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ABSTRACT

This paper reviews the simulation of earthquake occurrence by

numerical and laboratory mechanical block models. Simple

linear rheologiEes are used with elastic forces driving the main

events and vi:scoelastdc forces being important for aftershock and

creep occurrence. Friction and its dependence on velocity, stress,

and displacement also plays a key role in determining how, when,

and where fault motion occurs. The discussion of the qualitative

behavior of the simulators focuses on the manner in winch energy

is stored in the system and released by the unstable and stable

sliding processes. The numerical results emphasize the statis-

tics of earthquake occurrence and the correlations among source

parameters.
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NUMERICAL AND LABORATORY SIMULATION

OF FAULT MOTION AND

	

_ a
	

EARTHQUAKE OCCURRENCE

I. INTRODUCTION

	j	 This paper reviews numerical and experimental simulations of fault motion 	 a

and earthquake occurrence. In the simulations discusoed here fault regions are
i

represented by discrete blocks which are driven across a friction surface by	 j f .j

various combinations of elastic and viscous force elements. This representation

of earthquake sliding and associated fault dynamics has both strengths and
v

weaknesses which can be stated from the outset. Foremost among its strengths

	

..1	 are its clarity and conceptual simplicity. The modeling of fault dynamics in 	 .,
E.

terms of sliding blocks is readily accomplished both in the laboratory and on a

1	 computer. The details of the sliding process appeal to intuition and experience
I

and thereby permit a clear understanding of the observed behavior. Many of the	 E

large scale phenomena associated with earthquakes and fault motion are mini--

iced in the simulations including the occurrence of foreshocks, main shocks, and

aftershocks in single earthquake sequences, the correlation among source pa-

rameters such as that between energy drop and the product of rupture length

and average displacement, and the occurrence of stable, aseismic, sliding epi-

sodes. In addition, the simulation technique provides a convenient test bed for

examining new models of earthquake source mechanisms. and for exploring

^	 I1	 ^



their dynamic consequences. The simplicity of the technique also accounts for

its weaknesses. Aside from the obvious dangers of overshnplificatioin of com-

plicated tectonic and geologic processes, the lumpiness of the block elements

f	 introduces.restrictions of the length scale of the phenomena which can be studied

and i atroduces a discxetization which may not be present in nature.

While this review-will concentrate on the mechanical block representation

of earthquake occurrence, note should be made of the dislocation theory tech-

niques for studying some of the same problems that will be discussed here.

lDislocation techniques usually, although not necessarily, assume some laiown
I
{	 tn c2"	 h 'a to • oyes amen the surface e1 cession of a fault andcup toe pn. opa^, io	 a.^ c n '^ n	 g	 . p

i deduce the consequential motions of points elsewhere. Dislocation techniques

have been discussed by Haskell (1969) annong others.

The organization of this paper is as follows. Th the remainder of the in-

troduction. we present a simple mathematical analysis of the sliding occurring

in aai earthquake, the model consisting of a single mass block being driven by

elastic loading. This model serves as a basis for the more sophisticated mod-

els introduced later. With the basic ideas introduced by this model in mind,

we begin hi Section II a systematic discnussiou of simulation concepts. This

section discusses linear theological models of the stress-strain relations in

crocks. particular emphasis is place on the time dependent behavior. Section

11 also reviews various concepts and experiments concerning the frictional

resistance to sliding, particularly stick-slip sliding which appears to be

2
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important in earthquake dynamics. In Section M we discuss in a qualitative

manner the behavior of various simulators which use the theological models

discussed in the previous section. Then in Section N we discuss simulator

statistics and correlations among source parameters as deduced from the ex-

periments and calculations. Where possible the results are compared with

results for naturally occurring events. In the final two sect-ions we discuss

several topics related to simulator analysis, present our conclusions, and

comments on the possibilities for future research.

We begin the discussion of earthquake fault motion by considering the

model, shown in Figure 1, of a block sitting on a friction surface and subject

to stress due to the accumulation of elastic strain within a spring. The spring,

with elastic constant k., is stretched at constant velocity u. In the ab-

sence of any initial motion in the block (mass=m), the frictional resistance

prevents sliding until the stress rises to the maximum frictional strength,

fs , Once sliding has begun , the frictional resistance drops to the dynamic

value, f a Thus with the initial position of the block at x = 0, motion is initi-

ated at time to when

kuto = fs	( }

and thence

mR = k(ut-x)--fd	(2)

3
a

3
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-i} The solution of equation 2 is
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u	 1	 Lt	 t aryl	 ly
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5131	 + 11(t — ttt ) -- u	 sill	 (t—

1

.	

tt]Ili	
aI	 "[[	

{j

1

1

For pint edeal purposes, once the sUding event is initiated the can ialiore terms

in u since these teens contribute noglItAle displacements during the 3me span
I

of an earthquake (typically u = 5 cnx/yi; this appxo-odiniation is mathematically

equivalent to setting t	 tv on the right side of equation 2 which then becomes

3u1 + kt = fs ^. f d).	 Bence

^qs—tit )	 (t	 td
sill'	 (4)

k	 m
y

Fxom this equation we deduce the following; 	 a

R.	 dux-ation of the event:	 }}
E	 i

, i

{
At - n	 k	 (5)

1

b.	 total displacement.

k

ta,	 reduction in driving tension, AF, or fractional driving tension, AF /F

IF.	 _W— t ) ;	 l	 (7)

d.	 poteatial energy drop
F
1.

 r4E	 OA X	fa(fs - fa)

4	
1	

a
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C. peal: Velocity

fs 	fd.

(9)
%,, nl

f peal: accelea,-atioll

s --- t d.^	 (10,max	 In

Notice that tliv redaction In the drivin g springy tension Is independent of the"

elastic constant and the block mass; in fact, the mass affects only the duration

of the event, the velocity and acceleration. 111vistra.finq the relationships btu

tal in- m = S \. 10 emu, k =2 x \ x0 18 dt-ne/eM, f` _ ^ ^ 10-21 dyne, f  = 0.S f 5,

(corresponding rotT;h^v to ,a ten kilometer cubes at shie llow deptl;s)

At -- 5 tiee

Ax _ 40 em

A F 4 X 10 1 dyne

I'

Ce}
0,4

AE:	 3 X 10~ I %.rggs

xmax	 12 e.ntsee

\1111% — 20 C'II11s o

This model of blocking sliding undLr the influence of spring loading; intro-

duces many cif the concepts advanced in the wore complicated models discussed

latex. For now, however, we turn to a discussion of they fundamental stress-

strain relations for racks.

5
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17.	 LINEAR RHEOLOGIC MODELS OF STRESS AND STRAIN IN ROCKS;

FRICTION

o	 The mvdeling of fault motion requires as a fundamental starting point some

relationship between the stress, a, acting on the rocks and the consequential

strain, eM.	 In general these relationships can be quite complicated but con-

siderable understanding can be achieved by restricting the analysis to relation-

ships which are linear, that is those which involve stress, strain, or their time

derivatives to only the first power. Mathematically this is an extremely power-

ful assumption for it permits either the total stress or strain due to several ele-

i ments to be determined b summing individual contributions 	 The relationshipsla	 sY	 g	 P

jthatwe state will be for the case of uniaxial compression,, no greater generali-

zation will be required at present. 	 The simplest case, that of pure elasticity

J

A substance obeying this relationship is said to be linear elastic or Hookean.

A Linear viscous substance, or Newtonian viscous, is defined by

f	 t3 = ^e	 {72)
i

i

More complicated substances can be constructed from combinations of these i

elements, and the very powerful. linear operator tecb.nigues can be used to de-- 1

rive the stress-strain relations. 	 We write an element stress-strain relation

f	 *In accordance with common practice we wi1I often mix the concepts of force and stress. In the present context the
difference between the tensor nature of stress and the vector nature of force is not of great significance.

c^ POW
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where O is a linear operator on. E. For the elastic element OE = k f Edt
a

Isle = ke, while for the viscous element OE = q^. In formal manipulations the	 f

inverse of the integration operator is the differentiation operator; i. e.

ID = DI = 1. For elements connected in series as in Figure 2a, the strains,
i

a.:d hence the strain rates, add directly, i.e., 6 = e k + E^ or

i

e = (k I)- + 77
-1 ] v	 (14a^

u

Hence

Q + k a - kE	 (14b)	 Pn
i	 a

This is the stress-strain relation for the Marvell viscous substance formed
i

from the series combination of Hookean and Newtonian elements. As shown in

Figure 3, the strain. Increases linearly with time when the stress is held con-
i

y

start in such a substance. The stress decreases exponentially with time con- 	 a

sta,nt T	 when the strain is held constant.

When elements are connected in parallel as in Figure 2b the stresses add

directly. Thus for this so called Kelvin element

a = 71F + ke	 (15)

In contrast to the behavior of the Maxwell substance, the Kelvin substance under v0

7
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constant stress obeys the relation
K	

i

V

eo = eo e -1/7*  + k 0 — e' #/'r); T = k
	

(16)

Thus in the absence of any stress the initial strain relaxes exponentially while,

_	 if the substance is initially unstrained, the strain rises toward an asympotic

value a/k (Figure 3). When the strain is held constant the stress is the same as

G	 that for the linear elastic element. The Kelvin element is the simplest model

to give transient creep shown, for example, by the time dependent terms in

Equation 16 (Jaeger and Cook, 1976). It is not adequate however for represent-

in seismic activity because it does not permit instantaneous elastic strainI	 g	 t3'	 p 

(Jaeger and Cook, 1976).

There are two non-degenerate three element substances. These are shown I'	 I	 A

in Figure 2c and 2d. It should be noted that there are alternative equivalent

representations of these models. For example, Figure 2c can be replaced by

a spring, k I , in parallel with a series combination of a spring, k 2 and a dash-

pot (viscous element) n, provided
7

k = 

ka 
kb	

k = 

ka	

=	

ka	

nrk +ka	 b	
z	 ka + kb	 ka +k b

The stress--strain relationship for the generalized Kelvin substance is

ka + kb	 kn kb	 (17}
ff+	 ^,	 ff = ka +- 77

8
;,r
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^. {	 Thus under conditions of constant stress

	

ka kb 	kb

i	 -

I
and under constant strain

- ¢oe t/r^ + 1 E 1 (1-e" t^r ); T'	
k ^-k	 {^9}

f 	 I`a +ky	
a	 b

F=nining equations IS and 19 the see that this substance shows transient creep
is

and transient stress although for t > T, T' both the stress and strain approach
f	

1

steady state values (Figure 3). Instantaneous stress and strain changes are also	 j

possible. Thus this model ip useful in discussing transient creep and time
f	 3

dependent stress readjustment following ajor sliding events. These features

	

g	 J	 g	 ;.4

will prove to be important in modeling aseismic fault: motion and aftershocks. 	 {r"!	 9

For the other non-degenerate three element substance

	

k	
= 

7)a n^	 7^a k
a +	 a	 E +	 (20)

i	 { .	 77a + 77b	na + 7tb	 71, + 7rb

Thus for constant: stress	 i 3

	

at	 t7	 _ 77b
F - Ea + ^ + Fp --^ ^	

k
T((- a- tlT); T -

	

a	 a

and for vonstsnt strain

¢ — ^p c'" th ; T — 
^a 

+ 
'Qb

k

(21)

(22)

Which has the same form as the Maxwell substance under constant strain.

•
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Four element models can also be used to simulate futures of fault dynamics.

Figure 2e shows one form, the Durgers substance, which consists of a series

combination of Kelvin turd MaXWO11 elements. The Stress--strain relation Is

o * ^n + 	
kn	

+ " t' [T --	 t	 k^ ^^ e	 {mss}

1?A 	 ^tM	
^?t^ 	 ??il7?^1	 Z?^5

This model, shows instantaneous strain and both transient and steady state creep

but because of its complexitt* has not Leon used in a detailed simulation of the

type currently under discussion.

The linear operators we have used Here are directly analagous to those ap-

poaring in other fields, pazticularbr electrical circuit theory. The equation

a = O^ Is anaiagsus to the electrical equation s = aE where J is the electric our-

rent density and E is the olectn.•ic field amplitude. Thus stress is analogous to

current density and strain Is analagous to the electric field amplitude. The

opor:ator a is analagous to conductivity or the electrical admittance. Its inverse

direct proportionis resistivity or Impedance. Thus the viscous element with a dir-^j	 ,

I ality between a and 6 plays the role of a resistor, and the spring that of an in-

duetive coil. It can also be shown that the inertial effect of the block mass, m,

Is wialogous to the capacitive effacts in electrical circuits.

In the proceeding discussion we leave developed equations relating stress

and strain for a number of modal substances. If the mechanical block dis-

cussed hi Section I were free to move without encotmte-ring frictional resistanoe

then it would undergo a continual slow movement to prevent any long term I^

10
t



surfaces where frictional interactions between the opposite sides of the fault act

to restrict motion. Thus we need to include in the simulator a description of

the frictional properties of rocks in the faint zone. We again consider a block

model with the block resting on a surface and subject to a compressive normal

stress, u. When a shear stress is applied parallel to the contact plane, it is

found Uhat over a wide range of normal stresses and temperatures and for a wide

range of ieack materials, that no motion occurs until some critical magnitude of

shear stress, F s , is reached. An experimental relationship between P s and v

can be deduced viz,

Fs = A sa	 (24)

where As is the coefficient of static friction. Experiments have found that to a,

good approximation As is only a weak function of the area of contact and the nor-

mal stress (Jaeger and Gook, 1976). Once sliding is initiated, it is again ob-

served that the frictional resistance is proportional to normal stress but, as a

general rule, the proportionality constant, tO , known as the dynamic friction

coefficient is less than the static coefficient. The value of the dynamic friction

•	 coefficient may vac with e speed o sliding.s'	 Y	 #h^ p d f	 g.

When careful measurements are made of the relationship between static

friction and normal stress it is found that the r s versus a carve does not pass

through the origin, but that to a better approximation Fs = r0 + µa where r©

corresponds to an intrinsic shear strength.

We also have not yet considered a possible time dependence of fric-

i
i



Lion. in general one might expect that the static friction coefficient will increase

with the duration of contact following some earlier sliding, corresponding to a

time dependent healing of the ruptured region. Dieterich (19729.) has observed

this effect and concludes

A'W _ W(Q) [ l + ce log (A01; At > 1 see.	 (25)

where At is the, duration of contact following sliding.

A different approach to the frictional resistance in block sliding has been

discussed by Byerlee (1970), Nur and Shultz (1973), and Nur (1977) in light of

earthquake dynamics; in this approach it is assumed that asperities along the

fault surface lock together to form the frictional resistance, When the shear

force becomes strong enough to cause brittle failure of these asperities motion

can occur. As the sliding proceeds, continual locking and breaking of the asperi-

ties cause fluctuations in the frictional, resistance. Thus, the frictional resist-

ance varies in some irregular manner with displacement. In this model the

value of the frictional resistance at the initiation of the unstable sliding event is

analogous to the static friction and the average value of the fluctuating friction

during the earthquake sliding corresponds to the dynamic friction. An interest-

ing feature of this model is that both rapid, unstable sliding resembling that oc--

curing in earthquakes and slow, stable sliding resembling that in creep events

can occur. The criterion for unstable sliding is that the driving stress decease

less rapidly with displacement than the frictional resistance.

In the earthquake simulations, various models for the frictional resistance

will be employed. In the simplest cases, static and dynamic friction forces, Es

12
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and f re, used to explain the gross features of the main sliding events. Other

models are introduced for madeling :tftershocl s, creep, and the details of the

r	 earthquake instability meoltauisms.

f	 IM 1VIODl L SIMULATION'S - GENE RAL BE SUMS

The prototype for the models that are discussed in this paper is shown in

Rigiire 4. It consists of a number of musses connected together by springs and

rest3tt, on a friction surface. The masses are driven by springs connected to

a Movie- plate. In some early laboratory simulations only the first Mass of the

chain was connected to a driving source, .In many of the computational modals

Clio springs have been replaced by more complicated theological elements such

as the viseoeiastic elements discussed In the previous section. Details concern-

ing the various laboratory and computational models that are discussed In this

review can be found in the Appendix.

The simplest models of fault motion during earthquakes employ elastic

springs as coupling elements and frictional surfaces over Which the blocks

slide. Laboratory* models of this types have been studied by Burridge and

Knopoff (196 7), King and Knopoff (1968b), and King (1975). Computational

models include those of Dieterich (1972b, 1973), Otsuka (1972x), Cohen (1977a,

1977b), and Rundle and Jackson (197 7). Iit examining the sequence of events

occurring in their simulator, Burridge and Isnopoff (1967) found that small events

occur largely at random while lame events involving major changes in elastic

potential energy occur nearly periodically. Between major events the poton-

tial energy of the system Increased nearly► linearly with three when the Inter-

is
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i

`	 mass springs  had a equal elastic constants. Furthermore the major^^	 s	 or events allJ

'	 occurred at approximately the same level of potential energy and involved

comparable energy drops. Thus the period between these large events was
f,r .

i simply the energy drop divided by the rate .of energy input..

King and Knopo€f (1968b) also found in their study that the strain energy

density before a shock showed little variation with the magnitude of the event.
I
I"	 An analagous result has been reported by Bath and Duda (1964) for natural

events. King (1975) observed a long term linear trend in average displacement

with time; this behavior is, of course, necessary since in the long terra the

displacement rate must keep pace with velocity of the moving splate. More

significantly, he noted that large shocks occurred at times when the displace-

ments of most masses had fallen below their long term. averages. On the other

hand King, unlike Burridge and Knopoff (1967), reported that large shocks were

at periodic in time.

Using a computational model in which friction was allowed to vary from

block to block, Dieterich (1972b) found that the frequency with which blocks

move is related to their static; frictional strength with low friction blocks

moving more frequently than those with high friction. : Dieterich (1973) also

perform--d two and three dimensional simulations and derived scaling laws that

relate source parameters obtained with one set of input variables to source

parameters with anew set of input parameters. These impor.tw t scaling laws

are summarized in Table I.

"One contrast between the laboratory and computational models should be noted. In the Iaboratory model, stick:-slip
sliding is observed but there is no certainty about the mathematical description of the friction law. In the computational
model the friction law is clearly defined mathematically, but it is not certain how well the mathematical description
represents the natural process.

14



'Mm im ortance of seismic ns that is re ions of low seismic activity in

an otherwise highly seismic region, has long been studied for earthquake pre-

diction purposes. Otsuka (1972) found that large simulation earthquakes occurred

in regions of anomalously low seismic activity.

Studies have also been performed to determine how the qualitative charac-

teristics of fault movements are influenced by the degree of heterogeneity in the

friction and elastic parameters. Cohen (1977b) has found, for example, that

with relatively homogeneous ;cult parameters successive events tend to propa-

gate along the length of the fault in a type of epicenter migration. He also found

that .recurrence patterns in the locations and magnitudes of seismic activity

could be observed. Both effects were less common with heterogeneous faults,

but seismic gaps were more likely to occur.

Rundle and Jackson. (1.977) searched for evidence of an increase in simula-

tor seismicity proceeding large events such as suggested by studies of California

seismicity by Wesson and Ellsworth (1973) and Wyss and Lee (1973). Such be-

havior was not present in their elastic model leading them to speculate that the

seismicity increases may be due to (among other causes) time dependent fault

parameters.

Several workers, including Rundle and Jackson. (1-977) have pointed out that

as the ratio of elastic modulus to stress increases, there are frequent small

displacements and the system behavior becomes ductile. Conversely as the

ratio decreases larger infrequent events occur.

15
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in the models that hale been discussed up to now the only significant time

dependent processes have been the slow elastic loading of the driving springs

and the sudden elastic motions during simulation earthquakes. As a consequence

the models are not capable of explaining phenomena occuring on intermediate

time. scales. The most important of these intermediate .scale phenomena are

earthquake sequences involving either foreshocks, the main shook, and after-

shocks or nearly equal magnitude swarms. Other important time dependent

phenomena include continuous, episodic, premonitory, and post seismic creep.

To study some of these effects, various computational models of viscoelasticity

and time and stress dependent friction have been employed. In the earliest of

these models Burridge and Knopoff (1967) divided their one dimensional fault into

three regions, two regions with predominately elastic properties and low viscos-

ity separated by a region of high viscosity. The effect of the viscous region was

to introduce a time delay between the time of sliding in one elastic region and

the time at which the resultant stress change was felt in the other elastic re-

gion. This time delay was responsible for the occurrence of aftershocks both

in the secondary and in the primary elastic regions. in the high viscosity re-

gion, unstable sliding could not occur. The time dependent characteristics of

fihe energy release in the viscoelastic model were signifi.cantk y different from

the elastic case. In a. sequence of 69 aftershocks following a main shock on

the primary fault, the authors reported:

L The cumulative energy released by aftershocks increased as (x - e-tl^.

16
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2. The total stress energy released in the shock sequence was divided as

follows- main shocI,: - 127c, aftershocks on primary segment - 44%,

aftershocks on secondary segment 13%, Additionally a potential

j

	

	 energy release equal to 4370 of the energy released by simulation

shoclts was dissipated by viscous flow.
i

3. Despite the greater energy release in the primary segment, only

27^c of the shocks, including the main shock, occurred along this
a

segment.j	
.I

4. The decay in the frequency of aftershocks occurring with time was 	 t

fairly consistent with either the (I + p t)` 1 dependence suggested by

Omori (1894) or an exponential decay.

It may be significant to note that in this sequence more potential energy is re-

leased by aftershocks than by the main shock We 
will 

comment more on this	 _.]

point later.

Dietericlh (1972b) has proposed that the interplay of viscoelastic stress re-

covery following an earthquake coupled with a reduced frictional strength of the

fault following a sudden sliding may be responsible for aftershocks. Consider

the generalized Kelvin substance discussed in section H.. It can be shown that

F	 following a sudden stress relaxing sliding event, a time dependent increase in

stress can occur with the stress rise asymptotically approaching k a / (k 3 + kv)

of the stress drop during the sliding. Furthermore, as Dietericlh's (1972x)

experimental work suggests, the frictional resistance against further sliding

17

^.4^



! 4	 I
4	 I

I

is less than the resistance prior to sliding. Presumably this is related to the

finite time required for frictional healing of the rupture (equation 25), if
i

the viscoelastic stress recovery is more rapid than the time required for fault	 i

healing an aftershock may be generated, The aftershocks occur in the same

region of the fault that ruptured during the original event and the duration of

the aftershock sequence increases with the size of the main shock. Further-

more a correlation has been found between the dispacements and magnitudes

in the main shock and those of the largest aftershock's (Cohen, 1977b). 	 i

Although the frequency of aftershocks decreases with tine, it does not follow
i	 .

Omori's law (Dieterich, 1974).

In an alternative model of aftershocks, Rundle and Jackson (1977) focused

attention on stress induced crack nucleation. They assumed that the friction

strength, F s , against sliding decreases at a rate proportional to the amount

the stress exceeds some value of friction, FS" , i.e.,

(26)

model, if the dynamic friction is greater than Fs" , the stress drop during the

first rupture is small and the stress, a(t), remains large causing a decrease in

frictional strength. Since friction is then reduced while stress remains high

aftershocks may occur. The aftershocks are not confined to the region of the

primary shock since a stress induced failure may also occur in a region

dFs(t)	 I

dt = —	
S"

T 
[a(t)—F1

where rsa is a constant and o (t) is the stress acting on the block. In this

18 f
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	 adjacent to that which ruptured during the primary event (this border region

having been stressed by the elastic elements coupling it to the displaced region).

i Since the stress, u(t), generally changes .little on the time scale of T, T is also

the time scale for the aftershock occurrence. Rundle and Jackson's results

{	 show too fete aftershocks to examine the dependence of aftershock frequency on
I
}	 time following the main shock, however, it may be necessary to introduce some

C	

II

I^

time variation in o(t), other than the tectonic loading zate; to produce a decayingr

frequency of aftershocks resembling that present in nature.

N. STATISTICS, SOURCE PARAMETERS, AND CORRELATIONS

Tip to this point our discussion of simulator results has been primarily

descriptive. Quantitative results generally fall into two categories one, the

j

	 statistics of earthquake occurrence and two, the correlations among source

IE
	

parameters. Considering first the frequency of simulator earthquake occur-

rence as a function of the energy released in the events Burridge and Kn.opoff

(1967) obtained the experimental results shown in Figure 5. Except for the

lowest energies the data fit a straight line with

log f = A — B log E
	

(27)

where f is the frequency of events occurring with energy greater than or equal

to E. This relationship appears analagous to the relationship between the fre-

quency of naturally occurring events and the seismic energy log f = A'-'B' 16g Es.

Bearing in mind the relationship between seismic energy and earthquake

19
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i

mc"Lnitude, viz, log E S = a + bM it is tempting to define a magnitude for the

This analogy suggests a linear relationship between log E and log ES and while

this is a useful viewpoint it is only an approximation whose validity needs to be

` confined. A reason for the flattening of the simulator frequency versus mag-

nitude curve at low magnitudes is that the discrete nature of the model imposes

some lowest magnitude event below which no events will occur.

f

For naturally occurring events B' = 0.4 while Burridge and Knopoff (1967)

found B = 1 in their mechanical. simulator. These authors have conjectured

that the difference between their simulator results and actual earthquake data
K	

.

may be a reflection of the one-dimensional nature of their model. However

for a very similar mechanical model Icin g and Knooff 1.968 found B = 0. 71p	(	 )

and for a later laboratory model Ding (1975) found B = 0.5. Rundle and Jackson

(1971) concluded that the results from their computational simulator could be

fit to two lines with B = 0.1. - 0.5 for low magnitude events and B = 1-5 for high

magnitude events. An alternative analysis by Otsuka (1972b) revealed downward

curvature in the logarithm of frequency versus magnitude curve, the degree of

downward curvature decreasing with the probability that the motion of one blocks

stimulates an adjacent block into motion. A similar curvature was found in the
I

computational simulator by Cohen (1977a), Although it appears that there is

MsIAi = log E
	 (28)

i
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Î 	 some qualitative agreement between the deviations from a linear behavior for
4

some actual earthquake data and the numerical results, the quantitative agree-

ment is at best only fair.

	

i	 F

The variation in the frequency of the time intervals between events can be

examined to determine whether the distribution of interevent periods is

Poissionian as would be expected if the events occur randomly in time. Both
i
fi

	

}	 Burridg a and Knopoff (198 7) and Rundle and Jackson (1.' ?') have found some non-

Poissonian components to the distribution, presumably due to the interactions
i
j -	 between adjacent events. The motion of one block alters the stretch or com-

pression of the spring connecting it to the neighboring block thus altering the

stress and the time at which the stress overcomes the frictional resistance.

However, Ifnopoff, Mitchel, and Jackson (1972) and Rundle and Jackson (1977)

have shown that the occurrence rate for the simulation events are consistent

with a stochastic model operating on the stored elastic energy. They have used
I	

h	 1

in their analyses the Kol^nogorov backward equation

	

t ''	 X(E)p(E) + a 
dPE)	 f Emm^ -' C T(E,x)A (x)P(x) dx 	 (29)

dE

where now E is the elastic potential energy of the system, 71(E) is the probability

`	 that an event will occur in time interval dt if the energy is E, a is the rate at
I.

	

`	 which energy accumulates between events, T (E, x) dE is the probability that if

	i	 an event occurs at initial energy the final energy will be in the range E to

et
t

I; + d1a and P(E)dE is the probability of finding the system energy b etween

N

21
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{ E and E + dE.	 Figure 6 shows the degree with which the Kolmogorov equation

fits the results of Rundle and Jackson (1977).
I

it ring and Knopoff (1968b) used their mechanical simulator to deduce corre-

lations among the rupture parameters for model shocks. 	 Shock energy is

shown in Figure 7 as a function of the length of the rupture,, or the number of
I

_ ,
displaced masses, L. The data shows a concave up behavior on the log-log

plot of Figure 7; however, if the data with L = 8 are excluded a linear correla-

tion with tog E = x. 3 + 1.6 log L can be used. 	 Space L = 8 corresponds to

movement within the entire spring--mass system and since the free boundary

conditions of the end masses are not representative of natural conditions, the 	 p

data with N = 8 must be viewed with caution. 	 Dieterich (1974) has assembled 	
1v

a number of magnitude versus rupture length relations used by various

., workers. In general they have the form m T g + h log Y- with h between one

and two.

Somewhat better linear correlations are discovered when log E is plotted

against log LD, log LD Z , and log Ld where D and d are the peak and average

displacements of the blocks.	 The correlation between E and Ld is shown in	 3

J

Figure 8. The relationship E « Yd will be established below while the relation 	 i	 7

E « S2 D 2 (or E a	 d2 ) has been deduced fram calculations based on an electro-

static analog (Knopoff, 1958). In a study of earthquake data King and Knopoff 	 _	 fi

(1968a) deduced	 !'
log XD2 =	 -1.24M-4.99	 :.

(30a)	 !;
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4

while in tlicir shmilator work (King and lsnopoff, 1968b) they foimd

log .L1} 2 -- 1.55 lob; ^ — 1.192H
(SOU)

i

Assam-tinig log t', s ^ 11.8 + 1. SM and E rz^ ilE, Where q is the seismic efficiency,

'J
	 the simulator results giva

tor, L.1}2 	 L,aM + 1.64 .i. l.S5 log, ?j 
It
	 (300)

r

it

Thus the slopes of tlic curves of log LD 2 versus M are comparable for tlae

natural and sinmlatod events provided the assumed relationship between

seismic energy and simulator enemy is valid.

Some of the results presented in the proceeding par agi-aph can be eV- 1ained

by relatively simple theoretical arguments. For sh-nulations hi Mitch tine elastic

energy stored in the drivhiq mid conuccting springs is dissipated by friction

sliding, tlno energy drop during an event is

i
Nvhere the suns is taken over the blocks that move in the Invent. We consider

two cases. If only one block moves, than with reference, to Figure 4

1` +ki	 i *k^

	 (32)

From this we can deduce that L a 21) 2 ; Here I' is the dinnonsion of the

block. This result agrees with the aforementioned result by Knopoff (1968).

in the second case we assume the friction varies little from block to block so

"3

a



(35)	
c

AF=k'Ld

r

I

-	 The preceeding analysis can also be used to explain the simulation observed
i

variation in average displacement versus magnitude. From equation 33 we

deduce

	

1

	 I 

0 

^ 1S1h1	 ^
d =	 pC	 f = constant

	f d L	 L

Alternatively for single block motion

	

d «	 ?^ a 10 ntstht^2

one block

The simulation data shown in figure 0 are consistent with these equations.
I

The change in the elastic force in the spring-mass systems due to the un- 	 I

stable sliding in an event is simply

AF =	 ki A x,	

I^?

or if the driving spring moduli, are all appro-.dniately equal
4

Thus in the case where both equations 34 and 37 are valid AF cc AE = 10ms^"' while	 ^.

for single block motion A ^F a ].0 's1h, . One observed variation in the stress drop

in the driving springs versus log E is shown in Figure 10. In general the data
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f
k

I

:`	 I for L G 8 suggest that while the stress drop increases with magnitude it does

'i	 so more slowly than indicated by the proceeding equations.

1	 Different simulations have indicated somewhat different variation in
i
^.	 displacement with rupture length. Result~ obtained by both King and

Knv off 1968b and Kin 1975 revealed both increasi ng average and	 kp	 {	 )	 g{	 )	 €,	 eag	 p

displacement with increasing rapture length. By contrast Cohen (1977b)

discovered that the average displacement increased with rupture length

for small numbers of displaced blocks but for longer ruptures found no

further increase in average displacement. Wallace (1974) has assembled

data relating rupture length and maximum displacement to earthquake magni-

tude for earthquakes in Western North America. His data indicates that
I	

'

mm-dmurn displacement increases about linearly with rupture length although

there is considerable data scatter. These results agree better with those of

!	 1	 King (1975) and Ding and Knopoff (1968b), than those of Cohen (1977b).

V. OBSERVATION AND DISCUSSION OF RELATED TOPICS

It is interesting to consider for a moment the mathematic.-a m igin of the
i instability that characterizes the sliding process in various simulations. In the

simplest models, the instability is due to the sudden transition from the static

to the lower dynamic friction when the driving force equals the static friction.

Burridge and Knopoff (1967) used a more complicated friction law and deduced

that the condition for instability on a single block is that the net friction force

f. ^	 decrease with increasing velocity at the beginning of unstable sliding.



-

1	 -

';	 (A similar friction law which is mathematically smoother than that of Burridge
E	 ,

and Knopoff but which reduces to their law in the limits of small and large veloc-

ities has been used by Whithead and Gans (1974) ). Thus the simple model is con-

f

	

	 twined within the more general treatment of Burridge and Kn-opof£ Notice that

the instability condition focuses on the variation in stress for a change in veloc-

ity. A somewhat different view advanced by Nur and coworkers and alluded to 	 -'

in Section II, focuses on how the stress changes with displacement. If F(x) is

td	 f	 fthe  ne xzvsng orce and (x) a PUS L'1011 dependent friction then the condition for

unstable sliding in a region of decreasing friction is -f(x) > -F'(x). For the purely

elastic case in which F(x) = k(ut - x), this condition is -f(x) > k. This insta-

bility condition implies, in the elastic case, that friction decrease more

	

i .	
rapidly with displacement than the reduction in the elastic spring driving tension.

The most detailed quantitive calculation in Nur's so called stiffness model has

been performed with a one block viscoela.stic substance (Cohen, 1978). The

most interesting features that emerge are

1. creep occurs premonitory to unstable sliding episodes. Transient 	 jx d

creep may also occur after unstable sliding.

2, stable sliding ccurs on both a idsoic and long-term time time scales.g	 p^	 g 

Episodic sliding events may be stable or unstable depending on the

interplay between the viscoelastic and friction parameters. r,

Despite these apparent correlations between the visccelastic stiffness model

and naturally occurring events, it must be emphasized that there is



can happen that alternative assumptions have the sane consequences.

Knopoff (1972) advanced a theory of aftershock occurrence which contains

some of the elements of other aftershock models and in a sense anticipated

some of the later developments. The two key elements in Knopoff's model are

the occurrence of large stresses on the edges of a rupture zone of a shock and

the delay in rupture of a highly stressed region by prerupture tertiary creep.

In application Kuopoff notes that because of the elastic properties the boundary

between a region that slid during an earthquake and the neighboring unmoved

region is one of high stress concentration. Knopoff, like Rundle and Jackson

(1977), postulated that this Uglily stressed boundary region may not fail in-

, stantaneously but may fail with a delay time dependent on the degree of over

stressing. This delayed response gives rise to aftershocks which cluster
i

around the edges of the main shock rupture region. As already noted failure,

in this model, occurs with preshock tertiary creep.

1 A common feature of the viscoelastic aftershock theories that we Dave re-

viewed in this paper is the occurrence of either creep or stress recovery fol-

lowing the primary shock. The fundamental study of the relationship between

aftershocks and creep using the linear circuit theory that we presented in See--

Lion II is due to Benioff (1951). in applying his theory to a number of earthquake

sequences Benioff concluded that while the seismic wave energy of the primary

27



shock exceeds that of the entire aftershock sequence, the elastic strain energy

dissipated in the creep-aftershock sequence may be comparable to that of the

primary shock. In the earlier discussion of the numerical model of Burridge

and Knopoff (1967) we pointed out that more potential energy was released in

the aftershock and creeping following the main shock than was released in	 t

the main. shock. These two results strongly suggest that aftershocks and post-

seimic creep may be responsible for a much larger fraction of the total elastic

energy dissipation than would be suggested by their seismic wave magnitudes.

As we mentioned earlier the spring and block models that have been re-

viewed in this paper are just a small subset of all models of fault motion and 	
k {

earthquake occurrence. As one alternative approach rock mechanics experiments 	 ;v

involving the sliding of small rock samples have provided a wealth of data on

the rupture and sliding processes. in the last several. years Brune 1973 has

used stressed foam rubber to observe both stick slip sliding and creep. Along	 E ,

computational lines, dislocation theory has been used to determine ground
F'	 i 

displacements, velocities, and accelerations due to fault motions. The models
t.

discussed here and dislocation theory models become somewhat similar in con-

cept when the present models are expanded to two and three dimensions and the 	 I k

elements made small, and when the dislocation models are formulated with a

description of the rupture process.

28



of earthquake occurrence was developed. Fn that time well over a dozen studies

have been made by almost as many researchers. Major contributions have been

made in understanding the propagation of rupture along a fault, in developing

correlations among source parameters, and in explaining the interplay between

foreshocks, main shocks, and aftershocks and creep. It appears to the author

that at least two areas of study have potential for contributing significant. new

information. The first of -these is the study of two and three dimensional visco-

elastic systems, possibly with multiple faults. It seems likely that the interac-

tion of elements not directly on the fault surface will produce a number of ef-

fects such as a propagating creep wave not observed in most cue dimensional,

simulations. The second area is the study of the physics connecting the near

field block sliding with the far field seismic wave motion. A synthesis of tech-

niques such as a combination of a sliding block description of rupture with a

dislocation theory description of the far field effects might prove fruitful. By

contrast it seems less likely that fundamentally new insights will be achieved

by utilizing more complicated ncuological models (although simple, but novel
i	 .

models may ba illuminating). The more complicated the rheological model,

the greater the number of adjustable parameters that impact the calculations.

Thus entirely different models may produce similar effects if the parameters 	 f

are appropriately adjusted. In this case, the validity of me model as opposed

29
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APPENDIX
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	 The various laboratory and numerical simulations discussed in this paper

are summarized below.

:	 1. Burridge and Knopoff (1967)

(	 a. laboratory model

one dimensional - 8 masses connecting by springs and driven by

stretching of spring connected to first mass; m = 142 g ms; spring

constant = 2 x 105 dynes/strain; spring lengths: 3 can or 1.5 - 12 cm;

f'	 loading rate: 2 cm/sec.

b. computational model

.^	 One dimensional - 10 masses connected by springs and driven by 	 4 ;

springs coupling to a moving plate. 5 blocks represent a primary

{	 fault, and 3 blocks represent an auAliary fault. The primary and

auxiliary fault seĉents are separated by two blocks in a highly viscous

 jregion. in a normalized system of ur,-ts m = 1, connecting spring
^ 

constants = 100, driving spring constants 1, intermass spacing = 1.

'	 The friction law is
1

rF{H E^ x	 lxl<H1`
l

t	 P(i) =	 --	 --- E i	 i> H	 E

	

B —Ex	 <-H
1 — A(k H)
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with A = 10, E = 1 (all blocks); H = 10" 9 (1-3, 6--10), 10 3 (4, 5)

B = 5 (1-3), 109 (4, 5), 15(6), 10 (7-10), when the numbers in paren-

theses are the block numbers for which the quoted values are appli-

cable. The driving rate in this system of units is 10"8 .

Kings and Knopoff (1968b)

stretched length = 3 cm.

Otsuka (1972)

Two dimensional computational model; blocks suspended to fixed overhead

support by leaf springs and in contact with moving floor. 2000 blocks in a

100 x 20 grid.

Dieterich (1972b)

Laboratory mode]. similar to that used by Burridge and Knopoff (1967); 8 	 i

masses: m = 130 gms; spring constants = 10 5 dynes/cm; spring un-

One dimensional computational model; 50 blocks interconnected and driven

by coupling to moving plate. Four models are employed in which the

-	 coupling elements and the friction vary as follows:

a. elastic springs, time independent static friction

b. elastic springs, time dependent friction

c. viscoelastic elements, time independent friction

d. viscoelastic elements, time dependent friction.

The viscoelastic coupling element is the generalized Kelvin element. The

time dependent friction is represented as f $ (t) = f s (t o ) [ 1 f A log t 1 for

t > 1 sec.

36
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The numerical values used in the model calculation are; friction stress

W 100--300 bars, k2A:1 = 1.5 - 5. 0, 7 = 10 2 -- 104 sec, €d = 0. 8fs for

time independent friction, f  = 0. 98 f s (t0 ) for time dependent friction,
	

C

A = 0.02, interelement spacing = 1 Ian, driving plate velocity = 5 cm/yr

1	 5. Dieterich (1.973)1

'	 Two and three dimensional computational models in which the boundary

conditions are specified displacements of blocks far removed from the 	 j

fault. Elastic springs are assumed, length to width ratio of the region	 I?:

varies from 2-4.

6. Icing (1975)

One dimensional laboratory model in which masses are driven by coupling

to an overhead rotating , flat circular plate; 8 masses, m = 110-113 gm;

driving spring constant 9^-- 2 x 10 4 dyne/cm; connecting spring constant

1.6 x 1.04 dyne/cm. Connecting springs under an average tension of

1. 3 x 10 5 dynes, driving plate velocity = 0.03 cm/sec.

7. Cohen (1977b)

One dimensional computation model similar to Dieterich's (1972) models a.

and d. Staring constants = 10 16 1.0 is s dynes/cm; 1. 55k 2AC 1 '< 10 2 S r S
9

104 sec; 0 C fs G 3 x 10 20 dynes; 0 Cf d/€ S C. 99

8. Cohen (1977a)

One dimensional computational models using elastic springs. Spring con-

starts 5 x X0 16 dynes/cm - 1. 5 x 1.0 17 dynes/cm; f  = 1 x 10 20 dynes -

3 x 10 20 dynes; f d = 0. 8 f s.
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4	 9. Rundle and Jackson (1977)

	

j.	 f

I	 j	 One dimensional computational model employing 20 massless elements
r

{

	

	 driven by moving plate both an elastic and unelastic Model are invested.

a. elastic model: driving spring constants = 100-10, 000 kbars/cm; con-

l	 necting spring constant 0-3200 kb/cm; static friction 0.3 Ida - 9 M. 	 i

	E	 b. anelastic model: The frictional stre3gffi is time and stress dependent
i

with

dFs _ 1 
[ o tt) F Su ]	 }

	}	 dt	 r

where o(t) = time dependent stress on the block, and r 5° and are

constant.

s

	

fr`f
	

In the choice of numerical values for the spring constants in the various

	

SiSiSi	 simulations, little attention has been devoted to the relationship between the
Y	 1

driving and connecting spring constants, However, Yamashita (1976) has an.1-

lzed tite relationships between the spring constants and the elasticity constants

µ and a where u is rigidity and X the usual Lame parameter, For a one

dimensional model he finds

V, N,
	 Az4x

and

k	
dt ax

where VP /VS is the ratio of primary to secondary seismic wave velocities, and

Oz and Ay are the block dimensions along and perpendicular to the fault. The

parameter Az is the dimension of the block in the third direction.
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length	 a = 1/1'

stress	 b = c/o'

elastic constants	 c = p/ur	 ^^,

•	 density	 d =p/p'

Scaling relations

force F = aZbF'

spring constants k = ack'

displacement Ax = abc-1 Ax'

mass m = a3d3n'

velociiy ax = b(cd)-y-4k

acceleration AR = b(ad)-1 ax

energy E = a3b 2c- 1 E'

seismic moment M = a3bM'

Scaling laws for source parameters. Source

parameters are known in primed system and

desired in unprimed system (from Dieterich, 1973).

[ 1
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Figure 2. Multiple element rheologic models: a. Maxwell substance, b. Kelvin
substance, c. three element generalized Kelvin substance, d. alterna-
tive three element substance, e. four element Burgers substance

1	 ,'d

41



a E

9 E

Cr e

r l
I{

i

t

Maxwell substance

t

Kelvin substance

t

Generalized Kelvin substance
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Figure 4: One dimensional fault model
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Figure 5: Frequency- energy diagram for mechanical simulator of Burridge
and Knopoff (1967)
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Figure 7: Shook energy versus fault length. Solid dots L = 8; open circles
L < 8. (King and Knopoff, 1968(b))
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