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THEORETICAL INVESTIGATION OF MAINTAINING THE BOUNDARY LAYER
; OF REVOLUTION LAMINAR USING SUCTION SLITS IN INCOMPRESSIBLE FLOW

f Peter Thiede#®

| The transition of the laminar{boundary layer into the turbulent
,state, which results in an 1ncreaSLd drag, can he avoided by sucklng
off the boundary layer particles néar the wall. The technlcally in-
nterestlng case of sucking the partlcles using individual slits is in-
vestigated for bodies of revolutlon in 1ncompr9831b1e flow.

; The boundary layer calculatlon is done using the integral con-
‘dltlons for momentum and energy. In order to determine the laminar-
i turbulent transition point, a new Semi-empirical criterion is intro-
s.duced. The changed boundary layeriquantltles behind a suction slit
vare approximjtely determined using, the remaining profile after the
suction process. In order to evaluate "the slit suction, we carry out
'a drag calculation with con51derat10ntxfthe suction power

l The calculation method uses a{ALGOL program. The reliability of
~the method is confirmed by comparison calculations.

| The results of the variational calculations show: that there is
an optimum suctien height, where the slot separations are maximum.
 Combined with favorable shaping of . the body, it is possible to keep
fthe boundary layer over bodies of revolutlon laminar at high Heynolds
"numbers using relatively few suctlon 8lits and small amounts of suc-—
fion flow.
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coefficients

coefficients

amplification ratio

slot length

exponent

dissipation coefficient
friction coefficient
pressure coefficient
suction amount coefficient
drag coefficlent

equivalent suction drag coef-
ficient

maximum thickness
area

universal functions
shape parameter
length
Mangler—constant
Hartree parameter

Hartree parameter of plane
replacement flow

boundary layer variables
number of suction points
suction power

surface area

static pressure
stagnation pressure
suction yield

suctlon amount

body radius

Reynolds number

slot width

time
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induced velocity components
induced tangential velocity

velocity components

average veloclty in suction slot
volume

drag

equivalent suction drag
cylinder coordinates
cartesian coordinates
coordinate along body contour
suction height

thickness parameter

boundary layer vafiables

buildup variable

cone angle, wWedge angle

wedge angle of plane replace-
ment Tlow

boundary layer thickness
displacement thickness
momentum loss thickness

energy loss thiclkness

suction loss thickness

suction displacement thickness
suction momentum loss thickness
suction energy loss thickness
boundary layer variable

relative wall separation,
radius coordinate /T

relative suction height
Tail point angle

momentum loss area
Pohlhausen-shape parameter
dynamic viscosity
kinematic wviscosity

length coordinate

density f

nose radius
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‘2. Introduction . /9

Bodies of revolution are prlmarlly used in aerodynamics and hydro-
dynamlcs in order to support useful loads (for example;, aircraft bodies,
underwater vehicles). Therefore, optlmum bodles of revolution from the
1flow p01nt of view are those Whose flow re81stance with respect to the
-useful volume is a minimum. Minimum specific drag is achieved by the
1following: '

' ~ by means of a large volume related to the surface in the flow,

f - by a small drag coefficient{referred to the surface area.
'Whereas the volume-to-surface areaiis increaséd with increasing thick-
ness ratio, the drag-coefficient- referredg$01$he surface can be reduced
by keeping the boundary layer 1am1nar An the flow.

; In contrast to conventicnal s?apes with a long cylindrical central
;part and ‘a small thickness ratio, gertel'[l to 31 suggested spindle-
%shapes for aircraft bodies, which are characterized by a large thick-
‘ness ratio and a pointed nose partr where the 1aminar boundary layer 1is
stabilized. At high Reynolds numbers (Re > 10 ) such as occur 1in
,aviation and underwater technologyj the lamlnar effect which can be
1reached by shaping alone is not 1mportant Already by sucking off
y8small amounts of flow, the 1am1narlboundary layer can be additionally
§stabilized, so that the boundary léyer transition .into the turbulent
{state is delayed, and the drag is reduced with consideration(jof_the:
isuction power. The amounts sucked]off required to influence the boun-
idary layer are smallest for a continuous distribution over the surface.
‘This optimum case is the simplest éo analyze theoretically, but cannot
fbe realized in practice fpecause |of éhe technical effort for suction.

; In technical applications, oné can only consider sucking off the
:flow through slits arranged perpen&icuiar to the flow direction, or
Eusing gaps or perforated strips. The effectiveness of such suction slits
:and slots was demonstrated by,Pfen?ipger [47 to [6] and Lachmann [7]
;for airfoils. Based ch the] large ?umber of suction points, the men-~ /10
tioned suction configurations are @ot completly satisfactory for tech-
:nical applications.

in the case of spindle-shaped|bodies of revolution, it seems [pFo-
Lmising to expand the laminar flow €ange even at high Reynolds numbers,

;

using a relatively low number of suction points, so that the drag re-
'ductions considering the suction power will be worthwhile. v

o= - D T T v i N
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3. Problem Formulation and Assumptions
- : 1

r
In the present paper, we will,theoretically investigate the tech-

nically interesting case of maintaining a boundary layer laminar using
.suction slits on bodies of revolution. In particular, as a function
of the body shape and the incidentiReynolds number, we will determine
the following:

- optimum position of suctiongslits for minimum number of slits,
— the flow drag with consideration of suction power.

The investigétions are restriéted to the following:

bodies of revolution with fiow in the axial direction,
incompressible flow '

'
i

— flow without any disturbances,

hydravlicaliy-smooth surface
The calculation method to be designed includes the following fac-
tors: S

E - calculation of the laminar and turbulent boundary layer over
‘bodies of revolution.with consideration of influencing the laminar
iboundary layer. {
- - determination of 1aminar—tufbulent boundary layer transition

for bodies of revolution. :

~ influencing of laminar boundary layer using suction slits. /11

As will be shown later on, we can neglect the following:

- pressure losses by suction élits, throttling points and lines
when estimdting the suction power,

- the sink effect of the suction slits.

The computer program to be established will allow the following
systematic variations: ) .

— variations in body shape E

- variations in suction condiﬁions

- variations in incident Reynélds number.

In addition, the program is to include the case without suction
and the calculation of flat contouﬂs.

Based on available measuremené results and theoretical.solutions,
we will demonstrate the reliability of the calculatlion method. In ad-
dition, we will carry out several éharacteristic variational calcula-

t
tions. }
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‘4.  Contour and Pressure Distribution of Bodies of Revolution
4.1 Description of Body Contour 1

+

One can only vary the body shape in’a systematic way if the body
;outline can be described mathematiéally.

! A body of revolution consists

DR

of a nose part, a central part, and
Ea tail part, as shown in Figure 1.' In most cases the central part is
cylindrical. In the case of the spindle shapes described in [2] and.
j[3], the 1eng@§§of the central par% and the nose radius are zero.

The mathematical description of the body contours is the simplest /12
‘if separate trail solutions are assumed for the nose, central, and tail
parts. In this case, the thiéknes%’and’lén@th’f&tiés do not occur in |
Ethe contour funetions, but only de%ermine their coordinate system. For
Ithe other dimensions shown in Figure 1, shaped parameters are introduced
:Which are independent of the thickﬁess and length ratios.

' If the coordinates for the nosé, central, and tail- contours are

:specified as shown -in Figure 1, thén the following relationships exisf
ibetqggmghg body of revolution outlined r(x) and the contour functions -

(850 1, (80, 1, (8, |

tM oMY i !

}

: Nose Centraﬂ Part Tail

: I R R E WO

: B =B £ = 8 3 H

| B IB; M M ; E H lH /! !E

’ ?

f. RN o/ A L
: e = ~d7ar o~ — 2 T =~ a2

( e e R - - - -

' The requirements for the contour functions

- consideration of the most iﬁportant bedy shape parameters
, - and large shape selection !
_fior the-most part satisfy the polynomial trial solutions of Koschmieder
.and Walz [8]. In addition, if there is no central part, there can be
5a tp@ns@tion between the nose part[and the tall part without any jump
tin curvature. ‘

For body shapes with inflection points, the basis functions of

'0ehler [9] are especially suitable. By superimposing these basis func-
1tions, a large selection of shapes results.

i0



H 2. Remarks Regardlng the Pressure‘Dlstrlbutlon

In the case of a body with boﬁndary layer suction, the pressure
:distrlbutlon caused.by the body shape is superimpesed with a sink ac-
"tion of the suctlion slits.

{ Except for the immediate viciﬁity of the tail tip, it is possible /13
i .

to determine the gessure distribution of a body eof revolution caused by
‘the shape L ‘

; o = 1) T (4.2)

jusing potential theory.
J

! In this investigation, we will not discuss the calculation of the

ipotentié.l theory pressure distribution caused by the shape. Instead,

| we will indicate the calculation procedure of Oehler,[9]), which is es-

.pecially suifed for thick spindle shapes with high underpressure peaks.
The sink action of rlng—shapeé suction slots will be discussed 1in

Chapter 7.14.

!

5. Boundary Layer Calculation and|{Drag Layer Calculation of Bodies

‘of Revolution

e v et ot o e e i,
|
[P PR

'5.1 Preliminary Remarks !
i In the case of calculation ofithe boundary layer over bodies of

revolutlon with ring-shaped suctlon slits, one must distinguish the
tfollow:mg ’
: - boundary layer development along the 1mpermeable wall,

- influencing the boundary 1ayer at the suction slits.
: In Chapter 7 we will discuss 1nfluenc1ng the laminar boundary
1ayer u31ng suction slits.
% Schlichting [10] gave a summary about boundary layer theory. The
Prandtl boundary layer equation is the point of departure for the -boun-—
dary layer calculation. One must distinguish between the following:
f . = the exact solutions which sétlsfy the boundary layer equation
at any point, and
! - the approximate solutions which on the average satisfy the boun-
dary layer eguation over the boundary layer thickness.

It is only possible to exactly calculate the boundary layer equa— /lh

tien- feor laminar boundary .layers... _Inaxhlsk.ase,kthere are .substfantial

11


http:caused.by

difficulties for arbltrary body shépes and pressure-distributions. The

i

.approximation theory can be used successfully in most practical problems,
‘as Walz [11] showed, especially.
In the case of rotationally symmetrlc flow, the calculation of

athe boundary layer is more dlfflcult than for .plane flow. This is be-
;cause the pressure distribution ang the body shape appear in the boun-
dary layer eguation. The relationship between the plane boundary Zlayer
fand the rotationally symmetric bouédary layer was analyzed by Mangler
-[12].

j The similar solutions of the gartree [13] boundary layer equation
}deterﬁ@@@@by Hartree_ [13].are the basis for developing the approximate
'solutions. The most recent trial'§olutions for the laminar boundary
ivelocity profile of Walz, Ild], Magnler [15], Geropp [16], attempt to
%give the best possible'approximatién te the Hartree profile. ‘The trial
,solutlons for the turbulent velocity profile are empirical.

i The approfkimate |solution priéciple consists of satisfying the
rintegral and boundary conditions fér a velocity profile which is as-
lsumed to be known. These are deri%ed from the boundary layer equation.
lTp?_churacy of the approximate method increases with the number of 51—
..multaneously satisfied.boundary layer equations.

' A quadrature method can be used,to exactly calculate the laminar
nboundary layer for a.pressure drop, which is based on the integral conl
'dition for momentum and the wall adhesion.

1 As Walz [17]1 shewed later on, ;by using a fsingle parameuer method
(w1th a shape parameter of the ve1001ty profile}, it is possnble to
obtaln results which are more rellqble,‘ If instead of the wall condi~
*tion, one introduces the energy inﬁegral condition.
‘ In place of turbulent boundary layers, the accuracy which can be /15
achleved depends on the empirical law for wall EE€§E1stress and dissi-
pation. A corresponding comparison can be found in Fernhol=z [18].

} Just behind a suction point t@ere are laminar velocity points,
‘which differ substantially from the Hartree profilés. The authors
"Tglisch [19] and Schiichting, Bussmann [20] found similar selutions for
the suction profiles 6f the planeiplate, which were used o appfoxima-
‘tely calculate the suction bdundar¥ layers by Schlichting [21], Head

;[22], Eppler [23]. ete.

12



5.2 Integral Conditions for Momeétum and Energy

In this discussion, the rotationally—symmetric laminar and turbu-
flent boundary layers along the impérmeable wall are calculated on the
‘basis of the integral conditions for momentum and energy, with single
‘parameter velocity prefiles. The épproximate theory for plane flows
fis discussed in detail; in [11], and therefore we will only give the
‘most important relationships here.i

\ b Meloecify-profile of boundary layer

'
X
A
I

k

f
I—,-- Ea—

t
Using the boundary layer vari%bles

) - - — ~
\Displacement thickness i § v
, ¢ & = f (- g dy
. % 0 '
i 6‘ U
, J = I 2—- (]__ dyl
momentum loss thickness i T2 o) 8 UQ
' :
. o1
. ! . (5.1)
E loss thick 3 § :
g nergy loss thickness f o [ u []_(E_)z]dy
: ‘ LT3 ) us ug ‘
‘Shape parameter i2 d5 '
. i — /

the Prandtl boundary layer equatlon .is the following for stationary,

incompressible, and rotationally-symmetric flow
¥

; du du _ “dp_+ar

_ du ‘F
i TEpM o (5.2)
. i )

»
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rand the continuity equation is I

v 3(ur) . () _
ol S - (5.3)

]

j .
‘'with the boundary conditions ;

U

0 :
4 U

1

I
<

Il
o

Y
!
' b4

|
It

UJ‘(XI) lr:

|The] derived integral conditions fo# the momentum are

M,d\ __ e o amvame e s o e 4 vmen v ma = e e e o PO
i d
) . 2 S T dug g 1 dr i I
i g T O @) — oo 2 7 o %Y (5.4)
5and for fthe energy i
z ‘! - - —— s ——— RaT—— . — e e n ———— ——— a—
dd; '

; 3 T dugs 1 dr _
| 3%y et Hrae 270 5-2)
| e
i where
b S
, local friction coefficient . — __ ¥
! - CF 2
: ~ Sug

| ug (5.6)
jl C :Q.ini.i{.

dissipation coefficient i D 3 '

5 ! SQus J

—— o - ——— —

ﬁ It is assumed here. that 61/ri<<}l, that is, at the nose tip and /17
fin the immediate vicinity ‘of the rear tip, the boundary layer conditions
‘are violated.

By introducing the new variabieﬁ)_wg‘havq

Thickness parameter , S
' Ud‘ 2
zZ = &, Renc; Regd:
! 2 2 2 v (5.7)
! 6& .
H - M
' 32 Jb

+ ~ ! 8hape parameter

1

Then instead of 62 and §, the|integral conditions can be convertédu
as- follows:




Momentum theorem:

FANGETE AR SRR 5.0
Energy Theorem
d;ﬁ“'zg G%%_;_.r_ Hsz”%‘=0, (5-9)
with the abbreviation;-~uwwvva-‘“nﬂ S
CF =240 +H) H, o)
Fy = (1) o Rely, (5.10)
Fy = T-Hj, &
F4 = (2 <y " & H32) Rend‘z-

If a single parameter veélocity profile is used, the expressions
(5.6} can be written as follows:

oG
‘¢ n
Re sy | (5.11)
o = R
D Re d‘;!

where the quantities a and B only depend on Hg,, which can be seen /18
for a laminar boundary layer from the converslion

o = 22 [aw/ug)]
w

d an
dy 1 a(u/ud-)]z

B = d
=y J [ an 1

and for turbulent boundary layers, this is confirmed by measurements.

In this way, we obtain

2+n 4+ (n+1) le F

-ﬂ b
I
1l
J

T

N (5.12)

T
i

{(1+n) = F

S
|

15
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Since for a single parameter velocity profile, H can also be

12

represented as a function of H32, the abbreviations (5.12) can be

considered as universal functions {of H32 with the coefficients

laminar: n
N

0.268
N(H32)

turbulent: n

1

1 N

[
|

(5.13)

n

1
In order to solve the boundary 1a£er equations, (5.8) and (5.9), we

therefore also need the relationsﬁips for the velocity profile

- - I S —

— - (SR

o
R = f 0432) N

LY

i /19

5.3 Relationships for the-VéIOCity Profile

5.3.1 Laminar Boundary Layers !

1.

In the case of a laminar boundary layer without suction action, the
velocity prgf@}g§“§;e_approximated?by the similar Hartree sclutions of

. the type'UJ(xW ~ x'™ for the arb%trary external flow, and we set

m = m(x!). !
3
The Hartree profiles are defined in the range

l

H32 = 1.515 according to a = 0, m = ~-0.0904 (laminar sepa-
y ration) |
and :
H32 = 1.638, accordinggto m »~ o

For the profile relationships' required, we have the Walz [11]
approximationsi J

|
U e = 1,441 (H,. -1,51507°%0
32 1,637
‘ = 0,1573+ 1,691 (Hy, = 1,515) " u
. 5.1
Hy, = 4,030 - 4,183 (H32-1,515)0'3945 . (5.14)

which are shown in Figure 2 for the entire Hartree range. 1

16
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- point flow

The more accurate felationshiés can be determined from the single

| .
parameter formula of Geropp [16] for the laminar velocity range, as
shown in Figure 2.

-

With suection

When the laminar boundary layer 1% Influenced by suction, the simi-
lar solutions for the Pplane plate}with homogeneous .suction are used for
the wvelocity profiles, which différ substantially from the Hartree so-
lutions. In.order to have a goodiapproximation in the entire H32 range,
Epper [23] approximated the Hartree profiles with a pressure increase,
and the sunction,prafilasjofﬁﬂiglisbh L1991 .in the.case of a pressure
drop, by using the limiting case éf asymptotic suction profiles H =

H

32
5/3, as shown in Figure 2, i
R e U
‘2 3 )
;o = 2,512589 - 1, 686095 H]2+O,39154I H]2—0,031729 H]2 :
] < ;
{ [ forl 1,51509 < H32_ 1,57258
o 2 ,
o = 1,372391 - 4,226253 H32+2,221687 H32
i [ Tor 11,57258 < Hy, < 1,66667
z |
. 2
i g = 7,853976 - 10,260551 H32-+3,418898 H32 };
[ Torl 1,51509 < Hy, < 1,66667 L (5.15)

| H,,= 4,02922 - (583,60182 - 724,55916 Hy, ;

2 .
+227,18220 Ha,) VH32 - 1,51509
[For) 1,51509 < H,, < 1,57258

2 L
32-+25,715786 H32 )

< 1,66667 : )

H]2= 79,870845 - 89,582142 H
for | 1,57258 < H

32

The separation profile (g = Q) is specified by %HSZAI = 1319070
3244 ,

Using the approximations (5.15), very reliable results are achieved,
i
even for a pressure increase. If lone calculates the delay stagnation
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for which there is an exact solution of Howarth [24] available, the
parameter separation polnt to an accuracy of 0.2%, as shown in Flgure
3.

In the case of continuous suction with arbitrary suction inten-
sity, no completely-laminar velocity profile can be obtained as H32 =
5/3, behind a suction slot there are velocity profiles with H32 > 5/3
as well, which violates the Prandtl boundary layer assumption v/u << 1.
With the exception of the Hy, approximation, these relationships (5.15)
can also be used for H32.> 5(5; Tﬁg approximation /21

Hyp = 3,738 - V13,43 Hypo1,4418) (5.16)
T for Hy, > 1,6667 '

contains the rectangular profile with H32 = 2, le = 1 as the limiting
case.

5.3.2 Turbulent Boundary Layer

According to Fernholz [18], in' the case .of a turbulent boundary
layer, the following semi-empirical laws can be used with success for
the velocity profile over the Reynolds number range of interest:

Wall shear stress law according to Walz [111],

«= 0,0566 1_432 - 0,0842 (5.17)

Dissipation law of Rotta t25] and Truckenbrodt [26]

8 = 0,0056 |
N= 0,168 (5.18)
Shape parameter relatlonshlp of Fernholz [18]
H]j: 1+1,48 (2-H 2)+104 (2- H )6 7 E5:l9)

18



Separatlon ogeurs for H32

Atu

+
H

5.4 Stepwise Solution of IntegrallConditions

Using the relatienships given'in the previous chapter for the

‘velocity profile, the boundary iayer calculation is reduced.to the

!solution of  the eguation 'system (5%8) and (5.9), which applies both
for the laminar and turbulent boun?ary layver.

are Z(x') and H32(x‘).

and the two unknowns

Assuming that-in a small interval we have

-

B Axi ] T T K
‘ I
jand that the body contour and the Yelocity profile can be approxi- /22
'mated by a linear law . ... _l.... . .- ”,;hﬂwa}~
! = (o 1
, _ i1 ro_ ot '
i ) gt mr s &) '
! Ly i-1
}
' .20
;' : t Ud..i ) Udﬁi_.l r 7 ) E (5 )
1 Cus D) = usg R W)
' g i, i=1 ]
I e e el . e - —
'and if we introduce average values{for the variables Z(Xl) and H32(x )
jand for the universal function F (1),
i - T T T e e
. . = + .
; Zi, i-1 7(Zi z —I) s
- - 1
. .21
CHggr g = g (Hggy ¥ Hapi ) ’ (5.21)
i I3 = H v = 2
L Fog, i1 = Fo gy ) > = 12,34
] - - { - -
i
the momentum and energy theorems c%n be solved in closed form. The
‘'step formulas are the following in [dimensionless notation, in the ro-
itatlonally symmetrilc case P
: r. o/l 3
‘ : PRl Sy P
, - Zi _ ri_]/I n+1 Zi-] Axi’ 1 ri7|
e i A 7! — Bz I 2 5.22)
| | L%y
' P Hgp = Ay Hgpip *+ By —Z 7 J

the coefficients 'l

—m= - s mel === aw T amsem.am oaTo2 ST cweor ERT o = b le
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. r N UJi—l/UOD‘ 1 |
' Z Ud-i7UOO |
- -E r
| AL = Ui Ve |3
: SR B R -
e So e :
Z - B, = : Z Usi/Veq b - (5.23)
: Z T+F o vei-lfug o ] :
f | Ud-i;uoo i
i : I
! B F4 H e
% i H -1 + I‘E3 ] UJi—I/Uoo L
1 * Ud-i;uoo I

and the step along the contour is

]
: DX X0 X o2 non
| | ————z"":l/%-—u—”“(%-%)

2 (5.24)
o . —
i "? l‘ ri—T/] - I
. In the plane case, in (5.22) we havej?:ﬂ__.=15and in (5.20) and (5.2Lk),

A bty

'V is replaced by Ty ! )
: The stepwise determination of|the boundary layer parameters Z and
Isz at the end of the.interval (i){is done by an iteration from the
t values at the beginning of the interval (i-1). Details are given in
' Chapter 8.2.2. ‘
' ] The boundary layer calculation for a laminar boundary layer 1is
:started at the feollowing points:
{ - nose tip of body of revolution
: - suction siit
:and for a turbulent boundary layer!
— the laminar-turbuilent transition point

The end of the boundary layer|calculation occurs at the following -

{
» polnts for tThe laminar boundary layer ’

- one suction slit

———-the laminarp-turbulent.transition-peint . — -
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i

; -~ or the laminar separation p?int.

rand for turbulent boundary layer, %
- the end of the range of validity of the integral conditions in
the area near the tail tip of the body of revolution

-~ or the turbulent separationipoint.

|

oty gt

) i
'5.5 1Initial Calculation !
At the nose tip (x = 0), the step formulas (5.22) fail because the

‘thickness parameter is Zy/1 = 0.
| Therefore, in -the fTirst step ﬁxﬂl’dVI'the step formulas (5.22) at
.the nose tip are replaced by relationsﬁips which are derived from '

]

1

Ju—

coniecal flow: oo - — oo o Ao -
! | 32 T flaa T Mg Bei(Eeomsty | |
: 1 ) T '
: [ (5.25)
' ! Z F x! '
| o1 2
- I | 3 Im_-F T ) :
: ' E 1 J

i - I , . e
jand the cone angle and the Hartreeiparameter of the plane replacement
' flow ‘ . ;

_ R
: i ﬁE R i
s % Be ‘ " (5.26)
| Come =
E 2-B;

{

'are specified by the cone angle

H

o/
_ 2 LI 5.27)
B = 7 arci’c_m W]- C ]
; In the plane case, the relatiénships for the first step are:
{ . { h i
| Map T Hgp T Hy, @) & |
1 ) P .
S \ - (5.28)
[t ZI F2 X‘i
‘ | ]+mF] T
“where - - Ty
R = g arc tan )’]/I (5'291) .
_ . i i xfl ) .
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'TITH the assumption that Hartree velocity profiles occur at the nose /25
tip, the relationship H32(§E and E) can be approximated by -

. - 7
Hy, = 1,5720+0,1561 B -0,2470 ﬁé +0,2244 ﬁg - 0,0804 @"é
T Tfor 08 S
o= | (5.30)
- B ) , B
_H3g_:_ 13733 +0,2258 B +0,7663 fiE +5,3850 B

for -0,1988 < fs‘E < 0

The stagnation point flow

_rotationally symmetric @=1; ﬁE=O,$ ¢ Hy, =1,6113
'[ 1

plane (B = 1) Hyy = 1,6250

and the plane plate flow
are contained a&s special cases.

5.6 Determination of Friction Drag and Pressure Drag

Because there 1s no boundary layer separation along the tail part,
the external drag that is the sum of the friction drag and pressure
drag of a body of revolution can be determined from the momentum loss
in the wake. According to Young [27] and Pretsch [28], the drag coef-
ficlent of a body of revolutien is the following with respect to sur-
face area

Wy q.. O 2 80 (5.31)

=) = 24 I g U—Hm—)r¢ (5.32)
Ug U

By using the integral conditions for the momentum (5.4) on the wake
0% = 0), the momentum loss area ©_ at a large distance behind the body/26
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(1

= Coe .
(p = D, ) can be reduced approx1mate1y to the boundary layer variables
po the tail tip

1 e e i i ——— e e ¢ e o

' >tHyo

! "Sh, 5 | (5.
O = 6 y 2 .| 5.33)

UCO ‘

l In the iﬁmediate vicinity of the tail tip, however, the boundary
layer calculation fails because of lthe integral conditions (5.8) and
(5.9). This is because the condition 8/r << 1 is not satisfied. It

is found that the boundary layer cglculatien must be terminated (x = XE)
iin the case where 8,/r > 1/15. :
: In this investigation; "
f — laminar boundary layer suction
: - high Reynolds numbers

| ~ thick bodies }

ihowever, we have 1 - xo/1 <<°1 so that the friction drag component of
. E

‘this region ——— -
! 2

| AW 4n 0 A

- Do, = S8 = AT [ (2 e dp |

i Wa 9% o/ Yoo

t xEIl [P —

] —_— = T = R e e e . N —— —

‘can be ignored, compared with the . total drag coefficient c due to

i3]
.the small local wall friction and the small body radii in the vicinity
'of the tail tip. In addition, in the case of bodies with sharp tail
tips, the shape parameter in the téil tip region is almost constant

e ity

+ - -—

' x" _ = . :;E ﬁ:E-Wﬁ
| Mg () = Phigp T Mg ionSt for T <7 =
1 T B B I =
ghen according to (5.33), we have ;
! - 5+H
} ': @h = 0 Yde ) -—-—Z—EE- (5.34)
f ! E Vg T
h r
,and consequently,
| I s THge )
j 9, =9 (Ug) 7 (5.35 |

—m . o meim ol . m _em = e tm e - . R Y
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so that the external drag coefficiént is /27

5+Hygg
O , Ug 12
= “E (4E.
CWN 2 5 (Uoo ) Z , (5.36)

According to Scholz, [29], we have the following relationship for
the momentum loss area

S g 92 1 92/ '
i e A Seow (5.37)

8o that the drag coefficient can be expressed by the boundary layer
variable at the position XE/l

b o D 1 dée/l "I e 8
. = , TE IE (45 = v ) (< ) (5.38)
N o/1 E @ '
where
- 1
dp _ Z /! ntl
| (.l..J.é.‘.E_ Rel)n
Yoo
Hyp, = fHy, ) according to (5.19).

In the plane case, the boundary layer 1is calculated to the trail-
ing edge. The drag coefficient expressed by the trailing edge varia-

bles is then given by

W, S Ve Eigﬂz_h (5.39)
R
where o
e L 1
L <Y/ B -
I (Sah Rel)n
H12h = f(HSZh) according to (5.19)
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' The Wake behlnd a flow body 1§ fturbulent at high Reynolds numberﬁ

wven for laminar boundary layer suction to the end of the body, one must

?establish the latest boundary. layer transition for the drag calculation.
n

\ Body of revolution: . f%; < f%rl
| e
plane contour: iui— <

1 Comparison caleculations for tﬁe drag determination are given in
i
1Chapter 6.5.

i6. Determination of Instabllity Point and Transitien Point Over Bodies
of Revoluticn.

} !
6.1 Preliminary Remarks |

(
The laminar-turbulent transition point over a body in the fiow -

'

icould not be exactly calculated upéto.now, because the way in which
|turbu1ence is produced is not clarified.

{ In experiments, Schubauer and*Skramstad [30] showed that [poundary]
!

1ayer tran51t10n must be attrlbuted to an instability in the 1am1nar

'boundary -layer. : ‘ E
! If the disturbances in the laﬁinar boundary layer-cabsed by ineci-
'dent flow turbulence sound, vibration, or surface roughness are small ,
t

+
i
1
0
d
i
L

hen the transition process can be divided into three regions:
I. stable laminar boundary layer
All perturbations are smafl in amplitude, and affect the lami-

nar boundary layer and decay in time.
II. Unstable laminar boundary {layer.
At least a few partial oscillations of the perturbation motion

are built up. In the terqinal phase, secondary and high fre-,

. quency perturbations are superimposed, which forms-'a three-
dimensional vortex system.

- ILI. Laminar-turbulent transitlion range
Due %o an instability in the secondary flow, turbulent: spots’
are produced in the lamingr flow, which propagate during the
downstream motion until ‘the completely turbulent state is /29

‘ reached. :
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A The debermination of the instability point after which there is a

gbuildup of the disturbance moftion is discussed in stability:- theory.

iMathematically .the problem consistsS of solving the Orr-Sommerfeld per-

.furbation differential equatibn, which.was successfully done, first by

%Tollmein [31] and later on [By] Lin}[32] for the Blasius profile of the
| plane boundary layer. When there is a changing pressure gradient, the
1nstab111ty of the laminar boundary layer was calculated by Schlichting
and Ulrich [33] for the Pohlhausen|P6-profile. This was done by Pretsch
.[34] and Tetervin [35] for Hartreelprofiles.

; The stability of the laminar boundary layer wilth suction was in-

. vestigated by Bussmann-and Muenz--[36] for -the asymptetic suction.pro-

j file. It was calculated by Ulrlch1[37, 387 for the -similar suction

profiles given by Iglisch and by Séhllcntlng and Bussmann. As long as
the transition process is not comp;etely clarified, only empirical re-
lationships can be given for the léngth of the buildup length. ‘The
. transition region, however, is so short according to experience that

|
i
!
!

in the first approximation it can be ignored, and can be replaced by
the transition point which refers to the beginning of. transition.

|

E_,_ Since in the case of small perturbatlons, the transition point
i lies between the. instability p01ntiand the laminar separation point,
fthese two limiting pesitions are often used as the transition condi-
! tions. In the case of high Reynolds numbers, the distance in the
instability poinf and separation pbint ig very large.

More recent transition criter}a are based on stability theory.
Michael [39] gave an empirical transition criterion for plane [pboundary]
layers which later on. was analyzeditheoretloally by Smith and Gamberoni
[407 using the build-up_ diagrams of Pretsch [41]. The criterion of
Granville [42] also considers the anfluence of the pressure gradient

on the length of the builldup path.| In the case of plane flow, 1t is /30
Epossible to predict with some success the ‘transition point using these

fcriteria, but information for bodies of revolution is not reliable.

e

[P,

6.2 -Stability Criteria
Pretsch [43] showed that the results of the stability theory can
be transferred from the plane casq to the rotationally-symmetric case,

[P

as long as &/r << 1. E
! Figure 4 shows the calculate% instabilities



- for the Blasius profile of the 'pIane boundary layer of Tollmien
(319 and Lin [32], : '
- for the profiles of a boundéry layer with a pressure gradient of
¥ Schlichting, Ulrich'[33] for Pohlhausen-P6 profiles
# Pretsch [34] and Te tervin [35] for Hartree-profiles

in the form , i ’
L Re gy, = Fligy)

The various stability calculations agree well. The pressure drop
(H32 > 1.5726) has a stabilizing effect on the laminar boundary layer,
whereas a pressure lncrease (332 < 1.5726) has a deep stabilizing ef-
fect.

With suction there is an even greater stabilization of the laminar
boundary layer. _

The results of the stability calculations of

- Bussmann, Muenz [367] of the asymptotic suction profile

— Ulrich [37], for the Iglisch suction profiles,

- Ulrich [38], for Schlichting-Bussmann suction profiles,

are also shown in Figure 4.

One sees that the influence of a pressure gradient and suction on
the stability of the laminayr boundary layer can be approkimately re— /31
placed by a single criterion. The following are used for approximating
the stabllity criterion:

—~ in the case of a pressure lincrease, bthe results of Pretsch [34]
for Hartree-profiles,

- for a pressure drop, the results of Ulrich [37] for Iglisch
suction profiles with a limiting case of asymptotic suction profiles.

Approximately, one obtains the following for the position of the
instabllity point as a function of the shaped parameter

e 1,542
log Reg, = 4,556 - 76,87 (1,670 - H,,) (6.1)

in the range 71,5150 ‘ﬁ;“z‘?'“f,%is"gf.“?
Using the approximation (6.1), in the case of a pressure drop,
the influence of a pressure gradlent is very accurately represented

up to the rotationally-symmetric sﬁagnation point CH32 = 1.6113).

27



6.3 Transition Criteria for Plane{Flow

;6.3.1 Discussion of the Known Crit%ria

By evaluating the transition measurements which have become known,
.empirical transition criteria have}been found which are similar to the

|parameters of stability theory. It is assumed that turbulencfg is pro=f
‘duced by the fact that the perturbation amplitude reaches a certain

‘level. The.buildup of the perturbations - depends considerably on the

'pressure gradient of the flow. [
i Granville [42] assumes that for plane flow, the length of the

Ebuildup path characterized by ‘the Reynolds number difference

e T

-;A—Re;fz = R

ed‘ZU B 8623 ’.E

‘ "—1 .

$on1y depends on the average pressu%e gradient between the instability
ipoint and the pressure point, withjthe assumptions made. It 1is given /32
by the following expressed in terms of the average value of the Pohl-
ihausen shape-parameters, !

[T VU

a r f

| | y ,

l ) } 12 (X{J) = —,—‘]—"‘;— 'K:(X’\) dx’ ! - (6. 2)
I T ‘ .

i

§

}
i
i
i
{

X

where ' é S

[ 0 ﬁvha)]
3(y/ d)°

e i s .
From the corresponding evaluated transition measurements, the em-

i

;

;pirical law ;
1 i
|
i
i
1
\

‘,‘ Red‘zu - REJZJ = f(&). (6.3)

has been derived.

\ Smith and Gamberoni [40] assume. that the self-excitation of the -
iTollmien-Schlichting—W‘el’len waves ﬁeﬁﬁesentﬁ the dominant process be-
‘tween the instability point and the transition pcint, even though the
assumption of small perturbations is no longer satisfied in the vici-

'nity of the transition pbint. They introduce an apparent amplification

f
ratio, at the beginning of transition, ffo which the amplitudes of the
Tollmien-Schlichting waves are to he subjected with the prevailing
‘eritical fregquency. Using the built-up diagrams established by Pretsch

- == _ = Sm ot W tr L mevmioiis Taa o x wano o T = ==
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[41] for Hartree proflles in [40] {numerous transition measurements
“have been evaluated. It has been {ound that the apparent.amplifica—
'tion ratio |

!
a=eb =e9  =8103! (6.4)

TR —

can be used as the transition pavameter, where

< 0 damping
the damping buildup is Si

T T o T F”é‘”ﬂ“bufldup

This finding was also confirmed by Ingen [447.

—_— =
fa— ‘.--‘-.-H_..I

With this convention, 1t was %ossible to subseqguently correct /33
the[purely] empirical transition criterion of Michel [39] in [40]
e e e A e e —

Recr2U = F(Rexu)-f

. f
The criterion was approximated as %ollows in [40]

DRV 7S —— ' ’
{Re% = 1,174 Re, f (6.5)

1]
fop 3-10° < Re < 2-107
Xy

a4

ey
——

— e e Wt b - g b 4 b e m e

The bodies of revolution, the |transition criteria (6.3) and (6.5)

——— e

yare not suitable, because the buildup ratio is expressed Ey boundary
,layer.varlables which are different in the plane and rotationally-sym-—
‘metric cases. The.suggestion of Granville [42] to use the criterion
'(6.3) for plane boundary layers injan unchanged form for rotationally-
symmetrlc boundary layers must of necessity lead to inaccurate results.
4However, Smith and Gamberonl [40] point out that in the case of bodies
‘of revolution, the crlterlon (6.5) Imust be applied to the plane replace—
ment boundary layer. However, this does not consider the fact that the.
'boundary layer transformatlon can only be performed along the buildup
path.

Fl

= - B O I I~ e B T T e S P e —

29



6.3.2 Suggestlon for a new Crlteraon

|

Because of the deficiencies of the transition conditions mentioned

R—

above, we suggested a semi-empirical criterion which can be transferred

—

- from the plane case to the rotationally-symmetric case. Since the tran-

sition points will be less reliablle, the more single processes of the
transition process are considerned 'and the instability point can be de-

termined very accurately, we w1lllcons;der the buildup path separately.

Therefore, in the ﬁolléwin@h instegd of considering the transition éri-

terion, we will give for the lengt% of the buildup path.

Using the fransition condition (6.4%) we can derive a criterion for
the length of the-buildup -path In -the case of simitar velocity profiles
(@ or H32 = const.) between the inftability and the transition point /34
using the buildup curves of ‘Pretsch [41]. In this, the influence of
the pressure gradient and the suction [is- included.

Aceording to [41], Figure 5 s%ows the following buildup curves

|

o (= 0: stablllty condition according to [34]; see
J 8,dt . Figure 4
I'= 9: transition condition according to [40] and

ST N -- [MH]’{“

For a constant-shaped paramet?r, the distance beftween both curves
expressed by the boundary layer variables given in Chapter 5, .where

S _
 Regyy = Regy, = flHzy) (6.6)

)

H

~ ~ !

where ‘H32 = f(8} = const. according to (5.30)
§ .

e T

: I
is a measure for the length of theibuildup path.
The evaluation of thé transition measurement for wing profiles

"with low turbulence initial flow [30 46-547 done by Moeller [45] shows

b em e om

that the relationship (6. 6)p5fa1n Jrellable eriterion for the length.
of The buildup path for constant shape parameter than the one discussed
in 6.3.1, if we introduce the following average value for the shape

parameter for instability and fransition

i
1
1
1

Re - Re = {(H .
92 $24 ( 32) (67)

Co= 1 %! x' r
B H32 X - X, T H32 Grad ﬁd) ’
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This is shown in Figure 6. The criterion has been confirmed by measure-

]
ments if one ignores certain scatter, which is due to the differences
in test conditicons of the individual authors.
With special consideration of the transition measurements [30],

criterion (6.7) is approximated by the following expgessions:
log (Ref,z_l{_:_fedqzll_:_]_'f%% -24,20 (1,5150 - 32)-

for 1,5150 < ﬁst 1,5600

2,715
32

~for 11,5600 < ﬁszs:_ 1,6250

(log (Res, - Req, ) = 3,312-967,5 (1,6250 - .

This is shown in Figure 6, so that the transition point of a plane
laminar boundary layer can be determined directly.

The criterion of Granville [42] shown for comparison in Figure
6 only gives approximately the same values in the central shape para-
meter range.

6.4 Transfer of the Transition Criterion To Bodies of Revolution

Smith and Gamberoni [40] determined the the transition conditon
(6.4) also applies for rotationally-symmetric boundary layers. This
means that criterion (6.7) or its approximation (6.8) can be trans-
ferred to the plane replacement boundary layer of a body of revolu-
tion using the Mangler transformation [12]:

/35

( (6.8)

Red~2u - Red--2:3 = f(_[:]- . (6-9)

32)
Using the assumption

the coordinates of the plane replaéement flow are the following for
a body of revolution with the contour r(x'), '

i

r

0
)

IT_ 7
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’E}(xﬂ = ug (X) (6.10)

T2
3 J rix7) dx (6.11)



where the constant L is a charactepristic length. However, if we intro-

duce L = L(x") in such a way that everywhere - /36
X = (6.12)

then we obtain

L'} = _JI r(x)ck’ (6.13)

The boundary layer transformation starts at The instability points, so
that

Regé = Redéj

and because of (6.11)

Consequently, the Mangler constant is calculated from the following
using a dimensionless notation

%1 2 '
L i r(x’) d(xs
T /T = T T (6.14)
.- ) x3 /1 -
in the range —11— = <_: X
Using the assumption (6_“_)<"F d the relationships

T o r/|
& =tr 9
T - g

3 LU/ 3
according to (6.11), the transformed thickness parameters are

T

~ By ¢ 1
Red-?_—-?]— Recrz, Red-z—-l]a-;—r Rei (6.15)

and the transformed shape parameters are

Hyp = Hyp

xfl ; , (6.16)
W, = H, = oo Hyp (CPECH)
32 82 X /T=x]/l J 32T T

r
%3/t
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The expressions (L/I)° according to (6.14) and H,, according to /37
(6.16) are formally the same, and are calculated in steps according to
the boundary layer parameters (5.7). This means we have the following
step formulas in dimensionless .: form for the Mangler constant

Axri -1

r r
(L)z_ L2 | L2 (i T
L R ST | T 2 | (.17
g-——TL*—
Y=
and the average shape parameter is
| O 7i ]
—— H + H
= O _ 1 = 3257 32;
My = Fyy = Ry =1 i (6.18)
Z__T__Lw_

¥ =1

The step along the contour Axi,i-lfi is specified by (5.24). The
instability peoint is the inifial pcint.

The transition measurements for two bodies of revolution with a
low turbulence ineident flow [54 and 557] have been evaluated using the
above method, and this is shown in Figure 6. Because of the fact that
the measured points of the bodies of revolution do not have a greater
scatter than those of the profiles, we therefore have found an experi-
mental verification of the transfer rule for the criterion (6.7) of two,
bodies of revolution.

6.5 Comparison Calculations

The comparison calculations were performed using the computer
program discussed in Chapter 8. )

The criterion for the instability point and the transitien point
can most easily be tested using a ﬁlate in longitudinal flow, as shown
in Figure 7. The stability criterion (6.1) contains the exact solutions
for the Blasius profile of Tollmien [31] and Lin [32] in a satisfactory /38
way. The measurements of Schubauer:EﬁalSkramstad [30] are well-repre-
sented by the transition criteria <6.8). The calculation drag coeffi-
cients for natural transition and completely turbulent states agree
well with the laws given in [10].

The transition measurements and the drag measurements of Boltz,
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*Kenyon and Allen [54, 551 are good test examples for the rotationally-
:symmetrlc case. As PFigure 8 shows) there is good agreement between the
lcaiculated results and the measureﬁents. The theory predicts somewhat

;longer buildup laminar paths at high Reynolds numbers, and accordingly

rat lower drag coefficients. A calEulation using the calculated transi-
:tion point positions showed that there was no difference to be -detet -
yTed between the calculated and meagured drag coefficients.

1 | |

‘ |

T Influencing the.Laminar,BoundaFyﬁAﬁea by .means of Suction Slits

|

7.1 Preliminary Remarks %

Suction of the boundary 1ayer particles near the wall causes the
;follow1ng:
- reduction of the boundary l?yer thickness
~ the velocity profile becomes fuller, and
- the potential flow is influenced by a sink effect.

" "BY changing the boundary 1ayé¥ variables, a stabilization of the

& Mt o e s o e
'

laminar boundary layer is brought about, as can be seen from the sta-

' bility diagram in Figure 4. ;

i ]
: Even though a continuous distribution of suction over the sur-

@facelwpuh@bgﬁ optimum from a suction power point of view, only a local
suction through slits arranged perﬁendicularly to the flow direction 1is

;possible in technical applications: Also gaps or perforated. strips

‘ could be- used, as shown in Figure 9. Since the influence on the lami- /39
;nar boundary layer is very similar%in all three cases, we will only dis-
;cuss suction slits in the following.

1
In the boundary layer calculation, the suctlon slits represent

"discontinuity points, because the assumption of the Prandtl boundary
t

layer equation at the Wallz;/bafi L/Vﬁq;is violated because of the con-
' siderably increased suction velocities. Influencing of the boundary
layer at the suction points must therefore be treated separately. Two
approaches are possible:

a) the suctlon points are considered as strips with a finite
'width, with an intensive area of suction.
_For this case, exact solutlons have been glven by Rhelnboldt

- & m—mem = s = = —a a=
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;[56], Smith and Clutter [57] and Kéause [58], as well as the approxi-
fmate solutions of Bethel [59] and &uest [60] for specific applications.
T b) the suction points are considered as slits with a negligible
:Width. In this case, Walz [61] ané Wuest [62] suggest [ to] approximate-
ily determine the boundary layer pa%ameters behind the suction point
ifrom the started residual profilesfamputation principle).

The solutions. of a con$inuous§suction over a path-are complicated.
:They are also restricted to a smali suction veloecity range whieh is not
(of practical interest: The amputa%ion principle can be used for an ar-
‘bitrary suction velocity, body shape, and pressure distribution.
T In the following,wehwi}l,giveitheugemenalJapproximate relat;onships
for influencing the boundary layer iby means of suction slits according,
:to the amputation principle. Thesé are valid both for the laminar and
:the turbulent boundary ilayers. Afﬁer this, we will apply this princi-
ple to the laminar boundary layer and will investigate the effects of
;Suction slits on the laminar boundary layer.
! We will show that the sink effect of the suction slits is in gene-—
?ral negligible because of the low %ucked-away amount, when the boundary
i;gggp_;s influenced. ! ‘ - - /40

e P
t

7.2 Approximate Solution According to Amputation Principle
'

1

ug

.

.Boundary Layer Influencing by
Means of Suction S1it

The amputation principle of Walz [61] is based on the following
d1dea: we will assume that a velocit& profile I exists ahead of the suc-
‘tion slit, which is divided up into the following: :

=- —_—= = = = e~ e s - =e— - B I k=P - - = - - - -
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- a reglon near the wall of helght yQ, whlch is sucked into the
s1it;
' - an external region (residuai‘profile) which goes along the stag-
snation line, which goes on through!the slit. It is deformed without
, losses in such a way that the incident velocity u(yQ) decreases at the
‘rear slit edge to-u = 0 (wall cond%tlon)_ It forms the initial profile
IT for the boundary layer developm?nt behind ?he slit.

'
1

"7.2.1 Changed Boundary Layer Variables Behind the Suction S1it

: The changed boundary layer variables II behind the sliit can be de-
termined from the residual proflle\w1th the .assumption that the mass,

:momentum and energy of the 1n1t1a?ed residual profile [do not change .||
iduring the motion over the slit. |

If we select a single parameter veloc1ty profile /41

(50, = f(n. Hyp)

g
with the profiles accordlng to (5. i?

1
1
t — [ -
!
|
t

. =f‘ [1- (U—O:)I} dn

| 1
| ——I=[(j—)I [1-(5=),] en
| 0

1

I
; & u
| ’%%1“7) (1] dn

v vg I

l. - - - i .-
rand the initiation point is at the,relative height'fn = v, /d}, then
the boundary layer variables of the residual profile are
‘ I S
: g N
i I .III _ E__ .
; %_?r__ [ [] (UJ %] dq
‘ | I n
| i ——52 1 5 (7.1)

B il 2 At L O
. i I
a , ,

3

s/ AU (RS 1) B g

i 1 JI I (UJ)I[ (ud.)l] r( i
Mo )
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-In thls way we obftalin the changed %ariables for the boundary layer

. calculation behind the suetlon sllt

2 A
| EE_ 6én/d}

i j
1 92 /9, (7.2)

H! dbng‘ﬁ .
2 T ,
21/ "1

~

In order to again owvder the veloci%y profile II into the family of

' the single-parameter velocity profiles, instead of the shape varameter

Hi,pq we will introduce the averaged value . . Jh2
H (H +HI, )
3211‘ 32n 32]1 'u N (7-3)
SRR Sy S
where ¥
I
' In /%1
Hr, =f(H., ) = f(—=——) M
32y 12 - (7.4)
_ r gt -
The functional relationship in (7.4} is unique for single-parameter
veloecit rofiles. The shape parameters Ht, and HY deviate only"
7P pe PR 3211 3211 4

slightly from one another.
In the case of single parameter veloclity profiles ahead of the

_suction slit, the boundary layer variables behind the slit only depend

- R

. to the suction height nQ, referred,
- lution: b = 2mr).

i
" onthe shape parameter H321 and thelrelative suction height Ny

7.2.2 Suetion Variables

By using the following definition of the relative suction thick-
ness

7 5 TG(E__) . _ S1q
; 77900 Sl S SO (7.5)

we can calculate the amount of air] sucked away by a slit corresponding .

to the slit length b (body of revo-

i

!

TR T Lt ttamees L Z_ze 4 mmmwaer——o- R = = b
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or the local suction coeffiecient amount

¢ = _ Y 5 (7.6)
Q U b | Uy

In addition, we define the nondimensional suction amount coefficient

Re
o= R VA (7.7)
Q Q Re52 JéI d}
where o _ /43
Re

1 { Rey
Reé-21 ZI7I UJ;Uoo

which only depends on H32I and nQ'for a single parameter velocity pro-
file ahead of the slit.

According to Gregory [63], the disturbance of the boundary layer
due to the slits is minimal if the slit s is equal to the suction height
Ng- Accordingly, the optimum slit width is

sy . &
T = —Igb rlQ _r (7'8)
The! nondimensional slit width
“}' s Re| “;6. _ ng
T Reg, ug, 6‘21/6‘1' (7.9)

only depends on H32 and n. fcr single parameter velocity profiles.

Q

Using the continuity law, we obtain the average suction velocity
in the slit as follows:

Yoo 4 - ug

Vo s Uos (7.10)
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7.3 The Amputation Principle to the Laminar Boundary Layer

7.3.1 Suction Relationships

The relationships in Chapfter 7.2 apply for any boundary layer
state. Here, we will derive relationships for influencing the lami-
nar boundary layer by suction slits. We will assume the laminar velo- /4l
city profile ahead of the suction slit can be approximated by the single

-parameter model of Geropp [16] _ {

U

Gd‘_ = 1—(I—rl)c (]+c:]rl+c12rlz+c:3rl3)' (7.11)

with the coefficients

a; = c-¢
- N c {c+l)

02 5 cg + 5 b (7.12)
_ N c (ct1) ¢ (et]) (ct+2)

9 T et e —m 7 5

and the following analytic expressions for

£ -——-—-—aq

5,22550 + \1,30839 A +10,85171

[a(u/us)] = -0,89855 + |1,60901 A+ 13,6795 (7.13)
r-l.-.ﬂ

) c
i
'

The Pohlhausen-shape parameter which occurs in these relationships is

related to the shape pafémeter

A= [az(u/zud-)} ‘
arL r{-U

©

by means of the following approximations

. . R 14
A= 38,745 B - 7,1178 B° + 6,3726 B° (7.34)
and
-A.—— ) T - T Tt T T _42“” - - ._E o TN
B = -2788,62+5439,97 W, -3539,62 Ho, +768,15 H,
for 1,5237 € H.. < 1,5729
32 }
. . 5 3 (7.15)
B = -35461,01+ 67123,15 H_) - 42356,63 H, + 8910,45 H,,

for 1,5729 < H,, < 1,6239
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The Geropp model is valid in the following range: /45

-0.1988 < 8 < 1.0 iplanes
Separation profile(i ' stagnation{
1.5237 <-H32 < 1.6239 Z- ‘point profile.i

The boundarv laver thickness used as the reference variable for
the suction height is defined in many ways¥: ) )

- in the boundary layer theory of Prandtl J "Y@ng = 099)

- in the approximate model of Geropp 6€ = yﬁvhg = ] m

One must distinguish between the following relative suctlon height
- o d

of practical interest, and the theoretical quantity

which occurs in the suction relationships.

The relationship ] G
d _ ng _
Fiiaea f(H3,)

is shown in Figure 10 and can ke approximated by the following polynomial

& 2 3 4
S = 578,67 - 1270778 Hyy+ 11189,97 H,, - 4346,14 Hy, + 627,10 Hy,

for 1,5237 < H,, < 1,6289

(7.16)

The boundary layer variables ehead of the suction slit are written

using the.velocity model of Geropp

)

¥*The quantity &p is introduced as a reference quantity for the suction
relationships independent of the selected velocity model, but the eval-
Wation. of the following integral expressions would become much more
difficult.

ho



v It
U u . _
G;j(1";gj) dn =L -1,
u U 42
LI [ YA = 2], =3I
5[1 (UJ)]dr[ I, -3,

The integral expressions

OJ

1

o 2. 3
(T—q)c(l+oiq~kazq 4-03q ) dn

-
(1- r()zc(Han +c12r12 + a3r13)2 drl

P‘ C
(1~ 7>

are evaluated in the appendizx.

2 3.3
]+u]rl + a + asn } dr!

r = f(H

321}

/46

(7.17)

(7.18)

Accordingly, we convert the boundary layer variables of the re-

maining profiles

Sy

i

! u
J 'l——-—-—)drl = I]Il

: U8
j _(1-——)dr1 i " Lo
['ijd_[1— (-~J ] dn = 21,
qa

UFQEJ dn = M~ (@ - Iy

- 31

+1

2n 3

the boundary layer parameters of the remaining profile

iy
7

I

. -
— 6211 /d; _ I]I[ - I211
2,79, by -1z

2

(7.19)

(7.20)
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(7.20)

(continued)

& I
H’ézn = F(Hmn D )

o )

and the nondimensional suction wvariables
G
« &/ e+l Iy
Q -
d‘zl/d; I'II I21
& G
o = _Na - Mg

dEI/dE by ™ Iy ‘

\ (7.21)

J

The relationships}—l’éz“— f(H 124 Yin (7.20) is approximated by

H” . = 2,660594 - 0,922220 H +0,276058 H
321 ; 125 'y

- 0,036478 H}2 + 0,001836 H]2]I

Tor 1,527 < M., < 1,5726
32g

2 ) Y
121

P _ ~ ' \ (7.22)
H32]I 1,741773 'VO 038887 H]211 0,072234

for. 1,5726 < H32 =< 1,6667 analog (5.15)
I

H”, = 1,4418 4+ 0,07444 (3,738 - H )
324 12g
“for ng > 1,6667  analog (5.16)

The integral expressions

i'

I [ (1- ) (I+c.[rl+c12rl +c:3rl) drl
IZI[ qJ’ (]-—q) (l+a.[r1+c12rl +c13r1) drl =f(H321,r~lZ) (7.23)

:.-lﬁf (1-n) 3¢ (]+a]rl+c12r12+q3rls)3 drl '

are evaluated in the appendix.
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7. 3 2 Results for Arbitrary Preséure Gradients /U8

' Flgure 11.shows the velocity«pfofiles behind a suction slit which
. was produced for different relatiée suction heights from the Blasius
profile ahead of the suctlion Sliti Much more full velocity profiles
. oceur already for small suction héights.
' For arbitrary pressure gradients, we have plotted the follewing:
- Figure -12, the shape paraméter behind the suction sliit H3é
- Flgure 13, the ratio of the thickness parameter before the

$ . AN -
suction slit, ZII/ZI !

- Figure lﬂ,ut@¢=nond1mens;oﬂél suction- amount coefficient cQ
- Figure 15,  the optimum nondimensional suction’ width, s¥.
As a function of the shape parameter ahead of tThe suction slit H32
and the relative suction height q , the shape parameter H
in the limits

327 ean vary

11,5237 < H,, = 1,6239 ,.

for which Geropp velocity'model is! valid. For complete boundary layer

suction removal qa = 1, one obta¢ns a rectangular profile (H32 = 2)
IT

with EII/Z =0 as a:bmutlnglvalue behlnd the suction slit. In

addition, Flgures i2 to 15 show the asymptotic suction proflle as a

e T T T
i
¢
t
lk

limiting case for continuous suctlon
% In the case of the plate bounaary layer (H32I = 1.5726), there is
@a relationship between the suctloniamount coefficient cs and the sue-
itlon height ‘WQ' which is shown in! Figure 16, Since in this case there
, 1s only one free parameter, the shape parameter behind the suction slit,
the thickness parameter ratio ZII/Z and the slit width s¥ can be repre-
ssented as functions of the suctlon{amount coefficient cQ* as shown in
' Figure 17. [
? In order to evaluate the slit{suction, it is importan@-hqw fast /49
;the suction effect drops off behind the slit. The variation of the

boundary layer parameters H and 7Z/I behind a suction slit shown for

32
a flat-plate as a function of- the suction amount cocefficient cQ*,shows

< the following:
' - The shape parameter increasF decays behind the suction slit, as

' the thickness parameter reduction still has a large effect at a large

" distance behind the slit. ] ' i
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~ as the suction amount incresses,

the shape parameter increase

:along the trailing slit edge increases, but it decays faster because

of the related thilckness reduction.

!

This is shown in Figure 18.

i

of a suction sl1it becomes a max1mum.

|
This means that for a certain

suction amount, the influence range

For large suction amount coef-

f1c1ents, the laminar boundary layer behind the slit becomes thinner,
:but not more stable.
; Figure 19 shows the example of a [plane] boundary layer.
parameter influénce behind the suction slit decays faster, the thinner
the boundary layer. ahead..of the sl%tl_,ThereiorewhweLcan already draw
the conclugion that as the boundarm layer thickness increases, the slit
separatlons increase in the flow directioh.

The shape

;
¢

7.3. 3 Comparison Calculations

A e sy e i i e it

As in a test example for the approximate solutlon for determlnlng'

the laminar boundary layer 1nf1uenc% by suction-sslits, we can use a

|
!
i
¥
‘suction strip over a plane plate,
AREC

authors.

B
f

which has been discussed by several

Krause [64] calculated the infiuencing of the boundary layer by

suction strips of various widths for a constant amount of sucked-off

flow, as shown in Figure 20. If 1n1the case of slit suctlon the cor-

responding suction .amount coefflclent is
;-

s ARl s Yw f
‘; 1 < *q W Red‘z x_ 0,6641 I

3
¥

D

plotted against the width of the
width of the suction slit, then

: If the boundary layer influenc
suction strip is extrapolated to th
we find the following:

i

=

¥

=

- The tThickness parameter reduction ZII/ZI through a suction slit
égggesigell with the thickness parameter reduction through a suction
%trip.

h

; — The shape parameter increase (H32 - H321) through a suction
slif can not be completely verified by t© e exact solutlon for a suction
%trip; for example, we have to consider the fact. that at Re, = 108 the -

L]

1
9 1s about 220 tlmes Wlder than the

narrowest 1nvest1gated suction strl

T VNIV D = e mmeir oz = - = P = PEy

by
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‘ Correspondlng suction slit.

" exists. e e S

R

The comparison calculation given in Figure 21 shows that for the
same suction amount, the influencé on the boundary layer behind a suc-
tion siit accordlng to the amputatlon method and behind a suctlon strip
according to the calculations of ﬁhelnboldt [561, Smith and Clutter
[57], Bethel [59], and Krause [64] are very similar if the slit 1s ar-
ranged in the middle of the stripl! The relationship .

! /% v

.3 Q w

S y 1+s/2><0’ 0,6641

i -
The reliability of the amputa%ion method has therefore been proven.
Therefore, the results of the slit suction calculation apply approxi-
mately for narrow suc@ion strips.

?
3
}
1
7.4 8ink Effect of Ring-Shaped Subtlon Slits
An additional velocity is 1ndd¢ed through each suction siit, which

 1s superimposed on the potential flow /5X

i
!
1
i

t

Influencing of the Veloecity Distribution By Means of a Suctien S1lit.

In the case>of a body of revolution, we have the problem of esti-
mating the additional velocities ihduced by ring-shaped .suction sinks’

HE

We will assume that a source rlng (XQ, r ) with yleld qQ (@Q) =

45



Aq = const., induces the following axial and radial velocity components,

af T point P(X, ¥, - o

_ Yq *
Yy T 2'rer Yax
(7.24)
_ Y *
Y9 21er Ya,
The reduced, induced velocity components' /B2
y o * T T T T T T
. e e e e U m— e L —_
qx X r
* = f('lj_ : 'r——)
Ug Q Q

]
WePe Tabulate€d Dy Kuéciemann and deber [65] as well as Dreger [66].

Qf

'If we introduce for tae yield Q. for the suction amount coefficient c
,according to (7.0),.

_ Q  _ _ cpYxp® (7.25)

o
9 o7 2mry 2%,

then it is possible to write the velocity components in a dimension-
less form

u 2
_ii - - ££§EZL_7T e
Yoo 4" (g /) x
* - (7.26)
K C»ﬂz *
— = - =S g
Yoo 4n” (r /) f
The tangential component.. . - . e
Yg Vg
T P s 7 - q (7.27)
u T v
«© 1-+(€E)2 ©

is the additional velocity induced on the body surface by a suction
ring.

For small suction amount coefficients, the sink effect is restric-
ted to the immediate vicinity of the suction sink, so that when there
are several suction sinks, only the influence of the two adjacent sinks
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Vs, Ys | Ysgi-1 |, USq;
ges  _ + gi~i + 9i (7.28)
u u u u
o 0o e
Xi- % xi /53

‘'has* to be considered in the range "T“' TST

The additional velocity that 1s_g981t1ve anead of the suctlon A
sink is_negative Dbehind the sink. This ' means that there 1s a pres-
sure drop due to the sink effect in the vieinity of the suction sink,
which is superimposed on the shape—determlned pressure distribution. !

R

Ud- [} 2. -
cp = 1-(U—9—~) | T7:79)]
] ges (o] y

- S - '

|
The sink 1nfluence is estimaled for a circular cylinder in axial .

~Tlow having a suction ring in the center, which is gi#ven in Figure

22. Because of r = Ty = const., and dr/dx = 0, we have the followingj
for the circular cylinder '

Ysq _ Yk
v 5 ! |

[as) [es) t . —— - - N

Since the s1it width in relatlonshlp to the boundary layer s/8 =
r],_2 << l; the additional veloeity in the immediate vieinity of the sue-
tion slit depends substantailly on the boundary layer thickness and

ro
increases with increasing incident Reynolds number.

As can be seen from Figure 22, the additional velocities induced
by ring-shaped slits over a body of revolution in the case of laminar
boundary layer suction are so small compared to the incident velocity
over the Reynolds number range of interest that they can be ignored.

7.5 Optimum Suction

7.5.1 Optimum Position of Suction Slits

In technical applications we are interested in the configuration
of the suction slits, so that a body surface can be made laminar using

the minimum number of suction points.#* /54
¥Technically we are also interested in the gquestion of how the body surface
can be made laminar with the minimum amount of sucked-in flow for a speci-
fied position of the suction slits. The maximum possible slit separations
are then taken from the present paper.
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The suction relatlonshlps in Chapter 7 3 Say nothlng about the po-
;sition of the suction slits, but imnstead contain the following free
iparameters:

~ the boundary layer parameter ahead of the suction SlltSJZI %%Eij
: - and the relative suction h61ghtslq ; , ’

? A condition for avoilding bounéary layer transition 1is that the la-
‘minar boundary layer remalins stable in the entire suction region. If

‘the state is partially unstable, the boundary layer perturbations would
‘be bulLﬂdup in an uncontrollable manner in spite of suction, and this
»would lead to premature transition, The stability criterion (6.1)
therefore is a boundary .condition for optimum -suction of the laminar
Tboundary layer. .

f The first suction slit is an exception'to this, ahead of which one
ican allow an unstable laminar bounéary layer, as experiments bv Pfenni-
:nger have shown [6] — if there is a sufficiently long suction region
‘behind it, which serves as a dampiﬁg path. Therefore, we.will introduce
ithe transition criterion (6.8) as Qhe boundary condition for the first
;suction s1it. With this assumption we can bring about a substantial
]reductlon in the number of slits, because as will be shown later oI,
ithe s8lit separation reguired for the stability criterion is small.

1

By introducing the stability condltlon or the transition condltlon

 into the suction relationships, we @geprfgmﬁhgwgggn§%PY7layerngéﬁgzyufi
'meters ahead of the suction slits.f The position of the suction slits
idepends only on the relative suctién height.nQi for a specified body
shape and incident Reynolds number.

l -
The region of influence of a %uction slit can not be arbitrarily /55

rextended by increasing the relatlve suction height, as we showed in
Chapter 7.3.2. 1t becomes optlmum.at a relative optimum suction height

ﬂ
Qopt”
; When optimizing the relative suction height for maximum slit sepa-
ration, we will assume the same relative suctionheight Ffor-@all- suctlon
slits.

The end of the suction regioniis one of the free variables.

{7.5.2 Total Sucked-In Flow

The total suction amount of a(body in a flow with n

suction points

Q

is
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The total suction amount coefficient of a body of revelution is
calculated from .

f (7.30)

where the local suction amount coefficient is defined by C7.6).

Accordingly, The total suction amount coefficient of a plane con-
tour is

c = = P C. .. (7-31)

7.5.3 Considgratign of Suction Power 1in the Drag Balance

When evaluating a body in a flow with boundary layer suction, it
is necessary to consider the required suction power in the drag balance
calculation, The references Edwards [67] and Torenbeek [68] contain
approximate calculation methods for the suction power for special suc-
tion installatlons over wings.

Assuming that the suction amount does not contribute to the thrust,
thatzagiit emerges with u = u, and p = p_, at one point of the body
again, the following pumping power is required for the suction slit

(1) in the case of incompressible flow /56

o Ny =@ 3 Uio - (Api“LApvi) ' (7.32)
L

The pumping efficiency zyp and the pressure losses ApVi on the suc-
tion points and throttling points,. as well as in the lines, are only
known after design of the suction installation has taken place. The
publications of Pfenninger [69] and Gregory [63] state that the total
pressure losses of a suctlon installation are rarely greater than
Apv = (0.1:::0.2) .. In order to estimate the suction power, it is
therefore possible to ignore the pressure losses, and we can set the
pumping efficiency n =_l_§o that approximately we have the following

p
for the suction point (i)
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1

i

NQi = Qi (qoo --[_\..pi)i (7.33)

and for ng suction points,

Ng = I Q @, ~Dpy, (7.34)

Instead of the suction power, we will define an internal or equi-
valent suction drag

_ N
Wy = o (7.35)

(2 e

Acgordingly, using (7.6) we can calculate the equivalent suction drag
coefficient of a body of revolution

: _Wg 2w o _
o 3,0 O 5 T Cai (1=cp; ) (7.36)
and of a plane contour
) e
¢ =M _ T (- ) (7.37)
Wa C{mF =i @ P; ' .

We then obtain the total drag_of a Body with consideration of the
suction power from the sum of the external and internal drag values /57

W= W, + W (7.38)

Accordingly, the total drag coefficient of a body of revolution,
with respect to the surface is

wg T a0 T Swy T Cwg (7.39)

and with respect to the volume, it is

¢ == > * (7.40)
wy 'q_oo'vz" 3T w23
which is determined from (5.38) as CWN.

In the plane case, the total QPag coefficient is
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¢ S ——— = + e (7.41)

where S is given by (5.39). '

7.5.4. Comparison Calculations

As=a Test example for a body in a flow with slit suction, we can
use the suction experiments of the Plfenninger group [6] with the test
aircraft F-9UA. Inﬁt@grtest expe¥1ments the boundary layer was held
laminar along tThe top side of a w1ng without sweep back using 69 suec-
Tion slits in the range 0.410 < X /1 < 0.953 up to the Reynolds num-
ber Re1 = 3.6 x 107. It was kept%lamlnar into the region of the trailing
edge. |

Figure 23 shows the contour a%d the pressure distributioncof the
profile topside for the 1ift coef%icient cp = 0.15. This 1ift coeffi-
cient corresponds to-the incidentiReynolds number Re1 = 3 X 107, where
the comparison calculations were made

" The position.of the first suctlon slit in the experiments agrees
very well with the calculated tra951t10n point positions for the case
without suction, x /1 = 0.410. l ‘

Abs
Using the computer program dlscussed in Chapter 8[ however, We can

not simultaneously maintain the suction conditions of Pfenninger
- 81it number n, = 69 |
Q b

- total suction amount coeffiéient chn = 3 x 10

_ . [~ - G _

\b@cause they are not optimum withirespect to minimum slit number.
Therefore, in the comparison calculations we vary the parameter E&iso
that one suction condition of the|experiments each was satisfied. The

comparison calculations are given ﬁn,Figures‘23janduEEi

-~ if ny = 69 is specified, th%n the calculation gives about the
same slit separations, a substantially reduced suction amount, and a
somewhat reduced total drag compared with the suction ex;erimentt

- 1if cQ = 3 X lO—u Is specified, then the calculation gives sub-~ -
stantially less .suction Jpoints but}about the same total drag.

We should consider that the suction experiments were performed at
the Mach number M = 0.6, but that|{the calculation was restricted to ;'
Incompressible-Rlow.---- - - - T el T
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The comparison calculatiors confirm that the equivalent suction drag
can be approximated using the approximations agreed to in Chapter 7.5.3.
Therefore, the drag coefficients calculated for s1lit suction are valid.
If the relative suction height is |{suitably selected, it is possible to
substantially reduce the number oé slits and the suction amount compared
with the suction.-eonfiguration of Figure 9.

i /59
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8. Desecription'of Computer Program

8.1 Preliminary Remarks. . - ::";_

A computer program was developed for characterizing the boundary

layer and drag of bodies in flowslw1th laminar influencing suctlon
slits. It allows the following syetematlc variations:
- rotationally-symmetiric or plane contouns.
®thickness ratio 4/1

i
Nose,| 1p/1

|

#length ratio of <{Middle part 1,/1
Tail 3H/1

i

4

nose FB = I(gg)
;

tail gy = £(gy)

*pody function -ofy .. L

1

.= the suctien conditions for s}it suction
* prelative suction height ng

'Beginning
# suctlon-reglon-XAbS/l

number of suction points! Q
- Transition point position X Ll in the case without suction

¥ natural !
completely laminar

¥ forced, especially .

completely turbulent N
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-~ and the incident Reynolds number Re

1
Using the program, the following are calculated: i /60
— the boundary-layer variables at the support points Z/1, H32,

Re 5= f(xs/l).

~-The boundary layer and suction variables at the suction points

G —
n\Q ' ZI/IJ' H321 ; Zn/]f H32]I’ CQi! 5/[ - f(xa/l) :

-The boundary layer varisbles at the points
Z/[r H32 ’ Recfz = F(XK/[) '

~-The total suction removal Eoéffiﬁiéﬁf“dé

-And the drag coefficients ¢ ,c ,c ,c

8.2 Structure of Computer Program

8.2.1 Numerical Methods _
Boundary Layer Calculation Using the Step Formulas (5.22).

The boundary layer variables 7, H32 at the end of interval (i) are
determinéd by iteration from the values at the beginning of the inter-
val (i-1). PFor the first interval iteration step v = 0; the variables
at the previous interval (i-1) are used, The iteration accuracy is

()

(-] = 5 105
|H32E o, | =< 5107 (8.1)
The iteration converges rapidly
Ud'.
N 1Ig 0,03 . (8.2)
e
and ’
_qud_u_m_______.m_h
'H - H |£0003 (8.3)
32] 32i"‘1 ‘ !

In the program, there is a step selection which is automatic, star-

ting with the distance to the next. support point /61
N I
LS R N (8.4)
[ T T
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The step is cut in half

W) (.u 0.
AMt i-1 1 Ax i -1 (8.5)
' ; I -2 | {

;when the convergence -conditions wi%h the selected step are not satis-
.fied, or if the accuracy cannot be{reached in v = 10 iteration steps.

A maximum of 1 = 80 step halving oli‘;erations allowed. Investigations
‘of the time optimization of the boéndary layer calculation were performed
by Otte [70].

Determlnatlon of the BExceptional P01nts in..a. Boundary Layer Calculation

; The following are exceptlonalfp01nts for the boundary layer varia-
‘¢ion- (G).

H - guction slits
~ instability point
- transition point

- laminar separation point

i =

- turbulent separation point

- end of the region where the-rotatlonally—symmetrlc boundary layer

calculatlon is wvalid i

i

I

—————

for which the criteria (K) are spe01f1ed The calculation of these
)p01nts leads .to determining the zeroes of the function

i R, e

I ! .
; Fe (P - R (P =0 : (8.6)

with the required accuracy !
}

P .]i*s_
I ]

_I_i l < 1074 (8.7)

Since the function (8.6) is not available in analytic form, the /62

zeroes are calculated numerically by boxing in.

3

8.2.2 Program Structure

’ The compuber program consists jof the following:

- the main parts
¥ initisl calculations

* boundary layer calculatlons


http:leads'.to

®Initial calculation
-~ and the routines
fsuction slit

¥Mangler transformation.

In the "suction slit" routine, the suction Variables are |

i v At et ity i b k.

shown in Figures 12 to 15.

In the "Mangler" transformatidn}routine, the Mangler constant [L/Lf
and the average shape parameter, H§2 which are requird for the transi-
tion point determination. Formulas (6:17) and (6.18) are used.

L

i

8§.2.3 Special Conventions °

The possibilities of the computer program can be found in Chapter
8.1. Additionally, the following conventions are agreed upon:
— there is boundary layer transition at the laminar separation
point, '
. — there is no drag calculation for turbulent separation
‘ — the drag calculation from the boundary layef variables 1s done
'as follows: ) _!_ .
¥At the point 62/r = l/lS%for rotationally-symmetric contours,
¥At the last support point for plane contours.
— the last boundary .layer tranéition cceurs as follows:
*at the boundary layer GE?r = 1/16 for-a rotationally-symmetric
‘contour,
¥at the next-to-last suppPrt point for a plane contour. /63
- the suction region ends prematurely,
¥for a forced boundary 1a§er transition '
#¥38 .soon as 1.5237 > H3215> 1.6250 applies.ahead of the suc-
tion point. i
If the laminar boundary layer ﬁs still unstable behind the first
fsuction .181it, then the suction height is increased until a stable state

is reached. .
t
|

4
'

[
8.3 ALGOL-Program i
‘The computer program is writtep in ICL-ALGOL for the ICL 1900

computer installation of the Berlin‘Technical University%. Compared
IThe computer program is available from the Institute For -Aircraft Design
for T.U., Berlin.
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with ALGOL dedarations, there are bnly slight modifications.

The program has a memory requ?rement of nominally 13,250 locations
in this computer. For 100 support!points and 100 suction points, this
is expanded %o about 17,500 1ocatipns. In calculations without suction,

the memory requlrement 1s substant;ally reduced, if the program varia-

tion is used without the suction slit “"routine",

The calculation time primaril& depends on the number of slits.
Without suction, it is about 30 seconds and increases to about 7 min@§§§
for about 100 suction slits. !

i

Figures 3, 7, 8, 23, and 24 show test calculations with the pro-

i

gram.

For systematic contour variat?ons, the program can be coupled with

- a pressure distribution program, which contains a suitable shape sys-

~tematic program and a support poinﬁ interpolation. If the input and

outputs of the programs are coordiﬁa&ed, then the input of the support

~point values is reduced to certain;parameters which characterize the

"body shape. A program for pressure distribution has been given by

Oehler for bodies of revolution [9].
’ |

t

3., Results of the Variation Calculation

The computer program discussed in -Chapter 8 affords the possibility
of extensive parameter studies. Wé will select a few to give an idea

about technical applicatilons. ?

9.1 Plane Plate: Variation of Suction Conditions

Already by using the example of a plane plate in longitudinal flow
(pressure gradient dp/dx = 0), we can obtain basic information about
the optimum configuration of the stction slits. In this case, the

-most important inflluences! in the va%iables are the following:

~ the incident Reynolds number Rey
- the relative suctlon height?nQ
- and the suction region xAbS(l.

The Reyﬁolds number Re1 is given by the problem formulation. The
i —

»suction meigﬁ{nQ should bejoptimized; for a minimum number of slits; if -

we agree that the suctlon region is such that it starts in the transition
point and ends for a relative plat? length of x/1 = 0.95.
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Flgure 25 shows the boundary 1ayer variation for Rel = 10

T ana

Ng = 0.1. Figure 26 shows the sucﬁlon variables plotted over the

plate length. As already discussed in Chapters 7.3.2, the suction slits
with small suction heights bring about a substantial shape parameter
{increase and a slight thickness paﬁameter decrease. The boundary layer /65
'‘thickness increases in the-flow direction, nevertheless. However, the
‘suction action behind a s1it: decreéses more slowly the thicker the boun—
:dary layer is. At nQ = econst. the slit separations become greater with
’path length. Accordlngly, the optlmum s1it widths and the local suction
amount coefficients increagse in the flow direction. In the literature,
thls basic fact has: nof. yeb been. publlshed -

' Figure 27 shows that the Sllt{separatlons, slit widths, and the
‘local suction amount coefficients are reduced within dincreasing inci-
.dent Reynolds number because of the decrease in the boundary 1ayer
thlckness

The increase in the number of slits with/increasing incident Rey-

lnolds number shown in Figure 28 is caused by the earliest beginning of

'suction and the reduction of the sllt separations. The reductlion in
'drag due -to suction is also con51derab1e if one considers the suction
;power. For ng = 0.1, the drag coefflclent of the plate which has been
made laminar by the suction slits is only slightly above the Blasius-
curve. The total suction amount coefficient first increases bBécause
0f the increase in the number of slits with incident Reynolds numher.

It thén reaches a maximum value, and then decreases again at high Rey-

nolds numbers, because then the reéuction in the suctiom famount coeffi- |
%cients has a greater effect than the increase in the number of slits.

If the suction already starts at the instability point, then the slit
number increases at all Reynolds numbers. The drag coefficients and

‘the suction ameunt coefficients .only increase in the lower Reynolds
number range.

; The results of the simultaneous wvariation of relative suction height

and infinite Reynolds number are shown in Figures (29 and 30. The il
'optimum,relative suction height is @almost independent of the Reynolds
Inumber: at which the number of slids becomes a minimum,

; I
‘ ) QQ opt qq(nmin O B

If less air is sucked away at %hﬁse suctlon points, then the drag °

and- the. total_suction_ amount _decrease,. but_the required slit number
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increases rapidly (nQ < 0.1). At31Q = 0.02, one comes very close to

the case of continuous suction, see Figure 29. An increased suction nQ>0.1
is out of the questio@j.then the slit number and the drag, as well as the
total suction amount, increase considerably.

9.2 Bodies of Revolution

2.2.1 Variation of Suction Conditions

For a body of revolution we will investigate the ways in which the
influence of the pressure gradient {affects the optimim configuration .

of the suction slits, compared with the plane plate. For this purpose,
we must vary the incident Reynolds number Re

Abs/l'
As far as selecting the body shape is concerned, it should be men-

1> the relative suction helight
nQ, as well as the suctlon range x

tioned that without suction, spindle shapes with a pointed nose part have
been suggested, see Hertel [1 to 3]. These satisfy the condition for
minimum specific drag much better than conventional shapes with a long
eylindrical central part and a small thickness ratio. It has been found
that these spindle shapes are favorable in the -case-of suction, compared
with conventional shapes.

Since the nose contour of low drag spindle bodies is approximately
parabolic according to [2] and [3],'as a basic shape we will select the
following symmetrical paraboléid for the variation calculation, where

the length ratios are - [T

i-
S e el
e A_no_é_“_
the thickness ratio is | T, m:__t;,- ]
[ -1 w2
. ' Mle = §B
and the contour functions are 5
‘ = 1= |
r{H I§H1

This basic shape can be matched to various problems by changing the
thickness setback and the thickness ratios., From the transition and /a7
drag curve of the basic shape shown in Figure 31, we can see that the
"laminar effect" is lost at high Reynolds numbers. As we will now

show, making the flow laminar using slit suction in this area leads to
substantial drag savings.

!
Figures 32 and 33 show the boundary layer variation and the suc-
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ition variables: of the parabolold dlstrlbuted over the body shape, for
1 L 5 x 107
an = 0.1 and XAbs/l = 0.5. They are very similar to those of the plane
;plate shown in PFigures 25 and 26. |The length of the laminar buildup path
‘behind the last suction slit i1s suéstantial.

Figure 34 shows that in -spitelof the reduction.in the stabilizing
:pressuré gradient, @Q nQ = const.,{the slit separations of a spindle
‘body are increased in the flow direction with the exception of the tail

"end, where there is a steep pressure increase.- The relative slit width

.

the incident Reynolds number Re and the suction conditions

rand the local suction amount coefflclent depend on the Reynolds number
and increase greatly because_.of. the ZLhickening .of the boundary 1ayer at
-the tail end. Increasing the slit!separations in the tail area of the

[ R ; . | . . ;
'bodies of revolution comes about bgcause in the casge of bodies of revo-

;lution, the reducing pressure gradient is opposed by an increased boun-
;dary layer thickness, due to a decfease in the body radius. This effect
rdoes not occur in plane flow, as shown in Figure 23. .

L For applications, various sucéion reglons are possible for bodies
!of revolution, for example, -

~ in the case of an ailrcraft body, ‘¥t only seems that keeping the

nose part of the aircraft laminar 1s promising because of the dlsturblng

infiuence of the wings, . . i

L o
!

|

% - it seems promising to make the entire body surface of an under-
;water vehicle laminar using suctlo% slits.

! Figures 35 and 36 show the re%ults of a suction reglen variation

:and Reynolds number variation at nd = 0,1.- Alveady a small suction
%region with & corresponding low su%tion amount is sufficient to-keep

the nose part laminar, and this is |associated with a substantial savings
;in drag. The entire body surface dan be kept laminar with a small - /68
gnumber of additional suctiom slits, jbut the total amount of sucked air
fincreases drastically. The extremely low drag coefficlents in the case
iof suction to the area of. the tail |tip are caused by the fact that when
‘the body surface is made completely laminar, not only is the friction drag
rmeduced9 but the pressure drag is glso greatly reduced. The jump in the
tdisplacement of the transition point, and the reductienin the drag coef-
‘ficient due to a suction slit are dovered by speciai conventions in the
‘computer program, see chapter 8§.2.3.

' When there is a simultaneous %ariation of the relative suction

e L izt Em oiEEoam T mme e oz e — X [ra— - - s - - - - - - - -
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http:the-thickening-.of
http:reduction.in

1 9.2.2 Variation:of Body Shape

helght and the incident Reynolds Aumber Flgures 37 and 38 show that
the 81it number becomes a minimum ifor bodies of revolution, indepen-
dent of the Reynolds number. If %he suction height is

irla - rtaopf ~ 0,1 !

Figure 39 shows that the epiimum éelative suction height is alsc approx-

imately independent of the suction-region: The-variation of the suc-
tion conditions over a.spindle body shows fthat nQ = 0.1 is an optimum
suction rarameter for technical appllcatlons of s11t suction.

"
R e T
'

In applications wé are interested in the effect of the change in
the body shape of a body of revol@tion on the configuration of the

' guetion slits. !

e ke e w = =

- e ap—

AT nQopt =0.1, we will investigate the influence of

- the thickness betback lor tﬂe relative noselength ﬂB/P

— and the thickness ratio d/l

on the minimum .§1it number. - We Tagn:ii_'ﬁl’l) start with the base shape dis-

cussed in the previous chapter.

s it
I

Figure 40 shows the contour and the pressure distribution of spin- /69

-

dle bodies where the thickness setback was varied with the same thick-
ness ratio d/1 = 0.2, and shows tﬁat in the case without suction, the
bodies with a large thickness setback have the lowest drag in the low
Reynolds number range, beggﬁga of %he long laminar buiildup paths. At
the higher Reynolds numbers, this fendency is reversed. The influence
of the thickness setback on the optlmum suction conflguratlon (nQ = 0.1)
is given in Figures 42 and 43. Wi ‘th the exception of small Reynolds
numbers, the slit number is substantially reduced with decreasing
thickness setback.

Figure 44 shows the contour aﬂd the pressure disteribution of spin-
dle bodies, in which the thickness ratio has been varied for the same

~ thickness setback mB/m = 0.5. Figure 45 shows that in the case without

suction, the thicker bodies have J higher drag. One exception is the

" medium Reynolds number range, where the long or laminar buildup paths

; produce a smaller drag for the thicker shapes. It is remarkable that

60
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The effect- of the thickness %ariation on the optimum suction con-

figuration.(qQ = 0.1).is shown in Figures 46 and 47. As the body thick- -

‘ness increases, the slit number decreases in the entire Reynolds number

range.
. The thickness setback variatién and the thiokness variation of a
"spindle body clearly show that thejpressure gradient over tlie nose part
i

.1s most important for determining Fhe minimum number of-suction points,

.even 1f suction takes place near the tail tip.

|

10. Summary S

@ In aviation and underwater theory, only slits, gaps, or perforated

fstrips.can be used for practical béundary layer suctlion applications. /70

;Up o now, conftinuous suction has ?een aﬁmost the exclusive case which
;has been treated, $&ince the investigations are usually restricted to
plane contours.
é In the p@esent paper, we discqss the technically interesting case
of keeping a boundary layer laminar using suction slits over bodies of

j 0

i evolution in incompressible flow.
: The calculation of the- rotatldﬁﬂlyusymmetrlc 1am1nar and turbulent
boundary layers is done by the 1ntggra1 conditions for momentum and
Eenergy, and assuming a single paraﬂeter velocity profile.

A new semi—empirical'criferioﬁ“is introduced for determining the
laminar-turbulent transition'pointiof bodies of revolution, and its
‘reliability has been demonstrated from transition measurements.

g The changed boundary layer vafiables behind the suctlen slit are
'determined aprroximately from the remalnlng profile which remains after
ﬁsuctlon. By comparison with exactisolutions, which are available in
’the special case for a.narrow suction strip, we confirm the reliabllity

.of this method. FProm these results we draw the conclusion that the

effects which-can be brought about jby thelsuction Tsli§§“p§n,§;so bhe

approximately reached, by_perforabed suctien strips.

In- order to evaluate the sliticonfiguration, we calculated the

L)

drag with consideration of the suctlon powéf. This calculation was

'confirmed by suction experiments.

The ALGOL program was developed for the systematic variation of
‘body shape, incident Reynolds numb?r, and suctien cdnditions,.which also

61
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includes the case of no suction ané the calculation of plane contours.

In addition fo the stability .and transition conditions, we also
'introduce the relative suction height and the suction region as para-
‘meters in the suction relationship%. For constant relative suction
yheight, the slit separations in thé flow directions are 1increased, as
jlong as there is no great pressure|increase.

The local suctlon amount coefficients and relative slit widtlhs
iincrease greatly towards the tail éip.
. The variational calculations show that, independent of the body
'shape, incident Reynolds number and suction region for the relative
|suction height, the.slih,sepana$ioqs”aneuanmaximum.and consequently
,fhe number of slits are a minimum. | Compared with the continuous suc-—
%tion'(nQ -0, Ng = @), the suctionéamoumt‘coefficient increases dras-—
gtically at nQ = 0.1. The drag coegficient only increases slightly
'with consideration. of suction powe%.
} Finally, we investigated the influence of the body of revolution
shape on the optimum configuration-¢f -the suction slits. It is found
that pointed sbindle shapes with.ajlarge thickness ratio and a small

b

[thickness setback can be made laminar using a relatively small numb er
A ek
,0f suction slits due to the large ﬁressure drop over the nose, even at

]high Reynolds numbers, !
E The combination of favorable body shapes and optimum suction con-
lditions [leads| to solutions, which satisfy the condition for a small

'flow resistance with a small number of suction points and a small suc-

tion amount, for the most part, at high Reynolds-numbers.
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12. Figures
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Figure 1: Contour of a Body of Revolution.
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approximation:
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Figure 2: Relationships for laminar velocity profiles with suction

influence.
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Comparison: - Delayed stagnation point flow 1ot
Laminar separation point -

—————— Exact solution of Howarth [24] x./z=o119s

Present calculation method with approximations of Eppler
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Figure 3: Delayed stagnation point flow. Laminar separation point.
Calculation method - exact solution
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Stability Calculations
without suction

with suction

.o Tollmien, Lin (Blasius Profile)g_:Bussmann, Muenz (asymptotie suction

(311, [32] profile) [36]
o Schlichting, Ulrich (Pohlhausen |_»Ulrich (Iglisch Profile)[37]
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_ePretsch (Hartree Profile) [34] . +Ulrich (Schlichting-Bussmann
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~» Tetervin (Hartree Profile) [35]
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Transibtion Measurement

Wind Tunnel

Plane o Braslow, Visconti [47)
Flow O v. Doenhoff [46)
‘4 Schubawer, Skramstad [%0]
'V Baltz, Kenyon, Allen [54]

Rotationally e 8oltz, Keayon, Allen [55]i
Symmetric e e e o o
Flow

Transition Criteria

Approximation

Free Flight

e Jones [48]

m Zalovcik, Skook [49]

A Wetaore, Zalovcik, Platt [50]
7 Davies, Smith, Higton [51] [52]

& Plascott, Higton,
Saith, Bramwell {531
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Figure 6: Length of the buildup paths for natural transition of the
laminar boundary layer with pressure gradient.



Comparison: Flat Plate

[
- - - Known solutions
Present computation method
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Comparison: '
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Figure 9: Possibilities of local boundary layer suction
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Parameter: Relative suction height »
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Figure 11: Laminar Velocity Profile ahead of/behind a suction slit.
Single parameter model of Geropp L16].
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Figures 12-15: Influencing of laminar boundary layer through a suction
_s1it. .
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4
= 1008cyn?  + 1680cqmy, + 840c;md; + 120q nf + 120c,my +  24c,
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= 1680c,ng + 2240cq nag * . 840c,my +  80g my, + 40,
= 6720cyn}; + 6720cgn + 1680c 0. + 80
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[(2¢ +7)c +3)(2c + 5)c + 2)(2c + 3)(c + 1) +
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1
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1680c7(3c + 10)(c +3) +

+ 4480C8 (3c+10) +
+ 13440c,]
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The integral expressions in condensed notation are:

[ = baatlc+d) [202 + (¢ + 3oy + (c +2)]]
Ce (c +4)(c +3)(c+2)c+1)

_ 90b, + (2¢ +7)[30bs + (c + 3)[6by + (2 + 5)[3by + (c + 2)fby + (2¢ + )by + (¢ + V]I
L= e+ e T+ 5)c T D@ F e T N + 1)
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