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ABSTRACT

The resistan`, parts of the canyon walls of the martian rift complex Valles

Marineris have been used to infer an earlier, less eroded reconstruction of the

major troughs. The individual canyons were then compared with individual rifts

of East Africa. When measured in units of planetary radius, martian canyons

show a distribution of lengths nearly identical to those in Africa, both for

individual rifts and for compound rift systems. A common mechanism which scales

with planetary radius is suggested. Martian canyons are significantly wider

than African rifts. This is consistent with the long-standing idea that rift

width is related to crustal thickness: most evidence favors a crust on Mars at

least 50% thicker than that of Africa. The overall pattern of the rift systems

of Africa and Mars are quite different in that the African systems are composed

of numerous small faults with highly variable trend. On Mars the trends are

less variable; individual scarps are straighter for longer than on Earth. This

is probably due to tea difference in tectonic histories of the two planets: the

complex history of the Earth and the resulting complicated basement structures

influence the development of new rifts. The basement and lithosphere of Mars are

inferred to be simple, reflecting a relatively inactive tectonic history prior

to the formation of the canyonlands.
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INTRODUCTION

The intermediate geologic evolution of Mars proceeded to the point where

terrestrial type crustal uplifts, shield volcanoes and associated rifting began

to modify a largely Moon-like surface (Frey and Lowman, 1978; Frey, 1977a).

Detailed characterization of these incipient plate tectonic structures of Mars

is important to our understanding of the relation between martian and terres-

trial geologic styleG and evolutionary development. This paper presents a com-

parison between the rift-type features of the Valles Marineris (Mars) and those

of East Africa (Earth).

The Vallc^^ Marineris is generally considered a martian rift valley or rift

system. Sharp (1973) first described the complex of canyons viewed by Mariner 9;

a more recent discussion of the physiography of the troughs based on early Viking

imagery is provided by Blasius et al. (1977). Hartmann (1973) compared the

Valdes Marineris with the Red Sea, and Wood and Head (1977) have presented a

general comparison of the martian rift system with a similar sized Venusian

Trough (Malin s;;:d Saunders, 1977) and with well known terrestrial rift systems.

Carr (1974) and Hartmann (1973) showed that the major fractures of the Valdes

Marineris were the largest of a series aligned radially to the crustal uplift

near Tharsis, but detailed study of the structural trends indicates at least

two major episodes of crustal flexure are responsible for the present-day

canyons (Frey, 1977b,c; see also Masson, 1977).

Because the martian canyon complex is a rift system, composed of a number of

individual canyons or troughs, comparison with large-scale terrestrial rift

systems (e.g., the Eastern Rift of Africa) is appropriate. Alternatively, the

dimensions and structures of the individual martian canyons could be considered

along with those of individual rifts in Africa (e.g., the Albert Rift of the
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South Gregory Rift). This latter approach is first adopted here; discussion of

the overall systems of canyons on Mars and rifts in Africa is considered in the

second half of the paper.

THE MARTIAN CANYONS

Detailed descriptions of the martian canyons can be found in Blasius et al.

(1977). In general the individual troughs are several hundred kilometers long

and up to 150 kilometers wide, merging into a complex central region near 730W,

1005 (Melas Chasma). Canyons are occasionally separated by inter-canyon ridges,

as in Ius and Coprates. Most are connected but Hebes and Juventae Chasma are

isolated features to the north of the general Valles Marineris complex. Gangis

Chasma is connected to the rest of the troughs through the chaotic, highly

dissected terrai of Capri Chasma (which is not discussed below).

For meaningful comparison with the well studied rifts of East Africa, indi-

vidual canyons must be clearly delineated and measurements of their dimensions

accurately made. Such measurements are difficult because of the highly eroded

nature of the canyon walls. Fluvial activity, mass wasting, scarp retreat and

repeated downfaulting have all contributed to widening the troughs (Sharp, 1973;

Blasius et al., 1977). This modification has obscured the original trends of

the canyons and confused interpretation of the canyon boundaries.

I

As described elsewhere, portions of nearly all the canyon walls exist which

seem much less eroded than their surroundings (Frey, 1977b). These occur as

resistant ridges and cliffs, the latter appearing as wedge-like projections

remaining behind as the wall on either side was eroded back from the canyon

interior. Figure 1A is a map of some of the main rasistant points described in

detail elsewhere (Frey, 1977c). In the context of this paper the intercanyon
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ridge in Ius and Coprates may be considered resistant portions of the canyon walls.

The places marked in Figure 1A should not be thought of as pristine remnants of

the original walls, but rather as a closer approximation to the original scarps

which formed Vae individual troughs than are the present walls.

To a first approximation a fault trace is roughly linear. Linear trends in

the resistant points of Figure 1A may therefore represent an approximation to the

master faults forming the original canyon scarps. It is possible to roughly recon-

struct the earlier walls of the troughs with such linear trends. One inferred

reconstruction°is =shown in -Figure 16.° Teeth -point=down into the canyons---_Solid-

lines indicate the most obvious trends in resistant points and therefore those

most likely to mark the earlier walls. Less certain locations are indicated by

dashed lines. This "uneroded" representation should be treated with some

suspicion: it almost certainly does not correspond to the original configuration`

of the walls of the canyons. Rather it is only a closer approximation to those

walls. In particular, widths of troughs measured from reconstructions like

Figure 1B are only upper limits to the true original width (see below). This

approximation has one important advantage: it allows a more confident distinction

of individual canyons and measurement of their dimensions than is possible when

working, with the eroded canyon walls seen today. For example, there is good

reason to treat the eastern and northwestern parts of Ophir Chasma as distinct

canyons. Likewise Candor Chasma is probably a separate trough from Ophir Chasma

and Ius is distinct from Melas. These separations are more easily made using the

reconstruction of Figure 1B. Individual martian canyons may now be compared

directly with the individual rifts of East Africa.
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CANYON AND RIFT DIMENSIONS

Lengths and widths of individual martian canyons and indivInuaI rims in cacti

Africa were measured in the same way. Figure 2 presents sketch maps of East Africa

(Figures 2A, B, C) and the Valles Marineris (Figure 2D), on which codes designate

(j	 the individual features considered. The maps for East Africa are derived from maps

found in King (1970) and Illies (1968). Figure 2D was based on the reconstruction

shown in Figure 1B. Length measurements are straightforward and are indicated by

the long bar running through each canyon or rift. Single measurements suffice

here, although some bias is introduced in the decision as to where one rift ends

and another begins. It is for this reason that all measurements were made on

the same type of map, rather than adopting values for African rifts from the

literature. Some error may also exist where straight lines were used to represent 	 j

the total lengths of features such as Lake Tanganyika (LT) or Luangua (L) whose 	 l

trends deviate noticeabl y from strai ght lines. The measurements made are there-

fore indicated on the sketch maps of Figure Z.

Many African rifts vary in width along their lengths. Bounding faults are

sometimes arranged en echelon or are composed of a series of separate faults of

different trend. It is not always obvious which faults should be taken as the

bounding scarp, and where widths should be measured. In some cases, graben-

within-graben exist. The northern part of the Kenya Rift (here, the North

Gregory Rift = NG) is such a feature. Martian canyons also .change in width

along their lengths. Ius (I) is a good example. West Coprates (WC) and East

Ophir (EO) open trumpet-like where they join other canyons. This type of widening

can also be seen in Africa at the southern end of Lake Rukwa (LRu) and the

northern end of Ethiopia (E). Therefore numerous measurements were made along

each rift or canyon and the average and range of values recordee for each. Figure

2 shows the location of these measurements as lines oriented perpendicular to the

strike of each canyon or rift.
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TABLE I

LENGTHS AND WIDTHS OF AFRICAN RIFTS

j

LENGTHS WIDTHS
RIFT SYMBOL MAP MEASURED L/R MEASURED W/R RANGE

Ethiopia E A 537 km .084 43 km .007 52 30

E. Rudolf ER A,B 114 .023 31 .005 37 26

L. Rudolf LR A,B 216 .034 50 .008 52 48

N. Gregory NG A,B,C 359 .056 74 .012 86 52

S. Gregory SG A,B,C 427 .067 60 .009 70 37

Kavirondo K B 178 .028 31 .005 35 26

Speke Gulf S C 107 .017 14 .002 14 14

Nile Albe°r_ NA B,C 116 .018 34 .005 37 31

L. Albert LA B,C 343 .053 44 .007 52 33

L. Edward LE C 1663 .026 37 .006 -- --

L.	 Kivu LK B 203 .00, 48 .008 -- --

L. Tanganyika LT B,C 724 .7.14 50 .008 70 33

L. Rukwa LRu B,C 426 .067 62 .010 95 37

Luangua L B 764 .120 68 .011 92 52

L.	 Kariba LKa B 568 .089 72 .011 92 44

Zambesi Z B 514 .081 87 .014 87 87

Sabi Sa B 416 .065 31 .005 35 26

Mozambique M B 156 .024 35 .005 -- --

L. Malawi LM B 653 .102 69 .011 82 39
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TABLE II
l

LENGTHS AND WIDTHS OF MARTIAN Cf;NYONS

k '	 LENGTHS	 WIDTHS
CANYON	 SYMBOL	 MAP	 MEASURED L/A	 AVERAGE	 W/R	 Range

(i Hebes	 H	 M	 269 km	 .079	 81 km	 .024	 83 79

W. Tithonius	 WT	 M	 246	 .072	 33	 .010	 33 33

E. Tithonius	 ET	 M	 169	 .050	 15	 .004	 17 13

"	 Candor	 Ca	 M	 311	 .097.	 141	 .042	 142 139

4	
_	

INW Ophir	 NWO	 M	 269	 .079	 86	 .025	 -- --	 n^

E0 	 ` 489	 .144=	 113	 033	 132 103E ^phir	 -	 I

Juventae	 J	 M	 295	 .087	 104	 .031	 7.19 89

Gangis	 G	 M	 519	 .153	 73	 021	 76 69	 ^^

I	
D

W. Ius	 WI	 M	 256	 .075	 37	 .011	 40 33	
1

I
Ius	 I	 M	 609	 .179	 93	 U27	 112 69

{

Melas	 Me	 M	 408	 .120	 166	 .049	 185 139	 ;	 3
I	 ^^

SW Coprates	 SWC	 M	 376	 .111	 53	 016	 69 43

W. Coprates	 WC	 M	 266	 .078	 105	 .031	 106 103

	

v^	 Coprates	 C	 M	 379	 .112	 84	 .025	 93 73

C. Coprates	 CC	 M	 194	 .057	 73	 .023	 83 73	 ys1.

	

N	 E. Coprates	 EC	 M	 243	 .072	 95	 .078	 99 89	 I`

	

x	
---------------------------------------------------- ------	 - -------------

5,

Some -degree of internal consistency should be provided by the common measure- 	 ^.•

ment procedure used on similar maps. An internal check of the maps and measure-

ment procedure is provided by the overlap seen in Figures 2B, C, and D. Where

measured on more than one map, length values differed by less than 25 km and

widths b y less than 5 krg - each lass than 10% of the measurement and each less

than the bin size used in the histograms below.

-



TABLE IIIa

{ LENGTHS OF COMPOUND AFRICAN RIFTS

RIFT SYSTEM SYMBOL	 LENGTH L R RIFTS

Kenya E-1	 787 km .12 NG, SG

Gregory E-2	 1002 .16 NG, SG, LR

j
E. Rift E-3	 1539 .24 NG. SG, LR, E

W. Rift A E-4	 1433 .22 LA, LE, LK, LT

I W. Rift 8 E13	 1859 .29 LA, LE, LK, LT, LRu

W. Rift C --- _-_—	 E=8	 2512 3y LA, LE,'LK, LT, LRu, LM

W. Rift D E-7	 2028 .46 LA, LE, LK, LT, LRu, LM, Sa

Kariba-Luangua E-8	 1332 .21 LKa, L'

r^? African E-9	 4467 70 NG, SG, LR,	 E, LA, LE, LK,

LT, LRu, LM Sar

f^
TABLE IIIb

LENGTHS OF COMPOUND MARTIAN CANYONS

CANYON SYSTEM SYMBOL	 LENGTH L/R CANYONS

Candor-Ophir M-1	 800 km .24 Ca, EO

a^ Lus System M-2	 865 .26 Wi, I

W-C Coprates M-3	 839 .25 WC, C, CC

"'r'
'? Copratos System M-4	 1082 .32 WC, C, CC, EC

Ius-Coprates M-5	 2099 .62 I, Me, WC, C, CC, EC

Valles Marineris M-6	 2355a `.69 WI, I, Me, WC, C, CC, EC



9

The results for the African rifts are presented in Table I. This and its

companion, Table II for the martian canyons, display a designation for the rift,

the code used to identify the canyon or rift on the sketch maps, and the map on

which the feature may be found (A, B, C refer to Figure 2A, B, C respectively;

M refers to Figure 2D). Next follows the measured length in kilometers and the

length divided by planetary radius. Measured widths (in kilometers) and widths

divided by planetary radius are next. The last two columns give the maximum and

minimum widths measured for that feature. Tables IIIa And IIIb list the lengths

of compound systems in Africa and on Mars respectively; that is, rifts which

join together to form larger more or less continuous structures. For example,

the North and South Gregory rifts (NG, SG) combine to form the Kenya rift,

designated E-1 in Table IIIa, and the combination of the Candor-East Ophir canyons

is shown as M-1 in Table IIIb. These larger systems will be discussed later.

Simple inspection of the "Measured Lengths" columns indicates that both
i

terrestrial rifts in Africa and martian canyons span a similar range in lengths.

Perhaps more important than the actual dimensions is a relative measure, listed

as "LO". This indicates the scale of the rift or canyon in units of planetary

radius. This column thus measures the feature in terms of the size of the

respective planet on which it has formed. Figure 3 presents the data in histo-

gram form. Figure 3A is for absolute lengths (kilometers) and Figure 3B shows

the distribution in units of planetary radius. Several points are obvious from

these figures:

`	 (a) In units of planetary radius, both terrestrial rifts of Africa and martian

canyons are small, generally less than 0.15R, where R is the radius of the planet.

The largest measured rift in Africa is Luangua (L); its length is '764 km or 0.12R.

The largest canyon of the Vailes Marineris, as indicated by Figures 1B and 20, is

Ius (I) at 609 km or 0.18.

L. -J-77-77
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(b) Rift systems, shown in Figure 3 as E-1, 2, 3, etc., and M-1, 2... can be quite

large, commonly longer than 0.25R or a quarter of the planetary radius.

(c) Both martian canyons and terrestrial African rifts show remarkably similar

distributions in L/R. This is true not only for the individual rifts but for

j compound systems as well.	 Individual-martian canyons are neither unusually large

nor unusually small compared with terrestrial rifts, in units of the planetary

j radius.

(d) __-What appears as anempty _bin in the martian canyons for L/R = 0.01 to 0.05

AI is due to exclusion of a possibly related feature, the catena, that parallel the

main troughs of the Valles Marineris	 (see Figure 1A).	 These pits and chains of

depressions have been described by Sharp (1973) and Blasius et al. (1977).	 Their

exact relationship with the main troughs is unclear, but the characteristic lengths

of these features is exactly in the range L = (0.01-0.05) Rj . The inclusion of

these structures would fill in the histogram as shown by the dashed lines.

While martian canyons are similar in length to the African rifts, they are

°	 significantly wider than those terrestrial features. Figure 4 shows histograms

for widths and width divided by planetary radius. From Figure 4A it is clear that,

measured in kilometers, martian canyons average about 84 km wide and African rifts

are about 49 km in width. In units of planetary radius, the difference is even

more pronounced. For convenience Figure 4B is plotted in units of (W/R) x 10

along the bottom scales. Martian canyons are three times wider than African rifts

in terms of the radius of the planet.
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Note that is not simply a consequence of a few very wide canyons. Removal of

Melas (Me) and Candor (Ca) canyons (the two widest on Mars) from the averaging

process decreases the mean width to only 75 km, which is still, in absoTiute units,

50% wider than the African average.

Although not displayed here in histogram form, where measured the martian

canyons are generally deeper than terrestrial rifts. When allowance is made for

erosion of riff: shoulders and volcanic filling of African featues, typical throws

of the major faults is 2-3 km (Beloussov, 1969; Menard, 1973). Measurements in the

central portion of the Valles Marineris indicate that depths of 6 kRl are common

(Malin, 1977, as referenced in Blasius et al., 1977).

STRUCTURAL CHARACTERISTICS

In East Africa numerous small rifts trend along a roughly common direction,

forming a continuous rift system. One example is the Western Rift. From Nile

Albert and Lake Albert in the north through Lake Edward and Lake Kivu, and south

into the large Lake Tanganyika and Lake Rukwa rifts, individual troughs link into

l, ° I	 a complex, continuous, curving system more than 1800 km long (see Figure 2C).

This in turn connects further south into the reactivated Luangua and Lake Malawi

rifts whichcontinue even further south. The Valles Marineris on Mars has a

similar characteristic continuity. West Ius and Ius join at Melas Chasma with

the Copratesrifts (West Coprates, Coprates, Central Coprates and East Coprates),

'	 as shown in Figure 2D. Comparison of these larger system characteristics of the

martian canyons and African rifts is found in Figure 5A and 5B. The first shows

the Valles Marineris (rotated 90 0 ) and the East African Rift system near Lake

`	 Victoria (deleted from the sketch map) at the same scale in kilometers. Figure

(f	

- 5B reproduces the Valles Marineris and East African Rifts in units of planetary

! '	 radius:
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Several of the observations made above are clearly shown in these Figures.

Individual rifts or canyons (i.e., segments of the larger systems described above)

have comparable L/R for both planets (compare East Ophir on Mars with Lake

Tanganyika in Africa, or the martian Melas with the terrestrial Luangua; locations

shown in Figure 2). But martian rifts are clearly wider, either in absolute units

(km) or in units of the planetary radius. The rifts systems have total comparable

lengths: The Western Rift of Africa (W Rift-B, E-5, Table IIIa) is roughly 1860 km

long, similar in length to the Ius-Coprates system (M-5 of Table IIIb). It is

clear from Figure 5 that the African systems are composed of numerous small segments

with significant variation in trend. The martian system is much less variable,

i
i

more nearly constant in trend.
	 I

As King (1970) has pointed out, while the Eastern Rift (for example) in Africa

(North and South Gregory, Lake Rudolf and Ethiopia) maintains a rough North-South

orientation, individual rifts seldom are found with this trend. Individual rifts

J+	 themselves are often composed of numerous faults which vary in trend within the

rift, although parallelism of the bounding faults is generally maintained. This

is true elsewhere on Earth. For example, the Rhine Graben master faults maintain

a close parallelism while changing direction along their 300 km length (lilies,

1968). The overall pattern in Africa is disjointed and complex on the small scale

but with a persistant direction on the large scale. The lengths of individual

faults which maintain a single orientation in Africa are generally less than 200 km,

often less than 100 km.

On Mars the situation is quite different. Bounding scarps inferred from

resistant points are straighter for longer distances than in Africa. Typical

lengths in Ius or Coprates are 400 km or longer for the major scarps. There is,
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of course, considerable uncertainty in the location of the "reconstructed" wal

and the pattern suggested in Figure 1B is undoubtably too simple. But complication

of that Figure by drawing shorter lengths cannot match the complexity observed in

Africa. The martian system is simpler and more coherent over a much greater

distance than are the rift system of Africa.

DISCUSSION

The close similarity of the length/radius histograms (Figure 3) for both Mars

i	 and East Africa is striking. A cofmion process which scales with planetary radius

i
is suggested. Further testin g of this ,important=^nclssion may-be-poss-ible when

further radar observations better delineate the full dimensions of the Venusian

Trough (Malin and Saunders, 1977). This suggestion of a common mechanism that

scales with the planetary radius has important implications for the comparative

evolutionary studies of these two planets.

Unfortunately the observation of a similar distribution in L/R implies nothing

directly about the mechanism of rifting itself. On the Earth rifts are produced

by extension related to crustal uplifts; these uplifts are probably an isostatic

response to injection of low density mantle material into the lithosphere (Burke

and Whiteman, 1973; Menard, 1973; Bhattacharji and Koide, 1975). In the Kenya

Rift multiple episodes of crustal flexure occurred, each accompanied by volcanism

and fracturing (Baker and Wohlenberg, 1971; Baker et al., 1972). The driving

mechanism behind the injection of the low denr;ty mantle material is unknown, but

is perhaps related to mantle plumes (Dewey and Burke, 1973) or to convective

motions in the upper mantle. A similar sequence of events may have occurred on

Mars, whose thermal history included mantle convection (ioksuz and Hsui, 1977).

The relation of the canyons to crustal warping is not clear, however, in the case

of Mars. The Valdes Marineris system lies along the flank of the Tharsis Uplfit,

not along the crest as is generally the case on Earth. A smaller topographic



71 ^`
r

^ c

{

a

{ I

14

l	 bulge to the east of Tharsis is more nearly centered on the canons (Christensen,

1975; Blasius et al., 1977). Furthermore, the temporal relations between the

fracturing at the Valles Marineris and the culmination of the Tharsis Uplift are

unknown, although it is generally accepted that the two are related (Hartmann,

1973; Carr, 1974). There is evidence for orthogonal structural trends in the

Valles Marineris; these may indicate earlier crustal warping near Thaumasia

predated the uplift at Tharsis (Frey, 1977b,c; see also Masson, 1977). Improved

determinations of the topogr-phy and temporal relations of these features are

required to pin down the evolutionary history of the martian canyons.

,I

F	 Other mechanisms of extensional fracturing have been proposed. For example,

an increase in planetary radius (Solomon and Chaiken, 1976; Toksoz and Hsui, 1977)

The common L/R distributions for Mars and the Earth do not rule out such models,

but is suggestive that common processes were operative on both planets. It is

also plot clear why planetary expansion should produce the single rift system seen

on Nrit-s. That is, it becomes necessary to explain why other parts of the planet

were not equally stressed. Perhaps improved numerical modeling of the thermal

histories will clarify this situation.

The difference in the W/R histograms fqr Mars and the African rifts is impor-

tant, perhaps reflecting basic differences in lithospheric proper-ties. Terrestrial

kcontinental rifts have a rather restricted range in widths (Beloussov, 1969; see

4	 Figure 3A); these widths are roughly equivalent to the thickness of the crustS

(see, e.g., Illies, 1968), Expe,.tation that this should be the case goes back to

r	 the early experiments of Cloos (see, e.g., Freund, 1967; Holmes, 1965), who demon-

strated that rift valley structures could be produced in layers of wet clay under

which a balloon was inflated (simulating the uplift of the crust). In those

experiments the width of the graben formed was equal to the thickness of the layer

`i	 of clay. Mechanically it is the lithosphere that is the brittle layer of the

1

is
!

I	 t:

J,
r	 !`
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Earth, but below rift valleys this thins to near crustal depths (6irdler et al,

1969, Figure 6; Baker and Wohlenberg, 1971, Figure 7), presumably due to the

emplacement of the lour density rdantle mass responsible for the crustal swell and

subsequent injection of such material into the lithosphere.

Wood and Head (1977) suggest that the great width of the martian canyons is

11	
consistent with terrestrial experience, reflecting a thicker crust for Mars.

Canyon widths measured here average —84 km wide; these are upper limits due to

„i uncertainty in the location of the reco strutted walls. Because the resistant

points- on -which that reconstruction was based are themselves likely to have been

somewhat erodei, the actual widths of the original canyons could have been narrower.

The range in measured widths (Table II) for Mars reveals the narrower parts of the

canyons may have widths 10 km or so less than the average. Even these should be

an upper limit for the narrow part of the canyon walls. It does not seem possible,

however, that the average value for the martian canyons can be decreased to agree

with that of the AfricaEi average of 49 km. We estimate 65-75 km as a lower limit

to the average canyon width on Mar_. (75 km is the average that results from

deletion of the two widest and most eroded canyons, as described above.)

Thus the average width of the canyons of Mars is significantly greater than

the average width of the African rifts. If the rift width is indeed related to

i	 crustal (or lithosphere) thickness, then the crust of Mars in the vicinity of the

Valles Marineris should be some 50% thicker than that of Africa. The Tharsis

Ridge was described as a region of thicker than average crust by Phillips et a7.

(1973) in a broad-scale Bouguer analysis of Mariner 9 tracking data. Their model

assumed a mean crustal thickness of 50 km but was relatively insensitive to the

assumed density contrast between crust and mantle. In a later paper Phillips and

Saunders (1975) found that the Tharsis uplift was only partly compensated at

i
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shallow depth (< 150 km), assuming a uniform crustal density. Their Figure 2, a

typical case, shows little isostatic deviation for the central Valles Marineris.

This may have important consequences for the temporal relations between the

formation of the canyonlands and the Tharsis Uplift. Most crustal modeling has

concentrated on the Tharsis region, but an isopach map derived in conjunction

with a possible detection of a single seismic event by the Viking II larder (into

which a large number of assumption have been fed) shows a crustal thickness of

50-60 km in the vicinity of the Valles Marineris (Bills and Ferrari, 1977, as

referenced in Anderson et al., 1977). Considering the uncertainty in both this

_ dde	 i	 u __	 _.. _______ _I	 •_. _... .__	 w.	 ..	 ^. •.
aecenirrnu1n on an

_ 	 it
d rn tine measureq-widths of the martian canyons, the agreement is

intriguing. The conclusion of Wood and Head (1.977) that wider rifts on Mars may

reflect greater crustal thickness on that planet is supported. The measurements

presented here may provide improved constraints on the thermal evolution of Mars

if the time of formation of the canyonlands can be accurately determined.

J

i

I

A possible applicatio„ of this conuron effect can be seen for the Earth. The

evolution of the Kenya Rift proceeded in rather discrete episodes of uplifting

with accompanying volcanism and fracturinn (Baker and Wohlenberg, 1971). A broad,

asymmetrical trough was formed first about 15 million years ago. Later, narrow

graben developed within the main trough. If the widths of graben are related to

crustal thickness (as suggested by experience on two planets) then crustal

thinning must have occurred in Kenya during the development of the rift. This is

to be expected if hot, low density mantle material is being wedged into the

lithosphere to the base of the crust. Gravity profiles (Baker and Wohlenberg,

1971; Girdler et al., 1969) and the presence of central volcanism during the last

stages of rifting support this idea. It may therefore be possible to map the

thinning of the crust (or lithosphere) in the evolutionary developmen,,t of graben

in Africa.
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Important clues about the comparative tectonic history of Earth and Mars result

from the comparison of structural trends in the martian and African rift systems

(Figure 5). The complex nature of the East African rift systems reflects basement

control (King, 1970; Beloussov, 1969). African tectonic history has been complex,

resulting in a heterogeneous mosaic of blacks, folds and belts (Clifford, 1970)

stretching back into Archaen times. These ancient basement structures have

influenced the more recent faulting, leading to the c(Anplex, variable-trend

"II pattern observed. This is true elsewhere on the Earth (e.g., Illies, 1968).
ai

Conversely, the simple, trend-preserving pattern observed in the Valles Marineris

'` suggests a relatively homogeneous crust and lithosphere. By implication the
Wit'

tectonic history of the martian lithosphere has been relatively simple. That is,

there are few basement structures to influence the faulting in the Valles Marineris

because the history of that basement has been relatively inactive. This may

explain the simple structural .,,fins seen in the canyonlands with their apparent

radial association with two major crustal uplifts (Frey, 1977c). That repeated

downfaulting along the existing canyon walls is observed (Blasius at al., 1977)

is also consistent with the idea of relatively simple basement structures.

This view is consistent with the absence of plate tectonic structures of a

collisional variety (fold belts, andesitic volcanoes) on Mars (see Wood and Head,

1977; Frey, 1977c), and the convincing evidence for lithospheric immobility (Carr,

1974) which has produced the enormous volcanic piles of the Tharsis Montes and

Olympus Mons. The Valles Marineris represent the first major fracturing of^and

graben formation in,the martian lithosphere, which until this period of tectonic

activity was relatively simrler if a good deal thicker than that of the Earth.

Because the peak of the thermal pulse has passed (Toksoz and Hsui, 1977; Johnston

and Toksoz, 1977) further rift valley development is unlike ly. The evolution of

this planet ended with incipient plate tectonic activity (Frey and Lowman, 1978).

1

%lk

f



CONCLUSIONS

The resistant portions of the canyon walls of the martian rift complex can

be used to infer an earlier, less eroded reconstruction of the troughs. The indi-

vidual canyons indicated by this reconstruction can be measured and compared with

individual rifts of East Africa. In units of planetary radius, martian canyons

show a distribution of lengths nearly identical to those in Africa but which are

significantly wider than terrestrial rifts. The first observation suggests a

common mechanism of rifting which scales with planetary radius, but of itself

says nothing about the nature of that mechanism. Processes similar to those

producing rifts on the Earth (extension resulting from crustal u p lift due to low

density mantle material in-jetted into the lithosphere) seem likely for Mars, but

the relation of the martian fractures to crustal swells is not clear.

The greater width of the martian canyons is consistent with the long-held

view that rift width is related to crustal (or lithospheric) thickness. The

martian crust may have been 50% thicker (at the time of formation of the canyons)

than the present African crust. The simple trends and long individual scarp

.engths seen in the martian rift system indicate a simple, relatively inactive

tectonic history prior to the f racturing that formed the Valles Marineris. By

contrast, the lithosphere of the Earth is a complex layer whose history and present

basement structures produce complicated fault patterns in the African rifts. The

results shown here are consistent with an incipient plate tectonics evolutionary

development for Mars, and agree with previous determinations that Mars has never

experienced large scale lithospheric mobility of the plate tectonics variety.
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