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ABSTRAGT

Ionosphere-induced scintillation effects have been studied fof
many years. Only recently, however, have communications engineers begun
to consider the detailed nature of the signal perturbation. Secintilla-
tion activity was first characterized by a scintillation index and latexr
by its first-order amplitude statistics. This gives sufficient infor-

mation to determine the probability of eccurrence of deep fades.

However, if one considers the problem of optimizing receiver and
signal desipgn for combating scintillation effects, or of even evaluating
them in a given system, it becomes clear that a much more detailed de-
scription of ionospheric scintillation is necessary. idéally, one would
develop a channel model that describes the seintillation effects for an
elementary waveform, Fourier techniques could then be used to analyzé

more complicated waveforms.

The research reported hereiﬁ provides a basis for developing such
a channel model. The model would proceed from a parameterized functional
description of the ionospheric spectral-density funcetion. We have
employed a power-law form with irregularity elongation along the direction
of the geomagnetic field, but no attempt-was made to determine the para-

meter dependence on geophysical variables,

We have characterized the diffracted field of a monochromatic plane
wave hy two complex correlation functions. For a gaussian complex field,
these quantities suffice to completely define the statisties of the
field. Thus, one can in principle calculate the statistics of aﬁy

measurable quantity in terms of the model parameters,

iii




The question of the validity of hypothesizing gaussian statisties
for the complex field is an important one, At best, paussian statistics
are a limiting form, Moreover, a considerable body of literature exists
that questions the validity of this hypothesis. We therefore carefully
analyzed the structure of the intensity statistics of several selected

data sets for ionospheric and interplanetary scintillation,

Qur results show that the hest data fits are achieved for intensity
statistics derived under the gaussian-statisties hypothesis. The signal
structure that achieves the best fit is nearly invariant with scintilla-
tion level and irregularity source (ionosphere or solar wind). It is
characterized by the fact that more than 80% of the scattered signal
power is in phase guadrature with the undeviated or coherent signal
component, Thus, the gaussian-statistics hypothesis is both convenient

and accurate for channel-modeling work.

To illustrate the technique of applying the channel model and the
gaussian signal structure, we have compuied the two-irequency correlation
function for the complex field and its intensity as well as the wavelength
dependence of the normalized rms intensity scintillation index 84. The
results are in agreement with reportad UHF data, but they evidently
cannot be extrapolated to L-band and higher frequencies on the basis of

a simple power-law SDF.

The technidque of caleculating phase statistics and the nature of the
limitation imposed by the implicit first Born approximation in our

diffraction caleulations are also discussed in this report.

iv
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I INTRODUCTION

Ionosphere-induced scintillation effects are the main cause of signal
degradation on satellite-~to-earth radio transmissions at UHF and higher
frequencies, In the report by Golden and Wolf (1973)*, a need for a
scintillation-effects channel model was clearly established., The research

that is reported herein provides a basis for developing such a model,

Channel modeling involves three tasks, Firstly, the ionospheric-
irregularity structure must be determined, Secondly, a diffraction
calculation must be performed to describe the electromagnetic-wave
interaction with the scattering medium. Finally, the dependences of

the model parameters on geophysical variables must be established.

This work evolved from our efforts to extend and improve an existing
scintillation model that we shall presently describe. Briefly, we have
reformulated the diffraction theory so that it is more relﬁgant to
systems analysis, and we have attempted to validate a gaussiannsignal-

statistics hypothesis that greatly extends the usefulness of the theory,

A, Background

Scintillation activity is most commonly characterized by an ampli-~
tude (or intensity) scintillation index, Briggs and Parkin (1963)
s

proposed :four indices (Sl, S and 84) and pointed out that the

2’ 3!
interrelations among them could be determined if the amplitude statistics
were known. Their index 84 is the standard deviation of intensity norma-

1ized to the average intensity, and it is most convenient for theoretical

References are listed at the end oi the report.
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computations. Briggs and Parkin (1963) performed a diffraction calcu-

lation that relates 54 to dionospheric and geometrical parameters.

Bischoff and Chytil (1969) used the Nakagami distribution (Section II),
which depends only on a2 parameter m = S;z, to calculate Briggs and Parkin's
indices Sl, Sz, and S3 as functions of 54. At the same time, because a
large body of scintillation data existed on strip charts, Whitney, Aarons,
and Malik (1969) devised a scintillation index that could be determined

from amplitude peaks., They showed empirically that their index was

linearily related to 83.

Thus, a2 means existed for standardizing the various reported
seintillation indices to S4, which could then be related to ionospheric
parameters. In the Briggs and Parkin theory a random phase~changing
screen with a gaussian autocorrelation function was postulated. The
ionospheric parameters consist of an axial ratio, a transverse scale
size, and an rms phage variation. The rms phase variation is proportional -

to the ionospheric rms electron-density variatiom.

In addition to these theoretical results, there existed a large
body of published scintillation data., Hence, on 3 February 1971, NASA
awarded a cdntract to SRI to develop a worldwide model for F-layer-
produced seintillation (Fremouw and Ring, 1971, 1972). The model was
based on & detailed empirical formula for the ionospheric rms electron-
density variation. Model constants were determined hy using the Briggs

and Parkin theory to f£it carefully selected data sets.

The secintillation model predicts an average scintillation index
as a function of geomagnetic latitude, local time, season, and sunspot
number. However, it was recognized that a scintillation index alone is
insufficient for systems evaluation. At the very least, one needs the
probability of occurrence of zignal fades below a specified level
(Whitney, Aafons, Allen, and Seemann, 1972). Hence a corollary study

of emplitude statisties was conducted (Rino and Fremouw, 1973).
2 _ _ v



Our approach was to hypothesize gaussian statistics for the complex
field and then calculate the amplitude probability-density function (PDF),

The main difficulty lies with the fact that amplitude moments do not

uniquely determine the general gaussian PDF. The Rice, Rayleigh, and
Nakagami PDFs are special cases that circumvent this problem. However,
our initial calculations showed that none of these PDFs was accurate,

although for some applications they would be usable.

More disturbing was the fact that researchers in opties and radio
astronomy had rejected the gaussian hypothesis altogether. They pre-
sented both theory and data that showed the logarithm of amplitude to be
normally distributed., When gaussian statistiecs canﬁot he hypothesized,
the channel-modeling problem is considerably more difficult. Hence, our
first concern was to determine to what extent gaussian statisties were

accurate.

We also recognized a need for extending the diffraction theory
so that the full temporal and spatial structure of the field could be
determined. Ideally, the problem should be formulated within the frame-
work of engineering systems analysis. This would make the results the

kernel for the analysis of a broad spectrum of scintillation effects.

On 11 November 1972, SRI received a szecond contract from NASA to
carry out this work. The detailed objectives are summarized below.
The results of the research are presented and discussed in Sections III

through VI of this repoxrt.

B. Objectives

The objectives of this research were twofold. The first was to
evaluate the gaussian hypothesis., The technigue to be employed is
described below, The second objective involved a purely theoretical
effort also described below. The objectives were to be pursued simul-

taneously with the hope that the results would be complementary.
3



1. Gaussian Signal-Statistics Hypothesis Test

In an earlier document (Rino and Fremouw, 1973) we proposed a
scheme for obtaining a family of general gaussian PDFs all with the same
scintillation index 84. The PDF family is parameterized by the ratioc of
the Fresnel-zone area to the square of the transverse scale size for a
given effective axial ratio and incidence direction. ZEXach PDF corresponds

effectively to a different ionospheric mms electron-density value.

Our first objective was to obtain a large body of data, compute
histograms for each sultably stationary data segment, and obtain a best
fit from the aforementioned PDF family for the measured 84 scintillation
index. We then compared the fit to the corresponding log-normal PDF to
determine which hypothesis (gaussgian vs, log-normal) is more nearly

correct, and to what extent.

2. Computation of the Tonospheric Time-Variant Transfer Function

In general, a system transfer function is the response (output)
to a sinusoidal excitation (input). The ionosphere can be modeled with
a suitable stochastic transfer funection. Once the transfer function is
determined, Fourier techniques can be used to determine the response

to an arbitrary input.

Thus, our second objective was to calculate the time-variant
transier fupnction for a scattering layer that would provide a reasonably
accurate representation of the ionosphere. The initial formulation was
to be completely general and then specialized to a power-law spectral-
densitv function. We proposed to make as few a-priori spproximations
as possible in order to test the various assumpitions that are typically

made,

The theoretical calculations given define twon complex correlation

functions that suffice to compietely specify the statisticg of a complex



gaussian Fieldy Thus, in principle, one could calculate the statistics

of any measurable quantity in texms of the model parameters.

c. Organization of Report

Because of the conflicting theories on signal statistics, we have
devoted Section II of this report to briefly reviewing this subject, and
to a discussion of the problem of testing the gaussian-statistics

hypothesis from amplitude data alone.

In Section III we describe in detail our data-reduction procedure
and present the resultis of the data that we have analyzed to date. In
Sections III-A and III-B we review the theoretical basis for analyzing
histograms and applying goodness~of~fit tests. In Section III-C we
review our method of obtaining a family of gaussian PDFs each with the

same first and second moments of intensity.

In Section III-D we present the results of applying these procedures
to lonospheric and interplanetary scintillation data. The results,
which are discussed in Section III-E, support the coneclusion that the
gaussian-statisties hypothesis is more nearly correct than the log-

normal hypothesis,

In Section IV we attack the general problem of channel modeling.
In Section IV-A we discuss the philosophy of channel modeling and
identify the quantities that must be computed, We then make a general
computation for an arbitrary spectral-density function (Section IV-B}.
This is followed by a specialization of the wresults for a power-law

spectral~density function that admits a simple anisotropy (Section IV-C),

In Section IV-D we consider the effects of relative observer medium
motion, which is the main source of the observed signal temporal
fluctuations., In Section IV-I we discuss the method of evaluating the

resulting intesrals, and in the Section IV-F we characterize the general




properties of the transionospheric channel and demonstrate them with
some examples calculated by numerically integrating ihe power-law

formulas.

Section V can be considered a synthesis of Sections III and IV,
In that section we apply the gaussian-statistics hypothesis to extend
the complex correlations functions computed in Section IV to include
intensity statistics. As examples we have computed the wavelength
dependence of the S4 scintillation index and the two-~frequency intensity
correlation function. The results are in general agreement with published
data. We have concluded the section with an outline of the method of

making similar computations for phase statistics,

In Section VI we have summarized the complete report and discussed
its implications, We also consider the nature of the limitations imposed
by the first Born approximation and a method that we helieve could be
employed o extend ouxr resulits to allow for the effects of multiple

secattering.



II SIGNAL STATISTICS

Rateliffe was among the first researchers to suggest that radio-
- wave fading is caused by diffraction from ionospheric irregnlarities
(Rateliffe and Pawsey, 1933), By 1950, the theoretical basis for
explaining the phencmenon was well developed (Booker, Ratcliffe, and
Shinn, 1950; Briggs and Phillips, 1950; Hewish, 1952), The theory was
restricted to single scattering, but Fejer (1953) had extended some

results to inelude multiple-scattering effects.

In the diffraction theories, the complex field is given as an
integral over a random function that represents the scattering medium,
Hence, by applyiﬁg the eéntral—limit theorem one can deduce limiting
gaussian statiétics_for the complex field. However, evidently because
of the influence of Rice's (1545) work, the additional assumption of
random phase was usually made. This is well illustrated in Section 8.2

of the popular survey paper by Rateliffe (1958).

Of course, other anmalytic techniques were exploited to analyze
seintillation effects, Chandrasekhar (1952) used geometrical optics to
calculate amplitude and phase scintillation for starxrlight. In 1960
and 1961, however, English translations of the Russian monographs by
Chernov (1960) and Tatarski (1961) became available. These were
essentially complete treatments of wave propagation in random media.

Thelr influence on the theoretical work that followed was considerable,

¥
In the Russian works the Rytov solution to the wave equation was

inti{?duced. It predicts gaussian statisties for the logarithm of the
complex field rather than for the complex field itself. Moreover, it

was originally thoughi to have a broader range of validity than the
\
% 7
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first Born approximation, which is implicit in the diffraction theories,
However, this was later shown to be incorrect. What seems to he the current

most widely accepted view is summarized in Barabanenkov et al, (1971).

Our own results injeet new evidence that favors the gaussian
hypothesis over the log-normal hypothesis. Because this is a funda-
mental question we have summarized the earlier arguments and the supporting

evidence below.

A, The Log-Noxmal Hypothesis

The theoretical basis for the log-normal hypothesis is the Rytov
solution to the wave equation. It gives the diffracted field E as
E/Einc = ew, where Einc is the inecident field and ¢ is an integral over
a random function that represents the medium. Hence, an application of
the central-limit theorem leads to the conclusion that log E/Einc has
gaussian statistics.

We note, however, that when |¢[< <1, E/Einc =1 + |, which is
identical to the diffraction-—theory solution. Hence, the Rytov solution
appears to be more general. However, it has been more recently demon-
strated that the condition ]¢|< < 1 is actually necessary for the validity
of the Rytov solution (Brown, 1966)., Nonetheless, the calculations
require many approximations, and they are subject to some question, In

view of this, theorists have considered the available data to help

resolve the question.

Most often cited are the optics data of Ochs and Lawrence (1969).
Their plots of the logarithm of intensity versus cumulative gaussian
probability show near linearity over three decades of intensity. More-
over, their data fits for Rayleigh statistics are very poor by comparison,
Nonetheless, their method of presenting the data tends to obscure small

discrepancies.,



More recently, Ammstrong, Coles, and Rickett (187Y2) have analyzed
radio-star intensity statistics for interplanetary seintillation data,
Their data show clearly that log-normal statistics give substantially
better fits than do the corresponding Riclan statistics. Howaver,.they
do note statistically significant departures of their measured histograms
from the corresponding log-normal PDF, Thus, while their data are
sufficient to reject the Rician-statistiecs hypothesis, they do not

necessarily exclude the general gaussian-statisties hypothesis,

In Barabanenkov et al, (1971) additional theoretical support for
the log-normal hypothesgis is given, however, By making a Markov
approximation for the wave-medium interaction, it is possible to obtain
an exact wave-—equation solution for narrow-angle scatiering. The
calculated second moments evidently agree with the.ﬁytov solution.
Merecver, the calculated odd moments ave finite. For gaussian statisties

to be strictly applicable the odd moments must be zero.

Even go,; there have been no reported tests of the general gaussian
hypothesis, for reasons discussed below, The difficulty lies with the
fact that the gaussian hypothesis cannot be tested with intensity or

amplitude data alone.

B. The Gaussian-Statistics Hypothesis

Our approach has been to hypotheésize general gaussian statisties.
The joint probability-density function of the real and imaginary parts
of the complex field--say X and Y respectively—-depends explicitly on
five parameters. These are the variances and means of X and Y, Gi,

2
G, ﬂx’ ﬂy and their covariance ny. None of these parameters can be

¥
determined from intensity or amplitude data. However, in most experi-
ments the undeviated component is effectively the phase reference, so

¥



2 2
For Rayleigh statisties o =g ,and € =T =T =0, Rician
X ¥y Xy p. o ¥
statistics permit a finite coherent component ﬂx, For these special

PDFs, the moments of intensity uniguely determine the corresponding PDF.
Hence, they are easily tested. The Nakagami PDF, which has been used

extensively for ionospheric secintiliation, has the same property. It

4"
approximation of the general gaussian amplitude PDF.

depends on the parameter m = 8 Moreover, in some sense it is an

However, as discussed in Rino and Fremouw (1973), the precise

2 2
relationship of mto ¢ , o , C , and | is not specified, When S

x' Ty xy X 4
is sufficiently small the Nakagami PDF is close to the Rician PDF, As
S4 approaches unity, the Nakagami PDF approaches the Rayleigh PDF.
Between these extremes the Nakagami distribution differs substantially
from the Rice distribution. ZIEven so, we had no theoretical basis for

expecting the Nakagami distribution to provide a better data f£it than the

log+~-normal FDF.

In Rino and Fremouw (1973), we showed that by using a simple
diffraction-theory computation for 02, 02, and Cx , and choosing ﬁx
such that Gi + ai + ni = <lEinc|2)“”that is, to ensure energy conser-
vation—--we could obtain a family of gaussian PDFs all with the same first
and second moments of intensity. Our initial resulis showed that the
best data fit among the members of this Ffamily appeared to be as good
as the log~normal PDF, The hest-fit general gaussian PDF is distinguished
by the fact that cr2 > > 62, thus explaining why the fits for Rayleigh
and Rician statistics (Ux = Gy) are poor. Moreover, the condition
cy}> > Gx occurs when large-scale structure dominates the diffraction.
Stated another way, we are observing a manifestation of the fact that
the apparent scale size (squared) that produces amplitude scintillation

is roughly equal to the Fresnel-zone ares.

10



The idea of using general gaussian statistics to fit amplitude-
scintillation data is not new. It is discussed in Wernik and Liszka
(1969). Also, Bischoff and Chytil (1969) discussed the possible effects
of CXY on amplituﬂe statisties. However, evidently the idea had not
béen previously tested, even though Bowhill's (1961) calculations_were

directly applicablé.

In Section III we describe our data-reduction procedure and present
our results, which show that general gaussian statistics as described
give a data fit that is at least as good as, and generally better than,

the corresponding 1o§—ﬁormal statistics,

11
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Il DATA REDUCTION AND ANALYSIS IFOR SIGNAL STATISTICS

In this section we shall make some peneral comments about histograms
and pgoodness-of-fit tests. We shall then describe the theoretical basis

Tor our data-reduction procedure and present our results.

The data that we have processed consist of digitized scintillation
records. The calibrated data samples constitute an instantaneocus-power
time series {Pk] for some period of time--say, T. The data are segmented
into blocks of some convenient size for machine proceasing, For each
data block an estimate of the average power (P) and the second moment

2
of power (P ) is made.

Generally, there are slow variations in the mean power level that
can be compensated by renormalizing the data blocks to some convenient
level., Once this is done, the data blocks are grouped into guasi-
stationary periods., The stationarity is subjectively evaluated by
observing changes in (Pz) and carefully evaluating strip-chart recordings,
It is important for our analysis that genuine changes in the statistics

do not get averaged out,

TFinally, we generate histograms for each quasistationary data period
and estimate the 84 scintillation index and, when enough data hlocks are
available, its standard deviation. The histogfamé are recorded on digital
tape for comperison to various theoretical PDFs. Our muin iﬂterestrié in
the best fit for the family of general gaussian PDFs that have the sane

first and second moments of intensity oxr power,

13



A, Histogram Computation

Histograms are computed by dividing the power range into small
intervals (Pi’ Pi o+ APi), and counting the number of samples that fall
into each interval, If the true PDF, £(P), is known, -ne can calculate
the probabllity Pri of one sample.falling into the :i.th interval, For

small AP , P, = f(P. + AP./2) AP,. TFrom P , one can calculate the
i’ oory i i i r;

histogram statistics.

Indeed, for independent samples the number of samples that fall

t .
in the i h interval (say, Oi) is governed by the binonmial probability

law
N -k
N k
= = - P (ITI1-1)
P[oi k] (I{)Pr. (1 v )
L 4
It follows that
0) = -
( i) NP, (1I1-2)
1
and
2 2
(0.) -¢0,) =XNP <1 - P ) ) (III-3)
i 1 I‘i ri

Hencg, the standard deviation of 0i is given as (1~Pri)/(N Pri). Clearly
the uncertainty increases as Pri becomes small, so that one must make
the usual compromise between resolution and precision.

For convenience we have employed uniform increments. One would like -
at least five samples in the least significant interval to obtain good |
accuracy., However, this is not always possible for sma;l N. A procedure

for calculating confidence limits is given in Introduction to the Theory

of Statistics by Mood (1850, pp. 233-235), when it is important to
evaluate the significance of some segment of the histogram such as the

tail,

In our analysis, however, we have used a single measure of the over-

all fit, as described below. 14'



B. Goodness-of-Fit Tests

Goodnesg~of-fit tests are developed by devising 2 test statistic——
that-is, a measure of the discrepancy between the histogram (or some
othex qﬁantity derived fwrom the sample population) and the hypothesized
probability law, Ideally, one would calculate the probability of the
test Statistic achiaving a given level when the hypothesized probability
law is correct..

If the test is & good one, the test statistiec will achieve a high
confidence level only Ffor sample populations that closely follow the
hypothesized pfobability law. However, developing good test procedures
is an art. Moreover, it is usua11y possible to calculate the limiting
cummulatlve distribution Ffor the test statistics only as the number of

samples approaches infinity.

We have investigated the Kolmogoroff-Smirnoff (K-S) and the chi-
square goadnessﬂof—fit tests. The test statistics for the K-5 test is
the absolute value of the maximum departure of the estimated cummulative-
density function (CDF) from the hypothesized CDF. The limiting
distributioa fqr the test statistic has been determined. We found,

however, that the K-8 test is not zensitive to small parameter changes.

The test statlstlc for the chl—square test is derived directly

from the hlstogram. It is given expliecitly as

- ._-. .k (0:L - (01>)2

- . ITi~4)
=1 ‘ (Oi> ' . (

Hence, except-for the normalization, it is a mean-square-error measure.
2
Moreover the test statlstac.x has a 11m1ting chlwsquare dlstrlbutlon

W1th k degrees of freedom 1ess one degrae of freedom for each parameter



that must be estimated from the sample population (Bowker and Liberman,

1959, pp. 458-461).

We have found that Eg. (LII-4) is very sensitive ito changes in the
gaussian pavameters when they are varied as described below, Hence, we

have used this test exclusively in our data analysis,

c. Computation of Theoretical Gaussian PDFs

The log-normal, Rayleigh, Rice, and Nakagami PDFs have the common
; 2

property that they are completely specified by the moments (P} and (P ).
By comparison, the general gaussian intensity PDF cannot be specified

from intensity moments alcne., One can show that for gaussian statistics,

(P)= &+ T+ 112 (1II-5)
P2 ¥
and
2
2 2 2 B B
(P) - (P) = 25 ((P) - 02) [1 + l;} cos 2(¢ - ¢{] + 04 [1.+ l_%r_]
. o .
where (111-6)
EI'2 = 02 + 02 | {I1I-7)
x ¥
B = IB‘ exp {2i} =0 -o_+2iC (I1I-8)
and
_ Ll
tan § = T]X . (I11-9)
x

2 2
We emphasize that none of the parameters o, ¢., C_, N _mnor T _, can be
o o o TR Y Ty’ x y

determined from amplitude or intensity data alone,

It follows from Egs, (III-5) through (III-9) that there is an

infinity of parameter combinations that give rise to the same moments (F)

16



and '<P2) . To make the problem of testing the various possibilities
tractable, we have used a diffraction-theory computation for B to derive
equations for the necessary parameters. Suppose, for example, that
T]y = O, and B is known, From Egd., (III-6) it follows that Si can be

written as

2 2 4
- -2 ITI-10
S4 Zcrgl_+cr (g2 gl) | ( )
whexe
g =1+ (;El) cos 2 € (I11-11)
1 2
o]
and
2
g, =1+ -‘Ei— . (I11-12)

g

' 2 2 ' ’
Now, if we measure 54, g can be determined from the formula
o _ o1/8 -
2 2 2
= - - 2 S -2 III-13)
o =P g+ I:gl + (g, - 28) 4] :| [gz g1] (

' ) 2
which gives the positive root of Eg. (III-10). Once o is determined,
the gaussian parameters follow from. Eqgs. (I11-5), (III~7), and (IIIuS)

as

. o glrz
1 - 0o - o] (III-14)
o2 = =P [1 » RelBl | (111-15)
x 2 02,

17



2 1 2 re{B}
o'y =50 1 - 5 (I11-16)
g
and
1 2 mi{B
C =—oc -"0—[—} . (IT1~17)
Xy 2 02

A simplified diffraction calculation with a gaussian autocorrelation

function for the irregularity structure gives the result

9 5 2 9 -1/4
= - - u )
B T [(1 tan Ul tan U2 sec 9) + (fl tan Ul + f2 tan 2) J
f tapn U_ + £ tan U
1 -1 1 2 2
X} exp Ky i tan s 2 (II1I-18)
1-t U 8
an ltan Uzsec
where
Z
tan U, = — (111-19)
1 2
B
tan Uz =2 (111-20)
2 2
fl =1+ tan B cos @ (II1-21)
2 .2
f2 =1+ tan 8 sin ® . (II1-22)

. . lzaz sec g
The parameter Z is the ratio of the Fresnel-zone area &———;———— to the
transverse scale size squared. The parameter 8 is related to the axial

ratio, a, and the geomagnetic dip angle, ¥, by the relation

18



2 2 /2
B = (a cos | + sin ¢)' (IX1-23)

The angles 6 and © are the incidence angles at the ionospheric penetration

point (see Rino and Fremouw, 1973).

From Egq. (III-18) we zee that as Z varies from zero to infinity,
B varies from —02 to zero., Hence, from Eqg. (III-15) and (III-16), we
see that for smell Z, 02 = > Gz. Only in the limit as Z approaches
infinity are Rician statistics (oz = ai = 02/2) achieved. Hence, for
a given value of 84, we can change the form of the intensity FDF

congiderably by varying the single parameter Z. We must, of course,

first £ix the axial ratio a and determine the angles @, %, and V.

Examples of two families of curves obitained in this manner are
shown in Figures III-1(a) and III-1(h), For comparison we also show the
corresponding Nakagami and log-normal PDFs. One can see clearly that
there are significant differences for small Z values, particularly for
the larger scintillation-index curves. Hence, if the data show similar
differences, they should be detected by careful processing. The
question of the validity of Eq, (III-18) will be deferred until the

results are presented,

D, Data Analysis

1. NASA OAO-2 Data

Simultaneous data at 136 and 400 MHz are transmitted by the
0A0-2 satellite, which is in polar orbit. The purpose of the trans-
mission is to telemeter data on the 400~MHw chammel, The satellite was
routinely observed at the NASA tracking at Quito, Scuador during 1869
and 1970. Data were selected for scintillation analysis when operator
logs indicated that difficulties were being encountered in applying

normal operating procedures.
19
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Z, the gaussian PDF is very nearly Rician.
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Data for eight representative passes, selected as described

above, have been processed, Four data channels (numbered 1, 3, 5, and

T, consisting of horizontal and vertical polarizations at 136 and.400 MH=Z

respectively, were recorded for each pass. The data hase is sumnarized

in Table III-l. The data were genérally recorded at low elévation anglés,

and they were characterized by very intense scintiliation. Indeed, the

S index was often greater than unity at 400 Miz,

Table III-1

NASA OAO-2 DIGITAL-DATA TAPES

GOREF T b
Analog Date RF Tape Numbers Time (UT)
Number Channels Channels
1-3, 1-5 3-7, 5-7

¥
% 1040 10/1/69 BWY975 BW941l7 0851-1.006
1
E 1082 10/14/69 BWo421 BWo433 0314-0329
q
g 1085 10/15/69 BW9419 BT4556 0235-0257
n
% 1092 10/17/69 BT4578 BT4587 0304~0319
S
g 1489 03/3/70 BW9544 BX0487 0055-0110
1 .
E 1556 03/28/70 BX0481 BW8290 0220-0233
E
a 1660 03/30/70 BW2545 0233-0248
u
i
g 1665 03/31/70 BX0239 BX0240 0340-0356
X
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3

The measured 34 scintillation indices for the fall equinox
data are summarized in Table III-2, Each data block encompasses approxi-
mately 15 seconds of data. A most disturbing fact is that the statisties
are dissimilar at the same frequency for different polarizations, The

single exception is tke 1 October 1969, 400-MHz data for Blocks &, 8,

and 10,
Table III-2
2
S4 VALUES FOR 0A0-2 FALL EQUINOX DATA
(a) 1 October 1969, 0859:15 UT
Block No. BW 7975 I'ile 1 BW 9417 Iile 2
136 MHz Horiz. | 136 MHz Vexrt., | 400 Miz Horiz,|400 Miz Vert.
1 1.1789 2,1233 0.4071 0.6052
2 1.2252 2.7863 0.7741 2,6971
3 1,0005 2.4049 0.6281 0.2355
4 0.9925 1.8213 0.7195 0.5011
5 1.1087 2.0123 0.1931 0.2767
G 1.3726 2.,2637 0.4766 00,3655
7 1.05124 3.2596 0.5740 0.6639
8 1,5115 4,7579 0.9410 0.9278
9 1.5744 3.1266 0.7641 0.75583
10 0.7745 1,4798 0.2699 00,2757

22



Table IIXI-2 (continued)

(k) 14 October 1969, 0316:04 UT

Block No. BW 9421 File 1 BW 9433 File 2
136 MHz Horiz, | 136 MHz Vert. | 400 MHz Horiz.| 400 MHz Vert.
1 0.9339 0.8759 0.8817 1.0477
2 1.9755 2.5796 0.7025 0.8122
3 1.8632 2.1910 0.8834 0.6527
4 2.,7457 3.8259 0.9971 0.8230
5 1.3776 1.9358 0.9317 0.8113
G 2,4834 2,9448 1,9673 1,7433
7 2.2778 2.8537 1.5217 l.2464
8 1,9309 2.2038 1.0278 2.4421
9 2,0347 2.,3987 3.6043 1.31186
10 1.7913 1.8859 1.5389 0.7388
11 2.7145 2.8625 0.7257 0.5043
12 1.9286 2,1612 0.5487 0.4050
i3 1.8836 2.4187 0.2795 0.2372
14 1.3492 1.0591 0.6565 0.5001
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Table III-2 (continued)

(c) 15 October 1969, 0244:03 UT.

Block No. BT 9419 File 1 BT 4556 File 2
136 MHz Horiz. | 136 Mz Vert. | 400 MH=z Horiz.|400 MHz Vert.
1 2,8125 44,4357 1.00861 0.5867
2 1.1833 2.78665 | 1.0472 0.6532
3 2.2734 ' 2.8146 0.7737 0.8753
4 2,0565 3.1683 1.5404 C.8502
5 1.9092 2.7466 1.0703 1.3409
6 1.8667 2.7279 1.2106 0.8164
7 1,9109 2.2961 0.8316 - 0.7684
8 1.6300 1.59560 0.5620 0.7638
9 1.6658 1.5764 1.0015 1.4876
10 1.7062 1,8075 0.3898 0.4950
11 2.0086 1.9361 0.2221 0.3846
12 1.5782 1.4455 0.2316 0.3820
13 1.5835 1.4111 0.3557 0.4869
i4 1.9064 1.5007 : 0.3103 0.4052
15 1.9456 2,3084 0.3961 ¢.5007
16 2.1826 2.0509 0.5640 0,5808
17 1.8364 1.8634 1,0538 1.3310
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Table I1I-2 ;conéluded)

{(d) 17 October 1968, 0308:01 UT

Block No. BT 4578 File 1 | °© BT 4587 File 2
136 Mz Horiz. | 136 MHz Vert, | 400 MHz Horiz,|400 MHz Vert,
1 1,3234 1.1452 -~ 0.3656 0.3277
2 1,8886 1,4484 0.2815 0.3012
3 1.5665 1.2048 . 0.4251 0,4375
4 .1.8715 1.2709 0.3925 0,4126
5 2.7674 2.8522 0.5915 0.7938
6 7.4664 5.0305 1,5980 1.0067
7 5.6374 4.3270 0.5403 1.7873
8 3.7195 2.9596 0.3623 0.5829
9 3,7616 3.0175 0.4199 0,5931
10 2.8402 2,9652 ' 0.3279 0.3569
11 1.5799 2.1713 0.2110 0.0982
12 8,4029 - 1.2729 0.5618 0.1661
13 6,3948 17.7023 0.3794 0.3641
14 3.5439 3.9836 0.9426 1,0086
15 6.3153 1.0640 0.5162 0.4097
16 1.0136 1,6912 1.2929 0.8343
17 2.0756 2.3189 0.7393  0.7099
18 2.9416 3.4522 1,7486 0.9880
19 2,.9619 3,9994 1,5129 . 0.9516
20 6.5558 7.,9449 3.1781 2,9251
21 8.0384 1.8612 1,3810 1,5783
22 13,5004 7.7942 - 1,0309 1,0226
23 _ 9,3590 5.6452 1.4560 1.1452
24 2.7745 3.2785 ’ 1.8369 1.5030
25 1.6137 1.7660 0.2078 0.2250
26 1.9871 1.8546 : 0.7048 0.4457
27 2,2410 1,7230 0.4764 0.5736
28 4,9856 2,5434 0.7316 0.9798
29 5.6505 3.0766 0.8343 1.2218
30 7.3730 3,2692 0.6834 0.9621
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The éﬁove mentioned fact, coupled with the generally strong
scattering conditions and the short stationary periods due to satellite

. motion, renders these data unusable ior_¢ur'purposes. We note that a
gaussian field cannot produce an S

4
we have processed one data set to illustrate the difficulties.

index greater-than4J§. Nonetheless,

.For the 16 October 1969 data, 6n1y the first of the pair of
digital tapes that constitute one pass was available. Hence, only the
136—MHz data were complete, Nonetheless, they display generally weaker
scattering than for the data summarized in Table IXI-2, Tha processed

data for the horizontally polarized antenna is shown in Figure III-2,

300, l l ‘
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0 1.0 . 2.0 3.0 4.0
NOHMALIZED INTENSITY

NUMBER OF COUNTS {(TOTAL 6000)

8

7

{b) LOG-NORMAL PDF

200 CHANNEL 1 —]

100

1.0 2.0 3.0 4,0
NORMALIZED INTENSITY

NUMBER OF COUNTS {TOTAL 6000)
o

o

LA=-2273-1

FIGURE {l[-2 LOG-NORMAL AND BEST-FIT GAUSSIAN FDFs FOR NASA 136-MHz OAO-2
DATA — ANTENNAS HORIZONTALLY POLARIZED
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The best-fit gaussian PDF is clearly a better fit to the data than the
corresponding log-noxmal PDF, However, for the corresponding vertically

polarized data shown in Pigure III-3, neither PDF provides a good Fit.
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FIGUR.E 1i-3  LOG-NORMAL AND BEST-FIT GAUSSIAN PDFs FOR NASA 135-MHz OAO-2
DATA — ANTENNAS VERTICALLY POLARIZED

Because such behavior cannot he reconciled with any-currently
available weak or strong scatter theory, we did not pursue these data

further, Rafher, we have concentrated on éynchronous—satellite data

27



taken under conditions of weaker seattering.- Howeveri'the-0A0—2 data
are iﬁteresting in fheir own right, They ‘have been analyzed (Blank

and Golden, 1973) and the polarlzation effect noted.

2, NASA ATS-5 Data

Six data sets for the synchronous satellite ATS-5 recorded ot
[+
Lima, Peru.during November 1971 have been processed. Among the six data
sets only one produced processable data. The data tapes and the

]
difficulties_encountered are summarized in Table III-3 below,

Table III-3

NASA ATS~5 DATA

. GORF No. ' UDate - i . Comments
BO7445 11/17/71 Short record
BO533¢ | 11/02/71 | Bad tape
BO7830 | 11/11/71 Good data
. BO7805. 11/12/791 - | . Bad calibration.(possiﬁly recoverable)
BOG819 | 11/08/71L Wrong format '
BOBZ T . - 11/04/71 - Wrong format

Two channels of data were recorded w1th spaced recelvels
) separated by 1200 Tt, along an east—west basellne. The receivers were
located at Lima, Peru. These data are 1dentlca1 in format to those
presented by Rino and Fremouw (1973) The-two data-channels_shquld heva
nearly 1dentical statistics. The data tapcs-BOGSlQ and BOG327 ﬁad,very
different data in the two recorded channels. Hence,;we.did‘npt.prqcessf

these data further.

One compllcation with -the ATS-5 data lies W1th the fack that

the satellite is spmn—stabmlmzed The antennas are not completely
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despun, so that the data show a slight periodic modulation at approximately
0.16 Hz, The effect is to smear the histoprams, since data from different
paris of each cycle have different means., We did not attempt to correct
the dava foxr the satellite spin bécause of the increased complexity and

cost, R

In Figure iIIéé we show the histogramé for the 11 November 1971
date together with the correspoﬁding log-normal PDFs. The measured 84
indices were 0,37 anva.34 for Channels 1 and 2, respectively. There
is clearly o statistically significant difference hetween the measured
histograms for the two channels, The near 10% difference in the S4
indices is larger than their individual standard deviations of ~ 2%,

2
Moreover, the respective X parameters differ by more than a factor of 4.

Evidenily the two receiver characteristics are different. For
example, the satellite spin is slightly more proncunced in the Channel-2
data. This was inferred by noting that the relative intensities of the
speqtral lines due to the satellite spin¥* are approximately 1 dB higher
for the Channel-2 data.

The results of applyiﬁg the curve~fitting procedure that we
have described reflects the differences befween the two channels. In
Figures I1I-5 and III-6 we show the best-fit gaussian PDFs, Tor the
Channel-l data the improvement is considerable. We see that the "rise
time" for the log-normal PDF is too slow. Moreover, it underestimates
the peak of the histogram. The best~fit paussian PDF completely corrects
these discrepancies (cf. Figure IIiﬁé). The best-fit parameters are
:summarized;in Table_Illwéi We see that for both chgnnels,_less than 20%

of the scattered power is in-phase with the undeviated compo.ent.

*® : ,
See Figure III-7.
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Table III-4

PARAMETERS FOR NASA ATS~5 DATA

(® = 5.0, & = 31.04°, ¢ = 110.8°)

Parameter Channel 1 Channel 2

5, 0.3724 0.3421
2

X 719.0 816.0

A 0.590 0.880
2

o 0.2162 0.1620
2%

o 10,0811 0.1357
EIE 0.8892 0.8082

LB 19.60° 25.60°

*
Normalized to incoherent compconent
Ims power,

For the Channel-2 data the log-normal PDF remained a slightly
better f£it than the best-fit gaussian PDF. Hence, the data are not
mutually consistent. However, as noted above, the more pronounced spin

effect may be cause for rejecting the Channel-2 data,

To complete analysis of the ATS-5 Lima data we have computed
the power spectrum of the intensity fluctuations. The results are shown
in Figure III-7 together with a family of power-law SDFs [Eq. (IV-27)]
for different spectral indices . The ¥y = 1.5 curve, which is evidently
the best fit, is close to the v = 1.40 value inferred from satellite in-
situ measurements (see Section V-D). However. the receiver noise tends
to force this result, and a more careful analysis should be performed.

The arrows point to the satellite spin lines.
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3. AFCRL ATS~5 Data

The Air Force Cambridge Research laboratory has processed o
large volume of scintillation data for amplitude statistics, Their
primary interest was in characterizing the average statistics for
relatively long periods of time., They found the Nakagami distribution
to be well sulted for that pﬁrticular.task (Whitney, Aarons, Allen, and

Seemann, 1972).

Because of our mutnal interest in intensity sﬁatistics,
arrangements were made for SRI to obtain and process some representative
samples of the AFCﬁL data, Our analysis of the data wﬁs complementary,
in that we are interested in a precise computetion of the statistics fox
short perieds. In this subsection we summarize the resulits of processing
sixteen hours of data recorded at Hamilton, Mzssachusetts during April
and May of 1973. Both VHF and UHF signals were recorded, although the

UHT scintillstion was generally too low to he reliably processed.

The date are grouped into five quasistationary segments, as
described in the introduction to this section. The datz base is summarized
in Table III-5, Data Sets 2 and 4 contain only 1000 samples each. Hence,
their sccuracy is generally pooxer than for Date Sets 1, 3, and §. Tor
each data set we have obtained the best-fit gaussian and the corresponding

log-normal PDFs,

The parameters for the VHF (136 Miz)} deta are summerized in
Table ITI-G6, We first note that for each data set the gaussian xz value
denoted as Xzauss achieves a lower value than the corresponding log-
normal ¥ value denoted as XiN' Moreover, the difference 1z largest

for Data Sets 1, 3, and §, which are statistlically most significant.
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Table IIT-5

SUMMARY OF AYCRL ATS~5 DATA

Data Set Dete No, of Hours Sample Rate S4(VHF)
(Hz)
1 4/12/73 2 0.14 0.5527
9 4/12/73 1 0.14 0.3442
3 4/15/73 3 0.14 0.2664
4 4/15/73 1 0.14 0.1356
5 5/18/73 4 0.31 0.2829
Table III~G
PARAMETERS FOR VHF DATA
(B = 3.2, g = 55.20°, 4 = 40.21°)
Data| 8§ 2 2 9 2
B LB z
Set 4 XLN gauss ¢ crx I l
1 | o0.5527 | 175.4 | 166.5 | 0.3501 | 0.0971 | 0.8780 | 23.4° | 0.4
2 | 0.3442 | 113.9 | 113.8 | 0.1494 | 0.1618 | o0.7879 | 31.1° | 0.6
3 |0.2664 | s6.5 | 56.67 | o0.1001 | 0.1307 | 0.83298 | 27.5° | 0.5
4 lo.1356 | 82.7 | 75.64 | 0.0145 { 0.3171 | 0.5481 | 48.1° [ 1.4
5 | 0.2829 | 169.5 | 107.2 | 0.1362 | 0.1005 { 0.8734 | 23.8° | 0.41
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We also note that for Data Sets 1, 3, &, the Z parameter lies
between 0.4 and 0.5. The corresponding ai parameters show that less than
20% of the scattered power 1s in phase with the steady or undeviated
signal components. The eguiprobability ellipses for the joint PDF of
X and Y are characterized by |B| and £B, Indeed, one can show that the

1+ |B

ratio of major to minor exes is given as 1 Bl and the orientation

angle 1s 1/2 4B,

Hence, the hest-~fit gaussian PDF has an axial ratio greaier
than 10 (not to be confused with the irregularity axial ratio a) and it
is within 10o of being perpendicular to the undeviated signal component.
The strength of the scattered component is the main variable. We note
that thers is no obvious breakdown of the theory for 02 as large as 0.35,
It is worth noting that while we have discounted the QAQ-2 data, the PDF

3
in Figure III-2(a) corresponds to a ¢ parameter larger than 0.9,

In Figures III-8, III-9, and III-10 we show the log-normal PDF
and the best-fit gaussian PDF for Data Sets 1, 3, and 5. We see in each
case that the log-nommal statistics achieve a slower rise time, and then
underestimate the peak of the histogram, This pattern was previously
observed in the NASA ATS-5 datas at least for the Channel-l data [cf,

Mgures III-4(a) and III-5(a)].

In Table III~7 we have summarized the UHF parameters for the
three data sets that showed the strongest scintillation., The parameter

T is the spectral index defined in Section V [Eq. (v-3)]. We first note

2
)
2 2 VHT
that theory predicts ¢ o A . However, for Data Set 1,-15~— = 11.9,
A2 . “unr
whereas = 9.18, We believe the discrepancy to be due to noise
A
UHF

contamination of the VHF data., The spectral-index value is also somewhat

smaller than we expect (see Section V-i-1).
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- Table III-7

PARAMETERS FOR UHF DATA
B =2.1, 8 = 31,04°, ¢ = 10.8°) -

Data s 2 ] 2 2 lBI

set| % | *my {%gauss | © %%

A 7 m

1 |o0.0851 |123.8 | 123.8 |0.0293[0.0464 | 0.9431 | 15.9° | 0.25|1.76
2 |0.0714 | 61.87| 61.87|0.0126|0,0071 | 0.8780 | 28.4° | 0.4 |1.48
5 | 0.0634 | so0.00| e5.81}0.0023|0,22 |o0.32 {65,4° | 3.2 |1.39

The discrepancies become larger as the UHF 54 index becomes
gmaller. DMoreover, we observe that the best-fit 2 parameter steadily
increases. That is, the stétistics are tending to Riclan as we would
expect if the noise contribution were dominating the statistics. We do
note, howeﬁer, that for each data set the best-fit paussian PDF achieves

2 2
2 lower ¥ +value than the corresponding log-normal ¥~ value,

4, UCSD Interplanetary Secintillation Data

As a final example we present some interplanetary radio-star
scintillation data taken at the University of California Solar Observatory
located near San Diego, Califormia. The observations were made at
75 MHzm. The UCSD data processing for amplitude statistics is discussed
by Ammstrong, Coles, and Rickett (1972), which we referred to in

Section II-A.

Arrangements were made to apply our data-reduction procedure
to some representative UCSD data. We assumed normal incidence and
iostropic irregularities. In the data reduction we varied the transverse
scale size rather than % directly, The wavelength is known, and the mean
distance bhetween the earth and the sun was used for the distance para-

meter =,
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Three typical results are shown in Figures III-11(a), (h),
and {e¢), In all cases the best-fit gaussian PDF f£it bhetter than the
corresponding log-normal PDF. The transverse-scale parameter varied
between 800 and 1000, which is comparable to the square root of the
Fresnel-zone area for 75 MHz at the distance of the sun, Thus, the best-
fit Z-parameter value is near or less than unity just as it was for the
ionospheric secintillation data., Indeed, the striking feature in these
date 1s the similarity of the histograms to those obtained for the
ionospheric secintillation data., We observe again that the discrepancy
between the data and the log-normal PDF is systematic in that the log~
normal PDF achieves too small a rise time, and then underestimates the

peak of the histogranm,

The similarities between the ionospheric and interplanetary
seintillation strongly svygest that certain features of the scattering

are universal. This pos.ipnility is discussed in the next subsection.

E. Summary and Conclusions

In this section we have described a procedure for obtaining a family
of probability-density functions for intensity based on the assumption
of gaussian statistics, Each member of the family has the same first and
second moments of intensity. By comparison, the log-normal and Nakagamil

PDFs are uniqueiy determined by the first and second moments of intensity.

In Section I1i-D we applied the procedure to obtain a hest f£it to
measured hiztoprams from ionospheric and interplanetary scintillation
data, The results support the general conclusion that the best data
£it among the members of the gaussian family is significantly hetter
than the corresponding log-normal PDF, The implication is that the

diffracted field rather than its logarithm has gaussian statistics.

The best-~fit gaussian PDFs display a considerable degree of

similarity. We f£ind that independent of the wvalue of 84, the magnitude
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of B is generally larger than 0.8, while its angle is less than 300.
This implies that more than 80% of the scattered ﬁower is in phase -

quadrature with the undeviated signal component, and ny is f£inite,

These results readily explain why Rician statistics generally
provide & poor fit for scintillation data. The best-fit gaussian PDF in
general tends to be more peaked about its mean than either the corresponding
Rice, Nakagemi, or log-normal PDFs. As a'practical engineering matier,
the latter PDFs will give more conservative probabilities fox a given
8, index, As an example, we bhave computed fade margins for a given B

4
)
index and different PDFs by setting B = 0.85 £20°, which seems to a

4

good median value. The results arxe shown in Figure III1-12
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Finally, we consider the validity of Eq. (I11-8). We Lnow
from the shape of the intensity power spectrum [ see Figure ITI-7) that
a'gauséiaﬁ autocorrelation function is incorrect. Indeed, if one uses

e point as a measure of spectral width, the gaussian PDF corresponds
. 2 . -N
¥ ™ ® limit. To see this, consider that e = 1im (} +'EF) .
‘ 7 N
What we have observed suggests that any diffraction model that
gives rise to the appropriate B value for some set of parameters will
achieve a near-optimum data £it. It seems unlikely that one could
chtain sufficiently accurate data to resolve fine details even if a

unigque solution did exist.

We shall show in Section IV that independent of the partienlar
spectral-density~function shape, one can always achieve the condition
a&_> > Ui for sufficiently small Z, The transverse scale parameter
can be interpreted as an "outer irregularity scale” following the
terminology of turbulence theory. A smail value of Z will always be
achieved if the outer irregularity scale is sufficiently large. Indeed,
for incompressible~fluid turbulence, the outer =cale is infinite. Our
results are consistent with the assumption of a similar result for

magnetohydrodynamic fluids.

In closing this section we note that one possible way to
reconcile with theory the result that the field statistics are gauvssian
rather than log-normal (see Section II) is to reject the Markov assumption,
It has been shown that the Markov assumption is sufﬁicient for the
validity of the Rytov solution. Tatarski (1971) has discussed the
validity of the Markov approximation and shown that it is consistent
with iostropic irregularities, but not necessarily with anisotropic-
irregularity structures. Since the latter is the case for ionospheric
irregularities we have some basis for believing that the Markov assumption

ig in fact too stringent for radiowave scintillation.
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IV THEORETICAL BASIS FOR CHANNEL MODELING

In the introduction to this report we briefly discussed the general
problem of channel modeling. 1In this section we shall present in detail
theoretical calculations that form a basis for a scintillation-effects

channel model.

A, Introductiion

A funetional block diagram of an artificial earth satellite commu-~
nication link is shown in Figure IV-1l. For our purposes, the modulationm
is a complex voltage applied for some period of time--say, T milliseconds.
Demodulation is the process of removing the complex envelope from the
received sigmal, If the transicnospheric chamnel were perfect, the

demodulated signal would be an exact replica of the modulating waveform.

TEMFORAL DISPERSICN |
SPATIAL DISPERSION

I
I
I
|

TRANSMITTER |pof ANTENNA [—tpp! THARSIONOSPHERIC »| ANTENNA |9 RECEIVER
|
MODULATION I DEMODULATION

LA-2273-5

FIGURE 1V-1  FUNCTIONAL BLOCK DIAGRAM OF SATELLITE-EARTH COMMUNICATION
SYSTEM

We are not concerned here with additive noise or interference,
since even in their absence the demodulated signal is not a perfect

replica of the modulating signai. A wave packet suffers temporal
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dispersion owing to the fact that different Ffrequency components propa-
gate with slightly different velocities. Moreover, raypaths are curved

so that a "pencil" of rays suffers spatial dispersion as well,

There are several other effects, such as Faraday rotation and
absorption, to name two. These efiects are characterized by the fact
that they can, in principle, be computed from the deterministic component
of the ionospheric index of refraction, which depends explicitly on

frequency and position (Lawrence, Little, and Chivers, 1964),

Qur interest here is in the effects produced by the irregular
departures of the ionospheriec index of refraction from its mean value,
Thus, we must make a somewhat arbitrary division between the slowly
varying (spatially as well as temporally) component, which we shall
assume to be deterministic, and the residual, which we assume to be

representable by a suitable random function.

TFor simplicity, we shall ignore the deterministic effects, so that
in the absence of index-of-refraction irregularities, the signal free-
space-propagates from the transmitting antenna to the receiving entenna.
There 1s no serious loss of generality in neglecting the deterministic
effects; some can be eliminated by operating procedures. For example,
Faraday-rotation effects can be minimized by using circularly polarized

antennas,

For engineering applications we seek a description of the terminal
behavior of the system shown in Figure IV-~l. Indeed, a fairly well developed
theory of signaling in fading dispersive channels exists, One of the most
basic measurements is a determination of the system frequency response.

For the transionospheric channel, a monochromatic signal emerges with
a stochastie component that is slowly varying compared to the frequency

of the incidert* wgve,
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There are two quantities to be determined--namely, the fraction
of the incident energy that is randomized, and the statistiecal structure
of the random component. Our analysis will be restricted to wealk
scattering, and we shall first caleculate the complex second moments
of the field. In Section V we shall apply the properties of gaussian

fields to calculate intensity statistics.

Following our "black-box' approach to channel modeling, we would
calculate the complex second moments of the demodulated voltage
v(t) = {v(t)) + §v(t).. The technique has been discussed in detail
by Bello (1963). We represent the response of the system shown in
Figure IV-1 to a sinusoid of frequency £, as h(t;f), a stochastic
function of time t and frequency. Then, the response to an arbitrary
signal whose spectrum is §(f) can be calculated from the integral

vit) = f%(r)n(t;f)ez“iﬁd

T . (Iv-1)
The first importsnt quantity is {lav(t)lz), which, when compared

to |(v(t))[2, is a measure of the intensity of the disturbance. The

second-order moments {(S§v(t) 5v*(t')) and (§v(t) 6v(t’)) follow directly

from the similar quantities for h(t,f) by applying Eq. (IV-1). We note,

however, that from Figure IV-1l, h{t,f) includes the effect of the trans-

mitting and receiving antennas, which are spatial filters, and the

receiver, which is a2 temporal filter.

To eliminate these deterministic factors we can compute the response
of the transionospheric channel to a single monochromatic plane wave for
a time-invariant scattering layer. This is a more fundamental quantity
chan h(t,£), and we shall see in Section IV-D that h(t,f) can be readily
derived from it. Thus, our problem reduces to one of calculating the
second-order complex moments of the random field that results from propa-

gating a plane wave through a weakly scattering irregularity layer,
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To formulate that problem, we first consider the eguation for wave

propagation in an irregular medium--namely,
2., 2
VE+k e§=~v(ﬁ + v log e) . (1v-2)

The relative permittivity ¢ is = random function parameterized by position
and time, although in deriving Eq. (IV-2) we have assumed that the temporal
variations of ¢ are slow compared to the propagation time through the
nmedium, We write ¢ = (e) + §eg, and restrict ourselves to the class of
problems for which (e¢) = 1, and (692)1/2 < < {e). (The angular brackets

denote ensemble average.) It is then natural to consider a series solu-

tion to Eq. (IV-2) with terms O (]aelﬂ) in magnitude.

The gradient term in Eq. (IV-2), which produces polarization effects
(Strohbelm and Clifford, 1967), is usually neglected on the grounds that
significant changes in ¢ occur only over large distances compared to a
wavelength. For our applications, this is unnecessarily stringent.
Following Balsexr (1957) and Tatarski (1971), we have applied a series
solution to Eq. (IV-2) directly. The result is a sequence of "cascading”

inhomogeneous vector differential equations.

If the incident field (the zeroth order term) is a plane wave
— = — — -+,
Eo(r) = Ao exp {-ik - r}, it can be shown by vepeated application of
Green's theorem that the first-order temm El(?) is given by the integral

expression
k2
TRy = s .3 V2 g’ ik . R =y
L (r) = [A (ar Ao)ar] [3)[sexexp{-ik . r'}a(,r" )

+ terms O (l/rz) {IV-3)
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where

exp{-ik|T - ?’l]

7 -7

[}

(1V-4)

=t -t
G(r,r")

and a. is 8 unit veector in the direction of T. We see from Bq. (IV-3)
that contributions from the gradient term are ultimately negligible at

points well removed from the scattering lasyer,

We shall consider scattering only in a small cone of angles about
8. SO that the term in square brackets in Eq., (IV-3) is approximately

4my
equal to KQ. Moreover, for the frequencies of interest, fe =~ - _;22 ANe,
4
where re is the classical elecitron radius, and ANE is the local departure
ol the electron density from its mean value, With these simplifications,

Bq. (IV-3) becomes

E@ = -1 J] an *NE ()6, v/ )dr’ . (1V-5)
1 e e [o)

We note that Eq. (IV-5) is linear in 30(3).

The validity of this model depends on the accuracy with which
El(¥) represents the random component of E(;). Clearly, the approxi-

mation ﬁ(?) agﬁo(;) + §1(3) is valid only if the condition
(F E*) <<a’ (IV-6)
1 1 0

is satisfield. It is common experience, however, that the first Boran
approximation [Eq. (IV-5)]} gives an accurate representation of the random
component of E considerably beyond the few percent limit imposed by

Eq, (IV-G). On the other hand, we know from theory and experiment that
multiple-scattering effects must ultimately be considered. Nonetheless,

our resulits can still be applied by using Uscinski's (1968) method. In
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effect, the weak-scatter results are repeatedly integrated in a multi-

layer model,

It remains to assign a statistical structure to ANe and compute
appropriate statistical descriptors for El' We have used the transverse
spectral decomposition of QNE as was done recently by Lee and Harp (19869),
In Appendix A we have compactly summarized the main properties of the
spectral decomposition of complex homogeneous fields. The power of this
approach is demonstrated by an application to the free-space propagation

of random fields.

Before continuing, we note that the major difference between our
own analysis and the extensive analyses of deWol® (1872), Tatarski (1871),
Lee and Harp (1969), Strohbehn (1968), and others is that we have analyzed
the quadrature components of the diffracted field rather than their ampli-
tude and phase. 7To obtain amplitude and phase statistics we invoke a
gaussian signal-statistics hypothesis, It h.ens that amplitude statistics
are simply derived, while phase statistics are quite difficult because

the statistics are penerally non-Rician (Section V-B).

By comparison, most researchers in computing phase statistics have
either accepted the Rytov solution (ecf. Tatarski, 1971; Strohbehn, 19G8),
or they have made the small-phase approximation of equating the signal
phase with the phase-quadrature component (cf. Lee and Harp, 1969). When
the small-phase appreximatien is valid, all results agree, including

those derived under the gaussian hypothesis,

B. The Transfer Function for a Weakly Scattering Irregularity Layer

Following Lee and Harp (1968) and deWolf (1972) we assume that
ANQ(?) is statistically homogeneous (at least in the wide sense) in any
transverse plane z = const. Hence, it admits a spectral decomposition

of the form
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BN G = fexp{-ik + p} dE(K:2) (IV-7)

~

— — ~ - —
where r = p + azz, and az * p=0, We shall vefer to g(m;z) as the

transverse Fourier spectrum of ANe(;).

We let k + = = ﬁ; . ; + kzz, and consider a scattering layer of

thickness I, centered at the origin of coordinates, Substituting Eq., (IV-7)

into Eq, (IV-5) and changing the order of integration gives the result

L/2
E@ =-r E@ [[[  dgszexp(~ik - 7}
~L/2
@ exp{—ik Ap + Az }

x exp{ik pz} [T

—il (w Ty . - ; _
~ 2 on1/2 exp{-il (k + E) - apl}dpp dz’  (1V-8)
i (Ap + AZ )

—

vhere Ap = p’ - ; and Az = =z’ - 2z, The integration over 55 has heen

evaluated by deWolf (1972) as

. (21:) exp[—ikg(K;I?T) |az|}
~i

& (ﬂ-T ) (IV-9)
24 K,gr
where
- v a2 3" 1/2
g(m;kT) =[11-(1c + kT) /k ] (IV-10)
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By using this result, we can write Eq. (IV-4) in the form

El(r) = Eo(r) g, (pik) (IV-11)
where
y (o5l = drr Hexp{—ix . P}dq,z(}c;k)' (IV-12)
and
L/2 exp{~-ik g(ﬁ;ﬁ )]Azl]
- — - . T ;
dy (K3k) = dg(K;z/)exp{ik Az} dz’ . (IV-13)
"!Z Z — =
-L/2 g(K;kT)

We see from Egs. (IV-11), (IV-12), and (IV-13) that Ia'l(}') is derived from
ﬁo(;) by scalar multiplication with a complex random function WZ(E?E)

that admits a transverse spectral decomposition [BEq. (IV-12}] of the

form discussed in Appendix A. It is worth noting here that the only

difference between the Born solution and the Rytov solution is that the

— =t ~— -4
diffracted field takes the form E(r) = Eo(r)exp{¢z(p;k)] for the Rytov

solution.

e B ) —_ -
We shall characterize El(r)//ED(r) [Eg. (1v-11)] by the two-frequency

correlation functions

e

— (o) (B
R¢ (Ap;f ¢ i B )

A

L
ny.z(}’;ﬁ(“)) wz*(ﬁ;i{(m» (IV-14)

and

B (';f ,F =
g, \AP

1=
/N;;\
—
ol
wl
~
Q
L
o
=
N
——
-l
=1
L)
»
~——
\/
~~
(=
<
1
=t
(4]
p—



|y .. . . - ,
differ only in magnitude (lkl =k = 2xf/0).

—+{@) -
The wave vectors k and 'k
By using the orthogonal increments property of df (Appendix A), we can

easily derive our main result:

q’ — — — — d Y
5 AN ;\(Q’)A(B)@Nz)H 8 (Kik(m,k(ﬁ)) exp{-ik * Ap) o (1V-16)
=] . e z
Vs ' (27)
where

L/2
] (E;E(d):i(a) = II @(ﬁ;z’,z”)exp{i[?(d)az’ ¥ k(B)Az{I}
z L Z Z

-L/2

exp{—i [k(a)g(—y_c’;.l-{’(a’)) |Az’| T k(B)g(E;E(B)) |Az” l] }
" o(#7 ) of7:2®)

dz’dz” (IV-17)

The upper signs in Egs. (IV-18) and (IV-17) are used for the R¢ integral
Z

and the lower signs for the B, integral. In Eq, (IV-17) @(?;z’,z”) is

¥z

the "transverse' spectral-density function for the irregularities. When

-
z/ = 2¥, g(x;z’,2") is purely real, non-negative, and symmetrie.

Equation (IV-16) can be simplified by changing variables to 2%

=z! + z” and n=2’- z”, We assume that

(K3z7,2") = p) alkm) (1V-18)
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where

BX) = (1V-19)

The result is

EZ(E:E(Q) ,T:'(B) ) = (o)

L
x| [ eGiimen {~iﬂH*(?c';E(°') ,E‘B")}sm [gm - n)H(Tc';E("” @ )] @ - man

0 4

Y | @) =(@) 1

s ) = ) = 1 o ()

+ ‘[L g(}c,ﬂ)exp{ inH (K,k K ) sinc [2(1, + 'I])H(}c;k o ,k(B))] @ + man
(1v-20)
where
H = [G(”) T G(B)] /2, ®¥ = [G(“) + G(B)] /2
(1v-21), (IV-22)

and

(@) () ‘ (o)
G(S) = k(B) cos 9[1 - g(B)] . (IV-23)
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In the coordinate system of Figure IV-2

2 2
, + Ky 2 tan e(wxcos @ * Kysin 0y 1/2
- —_ - - .
g’ =8sec gg ={ 1 5
(k cos 8) k cos g
(1Vv-24)
-
k IONOSPHERE PENETRATION POINT
' p‘ X
¥ ¢
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MAGNETIC
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E (o, 0; 2}

PLANE OF OBSERVATION

N

LA-2273-19

FIGURE 1v-2 GEOMETRY FOR LAYERED-MEDIUM SCATTERING CALCULATIONS

A further simplification can be realized when @(T{.;ﬂ) = 0 for

n> ﬂm < < L. We can then neglect the T~dependence in the sinc~-function
ax

terms in Eq, (IV~20) and extend the limits of integration to infinity.

The integral in Eq. (IV-20) then simplifies to
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sine %H(T{';T{’(a),ﬁ(ﬂ)) i E,H*(E;'ﬁ(o’),ﬁ(a)) (1V-25)
where
ek, k) = [ el expine }ay . (1V-26)

We note that in general the entire =z dependence is contained in the

first term of Eq. (IV-20),

To obtain some feeling for the physical meaning of these results

(o) - f(E)

consider the single-frequency case in which £ = £, Then,

H =0 for the R integral, and it is independent of =z, This result is

Vo
expected because of the free-space results of Appendix A. With a suitable
normalization, the correlation functions for the in-phase and phase-
quadrature components are % (1 + Re{sz}], respectively, In this formu-
lation there is never a pure phase perturbation because propagation,

which takes place continuously, acts to redistribute the phase perturbation

as they occur [ see Appendix AJ.

In the next subsection we shall specialize these results by intro-
ducing a specific spectral-density function appropriate to the ionosphere,
We shall then present some simplifying approximations that are commonly

employed and discuss their validity.

c,. The Special Case of a Power-Law Spectral-Density Function

Satellite in-situ electron-density measurements reported by Dyson,
McClure, and Hauson (1973) show that a power-law spectral-demnsity function
is a reasonably accurate analytie form for §. This is supported by the

analysis of radio-star scintillation data by Cronyn (1970) and
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Rufenach (1872). We have chosen (after Tatarski, 1971) the analytic form

2 . 1/2 3 1
5(5°) = B (F( ki ”) o a Ny (IV-27)
/ATy =) [1+ (@8) "]
where
2 2 2 2
5 = (B’(‘?)K_ + K ) + K BY) ~ 2K g C(y¥) (IV-28)
X his Z X 7
B/ (v) = azcos ¥ + sin2 v (IV-29)
cy) = (1 - a2) cos ¥ sin V¥ (IV-30)
and
B{¥) = 0052 Y o4 azsing vy . (IV-31)

The angle ¥ is the angle to the principal irregularity axis. 1In
the ionosphere it is the geomagnetic dip angle. The parameter a is the
axial ratio (a = 1). The parameters ¢ and vy are the irregularity scale
and speetral index respectively. The spectral-density function [Eq. (IV-27)]

is normalized so that

o G i dk,
} - . -32
J’ (3) I 88 - G =1 (1V-32)

The anisotropy was introduced, following Budden (1965), by performing a
coordinate transformation of the isotropic spectral-density function

{see Appendix D).
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By substituting Eq., (IV-27) into Eqs. (IV-25) and (IV-16) and

changing variables to iqu: and H:yo,r we obtain the result

R -
Y N 3(rw44um) @
=t g sec § | 8« ———— a =
B T l_ JRET(y = 1) ”
¢ '
: -+ - — — - c‘l__a
x [ g (lc;k(a),k(a))exp {-K « Ap) 1c2 (IV-33)
where
9 2 () 5
op = #(0) x A(“)A(B)(L sec §) (AN ) n (1v-34,
e e
and

1+ 1
@Z = exp ( 2iz(k cos g) | H~tan e(my cos o + !cy sin r.p)/p ( 3 )

L
sinc(-é-k cos 8 H)

X
g,,(.:1:) g"(B)
1 -

% oy + /2 (IV-35)

[1+87]

In the new coordinates,
2 2 2 2

s” = (B'(w)mx + xy) + [H%]7 B(Y) - 2 H+pC(Y) (1V-36)

60



and

(o) Kz + Kz (k_cos o + K_ sin g) 1/2
g’(B) = [ 1- X T ~ 2 tan g = y
pz(l F Ak/Kk) p(l + Ak/K)
(IV-37)

where p = o k cos, g. The parametiers are summarized in Table IV-1.

The normalization factor y is chosen so that Ei g§/2ZO is the
scattered power per unit area crossing a plane perpendicular to z [cf.
Rino and Fremouw (1973)]}. The linear Kx,Ky—term in Eg. (IV-35) was
introduced to reference the calculations to the "line-of-sight" intercept

in the z plane (see Figure IV-2), which is the natural reference point.

The parameter p is the ratic of the scale parameter ¢ to the pro-
Jected wavelength ) sec g, If it is sufficiently large, we can apply

the so-called Fresnel approximation

(o)

K2 + Kz t 29(K + §_si )2
S an cCoOs sSin
Lo ® . Xy x PNy

2
2p (1 F ak/k)

tan @ (Kxcos o + Kysin @)
+ } (1V-38)
o(l + Ak/K)

By using Eq., (IV-38) in Eq. (IV-23) and the equivalence pk/k = Af/f, we

obtain the approxiﬁate forms
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Table IV-1

PARAMETERS FOR COMPLEX~CORRELATION-FUNCTION FORMULAS

Parameters Symbol Comments
Wavelength(s) 1;;1:(‘1’) B GO Ak, By Ak
. Ak AT
Note that — = =,
( T T s )
2
RMS electron (ANE)
density
Distance z Distance from ionosphere
penetration point to re-
ceiver, or corrected dis-
tance for satellites
Axial ratio a Anisotropy parameter (a = 1)
Magnetic-field angle v Geomagnetic dip angle (a.
ionosphere penetration
point)
Scale size to wave- p 0 Q o k cos g, where o is
length parameter power-law spectral-density
function scale factor
Spectral index Y (v > Q)
Incidence angles 8, o Theta, @, is the zenith angle
) at the ionosphere penetira-
tion point. Phi, ¢, is the
azimuth measured from the
magnetic-meridian plane.
Layer thickness L Centered on origin of
coordinates
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r 2 2 2
K + K + tanze (kK cos @ + K sin @) AE/E
= L4 z Y for R
2 2 I
H o ﬁ 2p 1-(AL/E) ¥
2 2 2 2
+ + t + i 1
ch Ky an @ (sc_x cos @ |cy sin )
2 2
h 2p 1-(A£/%) (1V-39)
Kx cos p + K sin P
+ tan g L4 for B .
p L]

For H¥, the opposite values are used for R' and B' [cf. Egs, (IV-21) and
v ¥
(1v-22)].

When these approximations are valid, we obtain the "large p" form

of Eq. (IV-35),

r = = ™)
Af/E
2
1-(af/1)
d ==e 'ﬁ‘z 2+2-:-1:2( + sin }2 ?'
9 == exp i 1 | _K:x Ky an g icx cos ¢ Ky in o
1~ (Af/f)z
. - = J
¥ Sine L (k cos g) 1
2 \ 2 2 o y+1/2
L-+(B’(?)Kx-+wy)*-(H*p) B(Y)-2KX(H*p)C(W)]
' {(IV-40)
where
7 = AZ seczs . (1V-41)
20 o
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In Eq. (IV-40) H*p is negligible [see Eq. (IV-39)] for the B, integral,

]
and it is equal to tan g (Kxcos @+ KY sin ¢) for the R? integral., The

effect of the H¥*p terms is to distort the angular spectral-density

1
function which, from Eq. (IV-35), is given as .
P 2Y+l/2
g1 + 8]
2 + 1/2
In Figure IV-3 we have plotted log [1 + S ].Y / versus log

(Kx/p), with Ky = 0, and 82 given by Eg, (IV-38) with a = 5 and ¥ = 45°,
We set v = 1.5, which is close to the value inferred from satellite
measurements (Section IV-D). The straight lines have a slope of 4, which
is the asymptote when the p-terms are neglected. We note that for the
smaller p values, the departure from the asymptote is significant when
K/p‘is large, Numerical calculations show that gi is underestimated by
approximately 50C% when p =1, but it is within a few percent of its
correct value when p = 10. Evidently Eq. {(IV-40) is valid when p is
greater than 10, Hence, in the remainder of our calculations the

simplified form of Eq. (IV-35) will be used,

LOG10tuylpl

— K, = 0 SECTION
T=185
a==5 o
5 — = 45

{7 + %) LOG, - (1 + s2)
10
o

LA-2273-20

FIGURE V-3  SPECTRAL-DENSITY-FUNCTION CROSS-SECTION PLOTS
SHOWING THE EFFECT OF H"p TERMS IN EQ. {40)
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D, Effects of Time-Varying Media

In almost all applications we measure time series that arise because
the medium or the source or both are moving relative to the receiver.
Moreover, the medium undergoes internal rearrangement, although we can
usually neglect this effect, 1In Appendix B we have derived general
formulas for converting two-dimensional spatial results to one-dimensional

temporal spectra,

As an example, consider an in-situ measurement with a moving probe
such that vz = 0. The power spectrum derived from Eq, (IV-27) is then

proportional to

(IV-42)
2 - 1/2
4 d%?z Yx Y /
1+.L_.___ 1 -
2 2 ., .2
v u_ + B (Y
y X ¥y

The effective veloeity is

5 - 1/2

v
X

R B
v+ B (Vv
x y

' 2 2 s
which is approximately equal to UY when B (?)uy>-> U* However, since
B/(Y) > > 1 for highly elongated irregularities when y os not too large,
the condition B/(¥) 1 can bhe satisfied even if Uy and Ux are comparable

in magnitude.

In a transmission experiment the potentimsl observable is the complex
voltage measured effectively at the antenna terminals. Since the angular
width of the field spectrum is typically much narrower than the antenna
beamwidth, however, the complex correlation functions are proportional
to the Ap = O terms in Eq. (IV-33) or the §x = 6y = O terms in Ea. (B-4)
of Appendix B. Spaced-receiver measurements then give the Eb dependence

directly. 65



Unfortunately, the corresponding complex power (temporal) spectrum
integrals for Egs., (IV~35) or (IV-40) camnct be evaluated analytically.

However, for normal incidence one can show that &8 () is proportional to
Z

r AL/T -1
2
1 - (A£/1) 2 2
2nf v
iZ — 1 - —— 1>
exp~ i 1 2 . P
- a %) iy v
2 X
1~ (AL/) v
\. J
2 2
AL 2rF U 1
. x
% sine s — 1 - H o P)
27y v 2 2 2xT v
¥y v o+ oy 2 X

X ¥ l+a|— 1 - P )
v v + By
- | y X ¥y
X correction factor. (IV-43)

In Egs. (IV-42) and (IV-43) we have used 7" for temporal frequency to
avold confusion with the RF frequency £, The correction factor will
exhibit a weak tempora}-frequency (£) dependence.

We first note that the effective F-index in Eq. (IV-43) differs by
unity from that inferred from Eg, (IV-42) LngZY - D Vs, jﬁzy]. This
has been pointed out by Cronyn (1270). Dyson et al, (1973) found an
371.9 frequency dependence from their in-situ measurements. Hence,
from Eq. (IV-42), v = 1,45, which is one-half the J index we would
observe by Fourier-analyzing the temporal fluctuations of the diffracted
signal, One must keep in mind, however, that there is no simple relation
such as Eg, (IV-42) for interpreting complex temporal-irequency spectra
that include the Z-dependent terms.
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On the other hand, the first-order moments are unaffected by the
"scan" because they are proportional to integrals over all temporal
frequencies, It is easy to see from Eq. (B-4) that the results are
identical +to those obtained by integrating over all spatial frequencies,

Hence, the formulas

2 2 1
o, = Op Sec 8 3 [1+ Re{Bw(O,f)]] (1V-44)
2 _ 2 2
oy T Op 5% 8" oy (IV-45)
and
2
ny = 5 oy sec 0 Jm{B‘h (0;5)} | (IV-48}

which were used in Seetion ILII correctly predict the variance of the
in-phase and phase quadrature components of the signal and their

covariance.

E, Method of Numerical Computation

The results presented in Section IV~C give the spatial and radio-
frequency or wavelength dependences of the diffracted field from a
weakly irregularity layer, The spatial dependence is derived from a two-
dimensional Fourier transform [Bg, (IV-33)]. However, in the remainder
of this report we shall consider only the &L = 0 term. In Section IV-C
we showed that these integrals are generally adequate for single-receiver
measurements, -

Hence, the results that we shall be interested in demand an inte-
gration of § [Bg. (IV-35)] over all spatial frequencies for which g’(a)

and g’(ﬁ) [Eq. (1V-37)] is real. Note that, in general, four integrations
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must be performed to obtain Re{R¢], JM{R¢}' Re{Bw], andAém{Bw}. Moreover,
whenever the Z term is finite (that is, when H # 0), the integrand
oscillates. Indeed, the integrals are of the most difficult type to

evaluate.

The large p approximations are ol some help, but they do not elimi-
nate the oscillation problem. Integrating over the polar coordinates
KY = K cos § and Ky = K sin 9, however, does simplify the integration

considerably, The formulas that we have programmed for machine inte-

gration can bhe summarized as

I€

m
R j‘ KF (K)aK
qj _ Q
BqI - R¢ (IV-47)
] Z=0
where
F
2 o 9 2
F(k) = I exp {i% ) | K [1+ tan g cos™ (& - &)]
r
ol B 2 2 L 1+1
¥ sinc{ £ K [1 + tan g cos (@-gf)] +K(~—-)tanecos (@—;zf)[ ]
Fy 2 2
-('Y + 1/2)
2/ 2 2 2 2
x|:1+K (B’(‘F)cos % +sin @)+[H*p] B(y) - [H¥p) Kcos@c(\y):l dé
{IV-48)
L
g = =28 (1v-49)
27ey
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Af/E

F = —— (IV-50)
2
R 1 - (uE/8)
F = ——'—1—'——'— (IV-51)
B 2
1 - (A£/1)

K tan g cos(g - ¢d) for R
[E%p] = (IV-52)

0 for B .
[

No further simplification is justified unless the results are
restricted to normal incidence, In that special case both the Z and
£-dependent terms in Eq. (IV-48) are g-independent. Hence, the g~—
integration is simplified considerably. The argument is a smooth,
slowly varying function of g, and almost any numerical integration scheme
will work, To evaluate the Z-~dependent integral it was necessary to use
an addptive Simpson rule (see for example, Lyness, 1870). Basically,
the adaptive methods vary the mesh size according to how fast the inte-

grand is changing.

Finally, if the £;dependent term is ignored, and the restriction
to normal incidence is retained, it is possible to obtain a series
solution involving Legendre functions and eliptic integrals that can
be evaluated with sufficient accuracy by approximate formulas. The
results, which are easily programmed for machine computations, are

summarized in Appendix C.

These results show that the most troublesome factors result from
oblique incidence, which, unfortunately, cannot be ignored. Rino and

Fremouw {(1973) presented a general formula that allowed oblique
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incidence. However, in that formula the mz term of the speciral density
function was set equal to zero. We see from our present results that
this is valid only for normal incidence, when the [H*p] terms can be

neglected,

However, the error affects only the R¢ integral [ef. Eg. (Iv-52)],
so the formula for B given by Rino and Fremouw (1973) is correct. The
[H¥p] terms affect 0; through » in Bq., (IV-34). Hence, the incidence-
angle dependence of gi is in general somewhat more complicated than a
sec g variation., It could be important, for example, if one were to

2
predict or evaluate the 84 variation for an orbiting satellite.

In the next subsection we present representative results derived
by numerically integrating Eq. (IV-47), Some additional calculations

will be presented in Section V.

¥, Discussion and Examples

To characterize the statistics of a plane-wave field diffracted by
a weakly scattering irregularity layer, we have computed the complex
covariance functions szcgé;fca),f(s)) and sz(jz;f(m),f(a)) as
defined by Eqgs. (IV-14) and (IV-15). The Ab dependence 1s given by a
two-dimensional Fourier transform [Eq, (IV-16)], and we have considered

only the EB =0 correlétions.

The general results depend explicitly on each parameter in Table IV-1.

However, the approximate results [Eqs. (IV-40), (IV-41)] show that the
2)z sec g

= ) to the transverse scale

ratio of the Fresnel-zone area (
parameter » , which we have denoted by %, is fundamental., Its value
determines the degree to which propagation has altered the structure of

the field from what 1t was in the viecinity of the scattering layer,

Indeed, a general characterization of the statistiecs can be made

in terms of Z, Consider that, independent of zll other pacameters,
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Re{B¢} is negative and near or equal to its maximum absolute value of
unity when Z = o, Moreover, 4MQB¢} = Jm{R¢} = 0 when 2 = 0. Now,
as Z increases from zero to infinity, Re{Bl} tends to zero, while

v

Jm{Bl} first becomes more negative and then tends to zero,
¥

The behavior of RE{RW} depends on AT (we still assume that
Ap = 0). When Af = 0, Re (R} is independent of Z and equal to
unity. When Af is finite, RE[R¢} decreases from unity to zero as Z
varies from zero to infinity., Similarly, Jm{R¢} is zero when Af = 0,
and for finite Af it varies from zero to a positive maximum and then

decays to mero again as Z varies from zero to infinity.

To apply these results, we let the diffracted field at some
frequency f be represented by E and E/ at some other fregquency £’.

It then follows from Eq, {(IV-33) that

4 ' n - L 2 -
R = (X') - (%) () = 3o sec B[Re{R‘y} + Re[B‘h]] (1V-53)
R & evyy - vy ¥y = 2 [Ref{R } - Re{B }] (1V-54)
YY_( ) <>K)_2UTSECSE¢ e\y
R & xyy - (X ¥y = ';:‘"i sec e[.,ﬂm{Rw] - Jm{Bq}}] (1IV-55)

and

A i / - oL 2 -

Ry = (X% - (XY (¥) = = 5o sec e[Jm{Bﬁf} + .,ﬂm[Bty}] (IV-56)

where X and Y denote the real and imaginary parts of the field. These
formulas are simply generalizations of Eqs. (IV-44), (IV-45), and (IV-46),

2 2
Indeed, when f =/, R =g , R =g ,andR_=R =C .
XX x VY ¥ Xy RES Xy
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Now, from the limiting behavior we have just described, it follows

that when 2 is sufficiently small, R > >R , and hoth R and R
vy XX Xy yx
2,

2
are near zero, When £ = £/, this condition becomes g > = o i that is,
¥y

the scattered power is nearly in phase quadrature with the undeviated
component, In Rino and Fremouw (1973) this condition characterized the
"near zone." When Z is sufficiently large, Ryy and Rxx are nearly

equal, although when Af is finite the limiting value becomes smaller
. 2 2 1

and smaller as Z increases. When AT = 0, gxae Gy 2= 5 Op

behavior characterized the "far zone" in Rino and Fremouw (1573).

i

sec §. This

All parameters in our channel model (Table IV-1) that can be varied
independently of Z will only affect the rate at which we move from near-
zone scattering to far-zone scattering as Z is increased from zero,
to infinity. We have illustrated this below by using the equation

presented in Section IV-E,

1, Normal-Incidence Computations with AT = O

To evaluante BEgq. (IV-48), we must specify the axial ratio a,
the dip angle V¥, a layer thickness parameter £, the spectral index vy,
and the incidence angles g, @ as well as Af [Egs. (IV-47) through
(Iv-52)]., When @ is finite, it is also necessary to specify the ratio
L/2y [Eq. (IvV-48)]. However, to start with we shall consider only the

normal-incidence single-frequency correlations for which Af = g = v = 0.

Ir. Figure IV-4 we have illustrated the effect of the "layer-
smearing” f£-dependent factor in Eq. (IV-48). The dashed line is for
zere layer thickness, and the solid line is for conditions we expect
to be typical of ionospheric scattering. The effect of finite layer
thickness is confined to the near zone. It acts primarily to make

2
o finite when Z = 0,
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FIGURE IV-4 PLOTS OF oy

AND ny SHOWING EFFECT OF FINITE LAYER THICKNESS

In Figure IV-5 we show the effect of varying the axial ratio a.
We see that as a inereases, the convergence to far-zone conditions
becomes slower. We expect this, since increasing a effectively compresses
the spectrum toward the lower spatial frequencies., Hence, Z must be
comparatively larger before propagation can have an impact. Ividently
we could produce the same effect by increasing the spectral index wv.
This is verified in Figure IV-6, where we have plotted gi as a function
of 2 for different values of the spectral index y. Varying the incidence
angles (g, w) has a similar effect, although the details are more compli-
cated., Because of the increased complexity of the computation, however,

we have not presented numerical results for oblique incidence,

2, Coherence Bandwidth

1f two monochromatic signals at frequencies f and £’ are

transmitted through the ionosphere and the received complex signals
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are cross-correlated, one measure of coherence bandwidth is given by
|(E E‘*)|. We do not choose to subtract the mean signal values, since

one normally processes the complete signal.

From Eq, (IV-33) it follows that

2
(E BE'#Y = (E) (%) «+ oy Sec A R¢ (A2, E) . (IV~57)
zZ

However, if Af is not too large, from Eq. (IV-34) it follows that

2
{E E'*) =1 + Op sec e[ﬁl WE,£) - 1] . (IV-58)
vz
Hence, we see that coherence bandwidth cannot be specified independent

of the scattering inteasity.

Nonetheless, the Af frequency dependence is contained in the
covariance function sz. In Figure IV-7 we have plotted |R¢z| as a
function of Af/f for two different values of Z. As we should expect
from the discussion at the beginning of this subsection, the results
depend eritically on the value of Z, However, since Z itself is fre-
quency—&ependent, the curves in Figure IV-7 are not universal, As the

center frequency, f, is increased, Z decreases if all other parameters

are held constant.

2
The implication is that for a given value of O the coherence
bandwidth will be larger at a higher frequency than at a lower frequency.
In Section V we shall calculate the two-frequency correlation function

for intensity for comparison.
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V APPLICATIONS

In Section IV we derived general formulas for the complex correla-
tions that characterize a plane-~wave field diffracted by a weakly scatter-
ing irregularity layer. We first calculated the time-invariant correla-
tions (Ez(];;f)Ez*(S;f’)) and (Ez(—s;f)EZ(g’;f’». We then considered the

generalizations that allow for time variations (see Appendix B).

Hence, the most general observable is a time function with position
and frequency dependehces--say, Vt(;;f) = Xt(;;f) + th(Z;f). For
notational simplicity we have suppressed the distance parameter z. The
position and fregquency dependences can, in principle, be verified by
spaced-receiver measurements with multifrequency transmissions. However,
in most experiments only amplitude or intensity is available for each
independent position-frequency measurement. For this reason, intensity

statistics are most important for channel diagnostics,

In this section we shall apply the results of Section IV together
with the gaussian signal-statistics hypothesis to derive the second-order
moments of intensity. We shall also discuss the method of making a similar

computation for phase statistics.

A, Intensity Statistics for Gaussian TFields

The observable of interest here is the intensity of a complex gaussian
random field. Note that in the theory of stochastic processes, a random
field is simply a function parameterized by one or more variables. The
height of an ocean surface is an example. 1In our case we have a complex
funetion of position, frequency, and time. The power of the gaussian

hypothesis lies with the fact that the joint statistics of X and Y
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depend only on the complex correlation functions caleulated in Seetion IV
or their generalizations derived in Appendix B.

In what follows we assume that the observed field is gaussian and
normalized to unity average power. Recall that 02 = U; + ci can then be
interpreted as the fraction of the incident power that is scattered.

We let I A vw*, a primed dependent variable will imply that it is evalua-
ted with the independent variables 3’, f', and t/, In Appendix E we show

that
(11 - (1)2 = 202(1 - 02)[Re{R} + |Bleos 2(¢ - 8)]

+ 0'4[|R[2 + Isz] (v-1)

where R and B are given by Eq. (IV-33) or Eq. (B-4). We have also used
the definitions tan 2f = #m{B}/Re{B} and tan & = (¥)/(X). We note that
for interpreting most experiments, g can be set equal to zero. That is,

the coherent component is the phase reference.

When £ is equal to zero, the term in square brackets reduces to the
correlation of the real part of V, Rxx [ef. Ba. (V-53}]. Hence, when
02 << 1, the quadratic terms in 52 can be neglected, and Eg. (V-1)
reduces to

, 2,2 _
(117) - (1) =2 R_ . (Vv-2)

This result can be derived directly by equating the amplitude perturbation

with the in-phase signal component.

The Fourier transform of Egq. (V-1) or Eq. (V-2) gives (in expectation)
the power spectrum of the intensity fluctuation if I = I/, or the co~-
spectrum if spaced receiver and/or two-frequency correlations are employed.

The approximate form given in Eq. (V-2) has been used extensively for data
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interpretation [see for example, Cronyn (1970) and Rufenach (1972)],

although even then the interpretation is not siwple [see Section IV-D].

We also note that when I = I’, Eg, (V~1) reduces to the formula
for the 54 scintillation index. Indeed, for that special case, R = 1,
and Eq., {(V-1) becomes identical to the formula given in Rino and Fremouw
(1973) that was used in Section III [ef. Eg. (IXII-11)]. 1In the simplest
case, Eg. (V-1) gives the temporal structure of the signal fades whose

statistics we analyzed in Section III. The formula is, however, more

general since it gives the spatial and frequency dependencies as well.

To summarize, in Section III we discussed the method of computing the
first-order amplitude statistics of a complex field. In Section IV we
computed the complex second moments of the field. TFinally, in this
section we have made use of the fundamenial property of gaussian fields--
namely, that the complete statistical structure of the field can be

determined from the complex covariances R and B.

Before presenting some examples derived from Eq. (V-1), we emphasize

. - + =, ; ) ,
that in general, R and B depend on Ap = g - p/, £ = [f + £/]/2, Af = £ - £/,
and 8t =t - t’. In general, there is a more complicated dependence on
6t which we have ignored by assuming "frozen fields" [Appendix B]. When
-
Ap = AL = 0, the Fourier transform of Eg. (V-1) gives the power spectrum
of the intensity fluctuations. The width of this power spectrum is a use-

ful measure of the fading rate, which is fundamental for designing receivers.

Unfortunately, while the statistics of any measurable quantity can
in principle be computed from R and B, other results are not as simple

as Eq. (V-1). Phase statistics will be discussed in Section V-B,

1, The Wavelength (Frequency) Dependence of S

4
Since the 84 scintillation index is the most commonly used
measure of scintillation activity, its frequency dependence is easily
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2 2
measured, We first note that ¢ = A . Hence, in the 84 scintillation-
. . . 2 2.2 12 2 2
index formula it is convenient to replace g by ¢’ A where g’ & g /A .
2
We can think of g’” as the coherence ratio for A = 1 m. Recall that for
2
unity ineident intensity, ¢ can be interpreted as the fraction of the

incident energy (or power) that is randomized,

Similarly, from Egs. (IV-41) and (IV-49), we see that Z and g
are proportional to A. Hence, they contain the entire wavelength
dependence of B¢' and therefore, the remaining wavelength dependence of
SQER‘!I = 1 when Af = 0], We define 2’ = Z/) and £ =£/\ in a manner

analogous to the definition of o’.

In Figure V-1 we have plotted the logarithm of S4 against
the logarithm of 3 for different values of g’g for a power-law spectral-
density function with ¥ = 1.5. The curves show a decreasing slope with
increasing S4. Moreover, the results show the rate of decrease of the
slope to be largest for the largest values of 02. Ultimately, the slope
becomes negative. However, the theory has not been validated for strong

scattering conditions.

Aarons, Allen, and Elkins (1967) define a spectral index for
scintillation as
log(s /s’
og( 4/ 4)

N = log(A/\7) (v-3)

Actually, their definition is in terms of frequency rather than wave-
length, which changes the sign of 7). That is, Eq. (V-3) implies a rela-
nN T

tion of the form S == A or S e £ depending on whether frequency or

wavelength is used.

Aarons, Allen, and Elkins (1967) report the results of radio-
star scintillation observations at four freguencies spaced from HF to UHF.

They report that T decreases from ~2 for small index values through zero
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FIGURE V-1 WAVELENGTH DEPENDENCE OF 54 SCINTILLATION INDEX

for large 34 values just as the curves in Figure V-1 predict. It should
be pointed out, however, that extrapolating the results to L and S bands
does not account for the S4 indices that have been observed at those

frequencies. Evidently, the spectral shape deviates from the power-law

model in the smeill-structure region.
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2. Two~Frequency Correlation Function for Intensity

As a final example, we have computed from Eq, (V-l) the two-
frequency measurement correlation function for intensity. The results
are shown in Figures V-2(a) and (b). The curves are normalized to unity

at Af = 0.

In Figure V-2(a) we show curves corresponding to the Zerameters
used in Figure IV-7. These curves were computed with gz = 0.25. We
see the same general property--namely, that the signals decorrelate
faster for larger Z values. Moreover, B decorrelates faster than I.
In Figure V-2(b) we have repeated the computation with 02 = 0.5 to show

that the intensity decorrelate faster as the level of activity increases.

B. The Method of Computing Phase Statistics

To conclude this section, we discuss ‘the method of computing phase
statistiecs. Consider a complex gaussian random process evaluat-d at two
"points" giving X= (X, ¥, X, ¥/) as a data vector. The covariance

matrix for X is
— —
2
o C R R
x Xy Xx Xy
2

C o R _ R
A2 {f -x ) (x - <z>> = R"” =Ty (v-0)

c
XX XY cy Xy

R R _C_ o
¥y ¥y %y ¥y | .

where T denotes transpose. The joint probability-density function for

X, Y, X/, and ¥’/ can be written as

——17s exp{— & - @ - <ﬁ>)} . w-5)

P_(X,Y.,x',¥") =
X 4n2|A[
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These resulis are well known; they are discussed in any basic
statistics textbook. By a simple change of variables, it is easy to show

that

P(A,B,A',8') = A A'PX(A cos #, A sin 4, A'cos 4/,A'sin g8’') . (V-B)

The joint probability-density function for # and g’ is then given formally

as
P(4,8') = | [ P(a,4,A" .8 )andn’ . (v=17)
o o0

Finally, from Eg. (V-7) it follows that

(¢ 8') = [[ & ¢'P(4,8")adas’ . (v-8)

Tor the special case of Rician statistics, it is possible to obtain
an analytic form for P(#,8'). [See, for example, Davenport and Root, 1958,
pp. 161-165.,] However, we have shown that one cannot assume that the
quadrature signal components are of egual intensiiy and uncorrelated.
At the present time ii is not known whether similar results can be
obtained for gercral gaussian statistics. The formal results are pre-
sented here mainly to illustrate further the technique of combining the
gaussian~statistics hypothesis with the results of Section V to calculate

various measurable quantities.
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VI SUMMARY, DISCUSSION. AND RECOMMENDATIONS

Through the research conducted under this contract we have (1)
evaluated a gaussian signal~statistics hypothesis for ilonospheric
seintiliation, (2) reformulated the diffraction theory in terms of
quantities that can be employed directly in the analysis of linear
systems, and (3) presented examples that illustrate the characteristics

of the transionospheric channel.

A, Gaussian Signal Statistics

The main thrust of our work has been to characterize the structure
of the complex random field that results = n a wave propagates through a
randomly irregular medium. The most natural snd useful a-priori assumption
is that the quadrature components of the complex field have jointly
gaussian statisties, Historiecally, gaussian signal statisties were indeed

the first to be postulated (Section II).

Since only amplitude or intensity data are available in most experi-
ments, however, it is usually not possible to test the gaussian hypothesis
directly. In Section III we presented a formula for the second central
moment of intensity and showed that it depences” on quantities that could
not be unambiguously determined from intensity data alone. This problem

does not arise for the special cases of Rayleigh and Rice statistices.

However, researchers in radio astronomy and optics have consistently
observed that Rayleigh and Rice statistics do not correspond to measured
intensity histograms. This fact alone is not sufficient for rejecting
gaussian statistics, but there is a considerable amount of theoretical

and experimental evidence supporting the competitive log-normal hypothesis,
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According to the latter hypothesis, the logarithm ol the complex field
has jointly gaussian statisties for its guadrature components rather than

the complex field itself,.

Because of our earlier work [summarized in Rino and Fremouw (1873)]
and the work of Armstrong, Coles, and Rickett (1972), we believed that
the differences between scint’llgtion-data histograms for gaussian and
log-normal statistics would be subtle and difficuli to gscertain. Thus,

one of the main tasks was to carefully evaluate intensity histograms.

The results presented in Section IV-D show that with the one exception
out of 10 cases, the best-fit gaussian PDF achieved a lower value for its
chi-square-fit parameter than did the corresponding log-normal PDF. The
exceptional data sef can possibly be discounted because of its incon-
sistency with simultaneous data taken with a separate receiver (Section
I1I-D-2}. In addition, for a given scintillation intensity, as measured
by 84, for example, interplanetary and ionospheric scintillation datsa

show a striking degree of similarity in their intensity histogranms.

Unfortunately, the data bhase is not as large as we had originally
planned, as explained in Sections III-D-1 gnd III-D-2. Nonetheless,

the available data do support the following conclusions:

# Scintillation-intensity probability-density funetions
derived under the assumption of joint gaussian statistics
for the quadrature~field components achieve a better data
fit than the corresponding log-normal probability-density
function.

@ The signal structure is characterized by the fact that,
independent of the scintillation level (e.g., 5,), more
than 80 percent of the random signal component is in phase
gquadrature with the steady or coherent component. An
equivalent ztatement is that the equiprobability ellipses
characterizing the random component of the signal have
their semi-major axes more than ten times as large as their
semi-minor axes, and their orientation is within 10° of per-
pendicularity to the coherent signal component.
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e The log-normal probability-density function tends to
achieve a smaller rise time than the measured histograms and it
underestimates the peak, In the tail region, the differences
are not significant,

® The signal structure that we have described is independent
of incidence angles and the detailed shape of the speciral-
density funcvion that characterizes the irregularity medium,
provided that it is smooth. However, structure comparable
to the Fresnel-zone area must be present.
These results must be qualified by the fact that no reliabhle data
were processed with 84 indices greater than 0.55. The limitaticns imposed

by the implicit first Born assumption will be discussed in’detail in

Section VI-D below,

B. The Nakagami Distribution

Because the ﬁakagami distribution has been used extensively in
ionospheric scintillation studies, its applicability needs to be discussed.
It is usuallv described as an approximation to a general gaussian pro-
bability~density function for amplitude or intensity if the appropriate
variable change is made. It is convenient in that it depends on the

-2

single parameter m = 34 .

We have pointed out, however, that the exact relationship between
the Nakagami distribution and the more general gaussian family of dis-
tributions is not established. For example, one cannot specify the
joint statiztics for the quadrature signal components that will give
rise to a Nakagami amplitude distribution., Because of this uncertainty,
the Nakagami distribution should be viewed simply as a2 convenient dis-

tribution that can be easily applied to scintillation data.

As such, its applicability depends mainly on how well it works for
the intended application. We showed in Section III-E that, like the

log-normal distribution, it tends to be broader than the correct gaussian
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distribution., We have made direct comparisons for fade-margin deter-
mination (SBection III-E)} to show that the Nakagami distribution gives a

conservative bound for the fade margin.

For systems planning, a conservative margin is probably desirable.
Moreover, the differences are small enough (less than 1 dB at the 90
percent margin for S4 = 0.5) o be of no practical consequence. We
suspect that a similar conclusion would hold for scintillation-index

conversion, at least for the smaller values of 84.

C. Complex Second Moments for Ionospheric Transfer
Function Characterization

Basic to any channel-modeling effort is a means of calculating the
diffracted field for an elementary incident wave. We first considered
a stationary time-invariant medium and then generalized the results.
We have chosen to compute the complex second moments of the diffracted
field, which are most convenlent for systems analysis. Indeed, for =z
gaussian field these quantities are sufficient for a complete statistical

characterization.

Our most general results for a specific spectral-density function--
namely, a power-law form—--are given by Eqs., (III-33) through (III-37).
They admit arfbitrary incidence angles and a simple anisotropy, and no
a-priori Fresnel approximation was made in deriving them. The results
depend explicitly on the parameter p = wk cos 6, where o is effectively

the "outer" irregularity scale.

When D is sufficiently large, a considerable simplification of the
formulas can be realized. Note that p large is implied by the condition
o >> A, which is expected to be valid even at HF fregquencies. However,
the effect of the large p terms depends on the spectral index y. We have
found that when v > 1.5, p > 10 is generally sufficient to justiify the

Fresnel approximation (Section III-E).
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When the Fresnel approximation is wvalid g general channel characteri-
zation is possible in terms of a single parameter Z = (\z sec e)/2m12.
That is, independent of all other parameters, the limiting behavior for
large and small Z can he specified. For small %, the phase-gquadrature
signal component is much larger than the in-phase component. For laroge

Z, the in-phase and phase-guadrature components are nearly equai.

We have characterized these two behavior regions as the near and
far zones respectively. The rate at which one proceeds from the near to
the far zones as Z is increased from zero to infinity and the detailed

behavior of the various quantitiés depend on the parameter values.

For numerical computations we have used Eqs. (III-47) and (ITII-48)
with the parameters defined by Egqs. (III-49) through (I1I-52), The
quantities that are evaluated depend on the parameters listed in Tahle
VI-1 below. The simplified formulas are valid whenever p is sufficiently

large to justify the Fresnel approximation.
The effects of the various parameters can be summarized as follows:

@ Ratio of Fresnel-zone area to scale parameter squared, Z. The
value of Z determines to what extend free-space propagation
has redistributed the scattered power from what it was in the
viecinity of the scattering layer. When Z is sufficiently small
the scattered power is nearly in phase quadrature with the
coherent-signal component, When Z is sufficiently large the
scattered power is nearly equally distributed between the
in-~phase and phase-quadrature components.

e Layer thickness parameters, £[ (L/2¥) contributes when § is
finite]. The layer-thickness factor £ imposes a spatial filter-
ing that suppresses spatial fregquencies beyond =n/f£., Hence, its
primary effect is for small Z, For example, it acts to keep
Ty finite when Z = 0 (Figure IV-4},

e Two-frequency correlations Af/f. The primary effect of finite
Af/f is to make R; Z-dependent. Indeed, the functional

dependence of R, on Z and A¥/f is nearly identical to that of
BQ with 2 replaced by Z Af/f [Egq. (Iv-48)]. It follows that
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Table VI-1

PARAMETERS FOR MACHINE COMPUTATION

Parameter Symhol Comments

Scattering cross 2p 2 ' In Eq. (Iv-47) 62 is set
section o =gy sec equal to unity
for convenience,
Ratic of Fresnel zone ares
to scale parameter A Z Q LE~§EE—Q
- squared . _ _2:«1'2

Fractional frequency AR/ For two—-frequency
separation correlations., DNote
that |A£/t; < 1.

Layer thickness o A ALsec 9

L
arameters = == 2
P 2ney
Ratio of layer thickness (L/2) Only necessar, for
to scale parameter oblique incidence
Axial ratio and . Enters Eq. (IV-48) as
magnetic dip angle ' (a cos ¥ + sin ¥)
Spectral index Y
Incidence angles 8, © Theta is zenith angle.

Phi is megnetic azimuth.

the decorrelation of two frequencies is very slow for small
%3 hence, the large coherence bandwidths that are characteris-
tic of ionospheric scintillation.

[ Anisogropx72a, Y. The anisotropy acts through B g (a cos2 ¥
+ sin® ¥) to reduce the rate of convergence to far-zone
conditions as § increases from unity. For isotropic irregulari-
+ties one observes the most rapid convergence.

» Spectral index y. The spectral index acts effectively in the
same way as the anisotropy. When ¥ is large the spectrum has a
sharp cutoff., Thus, the fransition from near~ to far-zone be-
havior is abrupt. When y is small (near unityj), as it is
generally observed to be, the transition is much slower.
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e Oblique incidénde, 8, ¢. The dépendences on incidence angles'
are generally guite complicated For example, the scatterlng
cross section will exhibit a more complicated zenith-asngle

. dependence than sec §., The main impact is that for ionospheric

~ modeling one can make large errors if proper account for inci~-
dence angles is not taken.
We have noted thaﬁ for gaussian fields, the complex covariances

: sufficé tb cumpletely define fhe statistics. We lhave made use of this

fact to calculate the intenéity auntocorrelation function. The resulis
were applied to evaluate the wavelength dependence of "che'S4 scintilldtion
index and the two-fregquency intensity correlations. We also outlined

_the method of computing phase statisties.

The major limitation of our calculations stems from ‘the restriction to
weak scattering. We shall consider this limitation in detail below. However,
we cannot expect & power—law speztrai-dénsity function with a constant

. o spectral indeﬁ to bé accurate over an indefinite range. Indeed, the caleu-
lated wavelength dependence of the scintillation index cannot account for the

. unexpectedly large seintillation observed at L-band and higher frequencies.

D, Consequences of the Weak-Scattering Restriction

The most obvious problem with the first Born approximation is that
it does not account for "extinction.” That is, it gives no direct
information about the coherent field component. We have compensated for
this deficiency in our calculations by reducing the incident field

amplitude by the factor /1 - 02 so that energy is conserved,

Having done this, we observed no cbvious breakdown of our intensity-

statistics procedures as the S, index became large (~0.G). However,

4,
our data base was limited. Nonetheless, the results do suggest that the
general near-zone structure of the field (o = T ) is likely to hold

J true for strong scattering. At the present time we cannot bhe certain

of this.
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We do know that we must ultimately account for the spectral bhroaden-
ihg that accompanies muitiple scattering and assess its effects as well
as properly accounting for extinction., Unfortunately, there is no

cdmplétely satisfactory method of proceeding.

The parabolic-equation approach combined with the Markov approxi-~
‘mation is currently gainihg aécéptanée. " The pufabolic equation is valid
for narrow-angle scattering, which is probably an acceptable restriction,
However, the Markov approximation demands that the mediwme be "“delta—

function''-correlated along the propagation direction,

DeWolf (1972) has cnalyzed the full Born series summation with
various‘upproximutions. His results show that the correlsbion terms +that
are neglected in the Markov approximation can change the nature of the
.Solution coﬁéidernhly. Moreover,'unisotfopy combined with the generally
smaller ratio of the smallnscaie structure ‘to wavélength for radio waves

as compared to optical waves, works to invalidate the Markov approximation.

Ve helieﬁe‘ﬁhnfltﬁe fact that the first;order intensity statistics
are most accﬁrately reproduced by probability-density funetions defived
under the grussian hypothésis is evidence that the Markov approximation
is invalid for radio-wave scintillation. If it were valid, one would

observe log-normal statisties for weak scattering,

To relax the Markov approximation it appears that a direct summation
of the Born series is required. One can achieve this indivectly by
applying the weak-scattering results as an operator acting on an arbitrary
incident field. The secattering medium is divided into slabs thal are
lnrge compared to the axial correlation distance. Then, the weak-scatter-
ing operator can be applied successively to each layer. This is

essentially the method described by Uscinski (19G8).

One would not expect the resuiis to he unalyticaily tractable.

However, the method is amenable to machine computation.- The necessary

92



o &L T

integrations ave similar to those that we have pexformed in deriving
the numerical results presented in this rveport. The disadvantages that
result from not having an analyiic solution ave largely offset by the

'faét that there ave very few restrictions.

'.E; ' Data Restrictions

Sclntillation data that are analyzed for intensity statistics ave
'limited bf non-sﬁationarity and nhoise contamination. Hence, for weakly
seintillating siphals one cannot obiain accurate statistics. The non-.

. ~stationarity limits the iéngth of the data interval that cﬁh be repre-
sented by & single histogram. Fou analyzingrhigher—nrder statisties the

probplem is even more difficult.

Diffraction effects complicate the interpretation of scintillation
-data; as we have discussed in Section III-D. However, even when this.is
not the case, sample rates atd noise limit our ability to analyze small-

r‘sqale structure. Therultimate breakdown of the assumption of statistical
hU&%eneity limifs our ghility to accurately determine the large-scele
strﬁcﬁﬁre. At the present time the spatial wavenumber spectrum is_not

© well defined below 1 kn nor shove 50 km.

The small-scale region is probably important in explaining the
scintii_lation that is being veported at L band and at 6 GHz, Thus,
before an accurate channel model can be constructed, a considerable amount
of careful data dnalysis will bé:requiféd; . |

To conclude, we veiterate our main result--namely, that a gaussian
signal structure most accufaﬁely reﬁroduéés ébserVéd intensity histo-
grans, This fact to our knowlege las not previously been demonstrated.
Moreover, it is in conflict with the predictions of a large body'of'raﬁdomu

nedia propagatlion theory.
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Appendix A

THE SPECTRAL REPRESENTATION OF HOMOGENEOUS COMPLEX RANDOM FIELDS
WITH APPLICATIONS TO FREE-SPACE PROPAGATION

1. General Results

In Section III of this report the fundamental quantiﬁy is a scalar

complex random fielad
E(x,¥,2) = Ep(x,,2) + iE (x,7,2) . (a-1)

For gimplicity of notation we let B/ = E(x’,y’,z’) and B = EG",¥y",27).

Clearly, there are at least three spatial autocorrelation functions that

- chardcterize E-~viz., (Eé@%}, (EiE£>’ and (ER;£>' Because of the layered

model that we have used, E is homogeneous in any transverse plane., Hence,

the correlations depend only on §x = x' — ¥, and 6y = y' - y°. 1In
e y

general, the =z~dependence will involve both z’ and z”.

) ‘ConsidEr.ER. It admits a spectral representation of the form

ER(x,y,zo) = If exp{i(&xx + Kyy)}dﬁﬂ(KX,Ky;zo) . (A-2)

S' 0
1npe ER

is real, we must have

. _ * . -
dﬁR(Kx,Ky,zo) = dﬂR(Kx,Ky,zo) . (A-3)

wa,tSR has orthogonél (kx’ky) increments., In a purely formal notation,

we can write

dg  dg
Idgﬂ* - o e b SR B =X ¥ . A-d
(ag a8 ¥y = 5k} KB CE = K depp (e i sz f,2") 5= oS (A-4)
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We exelude anywdisurete 5pe§tral components, Beecause of Eq. (A-3),
jhdwever,ﬂwa can nlso wrlte. |

dic_ K
’u”& = ' n I . u ._\___y- -
(dS e 6(’r¢ GLRLICA it )@R(\c szl GRS (B

© We have n simllar set of relations i’o-a:'Er and clsi, a8 well ns Tor
the crbs‘s-—-correiations (a8 ! ds”.*) and {ag! dﬁ”) By combining these
_ results we. ean deduce the propertmes of the ' trnnsverse spectral de-

_ compos ition off B,

o P ] A
nta,_y_..zo.) = J'&_ e_mp_[i(i{:x;\ 4 .myy)}db(icx.wy,zc) : (A-G)

~whexre

§ = df, + a8 . (A=7)

Ve ecan write

1ao0? % - bW ¢ —_ ¥ A-8
(a8 1ag” %) 5(;% Kx){}(}cy )chE(K rlcygz ) Fyr ( )
and d&c\ dlty
tanfy o g ¢ i —_ A-9
{a5 ‘88" 5(;::{ wx)b(icy + Ky)chE(mx.Ky,zo) P (A-9)
wliere
Op_ = op *@p * 1y ~ o) | (4=10)
B
is the Fourier transform of RE = {(B'E"*), and
(PB = {?R = 9 + i(tpRI + :pIR) (A-11)

is the Fourier transform of B = (E'E").
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‘Indeed, since @RI‘_ )

The gquantity q is the ordinary angular spectral-density fuhetion.
IR’ the angular gpectral-density functlon is purely
real, Moreover, since- (D Y20, it is also noanegatlve, although not

necessarily symmetric. - From the angular spectral-density alone, we cannot

separate ¢R:and ¢I..'The additional quantity gB provides the néCessary

information. As an example, we shall consider free-space propagation.

.2. . Application to Free-Space Prdpagation

A plane wave propagating from z to -1 has its phase advanced

k (= - z ) radians, where

: : /2
— 2
k = (kz - kz -k ) : . (A-12)
z ) X ¥

It follows that

E(x,y,2) = XX exp{i[Kxx + Kyy + kz(z - zo)]}da(mxmy;zo) . (A~13)

By using Eg. (A-8), we can immediately deduce the well-known result that
R (6%,67,2) = R, (ox,87iz ) . (A-14)

Howaver, P Ppo and - do depend on z, Indeed, by applying Eq. (A~9),

we have

mBE(Kx,Ky;z) = ¢BE(KX,Ey;zD)exp{21kz(z - zn)] R (A-15)

It foilows that witr an obvious notation simplification,
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tpn(z) = tpn(zu)gos [.kz(z - zpﬂ
- 8.
* @I(zo)siﬁ [kz(z - za)]

- Re[@RI(zo)}s‘in[Ekz @~z )] (A-18)

. . - o
o, (2) = gz )sin [1:2(5;_ -z )]

+ _gpl(zo)co_s_?[g(z ~z ]

¥

| hf_Re{mRIczu)]Sin[EE;§Z “_20)3 o (A-17)

._tmcl
Py = Log ) = gtz sinl2k (2 ~ 2 )]
+ Relqp, (zo.)}cosfakz (z - ZO)]

+ igmf AR . (A-18)

= 0t o= zo, the results

In the specinl case in which Pr = tPRI

reduce to

S
wR(z) = ¢I(z°)sin [kz(z - zo)] (A-19)
npl(z) e q‘pI(zo)cos [ka(:-a - zo)] (A-20)

l —
:pRI(z) = - cpI(aD) 3 sin[Elxz(z - zo)] (A-21)
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This specizl ease was originally d_er_ivec_l by Bowhill {1957). -The results

derived in Section III take this form when the layer thickness L is

. zexo. " This is the so-called. ”phasa~.changing" screen approximation,

although ''phase-quadrature” changing screen would be a more nearly
correct description, A true phass=changing screen has been analyzéd_‘ by

Merc;iei; (1962.). -
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Appendix B

THE TEMPORAL STRUCTURE OF THE SCATTERED FIELD

The time variation of thevscattered field arises from the relative
motion of the medium and “the Frame of reference as well as from temporal
 changes in the medium itself. Hence, in the measurement frame,
: 'E_ﬁ(;c,y;z) = H exp{~ l{i{x(X' - uxt)

-y ) 5 ,‘; . B-1
+icy(y vy }}Cbt(icx kg z) (B-1)

By appling Egs. (A-8) and (A-9) we can derive the results

5[ = [f expi- ilk_(6x -~ v &t
dic_ di

,:(»%’c)?f-—:‘i . (B-2)

s tcy(ay - uy&t)]}ézﬂcx,l{ Py

y

In deriving Bq. (B-2) we assumed stationarity of the témporal

variations. We introduce the temporal frequency variable

25%F = K u + K v . {B-3)
X X yy

Changing variables in Eq. (B~2) gives the result
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or

The form of Eg. (B-4) would be greatly simplified if @(Kx,Ky;ét) had the
form @(Kx,wy)n(at). It seems unlikely, however, that the decay mechanism

is independent of spatial freguency or, eguivalently, scale size.

On the ojher hand, it is generally true that the lifetime of the
irregularity structure is long compared to the transit time--that is,
the irregularity structure is "frogen." Then, the integrals over ¥ or
Ky are effectively §t-independent, and they can be interpreted as the
temporal spectral densities (power spectrum in the case of RE) of the

field fluctuations.
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Appendix C

POWER-LAW SPECTRAL-DENSITY-FUNCTION FORMULAS FOR MNORMAL INCIDENCE

in this appendix we consider evaluating the integral of Eq. (IV-40)
for normal incidence with L = 0. By using hypergeometric series, it is

possible to obtain the following formulas for Re{B} andqﬁm{B}:

1 + Re{B} = ZD + 1Y% 2 (A +3B] (€-1)
n v n n
n=1 n=0
_ [2=] : .'— 'Y/z [==3
- Sm{B} = Z B, + (-1 z :[An - B_] (C-2)
n=1 n=0

for v and even integer, and

1 + RefB} = Z :D (Y- D2 ¢ Z [A =B ] (C-3)
n 'Y n n
n=1 n=0
-] [==]
- Jm{B} = 2 :E + (—1)(\"1)/20 E :[A + B 1 (c-4)
n LY n n
n=1 n=0

for v an odd integer.
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The quantities D , E , A , B , and C can be evaluated as
n’ n n n v

2
n o4l 2n-2n, (B vl
(-1) (z) B8 Pzn( )

Dn = 28 (C-5)
(~ v + 3/2)(~ vy + 5/2)...(- y + 1/2 + 2n)
n+1l 2n+ 1 ~(2n ~ 1) 52+1
e R Pon - 1("*—25“‘)
En = (C-6)
(- vy +3/2)(-y +5/2)...(-y - 1/2 + 2n)
2
n 2n, B + 1
~130¢ B+ -
A_(l) z) P2n+'y—1/2( 28) o
= 5 — —
n (Zn)IB( n o+ Y 1/2)
n 2n + 1 2 + 1
-1z P (§~———)
2n + Y + 1/2\ 2B
Bn = 2n + v + 1/2 (C-8)
(2n + 1)
and
c = JF 2 "ty T e 'C-9)
vy ¥2 1:.3.5...(2y - 3) )

th
where Pa’ (x) is the o Legendre polynomical when ¢ is an integer or the

appropriate Legendre function when ¢ is non-integral.

In formulas (C-7) and (C-8), the relations

o 1/2
B- +1y 4/ 8 -1
P-l/z( 28 ) T on(@ + 1) . (a + 1) (€-10)
and
2 2\/——\ 2 /2
B8+ 1) 8 g -1 _
P+1/2( % ) == E ( 5 ) (c-11)
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where K and E are standard elliptic integrals, can be used together with
the recurrence relations for Pn to evaluate the successive terms in the

series.

The series in Egs. {(C-1), (C-2), (C-3), and (C-4) converge quite
rapidly for small Z when ¥ is not too large (say less than G), and more
slowly as Z is increased. Henece, they are most effective in the near

zone,
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Appendix D

SPECTRAL-DENSITY FUNCTIONS FOR "SIMPLY" ANISOTROPIC MEDIA

In general, the three-~dimenstiopal spectral-density function is

.+
&(k) = J‘(s)jnca?)exp[i'ﬁ . 5?}:15"} (D-1)

-+
where R(§r) is the spatial autocorrelation function. The z-axis is

taken downward, with the x-z plane containing a unit vector ﬁB along

the earth's magnetic field.

Consider a rotation about y into a new coordinate system (ul,uz,ug)

with u3 along ﬁB, the elongation direction. In standard matrix notation

we have
-+
= Mla T {(D-2}

where

cos 0 -sin {\

Ml 0 1 0 . (D-3)

\ sin U G cos

The angle { is measured from z to ﬁB.

A second coordinate transformation to elongate the coordinate along
the u3 direction prqduces a coordinate system with spherical symmetry
for the simple anisotropy we are considering--viz., elongation of the

irregularities along a single direction. In the new systen,

-+ -
o= Mu (D-4)
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where I :
1 0 0 l:
my={ 0 1 o (D-5)
- ‘ :
0 G B ‘  :
|
Now, changing coordinates in Eq., (U-1) prives §
ik » M, M Tp s
-+ 2 -+ 1 2% :
@(|S| ): uf(s)fﬂ.(ar)e dy (D-6) ]
where a = b is the axial ratio, Let t
- -+
-g c U= -f\ + Hr ‘
A 2 &
= [M, M ’
(“1 My ~ L
T
-
= kM h l . (p-7)
It Pollows fthat
- It Ve " - E
Sl 1\1 cos 1:3 sin (D-8) K
H
8, =k, | (D-9) ‘
i
= ! . — ; ’
S3 + kln sin ¢ + kaa cos i (D~10) !
Hence, P
42 4 2 3 e P P
= . = ! in ¢ - 2k k | ; ‘
|S|. S+ 8=k cosy + Lk sin’y - 2k, cos § siny
P -
-+ ‘l'n.2 I.i
28 g a2 p 2 2
) | = Is T \
+ 1-:1 sin ¢ + lcaa cos ¢ o 21..l 5% COs ¢ sin
o 2 : :
ci) Y 2
= By [k, =22 .1 < + & D-11 B
B(‘*’)(]‘l B ‘3) - 1) B(\;) 2 (D-11) -
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where

., 2 2 2
B(y) =sin{y + a cos ¥ (n-12)

and

CW) = (L~ a’) cos § sing . (D-13)

3.2 -
We now note that #(|S|™) is & real symmetric function. The quantity
of interest is

dk

fﬁ(lglz) exp{-iksaz}z—:

2 : dk
4 c() f 2 2 a 2\ ). 3
e.\p{ikaaz B ] 1\3]3(\;) + kl B) .-!- kz exp 114;352: vy

@(kl,kz;az)

I

(D-14)
The integral in Eq. (D-14) is purely real, as is the additional
integral
e
-l @(kl,kz:ﬁz)da_z = @(kl,kz,ka) lka =0 . (D-15)
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Appendix B

INTENSITY CORRELATIONS FOR COMPLEX GAUSSIAN FIELDS

In Section V we considered a general complex field of the form
V=X + i¥, where X and ¥ are Jointly gaussian real fields. To make

the deterministic components explicit, we write

il

X = - (E"'l)

1

T, o
Y = + s (E"'2)
ﬂy
where X and ¥ have zero means. Note that we have not assumed statistical
homogeneity. That is, nx and ny can vary with position and/or time as

well as the moments of X and Y.

We let .
R A (e (E-3)
XX
R AT (E-4)
Yy
and
y R4y (E-5)
Xy
R & (D . (E-6)
yx :

When X = ¥/ and ¥ = ¥/, we shall use the notation

(2%

o‘i_ A (E~7)
o> & (¥ (E-8)
y
A 5% -
cxY 8 {(xv) (E~9)
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2
02 =g _ -+ 02 . (E-10)
x 0y

RE(GWH =R +R +ilC -C ) (E-11)
> gx
BA&¢wY =r -R +itc +C ) . (E-12)
xx Xy ¥x
To proceed, we first note that
2 2 2 2
{I) =(X +Y)Y= 52 + nﬁ + ny . (E-13)

The quantitiy that we shall compute is the second central moment of

2 .
intensity (II’) - {(1)}”., By direct computation we have

n L _ 2
(11" - (D) _Q[R_kﬂx-i-ﬂ le"‘(R +Ryx)nxny]

2. ) 2 .2 2 ' 2_ 3
N S L RS LIRS & L IR L' N ¢ Y
For goussian processes it is easily shown thaot (see, for example,
Papoulis, 19G5, pp. 481-482),

2

2 .2 2
(x Y = (2) + 2R (E-15)
. < o
29 g2 1 ' S
Xy =g + 2R (E~1G6)
{ } Sy <y

. o 5 - g | A
with similax results for (¥ Y’z) and (X/7Y"). Hence, the intensity

_correlation can be written 1n terms of R " R ,® , R , and the first
yy o=y y=

moments N and n .
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Thé'final form can be simplified if we write B and (V) in polar form

with
' S m{B}
and
T!Y
tan g & = . (B-18)
‘n}:
After some algebraic manipulations, we have the desired result,
Re{R} |B|
arty - (0% = 27D - ) + — cos 2(C - &)
2 2
4 [R5 (B |
+o | T . (BE~19)
1 o <

We note that both R and B ave proportional to ¢ . Hence, Eq. (E-19)

2
s a quadratic equation ing .
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