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ABSTRAGT e

. This paper reviews the simulation of earthquake occurrence by ..
. numerical and laboratory mechanical block models. Simple A
i linear rheologies are used with elastic forces driving the main

?‘ ] - events and viscoelasiic forees being important for aftershock and

|
|
'k' , creep oceurrence. Friction and its dependence on velocity, stress,
and displacement also 'plays a key role in determining how, when, S

i
and where fault motion ocewrs. The discussion of ﬂz_e qualifative oy

R

behavior of the simulators focuses on the manner in which energy
L : is stored in the system and released by the unstable and stable

sliding processes, The numerical results emphasize the statis~

§

) o
: l _ B Hes of earthquake oceurrence and the correlations among source o
; parameters,

i
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NUMERICAL AND LABORATORY SIMULATION o]

P

OF FAULT MOTION AND

EARTHQUAKE OCCURRENCE

I INTRODUCTION [

This paper reviews numerical and experimental simulations of fault motion

T R D Py T

. and earthquake cccurrence, In the simulations discussed here fault regions are
represented by discrete blocks which are driven across a friction surface by
various combinations of elastic and viscous force elements. This representation

of earthquake sliding and assoeiated fault dynamics has both strengths and

el ..
T - ‘
T T T S TP BN O T L T PR T

weaknesses which can be siated from the outset. Foremost among its strengths

!

'
o
A are its clarity and conceptual simplicity, The modeling of fault dynamics in SREN I
_ 4
. _ }
terms of sliding blocks is readily accomplished both in the laboratory and on a |

computer. The details of the sliding process appeal to intuition and experienqe

and thereby permit a clear understanding of the observed behavior. Many of the

large scale phenomena associated with earthquakes and fault motion are mim-

iced in the simulations including the occurrence of foreshocks, main shoeks, and
aftershocks in single earthquake sequences, the correlation among source pa-

rameters such as that between energy drop and the product of rupture length

PRI PR ST ]

} -1 - and average displacement, and the occurrence of stable, aseismie, sliding epi-

sodes. - In addition, the simulation technique provides a convenient test bed for

o el

examining new models of earthquake source mechanisms and for exploring
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their dynamic consequences. ‘The simplicity of the technique also accounts for

its weaknesses. Aside from the obvious dangers of oversimplification of com~
plicated tectonic ‘:md geologic processeé, the ltun’piliess of the block elements
introduces resirictions of the length S_O:"J.IQ of the phenomenﬁ which can be studied
and iatroduces a diseretization which may not be preseﬁt in naturé.

While this review will concentrate on the mechanical block representation
of ear_thqual:e occurrence, note should be made of the dislocation theory tech~
niqueé for studying somé of the same praoblems that will be discussed heve.
Dislocation techniques usually, although not necessarily, assume some lknown
rupture propagation characteristics along the surfnce expressiou of a fault and

deduce the consequential motions qf points elsewhere. Dislocation techniques
‘have been discussed by Haskell (1969) amang others. |
| The orgmﬁzation of this paper is as follows. In the remainder of the in-
troduci:ion we present a simple mathematical analysis of the sliding occgrring
in an earthquake, the model consisting of a sﬁigle mﬁss block baing driven by
elastic loading, This model serves as a basis for the more sophisticated mod~
els introduced later, With the basic ideas introduced by this model in ﬁlmd, |
we begin in Section II 4 systematic discussion of simulation concepts. This
section discusses linear rheological models of the stress-strain relations in
vrocks. Particular éﬁxphdsis ié place on the ts'.ine dependent behavior. Section
I also reviews v_arimls concepls and experiments concerning the frictional

resistance to sliding, particularly stick-slip sliding which appears o be
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important in earthquake dynamics. 1In Section I we discuss in a qualitative
manner the behavior of various simulators which use the rheological models
discussed in the previous section. Then in Section IV we discuss simulator
statisties and correlations among source parameters as deduced from the ex-
periments and ca_lculations. Where possible the results are compared with
results for naturally occurring events. In the final two sections we discuss
vseveral topics related fo simulator analysis, present our conclusions, and
comments on the possibilities for future research.

We begin the discussion of earthquake fault motion by considering the
model, shown in Figure 1, of a block sitting on a friction surface and subject
to stress due to the accumuiation of elastic strain within a spring, The spring,
with elastic constant k, is stretched at constant velocity u. In the ab-
sence of any initial motion in the block {mass=m), the frictional resistance
prevents sliding unti! the stress rises to the maximum frictional sirength,
£'. Once sliding has bhegun, the frictional resistance drops to the dynamic
Avalue, £% Thus with the. initial position of the block at x = 0, motibn is initi-

ated at time t, when

kuty = f° (1)
‘ ahd thence
m¥ = k(ut—x)—f¢ (2}
3

e M
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The solution of equation 2 is

oas=thY ., K (t=1y) m . k
N E———— ity =~ 3 +utt=t,) - u T Y (=13} (8)

For practical purposes, once the silding event is initiated we can ignore terms
in u sinceo these terms contribute negligible displacements during the '.itﬁe span
of an earthquake (typically u = 5 em/yr; this approximation is mathematically
equivalent to setting t = t, on the right side of equation 2 which then becomes
mX+ kx=f* - f%), Hence

X == —(—f"-}:—t'—) sin® :1 ——w—L )

From this equation we deduce the following:

a. duration of the event

At i (5)

|

b. total displacement

G

Ax :
K ©)
e. reduction in driving tension, AF, or fractional driving tension, AF/FO
- AR ' - pd
AR = 2(8% =y -I— S B I €))

AE = fdax = =it -1 @)
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e. peak velocity
: 5 —pd
Ny 5 irem—
max P 9
vk ®)
f. peak acceleration
“ £S5 = fo
Mo T m _ (10)
Netice that tho reduction in the driving spriag tension is independent of the
- elastic constant and the block mass; in fact, the mass affects only the duration
of the event, the veloeity and acceleration. Ulustrating the relationships by
taling m = 8 x 10M gm, k=1 N 10¥dyne/em, £ =2 x 107 dyne, £ = 0.8 £5,
{(corresponding roughly to.a ten kilomater cube at shallow depths)
At = Ssee
Ax = Jd0em
AF = 4 X 1017 dyne
AF
'—l:'-' = 0
‘n
AE = 3X 10% epes
Nugy = 12 emfsee

b3
X N

H

20 emfsec?

This model of blocking sliding under the influence of spring loading intro-

duces many of the concepts advanced in the more compliented models discussed

later. TFor now, however, we turn to o discussion of the fundamental stress-

strain relations for rocks.
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II. LINEAR RHEQOLOGIC MODELS OF STRESS AND STRAIN IN ROCKS;

FRICTION
The mudeling of fault motion requires as a fundamenial starting point some
relaﬁonship between the stress, o, acting on the rocks and the consequential
strain, e* In general these relationships can be quite complicated buf con~
siderable understanding can be achieved by restricting the analysis to relation-
| ships which are linear, fhat is thosé whicﬁ involve stress, sti'ain, or their time
derivatives to only the first power. Mathematically this is an extremely power-

ful assumption for it permits either the total stress or strain due to several ele-

ments to be determined by summing individual contributions. The relationships

that we state will be for the case of uniaxial compression, no greater generali-

zation v_vﬂl' be required at present, The simplest case, that of pure elasﬁcity

Iy

o = ke (11)

" A substance obeying this rela.tionship is said to be linear elasitic or Hookean.

A lnear viscous substance, or Newtonian viscous, is defined by

o= 7?‘;" ' (12)

" More complicated substances can be d_onétructed from combinations of these

elements, ‘and the very powerful linear operator techniques can be used io de~"

rive the siress-strain relations. We write an element stress-strain relation

"‘Ir} aceordance with common practice we will often mix the concepts of force and stress. In the present context the
difference between the tensor nature of stréss and the vector nature of force is not of great significance.
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as

g = Q¢ (13)
where O is 2 linear operator on €. For the elastic element O¢ =k fedt =
kl¢ = ke, while for the viscous element O¢ = yé. In formal manipulations the
inverse of the integration operator is the differentiation operator; i.e.,
ID=DIi=1. Tor elemenis connected in series as in Figure 2a, the strains,

ad hence the strain rates, add directly, l.e., € = € + € or
€= (kD! +9llo , (14ar
Hence

. k -
o +—1-?-a = ke (14b)

This is the streSs—straiﬁ rvelation for the Maxwell viscous substance formed
fv;om the series combination of Hobkean and Newtonian elements. As shown in
Figufe 3, .the strain increases linearly with time when the stress is held éon—
stant ‘in sv.ch a substance. The stress decreases exponentially with time con-
stant 7 = 7/l when the strain is held constaat,

When elements afe connected in parallel as in Figure 2b the stresses add

dirvectly, Thus for this so called Kelvin element
o = e + ke (15)

Tn contrast to the béha.vior o"f the Maxwell substance, the Kelvin substance under

ema e eva o e menmes i e ea el e e e ST = .

R A T
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constant stress obeys the relation

_ otfr 1 9. -ty - =
€ = €€ I 4 - (1—e ), 7 = ” (16)

Thus in the absence of any stress the initial strain relaxes exponentially while,
if the substance is initially unstrained, the strain rises toward an asympotic
value o/k (Figure 3). When the strain is held constant the stréss is the same as
that for the linear elastic element. The Kelvin element is the simplest model
to give transient crzep shown, for example, by the time dependent terms in
Equation 16 (Jaeger and Cook, 1976). It is not adequate however for represent-
ing seismic activity because it does not permit instantaneous elastic strain
(Jaeger and Cook, 1976).

There are two non~degenerate three element substances, These are shown
in Figure 2c and 2d. It should be noted that there are alternative equivalent
representations of these models, For example, Figure 2c can be replaced by
a spring, k,, in parallel with a series combination of a spring, k,, and a dash-

pot {viscous element) 7, provided

2 2
k. = k:1kb K = ka q = ( ka ) ??:
ok vk 2 Ktk k, +k,

The stress-strain relationship for the generalized Kelvin substance is

k, +k, Kk,

a
! n n!

an

PN LAY IOV AP R T, LYt WD v a2

B R R T T S )




aln AT iE '

y A A RO SR ST RS L SRS B IO A A SR S A
v e SOPEN N CLE
eella : oA h l o ! ' '
Thus wnder conditions of constant stress
1 ! 18
€= ene"‘f" +(““_']—'-‘+—"—)0’(1 -ty ¢ =-?—' (18)
I‘n kb l"b
and under constant strain
o= g.eth & (1—et'y;, ¢ = il
0 1.1 k, Tk, (19)
ku kb
Examining equations 18 and 19 we see that this substance shows transient creep

and transient stress although for t > 7,7’ both the stress and strain approach

steady state values (Figure 3). Instantaneous stress and sirain changes are also

possible. Thus this medel is useful in discussing transient creep and time

dependent stress readjustment following major sliding events. These features

will prove to be important in modeling aseismic fault motion and aftershocks.

Fox the other non-degenerate three element substance

. k MMy " "uk
o+ o= € + €
M+ o, Tt M,

Thus for constant stress

and for constant strain

‘tIT n“ + nb

0= guemy T =

which has the same form as the Maxwell substance under constant straig,

(20)

(21)

(22)
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Four element models can also be used to simulate features of fault dynamies,
Figurs 2e shows one form, the Burgers substance, which consists of a sexvies -

combination of Kelvin and Maxwell clements, The stress—strain relation is

ko kK k k oK
e[ = b= 2o =" 0= KE o+ K—¢ (28)
W M hy MW M

This model shows instantaneous strain mid both transient and steady state oreep
but because of its complexity has not been used in a detailed simulation of the
type currently under discussion.

The lineay operators we have used here are directly analagous to those ap-
pearing in othex fields, particularly electrical cirveult theory. The equation
d = Oc is-. analagous to the electrical equation J = ¢E& whea:é J} i{s the electric cﬁr—-
rent density and E is the olectric field amplitude. Thus stress is analngous to
current density and strain is analagous to ﬂle electrio field amplitude. The
operator O is annlagous to conductivity ox the slectrical admittance. Its Inverse
is resistivity or impedance, Thus the viscous element with a dirﬁmt f:roportion—
ality between ¢ and € plays the role of a rosistor, and the spring that of an in~
ductive coil. It can also be shown that the inortinl effect of the block mass, m,
is analogous to the capacitive elfects in eleotrical cirouits.

In the proceeding discussion we have developed equations relating stress
and strain for & number of model substances, If the mechanical block dis-
oussed in Section I wers free to move without encountering frictional resistance

then it would undergo a continual slow movement to prevent any long term

10
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stress accumulation. This would not, however, be an adequate model of fault |

surfaces where frictional interactions between the opposite sides of the fault act

to resiriet motion. Thus we need to include in the simulator a description of H

the frictional properiies of rocks in the fault zone, We again consider a hlock

model with the block resting on a surface and subject to a compressive normal
stress, g. Whena shear stress is applied parallel to the contact plane, it is

foung that over a wide range of normal stresses and temperatures and for a wide B

range of rock materials, that no motion occurs until some critical magnitude of
shear stress, I'8, is reached. An experimental relationship_ between Fs and g
can be deduced viz,

F* = p'c (24)

B aame o

where p® is the coefficient of static friction, Experiments have foung that to a
good approximation y° is only a weak function of the area of contset and the nor-
mal stress (Jaeger and Cook, 1976). Once sliding is initiated, itis again ob-

served that the frictional resistance is proportional to normal stress hut, as a

T e

general rule, the proportionality constant, pd, known as the dynamie friction

TR T

P A S AL SN« I A PSRN I TRR TSP S WY 7 L. )

coefficient is less than the static coefficient, The value of the dynamie friction

coefficient may vary with the speed of sliding,

When careful measurements are made of the relationship between static
frietion and normal stress it is found that the T’ versus ¢ curve does not pass
through the origin, but that to a better approximation F* = Fy * po where Fy

corresponds to an intrinsic shear strength.

We zlso have not yet considered a possible time dependence of fric- : 3

11
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tion. In general ons might expect that the static friction coefficient will increase
with the dui'é.ﬁoﬁ of contact following some earlier sliding; corresponding to a
time depgnder;t heaiing of the ruptured rvegion. Disterich (197-29.) has observed
this effect and 'cénciudeé o | |
p3() = us0) [1 +alog(At)]; At > 1 sec. (25)

where At is the duration of contact following sliding,

A. different approach to {he frictional resistance in block sliding has been
discussed by Byerlee {1970), Nur and Shuliz (1978), and Nur (L977) in light of
.earthquake dynamics. In this appro:ich it is assumed that asperities along the

fault surface lock together to form the frictional resistance, When the shear

force becomes strong enough to cause britile failure of these asperities motion

cen oocur, As the sliding proceeds, cantinual locking and breaking of the asperi-
ties cause fluctuations in the frictional resistance. Thus, the frictional resist~-
ance varies in some irregular mannexr with displacement. In this model the
value of .ﬂze frictional resistance at the initiation of the unstable sliding event is
.analogo'us to the s’w.tié ffiéﬁoﬁ and the avérage value of the fluctuating friction
during the eaxthquake sliding corresponds to the dynamic friction, An interest-
ing featuré of this model is that both rapid, unstable sliding resembling that oc-
curing in earthquakes and slow, stable sliding resembling that in creep events
can occur, The criterion for unstable sliding is that the driving stress decease
less rapidiy with displacement than the frictional resistance.

In the earthquake simulations, various models for the frictional resistance

will be employed. In the simplest cases, static and dynamie friction forces, £°
12

T T R S T . L TP, R T o L NE Y, ¥ 1% N Ty P

e e e e et o it s

ke bt bl o o %




AT e g ey

i -

T

T . . H - : - B - H
B ST i 3 o) R R S R . doveeosd vmesad ] SO DU B VTR OO | AR T i Mtk e

[ ER O S U AR S S U M D D L T e D T

W b < LT | B L [ i R T 1 -

and f“, are used to explain the gross features of the main sliding events. Other
models are intreduced for modeling nftershooks, oreep, and the details of the

earthquake instability mechanisms.

1. MODEL SIMULATIONS - GENERAL RESULTS

The prototype for the models that are discussed in this paper is shown in
Figure 4. It cousiéts ofa ﬁtiﬁxher of masées conuaoted together byl springs and
resting on a frietion surface. The masses are driven by springs connected to
o moving plate. In some early laboratory simulations only the first mass of the
chain was connected to o driving source, In many of the computational models
the springs have been replaced by more complicated rheological elements such
as the viscoelastic elemonts disoussed in the previous section. Details concern-
ing the various laboratory and computational models that are discussed In this
review con be found in the Appendix,

The simplest models of fault motion during earthyuakes employ elastic
springs as coupling elements and frietional surfaces over which the blocks
slide, Laboratory models of this type have been studied by Burridge and
Knopoff {1967), King and Knopoff (1968b), and King (19"?5). Computationsl
models include those of Dieterich (1972h, 1973), Otsuka (1972a), Cohen (19774,
1977h), and Rundle and Jackson (1977). In examining the sequence of events
ocourring in their simulator, Burridge and Knopoff (1967) found that small events
occur largely at random while large events involving major changes in elastic
potential energy occur nearly peviodically, Between major events the poten-

tial energy of the system inoreased nearly linearly with time when the inter—

13
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mass springs had equal elastic 6onstants; Furthémore, the major events all
occurred at approxtmately the same level of potenﬁal energy and involved
compa'.z'a..blel'enéﬁ:gy- dféps; Thus fhe period beﬁéen these larg‘e evenfs was
simply the energy drop_ divided by the raie of energy input.

Kiﬁg and Knopoff {1968b) also found in their siudy that the strain energy
density before a shock showed littie variation with the magnitude of. the event.
An analagous resulf has been repoxrted by Bath and Duda (1964) for natural
events. King (1975) obsexved a long term linear trend in average displacem;eﬁt
with time; this behavior is, of course, necessary since in the long term the
displacement rate must keep pace with velocity of the moving splate. Mdre
significantly, he noted that large shocks occurred at times when the displace-
ments of most masses had falien below their long term averages. On the other

.hand 'King', .unh'.ke Buri'idge and Knopoff (1L967), reported thaﬁ large shocks were
L :)f periodic in time,

Using a cofnputational model in which friction was allowed fo vary from
block to block, Dieterich (1972b) found that the frequency with which blocks
move is related to their static frictional strength with low friction blocks
moving more frequently than those with high friction, * Dieterich (1973) also
performsd two and three dimensional simulations and derived scaling laws that
relate source parameters cbtained with one set of i.nput variables to source
parameters with a new set of input parameters. These important scaling laws
are summarized in Table I

#One contrst between the laboratory and computationn! models should be noted. In the Inboratory model, stick-slip
slidinp is observed but there is no certainty about the mathematical description of the frietion law. In the computational
maodel the friction law is clearly defined mathematically, but it is not certain how well the mathematical description
represents the natural process.

14

e e i

i,
g 2 . -

bl o ey e 4 R il g o 4 T i A 1T R T ey R forsmragrere—



i

P

1
. f
1o
i

i [

et L -y ) + B ‘ . B } T TR | i . .
A (P S U SRS AT IS SRl NG N FO N R A SR B SO B
IR R R R S

__-j - . f ”. J.‘; co ,4?'_ ; ‘ . L e : L :
oS 2 S i e ad e PO T e ML e s e, R

The importance of seismic gaps, that is regions' of low seismic activity in

) ’an'o’r‘.‘nerWise‘ highly seismic region, has long been studied for earthquake pre-

diction purposes, Otstka (1972) found tha.t» Iarge sﬁﬁulation earthquakes oceurred
in r’e;‘gidns. 61:‘ anomalousljr ibﬁ'séismic aetiv’ify.‘ - o

_ Studies ha.v_e also beeﬁ performed to determine how the qualitaﬁvé charac-
teristies of fault'mc_)vements are -inﬂuenéed by the degree of hetérogéﬁeiﬁ in the.
‘friéti_og and ¢lastic parameters, Cohen (1977b) has found, for example, that

‘witvh relatively homogeneous fault parameters successive events tend to propa-

- 'gate' along the length of the fadlt in a type of epicenter migration. He also found

that recurrence patterns in the locations and magnitudes of seismic activity

could be chserved. Both effects were less common with heterogeneous faults,

" hut seisraic gaps were more likely to oceur.

Rundle and Jackson (1977) searched for evidence of an increase in simula~-
tor ééismiéity pfecee&ing larpe evenis such as suggested by studies of California
| seismicity by Wesson and Ellsworth (1973) and Wyss and Lee (1973). Such be-
havior was not preéerﬁ: in fheir ela.stié mocﬁéi leading them to speculate tﬁat the
- seismicify increases may be due o (among other causes) time dependent fault
parameters. |
- Several workers, including Rundle and Jackson (1877) have pointed out that
as the ratio of elastic modulus to stress increases, there are frequent small
:displacements and the system behavior becomeé ductile. Conversely as the

ratio decreases larger infrequent events ocecur.
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In the models tﬁat have been discussed up to now the only signiﬁcant time
depehdent processes have been the slow élasﬁc loading of the driving springs
and fche sudden_ ela_stic motio_ns during simulation garthquakes. As a consequenée
the n;todels are not capable of explaining phenomena oceuring on intermediate |
time scales. The most important of these intermediate scale phenomena are
earthquake sequences involving either foreshocks, the main shock, and after-

shocks or ﬁearly equal mégnitude swarms. Other important time dependent

phenomena include_ continuous, episodic, premonitory, and post seismic creep.

To study some of tﬁese effects, various computational models of viscoelasticity
and time and stress dependent friction have been employed. In the earliest of

these models Burridge and Knopoff (1967) divided their one dimensional fault into

three"reg'io'nsﬁtwo regions with predominatelyelastic pfoperties and low viscos~ -

ity separated by a region of high viscosity. The effect of the viscous 'region was

to introduce a time deiay between'ﬂle time of sliding in one elastic region and

the ﬁme at which ﬂle‘ resu,ltant stz_:e_ss changg was felt in_t‘he other elastic re-

gion, This time delay was responsible for the oecurreﬂcé of aftershocics both
in the gecondary and in the p'i'imé.ry elastic regions. In the high viscosity re~
gion, unstable sliding could nqt occur. The time dependent characteristics of
the energy release in the visc'zoelasﬁc model were significantly different from

the elastic case. In a2 sequence of 69 aftershocks following a main shock on

the primary fault, the authors reported:

1. The cumulative energy released by aftershocks increased as (1 - &%),
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2. The .totﬁl str.éss.ene'rgy released in the shock sequence was divided as
follows: main shock - 126, afte_rshdcl:s on primary segment - 44%,
aftershocks on éecondﬁry segment - 13%, - Additionally a potential
enexgy release equal to 43% of the energy released by simulation
shocks was dissipated by viscous flow,

3. Despite the greater energy release in the primary segment, only
27% of the shocks, mcludmg the main shock, ocecurred along this
| segxﬁent. o - |

4, The clecajr in the frequency of aftershocks occurring with time was

fairly consistent with either the (1 + gt)~! dependence suggested by
- Qmori {(1894) ox an exponential decay.
It may be significant to note that in this sequence more potential energy is re-
leased bj,r aftefshoéks than 'by the main shock, We will comment more on this
p_oint__ latelf.

Diéte:r:icli (19721h) has proposed that t'hé interplay of viscoelastic siress re-
covery following an earthquake coupled with a reduced frictional strength of the
fault following a sudden sliding may be responsible for aftershocks. Consider
the génera.lized Kelvin subsiance discussed in section II,, I can be shown that
following a sudden stress re_laxing sliding event, a time dependent increase in
stress can cceur with the stress rise asymptotically approaching k . / (k, + k)
of the stress c_lrop during the sliding. Furthermore, as Dieterich's (1972a)

experimental work suggests, the frictional resistance against further sliding
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is iess than the res-istance prior to sliding. Presumably this is related to the
finite time required for frictional healing of the rupture (equation 25), If
the viscoelastic stress recovery is more fapid than the time required for fault
healing an. aftershock may be generated, The aftershocks oceur in the same
region of the fault that ruptured during the original event and the c_luration of
the aftershock sequence inoreases with the size of the main shock., Further-
more a correlation has been found between the dispacements and magnitudes
in the main shock and those of the largest aftershoclk's (Cohen, 1977b).
Although the frequency of aftershocks decreases with .time, it does not follow
Omori's law (Dieterich, 1974).

In an alternative model of aftershocls, Rundle and Jackson (1977) focused
attention on stress induced crack nucleation. They assumed that the friction
strength, F$, against sliding decreases at a rate proportionzal to the amount

the stress exceeds some value of friction, F*, i.e.,

dFs 1
i O (26)
dt T

where F$" ig a constant‘ and ¢ (t) is the stress acting on the block. In this
model, if the dynamic friction is greater than F*, the stress drop during the
first rupture is small and the stress, o(t), remains large causing a decrease in
frictional strength. Since friction is then reduced while stress remaips high
aftershocks may occur., The affershocks are not confined to the region of the

primary shock since a stress induced failure may also occur in a region
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adjacent to that which ruptured during the primary event (this border region

PEE T INENE
IR o

} Y _ having been stressed by the elastic elements coupling it to the displaced region). S

' ‘ _ Singe the stress, oft), generally changes little on the time scale of 7, 7 is also 1
| I ; the time scale for the afiershock occurrence. Rundle and Jackson's results - a
} Y show too few aftershocks o examine the dependence of aftershock frequency on :

ﬁme_fo]lowing the main shock, however, it may be necessary to introduce some
. .ﬁme variation in o (t), other thé.n thé tectoﬁic loadfng rate. to produce a déeaying :

frequency of af_térshocks resembling that present in nature.

V. STATISTICS, SOURCE PARAMETERS, AND CORRELATIONS 't :

Up to this point our discussion of simulator results has been primarily

PRy TR

descriptive. Quantitative resulis generally fall into two categories - one, the

statistics of earthquake oceurrence and two, the correlations among source j_f-‘i

parameters. Considering first the frequency of simulator earthquake occur-

e e 4 i gt et e = e =% -

rence as a function of the energy released in the events Burridge and Knopoff

o e e g 2T

T P « ML

Lo (1967) obtained the experimental results shown in Figure 5. Txeept for the f

lowest energies the data fit a straight line with t E

ol el 4

logf = A—BlogE @7) 1

. where f is the frequency of events occurring with energy greater than or equal
to E. This relationship appears analagous to the relationship befween the fre-
s quency of naturally oceurring events and the seismic energy log £ = A'- B' log E,.

Bearing in mind the relationship between seismic energy and earthquake
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* | me.mitude, viz, log E, =a -+ bM it is tempting to define a magnitude for the . j
\-\4‘"}4{; . _ simulator events by o ‘3
i _ N | | ' Mgy = log E -~ (28) ‘j ;
This analogy suggests a linear relgﬁonship between log E and log E, and while '. j
_#J' this ié é. useful.viewpoint it is oﬁly a.n approximation whose validity néeds to bé S _ 4
. :L confirmed. A Teason for the ﬂaﬁening of the simulator frequency versus mag- .
. nitude curve af Jow magnitudes is that the diserete nature of the model imposes | i
some lowest magnitude event below which no events will occur. - {
For naturally occurring eventé B’ = 0, 4 while Burridge and Knopoff (1967) S
, F found B = 1 in their mechanical simulétor. These authors have conjectured
E that the difference between their simulator results and actual earthquake data L
= ; may be a reﬂecﬁon of the one~-dimensional nature of their model, However . :
for a very similar mechanical model, King and Knopoff (1968) found B = 0. 71 |
_ P
and for a later laboratory model King (1975) found B = 0. 5. Rundle and Jackson % l i
i (1971) concluded that the results from their cqmputaﬁonal simulator could be } :l _
fit to two lines with B= 0,1 - 0.5 for Jow magnitudé events and B = 1~-5 for high . I j
| magnitude events. An alternative analysis by Otsuka (1972b) revealed downward E - ?
9 _‘ : curvature in the logarithm of frequeney versus magnitude curve, the degree of - ; 5
13 downward curvature decreasing with the probability that the motion of one blocks T- : ra;
: & - stimulates an adjacent block into motion. A similar curvature was found in the | |
¥ computational simulator by Cchen (1977a), Although it appears that there is 1 ;2
20 v 4
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some gualitative agreement hetween the deviations from a linear behavior for
snme actual earthquake data and the numerical results, the quantitative agree-
ment is at best only fair.

The variation in the frequency of the time intervals between events can be
exﬁmined to determine whether the disiribuﬁoﬁ of interevent periods is
Poissionian as would be expected if the events occur randomly in time. Both
Burridge and Knopoff (1967) ana Rundle and Jacksoﬁ (1¢77) have found some non-

‘Poissonian components to the distribution, presumably due to the interactions
between adjacent events. The motion of one block alters the stretch or com~
pression of the spring connecting it to the néighboring block thus altering the
stress_and the time at which the stress overcomes the frictional resistance.
Hoﬁever, Knopbff, Mitchel, and Jéckson (1972) énd Rundle and Jackson (1977)
have showﬁ that the occurrence rate for the simulation events are consistent
_with. a stochastic model operating on the stored elastic energy. They have used

in their analyses the Kolmogorov backward equation

dP(E) _
MBIR(E) + & —— =

_]; Emax =B 0B NP d 29)

where nﬁw E is the elastic potential energy of the system, A(E) is the probability
that an event will occur in time interval dt if the energy is E, « is the rate at
which energy accumulates between events, T'(E, x) dE is the probability that if

an event occurs at initial energy the final energy will be in the range E to

E + dE and P(E)dE is the probability of finding the system energy between
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| E and E + dE., Figure 6 shows the degree with which the Kolmogorov equation
B | fits the resulis of Rundle and Jackson (1977). | :
1o ‘1 King and Knopoff (1968b) used their mechanical simulator to deduce corre-- _
i lations among the rupture parameters for model shocks. Shock energy is ‘ |
shown in Figure 7 as a function of the length of tne rupture, £, or the number of
displaced masses, L. The data shows a concave up behavior on the log-log .-}
. plot of Figure 7; however, if the data with L. = 8 are excluded a linear correla- . ’
o EHEE
| tion with log E = 1. 3+ 1.6 log L can be used, Since L = 8 corresponds to : i
3; movement within the entire spring-mass system and since the free boundary - g %
; conditions of the end masses are not representative of natural conditions, the i g
r data with N = 8 must be viewed with caution. Dieterich (1974) has assembled Pv
 ' a number of magnitude versus rupture length relations used by various . ) ‘
_';. workers. In general they have the form m = g + h log £ with h between one : :
1 | and two. ; 1]
: Somewhat better linear correlations are discovered when log E is plotted "‘
against log LD, log LD?, and log Ld where D and d are the peak and average i
displacements of the blocks. The correlation between E and Ld is shown in ji
5:; Figure 8. The relationship E « £d will be established below while the relation 3
stk ;
E o £D? (or E « £d?) has been deduced from calculations based on an electro- { 3
] statie analog (Knopoff, 1958). In a study of earthquake data King and Knopoff ? :
' R
5 | (1968a) deduced
S log £LD? = 2.24M —4.99 o
o (30a)
(| 22
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while in their simulator work (King and Knopoff, 1968b) thoy found
" 2B
log LD* = 1.55 log e 1.89 (S0}
Assuming log £, =1L, 8+ 1, BM and E~qgE, whero 3 is the seismic eflliciency,
the simulator resulls give
]
lop LD? = 23M+ 1.6+ 1.55 log ;?—;-\ {S00)

Thus the slopes of the ourves of log LD? versus M are comparable for the
rzatural and simulatod events provided the assumed relationship botweon

seismic energy and simulator enexgy is valid,

Some of the results prosented in the preceoding paragraph can be explained
by relatively simple theoratical arguments, TFor simulations in which the elastic
energy stored in the driving and connecting springs is dissipated by friction
sliding, the encrgy drop during an ovent is

E= 2 flay (81)
i

where the sum is taken over the blocks that move in tho event., Wa consider

iwo cases, If only one black moves, then with reference to Figure 4

2 - £

Ax =D =4d = s
Kty th

(32)

From this we can deduce that B« £D?%; here £ is the dimonsion of the
block. This rosult agroes with the aforementioned result by Knopoff (1968).

In the socond cnge we assume the friciion varies little from blook to block so
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‘ ; ’ it can be removed from under the summation sign and | :
R Yy

1 - E = f“ZAxi =fiLd . (33)
; i L.
4 13
1 !
Lo a result agreeing with the correlation suggested by Figure 8, ;
T N
; i The preceeding analysis can also be used to explain the simulation observed

; o variation in average displacement versus magnitude. From equation 33 we

i - ;

5 :
o deduce :
SRS Mgim i
R : d= E o 10 fd = constant (34) ‘ : ;

R fL L j

R 3

Alternatively for single block motion o

; S

1 E 10Msm? b

' d o« T = one block (35) g

SR The simulation data shown in figure 9 are consistent with these equations. - ‘

._ ( The change in the elastic force in the spring-mass systems due to the un~ g j
! siable sliding in an event is simply

3

- . iE

AF = }_‘“ k{ Ax, (36) = %

or if the driving spring moduli are all approximately equal _ .

e

AF = K*Ld (37) N

‘L ] Thus in the case where both equations 34 and 37 are valid AF « AE = 10V while {

for single block motion AF « 10Msv'2 One observed variation in the stress drop ; ‘1

in the driving aprings versus log E is shown in Figure 10. In general the data ﬂ

o 24 |
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Lo for L < 8 suggest that while the siress drop increases with magnitude it does
) L ' '

s0 more slowly than indicated by the preceeding equations,
Different simulations have indicated somewhat different variation in

g _ displacement with rupture length. Results obtained by both King and |

el e e e

Knopoff (1968b) and King (1975) revealed both increasing average and peak

- displacement with increasing rupture length. By contrast Cohen (1977b)

o] discovered that the average displacement increased with rupture length

. for small numbers of displaced blocks but for longer ruptures found no

further increase in average displacement. Wallace (1974) has assembled

data relating rupture length and maximum displacement to earthqnake magni-

tude for earthquakes in Western North America, His data indicates that
maximum displacement increases about linearly with rupture length although
there is considerable data secatter. These results agree better with those of

King (1975) and King and Knopoff (1968b), than those of Cohen (1977b).

V. OBSERVATION AND DISCUSSION OF RELATED TOPICS

It is interesting to consider for a moment the mathematic:l origin of the

instability that characterizes the sliding process in various simulations. In the

4
5

simplest models, the instability is due to the sudden transition from the static b

i
E
3

to the lower dynamic friction when the driving force equals the static friction.

] Burridge and Knopoff (1967) used a more complicated friction law and deduced E

_ f that the condition for instability on a single block is that the net friction force

' ; decrease with increasing velocity at the beginning of unstable sliding. ‘

: ; .
% 25
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(A similar friction law which is mathematically smoother than that of Burridge
and IKnopoff but which reduces to their law in the limits of small and large veloc-
ities has been used by Whithead and Gans (1974)). Thus the simple model is con-
tained within the more general treaiment of Burridge and Knopoff, Notice that
the instability condition focuses on the variation in stress for a change in veloc-
ity. A somewhat different view advanced by Nur and coworkers and alluded to
in Section II, focuses on how the stress changes with displacement, If F(x) is

the net driving force and f(x) a position dependent friction then the condition for
ﬁnstabl_e slidingb in a region of decreasing friction is ~f'(x) > -F'(x). For the purely
elastic case in which F(x) = k(ut - x), this condition is -f'{x) > k. This insta-

bility condition implies, in the elastic case, that friction decrease more

rapidly with displacement than the reduction in the elastic spring driving tension.
The most detailed quantitive calculation in Nur's so called stiffness model has
been performed with a one block viscoelastic substance (Cohen, 1978). The

most interesting features that emerge are

1, creep occurs premonitory to unstable sliding episodes. Transient

creep may also occur after unstable sliding.

stable sliding occurs on both epidsoic and long~term time time scales.
Episodic sliding events may be stable or unstable depending on the
interplay between the viscoelastic and friction parameters.

Despite these apparent correlations between the viscuelastic stiffness model

and naturally occurring events, it must be emphasized that there is
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considerahle uncertainty about the basic validity of the stiffness theory. Mod-
el calculations can ofly deduce the consequences of the assumptions and it
can happen that alternative assumptions have the same consequences.

Knopoff (1972) advanced a theory of aftershock occurrence which contains
some of the elements of other aftershock models and in a sense anticipated
some of the later developments. The two key elements in Knopoff's model are
the occurrence of large stresses on the edges of a rupture zone of a shock and
the delay in rupture of a highly stressed region by prerupture tertiary creep.
In application Kuopoff notes that because of the elastic properties the boundary
between a region that slid during an earthquake and the neighboring unmoved
region is one of high stress concentration. Knopoff, like Rundle and Jackson
(L977), postulated that this highly stressed boundary region may not fail in-
staniﬂ.ne-ously but may fail with a delay time dependent on the degree of over-
stressing, This delayed response gives rise to aftershocks which cluster
around the edges of the main shock rupture region. As already noted failure,
in this model, occurs with preshock tertiary creep.

A common feature of the viscoelastic afiershock theories that we hiave re-
viewed in this paper is the occurrence of eifier creep or stress recovery fol-
lowing the primary shock, The fundamental study of the relationship between
aftershocks and creep using the linear circuit theory that we presented in Sec-
tion II is due to Benioff (1951). In applying his theory to a number of earthquake

sequences Benioff concluried that while the seismic wave energy of the primary

27

TRPT-1E CO: e




___,*ﬁ...._
. |
Lot e o

shock exceeds ﬂ;at of the entire aftershock sequence, the elastic strain energy
dissipated m the. 'creep-aftershoek sequence may be comparable io that of the
primary shock, Tn the earlier discussion of the numerical model of Burridge
and Knopoff (1967) we pointed out that more potential energy was released in
the aftershock and creeping following the main shock than was released in

the main shock. These two results strongly suggest that afiershocks and posi-
seimic creep may be responsible for a much larger fraction of the fotal elastic
énergy dissipation than would be suggested by their seismic wave magnitudes.

As we mentioned eariier the spring and block models that have been re-

viewed in this paper are just a small subset of all models of fault motion and
earthquake occurrence. As one alternative approach rock mechanics experiments
involving the sliding of smali rock samples have provided a wealth of data on
the rupture and sliding processes. In the last several years Brune (1973) has
used stressed foam rubber to observe both stick slip sliding and creep. Along
compuiational lines, dislocation theory has been used to determine ground
displacemenis, velocities, and accelerations due to fault motions. The models
discussed here and dislocation theory models become somewhat similar in con-
cept when the present models are expanded to two and three dimensions and the
eleménts made small, and when the dislocation models are formulated with a

description of the rupture process.
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VL. CONCLUSIONS

It hﬁs been somewhat ﬁver a decade since the first maseive block simulator
of earthquake oceurrence was developed. In ﬁ:at time well over a dozen studies
have been made by almost as many researchers. Major contributions have been
made in understanding the propagation of rupture along a fault, in developing
corvalations among source parameters, and in explaining the interplay between
foreshocks, main shocks, and aftershocks and creep. It appears to the author
that at least two areas of study have potential for contributiug significant new
information, The first of these is the study of two and three dimensional visco-
elastic systems, possibly with multiple faults. It seems likely that the interac~
tion of elements not directly on the fault surface will produce a number of ef-
fects such as a propagating creep wave not observed in most cne dimensional
simulations. The second area is the study of the physics connecting the near

field block sliding with the far field seismic wave motion. A synthesis of tech~
niques such as a combination of a sliding block description of rupture with a
dislocation theory description of the far field effects might prove fruitiul. By
contrast it seems less likely that fundamentally new insights will be achieved
by utilizing more complicated rheological models (although simple, but novel
models may be iluminating), The more complicated the rheological model,

the greater the number of adjustable parameters that impact the calculations.
Thus entirely different models may produce similar effects if the parameters

are appropriately adjusted, In this case, the validity of one model as opposed
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to another cannat be established, Finally it seems increasingly evident that a
detailed understanding of earthquake occurrence will require improvements in

the present knowledge of friction laws, rupture criteria, and the physics of

highly stressed rock.
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APPENDIX

- The various lzboratory and numerical simulations discussed in this paper

are summarized below.

1. Burridge and Knopoff (1967)

a.

- aunxiliary fault segments ave separated by two blocks in a highly viscous

laboratory model

One dimensional - 8 masses connecting by springs and driven by
stretching of spring connected to first mass; m = 142 gms; spring

constant = 2 X 105 dynes/strain; spring lengths: 3 cm or 1.5 - 12 em;

loading rate: 2 cm/sec.

computational model

One Vdimensional - 10 masses connected by springs and driven by

fault, and 3 blocks represent an auxiliary fault., The primary and

constants = 100, driving spring constants 1, intermass spacing = 1.

The fricticn law is

o = 4

(B
- («-—-H+ E) X IxI<H
B .
- —E%
EyveE
B C
e —E <
_imagem —Br x<H
35

. springs coupling to a moving plate, 5 blocks represent a primary

‘region, In a normalized system of un.ts m = 1, connecting spring




with A = 10, E = 1 (all blocks); H = 107 (1-3, 6-10), 10° (4, 5)

B =5 (1-3), 10° (4, 5), 15(6), 10 (7-10), when the numbers in paren-

theses are the block numbers for which the quoted values are appli-

cable. The driving rate in this system of units is 109 ,

Kings and Knopoff (1968h)

Laboratory model similar o that used by Burridge and Knopoff (1967); 8

masges: m = 130 gms; spring constants = 10° dynes/cm; spring un-

stretched length = 3 cm.

Otsuka (1972)

Two dimensional computational model; blocks suspended to fixed overhead

support by leaf springs and in contact with moving floor. 2000 blocks in a

100 X 20 grid.

Dieterich {1972b)

One dimensional compuiational model; 50 blocks interconnected and driven

by coupling to moving plate. Four models are employed in which the

coupling elements and the friction vary as follows:

a. elastic springs, time independent static friction

b. elastic springs, time dependent friction

c. viscoelasgtic elements, time independent frietion

d. viscoelastic elements, time dependent friction,

The viscoelastic coupling element is the generalized Kelvin element. The

time dependent friction is represented as f5(t) = f(t;) [1 + A log t] for

t > 1 sec.




i

1
|
1
1
1

- - irmrrma
o . T
POUE LA, M-
RSN

S

S

The numerical values used in the model calculation are: friction siress
- 100-800 bars, k,/k, =1,5-5.0, 7 = 102 - 10* sec, ¢ = 0, 8f° for
time independent friction, ¢ = 0, 98 £* {t,) for time dependent friction,
A = 0.02, interelement spacing = 1 km, driving plate velocity = 5 em/yr
Dieterich (1973)
Two and three dimensional computational models in which the boundary
conditions are specified displacements of blocks far removed from the
fault. FElastic springs are assumed, length to width ratio of the region
varies from 2-4,
King (1975)
One dimensional laboratory model in which masses are driven by coupling
to an overhead rofating flat circular plate; 8 masses, m = 110-113 gm;
driving spring constant =2 X 10* dyne/cm; connecting spring constant =
1.6 x 10* dyne/em. Connecting springs under an average tension of
1. 3 x 10° dynes, driving plate velocity = 0. 03 cm/sec.
Cohen (1977Db)
One dimensional computation model similar to Dieterich's (1972) models a.
and d. Spring constants = 10'¢ ~ 108 dynes/em; 1.5<k,/k, <5; 102<r<
10 sec; 0 <f*< 3 x 1020 dynes; 0 <f%/fs< .99
Cohen (1977a)
One dimensional computational models using elastic springs. Spring con-
stants 5 X 10'% dynes/cm - 1.5 x 107 dynes/cm; £5 =1 x 1020 dynes -

8 x 1020 dynes; f9=0. 8 f5.
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e } 9. Rundle and Juckson (1977)
S : .
L \I | i One dimensional cqmputaﬁional model employing 20 massless elements ;

: ; driven by moving plate both an elastic and tinelastic madel are invested. i]

.{ 1{ ; i a. elastic madel: daiving spring constants = 100-10, 000 kbars/cm; con- a
i‘ % necting spring constart 0-8200 kb/cm; static friction 0. 3 kb -~ 9 kb, } ”
K ; ; ’ b. anelastic model: The frictional strenath is time and stress dependent . 41

H ‘ with 4
§ ’ —qg—; —*:_—Io(t)-FS“] i
1‘ 1 I where ¢f(t) = time dependent stress on the block, and Fs* and 7 are 11 3
- t *.:L constant, MH

_ _. \E In the choice of numerical values for the spring constants in the various ‘;

| [‘  _ i; | simulations, little attention has been devoted to the relationship between the :

E *r A-' driving and connecting spring constants. However, Yamashita (1976) has ana-

; } o l l1zed tive relationships between the spring constants and the elasticity constants 1}

| l R
N b a and A where pu is rigidity and A the usual Lame parameter. For a one " i
dimensional mode) he finds i
St (AN AzAx C L
o K = [3(?\"'#) (“\';;) + .U] Ay
e and b
1 k = “% Ax E
?i where V, /V, is the vatio of primary to secondary seismic wave velceities, and ;
| Az and Ay ave the block dimensions along and perpendicular to the fault, The
parameter Az is the dimension of the black in the third direction. w
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Table L.

Scale factors
lengih
stress
elastic constants

density

Sealing relations
force
spring constanis
displacement
mass
velocity
acceleration
energy

Seismic moment

a=1/1
b =gd/d
e=yu/y =A/N

d=p/p'

F = a’br’
k = ack’
Ax = abc! Ax'
m = addm'
Ax = bled) ™A%
A% = had) A%
E = a’b2c g’

M = adbm'

Sealing laws for source parameters. Scurce

parameters are known in primed sysiem and

desired in unprimed system (from Dieferich, 1873).
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Figure 1: Spring and hlock model of sliding on & friction surface
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Figure 2. Multiple element rheologic models: a. Maxwell subsiance, b. Kelvin
substance, ¢, three element generalized Kelvin substance, d. alterna-
tive three element substance, e. four element Burgers substance
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TFigure 10: Averagé drop of stresses in the driving springs versus shock

- magnitude (log E). Solid dots L. = 8; open cireles L < 8.

(King, 1975)
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