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SUMMARY

A geometrical acoustics approach is proposed as a practical design

tool for absorbent liners in such short flow ducts as may be found in

turbofan engine nacelles. As an example, a detailed methodology is pre-

sented for three diffe-ent types of sources in a parallel plate duct con-

taining uniform ambient flow. A plane wave whose wavefronts are not normal

to the duct walls, an arbitrarily located point source, and a spatially

harmonic line source are each considered. Optimal wall admittance distri-

butions are found, and it is shown how to estimate the insertion loss for

any admittance distribution. It is suggested that the extension of the

methodology to realistic source distributions in variable area cylindrical

or annular ducts containing arbitrary flow is conceptually straightforward

and computationally practical on a vector-hardware digital computer.

INTRODUCTION

The study of sound transmission and attenuation in soft walled flow

ducts has received considerable attention since the advent of jet-powered

commercial transport aircraft in the late 1950's (see refs. 1 and 2 for

reviews of this work). The foundation for much of this work was laid earlier

by Cremer (ref. 3), who investigated the infinite uniform duct problem.

Cremer concluded that regardless of the original pressure distribution of an

acoustical disturbance, there will be a finite distance down the duct past

which the lowest order, or least attenuated, mode will dominate the sound
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field. He suggested that overall sound attenuation would be nkiximized by

max*,,,1izing the attenuation of the least attenuated mode. An excellent

exposition and extension of Cremer's work is given by Tester in reference 4.

Tyler and 3ofrin (ref. 5) were the first to emphasize the importance

of the hiqher order duct modes in the turbomachinery noise problem. and

Zorumski (ref. 6) presented a systematic analytical approach to accounk for

modal propagation (transmission and reflection) in finite ducts having

multi-segment liners. Rice (ref. 7) has developed a liner design technique

based on an observed collapse of infinite-duct modal characteristics with

cutoff ratio, and Wayfeh, et al., (ref. 8) have derived a modal propagation

algorithm for variable area ducts.

As modal theory has been applied to more complex duct and flow con-

fi gurations, phy sical int- ►-pretations have become imprecise and computational

problems (ei genvalue calculations most notably) have become more formidable.

In attempts to circumvent some of the problers inherent in modal calcula-

tions. a number of numerical field solution algorithms have been developed

(refs. 9, 10, and 11). Such numerical procedures are powerful tools for

attacking problems involving ar • bitrary duct shapes, arbitrary flows, compli-

cated source distributions and variable boundar y conditions. However,

numerics qo directly from governing equations to resultant pressure distri-

butions, providing no direct physical insight into mechanisms of propagation,

reflection and attenuation.

Geometrical acoustics avoids many of the i„odal calculation problems,

and it also provides the physical insi (lht lacking in purely numerical
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approaches. Ray theory has been employed by Wright (ref. 127 ) to co►rrpdre

noise radiation from free field and ducted rotors. by Tester (rvf. 13) to

develop some insight into wh y modal attenuation k maximized in an infinite

duct by use of the Cremer optimal impedance. and by Lester and Posey

(ref. 13) to verify the optimal wall impedance and maximu attenuatiOn

calculated from modal theory for a Point source in a unite cylindrical

duct. These studies indicate that g eonletric.11 theories can he used with

confidence in : port duct s. and when wavelenttths arc' much less than the duct

height or diameter. as is often the case in turbofan inlets and short

exhaust ducts. As an example application, the l i resent nai ler utilizes geo-
	 f

metrical acoustics to develop design procedures for .0--rptive liners in

short parallel plate flow ducts for three types of high frequency acoustical

sources: a plane wave with arbitrar y an g le of incidence on the walls, a

point source and a line source. For each source tyre it is shown how to

determine the wall admittance diCtribUti011 which nlaxinli:es sound absorption

arid how to estimate the insertion less for an arbitrar y admittance distri-

bution.

PARALLEL flATF DUCT

The coordinate system for thethe parallel plate geometry is ;hewn in

fiklure 1. The two semi-infinite plates occup y the ,Manes y =	 h for

z	 d. There is a uniform flow in the z direction of mach number • M.

Plane_ wave.roPzgation.- First, consider the idealized case where the

sound field at . - 0 can t-0 represented as a plane wave with wavefronts

normal to the y-: plane and making an arnile 0 with the z-axis. 111011 the
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unit vector n normal to the wavefronts makes an an g lo P with the vertical.

In the absence of flow, Huygen's Principle states that the wavefronts advance

at the speed of sound c. In a uniform flow, the wavefronts still advance

with the speed of sound in a reference frame moving with the medium, but the

A
field is also convected with the medium at a velocity 01e 	 where e 	 is

a unit vector in the z direction. Thus, the rays are no longer normal to

the wavefronts, but rather propagate in the direction of the vector n + Me"z

as shown in figure 2. The anqle of incidence of the rays on the wall (the

anqle that the ray makes with vertical) is given by ?R where

tang =M+ sin e
R	 cos 0

It is clear that only waves with 
0R 

in the range (0, n ) carry energy

toward the duct termination. Due to s ymmetry about EAR = n/2, attention is

further limited in this section to 
PR 

in (0. r/2) with no loss i ►, nenerality.

Therefore, tan 0R > 0 or sin U - -M. If M , 0, then flow is cominq into

the duct and convection will prevent the escape of any acoustical energy

unless the z component of n exceeds IMF.

Tester (ref. ;3) has considered this problem in some detail where the

incident plane wave pressure field is given by p i exp(ik yy + ik z z - iwt)

and the reflected wave by p rexp(-ik__y + ik z z - iwt). Requiring continui

of particle displacement between thr wail and the fluid and defining the

lspecific norn ► al admittance in the Usual manner, R = ^^ ocl 4^rIv /
wall

Tester obtains a pressure reflection coefficient C r - Pr
 /p i given by

4
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	_ cos 0 - ^(1 - M sin A)^	 (2)
Cr	

cos 0 + R(1 - M sin 0)2

Notice that complete absorption occurs when he admittance is

. J" opt	
(1 - M sin 0) -2 cos 0	 (3)

That is, the optimal duct liner has zero reactance and a specific resistance

Ropt equal to 6-1

Root	
(1 - M sin 0) 2/cos 0	 (4)

Optimal resistance as a function of wavefront orientation is plotted

in figure 3 for both inflow and exhaust. The Mach number magnitude is

arbitrarily set to 0.35. These curves suggest that designing a liner for

the attenuation of random incidence noise may be more easily accomplished in

an exhaust duct than in an inlet duct due to the relative flatness of the

curve for the exhaust case. That is, a no rnial specific resistance of unity

would be near o ptimal for a wide range of wavefront orientations (-20° < 0 <

70 0	in the present case) for propagation with the flow, while no resistance

value would yield similar performance for propagation against the flow.

For a specific design problem where a range of 0 or 0 R is specified

along with a range of Mach numbers, equations 1 and 4 can be used to con-

struct a family of curves similar to those in figure 3 from which a target

value for the resistance can be chosen. An estimate of the transmission

loss for any given M, 0, duct height 2h and distance to duct termination d

r	

-	 5
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is readily obtained by adding the fraction of the incident power which is

radiated directly to the fraction which is radiated after a single reflec-

tion, as illustrated in figure 4. Let F O be the fraction of the rays

which radiate without reflection and F	 the fraction which are reflected.
r

The power reflection coefficient is IC r i 2 , so that the insertion loss is

approximately

IL = -10 log(F p + F r IC r I 2 )	
(5)

Multiple reflections can be similarly taken into account.

A better estimate of the transmission loss could be found by employing

ray scattering Theory as presented by Felsen and Yee (ref. 15).

Point source.- When a point source is radiating into a stationary medium,

the resulting wavefronts are concentric spheres, as shown in figure 5a. If

the source remains stationary, but the medium has a uniform flow Mach number

M, then the wavefronts are still spherical, but they are no longer concentric,

since they are convected downstream as they expand (see figure 5b). However,

the ray paths are straight in either case (ref. 16). Thus, for a point source

i	 at (0, h s , 0) in the parallel plate duct of figure 1, the angle of incidence

for direct rays on the duct wall at (x, ±h, z) is given by

x2+z212
OR = arctan +-(- h h

s

i
The wavefronts may be considered locally plane when k x 2 + z 2 + (h ± hs)	

z	 '

>> 1, and an analysis along the lines of that used by Tester (ref. 13) in

deriving equation 2 yields the following expression for the complex pressure

reflection factor.

,.	 i

. !

t
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cos 0 - B(1 - M cos 0 
2

O r	 cos 0y + B	 0- M cos z	
(7)

Here, Ay is the angle which the wavefront no

vector and 0 z is the angle it makes with ez

to account for the curvature of the wavefronts

rural makes with the e
v

Equation 7 could be adjusted

(see ref. 17), but this is

beyond the scope of this paper.

In order for equation 7 to be utilized in determining an optimal

i^
impedance distribution B opt (x, ±h, z), the wavefront orientation angles

0y and e 	 must be expressed as functions of position on the walls. It is

convenient to define d as the angle which the ray makes with e z . That

'	 is,

¢ = arctan 
[(±h - h s )' +

z

Since the ray propagates in a straight line with the velocity cn + cMez,

it can be shown that

sin 0z
tan gy=

M+Cos 0
z

Equations 8 and S combine to give

M + cosz0 = Ph - h
s 
j 2 + x 21 ^2 `-1sin 0

Z	 J
	

(10)

Since the flow is parallel to e z , the center of curvature of any wavefront

will always lie on the line y = h s , x = 0. Thus, once A z is determined

from equation 10, 0y can be found from

1

(8)

(0)



.1

^,	 1

^i sin 0
cosE'	 = z 	(11 )

y F+_x  / (*h - h s' J

Now that the wavefront orientation angles 
0  

and 0 z can be determined

for any wall position by using equations 10 and 11, equation 1 can be used

to determine the reflection coeffic4,nt at any wall position for an arbitrary

admittance S at that point. As with a plane wave source, C r can be

nulled. In the present case, this is accomplished by

cos A (x, ±h, z)

8opt (x ' ±h' 
z' M)
	 [1 - M cos ) Z x, h, Z12

 (12)

Again, 
"opt 

is real, implying that the optimal reactance is zero and that

the optimal resistance R opt is given by ro P t , which is now position

dependent.

If it is not possible tc va ry the wall admittance continuously, as

dictated by equation 12, then the designer cou'.d divide the liner into uniform

segments such that 
6opt 

had little variation over any one of the segments.

In determining the average value of 
6opt 

over a segment, the appropriate

weighting function is the density of direc t_ rays incident on the wall as a

function of position (pro portional to energy flux per unit - a rea, not to be

confused with wave intensity). The ray density over one of the spherical

wavefronts is inversely proportional to the square of the radius of curva-

ture of that wavefront, but the surface of maximum density is locally normal

to the direction of ray propagation. Let er (x, y .. z) be a unit vector in

the direction of the ray path, then the local density of rays though the

8
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1
surface normal to e 	 is proportional to Ir^(n 	 er )I -l . It follows t`at
the density of	 s incident on the wall is 	 JJ^	 y	

ra
y

cos PR

	

r c (n	 er)

where A is the constant of proportionalit y and r 	 is the radius of curva-
ture of the wavefront, given by

_IX2+(y_hs)2]

rc 	 sin t^	 Jz

Once a distribution of S has been selected by the designer, the result-

ing insertion loss can be estimated by approximating P
L
, the power radiated	 j

from the lined duct, as the sum of the direct radiation and that carried by

rays which escape the duct after one and only one reflection. Such singly

reflected rays strike Lie wal:s at z , z	 where

(h + hs)d

2 h + h	 y	 ±h	 (15)

s

Thus,

P L 	d	 D(x, h, z)IC r (x, h, z)1 2dxdz + j d
 D(x, -h, z)IC r (x, -h, z)12dxdz

Z + 	 z-

+	 (	 Ad	 (d2 + x 2 + (y - h s )2J t= dxdy	 (16)
JI ^(^ e ^ (l̂

-h -^u c
	 r

(14)
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r^
where C r is the pressure reflection coefficient given by e quation 7. The

inclusion of multiply-reflected rays is straightforward, but beyond the scope

of this paper. The radiated power from the corresponding hardwalled duct is

h ^°	 _t
[dF [D(x, h, z) + D(x, -h, z)J dxdz +	

Ad	
Ld2 + x 2 + (y - h s ) 2J 2dxdy

J	 )	 rc(n - er)
o -00	 -h

(17)

and the insertion loss is

P
IL = -10 logy PL

N

Line source.- A line source is taken to lie parall-^?l to e x at z = 0,
i(k x - wt)

y = h s . The source flux varies as e	 s	 . Hence, in the absence of

flow, the wavefronts are right circular cones and have a semi-apex angle

given by arccos (k sA ), where k = w/c, and c is the ambient speed of sound.

The ray density at any point on the wavefront is inversely pr000rtiunal to

the radius of the cross section of the cone, and the rays are normal to the

wavefronts. Again imposing the uniform flow velocity cMe z , the wavefronts

remain right circular cones, but the axes are no longer coincident with the

source line. The intersection of a typical wavefront cone with the plane

y = h 	 is shown in figure 6. Huygen's Principle implies that the [position of

such a wavefront at any given time may be determined as the envelope of the

spherical wavefronts (representing equal phase) from all the points on the

source line which the wavefront has passed. Since these sphere; are convected

at the velocity cMez as their radii increase at the rate c, and the apex of

10
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I
the conical wavefront advances at a steed of to/k s alonq the line source,

it follows that the axis of the conical wavefront lies in the plane y = h,

and makes an angle T with ex*

l	 tan T = Mk /k	 (19)

Also, the semi-apex angle of the cone is y, where

k	 k2
tan Y = k 1 - k ks (1 - M2) 

A	
(20)

Tnerefore, for k  # 0 the instantaneous locations of the wavefronts are

given mathematically by the family of surfaces satisfying the following

equation.

(y - h s )^ + [(a - x) sin T + z cos T)2

= [(a - x) cos T - z sin T12 tan  Y, x < a (21)

Here, (a, h s , 0) is the location of the apex of the cone. From equation 21

it is straightforward to determine the relative transverse position of the 	 +

apex (a - x) for wavefronts which are incident upon the walls y = -h at

any given axial station z. 	 In Particular, (a - x) is the positive root of

the quadratic equation

C 2 (a - x) 2 + C 1 (a - x) + Co = 0	 (22)

R

j
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where

C, = tan` ; - tan 2Y

C 1 = 2z tan T(1 + tan2Y)

(±h - hs)2
C c = --,^-- + z (1 - tan`T tan ^)

COS &. T

Let i be the length of the line between the point of incidence and

the apex of the wavefront. Then from figure 6. it follows that

r(a - x) 2 + ( • h - hs)2 + z 21^ .	 (23)

and cAt = i tan ). Thus, the wavefront normal is in the direction of the

vector f rom [r - z tan ^ sin(T + 1), h s , M ftan Y] to (x, ±h. z).

t+ (24)ri=
N

where

N = ex k tar, Y sin(T + 1) + ey (th - hs1

+ez [z - Mf tan 1'^

Since the components of any ur ,*t vector are its direction rosi;.es,

Cos 0y = n .ey

and

cos Fz = n	 ez
	

( "15)'
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These cosine values can be substituted into equation 7, and nulling the

numeratur would yield an optimal axial variation of admittance for each wall

Copt(+h, z, M, kS
)
	 (+h - h s )fl - M(z - Mt tan Y)] -1	(26)

Notice that equation 26 differs from equation 12, the optimal admittance

for a point source, in that there is no x dependence, but there is a depend-

ence upon the ratio of the source wave number k 	 to the free space wave

number k= 
C

.	 Hence, it would be easier to construct the optimal liner for

the line source s i nce it would need to vary in ,lnly one direction, but addi-

tional info-mation about the source (the values of w and k s ) would be

required.

The ray density on the wavefront is inversely pro portional to the radius

of spreading, denoted by cot in figure 6, and equal to R tan Y. As with

the Doint source, the local ray direction must be determined in order to

arrive at an expression for the density D
L 

of direct rays incident on the

wall. Specifically, er is the unit vector in the direction of n + Mez,

and

_	 B	 er _ Y

D L (±h ' z)	 R ±h, z tan Y	 (27)
n	 e

r

Here, B is the constant of proportionality. Thus, if multiply-reflected

rays are again neglected, the power radiated per unit length of the source

frim an off-optimal lined duct is

PI
	

Id

D L ( h , z)IC r (h, z)I 2 dz + 	 DL(-h, z)IC r (-h, z)I2dz

x 
z+	 z

_

" h

R	
+ (	 B f^( y , d)tan y]- 1 ^y	 (28)

-h	
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and the power radiated per unit length from a hard walled duct is

P H = ^d [D(h, z) t D(-h, z)l d z + h S[R(y, d)tan Y] -1 dy	 (29)

o	 - h

The insertion loss is

IL = -10 log PL
	

(30)
PN

CONCLUDING REMARKS

In aircraft turbofan en q ines, the noise that propagates through the

inlet and fair exhaust ducts is due to several different mechanisms. Some of

these mechanisms, such as the rotor interaction with small scale turbulence,

rr with a small scale inflow distortion, may be considered as point sources,

while others, such as the rotor-locked pressure field, may be considered as

a ring source or a series of ring sources. The liner design methodology

developed above for point and line sources in a parallel plate duct can be

straightforwardly extended in principle to point and ring sources in ducts of

arbitrary shape and even to a random distribution of sources within such ducts.

Nonlinear liner interactions, the effects of multiple reflectio;.s and scattering

at duct discontinuities could also be included, and radiation patterns as

well as insertion losses could be predicted. Although the implementation o{

the methodology would involve extensive computer programming, the effects of

basic acoustical phenomena such as refraction, diffraction, reflection and

absorption1;-iu'1d be easily followed through the calculations, a definite

advantage over modal or purely numerical approaches.

14



Ray tracing solutions to such complicated problems as turbomachinery

duct noise propagation have been avoided in the past possibly because of

prohibitively large computation times hPing required; however, the recent

advent of vector-hardware digital computers males possible reductions in

computation time for such problems of at least an order of magnitude.

Therefore, it seems quite within reason that the principles of geometrical

acoustics utilized in the example problem of this paper could he the basis of

a practical design procedure which employs more realistic source. duct and

flow models than are currently used in procedures based on modal theory.

i
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