced and delivered to NASA.

3. APL proposes a Task covering the reproduction and delivery of these documents.

Having satisfied any such immediate needs, we may then look to Tasks of longer range which might involve further analyses and correlations of data in a format desired by NASA. Such Tasks are suggested briefly at the end of each subsection of each Appendix. It is planned to submit a preliminary proposal giving further details on these potential Tasks under separate cover.

5. Conversion Table

The units used in this report are those of inches and feet, and are easily converted to the international system of units.

<table>
<thead>
<tr>
<th>To convert from</th>
<th>to</th>
<th>multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>inch</td>
<td>meter</td>
<td>.0254</td>
</tr>
<tr>
<td>feet (U.S. Survey)</td>
<td>meter</td>
<td>.3048</td>
</tr>
</tbody>
</table>
Appendix A - Wing-Tail Interference

I. Bumblebee Reverse Roll Investigation

Test Conditions:

Mach Number - n = 1.73
Angle of attack - 2° ≤ α ≤ 10°
Roll attitude - θ = 0°, 22°, 45°
Reynolds Number - Re = 6 x 10^6/ft.
Flipper incidence - \(i_F = -5°, 0°, +5° \)

Type of Data Collected:

Rolling Moment

Availability of Data:

Single hard copy of following reports in APL/JHU files:

1. APL/JHU.CF-788, LSL Report 69, "Investigation of Roll-Reversal Effects on Generalized Missile Configuration at \(n = 1.73 \) in the 19 x 27.5-Inch Nozzle for the Johns Hopkins University," J. Post, September 1947.

Reports on Data Analyses:

2. Data analyses also given in the Data Reports above.

Suggestions for Further Analyses:

Above analyses sufficient for NASA purposes.
Fig. A-I-I Configurations Used in Static Rolling-Moment Tests - Series 1
Fig. A-I-2 Configurations Used in Static Rolling-Moment Test - Series 2
Fig. A-I-3 Configurations Used in Static Rolling-Moment Tests - Series 3
II. Bumblebee Downwash Program

Configurations tested:

See Figs. A-II-1 and A-II-2. Series 1 and 2 differed in body length and nose shape which showed minimum effect.

Component breakdown configurations were also used.

Test Conditions:

Series 1 - M = 1.5, 2.0
-8° ≤ α ≤ +8°
ϕ = 0°
Tail incidence = 0°, 3°, 6°, 9°

Series 2 - M = 1.5, 2.0, 2.5
-4° ≤ α ≤ +25°
ϕ = 0°, 15°, 30°, 45°
Wing and tail incidences = 0°, 5°, 10°, 20°

Types of Data Collected:

Series 1 - Five-component stability and control (no drag).
Series 2 - Five-component stability and control (no drag).
Three-component wing and tail loads and moments.

Availability of Data:

The following wind tunnel data reports are in APL/JHU files:

Series 1 - OAL 154, -1 through -4, "Wind Tunnel Investigation of Downwash Behind Wings of Rectangular Planform at Mach Numbers 1.50 and 2.0."

Series 2 - OAL 264, -1 through -10, "Generalized Investigation of Downwash Behind Wings of Rectangular Planform at Mach Numbers 1.50, 2.00 and 2.50."

Analysis Reports:

Suggestions for Further Analysis:

A complete analysis of the Series 2 data would provide NASA with very useful information that could be integrated into its Wing-Tail-Interference Program.
Fig. A-II-1. Configurations Used in Downwash Program - Series 1
Fig. A-II-2 Configurations Used in Downwash Program - Series 2
Appendix A - Wing-Tail Interference (Cont'd)

.III. Bumblebee Generalized Missile Study (GMS)*

Configurations tested:

See Figs. A-III-1 through A-III-5.
Note that not all configurations were tested for the test conditions listed below. The majority of the data were obtained for a 30° cone-cylinder body in combination with a number of rectangular wings with single panel aspect ratios varying from 0.25 to 1.33.

Test Conditions:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach Number</td>
<td>$M = 1.50, 1.88, 2.00, 3.23$</td>
</tr>
<tr>
<td>Angle of Attack</td>
<td>$\alpha = -4°$ to $25°$</td>
</tr>
<tr>
<td>Roll Attitude</td>
<td>$\phi = 0°, 15°, 30°, 45°$</td>
</tr>
<tr>
<td>Wing Incidence</td>
<td>$i_w = 0°, 10°, 20°$</td>
</tr>
<tr>
<td>Tail Incidence</td>
<td>$i_T = 0°, 10°, 20°$</td>
</tr>
<tr>
<td>Reynolds Number</td>
<td>$M \frac{Re}{ft}$</td>
</tr>
<tr>
<td>OAL</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>6.36×10^6</td>
</tr>
<tr>
<td>NOL</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>7.56×10^6</td>
</tr>
<tr>
<td></td>
<td>3.24</td>
</tr>
<tr>
<td></td>
<td>2.28×10^6</td>
</tr>
</tbody>
</table>

Type of Data Collected:

Stability models - Normal force, pitching moment, side force, yawing moment, and rolling moment.

Wing & Tail Hinge-Moment Model - Panel normal force, hinge moment, and spanwise bending moment.

Flow Survey - Data were obtained which completely defined the local flow at an axial station nearly three diameters behind the wing.

Availability of Data:

Single copy of the following OAL and NOL wind tunnel test reports in APL/JHU files:

* Carried out by McDonnell Aircraft Corporation (MAC) under APL subcontract.
1. OAL 289 Series:
 a. "Investigation of Induced Roll and Longitudinal Stability Characteristics of a Generalized Missile Model at Mach Numbers 1.5 to 2.0."
 OAL Report 289, -1, -2, -3 6/23/53
 OAL Report 289-4, -7, -8, -10 8/5/55
 OAL Report 289-5, -6, -9 1/28/55
 OAL Report 289-11, -12, -13, -23, -24 8/16/55
 b. "Survey of the Flow Field Around a Generalized Missile Model at Mach Number 2.00."
 OAL Report 289-14, -18, -19 4/19/56

2. NOL Series:
 a. WTR-316:
 b. WTR-354:

3. Wind Tunnel data reports per se are not available for the following tests; however, data plots are on file at APL in the form of MAC internal memoranda.
 a. OAL 465, -1, -4 Stability and control tests at M = 1.5 and 2.0. (MAC Memos AGM-20, -21, -25).
 b. OAL 465-3 Tail panel force and moment test at M = 1.5. (MAC memo AGM-24)
 c. NOL-WTR 403 Wing panel force and moment test at M = 3.24. (MAC memo AGM-30)

See Appendix D for more detailed information on wing and tail panel force and moment data.

Reports on Data Analyses:

The following MAC internal memoranda are also on file at APL/JHU.

Suggestions for Further Analysis:

1. Some selected sets of panel data may be of value to NASA in validating theoretical methods. A review of the NASA theoretical programs could be made so that data would be chosen over the ranges of validity of the theory. (See also Appendix D.)

2. A correlation of present NASA data in the Wing-Tail Interference program and the data in the GMS program could be carried out.
Fig. A-III-1 Generalized Missile Study - Wing Planform Configurations
NOTES: Phantom outlines indicate Bn nose location.
All dimensions are in inches.

Fig. A-III-2
ALL DIMENSIONS ARE IN INCHES

DRAWINGS OF THE GMS CONFIGURATIONS SHOWING PRINCIPAL DIMENSIONS

Fig. A-III-3

A-16
All wings have 6% thick modified double wedge airfoils, \((\alpha = 1/3)\), except wing \(W_1\) which has 10% thick biconvex airfoil, and wings \(W_{19}\) and \(W_{22}\) which have 5% thick modified double wedge airfoils.

TABLE I

<table>
<thead>
<tr>
<th>Wing</th>
<th>(b)</th>
<th>(c_R)</th>
<th>(c_T)</th>
<th>(x_H)</th>
<th>(\Delta L.E.)</th>
<th>(\Delta T.E.)</th>
<th>(\Delta T.R.)</th>
<th>(S_{n}(\text{in}^2))</th>
<th>(A_{Exp.})</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_4)</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>0.900</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
<td>4.000</td>
<td>1.000</td>
<td>2.585</td>
</tr>
<tr>
<td>(W_{12})</td>
<td>2.577</td>
<td>2.550</td>
<td>0</td>
<td>0.333</td>
<td>0°</td>
<td>0°</td>
<td>30°</td>
<td>4.292</td>
<td>1.550</td>
<td>2.735</td>
</tr>
<tr>
<td>(W_{13})</td>
<td>1.451</td>
<td>3.313</td>
<td>3.313</td>
<td>1.280</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
<td>4.507</td>
<td>1.350</td>
<td>1.222</td>
</tr>
<tr>
<td>(W_{14})</td>
<td>2.000</td>
<td>2.728</td>
<td>1.272</td>
<td>1.281</td>
<td>20°</td>
<td>-20°</td>
<td>0°</td>
<td>4.000</td>
<td>1.000</td>
<td>2.555</td>
</tr>
<tr>
<td>(W_{15})</td>
<td>2.350</td>
<td>2.364</td>
<td>1.636</td>
<td>1.272</td>
<td>20°</td>
<td>0°</td>
<td>0°</td>
<td>4.782</td>
<td>1.000</td>
<td>2.434</td>
</tr>
<tr>
<td>(W_{16})</td>
<td>2.000</td>
<td>4.070</td>
<td>0</td>
<td>2.720</td>
<td>60°</td>
<td>0°</td>
<td>0°</td>
<td>4.782</td>
<td>1.000</td>
<td>2.434</td>
</tr>
<tr>
<td>(W_{17})</td>
<td>2.350</td>
<td>4.070</td>
<td>0</td>
<td>1.350</td>
<td>0°</td>
<td>-60°</td>
<td>0°</td>
<td>4.782</td>
<td>1.000</td>
<td>2.434</td>
</tr>
<tr>
<td>(W_{18})</td>
<td>1.451</td>
<td>4.554</td>
<td>2.051</td>
<td>2.692</td>
<td>60°</td>
<td>0°</td>
<td>0°</td>
<td>4.799</td>
<td>1.000</td>
<td>2.434</td>
</tr>
<tr>
<td>(W_{19})</td>
<td>2.070</td>
<td>4.140</td>
<td>0</td>
<td>1.960</td>
<td>45°</td>
<td>-45°</td>
<td>0°</td>
<td>4.785</td>
<td>1.000</td>
<td>2.976</td>
</tr>
<tr>
<td>(W_{20})</td>
<td>1.451</td>
<td>4.036</td>
<td>2.585</td>
<td>2.222</td>
<td>45°</td>
<td>0°</td>
<td>0°</td>
<td>4.804</td>
<td>1.38</td>
<td>1.206</td>
</tr>
<tr>
<td>(W_{21a})</td>
<td>1.451</td>
<td>4.554</td>
<td>2.051</td>
<td>1.872</td>
<td>0°</td>
<td>-60°</td>
<td>0°</td>
<td>4.799</td>
<td>1.000</td>
<td>2.434</td>
</tr>
<tr>
<td>(W_{22})</td>
<td>1.451</td>
<td>4.554</td>
<td>2.051</td>
<td>1.872</td>
<td>0°</td>
<td>-60°</td>
<td>0°</td>
<td>4.799</td>
<td>1.000</td>
<td>2.434</td>
</tr>
<tr>
<td>(W_{23})</td>
<td>2.554</td>
<td>2.728</td>
<td>0</td>
<td>1.281</td>
<td>20°</td>
<td>-20°</td>
<td>45°</td>
<td>4.003</td>
<td>1.630</td>
<td>3.574</td>
</tr>
</tbody>
</table>

Fig. A-III-4
Fig. A-III-5
Appendix A - Wing-Tail Interference (Cont'd)

IV. Miscellaneous Empirical Studies of Tail Effectiveness

In addition to the planned research programs discussed previously, several empirical correlations of data (from many available missile programs) were carried out and published by the Bumblebee program in the following reports:

Single hard copies of each report are held in the APL/JHU files.
Appendix B - Tail-Controlled Supersonic Configurations with Low-Aspect Ratio Wings

I. Terrier Program

As noted in the introduction to this report, the Aerodynamics program at APL/JHU over the past thirty years or so included a fundamental research effort in supersonic aerodynamics as well as a design task in developing both test vehicles and prototypes of tactical missiles. The Terrier, low-aspect-ratio, tail-controlled missile was one of these designs.

Configurations tested: See Figs. B-I-1 through B-I-4.

Typical parametric variations in missile configuration considered in this program are shown in Fig. B-I-1. Additional full configuration drawings are shown in Figs. B-I-2 through B-I-4.

As part of the Terrier program, various spin-off studies were made. One such study considered the use of reverse dart wings as shown in Fig. B-I-4.

Through the years, data have been collected on approximately 40 dorsal (strake) designs, 30 different bodies, 4 wings, and at least 2 tails. The body total length to diameter ratio varied from 9.7 to 13.8. Nose geometries included tangent and secant ogives, von Karman, and combination designs.

Test Conditions:

Mach Number - M = 1.5 to 5.0

Angle of Attack - \(\alpha = 0^\circ \) to \(45^\circ \)

Roll Attitude - \(\phi = 0^\circ, 22.5^\circ, 45^\circ, 67.5^\circ, 90^\circ \). \(\phi \) cuts at constant \(\alpha \).

Tail Incidence - \(i = 0^\circ, 5^\circ, 10^\circ, 15^\circ, 20^\circ, 25^\circ, 30^\circ \)

Reynolds Number - \(Re = 3 \times 10^6/ft. \)

Type of Data Collected:

Longitudinal and lateral five component stability and control.
Tail panel loads and moments. Full and breakdown configurations.

Availability of Data:

Voluminous amounts in APL/JHU files.
Reports on Data Analyses:

This is a partial listing that typifies the type of information available.

Body Alone

Body-Tail

Full Configuration

Note:

1. See Appendix D for information on individual surface aerodynamic characteristics.
Suggestions for Additional Analyses:

Since the publication of the noted analysis reports, more wind tunnel data have been obtained for some configurations. The following studies are indicated.

 Extend analysis to higher Mach numbers and angles of attack (\(M = 5.0, \alpha = 40^\circ\)).

2. Body-tail - Ref. 2.
 Extend analysis to higher Mach numbers and angles of attack (\(M = 5.0, \alpha = 40^\circ\)).

3. Full configuration, reverse dart wing - Refs. 3, 4, and 5.
 a. Report on wing alone data (in presence of body) is complete. Possible condensation of results into a few graphs.
 b. Summary report on effects of sweep, area, span, and longitudinal location on longitudinal stability and control should be made with the data presented.
 c. Summary report on effects of sweep, area, span, and longitudinal location on lateral stability and control at high angle of attack should be made with the data presented.
 d. Analysis of recently acquired data at higher Mach numbers and angles of attack (\(M \approx 5.0, \alpha \approx 40^\circ\)) should be carried out and the results summarized for inclusion in Items b and c.
Fig. B-I-1

TERRIER Configurations Tested in HST C65-5

All dimensions are in inches (full missile scale)
FIG. B-I-2 GENERAL ARRANGEMENT SKETCH OF THE 0.06-SCALE ADVANCED TURKER (BT) MODEL
Fig. B-I-3 GENERAL ASSEMBLY SKETCH OF THE 1/10-SCALE
TERRIER

REVERSE DART WINGS

HORIZONTAL SURFACES
NOT SHOWN.

FIG. B-I-4
Appendix B - Tail-Controlled Supersonic Configurations with Low-Aspect Ratio Wings (Cont'd)

II. Other Programs

The Tartar and Typhon MR programs provide much data on configurations similar to those tested in the Terrier program, but over a Mach number range covering the subsonic and supersonic regimes.

The Standard Missile ER and MR programs have provided data over slightly extended ranges in Mach number and angle of attack.
Appendix C - Supersonic Airbreathing Configurations

This Appendix will include only those supersonic airbreathing configurations with side-mounted inlets which are of interest to NASA. There are available many data reports on configurations with nose inlets such as Talos and Typhon LR.

I. Bumblebee Integral Rocket-Ramjet Surface-to-Air Missile Program (IRR-SAM)

Configurations tested: See Fig. C-I-1.

Using the basic configuration of Fig. C-I-1, tests were made with two (2) longitudinal locations of the inlets, two (2) total body lengths, two (2) low aspect ratio wing chords, and two (2) tails of similar planform.

Test Conditions:

Mach number - \(M = 0.5 \) to 4.0
Angle of Attack - \(-8^\circ < \alpha < 25^\circ\)
Roll Attitude - \(\phi = -45^\circ, +45^\circ \) (also roll cuts at constant \(\alpha \))
Tail Incidence - \(i = -0^\circ, -10^\circ, -20^\circ \)
Reynolds Number - \(Re = 2.5 \) to \(12 \times 10^6 \) per ft.

Type of Data Collected:

Six-component stability, control, and drag data on full configurations and breakdowns (except body alone, which exists from other programs).

Availability of Data:

Single hard copy of following reports in APL/JHU files.

Reports on Data Analyses:

ballistics, May 9-11, 1972, at APL/JHU, "Aerodynamic Characteristics
of Missile Configurations with Side-Mounted Ramjet Inlets (U)," W. H.
Rauser (Confidential).

Single hard copies of the following internal memoranda in APL/JHU files.

1. BBA-AS-003-68, "Component Effects of Inlets and Boundary-Layer Diverters
on the Longitudinal Stability Characteristics of a Body Aft-Inlet Con-
figuration at Mach Number 2.77 (U)," W. H. Rauser, 12 July 1968 (Confidential).

2. BBA-AS-007-68, "Longitudinal Static Stability and Control Characteristics
at Mach 0.5 for an Aft-Entry Ramjet Missile with Blocked Inlets (U),"
W. H. Rauser, 22 August 1968 (Confidential).

3. BBA-AS-003-69, "Longitudinal Static Stability and Control Characteristics
at Mach 2.77 for Side-Inlet Configurations of Varying Body Length and
Inlet Location (U)," W. H. Rauser, 11 March 1969 (Confidential).

4. BBA-AS-010-69, "Component Effects of Tails, Dorsals, and Side-Mounted
Inlets at Mach 2.77 (U)," W. H. Rauser, 15 July 1969 (Confidential).

5. BBA-AS-012-69, "Longitudinal and Static Stability and Control Characteris-
tics at Mach 2.01 and 4.11 for a Side-Inlet Configuration (U)," W. H.
Rauser, 12 August 1969 (Confidential).

6. BBA-2-70-003, "Longitudinal Static Stability and Control Characteristics
for a Side-Inlet Configuration at Mach 0.9, 1.1, and 1.5 (U)," W. H.
Rauser, 10 February 1970 (Confidential).

7. BBA-2-70-016, "Longitudinal Static Stability and Control Characteristics
of a Side-Inlet Configuration at Mach 2.77 (U)," W. H. Rauser, 28 July
1970 (Confidential).

Suggestions for Further Analyses:

The data analyses given in the above internal memoranda could be con-
solidated into a single summary report presenting the characteristics
of the basic configuration and the observed effects of the parametric
variations of model components.
INTEGRAL ROCKET RAMJET - IRRSAM
(180 INCH LENGTH CONFIGURATION)

Note: 1/10-Scale Model Used. Full-Scale Stations Given.

Fig. C-I-1 IRR-SAM Configuration
Appendix C - Supersonic Airbreathing Configurations (Cont'd)

II. Bumblebee Thrust-Augmented-Rocket, Surface-to-Air Missile Program (TAR-SAM)

Configurations tested: See Fig. C-II-1.

This is the basic TAR-SAM configuration for which most of the data apply. Some data are available for this configuration with a delta planform tail surface.

Test Conditions:

Mach Number - $M = 3.0, 4.0$
Angle of Attack - $\alpha = -4°$ to $20°$
Roll Attitude - $\phi = 0°$, 22.5°, 45°, 90° and ϕ cuts at constant α.
Tail Incidence - $i = +15°$, $+10°$, $0°$, $-5°$, $-10°$, $-15°$, $-20°$
Reynolds Number - $Re = 8.5$ to 12×10^6 per ft.

Type of Data Collected:

Six-component stability, control, and drag data on full configuration and breakdowns. Control surface normal force, hinge moment and bending moment.

Availability of Data:

Single copy of following wind tunnel reports in APL/JHU files.

Reports on Data Analysis:

Suggestions for Additional Analysis:

Above analysis provides a complete description of TAR-SAM aero-
dynamic characteristics.
10 CALIBER SECANT-OGIVE NOSE WITH
GENERATING RADIUS OF 152.167 IN

10° ANGLE ON INSULATION LEADING EDGE.
INSULATION IS 3/16 INCH THICK

DIMENSIONS ARE IN INCHES

TAR-SAM

FIG. C-II-1
Appendix C - Supersonic Airbreathing Configurations (Cont'd)

III. Triton

Configurations tested:

Examples of several concepts of the Triton missile are given in Fig. C-III-1.

Test Conditions:

Mach Number \(M = 2.0 \) to \(4.8 \)
Angle of Attack \(\alpha = -8^\circ \) to \(12^\circ \)
Roll Attitude \(\phi = 0^\circ, 10^\circ, 20^\circ, 90^\circ \)
Tail Incidence \(i_T = 0^\circ, -5^\circ \)
Reynolds Number \(Re = 7 \) to \(12 \times 10^6/ft. \)

Type of Data Collected:

Longitudinal and lateral stability and control, drag, and panel loads and moments. Full configuration and breakdown.

Availability of Data:

Following is a partial list of wind tunnel data reports on file in the APL/JHU Document Library.

OAL Tests:

1. 346, -1, "Stability, Control, and Drag Tests of Several 1/32-Scale Asymmetric Triton Models at Mach Number 2.00 and 2.50."
2. 460-2, "Lift, Drag, and Stability Tests of Several 1/24-Scale Triton Configurations at Mach Number 2.5."
3. 388, -1 through -11, "Stability, Control, and Drag Tests of 1/20 and 1/32-Scale Triton Models at Mach Numbers 2.0, 2.5, and 2.77."
4. 532, -1 through -5, "Stability, Control, and Drag Tests of Several 1/21-Scale Triton SN-1 Configurations at Mach Numbers 2.23, 2.50, and 2.77."

Reports on Data Analyses:

The following list of APL/JHU internal memoranda exemplifies the type of information available.

3. APL/JHU, TRCM-1-56-13, "Triton SN-1 Wind Tunnel Data for OAL Test 532 at a Mach Number of 2.77," T. A. McCarty, August 29, 1956.

Suggestions for Additional Analyses:

It may be of use to compile enough summary graphs for several of the Triton configurations to depict adequately the aerodynamic characteristics of this type of airbreather design.
Fig. C-III-1, Evolution of Triton Aerodynamic Configuration
Appendix D - Panel Loads and Flow Field Surveys

I. Roll Reversal Investigation - Flow Inclination

As part of the Roll Reversal Investigation (see Appendix A-I), flow inclination measurements were made at various positions aft of differentially deflected roll flippers.

Configurations tested, test conditions, etc., are given in Appendix A-I and will not be repeated here.

Results of the flow inclination study are given in Data Reports 2 and 3, and the noted Data Analysis Report given in Appendix A-I.
Appendix D - Panel Loads and Flow Field Surveys (Cont'd)

II. Bodies of Revolution - Normal Force Distributions and Wake Vortex Characteristics

This is part of the Generalized Missile Study. See Appendix A-III.

Configurations tested:

See Figs. D-II-1 through D-II-4. Most test data were obtained for cone-cylinder models.

Test Conditions:

Series 1. Force and Moment Tests

Mach Number - $M = 1.5, 2.0$
Angle of Attack - $\alpha = -4^\circ$ to 23°
Roll Attitude - $\phi = 0^\circ, 15^\circ, 30^\circ, 45^\circ$
Reynolds Number - $Re = 6.36$ and 7.56×10^6/ft.

Series 2. Static Pressure Tests

Mach Number - $M = 2.0$
Angle of Attack - $\alpha = 0^\circ, 4^\circ, 8^\circ, 12^\circ, 16^\circ, 20^\circ, 23^\circ$
Roll Attitude - $\phi = 0^\circ, 10^\circ, 25^\circ$ at each α
Reynolds Number - $Re = 7.56 \times 10^6$/ft.

Series 3. Flow Survey Tests

Mach Number - $M = 1.5, 2.0$
Angle of Attack - $\alpha = 0^\circ, 4^\circ, 8^\circ, 12^\circ, 16^\circ, 20^\circ, 23^\circ$
Roll Attitude - $\phi =$ not applicable
Reynolds Number - $Re = 6.36$ and 7.56×10^6/ft.

Type of Data Collected:

Series 1. Normal force and pitching moment for bodies shown in Fig. D-II-1.

Series 2. Static pressure distribution for configuration shown in Fig. D-II-2.

Series 3. See Fig. D-II-3 and 4 for body design. Qualitative definition of body leeward wake. Local flow field completely defined at $M = 2.0$.

D-2
Availability of Data:

A copy of the following wind tunnel reports on file at APL/JHU.

1. OAL 289 Series:

 a. "Investigation of Induced Roll and Longitudinal Stability Characteristics of a Generalized Missile Model at Mach Numbers 1.5 and 2.0."

 OAL Report 289, -1, -2, -3 6/23/53
 OAL Report 289-4, -7, -8, -10 8/5/55
 OAL Report 289-5, -6, -9 1/28/55
 OAL Report 289-11, -12, -13, -23, -24 8/16/55

 b. "Survey of the Flow Field Around a Generalized Missile Model at Mach Number 2.0."

 OAL Report 289-14, -18, -19 4/19/56

Reports on Data Analyses:

Following report on file at APL/JHU.

Suggestions for Further Analyses:

Above report presents a partial analysis of the subject study.
MODEL GEOMETRY

B_{11}

\begin{align*}
2.556 & \quad 9.900 \\
9.900 & \quad 11.000 \\
\end{align*}

B_{12}

\begin{align*}
2.556 & \quad 9.900 \\
9.900 & \quad 13.000 \\
\end{align*}

B_{13}

\begin{align*}
2.556 & \quad 9.900 \\
3.556 & \quad 15.000 \\
\end{align*}

B_{5}

\begin{align*}
2.556 & \quad 9.900 \\
9.900 & \quad 18.000 \\
\end{align*}

B_{5.1}

R = 5.13

\begin{align*}
2.556 & \quad 9.900 \\
9.900 & \quad 18.000 \\
\end{align*}

B_{5.2}

R = 19.40

\begin{align*}
5.112 & \quad 12.456 \\
12.456 & \quad 20.556 \\
\end{align*}

FIG. D-II-1
FLOW SURVEY MODEL GEOMETRY

NOTE: ALL DIMENSIONS IN INCHES EXCEPT AS NOTED
Probe Number and Ratio

<table>
<thead>
<tr>
<th>Probe Number</th>
<th>Ratio</th>
<th>Probe Number</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.247</td>
<td>24</td>
<td>1.393</td>
</tr>
<tr>
<td>2</td>
<td>1.539</td>
<td>25</td>
<td>2.369</td>
</tr>
<tr>
<td>3</td>
<td>1.431</td>
<td>26</td>
<td>3.144</td>
</tr>
<tr>
<td>4</td>
<td>2.123</td>
<td>27</td>
<td>4.920</td>
</tr>
<tr>
<td>5</td>
<td>2.418</td>
<td>28</td>
<td>1.601</td>
</tr>
<tr>
<td>6</td>
<td>2.706</td>
<td>29</td>
<td>1.393</td>
</tr>
<tr>
<td>7</td>
<td>2.994</td>
<td>30</td>
<td>1.685</td>
</tr>
<tr>
<td>8</td>
<td>3.291</td>
<td>31</td>
<td>1.977</td>
</tr>
<tr>
<td>9</td>
<td>3.582</td>
<td>32</td>
<td>2.269</td>
</tr>
<tr>
<td>10</td>
<td>3.874</td>
<td>33</td>
<td>2.561</td>
</tr>
<tr>
<td>11</td>
<td>4.166</td>
<td>34</td>
<td>2.853</td>
</tr>
<tr>
<td>12</td>
<td>4.458</td>
<td>35</td>
<td>3.144</td>
</tr>
<tr>
<td>13</td>
<td>4.750</td>
<td>36</td>
<td>3.436</td>
</tr>
<tr>
<td>14</td>
<td>5.042</td>
<td>37</td>
<td>3.729</td>
</tr>
<tr>
<td>15</td>
<td>5.334</td>
<td>38</td>
<td>4.020</td>
</tr>
<tr>
<td>16</td>
<td>5.626</td>
<td>39</td>
<td>4.312</td>
</tr>
<tr>
<td>17</td>
<td>5.918</td>
<td>40</td>
<td>4.604</td>
</tr>
<tr>
<td>18</td>
<td>6.210</td>
<td>41</td>
<td>4.896</td>
</tr>
<tr>
<td>19</td>
<td>6.501</td>
<td>42</td>
<td>5.188</td>
</tr>
<tr>
<td>20</td>
<td>6.792</td>
<td>43</td>
<td>5.480</td>
</tr>
<tr>
<td>21</td>
<td>7.083</td>
<td>44</td>
<td>5.772</td>
</tr>
<tr>
<td>22</td>
<td>7.374</td>
<td>45</td>
<td>6.064</td>
</tr>
<tr>
<td>23</td>
<td>7.665</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow Survey Instrumentation Detail

Rake 1
- Total Head Probes

Rake 2
- Yaw Probes

Rake 3
- Yaw Probes

Rake 4
- Yaw Probes

Rake 5
- Total Head Probes

Notes:
1. All dimensions in inches except as noted.
2. Total head and yaw probe detail scale 5:1.

Fig. D-II-4
Appendix D - Panel Loads and Flow Field Studies (Cont'd)

III. Very Low Aspect Ratio Lifting Surfaces

Configurations tested: See Fig. D-V-1.

Test Conditions:
- Mach Number - \(M = 1.5 \) to 3.87
- Angle of Attack - \(\alpha = 0^\circ \) to 24°
- Roll Attitude - \(\phi = 0^\circ, 22.5^\circ, 45^\circ \) (and \(\phi \) cuts)
- Reynolds Number - \(Re = 3 \) to \(7 \times 10^6 \) per ft.

Type of Data Collected:
- Total configuration and breakdown normal force, pitching moment, side force, yawing moment, rolling moment. Wing normal force and center of pressure.

Availability of Data:
- A copy of each of the following wind tunnel data reports is in APL/JHU files.

1. Convair, A Division of General Dynamics Corporation, Ordnance Aerophysics Laboratory, OAL Report No. 449-1, Housing-Load and Center of Pressure Tests of a 1/10-Scale Advanced Terrier (VT) Model at Mach Numbers 1.50 and 2.50, by D. P. Cumming and R. C. Raedeker, February 1956.

3. Convair, A Division of General Dynamics Corporation, Ordnance Aerophysics Laboratory, OAL Report No. 449-3, Dorsal Load and Center of Pressure Tests of a 1/10-Scale Advanced Terrier Model at Mach Number 1.50, by M. D. Bennet and R. B. Lawrence, October 1956.

6. U. S. Naval Ordnance Laboratory, White Oak, Maryland, Preliminary Data from NOL WTR 296, "Dorsal Load and Center of Pressure Tests of a 1/10-Scale Advanced Terrier Model at Mach Number 2.50, 3.24, and 3.83," 1955.

7. U. S. Naval Ordnance Laboratory, White Oak, Maryland, Preliminary Data from NOL WTR 377, "Dorsal Load and Center of Pressure Tests of a 1/10-Scale Advanced Terrier Model at Mach Number 3.24," 1957.

Reports on Data Analysis:

Suggestions for Additional Analyses:

Since the writing of the noted Data Analysis report, a considerable amount of test data on many additional low-aspect ratio surfaces (dorsals) have been obtained. For example, see the model configurations in Appendix B. Additional analyses of these data would certainly supplement and possibly expand the scope of the initial study. It should be noted, however, that no direct measurements of panel loads were made in these additional tests.
ABSTRACT

A study has been made of the aerodynamic behavior in supersonic flow of very-low-aspect-ratio, nearly rectangular lifting surfaces attached to certain bodies of revolution. The results of this study are given herein. The objectives of the presentation are: first, to give the reader an understanding of the basic aerodynamic phenomena influencing these surfaces, and second, to provide sufficient detailed information to permit engineering estimates of (a) the aerodynamic loading on such wings and (b) the effect of the wings on configuration stability and maneuverability. These low-aspect-ratio wings are studied in all roll attitudes at angle of attack up to 24 degrees over a range of Mach numbers from 1.50 to 3.87. Interference effects considered are those of the body on the wing, of the wing on the body, and of one wing on another. Among the geometrical parameters considered are aspect ratio, span-to-body diameter ratio, and length of nose ahead of the wings. The approach is primarily empirical, and a considerable body of test data has been correlated and assembled into design charts (presented in the Appendix). However, existing theory has not been ignored, and theoretical methods of calculation have been used where applicable and not unreasonably complex.
SKETCHES OF BODIES AND LOW-ASPECT-RATIO WINGS USED IN WIND-TUNNEL TESTS

FIG. D-III-1
Appendix D - Panel Loads and Flow Field Surveys (Cont'd)

IV. Bumblebee Generalized Missile Study (GMS) - Wing and Tail Panel Forces and Moments

Configurations tested:

1. Wing Panel - Fig. D-IV-1
2. Tail Panel - Figs. D-IV-2 and D-IV-3

Test Conditions:

1. Wing Panel
 Mach Number - $M = 3.24$
 Angle of Attack - $\alpha = 0^\circ$ to 24°
 Roll Attitude - $\phi = -90^\circ$ to $+45^\circ$
 Wing Incidence - $i_w = 0^\circ$, 10°, 20°
 Reynolds Number - $Re = 2.28 \times 10^6$/ft.

2. Tail Panel
 Mach Number - $M = 1.5$ and 3.24
 Angle of Attack - $\alpha = 0^\circ$ to 26°
 Roll Attitude - $\phi = 0^\circ$ to -90°
 Tail Incidence - $i_T = 0^\circ$, 10°, 20°
 Reynolds Number - $Re = 6.36$ and 2.28×10^6/ft.

Type of Data Collected:

Panel normal force, hinge moment, and spanwise bending moment.

Availability of Data:

The following reports are on file at APL/JHU.

1. Wing Panel
 a. MAC Memo. AGM-30, "Transmittal of Wind Tunnel Data for
 NOL Test WTR 403, $M = 3.24$, GMS," Thomas Lowe, Jr.,
 August 21, 1957 (Data plots only).

2. Tail Panel
 a. MAC Memo AGM-24, "Transmittal of Wind Tunnel Data for
 OAL Test 465-3, $M = 1.50$, GMS," D. E. Bachmann, September 24,
 1956 (Data plots only).

D-12

Reports on Data Analyses:
None available.

Suggestions for Additional Analysis:
As noted in Appendix A, these wing and tail panel data may be of use to NASA in validating theoretical methods. Also, a correlation of present NASA data in the Wing-Tail Interference Program with these wing and tail panel data could be carried out.
NOTES: 1. PHANTOM OUTLINE ILLUSTRATES B9 NOSE LOCATION.

 2. MOMENT REFERENCE 8.100 INCHES FORWARD OF MODEL BASE.
MODEL GEOMETRY

TAIL PANEL TESTS

NOTE: ALL DIMENSIONS ARE IN INCHES

Fig. D-IV-2

D-15
MODEL GEOMETRY

TAIL PANEL TESTS

ORIGINAL PAGE IS OF POOR QUALITY

NOTE: ALL DIMENSIONS ARE IN INCHES

Fig. D-IV-3

D-16
Appendix E - Hypersonic Missile Configurations

I. Bumblebee Hypersonic Configuration Study

Configurations tested:

Series 1. Tail-Controlled, Straked Configurations (Cruciform and Triform, in-line and interdigitated)
See Figs. E-I-1, -2, -3, -4, -5.
This series includes tests also on cruciform in-line configurations with various body lengths, nose shapes, strake sizes and longitudinal position, and tail thickness (thin and very thick delta wedges). Much breakdown data are also available, including data for tests with body and a single lifting surface.

Series 2. Tail-Controlled Delta-Winged Configurations (Cruciform)
See Fig. E-I-6.

Series 3. Canard-Controlled Delta-Winged Configurations (Cruciform)
See Fig. E-I-7.

Test Conditions:

Series 1. Mach Number $- M = 4.4, 7.7$
Angle of Attack $- \alpha = -4^\circ \text{ to } 36^\circ, -5^\circ \text{ to } 25^\circ$
Roll Attitude $- \phi = -90^\circ \text{ to } +90^\circ$
Tail Incidence $- i = 0^\circ, -10^\circ, -20^\circ$
Reynolds Number $- Re = 12 \times 10^6/ft, 3 \times 10^6/ft$

Series 2. Mach Number $- M = 4.4$
Angle of Attack $- \alpha = -4^\circ \text{ to } 36^\circ$
Roll Attitude $- \phi = 0^\circ, -45^\circ$
Tail Incidence $- i = 0^\circ, 20^\circ$
Reynolds Number $- Re = 12 \times 10^6/ft$

Series 3. Mach Number $- M = 4.4$
Angle of Attack $- \alpha = 4^\circ \text{ to } +33^\circ$
Roll Attitude $- \phi = 90^\circ \text{ to } +90^\circ$
Canard Incidence $0^\circ, 20^\circ$
Reynolds Number $- Re = 12 \times 10^6/ft$
Type of Data Collected:

Five-component stability and control data for all Series. Extensive schlieren coverage is also available.

Availability of Data:

Single hard copies of the following data reports are available in APL/JHU files:

1. NOL WTR 783
2. NOL WTR 808
3. NOL WTR 1020
4. General Dynamics HST 137-0
5. General Dynamics HST 155-0

Reports on Data Analyses:

In addition to the above formal publications, the following internal memoranda (single hard copy in APL files) contain various portions of the analyses:

 Also
 BBA-RE-011a-64, "The Center of Pressure of the Afterbody of Cone-Cylinder Combinations at Hypersonic Speeds - An Addendum to BBA-RE-011-64."

Suggestions for Further Analysis:

A summary document providing the conclusions from the many parametric variations, together with some design charts should be produced. The wealth of available data would require a substantial effort to produce such a document.
HYPERSONIC CONFIGURATION MODEL
CRUCIFORM CONFIGURATION WITH IN-LINE TAILS

Note: Dimensions are in body diameters

Fig. E-I-1
HYPersonic configuration model

Cruciform configuration with interdigitated tails

Fig. E-I-2
HYPERSOニック CONFIGURATION MODEL
TRIFORM CONFIGURATION WITH IN-LINE TAILS

Fig. E-I-3
HYPERSONIC CONFIGURATION MODEL
TRIFORM CONFIGURATION WITH INTERDITIVE TAILS

\[B^3 D_1 T^{60} \]

Fig. E-I-4
H.C.S. MODEL

TYPICAL CONFIGURATIONS.

B_1 D_1 T_1

B_3 D_2 T_2

B_3 D_2 T_1

D_2 T_2

B_1 D_2 B_2 (E_a, D_a)

MODEL STATION - INCHES

E-9 Fig. E-I-5
Canard - Controlled Configurations

Note. C_3^{45} are C_3 surfaces rotated 45° around body

Fig. E-I-7
Appendix E - Hypersonic Missile Configurations (Cont'd)

II. Bumblebee Supersonic Combustion Ramjet Program (Mod II SCRAM)

Configurations tested: See Figs. E-II-1, E-II-2, and E-II-3.

Test Conditions:
- Mach Number - \(M = 4.36 \) and 7.69
- Angle of Attack - \(\alpha = 0^\circ \) to 10°
- Roll Attitude - \(\phi = 0^\circ, 45^\circ \)
- Tail Incidence - \(i = 0^\circ, 10^\circ \)
- Reynolds Number - \(Re = 12 \times 10^6 \) per ft, \(M = 4.36 \)
 \(3 \times 10^6 \) per ft, \(M = 7.69 \)

Type of Data Collected:
- Five-component stability and control data. Full configuration and breakdown. Engine force and moments.

Availability of Data:
- Single copy of following reports in APL/JHU files.

Reports on Data Analyses:
- Copies of the following internal memoranda in APL/JHU files.

In addition, the following formal document was published on a portion of the analysis:

Suggestions for Additional Analysis:

Above analyses provide a complete description of Mod II Scram aerodynamic characteristics for preliminary design purposes.
HYPERSONIC RESEARCH MODEL
SIMULATION OF MOD II. SCRAM

WIND TUNNEL MODEL CONFIGURATIONS

Fig. E-II-1
DIMENSIONS IN BODY DIAMETERS

Fig. E-II-1 (Cont'd)
HYPERSONIC RESEARCH MOUNT
SIMULATION OF MOD2 SCRAM
WIND TUNNEL CONFIGURATIONS

DIMENSIONS IN FT UNLESS SPECIFIED

Fig. E-II-2
HYPersonic research model simulation of moue scham wind tunnel configurations.

Dimensions in inches - model scale

Fig. E-II-3
Appendix F - Unique Missile Configurations

I. Wrap-Around Surface Project (WASP)

Wrap-Around Surface Project configurations were tested at subsonic speeds with the objective of investigating the aerodynamic feasibility of using a bank-to-turn configuration incorporating wrap-around wing and tail surfaces. The relative effectiveness of curved versus planar surfaces was evaluated.

Configurations tested: See Figs. F-I-1, F-I-2, F-I-3.

Full, breakdown, and single wing and tail configurations were tested as were three wing positions.

Test Conditions:

Mach Number - $M = 0.65$ to 0.98 (majority of data obtained at $M = 0.8$)

Angle of attack - $\alpha = -15^\circ$ to 15°

Roll Attitude - $\varphi = 0^\circ$ and 90° and φ cuts at constant α

Tail Incidence - $i_p = -10^\circ$, 0°, 5°, 10° - horizontal surfaces

$i_y = 0^\circ$, 5° - vertical surface

Reynolds Number - $RE = 8 \times 10^6$/ft.

Type of Data Collected:

Five component stability and control, and drag. Oil flow visualization information on wings.

Availability of Data:

Copy of following data report in APL/JHU files (BFD Group).

General Dynamics/Convair - HST 361-0, -1.

Reports on Data Analyses:

F-1
In addition to the above formal publication, the following internal memoranda are on file at APL/JHU (BFD Group).

3. **BFD-1-75-010**, "Wrap-Around Surface Project (WASP) Studies - Analysis of Experimental Data on Lateral Stability and on Effects of Sideslip on Yaw and Roll Control, \(M = 0.8 \)," E. F. Lucero, 30 May 1975.

4. **BFD-1-75-006**, "Experimental Study at \(M = 0.8 \) of the Aerodynamic Controllability of the Missile Configuration for the Wrap-Around Surface Project (WASP)," E. F. Lucero, 8 May 1975.

Suggestions for Additional Analyses:

Above analyses plus a forthcoming APL-TG report provide a complete description of the Wrap-Around Surface configuration aerodynamic characteristics at subsonic speeds.
SCHEMATIC OF WASP CONFIGURATIONS AND ASSEMBLY

WING ASSEMBLY

V-K NOSE

WRAP-AROUND SURFACES

PLANAR SURFACES

WING ASSEMBLY

EMPENNAGE ASSEMBLY

WRAP-AROUND HORIZ TAILS

EMPENNAGE SECTION

DIMENSIONS IN INCHES

Fig. F-I-1
$\bar{y} = 1.15$ in.
M.A.C. = 2.907 in.
$Z_w = (d/2) \tan \theta_w$
\[Z_w = 0.867 \text{ in.}\]

$\theta_w = 30^\circ$
$\bar{y} = 1.15$ in.
M.A.C. = 2.907 in.
$Z_w = (d/2) \tan \theta_w$
\[Z_w = 0.867 \text{ in.}\]

WASP WING DESIGN

FIG. F-1-2
F-4
Fig. F-I-3

WASP
HORIZONTAL TAIL DESIGN

$R = 1.5\ \text{IN.}$
$
\bar{y} = 0.781\ \text{IN.}
n^H = 126.0^\circ
$

NACA 64A006
1.257 in.
Appendix F - Unique Missile Configurations

II. Bumblebee Planar Missile Configuration

Configurations tested: See Figs. F-II-1, -2, -3

Test Conditions:

- Mach Number - $M = 2.5, 3.5$
- Angle of Attack - $\alpha = -4^\circ$ to $+20^\circ$
- Roll Attitude - $\phi = 0^\circ$ to 90°
- Tail Incidence - $i = 0^\circ, -10^\circ, -20^\circ$
- Reynolds Number - $Re = 3$ to $5.5 \times 10^6/\text{ft.}$

Type of Data Collected:

Five-component stability and control data (no drag data).

Availability of Data:

A single hard copy of each of the following wind-tunnel test reports is available in the APL/JHU files.

3. NOL Test WTR 607, September 1960 (also published as NOL TR 61-31).
4. NOL Test WTR 669, March 1961 (also published as part of NOL TR 63-161).
5. NOL Test WTR 681, May 1961 (also published as part of NOL TR 63-161).

Reports on Data Analyses:

Suggestions for Further Analyses:

The two TG reports probably contain sufficient analyses of the data for NASA needs.
Fig. F-II-1 STRAKED PLANAR CONFIGURATION
Fig. F-II-2 DELTA-WINGED PLANAR CONFIGURATION
Index for Aerodynamic Data From the Bumblebee Program

L. L. Cronvich and G. A. Barnes

The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland 20810

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665

This index was prepared in order to facilitate dissemination of a large amount of fundamental aerodynamic missile data, which has been stored for a number of years at the Applied Physics Laboratory. Only an index of the data are presented in this report, but a list of reference documents and graphic illustrations of the various configurations provide sources of detailed data.

The Bumblebee program, initiated in 1945 by the U. S. Navy Bureau of Ordinance, was designed to provide a supersonic guided missile. The Aerodynamics program included a fundamental research effort in supersonic aerodynamics as well as a design task in developing both test vehicles and prototypes of tactical missiles.

missiles
missile data
missile configurations

Unclassified - Unlimited
Subject Category 02

Unclassified

For sale by the National Technical Information Service, Springfield, Virginia 22161