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SUMMARY

A geometrical acoustics approach is proposed as a practical design
tool for absorbent liners in such short flow ducts as may be found in
turbofan engine nacelles. As an example, a detailed methodology is pre-
sented for three different types of sources in a parallel plate duct con-
taining uniform ambient flow. A plane wave whose wavefronts are not normal
to the duct walls, an arbitrarily located point source, and a spatially
harmonic line source are each considered. Optimal wall admittance distri-
butions are found, and it is shown how to estimate the insertion loss for
any admittance distribution. It is suggested that the extension of the
methodology to realistic source distributions in variable area cylindrical
or annular ducts containing arbitrary flow is conceptually straightforward

and computationally practical on a vector-hardware digital computer.

INTRODUCTION
The study of sound transmission and attenuation in soft walled flow

ducts has received considerable attention since the advent of jet-powered
commercial transport aircraft in the late 1950's (see refs. 1 and 2 for
reviews of this work). The foundation for much of this work was laid earlier
by Cremer (ref. 3), who investigated the infinite uniform duct problem.
Cremer concluded that regardless of the original pressure distribution of an
acoustical disturbance, there will be a finite distance down the duct past

which the lowest order, or least attenuated, mode will dominate the sound



field. He suggested that overall sound attenuation would be maximized by
max ‘mizing the attenuation of the least attenuated mode. An excellent
exposition and extension of Cremer's work is given by Tester in reference 4.

Tyler and 3ofrin (ref. 5) were the first to emphasize the importance
of the higher order duct modes in the turbomachinery noise problem, and
Zorumski (ref. 6) presented a systematic analytical approach to account for
modal propagation (transmission and reflection) in finite ducts having
multi-segment liners. Rice (ref. 7) has developed a liner design technique
based on an observed collapse of infinite-duct modal characteristics with
cutoff ratio, and Nayfeh, et al., (ref. 8) have derived a modal propagation
algorithm for variable area ducts.

As modal theory has been applied to more complex duct and flow con-
figurations, physical int:rpretations have become imprecise and computational
problems (eigenvalue calculations most notably) have become more formidable.
In attempts to circumvent some of the problems inherent in modal calcula-
tions, a number of numerical field solution algorithms have been developed
(refs. 9, 10, and 11). Such numerical procedures are powerful tools for
attacking problems involving arbitrary duct shapes, arbitrary flows, compli-
cated souice distributions and variable boundary conditions. However,
numerics go directly from governing equations to resultant pressure distri-
butions, providing no direct physical insight into mechanisms of propagation,
reflection and attenuation.

Geometrical acoustics avoids many of the wodal calculation proglems,
and it also provides the physical insight lacking in purely numerical
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approaches. Ray theory has been employed by Wright (ref. 12) to compare
noise radiation from free field and ducted rotors, by Tester (ref. 13) to
develop some insight into why modal attenuation is maximized in an infinite
duct by use of the Cremer optimal impedance, and by Lester and Posey

(ref. 13) to verify the optimal wall impedance and maximu attenuation

calculated from modal theory for a point source in a finite cylindrical
duct. These studies indicate that geometrical theories can be used with
confidence in short ducts and when wavelenaths are much less than the duct
height or diameter, as is often the case in turbofan inlets and short
exhaust ducts. As an example application, the present paper utilizes geo- 3
metrical acoustics to develop desiagn procedures for ab< rptive liners in |

short parallel plate flow ducts for three types of high freguency acoustical

sources: a plane wave with arbitrary angle of incidence on the walls, a :
point source and a line source. For each source typ2 it is shown how to

determine the wall admittance distribution which maximizes sound absorption

and how to estimate the insertion loss for an arbitrary admittance distri-
bution.
PARALLEL PLATE DUCT

The coordinate system for the parallel plate qeometry is shown in
figure 1. The two semi-infinite plates occupy the planes y = * h for
z < d. There is a uniform flow in the 2z direction of Mach number M.

Plane wave propagation.- First, consider the idealized case where the
sound field at z = 0 can be represented as a plane wave with wavefronts

normal to the y-z plane and makina an angle © with the z-axis. Then the




unit vector n normal to the wavefronts makes an angle ¢ with the vertical.
In the absence of flow, Huygen's Principle states that the wavefronts advance
at the speed of sound c¢. In a uniform flow, the wavefronts still advance
with the speed of sound in a reference frame moving with the medium, but the
field is also convected with the medium at a velocity cMEz where 32 is

a unit vector in the 2z direction. Thus, the rays are no longer normal to
the wavefronts, but rather propagate in the direction of the vector n+ MEZ
as shown in figure 2. The angle of incidence of the rays on the wall (the

angle that the ray makes with vertical) is given by R where

. M+sing
tan o, g (1)

It is clear that only waves with ﬂR in the range (0, m) carry energy

toward the duct termination. Due to symmetry about o, = n/2, attention is

R

further limited in this section to B in (0, n/2) with no loss i aenerality.

Therefore, tan 8o >0 or sin @ > -M. If M <0, then flow is coming into
the duct and convection will prevent the escape of any acoustical energy
unless the z component of n exceeds [M]|.

Tester (ref. 13) has considered this problem in some detail where the
incident plane wave pressure field is given by piexp(ikyy + ikzz - iwt)
and the reflected wave by prexp(-ikyy + ikzz - iwt). Requiring continuity
of particle displacement between the wail and the fluid and defining the

u
specific normal admittance in the usual manner, R = p_ C y) >
0 \P/yan

Tester obtains a pressure reflection coefficient Cr = pr/pi qiven by
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C =058 - g(1 - M sin 9)2 (2)
r i 2
cos 8 + B(1 - M sin 8)

Notice that complete absorption occurs when :he admittance is

Bopt = (1 - M sin 6)'2 cos 6 (3)

That is, the optimal duct liner has zero reactance and a specific resistance

a

R equal to Bopt‘

opt

Ropt = (1 - M sin 9)2/cos a (4)

Optimal resistance as a function of wavefront orientation is plotted
in figure 3 for both inflow and exhaust. The Mach number magnitude is
arbitrarily set to 0.35. These curves suggest that designing a liner for
the attenuation of random incidence noise may be more easily accomplished in
an exhaust duct than in an inlet duct due to the relative flatness of the
curve for the exhaust case. That is, a normal specific resistance of unity
would be near optimal for a wide range of wavefront orientations (-20° < 6 <
70° in the present case) for propagation with the flow, while no resistance
value would yield similar performance for propagation against the flow.

For a specific design problem where a range of © or OR is specified
along with a range of Mach numbers, equations 1 and 4 can be used to con-
struct a family of curves similar to those in figure 3 from which a target
value for the resistance can be chosen. An estimate of the transmission
loss for any given M, 8, duct height 2h and distance to duct termination d

5




is readily obtained by adding the fraction of the incident power which is
radiated directly to the fraction which is radiated after a single reflec-

tion, as illustrated in figure 4. Let F_, be the fraction of the rays

D
which radiate without reflection and F. the fraction which are reflected.
The power reflection coefficient is ICrlz, so that the insertion loss is

approximately
IL ¥ -10 log(Fy + F IC.|?) (5)

Multiple reflections can be similarly taken into account.

A better estimate of the transmission loss could be found by employing
ray scattering theory as presented by Felsen and Yee (ref. 15).

Point source.- When a point source is radiating into a stationary medium,
the resulting wavefronts are concentric spheres, as shown in figure 5a. If
the source remains stationary, but the medium has a uniform flow Mach number
M, then the wavefronts are still spherical, but they are no longer concentric,
since they are convected downstream as they expand (see figure 5b). However,
the ray paths are straight in either case (ref. 16). Thus, for a point source
at (0, hs, 0) in the parallel plate duct of figure 1, the angle of incidence

for direct rays on the duct wall at (x, +h, z) is given by

+
b = arctan hs

The wavefronts may be considered locally plane when k x2 + 22 + (h ¢ hS

je 5
>> 1, and an analysis along the lines of that used by Tester (ref. 13) in
deriving equation 2 yields the following expression for the complex pressure
reflection factor.
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cos 6, - B(1 - M cos ez)2

cr 5 cos ey + B(1 - M cos ez)l (7)

Here, ey is the angle which the wavefront normal makes with the Ey
vector and ez is the angle it makes with Ez. Equation 7 could be adjusted
to account for the curvature of the wavefronts (see ref. 17), but this is
beyond the scope of this paper.

In order for equation 7 to be utilized in determining an optimal
impedance distribution Bopt
ey and 6, must be expressed as functions of position on the walls. It is

(x, th, z), the wavefront orientation angles
convenient to define ¢ as the angle which the ray makes with Ez' That
§55

[(+n - hsiz + X2 >

¢ = arctan

Since the ray propagates in a straight line with the velocity cn + cMEZ,

it can be shown that

sin ez
tan ¢ = mz— (9)
Equatiors 8 and 6 combine to give
sin Oz 2 2% -1
M+ cos 0. Bth - hg)" + x ] o (10)
z

Since the flow is parallel to Ez’ the center of curvature of any wavefront
will always lie on the line y = hs’ x = 0. Thus, once 6, is determined

from equation 10, ey can be found from

o L i~ SO, ——
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+ sin ez
cos 6 = 3
y [1 + x4/ (sh - hs)zj’*

(M)

Now that the wavefront orientation angles 6_ and ez can be determined

: 4
for any wall position by using equations 10 and 11, equation 7 can be used

to determine the reflection coefficient at any wall positicn for an arbitrary
admittance B at that point. As with a plane wave source, Cr can be

nulled. In the present case, this is accomplishad by

cos 6 (x, *h, z)
BOpt(x’ th, z, M) “[ - M cos 8,(x, +h, 2]])2 ° (12)

Again, B is real, implying that the optimal reactance is zero and that

opt

the optimal resistance R is given by B;Lt' which is now position

pt
dependent.

If it is not possible tc vary the wall admittance continuously, as
dictated by equation 12, then tne designer could divide the liner into uniform

segments such that Bo had Tittle variation over any one of the segments.

pt

In determining the average value of 80 over a segment, the appropriate

pt
weighting function is the density of direct rays incident on the wall as a
function of position (proportional to energy flux per unit isrea, not to be
confused with wave intensity). The ray density over one of the spherical
wavefronts is inversely proportional to the square of the radius of curva-
ture of that wavefront, but the surface of maximum density is locally normal
to the direction of ray propagation. Let Er(x. . z) be a unit vector in

the direction of the ray path, then the local density of rays though the
8



surface normal to 3r is proportional to [rg(ﬁ . Er)}']. It follows that
the density of rays incident on the wall is
cos @p

D(x, th, 2) = A ot |, (13)

rc(n . er)

where A is the constant of proportionality and Fa is the radius of curva-

ture of the wavefront, given by

B2« v - n?
c sin 92

r (14)

Once a distribution of B has been selected by the designer, the result-
ing insertion loss can be estimated by approximating PL, the power radiated
from the lined duct, as the sum of the direct radiation and that carried by
rays which escape the duct after cne and only one reflection. Such singly
reflected rays strike ire walls at z > z' where

(h ¥ h_)d

t S & 3
z—m,y-ﬁh (]5)

Z =-x - =0
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where Cr is the pressure reflection coefficient given by equation 7. The
inclusion of multiply-reflected rays is straightforward, but beyond the scope

of this paper. The radiated power from the corresponding hardwalled duct is .

1 . h
Py = [djmlD(x. h, z) + D(x, -h, z)]dxdz + I [m Ad ) @2 -yl t§ hs)z]'kdxdy
) 2
0 -®

ré(n - e
b e r
(17)
and the insertion loss is
P
IL = -10 Tog 5= (18)
H

Line source.- A line source is taken to lie parallel to e, at z =0,
A= CEE i(k_x - wt) .
y = hs' The source flux varies as e . Hence, in the absence of
flow, the wavefronts are right circular cones and have a semi-apex angle
given by arccos (kS/k), where k = w/c, and c¢ is the ambient speed of sound.
The ray density at any point on the wavefront is inversely proportional to
the radius of the cross section of the cone, and the rays are normal to the
wavefronts. Again imposing the uniform flow velocity cMEZ, the wavefronts
remain right circular cones, but the axes are no longer coincident with the
source line. The intersection of a typical wavefront cone with the plane
y = hs is shown in figure 6. Huygen's Principle implies that the position of
such a wavefront at any given time may be determined as the envelope of the
spherical wavefronts (representing equal phase) from all the points on the
source line which the wavefront has passed. Since these spheres are convected

at the velocity cM'éZ as their radii increase at the rate c, and the apex of

10




the conical wavefront advances at a -peed of w/ks along the line source,

it follows that the axis of the conical wavefront lies in the plane y = hs

and makes an angle t with Ex.

tan T = MkS/k (19) !

Also, the semi-apex angle of the cone is vy, where

ks kg I-%
tan Y = £ 1-k7(1-M2)J (20)

Tnerefore, for ks # 0 the instantaneous locations of the wavefronts are
given mathematically by the family of surfaces satisfying the following

equation.

? .
(y - h )™ + [(a - x) sin t + z cos £ |
= ; 2 2
=[(a -x)cos T-2zsint]” tan® v, x<a (21)

Here, (a, hs’ 0) is the location of the apex of the cone. From equation 21
it is straightforward to determine the relative transverse position of the

apex (a - x) for wavefronts which are incident upon the walls y = *h at
any given axial station z. In particular, (a - x) is the positive root of

the quadratic equation
2 -
C2(a -x)" + C](a - x) + Co =0 (22)

11
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where

C2 = tan2 T - tanzY

= 2z tan (1 + tanZY)

C]'
2
(¢h = h))
CC = —————7rii-— + 22(1 - tanzr tanzv)
cos“t

Let ¢ be the length of the line between the point of incidence and

the apex of the wavefront. Then from figure 6, it follows that

t= [ta - x)2 + (+h - hi? + zz]‘* ; (23)

and cAt = ¢ tan Y. Thus, the wavefront normal is in the direction of the

vector from [x - 2 tan Y sin{t + V), hs' M Rtan Y] to (x, *h, 2).

-
B (24)
N
where
> - -> ‘
= ) ! i + *h -
N e tan Y sin(t + Y) + ey(.h hs,
- »
+te[z-Mt tanY] .
Since the components of any urit vector are its direction cosiies,
cos 8 =1n ¢
y y
and
cos 6, =1 - € (25)

12



These cosine values can be substituted into equation 7, and nulling the
numerator would yield an optimal axial variation of admittance for each wall

k

8 Gh, z, M, —§> = (zh - hs)[] - M(z - M2 tan \()]'1 (26)

opt k

Notice that equation 26 differs from equation 12, the optimal admittance
for a point source, in that there is no x dependence, but there is a depend-
ence upon the ratio of the source wave number kS to the free space wave
number k = %. Hence, it would be easier to construct the optimal liner for
the Tine source since it would need to vary in only one direction, but addi-
tional information about the source (the values of w and ks) would be
raquired.

The ray density on the wavefront is inversely proportional to the radius
of spreading, denoted by cAt in fiqure 6, and equal to £ tan Y. As with
the point source, the local ray direction must be determined in order to
arrive at an expression for the density DL of direct rays incident on the

wall. Specifically, 3} is the unit vector in the direction of n + MEZ,

and
_ B ° " %y
DL(th’ z) = o(+h, z)tan Y S (27)
”

Here, B 1is the constant of proportionality. Thus, if multiply-reflected
rays are again neqglected, the power radiated per unit length of the source

from an off-optimal lined duct is

. ? d 2
P/ - I o, (hy 2)[C,(n, 2)[7 dz + [ D, (-h, 2)[c,(-h, 2) % dz
z+ z-
“th
+ [ Ble(y, d)tan y1-1 4y (28)

-h 13
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and the power radiated per unit length from a hard walled duct is
.oqd h 7]
Py = I [D(h, 2) + D(-h, 2)1dz + J 312y, d)tan 117" dy (29)
o -h
The insertion loss is
P
IL = -10 log — . (30)
P

CONCLUDING REMARKS

In aircraft turbofan engines, the noise that propagates through the
inlet and fai exhaust ducts is due to several different mechanisms. Some of
these mechanisms, such as the rotor interaction with small scale turbulence,
or with a small scale inflow distortion, may be considered as point sources,
while others, such as the rotor-locked pressure field, may be considered as
a ring source or a series of ring sources. The liner design methodology
developed above for point and 1ine sources in a parallel plate duct can be
straightforwardly extended in principle to point and ring sources in ducts of
arbitrary shape and even to a random distribution of sources within such ducts.
Nonlinear liner interactions, the effects of multiple reflectioi.s and scattering
at duct discontinuities could also be included, and radiation patterns as
well as insertion losses could be predicted. Although the implementation of
the methodology would involve extensive computer programming, the effects of
basic acoustical phenomena such as refraction, diffraction, reflection and
absorption znuid be easily followed through the calculations, a definite
advantage over modal or purely numerical approaches.

14
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Ray tracing solutions to such complicated problems as turbomachinery
duct noise propagation have been avoided in the past possibly because of
prohibitively large computation times being required; however, the recent
advent of vector-hardware digital computers makes possible reductions in
computation time for such problems of at least an order of magnitude.
Therefore, it seems quite within reason that the principles of geometrical
acoustics utilized in the example problem of this paper could be the basis of
a practical design procedure which employs more realistic source, duct and

flow models than are currently used in procedures based on moda‘ theory.
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