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PREFACE

m

The objective of this study was to obtain a quantitative evaluation of the relative
performance of several potential multispectral scanner designs for the Landsat-D
Thematic Mapper. The study produced simulated multispectral Thematic Mapper data
sets by processing aircraft resolution digital multispectral data through models of
the various Thematic Mapper configurations and then through three sampling techniques
as a simulation of ground processing. The resulting data sets were subjected to
multispectral classification, and the effectiveness of the various systems was compared
on the basis of the classification results obtained.,

Two data sets were used in this study, an aircraft data set with nominally a 3-meter
resolution and a synthetic data set of the same nominal resolution. This latter data
set was generated using psuedo-random numbers based on the class statistics of the
aircraft data set, and it was constructed to provide a more satisfactory distribution
of field size and shape than was available in the aircraft data set. Three Thematic
Mapper configurations, differing in the type of filtering and sampling were considered.
One configuration modeled an "integrate and dump" sampler, while the other two employed
a conventional presampling filter with a "sample and hold" circuit, and differed only
in the along-scan sampling rate. The resampling techniques considered were nearest
neighbor assignment, cubic convolution resampling, and point-spread-function-compensa-
tion resampling. Classification of the simulated Thematic Mapper data sets was
performed using a maximum-likelihood classifier.

^	 While the classification results exhibited differing trends depending on such variables
as class, on the basis of an average over classes, and with respect to both classi-
fication accuracy and proportion estimation, the configuration with a conventional
presampling filter and 1.4 samples/IFOV along-scan provided the best overall performance
for the image data derived from the synthetic data set. There was little difference
among the resampling techniques. On the same basis, although with a more limited
data base available for statistical analysis, the configuration with a conventional
presampling filter, 1.0 samples/IFOV and point-spread-function-compensation resampling
provided the best overall performance for the image data derived from the aircraft
data set
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Section 1

m
INTRODUCTION

The Thematic Mapper is the multispectral scanner which will be flown on Landsat-D.
One of the primary applications for the digital imagery obtained from this sensor
will be the classification and discrimination of agricultural crops in order to
provide accurate and timely crop inventory information. The accuracy of the inventory
estimates obtained by this method depend on many factors, but of these only the
sensor system characteristics and the ground data processing performed prior to
classification are under control of the system designer. There is therefore great
interest on the part of these designers in the effects their design choices will have
on the accuracy of the classification results to be expected from ,the operational
system.

The Thematic Mapper Design Parameter Investigation was undertaken in order to obtain
comparative measures of the effect of alternative choices of sensor and ground proces-
sing parameters on the utility of Thematic Mapper data. The approach used was to
start with high-resolution multispectral aircraft scanrfer data, process this data
through models of several Thematic Mapper system config'urac,ons, machine classify
agricultural areas in the resulting simulated Thematic Mapper data, and use the
classification and mensuration accuracies obtained to quant7?tatively compare the
performance of the configurations.- Participants in this p"tudy were IBM's Advanced
Digital Image Processing Group and its Earth Resources Lai.\oratory (ERL), the Environ-
mental Research Institute of Michigan (ERIM), and NASA/GSFZ. The Digital Image
Processing Group assumed overall study responsibility and provided design and execution
of the data processing required to generate the simulated Thematic Mapper data sets;
the Earth Resources Laboratory performed the multispectral classification of data
sets: ERIM provided consultation on the overall study design. Both ERIM and ERL
independently contributed their assessment of the performance of the several simulated
Thematic Mapper configurations, based on analysis of the classification results
obtained. NASA/GSFC provided review, guidance, and the electronic and optical speci-
fications for the Thematic Mapper configurations to be simulated.

At the start of this effort, meetings were held to review the study plan. All parties
involved found the plan acceptable and the study proceeded to address the problem of
data set selection.

It was originally contemplated that three multispectral aircraft data sets would be
employed, with the ERIM M-7 Scanner identified as a likely source of data because of
its spectral responses, resolution (2-3 mrad), and channel-to-channel registration.
During the early discussions, it was discovered that the M-7 data, as normally provided,
is on a sampling lattice of approximately 10 meters along-scan and along-track. This
sampling interval corresponds to the nominal resolution (5 mrad) of the M-7 thermal
band for an aircraft altitude of 5,000 feet. The study participants recognized that
data sampled this coarsely was inadequate for use in simulation of a system whose
resolution was 30 meters. Therefore it was necessary to investigate other sources of
the required aircraft data sets, seeking an available data set with a smaller sampling
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interval which still provided a good spectral match with the bands of the Thematic
Mapper and registered spectral channels.	 The various sources of aircraft scanner
data were contacted (e.g., LARSI NASA/JSC) in an effort to locate a satisfactory data
set.	 However, the combined resolution and spectral requirements could not be met by

r." any available multispectral data set. 	 For this reason, arrangements were made for
ERIM to reprocess an analog M-7 scanner data tape to provide a data set sampled on a
3-meter sampling lattice for use in this study. 	 This sampling interval equals the

 resolution of the M-7 visible bands from a 5,000 foot altitude.

Furthermore, in addition to the problems encountered in obtaining p data set with the
required spectral and resolution characteristics, it proved impossible to locate data
sets with a satisfactory distribution of crops, field sizes, and field shapes, and
also with reliable, consistent ground truth. 	 It was therefore decided to generate a

'-' synthetic multispectral data set for use in this study. 	 This data set was constructed
using six single-subclass classes whose statistics (means and covariance matrices)
were selected from the statistical characterizations of the classes and subclasses in
the aircraft image.	 Selection of these well defined classes, with the resulting

.` idealized statistical class characterization, was consistent with the study objective
t of comparative sensor and ground processing system evaluation, rather than with an

objective of classifier performance evaluation. 	 Within this data set, the distribution
,s• of classes, field sizes, and field shape factors (ratio of length to width.) were

specified to provide an extensive data base which would support a thorough statistical
analysis of the dependence of classification accuracy on sensor and processing system
design choices.	 The comparative multispectral classification performance on simulated
Thematic Mapper data derived from this synthetic data set, validated where possible
againi:;t the performance on simulated Thematic Mapper data derived from the aircraft
data 'set, would then provide a complete and convincing presentation of the effects of
these design choices.

Details of the simulation processing are given in Sections 2 through 4 of this report.
The classification results and the evaluation by ERL of the implications of results
fir the various system configurations are given in Section 5, and the conclusions
derived from the study are summarized in Section 6. 	 ERIM's evaluation of the study
results is presented in Appendix A.
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Section 2

ca

'^':

DATA SET DESCRIPTION

2.1 AIRCRAFT DA-71A SET

The Aircraft Data Set employed in this study contained data gathered as part of the
Corn Blight Watch Experiment, specifically data segment 204, 13 August 1971, 10:30
EST. The entire data set is approximately 1.6 km by 19.2 km. The data was taken
with the 12 band ERIM M-7 multispectral scanner whose spectral response is given in
Table.2.1-1, along with the RFOV associated with these channels for a . 5,000 foot
aircraft altitude.

Because this study required simulation of the 30-meter resolution of the Thematic
Sensor, modeling the aperture function, it was necessary to have the data set sampled
at an interval considerably smaller than 30 meters so that a precise model of the
aperture function could be employed. Therefore, the aircraft data set was digitized
at sampling intervals of 3.0 meters along scan and 2.74 meters along track. Each
line of the data set contained 416 samples, and 2,300 lines were used for simulation
processing. The FOV of the data set extended approximately +15 0 to -45 0 from nadir,
with nadir located at roughly pixel 323. The data set had been scan angle corrected
by means of multiplicative coefficients derived from a subsample of this data. This
provided a radiometric equalization along the scan. The channels were in channel-to-
channel registration. Absolute radiometric calibration was provided for all channels
except 10 and 11.

Ground truth data, in the form of annotated photography of the data segment, together
with tables relating to the annotation to specific crops and planting information,
was obtained. Crops represented in this segment include corn, soybeans, , wheat,
pasture, woods, and oats. Portions of the segment are also idle farmland, set aside
and non-farm areas. This ground truth contained some apparent inconsistencies with
respect to visual inspection of the aircraft data set, and considerable effort was
required to deal with this problem.

A photographic presentation of the region employed is provided in Figure 2.1-1.

2.2 SYNTHETIC DATA SET

A synthetic 6-channel multispectral data set was created especially for use in this
study, constructed in a manner which provided a desirable distribution of field sizes
and shapes. The purpose of using this data set was to augment the data available for
the subsequent parametric analysis of multispectral classification results by providing
a data set with a more extensive distribution of field shapes and sizes than was
available in any of the aircraft data sets considered and which was supported by a
reliable and consistent set of ground truth data. Since this study was concerned
with the relative performance of sensor and ground processing systems, and not with
evaluating classification techniques, the improved absolute classification accuracy

L._._	
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Table 2.1-1. M-7 Scanner Characteristics

Footprint
uata Waveband Along Along
Channel 4m Scan Track

J 0.46 - 0.49 3.8m 3,1m

4 0.48 - 0.52 3.8m 3.1m

5 0,50 - 0.54 3.8m 3.1mVisible
6 0,53 - 0,57 3.8m 3°1m

12 0,55 - 0,60 3.8m 3.1m

8 0,58 - 0.64 3,8m 3.1m

2 0,62 - 0.70 3.8m 3.1m

|	 l  0.67 - 0.94 3,8m 3.1nu

/ 1.8	 - 1.4 3.8m 7.6m

Near IR	 0 1.5	 - 1.8 3.8m 7.6m

|	 ll 2,0	 - 2.6 3.8m 7.6m

Thermal	 18

'

r

'
`

'

9,3	 -

`

^

11.7

'

5.0m

'
'

5.0m
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TM BANG 1	 TM BAND 2	 TM BAND 3

0 Figure 2.1-1. Aircraft Data Set (Sheet 1 of 2)
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TM BAND 4	 TM BRNC ► 5	 TM RRND 6

Figure 2.1-1. Aircraft Data Set (Sheet 2 of 2)
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which might result from the idealized spectral crop characterization implicit in a
synthetic data set was judged to be of less importance than the need to have an
adequate data base for a thorough statistical analysis of the relative performance of
the sensor and ground processing systems as measured by classification results.	 This
data set was generated by a computer program (SERID) which had been previously created
to provide test data for use in the development and testing of classification software
at the Johnson Space Center. 	 It consisted of 1,650 lines of 442 samples, on the same

k 3.0 meter by 2.74 meter sampling lattice as the aircraft data set. 	 This pattern
provided field sizes of 2.5, 5, 10, and 20 acres, with field form relations of 1 x
1, 1 x 2, and I x 4.	 Six classes were provided:	 trees, corn, pasture, winter wheat,
soybeans, and soil.	 The spectral signatures for these classes were obtained from the
covariance matrix for these classes derived from the aircraft data set.

A photographic presentation of this data set is provided in Figure 3.2-2.

4
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Section 3

c^	 PREPROCESSING OF DATA SETS

The differing physical characteristics of the synthetic and aircraft data sets
employed necessitated separate preprocessing to provide a common input format for
the TM simulation processing. This preprocessing included application of a radio-

``,	 metric transformation which modeled the atmospheric effects introduced in transit
from the aircraft altitude to the spacecraft altitude, and in the case of the
aircraft data set, compensation for panoramic distortion.

t ^-

3,1 - AIRCRAFT DATA SET PREPROCESSING

The scan angle dependent radiometric effects in this data were compensated as part
of the origiiaal preparation of the data set. However, the panoramic distortion
associated with wide-angle, aircraft altitude scanners, remained. The preprocessing
applied to this data set is shown schematically in Figure 3.1-1.

The first step in preprocessing was decommutation of the data in the aircraft data
set for the six spectral channels to be used to simulate Thematic Mapper data.
This produced six complete spectral images of 2,300 lines, with 416 samples per
line, and with the 9-bit data field for each sample. Each of these images was
then histogrammed to determine its dynamic range, so that an appropriate linears	
radiometric transformation could be specified to transform the 9-bit samples into
an 8-bit field. (Since the data from the Thematic Mapper is to be quantized to 8-
bits, and since 8-bit data was more suitable for use in the simulation and classifi-
cation software, it was decided to perform this conversion as part of the pre-
processing.)

Table 3.1-1 provides a tabulation of the dynamic range of the 9-bit data and the
resulting 8-bit data, together with the radiometric transformation which was used
to model atmospheric effects. This latter will be discussed subsequently. After
conversion to 8-bit samples, the resulting six spectral images of the aircraft
data set were processed into the LARS-II format for use as a control data set in
the classification evaluation of the simulated Thematic Mapper data sets.

For this aircraft data, the next step in preprocessing was the application of an
along-scan geometric compensation for panoramic distortion.. This compensation,
whose geometry is diagrammed in Figure 3.1-2, consisted of an along-scan resampling
using the nearest neighbor technique, to produce a spectral image whose along-scan
sampling interval, in linear units, was equal to the nadir sampling interval of
the aircraft data, 3 meters. While the original intent had been to use only a
portion of the aircraft data whose centerline was the nadir track, the asymmetry
of the aircraft data set with respect to the nadir track made it necessary to
employ portions of the data set with more severe panoramic distortion than anticipated,
and required compensation of the data before simulation processing could be performed.
In conjunction with this resampling, the samples in each line were inverted through

3-1
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Table 3.1-1. Aircraft Data Set Quantization Conversion and
Atmospheric Transformation

9 Bit M7 M7 Data
M7 TM Output (C9 ) Scaled to C8 = Ai + Bi C9 CS = A! + B'1 C$

Bytes (C8) _.
TM M-7

Band Band Min	 Max Min	 Max A. B. A! B! Response Response

3 1 0	 277 20	 240 6.0246 0.6584 -10.5551 0.8290 0.45-0.52µm 0.46-0.49µm

12 2 38	 269 20	 240 13.2721 0.4536 20.9833 0.4763 0.52-0.6Cj" 0.55-0.60µm

2 3 25	 269 20	 240 13.0146 0.4387 14.2509 0.4866 0.63-0.691im 0.62-0.70µm

1 4 0	 241 20	 240 9.0401 1.0194 -13.2940 1.1167 0.76-0.90µm 0.67-0.94µm

I

I

9 5 0	 241 20	 240 14.3860 0.8549 -5.1213 0.9754 1.55-1.75µm 1.5-1.4m

10 6 0	 198 20	 240 59.1102 0.4029 51.8580 •0.3626 10.40-12.5*m 9.3-11.7µm

w
w

nd

A
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the nadir so that the digital data would have the conventional relationship with
the ground truth imagery, with the first sample of the first line corresponding to
the upper left-hand corner of the imagery.

To model the radiometric effects of the atmosphere which will modify the radiance
sensed at the spacecraft altitude, a radiometric transformation was applied to
each band of the compensated aircraft data. For TM bands 1 through 5, the transfor-
mations were developed by using the calibration data provided for the aircraft
data set to determine the radiance sensed by the aircraft in absolute units, and
using an atmospheric simulation program, (RESET, developed at JSC) to establish
the relationship between absolute radiance at aircraft altitude and the corresponding
absolute radiance at spacecraft altitude. This latter relationship was discovered
to be essentially linear. Clear atmospheric conditions interpreted as visibility
of approximately 23 km, were assumed throughout, since the aircraft data set was
taken under these conditons. This information, together with specification of the
Thematic Mapper°s dynamic range, was sufficient to define the transformation
between the 9-bit aircraft data samples and the 8-bit samples at the altitude of
the Thematic Mapper. The coefficients of this transformation, modified to include
the effect of the initial 9-bit to 8-bit conversion, are presented in Table 3.1-1.

For the emissive channel of the aircraft data set, which was used to simulate
band 6 of the Thematic Mapper, no calibration data was available, since this
channel of the M7-scanner is not calibrated to absolute units. It was therefore
necessary to make some reasonable assumptions regarding the temperature of sensed
ground area for the known scene content (mainly corn) at this time of year (mid-
August), and to assume a reasonable range of temperatures (260 0K to 320 0K) corres-
ponding to the dynamic range of the digital data in this channel. By this means,
a rough calibration relationship was established for the emissive channel, and a
linear radiometric transformation was determined between the 9-bit aircraft samples
and the 8-bit samples at the Thematic Mapper altitude. This transformation, again
including the effect of the initial 9-bit to 8-bit conversion, is presented in
Table 3,1-1.

A detailed discussion of the development of these atmospheric transformations is
contained in Reference 1:

3.2 SYNTHETIC DATA SET PREPROCESSING

Preprocessing for the synthetic aircraft data set was simplified by the facts that
it consisted of 8-bit samples and, by construction, did not suffer from panoramic
distortion. As part of the preprocessing, the data in this set was rotated 50
counterclockwise with respect to its sampling lattice, so that the field boundaries,
in the set, which were required by the synthesizing program to be parallel and
perpendicular to the sampling lattice, would no longer be so. The preprocessing
applied to this data set is shown schematically in Figure 3.2-1.

For the synthetic data set, the first step in preprocessing was a reformatting
into separate spectral images. Since the data set produced by the SERID program
was in a modified LARS-II format which was incompatible with the classification
software, these separate spectral images were then reformatted into a conventional
LARS-II format for use as a control data set in the multispectral classification.

0
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Because the statistical characterization used to generate the synthetic data set
had been derived from the aircraft data set, the atmospheric transformation to be
applied to it was in principal identical to that used for the aircraft data set.
However, in order to produce 8-bit samples for the synthetic data set, the synthesized
samples had been reduced in magnitude by a factor of two before being recorded in
the data set. The atmospheric transformation was therefore modified to compensate
for this scaling. The transformations employed for the spectral bands are given
in Table 3.2-1.

The final preprocessing step was the countercl.-)ckwise rotation of the data set by
o to destroy the parallelism of the field bou5	 ndaries with the sample and line

directions of the data set. The rotation was performed by nearest neighbor resampling.
The radiometrically transformed and rotated data set is shown in Figure 3.2-2.

t
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i
Table 3.2-1. Synthetic Data Set Atmospheric Transformation

Synthetic
Data Limits of C'

8
= Ai + B. C9 C8 = Ai + Bi C8

Set TM
Channel Band Min Max A.	 B. A! B!

i	 1

1 1 45 12.9 6.0246	 0.6584 6.0246 1.3168

2 49' 143 -13.2721	 0.4536 13.2721 9.9720

3 3 22 117 13.0146	 0.4387 13.0146 0.8774

4 4 63 251 9.0401	 1.0194 -62.06664 1.2238

5 5 16 155 14.3860	 0.8549 -17.3568 1.7098

6 6 Ill 205 59.1120	 0.4029 59.1102 0.8058

r`
(N. B. Data in synthetic data set is reduced by factor of ,2 with respect to ERIM radiances.
Therefore, Bi correction coefficients should be multiplied by 2.)

t`

d
Cam4

b

m
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Section 4

THEMATIC MAPPER DATA SET SIMULATION
kay

4.1 SIMULATION PROCESSING

The data sets produced as a result of the preprocessing described in Section 3
provided the input for the simulation of Thematic Mapper data. The processing flow
for a single spectral image is shown in Figure 4.1-1.	 In this flow, the input
and output data sets contain 8-bit image samples; the intermediate data sets and
the simulation programs employ floating point sample representation to maintain
the precision of the overall simulation. Three configurations of the Thematic
Mapper were simulated in this study. Unique aperture function models were used
for each spectral band, but were the same set for each configuration. The noise
models were also unique for each band , but identical across the three configurations.
The configurations differed in the presampling filter and sampling characteristics
modeled. These are summarized in Table 4.1-1. Details of the simulation are
discussed subsequently.

4.1.1 Aperture Convolution

Processing to simulate the scanning performed by the Thematic Mapper aperture was
performed in the Fourier domain. The need to model signal dependent noise in the
system made it desirable to perform the rest of the simulation processing in the
spatial domain.

To simulate the optical effects of the sensor aperture, the aperture model accepted
an operator of linear dimension three times that of the nominal 30 meter (120
meters in the case of the thermal band) instantaneous field of view. This permitted
the use of weighting coefficients to describe an imperfect IFOV. The use of such
an extended IFOV representation, with a non-uniform spatial characterization, and
the overlap of such representations vertically down the image, made Fourier domain
processing desirable. For each scan of the Thematic Mapper aperature, the processing
which implemented simulated scanning convolved along-scan cross-sections of the
aperture function with the corresponding lines of the aircraft scanner data, and
summed the corresponding samples of each of these convolved aircraft scanner lines
to produce an aperture convolved Thematic Mapper line, sampled along-scan at the
same interval as the original aircraft data (see Figure 4.1-2). This computation
was performed by Fourier transforming the required aircraft scanner lines, multiplying
each of these by the Fourier transform of the corresponding "slice" of the aperture
function, applying an operator to combine the corresponding cross-scan samples
into samples of the Fourier transform of the aperture convolved Thematic Mapper
line, and taking the inverse transform to produce the spatial representation of
the line.

Along-scan and cross-scan cross-sections of the aperture function employed for
Thematic Mapper band 1 are given in Figure 4.1-3. Only half of the function is
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Table 4.1-1.	 Thematic Mapper Configurations Simulated

' Filter
TM Nominal Dwell and

Configuration	 Band IFOV Time Cutoff Samples

1	 1 30 m 9.226µs Goldberg Sample-and-Hold
54.19 kliz 1.0 Samples/IFOV

2 30 m 9.226µs Goldberg Sample-and-Hold
54.19 kliz 1.0 Samples/IFOV

Mfr 3 30 m 9.226µs Goldberg Sample-and-Hold
54.19 kliz 1.0 Samples/IFOV

4 30 m 9.226µs Goldberg Sample-and-Hold
54.19 kliz 1.0 Samples/IFOV

a

5 30 m 9.226µs Goldberg Sample-and-HoldF k
rte; 54.19 khz 1.0 Samples/IFOV

6 120 m 39.49µs Goldberg Sample-and-Hold
12.66 khz 1.0 Samples/IFOV

a

2	 1 30 m 9.226µs Goldberg Sample-and-Hold
i 54.19 kliz 1.4 Samples/IFOV

2 30 m 9.226µs Goldberg Sample-and-Hold
54.19 khz 1.4 Samples/IFOV

3 30 m 9.226µs Goldberg Sample-and-Hold
54.19 kliz 1.4 Samples/IFOV

4 30 m 9.226µs Goldberg Sample-and-Hold
. 54.19 kliz 1.4 Samples/IFOV,

5 30 m 9.226µs'' Goldberg Sample-and-Hold
54.19 khz 1.4 Samples/IFOV

6 120 m 39.49µs Goldberg Sample-and-Hold
k , 12.66 khz 1.4 Samples/IFOV

4-3
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Table 4.1-1. Thematic Dapper Configurations Simulated (Cont.)

Ank

Filter
TM	 Nominal Dwell	 and

Configuration Band IFOV Time Cutoff Samples

3 1 30 m 17.29µs None Integrate-and-Dump	 a
1.0 Samples/IFOV
Integration Time =
13.5 µ s

2 30 m 17.29µs None
d

Integrate-and-dump
1.0 Samples/IFOV
Integration Time =
13.5 Ps

3 30 m 17.29µs None Integrate-and-Dump,
1.0 Samples/IFOV
Integration Time
13.5µs

304 m 17.29µs None -DumpIntegrate-and
1.0 Samples/IFOV
Integration Time =
13.5 µs

5 30 m 17.29µs None Integrate-and-Dump,	 4

1.0 Samples/IFOV
Integration Time =
13.5 µs

6 120 m •69.07µS Goldberg Sample-and-Hold
7.24 khz 1.0 Samples/IFOV

4-4
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displayed, since the aperture function possesses inversion symmetry through its
centroid and reflection symmetry about the along-scan and cross-scan directions.

aa 0re

V""",	 4.1.2 Noise Generation and Insertion

The noise models appropriate to this sensor simulation can conveniently be divided
into two types: signal dependent noise and signal independent noise. Signal
dependent noise (photon limited noise) is encountered in photomultiplier tubes and
the advanced solid state detectors such a g will be employed in the Thematic Mapper
and can be modeled as a function of the square root of scene radiance. Signal
independent noise, which arises from various sources, is characterized by a power
spectrum which typically exhibits three regions:

a. a low-frequency region, where the power spectrum exhibits 1/f variation
with frequency

b. a mid-frequency range where the power spectrum is essentially flat

C. a high-frequency region, where the noise power spectrum rapidly increases
in magnitude, typically as a linear and quadratic function of frequency.

To minimize the cost of simulating noise for the processing, a signal independent
noise population, tailored to the noise characteristics and levels specified for
the Thematic Mapper, was generated and stored for use in the simulation. Samples
drawn from this population in a random manner were the immediate source of noise
values which were added to the signal produced by convolving the sensor aperture
with the trans-atmospheric, aircraft scale representation of the image being
processed.

The noise population was generated by constructing a set of unit magnitude, random
phase samples in the Fourier domain, shaping t^e power spectrum of these samples
with a weighting function of the form, in bits /hertz,

G(f) = K1 (1/f) + K2 + K 3 f + K4f2)

and then inverse Fourier transforming the samples into the time domain. The values
of the K. for the various Thematic Mapper bands are given in Table 4.1-2.

Signal dependent noise was modeled by adding to each sensor convolved sample a
noise sample obtained by weighting a noise sample drawn from a Gaussian population
by the square root of the signal sample value, expressed as a percentage of the
peak-to-peak signal. For this noise generation procedure a pre-stored population
of Gaussian noise samples was used.

Table 4.1-3 presents the parameters employed to model this signal-dependent noise.



Table 4.1-2.	 Power Spectrum Weighting Constants

Thematic
Mapper
Band

K 
	 K2 K3 K4

' 1 0.0	 2.080 x 10-5 3.289 x
10_10,

2.603 x 10-14

,
2 0.0	 1.423 x IO_

6
2.247 x 10

-11
1.779 x

10-15

E

3 0.0	 3.107 x 10_
6

4.906 x 10
-11

3.884 x
10-15

4 0.0	 4.234 x 10-7 6.687 x 10 
12

5.293 x
10-16

5 0.0	 1.770 x 10
-5

1.845 x 10
-10

3.430 x
10-14

6*	 2.032 x 10_
2
	4.064 x 10

-5
0.0 0.0

.'*
G(f) = f1 + K2 + K3 	 + K

4
 f2bits2/hertz

*Noise = 0 for f < 16 hertz

F'	 4

s
t



p
Table 4.1-3.	 Signal Dependent; Noise Parameters

Thematic
Mapper
Band (Bits)

1 1.95
^

20
v

220

2 0.99 20 220

3 1.20 20 220

4 0.75 20 220

r, 5 1.26 20 220

6 0.00 -- --

1y= Signal sample value

o = Minimum signal value

Y#^ dt^/ = Peak-to-peak signal

n = Noise sample value

G(0) = Sample of Gaussian population with variance 02

rip - 00
	

i

n = G(0)  bits

n



p	 4.1.3 Filtering

Two of the Thematic Mapper configurations simulated in this study employed a pre-
samj"ling filter. This was a Goldberg filter, whose poles are at

s = -0.8198, -0600 ± jl.028

The analog transfer function for this filter

H(s) =	
1.1615

(s + 0.8198) (s + 0.600 + j 1.028) (s + 0.600 - j 1.028)

	

Y-	 was transformed, using the bilinear z transform, into a digital filter

2

H(a) = (1 + Z-1 ) E H  (Z)
j=1

	

-	 where

Alj(1+Z-1) + A2j(1-Z-1)
Hj (Z) _	 —

A 
3 Z-2 + 

A 4 Z-1 + 1

For this parallel decomposition of the filter transfer function, the simulation
performed a calculation of the form:

0!(k) = A lj Ci(k) + i(k-1)^ + A2j i(k) - i(k-1) - A3j Oĵ (k-•2) - A4j 0! (k-1)
C	 J

N
0(k) _	 0^ (k) + O. (k-1)

where

0(k) is the kth output sample

01(k) is the kth output sample from the jth filter section

i(h) is the kth input sample

Alj are the filter coefficients

N is the number of filter sections in the parallel decomposition (2).

A frequency magnitude plot of the digital filter employed for Thematic Mapper bands 1
through 5 for configurations 1 and 2 is given in Figure 4.1-4.
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4.1.4 Sampling

To produce simulated Thematic Mapper imagery with the desired along-scan sampling
characteristics (see Table 4.1-1), the simulated scan lines were processed through a
sampling routine. For the "sample and hold,''" this sampling was done by selecting
samples at the appropriate interval from the output signal of the filter. For the
"integrate and dump," the sampling was performed by averaging over the integration
time the oversampled discrete values at the output of the noise simulation step.

4.2 RESAMPLING

In order to evaluate the effects which different resampling procedures for digital
imagery may have on remotely sensed data, three possible resampling procedures were
employed to transform the simulated Thematic Mapper data onto a sampling lattice
which differed from the original sampling lattice by a small non-integral translation
(15 meters in each axis), and a small clockwise rotation of 1.0°. The three resampling
procedures employed were nearest neighbor assignment, cubic convolution and point
spread function compensation. The resampled imagery was produced at 1 sample/IFOV
both along-scan and cross-scan, except for band 6, where the resampling produced
resampled imagery at 4 samples/ IFOV in each direction in order to provide band 6
samples on a lattice congruent to that of the other 5 bands. After resampling, the
six bands of each of the nine resampled simulated Thematic Mapper datas sets derived
from each input data set, aircraft and synthetic, were formatted into LARS-I?' for
evaluation by multispectral classification.

4.2.1 Nearest Neighbor Assignment

As the name implies, this resampling technique involves establishing the geometric
relationship between the input and output sampling lattices, and then assigning as
values for the samples of the output lattice the values of the closest input samples
This procedure is diagrammed in Figure 4. 2-1.

4.2.2 Cubic Convolution

Cubic convolution is a four-point interpolating function developed to approximate the
ideal resampling function, sinc(x). This function, together with an outline of its
use for interpolating digital imagery, is presented in Figure 4.2-2.

For each output value, the one-dimensional algorithm is used to interpolate along the
four nearest horizontal input lines to points defined by a vertical line through the
output point (the points marked "x" in Figure 4.2-2). The one-dimensional algorithm
is„applied, again along this vertical line to produce the required output value.

4.2.3 Point Spread Function Compensation

Point spread function compensation is implemented using a bivariate, anisotropic
Gaussian approximation to characterime lthe point spread function of the Thematic
Mapper sensor system and a polynomial approximation to the Thematic Mapper data in a
neighborhood of the desired resampled point. The development of this resampling
procedure is presented in Reference 2. The process is outlined in Figure 4.2-3.
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(1)
In this resampling procedure, the compensated, resampled radiance value, i, is given
by

2	 2 2

i = i(1,m) - °`2 oot2 1(l,m ) + °`2
	 (1) 

^of

where au and a are the widths of the point spread function (cross-track and
along-track, respectively) and i(l,m) is a noise-smoothed polynomial approximation to
the original Thematic Mapper data in the neighborhood of (l,m). The function i(l,m)
is given by

A	 4	 4
i(l,m) _ L L 2ij (1-1p ) 1 (m-mp)J

i=0 j=0

where (1 ,m ) is the center of the approximation neighborhood and is obtained by a
least sgRargs fit to a 7x7 array of Th matic Mapper samples centered on (1 ,m ).
The Laplacian (D« )and biharmonic' (0 x ) operators are simple functions p p

of the a...

For this resampling procedure, it was necessary to generate the required Gaussian
approximation to the Thematic Mapper point spread function. In the configurations
employed in this study, there were twelve unique point spread functions, corresponding
to the six aperture functions of the six spectral bands and the two different samp iag
schemes. The parameters of the twelve Gaussians were obtained by performing a least-
squares fit of a Gaussian function to the impulse response of the Thematic Mapper
configurations. The impulse response was obtained by processing through the simulation
software a unit impulse in a field of zeros constructed on the sampling lattice of
the aircraft data set. The scanning and sampling specifications in the simulation
were set to produce an output image sampled on the sampling lattice of the aircraft
data set, thus producing a finely sampled representation of the impulse response.
The parameters of the resulting Gaussians are presented in Table 4.2-1. Typical
impulse response cross-sections (unnormalized) are given in Figures 4.2-4 and 4.2-5.

4.3 SIMULATED THEMATIC MAPPER DATA SETS

Figures 4 . 3-2 through 4.3-7 are photographic recordings of the 18 simulated Thematic
Mapper data sets which were produced and submitted for multispectral classification.
Figure 4 . 3-1 provides identification of the data presented in these figures. Only
five of the six Thematic Mapper bands are included here, since the 120-meter resolution
of band 6, combined with the narrowness of aircraft image employed in the simulation
(approximately l km), resulted in-a simulated image only 8 pixels wide before resam-
pling. After resampling, this width effectively ranged from 2 to 8 120 meter pixels,
depending on which resampling technique was employed. For such a narrow image, field
definition was impossible, and it was decided that including this data in the classi-
fication evaluation would only contribute confusion to the classification results_.
The classification evaluation thus was performed using only bands l through 5.

It should be noted that each of the individual Thematic Mapper images had to be
separately adjusted radiometrically in order to produce Figures 4.3-2 through 4.3-7,
so that visual comparison of the images in these figures can be misleading. They are
provided here only to give an indication of the nature of the data employed in the
classifications.
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Table 4.2-1. Gaussian Approximation to Point Spread Function

Gaussian Parameters
Band Configuration cl o

1 1 0.4536 13.15 meters

3 0.7481 12.91 meters

2 1 0.4613 13.39 meters

3 0.7617 13.15 meters

3 1 0.4690 13.65 meters

3 0.7710 13.37 meters

4 1 0..4905 14.34 meters

3 0.8013 13.98 meters

5 1 0.4517 12.85 meters

3 0.6955 12.51 meters

6 1 0.8776 52.64 meters

3 0.8776 52.64 meters
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Band 4	 Band 5

A = Nearest Neighbor Resampling
B = Cubic Convolution Resampling
C = Point Spread Function Compensation Resampling

Figure 4.3-1 Data Key to Figures 4.3-2 through 4.3-7
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Section 5

CLASSIFICATION PROCESSING AND ANALYSIS OF RESULTS

5.1 CLASSIFICATION PROCESSING

This section describes the procedures and steps used in classifying the various image
data sets. The following terminology is used in this discussion:

a. Aircraft image will refer to the high; resolution aircraft image.

b. Synthetic image will refer to the constructed image containing pseudo-
gaussian data.

C.

	

	 Thematic Mapper (TM) image will refer to the simulated data derived from
either the aircraft or synthetic image.

d. Configuration 1 is the Thematic Mapper design incorporating a presample

I
	 filter and sampled at 1.0 samples/IFOV along the scan.

e. Configuration 2 is the Thematic Mapper design incorporating a presample
filter and sampled at 1.4 samples/IFOV along the scan.

f. Configuration 3 is the Thematic Mapper design employing an "integrate and
dump" sampler.

g. The tables and figures employ the notation NN, CC, and PS for the nearest
neighbor, cubic convolution, and point-spread-function-compensation resam-
pling techniques, respectively.

h. The field shape factor is the length to width radio for a field.

5.1.1 Aircraft Image and Related Thematic Mapper Images

The first step was to identify all the fields which could be found in the displayed
aircraft image, the aerial photograph of the ground area., and the ground truth
listing which accompanied the imagery. At this time various discrepancies among

r	 these three sources were noted and resolved.

The vertices of the fields defined in the aircraft image were transformed into field
vertices in the various Thematic Mapper images. These 'became the vertices of the
Entire fields in these images. Then, vertices were found which identified field
center fields in all images. (Here a field center field is defined as a field con-
taining only field center pixels, where a field center.,pixel is a pixel which lies
completely inside the boundary of the defined field.) These vertices became the
vertices of the Field Center fields.
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Table 5.1-1 shows the number of fields which were identified for each of the ground
truth classes. Except for class corn and possibly trees, there was an insufficient
number of fields to conduct an entirely adequate classification experiment. However,
these were the only fields available in this image.

Approximately half of the field center fields in each class were chosen for training
the classifier, with remaining fields being held as independent test fields. The
training fields for each class containing more than one training field were subjected
to a cluster analysis to find subclasses of more or less homogeneous pixels. The
clustering was done using a version of Johnson Space Center's Iterative Clustering
algorithm, a form of Ball and Hall's ISOCLASS algorithm. Reference 4 contains an
extensive discussion of this algorithm. The cluster parameters are defined and their
values listed in Table 5.1-2. These parameters were chosen to give a "nice" cluster
map for each class in the aircraft image. The prime justifications for using them
for the Thematic Mapper images were (1) the cluster results are fairly insensitive to
the cluster parameters, and (2) there was no acceptable unbiased method for choosing
parameters specifically for the Thematic Mapper images. Cluster maps were constructed
and displayed for some of the Thematic Mapper images and found to be acceptable. The
training fields in the classes containing a single training field were not clustered
but were used to define a single subclass for the class.

Statistics (i.e., mean vectors and dispersion matrices) were calculated for each
subclass and the image data within the Entire and Field Center portion of the training
and test fields were classified using a standard quadratic classifier. (The classifier
is the maximum likelihood classifier for gaussian populations with assumed known
parameters.) The complete statistics and classification results are available in the
computer listings of this processing. NASA/GSFC, IBM, and ERIM have copies of these
listings.

5.1.2 Synthetic Image and Associated Thematic Mapper Images

The synthetic image, together with the associated Thematic dapper images, was handled
'	 in much the same way as the aircraft image, with the following exceptions:

a. Two field center fields were chosen for the training for each class.

b. One test field of each size and shape was chosen for each class.

C. The training fields were used to calculate statistics without clustering.
This was done because of the basic synthetic image classified virtually
without _error. Thus, there was no reasonable way to choose clustering
parameters.

Table 5.1-3 . shows the number of fields in each of the ground truth classes which were
present in the synthetic data set.
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Table 5.1-1. Identified Fields in Aircraft and Related Images

Class	 Number Number Number
of Fields of Training of Test
in Image Fields Fields

Corn	 1T 8 9

Trees	 10 5 5

Pasture	 3 2 1

Oats	 1 1 0

Soybeans	 1 1 0

Mixed Grains	 1 1 0

6
t Wheat	 3 2

1

Set Aside	 6 3 3

^ Non-farm	 k 2 2

Total	 46 25 21
ge

I
i
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Table 5.1-2. Definitions and Values of Cluster Parameters for
Clustering Aircraft-derived Thematic Mapper Images

PERCENT Percent of clusters which must be "stable"
i

r/0.8
in all channels to terminate the-initial
sequence of splitting iterations
( between 0.0 and 1.0 ).

SEP Factor multiplied by standard deviation to 1.0
give quantity to be added to and subtracted
from mean as cluster is split in a certain
channel.

STDMAX Threshold standard deviation for 8.0
determining cluster stability in each
channel.

DLMIN Distance threshold for combining of 8.0
clusters during a combine iteration
( not Ll ) .

NMIN2 ^`?uster size criteria used during possible 10
cluster eliminations prior to splitting
or combining clusters.

ITMAX Maximum number of iterations allowed in
the preliminary sequence of splitting
iterations. If stability is not achieved
in PERCENT of the clusters by the ITMAX
initial split iteration, the input
split-combine sequence is invoked anyway. - 3

SPLIT/ Sequence of S and C characters which indicate CC
COMBINE the desired types of iterations following
SEQUENCE the initial splitting iterations.
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Table 5.,1-3. Fields in Synthetic and Related Images

AM Number of
Fields in

Class Image

Corn 42
Trees 44
Pasture 45
Soybeans 40
Wheat 40
Soil 24
Default (pasture) 18

5.2 ANALYSIS OF PERCENT CORRECTLY CLASSIFIED

5.2.1	 Synthetic Image Analysis

Only a few (less than 50) pixels were misclassified within the synthetic image, so no
comparison was attempted between this and the associated simulated Thematic Mapper
images.

y

A logistic analysis was used to evaluate the effects of the TM configuration, resam-
pling technique, field size, field shape, and class on the percent correctly classified.
(A logistic analysis expresses the logarithm of the probability of correct classifi-
cation for a given set of levels of the factors as a linear function of the levels.
A maximum-likelihood chi square test is then used to determine the significant factors.
See Reference 3 for a more extensive discussion of this.) Tables 5.2-1 and 5.2-2
provide, for Entire and Field Center fields respectively, a logistic analysis of
correct versus incorrect classification, showing the degrees-of-freedom (df) and the
chi-squared test statistic (X ) resulting from the analysis. From these tables we
deduce that:

a. The variations among percent correctly classified can be adequately described
by a 1-factor, 2-factor, and 3-factor interactions. This means that it is
not necessary to look for effects of four or more factors (e.g., class, TM
configuration, resampling, shape) on the 'percent correctly classified.

b. The effects (class, size, shape) and (class, TM configuration, resampling)
with all 1-factor and 2-factor subsets of these are sufficient to adequately
describe variations among entire fields.

C. 	 Additional 3-factor effects are required to describe variations'among
percent correctly classified in Field Center fields. These coulcl not be
fully investigated due to the small number of pixels in the field center
fields.

Thus sets of three-way tables showing percent correctly classified as a function of
(class, TM configuration, resampling) and (class, field-size, field-shape) describe
all effects of interest.

1



Table 5.2-1 Analysis of Logits of Correct vs. Incorrect Classification
for Entire Fields of Synthetic Image

Source of variation df X2

1. Total variation of the logits 540 2941.38

2. Effect of 1-factor and 2 -factor interactions 79 2200.95
( assuming that 3-factor and higher effects
are nil )

3. Effect of 3-factor interactions 164 481.58
.` ( assuming that 4-factor and 5-factor

_'- effects are nil )

4. Effect of 4-factor interactions 200 196.52a
( assuming that 5-factor effects are nil )

x

5. Effect of 5-factor interactions 96 62.33

4a. Residual 4-factor and 5-factor interactions 297 258.85
r

Partition.of 2 and 3 by forward selection

2.1	 Effect of (class,size,shape) 35 2004.48

2.2	 Effect or (class,configuration,resampling) 46 467.38
given ( class,size , shape)

2.3	 Effect of (class,configuration,size) 30 85.06 +^

` given (class,configuration,resampling)
r and ( class,size , shape)

2.4	 Residual from above effects 428 384.46

2.4a	 Effect of ( class,configuration,shape) 20 34.32

given above effects

i? 2.4b	 Residual 408 350.14,.
E'

a

* denotes significance at the 0.05 level

'I



Table 5.2-2 Analysis of Logits of Correct vs. Incorr-`ct Classification
for Field Center Fields of Synthetic Image

Source of variation df X2

1. Total variation of the logits 245 1212.6T *

2. Effect of 1-factor and 2-factor interactions 79 849.42 *

( assuming that 3-factor and higher effects
are nil )

3. Effect of 3-factor interactions 164 291.20 *
( assuming that 4-factor and 5-factor
interactions are nil )

4. Effect of 4-factor and 5-factor interactions 297 71.77

Partition of 3

3.1 Effect of (class,size,shape), 131 193.08
(class ,configuration,resampling),
(class,configuration,size), and
(class,configuration,shape)

3.2 Residual 3-factor interactions 33 98.12

0
* denotes significance at the 0.05 level



Tables 5.2-3 to 5.2- 6 contain such sets of three way tables. Figures 5.2-1 to 5.2-
4 contain plots of the data, averaged over classes. From a study of these it is seen
that:

a. Field Center fields are classified more accurately than Entire fields
(average of 73.0 percent versus 94.8 percent correct). This is not surpris-
ing, since the Entire fields contain border pixels.

b. The effects of field size and shape vary over the classes. In general,
larger fields are more correctly classified than smaller fields. Effects
of field shape are not predictable.

C. After averaging over classes, effects of field size are seen very clearly.
Field shapes, however, do not significantly affect these results as is
evident in Figure 5.2-2 where the reduction in classification accuracy
which one would expect as fields become longer and narrower is only minimally
present, and then only for fields smaller than 10 acres. The effect of
field shape is implicitly observed in Figure 5.2-4, where the absence of
data points for the smaller, narrower fields reflects the operational
impossibility of defining Field Center fields for these fields. It is
difficult to explain these classification results intuitively, for the
process of multispectral classification is a data transformation which
depends not only on field shape and field size, but also on the interactions
among the class signatures, and such statistical characteristics as the
degree of normality of the class statistics and the amount of pixel-to-
pixel stochastic dependence. A satisfactory explanation for this unexpected
behavior would require an extensive investigation of the individual pixel
classifications which combine to produce it.

d. The effects of the TM configuration and resampling technique differ from
class to class. After averaging over classes, there is a clear advantage
in using TM configuration 2. For this configuration the cubic convolution
and point spread resampling techniques are slightly better than the nearest
neighbor technique in terms of the average percent classified correctly.
There does not appear to be a significant difference between the cubic
convolution and point spread resampling techniques when using TM configura-
tion 2.

From this analysis of the percent correctly classified in the simulated TM images,
one would recommend TM configuration 2 with either the cubic convolution or point
spread resampling. This recommendation might change if a system were being designed
for monitoring a particular class or set of classes.

5.2.2 Aircraft Image Analysis

For these data sets, the effect:^,,of TM configuration, resampling technique, field
size, field shape, and crop type of classification accuracy were evaluated by means
of a stepwise regression, analysis. The more appropriate logistic analysis which was
used to evaluate the c-l`apsifications of the synthetic image data sets could not be
used because tie available computer programs were unable to deal with the incomplete
complement of field size/shape combinations encountered in these data sets.
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Table 5.2-3 Probabilities of Correct Classification Showing Effects
'
'

of (class,resampling,configuration)
of Synthetic Image Data

for Entire Fields

0 i

a. Class Trees b. Class Pasture 1

x Resampling Resampling
x; Config. NN	 CC	 PS Avg Config. NN CC	 PS Avg

1 83.8	 86.4	 72.3 80.9 1 78.3 75.3	 77.4 77.0
2 81.1	 79.5	 80.6 80.4 2 82.1 83.2	 83.7 83.0
3 80.6	 82.0	 72.3 78.3 3 69.o 68.8	 68.8 68.9

Avg 81.8	 82.7	 75.1 79.9 Avg 76.5 75.8	 76.7 76.3

_q

c. Class Corn d. Class Wheat
r.

Restmpling Resampling
Config. NN	 CC	 PS Avg Config. NN CC	 PS Avg

1 64.9	 48.4	 62.1 57.7 1 73.0 80.7	 68.6 74.1
2 67.5	 62.8	 58.7 63.0 2 74.7 81.4	 76.6 77.5

°- 3 6o.4	 52.9	 58.6 57.3 3 70.0 71.3	 58.3 66.6
Avg 63.5	 54.7	 59.8 59.3 Avg 72.5 77.7	 67.8 72.6

-`s

k, e. Class Soybeans f. Average over Classes

Resampling Reseanpling
Config. NN	 CC	 PS Avg Config. NN CC	 PS Avg

1 71.1	 77.6	 83.3 77.3 1 73.6 73.3	 72.6 73.0
2 66.2	 85.2	 80.8 77.4 2 74.2 78.2	 76.1 76.1
3 80.1	 79.2	 83.1 80.8 3 71.8 70.5	 67.9 70.1

Avg 72.5	 80.7	 82.4 78.5 Avg 73.2 73.8	 72.1 73.0

F

F,
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Table 5.2-4 Probabilities of Correct Classification Showing Effects
of (class , size , shape) for Entire Fields of
Synthetic Image Data

M

c^

a. Class Trees b. C1ass'Pasture

Size ( acres) Size ( acres)
Shape 2.5 5.0 10:0 20 . 0 Avg Shape 2.5 -5.0 10.0 20.0 Avg
1x1 57.1 82.8 76.8 85.7 80.4 lxl 81.3 67.9 72.6 83.4 78.4
1.x2 63.4 67.0 73.0 90.5 80.2 1x2 53.6 62.6 72.5 76.4 71.6
1x4 36.7 7'x.1 74.6 90.5 78.9 1x4 81.5 66.7 79.5 84.4 80.3
Avg 52.5 75..4 74.8 88.9 79.9 Avg 71.5 65.5 74.6 81.0 76.3

c. Class Corn d. Class Wheat

Size ( acres) Size (acres)
Shape 2. 5 5 .0 10.0 20 . 0 Avg Shape 2. 5 5 .0 10.0 20.0 Avg
1x1 41.5 58.1 72.0 61.5 62.0 lxl 45.3 55.2 70.2 77.8 69.7
1x2 55.3 52.2 57.3 64.2 59.8 1x2 63.9 64.6 79.5 78.0 75.2
1x4 45.6 43.0 50.0 65.0 56.2 1x4 44.4 62.1 81.6 76.2 72.8
Avg 48.0 51.0 59.2 63.6 59.3 Avg 51.3 60.8 77.0 77.3 72.6

e. Class"Soybeans f. Average over Classes

Size (acres) Size (aces)
Shape 2.5 5.0 10.0 20.0 Avg Shape 2.5 5.0 10.0 20.0 Avg
1x1 57.6 65.9 69.1 92.3 79.2 1x1 56.9 66.1 72.2 79.6 73.4
lx2 55.6 69.1 79.1 77.7 75.0 1x2 58.3 62.8 71.9 77.2 72.2
1x4 54.3 74.1 81.9 89.8 82.3 1x4 52.0 63.3 72.9 80.3 73.4
Avg 55.9 69..4 76.5 85.8 78.5 Avg 55.5 64.0 72.3 78.9 73.0

e
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Table 5.2-5 Probabilities of Correct Classification Showing Effects
of (class ,resampling , configuration) for Field Center
Fields of Synthetic Image Data

w^

,. a. Class Trees b. Class Pasture

Resampling Resampling
CO3fig. NN	 CC	 PS Avg Config. NN	 CC	 PS Avg

1 99.1 100.0	 92.9 97.3 1 100.0	 98.7 100.0 99.6
2 98.6	 98.6	 96.2 97.8 2 99.6	 99.6	 99.6 99.6
3 94.o	 96.6	 86.8 92.5 3 91.5	 92.4	 93.6 92.5

Avg 97.2	 98".-';	 91.8 95.8 Avg 97.0	 96.9	 97.7 97.2

c. Class Corn d. Class Wheat

Resampling Resampling
Config. NN	 CC	 PS Avg Config. NN	 CC	 PS Avg

1 92.3	 88.8	 88.o 88.o 1 95.4 loo.o	 93.8 96.4
2 96.8	 96.4	 94.7 96.o 2 98.7	 98.7	 98.7 98.7
3 85.9	 80.9	 81.3 82.7 3 92.0	 93.1	 84.3 89.8

Avg 91.5	 86.8	 87.9 88.8 Avg 95.2	 97.6	 92.3 95.0

e. Class Soybeans f. Average over Classes

Resampling Resampling
Config. NN	 CC	 PS Avg Config. NN	 CC	 PS Avg

1 95.1	 98.1 100.0 97.7 1 96.2	 96.0	 94.9 95.7
.'. 2 93.9 100.0 100.0 98.8 2 97.9	 98.9	 98.1 98.3

3 96.9	 97.4	 97.8 97.4 3 .91.9	 91.8	 88.5 90.7
Avg 96.0	 98.5	 99.3 98.0 Avg 95.3	 95.5	 93.8 94.6
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Table 5.2-6 Probabilities of Correct Classification Showing Effects
of (clase,size,shape) for
Synthetic Image Data

Field Center Fields of

a. Class Trees b. C1ass,Pasture

Size (acres) Size ( acres)
Shape 2.5	 5.0	 10.0 20.0 Avg Shape 2.5	 5.0 10.0 20.0 Avg
1x1 88.9	 99.0	 98.5 98.1 97.9 1x1 100.0	 92.5 96.2 98.7 97.6
1x2 ----	 82.8	 94.9 96.9 94.9 1x2 ----	 93.3 94.2 97.1 96.o
1x4 ----	 ----	 77.5 100.0 93.9 1x4 ----	 ---- 97.3 99.4 98.9
Avg 88.9	 91.1	 92.1 98.1 95.8 Avg 100.0	 92.9 95.6 98.2 97.2

c. Class Corn d. Class Wheat

Size (acres) Size (acres)
Shape 2.5	 5.0	 10.0 . 20.0 Avg Shape 2.5	 5.0 10.0 20.0 Avg
lxl 72.7	 93.5	 97.8 91.7 92.5 1x1 77.8	 89.6 96.9 95.3 94.3
1x2 ----	 81.o	 84.o 90.3 87.6 lx2 ----	 93.1 52.9 95.3 84.1
1x4 ----	 ----	 89.9 83.4 85.0 1x4 ----	 ---- 96.5 95.6 95.9
Avg T2.7	 86.9	 90.2 88.8 88.8 Avg 77.8	 91.3 80.1 95.4 95.0

e. Class Soybeans f. Average over Classes

Size (acres) Size (acres)
G ' Shape 2.5	 5.0	 10.0 20.0 Avg Shape 2.5	 .5:0 10.0 20.0 Avg

1x1 100.0	 94.6	 98.4 99.2 98.5 1x1 86.5	 93.9 97.6 96.5 96.o
1x2 ---- 100.0	 96.T 9T.1 9T.,2 1x2 ----	 89.5 92.7 95.4 94.2
1x4 ----	 ----	 96.5 99.7 98.6 1x4 ----	 ---- 92.0 94.9 94.1
Avg 100.0	 97.1	 97.2 98.4 98.0 Avg 86.5	 91.7 94.2 95.6 94.8
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To perform this analysis, each field's percent correctly classified was expressed as
a linear combination of terms associated with the factors mentioned above. A weighted
regression analysis, in which each percent correctly classified observation was
weighted according to the number of classified pixels, was used to determine the
combinations of factors which provided the best explanation of the observed variations.
The term best is to be interpreted in a standard stepwise regression sense for which
factors are entered in the order of their contributation to the variability. The
resulting analysis-of-variance table is given in Table 5.2-7 which gives the degrees-
of-freedom (df), sum-of-squares of the variation, mean-square variation, and the
corresponding F statistic value for each source of variation in the analysis. In
general, the greater the value of the F statistic, the greater the confidence level
that this variation is not the result of a random variation. The sources of variation
given in the table are significant at - the 95 percent confidence level. Note that all
of the factors are identified as important sources of interaction; some of them
interact in.pairs or triplets. Tables 5.2-8 through 5.2-11 show averaged percent
correctly classified for different crop types, field types (i.e., training or test
fields), TM configurations, and resampling techniques. Note that all averages are
weighted averages of the percent correctly classified, with the number of classified
pixels serving as the weight.

Tables 5.2-12 through 5.2-1.9 show the averaged correct classification for combina-
tions of crop types, field sizes, and field shapes. The field sizes and shapes were
quantized to form these tables, with the cut points of the quantization chosen after
study of histograms'of the available sizes and shapes. The field shape factor in
these tables is the length to width ratio for a field. Figures 5.2-5 through 5.2-9
contain graphs which present the same information found in the tables for the data
averaged over classes.

The following observations can be made, based on the data presented in the tables and
graphs:

a. In many cases, the pixels in the Thematic Mapper images were classified
more correctly than those in the original aircraft image. This is true for
both the training and test field data. A possible explanation for this
might be the smoothing imposed on pixel values by convolution with the
Thematic Mapper aperture, although accuracy improvement resulting from this
process would be diminished by the concomitant contamination of field
boundary pixels by the smoothing.

b. The fact that many field size/shape combinations were not av4lable for
experimentation precludes any definite conclusions regarding the effect of
field size and shape. Even after averaging over classes, there is no
indication that larger or more square fields are classified more accurately
than other fields.

C.	 Classification accuracies were very poor in test fields of all crops
except, possibly, corn, trees, and pasture. This was probably caused by
the fact that only a few fields of the other crop types were available for
training, with a resulting inadequate representation of the image data for



E

Table 5.2-7 Analysis of Variance from Stepwise Regression of Percent
F - Correctly Classified for Thematic Mapper Data Derived0 from Aircraft Data Set

Sums of Mean
t Source of Variation df Squires Square F

Ground truth class 3 437489.1 145829.7 432.8

Training field vs. test field 1 14400.6 14400.6 47.7

Shape 1 7998.4 7998.4 23.7

Size x filter (linear) 1 3963.1 3963.1 11.8

Shape x filter-41imear) 1 12184.6 12184.6 36.2

Shape x filter (linear) x resampling (linear)	 1 2056.1 2056.1 6.1

Shape x filter (quadratic) 1 2032.6 2032.6 6.0
r`s Size x filter (quadratic) x 1 1483.3 1483.3 4.4

resampling (linear)

Residual 781 263129.1 336.9

Total 791 744746.0

F	 .

Estimated Standard Deviation - 18.36%
a;

-q

k

T
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Table 5.2-8 Probabilities of Correct Classification Showing Effects
,• of (class ,resampl{ng,configuration) for Field Center

Training Fields of TM Data derived from Aircraft Image

a. Class Corn b. Class Trees and Pasture

Resampling Resampling
Config. NN	 CC	 PS Avg Config.	 NN	 CC	 PS Avg

1 94.2	 92.2	 99.0 95.1 1 85.4	 87.0	 96.0 89.5
2 77.4	 78.9	 90.1 82.1 2 77.4	 76.4	 93.2 82.3
3 79.9	 83.7	 54.9 72.8 3 80.1	 83.0	 89.7 84.3

Avg 83.8	 84.9	 81.3 83.3 Avg 81.0	 82.1	 92.9 85.3
Aircraft Image - 87.6 Aircraft Image - 71.1

C. Class Soybeans and d. Class Set-aside and
Small Grains Non-farm

Resampling Resampling

o+`i Config. NN	 CC 	 PS Avg Config.	 NN	 CC	 PS Avg
1 74.3	 80.2	 92.8 82.4 1 92.1	 92.1 100.0 94.8

Y; 2 80.3	 82.4	 89.5 84.1 2 85.7	 92.3	 96.7 91.6
3 65.0	 72.2	 87.3 74.8 3 78.2	 72.4	 87.4 79.3

'. Avg 73.2	 78.3	 89.9 80.5 Avg 85.4	 85.8	 94.8 88.6
Aircraft Image - 67 .0 Aircraft Image - 68.0

e.'Average over Classes

Resampling
Config. NN	 CC	 PS Avg

1 86.7	 87.8	 96.7 90.4
g	 =: 2 78.7	 79.9	 91.6 83.4

g 3 76.6	 80.1	 76.4 77.7
Avg 80.7	 82.6	 88 .2 83.8

Aircraft Image - 78.2

ORIGINAL PAGE I6
OF, POOR QUAUW

^a
5-19



Table 5.2-9 Probabilities of Correct Classification Showing Effects
of ( class;resampling,configuration) for Field Center
Test Fields of TM Data Derived from Aircraft Image

a. Class Corn b. Class Trees and Pasture

Resampling Resampling
Config. NN	 CC	 PS Avg Config. NN	 CC	 PS Avg

1 80.2	 82.5	 86.8 83.1 1 77.4	 76.1	 87.2 80.2
2 70.5	 69.8	 82.8 74.4 2 66.3	 63.3	 75.5 68.4
3 65.6	 67.8	 30.4 54.6 3 82.8	 80.3	 79.4 80.9

Avg 72.3	 73.5	 68.4 71.4 Avg 78.6	 77.6	 83.7 80.0
Aircraft Image - 76.2 Aircraft Image - 81.5

c. Class Soybeans and d. Class Set-aside and
Small Grains Non-farm

Resampling Resampling
Config. NN	 CC	 PS Avg Config. NN	 CC	 PS Avg

1 0.0	 0.0	 35.9 12.0 1 19.3	 29.4	 14.3 21.0
2 12.8	 5.1	 2.6 6.8 2 15.8	 15.8	 5.0 12.2
3 0.0	 0.0	 0.0 0.0 3 18.4	 21.9	 43.0 27.8

Avg 4.3	 1.7	 12.8 33.3 Avg 17.8	 22.4	 20.4 20.2
Aircraft Image - 11.0 Aircraft Image - 19.5

e. Average over Classes

Resampling
Config. NN	 CC	 PS Avg

1 63.2	 64.9 `'72.8 67.0
2 60.2	 57.9	 67.4 61.8
3 63.4	 62.3	 59.3 61.7

Avg 62.3	 61.7. 66.6 63.5
Aircraft Image - 66.5



r Table 5.2-10 Probabilities of Correct Classification Showing Effects
of ( class,resampling,configuration) for Entire Training
Fields of TM Data Derived from Aircraft Image

. a. Class Corn b. Class Trees and Pasture

Resampling Resampling
Config.	 NN	 CC	 PS Avg Config. NN CC PS Avg

1 86.2	 85.8	 89.6 87.2 1 72.6 73.8 85.4 77,3
2 72.4	 73.4	 86.6 77.5 2 65.2 64.9 83.0 71.0
3 73.8	 73.5	 49.2 65.5 3 68.o 69.6 80.1 72.6

Avg 77.4	 77.6	 75.2 76.7 Avg 68.6 69.4 82.9 73.6
Aircraft Image - 78.6 Aircraft Image - 62.7

*'• c. Class Soybeans and d. Class Set-aside and
Small Grains Non-farm

Resampling Resampling
Config.	 NN	 CC	 PS Avg Config. NN CC PS Avg

. 1 74.6	 64.4	 81.4 T3.4 1 19.3 29.4 14.3 21.0
2 70.2	 67.7	 67.7 68.5 2 15.8 15.8 5,0 12.2
3 50.4	 50.4	 63.2 54.6 3 18.4 21.9 43.0 27.8

Avg 64.5	 60..5	 70.4 65.2 Avg 17.8 22.4 20.4 20.2
_J Aircraft Image - 54.4 Aircraft Image - 19.5

°• e. Average over Classes

Resampling
Config.	 NN	 CC	 PS Avg

` 1 78.5	 77.4	 83.9 79.9
2 68.2	 68.3	 81.3 72.6

F 3 67.7	 67.3	 61.9 65.6
Avg 71.4	 71.0	 75,7 72.7

' Aircraft Image - 68.9

L

p
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Table 5.2-11 Probabilities of Correct Classification Showing Effects
of (class,resampling,configuration) for Entire Test
Fields of TM Data Derived from Aircraft Image

a. Class Corn b. Class Trees and Pasture

Resampling Resampling
Config. NN	 cc	 PS Avg Config. NN	 cc	 PS Avg

1 73.2	 75.5	 76.9 75.2 1 67.8	 68.0	 79. 4 71.7
2 6o.3	 62.1	 73.3 65.2 2 66.3	 63.3	 75.5 68.4
3 6o.3	 61.1	 32-81,51.4 3 73.3	 7o.4	 74.4 72.7

Avg 64.5	 66.1	 6o.8	 ' 63.8 Avg 69.1	 67.2	 76.4 70.9
Aircraft Image - 70.5 Aircraft Image - 72.2

a. Class Soybeans and d. Class Set-aside and
W Small Grains Non-farm

'Resampling Resampling
Config. NN	 cc	 PS Avg Config. NN	 cc	 PS Avg

1 11-T	 T.4	 2T.7 15.6 1 16.0	 26.o	 14.3 18.8
2 12.2	 7.1	 5.1 8.2 2 10.0	 13.o	 6.5 9.8
3 5.5	 4.4	 5.5 5.1 3 15.1	 27.6	 38.7 27.1

Avg 9.9	 6.4	 12.7 9-T Avg 13.7	 22.1	 19.7 18.5
Aircraft Image	 10.5 Aircraft Image	 18.6

e.-Average over Classes

Resampling
Config. NN	 cc	 PS Avg

1 58.5	 6o.5	 65.8 61.6

2 52.7	 52.o	 6o.2 55.0
3 56.5	 57.2	 51.2 54.9

Avg 55.9	 56.5	 59.1 57.2
Aircraft Image	 56.0

Z'A
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Table 5.2-12 Percentage Correctly Classified Showing Effects of
(class,size,shape) for Field Center Training Fields
of TM Data Derived from Aircraft Image

.; a. Class Corn b. Class Trees and Pasture

Size (aircraft pixels) - Size (aircraft pixels)

less 4000	 more less 4000 more
Shape than to	 than than to	 than
Factor 4000 8000	 8000	 Avg Shape 4000 8000	 80o0 Avg

1.5 72.2 88.2	 81.4	 83.1 1.5 79.6 84.7	 ---- 83.7
1.5-4.0 ---- ----	 ----	 ---- 1.5-4.o 62.8 ---- ` 85.3 82.7

4.0 ---- ----	 86.4	 86.4 4.o ---- 80.2	 95.0 92.3
Avg 72.2 88.2	 82.4	 83.3 Avg 68.1 83.5	 88.2 85.3

c. Class Soybeans and d. Class Set-aside and
Small Grains Non-farm

Size (aircraft pixels) Size (aircraft pixels)

less 11000	 more less 4000	 more
Shape than to	 than than to	 than

Factor 4000, "8000 8000	 Avg Shape 4000 8000	 8000 Avg
1.5 93.2 -	 -	 93.2 1.5 100.0 81.1	 - -- 88.9

1.5-4.o ---- ----	 79.1	 79.1 1.5-4.o ---- ----	 ---- ----
4.o ---- ----	 ----	 ---- 4.0 88.0 ----	 ---- 88.o

-- Avg 93.2 ----	 79.1	 80.5 Avg 94.2 ----	 ---- 94.2

e. Average over Classes

Size (aircraft pixels)

less 4000	 more
Shape than to	 than 
Factor 4000 8000	 8000	 Avg

1.5 91.o 85.8	 81.4	 84.4
1.5-4.o 62.8 ----	 82.1	 80.9

4.o -88.o 80.2 '91.4	 89.8
Avg 84.3 85.3	 83.5	 83.9
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Table 5.2-13 Percentage Correctly Classified Showing Effects of
(class , size , shape) for Field Center Training' -Fields
of Aircraft Image0

e-

R^

P,

t,

a. Class Corn b. Class Trees and Pasture

Size ( aircraft pixels) Size ( aircraft pixels)

less 4000 more less 4000 more
Shape than to than Shape than to than

Factor 4000 8000 8000 Avg Factor 4000 8000 8000	 Avg
14 83.1 89.6 87.2 87.8 1.5 43.o 64.7 ----	 61.7

1.5-4.o ---- ---- ---- ---- 1.5-4.o 42.0 ---- 70.2	 67.8
4.o ---- ----- 86.7 86.7 4.o ---- 57.9 89.8	 84.4

Avg 83.1 89.6 87.1 87.6 Avg 42.3 63.0 75.6	 71.1

c. Class Soybeans and d. Class Set-aside and
Small Grains Non-farm

Size ( aircraft pixels) Size ( aircraft pixels)

less 4000 more less 4000 more
Shape than to than Shape than to than
Factor 4000 8000 8000 Avg Factor 4000 8000 8000	 Avg

1.5 84.5 ---- ---- 84.5 1.5 93.7 43.3 ----	 61.4
1.5-4.o ---- ---- 65.4 65.4 1.5-4.0 ---- ---- ----	 ----

4.o ---- ---- ---- ---- 4.o 87.3 ---- ----	 87.3
Avg 84.5 ---- 65.4 67.0 Avg 9o.6 43.3 ----	 68.o

e. Average over Classes

Size ( aircraft pixels)

less 4000 more
Shape than to ' .than -
Factor 4000 8000 8000 Avg

1.5 81.3 74.1 87.2 81.8

1.5-4.o 42. o ---- 67.7 66.6
4.0 56.6 57.9 88.6 83.9

Avg 69.7 72.8 77.2 75.9

a



Table 5.2-14 Percentage Correctly Classified Showing Effects of
(class,size,shape) for Entire Training Fields
of TM Data Derived from Aircraft Image

a. Class Corn b. Class-Trees and Pasture

Size (aircraft pixels) Size (aircraft pixels)

less	 4000	 more less 4000 more
Shape	 than	 to	 than Shape than to than

Factor	 4000	 8000	 8000 Avg Factor 4000 8000 8000 Avg
1.5	 63.2	 82.1	 77.6 78.5 1.5 68.5 69.9 ---- 69.7

1.5-4.o	 ----	 ----	 ---- ---- 1.5-4.0 53.0 ---- 80.0 73.6
4.o	 ----	 ----	 69.4 69.4 4.o ---- 42.9 93.4 76.o

j	 Avg	 63.2	 82.1	 75.3 76.7 Avg 55.9 59.21 84.1 73.6

01

c. Class Soybeans and d. Class Set-aside and
Small Grains Non-farm

Size (aircraft pixels) Size (aircraft pixels)

Tess 4000	 more less 4000	 more
Shape than to	 than 'Shape than to	 than

Factor 4000 8000	 8000	 Avg Factor 4000 8000	 8000	 Avg
1.5 91.8 ----	 ----	 91.8 15 . 74.0 54.1	 ----	 60.9

1.5-4.0 -	 64.3	 64.3 1.5-4.0 ---- ----	 ----	 ----
4.0 ---- ----	 ----	 ---- 4.0 56.6 ----	 ----	 56.6

Avg 91.8 ----	 64.3	 71.5 Avg 65.5 54.1	 ----	 59.8

e. Averi

Size

less
Shape than

Factor 4000

	

1.5	 69.3
1.5-4.0 53.0

	

4.0	 56.6
Avg	 62.2

Lge over Classes

(aircraft pixels)

4000 more
to than

8000 8000 Avg
72.0 77.6 74.o
---- 76.0 71.7
42.9 79.5 70.6
68.4 77.6 72.7
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Table 5.2-15 Percentage Correctly Classified Showing Effects of

(class,size,shape) for Entire Training Fields
of Aircraft image

^aft pixels)

more
than
8000 Avg
79.6 80.2

71.5 71.5
77.5 78.6

a. Class

Siie

less
Shape than
Factor 4000

1.5	 55.6
1.5-4.o ----

4.o 	 ----
Avg	 55.6

Corn

(a.irc:

4000
to

8000
83.7

83.7

b. Class Trees and Pasture

Size (aircraft pixels)

less 4000 more
Shape than to than
Factor 4000 8000 8000 Avg

	

1.5	 37.2 59.4 ---- 56.0
1.5-4.0 38.2 ---- 62.0 57.1

	

4.0	 ---- 48.8 89.8 76.8
Avg	 38.0 55.4 71.o 62.7

c. Class Soybeans and
Small Grains

Size (aircraft pixels)

less 4000 more
Shape than to than
Factor 4000 8000 8000 Avg

1.5	 67.5 ----	 -- 67.5
1.5-4.0 ---- ---- 48.5 48.5

4 .o --- ---- ---- ----
Avg	 67.5 ---- 48.5 54.4

d. Class Set-aside and
Non-farm

Size (aircraft pixels)

less 4000 more
Shape than to than
Factor 4000 80oo 8000 Avg

1.5	 83.8 43.1 ---- 54.1
1.5-4.o ---- ---- ---- ----

4.o 6o.2 ---- ---- 6o.2
Avg	 71.2 ---- ---- 55.5

e. Aver+

Size

less
Shape than
Factor 4000

1.5	 66.9
1.5-4.0 38.2

4.o	 6o.9
Avg	 57.9

age over Classes

(aircraft pixels)

4000 more
to than

8o00 8000 Avg
67.9 79.6 73.0
---- 58.5 55.3
48.8 79.3 72.5
65.8 72.8 68.9
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Table 5.2-16 Percentage Correctly Classified Showing Effects of

AM
(class,size , shape) for Field Center Test Fields
of TM Data Derived from Aircraft Image

a. Class Corn b. Class Trees and Pasture

Size (aircraft pixels) Size (aircraft pixels)

less 4000 more less 4000 more
Shape than to than Shape than to than

Factor 4000 8000 8000	 Avg Factor 4000 8000 8000 Avg
1.5 76.1 74.5 64.0	 70.8 1.5 19.4 ---- ---- 19.4

1.5-4.o 86.3 ---- ----	 86.3 1.5-4.o ---- ---- 86.6 86.6
4.o 65.1 ---- ----	 65.1 4.o ---- ---- 84.5 84.5

Avg 75.1 74.5 64.0	 71.4 Avg 19.4 ---- 86.0 80.0

c. Class Soybeans and
Small Grains

Size (aircraft pixels),.

6.3
less 4000	 more

^. Shape than to	 than
Factor 4000 8000	 8000	 Avg

,q 1.5-4.0 6.3	 6.3
4 .o ---- ----	 ----	 ----

} Avg ---- ----	 6.3	 6.3

e. Average over Classes

Size (aircraft pixels)

less 4000	 more
Shape than to	 than
Factor 4000 8000	 8000	 Avg

1. 5 34.9 45.2	 64.0	 45.2
1.5-4.o 47.1 ----	 49.o	 48.9

+.o 65.1 ----	 46.0	 48. 4
p vg 41.4 45.2	 49.7	 47.6

F;
e

d. Class Set-aside and
Non-farm

Size ( aircraft pixels)

less 4000 more
Shape than to than
Factor 4000 8000 8000 Avg

1.5	 10.0 22.0 ---- 21.2
1.5-4.o 16.9 ---- ---- 16.9

4.o ---- --- ---- -----
Avg	 15.5 22.0 ---- 20.2

ORIGINAL PAGE IS

IM POOR QUAL,ITy
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Table 5.2-17 Percentage Correctly Classified Showing Effects of
AV	 (class,size,shape) for Field Center Test Fields

of Aircraft Image

a. Class Corn b. Class Trees and Pasture

Size (aircraft pixels) Size (aircraft pixels)

less 4000	 more less 4000 more
Shape than to	 than Shape than to than

Factor 4000 8000	 8000	 Avg Factor 4000 8000 8000	 Avg
a;> 1.5 87.5 77.0	 67.6	 74.7 1.5 23.4 ---- ----	 23.4

1.5-4.0 83.4 ----	 ----	 83.4 1.5-4.o ---- ---- 86.o	 86.o
4.0 85.1 ---	 ----	 85.1 4.o ---- ---- 81.8	 81.8

Avg 86.0 77.0	 67.6	 76.2 Avg 23.4 ---- 85.0	 ,81.2

c. Class Soybeans and d. Class Set-aside and
Small Grains Non-farm

Size (aircra'?t pixels) Size (aircraft pixels)

less 4000	 more less 4000 more
- Shape 'than to	 than Shape than to than

'L Factor 4000 8000	 8000	 Avg Factor 4000 8000 8000	 Avg
1.5 ---- ----	 ----	 ---- 1.5 0.0 23.1 ----	 21.9x

1.5-4.o -	 11.o	 11.0 1.5-4.o 11 0 ----	 11.0
.`

Avg ---- ----	 11.0	 11.0 Avg 9.2 23.1 ----	 19.

.. 5

C.
e. Average over Classes

• Size (aircraft pixels)

less 4000	 more
Shape than to	 than

Factor 4000 8000	 8000	 Avgr.'e
1.5 58.3 47.2	 67.6	 56.2

F 1.5-4.o 41.8 ----	 78.8	 75.2
4.o' 85.1 ----	 81.8	 82.3

Avg 57.3 47.2	 77.5	 69.2

t<
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Table 5.2-18 Percentage Correctly Classified Showing Effects of

(class,size,shape) for Entire Test Fields
of TM Data Derived from Aircraft Image

a. Class Corn

Size (aircraft pixels)

less 4000 more
Shape than to than
Factor 4000 8000 8000 Avg

1.5
	

68.6 64.3 58.8 63.7
	1.5-4.0 78.4
	

---- 78.4
4.o
	

55.1
	

---- 55.1
Avg
	

66.o 64.3 58.8 63.8

c. Class Soybeans and
Small Grains

Size (aircraft pixels)

less 4000 more
Shape than to than
Factor 4000 8000 8000 Avg

1.5 ---- ---- ---- ----

	

1.5-4.0 ---- ----	 9.7	 9.7
4.o ---- ---- ---- ----

Avg	 ---- ---- 9.7 9.7

e. Average over Classes

Size (aircraft pixels)

less 4000 more
Shape than to than
Factor 4000 8000 8000 Avg

1.5	 20.0 16.5	 7.1 12.8
1.5-4.0 26.8 ---- 65.9 55.4

4.o . 29.6 ---- 77.2 52.7
Avg	 23.0 16.5 32.7 26.8

b. Class Trees and Pasture

Size (aircraft pixels)

less 4000 more
Shape than to than
Factor 4000 8000 8000 Avg

	

1.5	 18.7 ---- ---- 18.7
1.5-4.o ---- ---- 7, 8.0 78.0

	

4.0	 ---- ---- 771.2 77.2

	

Avg	 18.7 --- 77.8 70.9

d. Class Set-aside and
Non-farm

Size (aircraft pixels)

less 4000 more
Shape than to than
Factor 4000 8000 8000 Avg

	

1.5	 16.7 19.1 ---- 18.8
1.5-4.0 17.3 ---- ---- 17.3

4.o ---- ---- ---- ----

	

Avg	 17.1 19.1 ---- 18.5
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Table 5.2-19 Percentage Correctly Classified Showing Effects of
(class,size,shape) for Entire Test Fields
of Aircraft Image

a. Class Corn b. Class Trees and Pasture

Size (aircraft pixels) Size (aircraft pixels)

less 4000 more less 4000 more
Shape than to than Shape than to than

Factor 4000 8000 8000	 Avg Factor 4000 8000 8000 Avg
1.5 76.o 65.2 62.6	 66.9 1.5 25.5 ---- ---- 25.5

1.5-4.o 82.8 ---- ----	 82.8 1.5-4.o ---- ---- 79.9 79.9
4.0 79.2 ---- ----	 79.2 4.o -=-- ---- 69.6 69.6

Avg 78.7 65.2 62.6	 70.5 Avg 25.5 ---- 76.8 72.2

c. Class Soybeans and
Small Grains

Size (aircraft pixels)

less 4000 more
Shape than to than
Factor 4000 8000 8000 Avg

1 .5 ---- ---- ---- ----
1.5-4.o ---- ---- 10.5 10.5

4.o	 -- ---- ---- ----
Avg	 ---- --- 10.5 10.5

d. Class Set-aside and
Non-farm

Size (aircraft piyPls)

less 4000 more
Shape than to than
Factor 4000 8000 8000 Avg

1.5	 0.7 21.7 ---- 19.7
1.5-4.o 14.4 ---- ---- 14.4

4.o ---- ---- ---- ----
Avg	 10.9 21.7 ---- 18.6

illf	.

e . Aver+

Size

less
Shape than
Factor 4000

	

1.5	 49.1
1.5-4.o 48.3

	

4.0	 79.2
Avg	 55.7

sge over Classes

(aircraft pixels)

4000 more
to than

8000 8000 Avg
41.5 62.6 48.6
---- 68.1 65.5
---- 69.6 72.2
41.5 67.6 6o.2
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d. Even the field center training fields do not exhibit the very high classifi-
cation accuracies usually associated with field centers of training fields.
This is particularly surprising since supervised clustering was used to
develop subclass statistics for classification. Note, in particular, the
poor result for class corn when using TM configuration 3 with point spread
resampling. This is caused by the fact that only one corn cluster was
found when clustering these data. All other factor combinations resulted
in three or more corn clusters. Apparently, statistics from this one
cluster did not adequately represent the corn image data; even some small
training fields were badly misclassified. It was, unfortunately impossible
to pursue a data analysis of this strange clustering behavior, or other
anomalies, within the available study resources.

e. There is an indication that TM configuration 1-CD 	 better classification
results than either of the other two configurations. There is considerable
overlap of the results obtained with configurations 2 and 3, with configura-
tion 2 slightly preferred over configuration 3.

f. With respect to classification accuracy, the point spread function compensa-
tion resampling technique provided better results than cubic convolution,
which in turn provided better results than nearest neighbor assignment.

Based on an analysis of the percent correctly classified for these data sets, the
best configuration for the Thematic Mapper is configuration 1, and any resampling
performed as part of the ground processing should^employ point spread resampling.
The obvious limitation associated with this recommendation is that it is based on a
single acquisition of a single aircraft image with a limited number of fields.

The TM configuration identifies) as best on the basis of classification of the aircraft
image derived TM data sets differs from that identified on the basis of the classifica-
tion of the synthetic image derived TM data sets, while the resampling technique
recommendation is consistent with the previous result. It is worthy of note that two
TM configurations differ only with respect to the along-scan sampling rate, this
being 1.0 samples/ IFOV for configuration 1 and 1.4 samples/IFOV for configuration
2.

5.3 ANALYSIS OF PROPORTION ERRORS

For the purpose of this analysis, it was assumed that proportions should be ,estimated
in the standard manner, using a simple classify and count procedure. The results may
not be indicative of those which would be obtained with other proportion estimators.
For Example, if accurate labels can be attached to some points in the image, the bias
correction procedure used in LACIE is known to produce unbiased proportion errors.
In that case, the variance of the proportion errors is of primary importance. However,
the only adequate way to estimate proportion error variances is to classify multiple
images, and the results of such multiple classifications could not be obtained from
the data available in this study.

The evaluation of proportion errors is based on a well known mathematical model of
the classification process.- To establish this model, assume that there are s cla,wses
of interest in an image and that the image contains t field types (field size and
shape combinations). The following notation is used:
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C(k) = probability that a pixel from field type k and class i is
jiclassified into class j.

NlQ= the number of pixels in field type k and class i.

n^k)=
J	

the number of pixels from field type k classified into class j.

T (k) = L^ N ^k)

T = 1: T(k)
k

(k)	 (k)	 (k)	 (k)n	 = n l 	n.2 ,	 .., n 

N (k) = N (k) , N (k) , ....... N(k)
1	 2	 s

C (k) =	 c (k)'
ij

where ' denotes the transpose of the matrix,

The vector of estimated class proportions, P, is defined as

P = 1 2:n 
(k)	 T(k) n(k)T 

k	 k 
T	

T(k)

Similarly, the vector of actual class proportions, P, is defined as

T (k) N (k)P = L^ T 
T
—(k)

k 

and the errors of the proportion estimates are contained in the vector e
defined as

e = P - P

0

z 1
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Each term in the slum has a physical interpretation. That is

T (k) = the proportion of image pixels present in fields of type k.T 

n (k)T(k) = the estimated proportion vector for fields of type k.

N(k)(k) = the true proportion vector for fields of type k.

T 

To provide a more compact formulation, the following additional notation will be
used:

(k) _ T (k)	 (k) = n 	 - N (k)	 (k)	 (k)	 (k)a	 T  	 p	
T (k) , p
	 - T 

(k) 
and e	 = P	 - P

The vector of proportion errors can then be written as

e =	 a(k) (P (k) - P (k) ) = L a(k)e(k)
is	 k

Since classification is essentially a random process, the statistics of a may be
considered. In particular, the average proportion error, E (e), is easily seen to

t	 be

E(e)	 a(k) E(e (k) ) = L^ a (k) (C (k) - I)P(k)
k	 k

where I is the identity matrix of order s. Other statistics (e.g., variance) are
more complicated since they depend upon the distributional properties of the
pixel classifications and are better studied by replicating the experiment (with
additional images) than by mathematical modeling. These are not considered in
the following analysis. The vector of expected (average) proportion errors
depends upon:

a. The class confusion matrices, C (k) , for the different field types.

b. The true class proportion vectors, P (k) , for each field type, and

C.	 The proportion of pixels, a (k) , in each field type.

It is very likely that the optimal choice of (i^ltefkjnd resa Wing technique
depends upon the anticipated, values of the C	 , a	 , and P
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The effect of Thematic Mapper configuration and resampling technique were studied
by

a. Estimating the confusion matrices C (k) based upon the observed classifi-
cation results,

b. Establishing a senario of class proportions P (k) , and

C.	 Estimating the proportion errors e (k) for each field type,

Since the average proportion error is zero (the total proportion must add to
100 percent) two summary statistics were computed for each k. These are the
average of the absolute values of the errors

1 =	 f e(k)

t	 Ij
J

and the root mean square error defined by

1 
^ e(k) 

1 2 1
1/2

t	
l 

j

Two scenarios were used for the images. The first ask$umed that the classes were
equally likely; that is, that all the elements of P 1 equal (1/t). The second
scenario assumed an image with 50 percent corn. In each class and field type
combinations which were missing in the imagery were assumed to be missing in this
analysis. This was done becaum there was no information available to estimate
the appropriate terms in the C

The following sections contain plots, tables, and discussion of the results
derived from evaluating the proportion errors in the synthetic and aircraft
derived data sets. Only the plots of root mean square errors have been included
in this report, in order to limit the size of the presentation.

5.3.1	 Synthetic Image Analysis

Tables 5.3-1 through 5.3-4 gives values of the estimated average proportion
errors for each class, field size, field shape, TM configuration, and resampling
technique combination for the equally-likely-classes scenario. The root mean square
errors are shown in Figures 5.3-1 through 5.3-4. In these tables and figures, the
field shape factor is the length-to-width ratio for a field. In general, the smaller
fields have Jarger root mean square (and other) errors than do the larger fields.
The optumum choice of a TM configuration and resampling technique depends on the
error criterion, field size, and field shape. TM configuration 2 with cubic con-
volution resampling is generally the best for the root mean square criterion. As
shown in the following table, this combination is also best for the root mean square
criterion averaged over all field sizes and shapes.

4
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Table 5.3-1 Estimated Average Proportion Errors for 2.5 Acre Fields
of Simulated Image ( Equally Likely Classes )

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 6,7 21.8 -1.8 1.7 -1.0 -1.9 6.o 12.7 0.1
Pasture 11.3 2.2 8.9 19.1 9.6 18.1 -2.4 1.3 -4.6
Corn -2.3 -14.4 -3.0 -2.8 -3.7 -6.1 -9.5 -12.3 -2.2
Wheat -5.7 -3.2 -15.0 -7.5 -4.4 -8.5 -8.4 -8.4 -13.9
Soybeans -10.0 -6.4 10.9 -10.4 -0.6 -1.7 14.3 6.8 20.7

Avg Abs Error 7.2 9.6 7.9 8.3 3.8 7.2 8.1 8.3 8.3
RMS Error 7.9 12.1 9.3 10.4 5.0 9.4 9.0 9.3 11.4

a. Field Shape Factor 1

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 17.7 13.6 -3.7 8.0 3.2 2.1 11.2 14.4 4.8
Pasture 4.1 -8.1 1.5 9.4 3.4 12.2 -3.6 -10.8 -14.1
Corn -2.5 -3.7 2.1 -2.3 -0.8 1.3 0.7 0.2 2.8
Wheat -9.3 5.7 -4.5 -1.3 -1.8 -6.8 -8.8 0.2 -4.2
Soybeans -10.0 -7.5 4.6 -13.8 -4.o -8.8 0.5 -4.0 10.7

Avg Abs Error 8.7 7.7 3.3 6.9 2.6 6.2 5.0 5.9 7.3
RMS Error 10.2 8.4 3.5 8.3 2.9 7.5 6.6 8.3 8.5

b. Field Shape Factor. 2

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 6.3 4.9 -13.6 -5.5 -8.4 -6.8 7.9 -0.3 -5.3
Pasture 11.2 7.7 4.7 24.3 23.3 18.7 0.2 2.2 -0.9
Corn -2.1 -2.2 8.5 1.0 0.8 -0.8 -2.9 5.4 -1.4
Wheat -12.0 -8.4 -20.0 -10.9 -12.0 -10.6 -9.3 -8.0 -1.3
Soybeans -3.4 -2.0 20.4 -9.0 -3.7 -0.5 4.o 0.6 9.o

Avg Abs Error 7.0 5.1 13.4 lo.l 9.7 7.5 4.9 3.3 3.6
RMS Error 8.1 5.7 14.8 12.8 12.4 10.1 5.9 4.4 4.8

c. Field Shape Factor 4

•
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Table 5.3-2 Estimated Average Proportion Errors for 5.0 Acre Fields
of Simulated Image ( Equally Likely Classes )

Configuration 1 Configuration 2 Configuration 3

t' Class NN CC PS NN CC PS NN CC PS

w Trees 9.1 11.8 3.8 0.0 3.2 1.1 8.3 8.2 4.7
L, Pasture 9.7 0.8 1.2 12.9 6.3 9.1 -3.1 -3.1 -2.4
€ Corn -2.8 -3.8 -1.6 -3.1 -5.3 -7.4 -4.5 -3.7 -3.7r,

Wheat
 
-0.2 -9.5 -3.3 -0.5 -1.2 -3.3 -1.1 -10.2

Soybeans -8.6 -8.6 6.1 -6.5 -3.7 -1.6 2.5 -0.2 11.6
G.

Avg Abs Error 7.5 5•o 4.4 5.2 3.8 4.1 4.3 3.3 6.5
RMS Error 7.9 6.7 5.4 6^8 4.3 5.3 4.8 4.3 7.5

•" a. Field Shape Factor 1

a

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS, NN CC PS

H Trees 4 .7 9 .3 -2.6 -1.0 0.3 0.3 1.7 1.7 -2.1
Pasture 9.1 -2.4 -0,0 10.5 5.0 5.3 -2.4 -2.4 -2.4
Corn -5.8 -8.1 0.9 -2.2 -3.4 -5.1 -6.3 -3.9 -0.7
Wheat -1.7 -0.5 -2.4 -1.7 -0.5 -o.4 1.2 1.7 -5.4
Soybeans -6..4 1.7 4.1 -5.6 -1.4 -0.1 5.8 2.9 10.5r

Avg Abs Error 5.5 4.4 2.0 4.2 2.1 2.3 3.5 2.5 4.2
RMS Error 6.0 5.7 2.5 5.5 2.8 3.3 4..1 2.6 5.5

b. Field Shape Factor 2

It
Configuration 1 Configuration 2 Configuration 3

Class NN CC PS NN CC PS NN CC PS

Trees 12.3 15.2 -6.1 6.8 -1.3 2.0 10.4 17.7 -1.5
-' Pasture 7.8 -7.0 -1.9 11.7 0.7 8.2 -4.o -8.2 -8.o

:.; Corn -7.5 -4.5 3.1 -5.5 -1.5 -8.8 -7.1 -6.2 3.6
Wheat -2.7 -0.0 -4.5 -3.7 5.0 2.3 -6.9 -9.4 -13.1
Soybeans -10.0 -3.7 9.4 -9.3 -2.8 -37 7.7 6.0 19.0

Avg Abs Error 8.1 6.1 5.0 7.4 2.3 5.0;: 7. 2 9.5 9.0
RMS Error 8:7 7.9 5.6 7:9 - 2:7 5.8

.
7.5 10.4 11.1

c. Field Shape ;Factor 4

U
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Table 5.3-3 Estim&ted Average proportion Errors for 10.0 Acre Fields
of Simulated Image ( Equally Likely Classes )

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 8.7 13.0 0.9 0.9 -2.1 4.1 7.0 9.5 -0.3
Pasture 5.9 1.6 1.8 12.4 8.3 7.9 -0.1 -1.1 -2.9
Corn -5.7 -7. 2 0.1 -3.2 -5.6 -5.2 -5.1 -2.8 2.3
Wheat -4.1 -3.7 -5.0 -3.2 -3.5 -3.7 -3.7 -2.4 -6.o
Soybeans -4.8 -3.7 2.1 -6.9 2.8 -3.1 1.8 -3.1 6.8

Avg Abs Error 5.8 5.8 2.0 5.3 4.5 4.8 3.5 3.8 3.7
RMS Error 6.0 7.1 2.6 6.6 5.0 5.1 11.3 4.8 4.4

a. Field Shape Factor 1

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees- 1.1 2.1 -3.9 -2.0 -1.6 -3.9 -4.2 2.0 -4.4
Pasture 5.1 1.0 3.1 8.3 5.1 6.8 17.1 -2.6 -2.2
Corn -7.2 -9.6 -5.6 -5.9 -7.5 -5.8 -3.7 -6.4 -1.8
Wheat 2.8 4.8 -0.1 3.4 3.1 0.9 1.9 3.7 -1.5
Soybeans -1.8 1.7 . 6.6 -3.8 0.9 2.1 -11.0 3.3 9.9

Avg Abs Error 3.6 3.8 3.9 4.7 3.6 3.9 7.6 3.6 4.0
RMS Error 4.2 5.0 4.5 5.2 4.4 4.5 9.5 3.9 5.0

b. Field Shape Factor 2

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 1.5 9,h -5.1 1.1 -0.2 1.7 2.8 6.4 -3.9
Pasture 8.2 3.1 3.8 12.4 7.5 9.8 -3.7 -6.0 -7.9
Corn -7.0 -12.2 -5.3 -6.2 -9.6 -10.0 -5.7 -6.1 -0.5
Wheat -3.8 -0.6 -2.4 -3.7 -0.6 -2.9 -1.7 -0.1 -2.5
Soybeans 1.1 0.3 9.0 -3.5 2.9 1.5 8.3 5.8 14.8

Avg Abs Error 4.3 5.1 5.1 5.4 4.2 5.2 4.5 4.9 5.9
RMS Error 5.2 7.0 5.6 6.6 5.6 6.5 5.0 5.4 7.8

c. Field Shape Factor 4
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Table 5.3-4 Estimated Average Proportion Errors for 20.0 Acre Fields
- of Simulated Image ( Equally Likely Classes )

o^-
Configuration 1 Configuration 2 Configuration 3

` Class NN CC PS NN CC PS NN CC PS

3
Trees 6.7 7.5 0.3 1.4 0.3 1.2 7.4 6.9 2.1
Pasture 0.8 -2.9 -1.8 5.4 0.0 2.3 -2.7 -2.6 -2.2

R' Corn -4.9 -7.2 -2.3 -3.6 -3.5 -3.8 -4.9 -5.9 -2.3
Wheat -3.7 -0.9 -3.9 -3.3 -0.6 -2.5 -3.3 -3.3 -6.4

y` Sotbeans 1.1 3.6 7.7 0.1 3.8 2.8 3.6 4.9 8.8

Avg Abs Error 3.4 4.4 3.2 2.8 1.6 2.5 4.4 4. 7 4.4
-' RMS Error 4.1 5.1 4.1 3.3 2.3 2.7 4.7 5.0 5.2

a. Field Shape Factor 1

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 5.2 13:3 4.8 4.6 1.0 7.3 2.0 7.2 3.2,
Pasture -13.8 -2.3 -1.8 5.8 -1.4 0.1 -3.3 -3.7 -3.1
Corn -4.3 -9.1 -4.4 -3.4 -5.6 -5.2 -3.9 -7.0 -6.7
Wheat -2.0 1.3 -3.1 -1.1 1.4 -0.3 -2.5 -2.3 -4.7

a`
Soybeans -5.1 -3.2 4.5 -5.9 4.5 -1.9 7.6 5.8 11.2

Avg Abs Error 6.1 5.9 3.7 4.2 2.8 3.0 3.9 5.2 5.8
RMS Error 7.3 7.5 3.9 4.5 3.4 4.1 4.4 5.6 6.5

b. Field Shape Factor 2

Configuration l Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 6.0 8.8 -0.6 4.4 -0.9 1.0 5.5 9.9 1.3_x«
Pasture 2.4 -1.8 0.1 7.7 2.4 4.3 -3.7 -3.2 -2.9
Corn --5.9 -9.3 -2.5 -4.5 -4.3 -3.5 -18.8 -8.8 -3.4

: Wheat -0.0 2.7 -1.7 -2.9 1.0 -1.4, -4.2 -0.7 -6.0
Soybeans -2.5 -0.4 4.7 -4.8 1.8 -o.4 21.3 2.8 11.0

Avg Abs Error 3.4 4.6 1.9 4'.8 2.1 2.1 10.7 5.1 4 .9
^." RMS Error 4.1 5.9 2.5 5.1 2.4 2.6 13.2 6.3 6.0

C. Field Shape Factor 4

Mill
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Root Mean Square Error
TM	 Averaged over Field Sizes and Shapes

Configuration	 NN	 CC	 PS

1	 6.6	 7.0	 5.4
2	 6.9	 4.4	 5.6
3	 6.6	 5.9	 7.0

Tables 5.3-5 through 5.3-8 give values of the estimated proportion errors for an
image containing 50 percent corn rather than equally likely classes. The root
mean squares of the estimated proportion errors are found in Figures 5.3-5
through 5.3-8. The dependence of the distribution of proportion on the true
class proportions is seen readily by comparing these figures and tables with
those for the image containing equally large classes. Errors are generally
larger in the 50 percent corn image and, more importantly, there is no clearly
superior TM configuration and resampling technique combination. The following
table shows the average of the root mean square errors, over all field sizes and
shapes, for a 50 percent corn image.

Root Mean Square Errors
TM	 Averaged over Field Sizes and Shapes

Configuration	 NN	 CC	 PS

1	 11.5	 14.1	 10.6
2	 11.1	 10.8	 13.2
3	 14.0	 13.0	 12.4

TM configuration 1 with point-spread resampling and TM configuration 2 with cubic
convolution resampling are virtually identical according to this criterion.
Other combinations are quite similar to these.

A recommendation of the best TM configuration and resampling technique based upon
the proportion estimation criterion would depend upon the exact purpose of the
sensor system. For a corn monitoring system one might use a combination quite

, different from that for a wheat monitoring system. However, based.on this analysis
of the results for a single image,'`"the proportion error criterion points weakly
to a choice of TM configuration 2 with cubic convolution resampling. This choice
is strengthened by the similar conclusion from the classification analysis evalua-
tion.

5.3.2 Aircraft Image Analysis

Tables 5.3-9 through 5.3-11 give values of the estimated average proportion
errors for an aircraft-type image with equally likely classes. The values of the
root mean square criterion are given in Figures 5.3-9 through 5.3-11. Similar
values for an aircraft-type image in the 50 percent corn scenario are given in
Tables 5.3-12 through 5.3-14 and Figures 5.3-12 through 5.3-14. In these tables
and figures, the same field shape and field size quantization is employed as was
used in Section 5.2.2.- Shape factor set A consists of fields whose shape factor
is 1.5 or less, set B consists of fields whose shape factors are in the range
from 1.5 to 4.0, and set C consists of those fields whose shape factor is greater
than 4.0. The smaller fields are those containing less than 4000 aircraft pixels,
the intermediate fields are those containing 4000 to 8000 aircraft pixels, and



Table 5.3-5 Estimated Average Proportion Errors for 2.5 Acre Fields
of Simulated Image ( 50% Corn Scenario

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 15.1 41.1 11.2 9.5 5.1 6.4 15.9 32.6 11.8
Pasture 10.6 1.1 13.0 20.6 8.5 25.1 1.5 0.6 -2.3
Corn -19.6 -41.1 -22.5 -16.8 -14.1 -25.8 -28.8 -40.8 -23.4
Wheat -1.1 1.4 -15.0 -8.1 -0.4 -6.2 -4.4 -4.4 -10.5
Soybeans -5.0 -2.6 13.3 -5.2 '1:0 0.4 15.8 12.1 24.4

Avg Abs Error 10.3 17.5 15.0 12.1 5.8 12.8 13.3 18.1 14.5
RMS Error 12.2 26.0 15.5 13.4 7.7 16.6 16.4 24.1 16.7

a. Field Shape Factor 1

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS, NN CC PS NN CC PS

Trees 25.0 16.2 5.2 11.0 11.7 3.4 19.9 16.2 8.7
Pasture 9.4 -1.1 7.4 10.0 11.8 25.2 2.0 -3.3 -7.1
Corn -20.1 -15.9 -19.5 -12.9 -17.9 -16.8 -18.0 -15.7 -18.0
Wheat -9.3 4.5 -6.2 -1.3 -3.6 -7. 4 -9.4 -o.6 -6.5
Soybeans -5.0 -3.8 13.0 -6.9 -2.0 -4.4 5.6 3.3 .22.9

Avg Abs Error. 13.8 8.3 10.3 8.4 9.4 11.5 11.0 7.8 12.6
RMS Error 15.7 10.5 11.6 9.4 11.1 14.2 13.0 10.3 14.2

b. Field Shape Factor 2

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 7.6 13.1 -6.1 -2.1 -2.9 -3.4 14.7 4.6 -2.0
Pasture 20.6 14.5 14.8 38.5 38.7 36.4 16.6 15.9 13.6
Corn -18.5 -21.1 -10.8 -23.2 -23:9 `=24.8 -29.0 -18.5 -19.5
Wheat -12.0 -9.6 -20.0 -11.4 -12.0 -11.3 -10.7 -9.3 -1.3
Soybeans 2.3 3.0 22.0 -1.8 0.2 3.1 8.4 7.3 9.2

Avg Abs Error 12.2 12.3 14.8 15.4 15.5 15.8 15.9 11.1 9.1
RMS Error 14.0 13.6 15.9 20.8 21 1.1 20.4 17.4 12.3 11.5

c. Field Shape Factor 4
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Table 5.3-6 Estimated Average Proportion Errors for 5.0 Acre Fields
of Simulated Image ( 50% Corn Scenario )

' Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 14.9 22.3 9.1 5.7 8.7 3.4 16.2 17.4 11.7
Pasture 11.5 5.5 6.2 17.8 15.5 22.0 3.8 5.1 5.5
Corn -14.3 -20.5 -15.1 -15.9 -19.8 -22.2 -19.6 -20.5 -20.5
Wheat -7.8 -3.1 -11.3 -5.1 -3.7 -4.4 -6.1 -5.0 -11.7

's
Soybeans -4.3 -4.3 11.1 -2.5 -0.8 1.2 5.7 3.0 15.0

Avg Abs Error 10.6 11.1 10.6 9.4 9.7 10.6 10.3 10.2 12.9
RMS Error 11.3 14.0 10.9 11.2 12.0 14.2 12.1 12.5 13 .8

a. Field Shape Factor 1

L4 .a

s V Configuration 1 Configuration .2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 7.1 13.9 0 .9 5.1 4. 6 4. 6 3.1 3. 4 2.6
Pasture 13.7 1.3 3.3 13.0 9.4 11.4 1.0 1.0 1.0

^. Corn -21.8 -25.2 -16.2 -17.8 -19.5 -22.6 -23.2 -20.8 -22.6
7 Wheat 1.0 3.0 1.4 1.3 3.0 2.9 6.7 8.5 -2.1

Soybeans -0.0 7.0 10. 6 -1.6 2.5 3.7 12.4 7.9 21.0

Avg Abs Error 8.7 10.1 6.5 7.7 7.8 9.0 9.3 8.3 9.9
RMS Error 11.9 13.3 8.8 10.1 10.0 11.7 12.2 10.8 13.9

k	 -- b. Field Shape Factor 2

Tf

!
Configuration 1 Configuration 2 Configuration 3

V;
Class NN CC PS NN CC PS NN CC PS

Trees 17.8 16.6 -1.7 8.7 2.3 4.0 20.7 28.3 3.2
Pasture 8.6 -0.8 9.0 17.8 8.3 21.4 -0.2 -0.5 -1.6
Corn -24.8 -14.9 -16.4 -21.8 -18 .4 -28 .1 -27.5 -28.8 -16.1
Wheat 3.3 0.3 -1.9 -0.5 8.5 3.8 -4.2 -9.4 -13.1
Soybeans -5.0 -1.2 11.0 -4.3 -0.8 -1.2 11.2 10.3 27.6

Avg Abs Error 11.9 6. 8 8.0 10.6 7.7 11.7 12.7 15.5 12.3
RMS Error 14.4 10.0 9.8 13.3 9.9 16.0 16.3 19.1 15.5

k^

c. Field Shape Factor 4

A



Table 5.3-7 Estimated Average Proportion Errors for 10.0 Acre Fields
for Simulated Image ( 50% Corn Scenario )

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees	 - 16.2 23.2 9.6 .5.9 6.2 10.8 15.0 16.8 8.3
Pasture 8.1 4.5 3.5 15.1 12.9 12.4 5.3 3.2 1.7
Corn -17.9 -22.3 -11.4 -13.5 -20.9 -19.6 -17.6 -15.8 -10.0
Wheat -4.6 -4.1 -4.6 -4.3 -3.9 -3.5 =4.9 -3.3 -6.6
Soybeans -1.9 -1.2 2.8 -3.3 5.8 -0.1 2.2 -0.8 6.6

Avg Abs Error 9.7 11.1 6.4 8.4 9.9 9.3 9.0 8.0 6.6
RMS Error 11.6 14.7 7.3 9.7 11.8 11.5 10.9 10.5 7.2

a. Field Shape Factor 1

Configuration 1 Configuration 2 Configuration 3
s

Class NN CC PS NN CC PS NN CC PS

fit= Trees 6.1 7.9 -2.0 -0.3 -0.1 -1.8 1.7 7.0 -0.7_
Pasture 8.6 7.5 10.8 14.1 12.4 16.4 12.3 3.0 2.9
Corn -20.2 -24.8 -18.8 -20.3 -21.1 -21.6 -16.4 -20.6 -16.2
Wheat 5.7 7.7 2.5 8.4 %" 7.8 5.2 4.6 7.2 0.2
Soybeans -0.1 1.7 7.5 -1.9" 1.0 1.8 -2.3 3.4 13.8

Avg Abs Error 8.1 9.9 M' 9.0 8.5 9.3 7.5 8.3 6.8
RMS Error 10.5 12.6 10.4 11.7 11:5 12.4 9.5 10.5 9.6

b. Field Shape Factor 2

Configuration 1 Configuration 2 Configuration 3
F. Class NN CC PS NN CC PS NN CC PS

Trees 7.3 20.4 0.6 2.5 5.0 8.7 9.7 15.5 2.1
Pasture 15.5 9.2 14.7 21.1 16.6 23.3 -0.5 -2.1 -4.0
Corn -22.0 -30.6 -22.2 -20.7 -24.8 -32.2 -19.0 -19.0 -16.7
Wheat -4.4 -1.4 -2.8 -4.1 -1.4 -3.7 -2.7 -1.6 -3.5
Soybeans 3.5 2.4 9.6 1.2 4.7 3.9 12.5 7.2 22.1

Avg Abs Error 10.6 12.8 10.0 9.9 10.5 14.4 8.9 9.1 9.7
RMS Error 12.7 17.0 12.7 13.4 1:.7 18.4 11.1 11.5 12.6

c. Field Shape Factor 4



Table 5.3-8 Estimatee^ Average Proportion Errors for 20.0 Acre Fields
for Simulated Image ( 50% Corn Scenario )

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 10.4 13.9 5.1 3.0 3.6 4.5 10.6 11.5 6. 4

Pasture 3.7 -0.5 0.7 9.4 3.0 6.1 0.2 0.3 0.7
Corn -14.4 -19.1 -13.3 -11.7 -12.9 -13.6 -13.8 -16.o -12.6
Wheat -2.6 1.2 -2.6 -2.5 1.3 -1.6 -3.3 -2.0 -6.2
Soybeans 2.9 4.5 10.2 1.9 5.0 4.6 6.3 6.2 11.7

Avg Abs Error 6.8 7.8 6.4 5.7 5.1 6.1 6.8 7.2 7.5
RMS Error 8.3 10.7 7.9 7.0 6.5 7.3 8.4 9.3 8.7

a. Field Shape Factor 1

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 6.8 19.5 4.5 4.2 6.3 6.9 5.5 14.5 9.2.=
Pasture -0.5 1.0 2.8 8.7 1.1 7.4 -0.2 -0.8 -0.3

' Corn -13.8 -24.9 -15.7 -10.3 -15.3 -15.1 -14.2 -22.0 -22.1
Wheat -0.2 5.4 -1.3 0.3 5.2 1.7 -0,6 0.5 -4.1
Soybeans -2.3 .•-1.0 9.8 -2.9 2.6 -0.9 9.5 7.8 17.4

Avg Abs Error 4.7 lo.4 6.8 5.3 6.1 ' t'-.4 6.0 9.1 10.6
RMS Error 7.0 14.4 8. 6 6.4 7.9 8.2 8.1 12.3 13.4

b. Field Shape Factor 2

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Trees 6.6 14.8 0.9 3.4 0.8 1.3 3.6 15.2 2.1
Pasture 4.2 -0.5 3.2 10.5 4.5 8.4 -1.9 -1.6 -1.4
Corn -15.3 -23.2 -14.6 -12.0 -13.0 -13.0 -48.8 -24.3 -16.4
Wheat 3.3 6.4 0.5 -0.3 4.1 0.7 -5.2 4.2 -3.7
Soybeans 1.2 2.5 10.0 -1.6 3.5 2.7 52.2 6.5 19.4

F Avg Abs Error 6.1 9.5 5.8 5.6 5.2 5.2 22.3 10.4 8.6
RMS Error 7.8 12.7 8.1 7.3 6.6 7.1 32.1 13.3 11.5

a c. Field Shape Factor 4

a,

s;
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Table 5.3-9 Estimated Average Proportion Errors for Smaller Fields
in Aircraft Image Derived TM Images ( Equally Likely Classes )

	

Configuration 1	 Configuration 2	 Configuration 3
Class	 NN	 CC	 PS	 NN	 CC	 PS	 NN 	 CC	 PS

Corn	 2.2	 3.0' 2..5	 0.7	 0.2	 1.8	 -2,.9 -2:5 -16.8
Trees/Pasture	 -9.8 -11.0 -5.0	 -8.8 -2.7 -3.6	 -2.6 -12.9	 5.5
Small Grains/Soy	 4.8 -3.7	 6.9	 8.7	 1.6	 2.9	 -0.2 -0.8	 1.6
Set Aside/Nonfarm	 2.8 11.6 -4.4	 -0.7	 0.9 -1.1	 5.7 16.3	 9.8

Avg Abs Error	 4.9	 7.3	 4.7	 4.7	 1.3	 2.4	 2.8	 8.1	 8.4
RMS Error	 5.8	 8.3	 5.0	 6.2	 1.6	 2.5	 3.4 10.5 10.1

a. Field Shape Factor Set A

r Configuration 1 Configuration 2 Configuration 3
a Class NN CC PS NN CC PS NN CC PS

Corn -1.8 -2.0 -2.0 -4.1 -6.3 -1.2 -4.8 -6.9 -8.8
Trees/Pasture -7.2 -5.7 1.8 -7.3 -8.4 0.4 -1.7 -5.3 6.7

' Small Grains/Soy 14.9 10.6 16.4 19.4;', 19.9 17.3 12.0 11.7 11.5
1

Set Aside/Nonfarm -5.8 -3.0 -16.1 v-8.1 -5.3 -16.6 -5.5 o.6 -9.4

Avg Abs Error 7.4 5.3 9.1' 9.7 10.0 8.9 6.0 6.1 91
RMS Error 8.8 643 11.6 11.3 11.5 12.0 7.1 73 9.3

b. Field Shape Factor Set B

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

,'

Corn -5.1 -2.5 -6.1 -20.3 -21.1 -17.5 -5.2 -8.9 -15.0
Trees/Pasture 2.4 1.6 3.3 1.4 1...5 3.5, 2.0 3.3 18.7
Small Grains/Soy 7.1 7.2 10.8 24.2 25.8 18.1 8.0 9.4 6.9
Set Aside/Nonfarm -4.4 -6.3 -8.0 -5.3 -6.2 -4 41 -4.8 -3.9 -10.6

rx
Avg Abs Error 4._7 4.4 7.0 12.8 13.6 10.8 5.0 6.4 12.8
RMS Error 5.0 5.0 7.5 16.0 17.0 12.9 5.4 6.9 13.5

J.

c. Field Shane 'Factor Set C
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Table 5.3-1,0 Estimated Average Proportion Errors for Intermediate Fields
in Aircraft Image Derived TM Images ( Equally Likely Classes

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Corn -0.5 0.1 -0.5 -3.4 -3.8 -0.2 -3.5 -1.9 -13.2
Trees/Pasture -3.2 -2.0 3.3 -4.2 -2.4 4.8 -2.8 -4.1 8.5

^a Small Grains/Soy 11.0 8.2 10.3 12.6 12.6 7.8 11.7 10.1 7.3
+ Set Aside/Nonfarm -7.4 -6.3 -13.1 -5.0 -6.4 -12.4 -5.4 -4.1 -2.6

Avg Abs Error 5.5 4.2 6.8 6.3 6.3 6.3 5.9 5.1 7.9
RMS Error 6.8 5.3 8.5 7.3 7.4 7.7 6.8 5.9 8.8

a. Field Shape Factor Set A

Er ,. Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

w'

Corn 0.3 2.2 0.0 1.2 1.5 2.7 0.8 0.0 0.0
Trees /Pasture 3.8 2.6 2.6 2 .7 3.3 5.4 8.1 5.8 5.0
Small Grains/Soy -4.2 -6.1 -2.9 -5.1 -5.1 -8.0 -9.7 -7.2 -5.0
Set Aside/Nonfarm 0.0 1.3 0.3 1.2 0.3 0.0 0.8 1.4 0.0

Avg Abs Error C'.1 3.0 1.4 2.5 2.5 4.0 4.9 3.6 2.5
RMS Error 2.8 3.5 1.9 3.0 3.1 5.0 6.3 4.7 3.5

t
E b. Field Shape Factor Set B

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Corn -9.7 -6.4 -8.5 -8.9 -7.1 -7.1 -10.0 -5.9 -15.7
Trees/Pasture -9.7 -10.3 -7.7 -12.3 -11. 4 -10.0 -5.3 -7.2 0.1
Small Grains/Soy 16.2 11 .5 13.8 18.2 15.6 15.0 10.8 7.3 13.7
Set Aside/Nonfarm 3.2 5.2 2 . 4 3.0 3.0 2.1 4 . 5 5.8 1.9

Avg Abs Error 9.7 8.3 8.1 1o.6 9.3 8.5 7.7 6.6 7.8

^t

RMS Error 10.7 8.8 9.0 11.9 10.4 9.7 8.2 6.6 10.5

c. Field Shape Factor Set C
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Table 5.3-11 Estimated Average Proportion Errors for Larger Fields
in Aircraft Image Derived TM Images ( Equally Likely Classes )

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Corn, -3.6 -4.2 -3.0 -8.7 -7.6 -4.2 -7.5 -7.5 -14.0
Trees/Pasture 0.6 1.1 0.4 1.5 .0;8 0.7 1.6 1.7 7.9

4

Small Grains/Soy 2.3 1.7 2.3 5.7 5.0 2.4 5.3 4.4 4.3
' Set Aside/Nonfarm 0.6 1.4 0.4 1.5 1.8 1.1 0.6 1.5 1.7

` Avg Abs Error ` 1.8 2.1 1.5 4.3 3.8 2.1 3.8 3.8 7.0
RMS Error 2.2. 2.5 1.9 5.3 4.7 2.5 4.7 4.5 8.4

a. Field Shape Factor Set A

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

r,
Corn? 1.2 1.7 2.6 1.4 1.7 4.8 2.1 1.2 5.0

ri Treys/Pasture'.. 	
A

-0.1 -3.9 2.3 5.5 3.6 7.6 -0 - 3 -0.8 1.6
Small Grains/Soy -19.3 -20.9 -15.5 -16. -18.7 -21.5 -19.0 -20.1 -20.6
Set Aside/Nonfarm 18.1 23.1 10.5 9.1 13.3 9.1 17.2 19.7 14.1

,r
Avg Abs Error 9.7 12.4 7.7 8.0 9.3 10.7 9.6 10.5 10.3

f

RMS Error 13.3 15.7 9.5 9.7 11.6 12.5 12.8 14.1 12.8

b. Field Shape Factor Set B

- Configuration 1 Configuration 2 Configuration 3
`
.a

Class NN CC PS NN 'CC PS NN CC PS

Corn -7.2-7• '-6.4 -6.1 -7.1 -7.3 -4.0 -7.2 -7.2 -12.5
Trees/Pasture -1.8 -0.3 0.2 -3.9 -5.9 -1.9 0.6 -1.0 5.6

` Small Grains/Soy 4.7 2.4 2.8 4.4 5.6 1.6 3.0 3.3 2.9
Set Aside/Nonfarm 4.2 4.3 3.1 6.6 7.6 4.4 3.6 5.0 4.o

Avg Abs Error 4.5 3.3 3.0 5.5 6.6 3.0 3.6 4.1 6.3

.e
RMS Error 4.9 4.0 3.7 5.7 6.7 3.2 4.3 4.7 7.3

{

c. Field Shape Factor Set C
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Figure 5.3-9 Estimated Root Mean Square Proportion Errors for Smaller Fields Showing Effects of
Field Shape Factor and TM Configuration for TM Images Derived from Aircraft Data
Set ( Equally Likely Classes
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Table 5.3-12 Estimated Average Proportion Errors for Smaller Fields
in Aircraft Image Derived TM Images	 50',*V Corn Scenario

Configuratiw 1 Configuration 2 Configuration 3
Class NN cc PS NN cc PS NN cc PS

Corn -5.0 -5.5 -2.8 -7.2 -8.0 -5.1 -13.9 -13.2 -37.2
Trees/Pasture -9.0 -8.2 -3.5 ''-7.6 -2.4 -2.4 -0.3 -8.9 14.1
Small Grains/Soy 4.2 -3.3 4.1 6.7 2.3 3.0 1.1 -0.5 3.1
Set Aside/Nonfarm 9.7 17.0 2.1 8.1 8.1 4.4 13.1 22.6 20.0

Avg Abs Error 7.0 8.5 3.1 7.4 5.2 3.7 7.1 11.3 18.6
RMS Error 7.4 10.0 3.2 7.4 5.9 3.9 9.6 13.8 22.3

a. Field Shape Factor Set A

Configuration 1 Configuration 2 Configuration 3
Class NN cc PS NN cc PS NN cc PS

Corn -4.9 -4.5 -4.5 -9.4 -13.3 -3.2 -12.2 -16.3 -18.3
Trees/Pasture -6.9 -3.7 1.7 -8.0 -8.1 -1.4 2.9 -3.9 12.9
Small Grains/Soy 7.9 5.2 7.8 10.3 11.3 8.0 7-5 6.1 5.7
Set Aside/Nonfarm 3.8 3.0 -5.0 7.0 10.2 -3.5 1.8 14.7 -0.3

Avg Abs Error 5.9 4.1 4.7 8.7 10.7 4.0 6.1 10.4 9.3
RMS Error 6.1 4.2 5.2 8.8 10.9 4.7 7.3 11.7 11.6

b. Field Shape Factor Set B

Configuration 1 Configuration 2 Configuration 3
Class NN cc PS NN cc PS NN cc Ps

Corn -11.0 -10.8 -16.4 -42.7 -44.4 -36.4 -14.0 -20.6 -30.7
Trees/Pasture 4.0 1.6 2.3 2.9 3.1 6.3 3.4 3.0 24.5
Small Grains/Soy 6.8 8.7 17.3 34.3 34.0 23.6 11.7 13.1 9.6
Set Aside/Nonfarm 0.3 0.4 -3.2 5.6 7.3 6.5 -1.1 4.4 -3.4

Avg Abs Error 5.5 5.4 9.8 21.4 22.2 18.2 7.5 10.3 17.0
RMS Error 6.8 7.0 12.1 -27.6 28.2 22.1 9.3 12.5 20.3

c. Field Shape Factor Set C
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Table 5.3-13 Estimated Average Proportion Errors for Intermediate Fields
in Aircraft Image Derived TM Images ( 50% Corn Scenario )

0
Configuration 1 Configuration 2 Configuration 3

Class NN CC PS NN CC PS NN CC PS

Corn -5.8 -4.2 -4.2 -10.1--11.2 -4.7 -12.4 -10.6 -27.9
Trees/Pasture -3.6 -0.6 1.2 -5.9 -3.9 0.6 -1.3 -2.8 17.4
Small Grains/Soy 7.8 4.5 5.7 9.6 10.6 4.9 9.9 8.2 6.5
Set Aside/Nonfarm 1.6 0.4 -2.7 6.4 4.5 -0. 7 3. 8 5.3 4.0

Avg Abs Error 4.7 2.4 3.5 8.0 7.5 2.7 6.9 6.7 14.0
RMS Error 5.2 3.1 3.8 8.2 8.2 3.4 8.2 7.3 16.9

a. Field Shape Factor Set A

kr

a Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Corn 0.3 1.8 0.0 1.0 1.2 2.1 0.7 0.0 0.0
Trees/Pasture 3.1 2.1 2.1 2.1 2.6 4.3 6.4 4.7 4.0

:. Small Grains/Soy -3.3 -4.9 -2.3 -4.0 -4.0 -6.4 -7.,8 -5.8 -4.0
Set Aside/Nonfarm 0.0 1.0 0.3 1.0 0.2 0.0 0.7 1.1 0.0

Avg Abs Error 1.7 2.4 1.2 2.0 2.0 3.2 3.9 2.9 2.0
RMS Error 2.3 2.8 1.5 2.4 2.5 4.0 5.1_ 3.8 2.8

b. Field Shape Factor Set B

Configuration8u	 1 Configuration^	 2 Configuration 3
Class NN CC PS NN CC PS NN CC- PS

Corn -19.9 -12.8 -17.0 -18.3 -14.8 -14.8 -20.6 -12. 4 -31. 4
Trees/Pasture -6.4 -6.3 -2.3 -9.8 -9.2 -5.2 1.3 -3.0 10.5
Small Grains/Soy 23.8 15. 0 17.4 25.7 21.6 18. 3 15. 6 $.7 18.6
Set Aside/Nonfarm 2.5 4.1 1.9 2.4 2.4 1.7 3.6 6.8 2.3

Avg Abs Error 13.2 9.5 9.7 14.0 12.0 10.0 10 .3 7.7 15.7
RMS Error 15.9 10.5 12.3 16.6 13.9 12.1 13. 1 8.4 19.0

c. Field Shape Factor Set C
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Table 5.3-14 Estimated Average Proportion Errors for Larger Fields
in Aircraft Image Derived TM Images ( 50% Corn Scenario )

I
Configuration 1	 Configuration 2 	 Configuration 3

Class	 NN	 CC	 PS	 NN	 CC	 PS	 NN	 CC	 PS

Corn	 -7.1 -8.5 -6.1 -17.3 -15.2 -8.4 -15.0 -15.0 -28.0
Trees/Pasture	 1.2	 2.3	 0.8	 2.9	 1.7	 1.5	 3.2	 3.3 15.9
Small Grains/Soy	 4.7	 3.4	 4.6 11.4 10.0	 4.7	 10.6	 8.8	 8.7
Set Aside/Nonfarm	 1.2	 2.8	 0.8	 3.0	 3.5	 2.2	 1.2	 3.0 3.5

Avg Abs Error	 3.6	 4.2	 3.0	 8.7	 7.6	 4.2	 7.5	 7.5 14.0
RMS Error	 4.3	 4..9	 3.8	 10.6	 9.3	 5.0	 9.4	 9.0 16.8

a. Field Shape Factor Set A

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Corn 1.0 1.3 2.1 1.1 1.4 3.8 1.7 1.0 4.0
Trees/Pasture -0.0 -3.1 1.9 4.4 2.9 6.1 -0.2 -0.7 1.3
Small Grains/Soy -15.4 -16.7 -12.4 -12.8 -14.9 -17.2 -15.2 -16.1 -16.5
Set Aside/Nonfarm 14.5 18.5 8.4 7.3 10.7 7.3 13.7 15.8 11''3

Avg Abs Error 7.7 9.9 6.2 6.4 7.5 8.6 7.7 8.4 8.2
RMS Error 10.6 12.6 7.6 7.7 9.3 10.0 10.3 11.3 10.2

b. Field Shape Factor Set B

Configuration 1 Configuration 2 Configuration 3
Class NN CC PS NN CC PS NN CC PS

Corn -14.9 -13.3 -12.1 -14.6 -15.1 -8.1 -15.4 -15.6 -25.7
Trees/Pasture 1.3 4.9 2.6 -1.7 -4.6 -1.2 5.5 2.8 15.9
Small Grains/Soy 8.3 3.8 5.1 6.2 8.3 2.4 5.4 5.0 5.0
Set Aside/Nonfarm 5.3 4.6 4.4 '0.1 11.3 6.8 4.5 7.8 4.8

Avg Abs Error 7.5 6.7 6.1 8
,.
.2 9.8 4.6 7.7 7.8 12.9

RMS Error 9.0 7.7 7.0 9.4 10.6 5.4 8.9 9.2 15.5

c. Field Shape Factor Set C
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the larger fields are those containing more than'8000 aircraft pixels. 	 Many of
the values in these tables are not as reliable as those given in the corresponding
tables for the synthetic image because of the missing field size and field shape
combinations in the aircraft image. 	 The following conclusions should therefore
be relied upon cautiously.	 a

The size of the proportion errors for the equally likely aircraft and synthetic
images are roughtly the sa g e.	 The proportion errors for the 50 percent corn
scenario in the aircraft image are approximately the same as those for the equally
likely case.	 This differs from the result obtained folr the synthetic image and
these two differing results provide a demonstration of the sensitivity of proportion

ti. estimation to the nature of the underlying class confusion matrices.

Again, there is a great deal of variation in the results obtained with the different
TM configuration and resampling technique combinations, depending on class, field
size, and field shape.	 In general, TM configuration 1 appears to be best (at
least under a root mean square error criterion), but there is little real difference
among the resampling techniques.

The following table shows the averages of the root mean square criterion from the
aircraft image.	 -

Root Mean Square Errors Av6raged Over Field Size
and Shape

TM	 Equally Likely Classes	 50 Percent Corn Image
Configuration	 NN	 CC	 PS	 NN	 CC	 PS

1	 6.70	 6.60	 6.51	 4.91	 5.16	 4.32
K' 2	 8.49	 8.22	 7.56	 7.94	 8.24	 5.68

3	 6.56	 7.24	 9.36	 6.09	 7.50	 10.74

As in the case with the 'evaluation of classification errors, it appears that TM
configuration I is superior. 	 There is little to choose among the resamplingjr
techniques, but because of the classification accuracy results; it would seem

n that point spread resampling should be chosen.

ky"
F,4*
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Section 6

11
CONCLUSIONS AND SUMMARY	 ,J

l^

The previous sections of this report have discussed the simulation processing and
subsequent multispectral classification and analysis of the simulated^`, , data sets.
This section provides an overall summary and discussion of the study results.

For the synthetic data set, the various resampling techniques were found to be approx-
imately equivalent while for the real aircraft data set, in terms of classification
accuracy, point spread of function-compensation resampling was superior to cubic
convolution, which in turn was superior to nearest neighbor assignment. For the real
aircraft data set, TM configuration 1.(Goldberg prefilter, 1.0 samples/IFOV) was
preferred, while the synthetic data set, TM configuration 2 (Goldberg prefilter, 1.4
samples/IFOV) produced better classification results. In both cases, there was
significant variation among results for the parameters considered, and considerable
overlap among the results obtained with all of the TM configuration and resampling
technique combinations.

Since the simulated data sets which were used in the classification had all been
resampled onto a lattice of 1.0 sample/IFOV in both directions, their geometry was
the same whether they were produced using TM configuration 1 or TM configuration 2..
The different results obtained for the real aircraft data set and the synthetic data
set, other things being equal, then depends only on this single parameter. ERIM,
which acted as a consultant on. this study has raised some questions on the issue of
whether other things really are equal with respect to the synthetic data set. They
have observed that the statistical description used in the creation of the synthetic
data set was much simplified over that derived from the actual aircraft data set, and
that this data could be expected to enhance the apparent classification performance
obtained for the modeled Thematic Mapper configurations. These considerations are
discussed in Appendix A, which presents the ERIM report on this study. In any case,
they suggest that this characteristic of the synthetic data set could cause spurious
differences among the nine TM configuration-resampling combinations.

In its report, ERIM also has questioned the method which was used to define field
boundaries in the various related images, stating the belief that a non-integer
method should be used for this. While this is a reasonable point to raise and is
worthy of consideration in any continuation of this work, the constraints involved in
performing multispectral classification on ten geometrically-related data sets
within a facility not designed to deal with the difficulties of non-integer boundary
specification in related digital images prevented the issue from being directly
addressed in this study.

While this study has provided an indication of the superiority of higher order
resampling techniques for processing digital imagery destined for multispectral
classification, the absence of any great effect of resampling on the classification
results obtained with the Thematic Mapper data derived from the synthetic data set
suggests that it is not simply the case that higher order resamplers provide a superior



reconstruction of the data, but that they "shape" the data so that it is a better (in
the case of configurations 1 and 2) or worse (in the case of configuration 3) match

' to the models on which the classifier is based. 	 Since the synthetic data set was
z constructed on the basis of these models, it was already a good match to the classi-

fier.	 With respect to the design of the Thematic Mapper sensor itself, the results
obtained for the Thematic Mapper data derived from the synthetic data set indicate
that a conventional prefilter/sampler design, oversampled'at 1.4 samples/IFOV, yields
better classification results.	 This choice of a sampling rate is in agreement with
the intuitive idea that a higher sampling rate provides a better characterization of

-'-; an analog signal.	 The results obtained for the Thematic Mapper data derived from the
aircraft data set, while supporting the choice of a conventional prefilter/sampler
design, indicate that an along-scan sampling rate of 1.0 samples/IFOV is preferred.

,.^ However, in the light of the above comments on the apparent "shaping" effect of the
=y. higher order resamplers, and the similarity of the classification results for the two
w sampling rates when the point-spread-function compensation resampler is employed, the

disagreement between the results for the two data sets is less surprising.	 Because
of the thorough statistical analysis which was possible with the synthetic data set,
the comparative results obtained with this data set are persuasive, and the choice of
a higher sampling rate seems justified. 	 The results obtained in examination of
proportion errors for the Thematic Mapper data derived from both the synthetic and
aircraft data sets are consistent with this choice for the design of the Thematic
Mapper sensor.

It should also be observed that, in the opinion of IBM-Earth Resources Laboratory
classification specialists, further consideration of the simulated data sets produced
in this study should provide considerable illumination of the effects of the sensor
system on data to be used for multispectral classification. 	 These data sets provide
the opportunity to investigate in detail the statistical characteristics of various
classes whose initial structure car` be well known, and to follow the transformation
of these characteristics as the image is processed through the sensor system.

e

` The results obtained in this study are derived from work with only two data sets.
' Because of the notorious scene-to-scene variation in results from classification

studies, these results should not be interpreted as a valid indication of the perform-
tw ance to be expected from the Landsat-D Thematic Mapper.	 They represent a extensive

comparison of the variation of classification performance against typical multispectral
data sets when the variables are the parameters of.the sensor system and the ground

`	 m processing.
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Appendix A

ERIM FINAL REPORT ON THE THEMATIC MAPPER

DESIGN PARAMETER INVESTIGATION

Note: This appendix does not contain Appendix I
of the ERIM report regarding thermal band radiance.
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'	 1.0 INTRODUCTION

This eeport is written in final fulfillment of the terms of ERIM's

subcontract from IBM to assist in the experimeriZ: design, data selection

and results interpretation of IBM's Thematic Mapper Design Parameter

Investigation (TMDPI). The period covered is May 1976 December 1977.

1.1 ERIM'S ROLE

ERIM's role in this effort is basically that of a consultant. The

ERIM effort in actually carrying out the experiment and conducting

	

k?	 ,;	 analysis of the results has been minimal.

1.2 THE BROAD TECHNICAL ISSUES

The technical problem at issue is as follows:

The design parameters of the Thematic mapper include: the filter

which follows the detectors; the sampling scheme which is used to

digitize the filtered detector output on board the satellite; and .',the

resampling scheme which is , employed alt the ground station to reconstruct
l

a rectified image to a prescribed sca'le, suitable for general use by

interpreters and for machine classification. NASA has requested an

evaluation of:

a five-pole Bessel filter combined with a sample and hold

sampling scheme,

versus

a five-pole Butterworth filter combined with an integrate and dump

sampling_ scheme

and

A-3
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a sample spacing nominally the same as the instantaneous field of

view (IFOV),

versus

a sample spacing 1/1.4 times as large as the IFOV

and

nearest neighbor reconstruction,

versus

cubic convolution reconstruction,

versus

point spread function'reconstruction.

The above combinations result in 12 treatment combinations. Sub-

sequent negotiations with NASA have presumably led to the deletion of

the Butterworth filter with the higher sampling rate, leaving a total

of nine system configurations to be evaluated.

The array of conditions over which these system configurations are

to be evaluated include a variety of field sizes and field shapes, for

several agricultural crop classes.

The performance measure to be used in evaluation is the probability

of correct classification. The final figure of merit is to be the
average probability of correct classification over the conditions of

observation.

1.3 REPORT ORGANIZATION

Section 2, following, is a brief summary of ERIM's activities in
support of IBM in this effort. Section 3 consists of technical

commentary on the synthetic data aspects of the program. Section 4

concerns the TM simulated data based on aircraft (A/C) imagery. Section

5 contains conclusions and recommendations
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2.0 STATEMENT OF ERIM ACTIVITIES

ERIM assisted IBM in three task areas; experiment design, data set

a selection; and interpretation of results. In addition ERIM responded

to questions and consulted with GSFC on numerous occasions, regarding

the interpretation of M-7 scanner data, and the question of atmospheric
°s

transmission and emission in the thermal band. Under a separate contract

with Goddard Space Flight Center (GSFC), ERIM prepared M-7 scanner data

for IBM.

^?. 2.1	 EXPERIMENT DESIGN AND DATA SELECTION

,.- IBM and ERIM personnel worked together to establish an approximate

experiment plan which would distinguish between the parameter sets, if

any differences exist.

I^
Of available data sets ERIM recommended that Corn Blight Watch

Experiment (CBWE) data be used but pointed out that the data, in its

immediately available form had a resolution of 8-10 m and would be of

marginal value for the purposes of the experiment. 	 Subsequently it

was resolved that the data should be reprocessed from analog tape at

a higher (3.5 m) resolution so as to better meet the needs of the

experiment.

2.2	 INTERPRETATION OF RESULTS

ER114 has viewed raw data classification results provided by IBM

and has noted,certain discrepancies which have been reported to IBM,

mainly in the simulated data sets. 	 ERIM has not been provided.with

composite summaries, which would make it easy to view the results by

class.	 ERIM has viewed preliminary hand drawn plots of composite

summaries but has not been provided with copies.

ERIM has reviewed IBM's immediate future plans for producing

` results and drawing conclusions. 	 Based on that review ERIM agrees that
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IBM is proceeding along a reasonable route and will be able to draw a

conclusion in one of the three broad classes of possible outcomes of

the experiment, namely, there are differences between treatments; there

are no differences between treatments; or the experiment does not reveal

whether ,:here are differences. If it should turn out that the experi-

ment does not reveal whuther there are differences, but is almost

significant then ERIM recommends that consideration be given to repro-

cessing the data with a floating point rather than integer boundary

decision algorithm, as described in section 3.3 following.

2.3 GSFC SUPPORT

ERIM provided direct support to GSFC by a) delivering a signature

set which Goddard personnel could use in creating a synthetic simulated

data set, b) answering questions concerning the calibration of 11-7

scanner data, and c) answering questions concerning the modelling of

the thermal band radiance. The thermal band radiance work is incorpo-

rated as Appendix I.
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, ► 	 3.0 TECHNICAL DISCUSSION

.'

	

	 At the time of this writing a number of unanswered questions remain

regarding the experiment. In the following we attempt to state these

questions as clearly as possible.

3.1 SYNTHETIC DATA SIGNATURES: ASSUMPTIONS

The signature set which ERIM delivered to GSFC contained several

spectral subclasses for each major class in order to more closely

approximate the broad spectral spread of each class. In producing the

synthetic data set, however, GSFC selected single modes of each class

to represent the entire class. Furthermore, GSFC used the variances

based on 8 meter resolution data and applied them to creating a synthetic

scene with 3 meter resolution elements. These were then smoothed to

create 30 meter elements. We believe the net effect of these procedures

will be to substantially improve predicted performance compared to real

TM performance, when tested on field center pixels far removed from any

boundary. Further we believe that, when tested on field center pixels

which are nearer boundaries, (i.e., the great majority of field center

pixels), the effect is likely to be to create substantial apparent

differences among the treatments where only small ones exist. We

attempt to describe the reasons we believe this in the following

paragraphs.

There are two major sources of within field variance in 30 meter

resolution synthetic pixels; within field variance in 3 meter resolution

pixels contained in the 30 meter :pixels; and influence from 3 meter

resolution pixels outside of the.field, i.e., belonging to other

classes. This latter component of variance will differ depending on

the particular f iltering/sampling/resampling treatment. Influence due

to this component will be primarily detendent on the mean of the adja-
cent field type signature and since the number of possible combinations

A-7.
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of adjacent types is large and the available number of field samples is

modest, (even in the synthetic data) it is doubtful whether this

source of variation is sampled adequately.

The net effect of the assumptions made by GSFC is to reduce the

first variance contribution unrealistically without reducing the

differences between signature means in a comparable way, thus increasing

the relative importance of the second variance contribut'on; and it is

this second variance contribution which could in principle, cause

differences between the treatments.

In a more realistic simulation the boundary effects on signatures-

will be diluted by the within field variance.

3.2 SYNTHETIC DATA SIGNATURE VARIATIONS
i,

We have examined, in a preliminary manner, the synthetic data

signatures drawn both from the 3 meter resolution data and from the

nine treatments. The signature means vary among treatments by what

amounts to several sigma of the signature variances. These signatures

are drawn from the larger fields available--yet they appear to be

dominated by the accidents of neighboring fields and-the treatment used

in an unrealistic way. We suspect, but cannot be certain without

extensive analysis, that these effects may be explained by the GSFC

model assumptions described. , in the previous section.

3.3 SCENE BOUNDARY EFFECTS IN SYNTHETIC DATA

The classification results at the edge of the scene appear to

consist of long strings of repetitions of class decisions, regardless

of true class. We do not know whether this is a computer bug which

may affect all the results, or whether it is another manifestation of

"edge effects" in the sense that the scene continues across the boundary

as a series of zeros. If the latter is the case it would explain why

A-8
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. so many of the boundary pixels seem to be classified as "trees",, oiuce
trees have lower signal values than most other classes.
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4.0 COMMENTS REGARDING SIMULATED TM DATA BASED ON AIRCRAFT IMAGERY

In general the A/C Simulated TM Data appears free of the major

objections above which apply to the synthetic data. There are, however,

additional problems which apply to both data sets, but which have extra

force with respect to the simulated data set because of its smaller

size. The problems primarily have to do with the definition of field

boundaries in the various image products.

To begin with we should state that we believe the existence of the

problems we will describe in the next section do -not invalidate

statistically significant conclusions which might be drawn by IBM

Ct
personnel regarding the simulated T12 data. However the existence of

these problems does dilute the distinctions between treatments and makes

an experiment of any given size less statistically significant than it

')could be with a different treatment of field boundaries.
r	

^

4.1 THE BOUNDARY DEFINITION PROBLEM

Ideally the field boundaries seen in A/C data should be projC,'cted

onto the various TM scenes to provide f field _boundaries in those scenes.

Inse*_ boundaries, used to define field center pixels, should also be

drawn initially in.the A/C data scene and then projected onto various

TM scenes.

The decision as . to whether a pixel is in or out of a given b.:-!indary

Would be then determined by an analytical relationship between the

projected boundary and the center of the TM pixel in question. In the

present experiment this ideal case is compromised in two specific ways.

a. The coordinates of boundary vertices projected onto TM scenes

are truncated or rounded to the nearest integer in the TM pixel

coordinates. Thus the vertices and,the boundaries connecting

them do not represent the best available estimate as to the

tree position of the boundaries, but are misplaced by as much

as several aircraft resolution.pixels.

GRIGIl`^AL PAGE I2(1'	
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^'- b.	 These effects are not constant from one TM image to another.

3 The reason for this is that the various TM images are not re-

'ms's sampled to identical grids, but rather are resampled to grids4F

which are typically 0.1 TM pixels different from each other.

Comparing two TM images then there may be perhaps 1 out of 5

vertices which will be differently placed in either line number

or point number or both. 	 This suggests that in a comparison of

two TM images a large proportion of the fields will be found to

have one or more mismatched vertices.

Since the vertices can be mismatched in any direction they will,

" on the average, tend to average out. 	 Hence in a large enough experiment

the difference between TM images will be retained. 	 However, as mentioned
'N;

above, the clarity of distinctions that can be made in a smaller experi-

ment is unnecessarily diluted.

The cure for this difficulty is to leave the boundary vertex
F	 ,*• definitions in floating point form and decide the "in" . or 	 "out" status

._. of pixels relative to this floating point boundary.

F.r
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5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 SYNTHETIC DATA

ERIM believes that the assumptions made in producing the synthetic

data set specifically and directly influence the results in the direction

of creating artificial differences between the treatments.

ERIM does not recommend that the synthetic data approach should

be scrapped, however. This approach probably offers the only reasonable

way-of resolving the present issue as well as'others wb.ich will arise
f

in the future. ERIM recommends that the assumptions t e modified and

experience be gained with more and more realistic approximations.

' 5.2	 A/C IMAGE BASED TM SIMULATED DATAA

ERIM sees no present reason to quarrel with the approach being

r taken by IBM to analyze the A/C based data. 	 It may be that the

conclusions that can be drawn will be found • to be only marginally

conclusive.	 If this turns out to be the case, we believe that a

sharper distinction may be made by incorporating a floating pointF.

boundary description into the processing.

These same remarks apply to the synthetic data, (if the more severe

criticisms of that experiment are first resolved).

5.3	 GENERAL RECOMMENDATIONS

We believe that additional activities in addressing the Thematic

Mapper Design Parameters are required to more conclusively establish

the technical needs and cost-effective solutions. 	 Data more specifically

gathered to satisfy the needs of such a design study are certainly called

for.	 These data would include more basic class types at various stages

of growth and provide more samples of the range of field sizes desired.
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I/

Because of the critical effect of the class signatures on the final

conclusions, additional care should be taken in initially defining the

signature set to be used throughout the investigation for both the A/C

and synthetic data sets. In addition, since many users of satellite

multispectral scanner data are primarily interested in large area

inventories, more emphasis needs to be placed on performance measures

such as proportion estimation of the various class types over a region.
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