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THEORETICAL INVESTIGATION OF M 'INTAINING THE BOUNDARY LAYER
 

OF REVOLUTION LAMINAR USING SUCTION SLITS IN INCOMPRESSIBLE FLOW
 

Peter Thiede*
 

The transition of the laminar boundary layer into the turbulent
 
state, which results in an increased drag, can be avoided by sucking
 
off the boundary layer- par -nl.es The technically-in­-near thewall._ 

teresting case of sucking the particles using individual slits is in­
vestigated for bodies of revolutioh in incompressible flow.
 

The boundary layer calculation is done using the integral con­
ditions for momentum and energy. In order to determine the laminar­
!turbulent transition point, a new semi-empirical criterion is intro­
,duced. The changed boundary layer quantities behind a suction slit
 
,are approximately determined usingithe remaining profile after the
 
suction process. In order to evaluate the slit suction, we carry out
 
a drag calculation with considerationof the suction power.
 

The calculation method uses ajALGOL program. The reliability of
 
the method is confirmed by comparison calculations..
 

The results of the variational calculations showi that there is
 
an optimum suction height, where the slot separations are maximum.
 
Combined with favorable shaping of'the body, it is possible to keep
 
the boundary layer over bodies of revolution laminar at high Reynolds
 

numb.ers using relatively few suction,slits and small amounts of suc­
tion flow.
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1. Notation 

aV, 

a\, 

b, 0V 

b V , c 

I coefficients 

AZ, AH 

BZ , BH 
z}Bcoefficients 

a 

b 

amplification ratio 

slot length 

c 

cD 

exponent 

dissipation coefficient 

cf 

C 

CQ 

cw 

c 
W_ 

friction coefficient 

pressure coefficient 

suction amount coefficient 

drag coefficient 

equivalent suction drag coef­
ficient 

d maximum thickness 

F area 

F1 , F 2, F3, F4 

HI2 , H32 
'i 

IL 

universal functions 

shape parameter 

length 

Mangler-constant 

m 

mE 

n, N 

nQ 

INQ 
"0 

Hartree parameter 

Hartree parameter of plane 
replacement flow 

boundary layer variables 

number of suction points 

suction-power 

surface area 

p 

q 

qQ 

Q 

r 

Re 

-s 

static pressure 

stagnation pressure 

suction yield 

suction amount 

body radius 

Reynolds number 

slot width 

/6 

t time 
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Uqx Uq r induced velocity components 

Uqt induced tangential velocity 

U, v velocity components 

VQ average velocity in suction slot 

V volume 

W drag 

WQ equivalent suction drag 

x, r, cp cylinder coordinates 

x, y, z cartesian coordinates 

xT coordinate along body contour 

yQ suction height 

iZ thickness parameter 

a, 8 boundary layer variables 

i buildup variable 

F -cone angle, wedge angle 

n E 
E 

wedge angle of plane replace­
ment flow 

'6 boundary layer thickness 

'6l displacement thickness 

momentum loss thickness 

63 energy loss thickness 

6Q suction loss thickness 

61QI
l1Q 

suction displacement thickness 

662Q ' suction momentum loss thickness 

63Q suction energy loss thickness 

boundary layer variable 

TI relative wall separation, 
radius coordinate /7 

IQ' relative suction height 

~Tail point angle 

o momentum loss area 

A Pohlhausen-shape parameter 

Idynamic viscosity 
v kinematic viscosity 

length coordinate 

9 density 

90 nose radius 
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9d apex radius
 

T shear stress.
 

SUBSCRIPTS 

A 

Abs 

referred to separation point 

referred to suction region 

B nose part 

E 

F 

end of rotationally-symmetric 
boundary layer calculation 

referred to the area 

G referred to the velocity trial 
solution 

H tail part 

h 
I 

I referred to tail part 

referred to the instability 
point 

L 

la 

referred to length 

yaminar 

1M 
,0 

middle part 

referred to the surface 

p I referredito potential flow 

Q 

Sreferred 

referred to suction point 

to support point 

tu turbulent 

U referred to transition point 

V referred to the volume 

w referred to the wall /8 

6 referred to edge of boundary 
layer 

62 referred to momentum loss 
thickness 

Frhredtto incident flow 

I i ahead of suction slit 

II behind suction slit 

* 

average value 

transformed variable 
nondimensional quantity. 
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/9 '2. Introduction 1 
Bodies of rrv-olution are primarily used in aerodynamics and hydro­

:dynamics in order to support useful loads (for example; aircraft bodies.,
 

underwater vehicles). Therefore, optimum bodies of revolution from the
 

Iflow point of view are those whosejflow resistance with respect to the
 

-useful volume is a minimum. Minimm specific drag is achieved by the
 

following:
 

- by means of a large volume related to the surface in the flow,
 

- by a small drag coefficientjreferred to the surface area.
 

Whereas the volume-to-surface arealis increas6d with increasing thick­

ness ratio, the drag-.coefficient-re-ferre&-to--the surface can be reduced
 

.by keeping the boundary layer laminar.in the flow.
 

In contrast to conventional shapes with a long cylindrical central
 

tpart and a-small thickness ratio, Hertel Il to 3] suggested spindle­

jshapes for aircraft bodies, which &re characterized by a large thick­

ness ratio and a pointed nose partt where the laminar boundary layer is
 
8 

stabilized. At high Reynolds numbers (Re > 10 ), such as occur in
 
I 1 1
 

;aviation and underwater technologyj the laminar effect which can be
 

jreached by shaping alone is not imjortant. Already by sucking off
 

,small amounts of flow, the laminar lboundary layer can be additionally
 

Istabilized, so that the boundary layer transition into the turbulent
 

istate is delayed, and the drag-is reduced with considerationloIfH
 

isuction power. The amounts suckedloff required to influence the boun­

dary layer are smallest for a continuous distribution over the surface.
 

;This optimum case is the simplest to analyze theoretically, but cannot
 

!be realized in practice necaTe of the technical effort for suction.
 

In technical applications, one can only consider sucking off the
 

,flow through slits arranged perpendicular to the flow direction, or
 

using gaps or perforated strips. The effectiveness of such suction slits
 

and slots was demonstrated by Pfenninger [41 to [61 and Lachmann [7]
 
1 1
 

for airfoils. Based oWth] large number of suction points, the men- /10
 

tioned suction configurations are not completly satisfactory for tech­

nical applications.
 

In the case of spindle-shaped bodies of revolution, it seems r.-•
 

mising to expand the laminar flow range even at high Reynolds numbers,
 

using a relatively low number of suction points, so that the drag re­

'ductions considering the suction power will be worthwhile,
 

8 
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3. Problem Formulation and Assumptions
 

In the present paper, we will theoretically investigate the tech­

nically interesting case of maintaining a boundary layer laminar using
 

suction slits on bodies of revolution. In particular, as a function
 

of the body shape and the incidentiReynolds number, we will determine
 

the following:
 

- optimum position of suction slits for minimum number of slits,
 

- the flow drag with consideration of suction power.
 

The investigations are restricted to the following:
 

- bodies of revolution with flow in the axial direction,
 

- incompressible flow
 

- flow without any disturbances,
 

- hydraulically-smooth surface
 

The calculation method to be designed includes the following fac­

tors: 

- calculation of the laminar and turbulent boundary -layer over 

bodies of revolution.with consideration of influencing the laminar 

iboundary layer. 

- determination of laminar-turbulent boundary layer transition 

for bodies of revolution.
 

- influencing of laminar boundary layer using suction slits. /ll 

As will be shown later on, we can neglect the following:
 

- pressure losses by suction slits, throttling points and lines
 

when estimating the suction power,
 

- the sink effect of the suction slits.
 

The computer program to be established will allow the following
 

systematic variations:
 

- variations in body shape
 

- variations in suction conditions
 

- variations in incident Reynolds number. 

In addition, the program is to include the case without suction
 

and the calculation of flat contours.
 

Based on available measurement results and theoretical,solutions,
 

we will demonstrate the reliability of the calculation method. In ad­

dition, we will carry out several characteristic variational calcula­

tions.
 

9 



-4. Contour and Tressure Distribution of Bodies of Revolution
 

14.1 Descriptioh 'of Body Contour
 

One can only vary the body shape in a systematic way if the body
 

outline can be described mathematically.
 

A body of revolution consistsjof a nose part, a central part, and
 

:a tail part, as-shown in Figure 1.1 In most cases the central part is
 

cylindrical. In the case of the spindle shapes described in [2] and.
 

,[3], the leng~s of the central part and the nose radius are zero.
 

The mathematical description of the body contours is the simplest /12
 

'if separate trail solutions are assumed for the nose, central, and tail
 

;pa±'ts. In this case,;the thickness-and-ldngt'h artios do not occur in
 

,the contour functions, but only determine their coordinate system. For
 

Ithe other dimensions shown in Figure 1, shaped parameters are introduced
 

which are independent of .the thickness and length ratios.
 

If the coordinates for the nose, central, and tail-contours are
 

:specified as shown-in Figure 1, then the following relationships exist
 

beteen the body of revolution outlined r(x) and the contour functions
 

Nose Central Part Tail
 

Is/1 - / /I- I/I x/I - (1-I/) 
= B T--- B H--- 7- i-H 


rB / rM /  rH / (4.1) 

SB - d/ q - -d72'-1 H - d.,'21 
Hs. 

The requirements for the contour functions
 

- consideration of the most important body shape parameters
 

- and large shape selection
 

_'for the-most part satisfy the polynomial trial solutions of Koschmieder
 
and Walz [8]. In addition, if there is no 
central part, there 
can be
 

'atransition between the nose part and the tail part without any jump
 

in curvature.
 

For body shapes with inflection points, the basis functions of
 

,Oehler [9] are especially suitable.) By superimposing these basis func­

tions, a large selection of shapes results.
 

iOI
 



4.2 	Remarks Regarding the PressurelDistribution
 

In the case of a body with boundary layer suction, the pressure
 

Idistribution caused.by the body shape is superimposed with a sink ac­

tion of the suction slits.
 

Except for the immediate vicinity of the tail tip, it is possible /13
 

to determine thejgessure distribution of a body of revolution caused by
 

the 	shape
 
ur 2 I 

C f(T) (4.2) 

using potential theQry.. -..
 

In this investigation, we will not discuss the calculation of the
 

potential theory pressure distribution caused by the shape. Instead,
 

we will indicate the calculation procedure of Oehlerj9]-, which is es­

pecially suited for thick spindle shapes with high underpressure peaks.
 

The sink. action of ring-shaped suction slots will be discussed in
 

1Chapter 7.4.
 

5. 	Boundary Layer Calculation andjDrag Layer Calculation of Bodies
 
of Revolution
 

5.1 	 Preliminary Remarks
 

In the case of calculation ofithe boundary layer over bodies of
 

irevolution with ring-shaped suction slits, one must disinguish the
 

following: . 

- boundary layer development along the impermeable wall,
 

- influencing the boundary layer at the suction slits. 

In Chapter 7 we will discuss influencing the laminar boundary
 

layer using suction slits.
 

Schlichting [10] gave a summary about boundary layer theory. The
 

Prandtl boundary layer equation is the point of departure for the.-boun­

darY layer calculation. One must distinguish between the following:
 

- the exact solutions which satisfy the bo-undary layer equation 

at any point, and 

the approximate solutions -whichon the average satisfy the boun­

dary layer equation over the boundary layer thickness, 

It is only possible to exactly calculate the boundary layer equal /14 

teiov for lami-na-r- boundary Jayers.... In,this,case.,.,thee_ are.-snbs-tantial 

- 11 
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difficulties for arbitrary body shapes and pressure-distributions. The 

approximation theorycan be used successfully in most practical problems, 

!as Walz [111 showed, especially. I 
In the case of rotationally symmetric flow, the calculation of
 

,the boundary layer is more difficult than for.plane flow. This is be-'
 

-cause the pressure distribution and the body shape appear in the boun­

dary layer equation. The relationship between the plane boundary layer 

and the rotationally symmetric boundary layer was analyzed by Mangler 

:[12]. 1 
The similar solutions of the Hartree [13] boundary layer equation
 

deter_ I by Hartree _l[1-are the basis .for-developing the approximate 

solutions. The most recent trial solutions for the laminar boundary
 

Ivelocity profile of Walz, -[14], Manler [15], Geropp [i6],, attempt to
 

give the best possible 'approximation to the Hartree profile. The trial
 

solutions for the turbulent velocity profile are empirical.
 

The approjximate ]solution principle consists of satisfying the
 

'integral and boundarycnditions fqr a velocity profile which is as­

sumed to be known. These are deri'ed from the boundary layer equation.
 

The accuracy of -the approximate method increases with the number of si­

multaneously satisfied.boundary laer equations.
 

A quadrature method can-be used to exactly calculate the laminar
 

iboundary layer for a pressure drop, which is based on the integral Fon­

tdition for momentum and the wall adhesion.
 

As Walz [17] showed later on, by using a Fingle parameter method
 

,(with a shape parameter of the velocity profile), it is posMble to
 

obtain results which are more reliable;, If instead of the wall condi­

'tion, one introduces the energy integral condition.
 

In place of turbulent boundary layers, the accuracy which can be /15
 

achieved depends on the empirical law for wall Ishear] stress and dissi­

pation. A corresponding comparison can be found in Fernholz [18].
 

Just behind a suction point there are laminar velocity points,
I
 

which differ substantially from the Hartree'profiles. The authors
 

g-lisch [19] and Schlichting, Bussmann [20] found similar solutions for 

the suction profiles df the plane lplate, which were used to approxima­

tely calculate the surction bdundary layers by Schlichting [21], Head 

[22], Eppler [23]. etc. 

12 



5.2 	 Integral Conditions Tfo'r' Momentum and Energy
 

In this discussion, the rotationally-symmetric laminar and turbu­

!lent boundary layers along the impermeable wall are calculated on the
 

basis of the integral conditions for momentum and energy, with single
 

parameter velocity profiles. The approximate theory for plane flows
 

-[is discussed in detail. in [11], and therefore we will only give the
 

most important relationships here. 1
 

. Veloc-ity.yprofile of boundary layer
 

I' 
&I 

Using the boundary layer variables
 

Displacement thickness U
 
ro-=H0dy
 

momentum loss thickness 	 2 fu ( ) 

(5.1) 

,Energy loss thickness 	 & 2] dy 

a UC's 

•1 d-1"F....- [ 

Shape parameter 	 12 :r 

the Frandtl boundary layer equation' is the following for stationary,
 

'incompressible,and rotationally-symmetric flow
 

8U +- u 	 'rdp + T t u 	 (5.2)
- U 	 -y - - ' =T = "dx 8--'/" ; T e 8 

-13
 



and the continuity equation is 
 4 
a(ur) + (vr) 0 (5.3) 

with the boundary conditions
 

y : U V 0 

y = 4: u = u-(x') 

derived integral conditions for the momentum are
 

d6-2 & '2±H 1 du 1 dr-dx' + 2 (2 d'2 r -- cf0 (5.4) 

tand for the energy
 

3 1 dud. ++ 1 "dr--- + 3 S-u+_cdU -- 2c 0 (5.5)3 u dx 3 r dx D 

Swhere
 

local friction coefficient rfw2 

S%'
 
(5.6) 

dissipation coefficient D 3
 

It is assumed here. that 61/r<<l, that is at the nose tip and /17 

,in the immediate vicinity of the rear tip, the boundary layer conditions 

are violated. 

By introducing the new variables, we have 

Thickness parameter I I n _ I 

Z = nRe~ Re&2 62; e(5&7)(:"
3
 
)32 

- shape parameter 

Then instead of 62 and 63 thelintegral conditions can be converted­

as- follows:
 

14
 



Momentum theorem:
 

dZ I duy- +1 dr 
dZ FI du- (n+1) dr+ 

-F2 = 0 (5.8)
 

Energy Theorem
 

d H32 + F 1 du - F4 0 (5.9)
dx' + U xdx' H32 Z
 

with the abbreviations 

F = 2+n +(n+1) H12 

F2 = (1+n) cf Re -2 (5.10)
 

F3 = 1-H12 

F4 = (2cD -Cf H32) Recr2.
 

If a single paramefer velocity profile is used, the expressions
 

(5.6) can be written as-follows:
 

C f 

ReRe-2 (5.11 )
 

B
 
C-

Re ,r
2
 

where the quantities a and S only depend on Hi32, which can be seen /18
 

for a laminar boundary layer from the conversion
 

&2
B P[(u/us)1 
C. - I q I 

and for turbulent boundary layers, this is confirmed by measurements.
 

In this way, we obtain
 

F 2+n + (n+1) H12 F3 = I-H 12 [ (5.12) 

= (+ ± n) c F4 = 2 B RenN - 0-H (32.1F2 
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Since for a single parameter velocity profile, H12 can also be

V12
 

represented as a function of H 32 the abbreviations (5.-12) can be
 

considered as universal functionslof H32 with the coefficients
 

laminar: n = 1 turbulent: n = 0.268 
N = N(H3 2 )
N = 1 


In order to solve the boundary layer equations, (5.8) and (5.9), we
 

therefore also need the relationships for the velocity profile
 

= f (H32) 

H12 

/19
 

5.3 Relationships for the Ve1ocity Profile
 

5.3.1 Laminar Boundary Layers
 

-N-SUction.
 

In the case of a laminar boundary layer without suction action, the 

velocity profiles are approximated by the similar Hartree solutions of 

the type ug(x') x'm for the arbitrary external flow, and we set 

m = m(xl).
 

The Hartree profiles are defined in the range 

H3 1.515 according to a = 0, m = -0.0904 (laminar sepa­

ration) 

and 

H = 1.638, according to m + 

For the profile relationshipsrequired, we have the Walz [11] 

approximations: ­

= 1,441 (H32 -1,515)O166, ] 
= 0,1573+ 1,691 (H32 - 1,515)1 '637 

5.14) 
= 4,030 -4,183 (H32- 1,515)0 ' 3945H12 
 322'32 

which are shown in Figure 2 for the entire Hartree range.
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The more accurate relationships can be determined from the single
 

parameter formula of Geropp [161 for the laminar velocity range, as
 

shown in Figure 2.
 

With suction
 

When the laminar boundary layer is influenced by suction, the simi­

lar solutions for the Plane plate[with homogeneous suction are used for
 

the velocity profiles, which differ substantially from the Hartree so­

lutions. In order to have a good approximation in the entire 132 range,
 

Epper [231 approximated the Hartree profiles with a pressure increase,
 

and the sunction prxofiles, of--<Iglisbh Elj.in the -case of a pressure 

drop,.bSr.. using the limiting case Gf asymptotic suction profiles H32 

5/3, as shown in Figure 2. I. 

'2 _ ,379 3 

1,686095 H12 +0,391541 H12 - 0,031729 H12 
= 2,512589 ­

1,51509! H32 1,57258
 

322
 
cc = 1,372391 -4,226253 H32 + 2,221687 H32
 

for !1 57258 < H32 1,66667
 

B= 7,853976 - 10,260551 H32 $ 3,418898 H32 
-or,151509H33 166667 (5.15) 

12 4,02392 - (58,260512 32 3,74,55916H
 

+ 227,18220 H32) H32 -1,5150912 32 32 

VF\1,51509 _ H32_ 1,57258 

H 2
 
H12= 79,870845 - 89,582142 H3 + 25,715786 


1,57258 < H 1,66667
 

32J 
The separation profile ( = 0) is specified by H3 =1,5150 

Thengete approximations (5.1), very reliab e results are achieved,
 

even for a pressure increase. If one calculates the delay stagnatiorn
 

point flow
 

17 



U_ - 1 x
 

u T 

for which there is an exact solution of Howarth [241 available, the
 

parameter separation pn-Ht to an accuracy of 0.2%, as shown in Figure
 

3.
 
In the case of continuous suction with arbitrary suction inten­

sity, no completely-laminar velocity profile can be obtained as H32
 

5/3, behind a suction slot there are velocity profiles with H32 > 5/3
 

as well, which violates the Prandtl bonndary layer assumption v/u << 1.
 

With the exception of the H12 approximation, these-relationships (5.15)
 

can also be used for H 32> 5/3.- The approximation /21
 

H12 3,738- f3,43 321,4418) (5.16)
 

for H32 > 1,6667
 

contains the rectangular profile with H32 = 21 H = 1 as the limiting 

ease. 

5.3.2 Turbulent Boundary Layer
 

According to Fernholz [18], inthe case.of a turbulent boundary
 

layer, the following semi-empirical laws can be used with success for
 

the velocity profile over the Reynolds number range of interest:
 

Wall shear stress law accordingto Walz [11],
 

a-: 0,0566 H32 - 0,0842 (5.17)
 

Dissipation law of Rotta [25] and Truckenbrodt [261
 

B = 0,0056} 
(5.18)


N= 0,168 


Shape parameter relationship of Fernholz [181
 

H 1 + 1,48 (2-H32)+ 104 (2-H32)6'7 C5.19) 

8
 



Separation occurs for H32 1.50- 1.57.

Atu 

:5.4 Stepwise Solution of IntegralIConditions
 

Using the relationships givenlin the previous chapter for the
 

velocity profile, the boundary layer calculation is reduced,to the
 

!solution of the equationsystem (5i8) and (5.9), which applies both
 

for the laminar and turbulent boundary layer. and the two unknowns
 

,are Z(x') and H32 (x').
 
Assuming that-in a small interval we have
 

-1 = xI.- x 'l 
;- Z x , 

;and that the body contour and the velocity profile can be approxi- /22
mated by a linear law . .--------- ...,mated by--------- ------...•. .. ... .. . 

r. -, r.-

II 

r(x') = ri1+ x:(x (5.20)
U _U (5.20) 

d- Cfi l X 
+u (x' u~il Ax' - (x' - x_ 

!and if we introduce average values for the variables ZCx!) and H32 (x')
 

and for the universal function FV('),
 

.. 
. (Z. + Z.-) 

(H + C5.21) 

32i, i-I 32i + H3 2 i-1) 

)F9 , i-I = F, (P3 2 i i 1v, 2, 3,4 

,the momentum and energy theorems can be solved in closed form. The
 

'step formulas are the following in idimensionless notation, in the ro­

itationally symmetric case { 
ri -. LxLA n+1 

AW -- r2.5.22)714_+ 

Ax1 i1/I 
H3 2 = AH H3 2 1 + BH 

with the coefficients -­
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Fr°usi-1/uc 

Az = [i/u ]_l 

F
AH [udi-1/Uco 3 

AH u"i/u=] 

usoi_1/U o 

F -1-A 
B - 2 Z uU 

Z 1+ uco 

F I AHs- U 

H1 u T3 -U 

i and the step along the contour is 

n/ X. - 1) (r r i C5.24) 

(T T 

In the plane case, in (5.22) we ha e -...
1,and in C5.20) and (5.24), 

Yi is replaced by ri . / -

The stepwise determination ofithe boundary layer parameters Z and 

H2 at the end of the.interval (i)!is done by an iteration fr6m the 3V
 
values'at the beginning of the interval (i-l). Details are given in
 

Chapter 8.2.2.
 

The boundary layer calculation for a laminar boundary layer is
 

started at the following points.:
 

- nose tip of body of revolution
 

- suction slit
 

and for a turbulent boundary layer1 

- the laminar-turbulent transition point 

The end of the boundary layer calculation occurs at the following 

!points for the laminar boundary layer 

- one suction slit 

----- the-l-am-nar,-.turb.u-lent-tr-,ansitJion.-,point. . 
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- or the laminar separation point. 

-and for turbulent boundary layer, 

the end of the range of validity of the integral conditions in 

the area near the tail tip of the body of revolution 

- or the turbulent separationkpoint. 

5.5 	 Initial Calculation
 

At the nose tip (x = 0), the step formulas (5,22) fail because the
 

thickness 	parameter is Z0 /1 = 0.
 
-
Therefore, in-th'e Tirst step 'x"-0 /i the step-formulas (5.22) at
 

the nose tip are replaced by relationships which are derived from
 

conical flow: J-------=
(BE3( )I-cons ' 
H32 1 H32  32 - _(Eo..
 

Z1 F(5.25) 
I F F 

and the cone angle and the Hartree lparameter of the plane replacement
 

flow 
 . 

gE 3-T-'f} (5.26)
E
 

.are 	specified by the cone angle
 

=22 ar - r1I (5.27) 
- arctan C. 7 
icn
 

In the plane case, the relationships for the first step are:
 

H 	 =H H ABi
32 32 32
 

0 (5.28).
 
1 F22 

7-	 l+mF _T 

where
 
- arc tan 
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I 
PTifh the assumption that Hartree velocity profiles occur at the nose /25
 

tip, the relationship H32(B and can be approximated by 

H3. = 1,5720+ 0,1561
32E 

iE - 0,2470 
E 
+ 0,2244 2' 

'E 

-4 - 0,0804 BE
E 

'for 0 - E (5.30) 

H32 = 1,5720+0,2258 iE+0,7663 2 +5,3850 3 
<
for -0,1988 <EE 0 E 

The stagnation point flow
 

rotationally symmetric '(1= 1; E 0,5) H32 1,6113 

plane = )H = 1,6250
~ 1) 32 

and the plane plate flow 

=0: H32 = 1,5720 

are contained as special cases.
 

5.6 Determination of Friction Drag and Pressure Drag
 

Because there is no boundary layer separation along the tail part,
 

the external drag that is the sum of the friction drag and pressure
 

drag of a body of revolution can be determined from the momentum loss
 

in the wake. According to Young [27] and Pretsch [281, the drag coef­

ficient of a body of revolution is the following with respect to sur­

face area
 

W N 22 oo (5.31) 

with the following definition of momentum loss area
 

C 2'r F u__ (lU___) rdr (5.32) 
r. 

By using the integral conditions for the momentum (5.4) on the wake
 

(T = 0), the momentum loss area E at a large distance behind the body/26
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(p = p.) can be reduced approximately to the boundary layer variables
 

to the tail tip
 

5+H
 
u°h (5.33)
:
E)e= G®hu2h - --) 212hU 

In the immediate vicinity of the tail tip, however, the boundary
 

layer calculation fails because 6flthe integral conditions (5.8) and
 

(5.9). This is because the condition 6/r << iis not satisfied. It
 

is found that the boundary layer calculation must be terminated (x xE)
 

;in the case where 62 /r > 1/15.
 

In this investigation-,­

- laminar boundary layer suction 

- high Reynolds numbers 

- thick bodies 

however, we have 1 -x E/I <<'l so that the friction drag component of 

this region . .. . . . . 

AWR- 4 2 ru-f d(2S) 

w- ------0c0 0/12 o 1 ft
i ~--


'can be ignored, compared with the total drag coefficient c__ due to 

,the small local wall friction and the small body rad-ii in the vicinity 

'of the tail tip. In addition, in the case of bodies with sharp tail
 

tips, the shape parameter in the tail tip region is almost constant
 

const. for --- < -<

H 2 x ) = H 21 = H 2 

?i h]z according to (5.33), we have
 

' UE ) 5+HI12E
 

) 2 (5.34)
,
e E 

,and consequently,
 

:+H12E 

eco = eh (-)- - (5.35) 
01)
 

- . -2- ­
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/27 so that the external drag coefficient is 


5 +H12E
 c 2 E (U,:rE) 2 (5.36) 
CWN 0 U2 

According to Scholz, [29], we have the following relationship for
 

the momentum loss area
 

=2ir
E 2 (1+3 
so that the drag coefficient can be expressed by the boundary layer
 

variable at the position XE!
 

r " " %. 5+H12E 
w 47r -[ (1±2 E (- )/ 2 (5.38) 
WN Z2 2T 0E 

where
 

-1 [ F Re) n 

H12 E f(H32 E) according to (5.19). 

In the plane case, the boundary layer is calculated to the trail­

ing edge. The drag coefficient expressed by the trailing edge varia­

bles is then given by
 

W f2h u h 5+H12h (5.39) 
C qcN = 2 - ((-) 2 

WN q9 CO 

where
 

"2h - Zh/ 1
[(uh Re,)nI 

H12h - f(H 3 2 h) according to (5,19) 
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The wake behind a flow body is turbulent at high Reynolds numberW..7 
I the end of the body, one mustO-11 	for laminar boundary layer suction to 


establish the latest boundary.layer transition for the drag calculation.
 

Body 	of revolution: L I]-< IEl 

plane contour: 	 X 

Comparison calculations for the drag determination are given in
 

'Chapter 6.5.
 

6. 	Determination of Instability Point and Transition Point Over Bodies
 
of Revolution.
 

6.1 Preliminary Remarks
 

The laminar-turbulent transition point over a body in the flow
 

could not be exactly calculated up Ito now, because the way in which
 

,turbulence is produced is not clarified.
 

In experiments, Schubauer and ,Skramstad [303 showed that Foundary
 

:layer transition must be attribute& to an instability in the laminar
 

,boundary.layer.
 

If the disturbances in the laminar boundary layer-cafsed by inci­

ident flow turbulence sound, vibration, or surface roughness are small
 

then the transition process can be divided into three regions:
 

I. 	 stable laminar boundary layer
 

All 	perturbations are small in amplitude, and affect the lami­

nar 	boundary layer and decay in time,
 

II. 	Unstable laminar boundaryilayer.
 

At least a few partial oscillations of the perturbation motion
 

are built up. In the terminal phase, secondary and high fre-,
 

queny perturbations are superimposed', which forms a three­

dimensional vortex system.
 

I-. 	 Laminar-turbulent transition range
 

Due to an instability in the secondary flow, turbulent spots
 

are produced in the laminar flow, which propagate during the
 

* downstream motion until the completely turbulent state is /29
 

, reached.
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I	 
a . The determination of'the instability point after which there is 


!buildup of the disturbance motion is dis-cussed in stability-theory.
 

of solving the Orr-Sommerfeld per­'Mathematically.the problem consists 


,turbation differential equation, which.was successfully done, first by
 

and later on jby4 Linj [32] for the Blasius profile of the
iTollmein [31] 


lhen there is a changing pressure gradient, the
,j-la'e boundary layer. 


calculated by Schlichting
instability of the laminar boundar' layer was 


This was done by Pretsch
land 	Ulrich [33] for the PohlhausenP6-profile. 


[34] 	and Tetervin [35] for HartreeIprofiles.
 

The stability of the laminar boundary layer with suction was in­

vestigated by Bussmann'and Muen-z [36.] or- the as.ymptotic suctionpro-


It was calculated by Ulrich[37, 38] for the-similar suction
file. 


profiles given by Iglisch and by Schlichting and Bussmann. As long as
 

;the transition process is not completely clarified, only empirical re­

lationships can be given for the lbngth of the buildup length. The
 

so short according to experience that
:transition region, however, is I
 

in the first,approximation it can be ignored, and can be replaced by
 

the transition point which refers to the beginning of.transition.
 

Since in the case of small _prturbations, the transition point
 

lies between the.instability pointland the laminar separation point,
 

;these two limiting positions are often usedas the transition condi­

tions. In the case of high Reynolds numbers, the distance in the
 

instability point and separation point is very large.
 

More recent transition criteria are based on stability theory.
 

Michael [39] gave an empirical trahsition criterion for plane boundary)
 

layers which later on.was analyzedtheoretically by Smith and Gamberoni
 

[40] using the build-up diagrams of Pretsch. [41]. The criterion of
 

Granville [42] also considers the influence of the pressure gradient
 

on the length of the buildup path. In the case of plane flow, It is /30
 

success the 'transition point using these
possible to predict with some 


criteria, but information for bodies of'revolution is not reliable.
 

62- Stability Criteria
 

showed that the results of the stability theory can
Pretsch [43] 
to the rotationally-Symmetric case,be transferred from the plane case 


as long as 6/r << 1.
 

Figure 4 shows the calculated instabilities
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- for the Blasius profile of the pblaneboundary layer of Tollmien
 

[312 and Lin [32],
 

- for the profiles of a boundary layer with a pressure gradient of
 
* Schlichting, Ulrich [33] for Pohlhausen-P6 profiles
 

* Pretsch [34] and Te tervin [351 for Hartree-profiles 

in the form 
Re d21 = f(H 3 2)_ 

The various stability calculations-agree well. The pressure drop
 

(H32 > 1.5726) has a stabilizing effect on the laminar boundary layer,
 

whereas a pressure increase (H32 < 1.5726) has a deep stabilizing ef­

fect.
 

With suction there is an even greater stabilization of the laminar
 

boundary layer.
 

The results of the stability calculations of
 

- Bussmann, MuenzE36] of the asymptotic suction profile
 

- Ulrich [37], for the Iglisch suction profiles,
 

- Ulrich [38], for Schiichting-Bussmann suction profiles,
 

are also shown in Figure 4.
 

One sees that the influence of a pressure gradient and suction on
 

the stability of the laminar boundary layer can be approximately re- /31
 

placed by a single criterion. The following are used for approximating
 

the stability criterion:
 

- in the case of a pressure increase, the results of Pretsch [34]
 

for Hartree-profiles,
 

- for a pressure drop, the results of Ulrich [37] for Iglisbh
 

suction profiles with a limiting case of asymptotic suction profiles.
 

Approximately, one obtains the following for the position of the
 

instability point as a function of the shaped parameter
 

H32)1 ' 54 2  log Re& 2 4,556 -76,87 (1,670- (6.1) 

in the range 51 5 0 H < 1 6667. 

the ange32 

Using the approximation (6.1), in the case of a pressure drop,
 

the influence of a pressure gradient is very accurately represented
 

up to the rotationally-symmetric stagnation point CH 1.613).
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6.3 	 Transition Criteria for PlanelFlow 

6.3.1 	Discussion of the Known Criteria
 

By evaluating the transition measurements which have become known,
 

empirical transition criteria havelbeen found which are similar to the
 

1parameters of stability theory. It is assumed that turbulence is pro­

'duced by the fact that the perturbation amplitude reaches a-certain
 

'level. 	The buildup of the perturbations depends considerably on the
 

pressure gradient of the flow.
 

Granville [42] assumes that for plane flow, the length of the
 

buildup path characterized by the Reynolds number difference
 

<ARe =
5
 Re6- Re , ­

ionly depends on the average pressure gradient between the instability
 

;point and the pressure point, with the assumptions made. It is given /32
 

by the following expressed in terms of the average value of the Pohl­

hausen shape-parameters, - _. 	 . 

, dx', 	 (6.2)
 

where 	 2
 

a (Ylj2)2 w
 
2 w
 

Prom the corresponding evaluated transition measurements, the em­
pirical law
 

Re-2u - Re& 2 = f(6-)2 	 (6.3) 

,has 	been derived. -

Smith and Gamberoni [40] assume- that the self-excitation of the
 

Tollmien-Schlichting-WeTlen waves Ae presentq the dominant process be­

tween the instability point and the transition point, even though the
 

assumption of small perturbations is no longer satisfied in the vici­

nity 	of the transition point. They introduce an apparent amplification
 

ratio, at the beginning of transition, fo which the ampltudes of the
 

Tollmien-Schlichting waves are to 3e subjected With the prevailing
 

critical frequency. Using the built-up diagrams established by Pretsch
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[41] for Hartree profiles in [40],1numerous transition measurements
 
have been evaluated. It has been found that the apparent, amplifica­

!tion ratio 
 I
tu
 

a eJ idt e =81031 (6.4) 

can be used as the transition parameter, where
 

ir< 0 damping 
the damping buildup is 1 ­

....__ 0 ,bu7idup
. -


F
 
This finding was also confirmed by Ingen [441. 

With this convention, it was possible to subsequently correct /33 

fthe p7re empirical transition criterion of Michel [39] in [40] 

Rec 2 = f(Rexu) 

jThe criterion was approximated as follows in [40]
 

0 '4 6 (6.5)
Red 2 2u= 1,174 ReXU(65 

for '3 105 < Re x < 
U
 

The bodies of revolution, the transition criteria C-6.3) and (6.5).
 

are not suitable; because the buildup ratio is expressed by boundary
 

layer variables which are different in the plane and rotationally-sym­

!metric cases. The.suggestion of Granville [42] to use the criterion
 

t(6. 3 ) for plane boundary layers inlan unchanged form for rotationally­

symmetric boundary layers must of necessity lead to inaccurate results.
 

However, Smith and Gamberoni [40] point out that in the case of bodies
 

of revolution, the criterion (65)must be applied to the plane replace­

ment boundary layer. However, this does not consider the fact that the,
 

boundary layer transformation can only be performed along the buildup
 

path.'
 

29 



6.3.2 Suggestion for a new Criter-ion
 

Because of'the deficiencies of the transition conditions mentioned
t 

above, we suggested a semi-empirical criterion which can be transferred
 

from the plane case to the rotationally-symmetric case. Since the tran-
I 
sition points will be less reliable, the more single processes of the
 

transition process are considened, and the instability point can be de­

termined very accurately, we will Iconsider the buildup path separately.
 

Therefore, in the iow ,inste ad of considering the transition bri­

terion, we will give for the length of the buildup path.
 

Using the transition conditioln (6.4) we can derive a criterion for
 

the length of the builduppa-th-ln-the,
-case-,o f slmi-ar velocity profiles
 

( or H32 = const.) between the instability and the transition point /34
 

using the buildup curves of-Pretsch [41]. In this, the influence of
 

I the pressure gradient and the suction [YW7 included. 
According to [41],, Figure 5 shows the following buildup curves 

see
[34]; 

stability condition 

according to 

0: 

= 9: transition condition according to [40] and 
.... [4'4L] I1 

For a constant-shaped parameter, the distance between both curves
 

expressed by the boundary layer variiables given in Chapter 5,.where
 

Re& 2u - Rec 2 3 (H32) (6.6) 

where 'H f3) = const. according to (5.30) 

is a measure for the length of the'buildup path.
 

The evaluation of the transition measurement for wing profiles
 

with low turbulence initial flow [30, 46-54] done by Moeller [45] shows 

that the relationship (6.6) ms,/amorereliable criterion for the length,
 

of the buildup path for constant shape parameter than the one discussed
 

,in6.-3-l, if we introduce the following average value for the shape
 

parameter for instabilitV and transition 
 _ 

Rec-2 u - Re s-, = f(H32)ReA2-Ce2]/6,7) 

-- 1 xdx x' 
H32 F J/ '32H7F7I(]'') J 

x30
 



This is shown in Figure 6. The criterion has been confirmed by measure­

ments if one ignores certain scatter, which is due to the differences
 

in test conditions of the individual authors.
 

With special consideration of the transition measurements [30],
 

criterion (6.7) is approximated by the following expressions: /35
 

log (Re62u - Re& 2 = (1,5150-H 3 2)­-) 1,6435-24,20 

for 1,5150 H3 < 1,5600 

2 715(6.8)-
715
 log (Rec 2 - Re 2 ) = 3,312-967,5 (1,6250-H 32)2'


for 1,5600 < H-- - 1,6250
32
 

This is shown in Figure 6, so that the transition point of a plane
 

laminar boundary layer can be determined directly.
 

The criterion of Granville [42] shown for comparison in Figure
 

6 only gives approximately the same values in the central shape para­

meter range.
 

6.LI Transfer of the Transition Criterion to Bodies of Revolution
 

Smith and Gamberoni [40] determined the the transition conditon
 

(6.4) also applies for rotationally-symmetric boundarylayers. This
 

means that criterion (6.7) or its approximation (6.8) can be trans­

ferred to the plane replacement boundary layer of a body of revolu­

tion using the Mangler transformation [12].
 

- Re = f (H3) (6.9)
Rej-2 u e 23 32
 

Using the assumption
 

U = ud(x), (6.10) 

the coordinates of the plane replacement flow are the following for
 

a body of revolution with the contour rCxt),
 

jfr2r1(x ') dx'
x L (6.11)
 

""' _ r(x')

Y L Y
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where the constant L is a characteristic length. However, if we intro­

duce L = L(x') in such a way that everywhere /36
 

x7 =x (6.12)
 

then we obtain
 

L~= ~ 2(x, Lf 
S dx' (6.13) 

x
 

The boundary layer transformation starts at the instability points, so
 

that
 
Reoc2 Red 2 , 

and because of (6.11)
 
(-j)= 

Consequently, the Mangler constant is calculated from the following
 

using a dimensionless notation
 

L 1 ~ ' d(
1- 7x T/r (6.14)
 

-s
"- __ x - xl 

in the range T---


Using the assumption (6.10) and the relationships
 

&.0 
according to (6.11), the transformed thickness parameters are
 

ReS 2 = r/I Reo,-2 Red2 = -Lid- Z Re (6.15) 

and the transformed shape parameters are
 

32 
 H32
 

(6.16)
-- I x'VI 

32 32 x'/=-x,/I f 32 T T 
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T en
 
The expressions (L/i) according to (6.14) and H32 according to /37
 

(6.16) are formally the same, and are calculated in steps according to
 

the boundary layer parameters (5.7). This means we have the following
 

step 	formulas in dimension!essform for the Mangler constant
 

2 2Ax';'i-If F 2 r (r)1 
2() 2 (,)2 ++

(_Li-IL L 	 F (T i 
i- i i,i-1 i-i(6.17) 

and the average shape parameter is
 

=H32.	 H32i~ Ax'i,i>1 [21_ 2J+- 32 I 	 H32i-1 H32i (6.18) 

The step along the contour Ax!ii/I is specified by (5.24). The
 

instability point is the initial point.
 

The transition measurements for two bodies of revolution with a
 

low turbulence incident flow [54 and 55] have been evaluated using the
 

above method, and this is shown in Figure 6. Because of the fact that
 

the measur.ed points of the bodies of revolution do not have a greater
 

scatter than those of the profiles, we therefore have found an experi­

mental verification of the transfer rule for the criterion (6.7) pf two,
 

bodies of revolution.
 

6.5 	 Comparison Calculations
 

The comparison calculations were performed using the computer
 

program discussed in Chapter 8.
 

The criterion for the instability point and the transition point
 

can most easily be tested using a plate in longitudinal flow, as shown
 

in Figure 7. The stability criterion (6.1) contains the exact solutions
 

for the Blasius profile of Tollmien [31] and Lin [32] in a satisfactory /38
 

way. The measurements of Schubauer andlSkramstad [303 are well-repre­

sented by the transition criteria (6.8). The calculation drag coeffi­

cients for natural transition and completely turbulent states agree
 

well with the laws given in [101.
 

The transition measurements and the drag measurements of Boltz,
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!Kenyon, and Allen [54, 55] are good test examples-for the rotationally­

]symmetric case. As Figure 8 shows, there is good agreement between the
 

!calculated results and the measurements. The theory predicts somewhat
 

'longer buildup laminar paths at high Reynolds numbers, and accordingly
 

at lower drag coefficients. A calculation using the calculated transi­

tion point positions showed that there was no difference to be *detec
 

,ted between the calculated and meabured drag coefficients.
 

tl
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7. Influencing the LaminarBonrfdary-.Area byMeans of Suction Slits
 

7.1 Preliminary Remarks
 

Suction of the boundary layeriparticles near the wall causes the
 

following:
 

- reduction of the boundary liyer thickness
 

- the velocity profile becomes fuller, and
 

- the potential flow is influenced by a sink effect.
 

By changing the boundary layer variables, a stabilization bf the
 

1aminar boundary layer is brought about, as can be seen from the sta­

bility diagram in Figure 4. t
 

Even though a continuous distribution of suction over the sur­

face would be}r optimum from a suction power point of view, only a local
 

suction through slits arranged perpendicularly to the flow direction is
 

possible r in technical applications.I Also gaps or perforated strips 

could be-used, as shown in Figure 9. Since the influence on the lami- /39
 

:nar boundary layer is very similarin all three cases, we willonly dis­

cuss suction slits in the following.
 

In the boundary layer calculation, the suction slits represent
 

discontinuity points, because the assumptionof the Prandtl boundary
 

layer equation at the wall vw/us. i/jr is violated because of the con­

-siderably 
 increased suction velocities. Influencing of the boundary
 

layer at the suction points must theref6re be treated separately. Two
 

approaches are possible:
 

a) the suction points are considered as strips with a finite
 

width, with an intensive area of suction.
 

For this case, exact solutions have been given by Rheinboldt
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[56], Smith and Clutter [57] and Krause [58], as well as the approxi­
:mate solutions of Bethel [59] and 
uest [60] for specific applications.
 

b) the suction points are considered as slits with a negligible
 

width. In this case, Walz [61] and Wuest [62] suggest to, approximate­

,ly determine the boundary layer parameters behind the suction point
 

efrom the started residual profile iCamputation principle).
 

The solutions. of a continuousisuction over a path-are complicated.
 

They are also restricted to a small suction velocity range which is not
 

lof practical interest. The amputation principle can be used for an ar­

'bitrary suction velocity, body shape, and pressure distribution.
 

In the followding-we-will give the-,general-approximate relationships
 

for influencing the boundary layer iby means of suction slits according
 

,to the amputation principle. These are valid both for the laminar and
 

the turbulent boundary layers. After this, we will apply this princi­

ple to the laminar boundary layer and will investigate the effects of
 

,suction slits on the laminar boundary layer.
I 
We will show that the sink effect of the suction slits is in gene­

:ral negligible because of the low sucked-away amount, when the boundary
 

layer is influenced. /40
 

7.2 Approximate Solutfon According to Ampttation Principle
 

7~- U 6 us 

xi 

Boundary Layer Influencing by 

- Means of Suction Slit 

The amputation principle of Walz [61] is based on the following
 

idea: we will assume that a velocity profile I exists ahead of the sue­

tion slit, which is divided up into the following:
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- a region near the wall of hlight yQ which is sucked.into the
 

slit; 
 I
 
- an external region (residual profile) which goes along the stag­

:nation line, which goes on through the slit. It is deformed without
 

losses in such a way that the incident velocity u(y ) decreases at the
 
Q


'rear slit edge to-u = 0 (wall condition). It forms the initial profile
 

II for the boundary layer development behind the slit.
 

7.2.1 Changed Boundary Layer Variables Behind the Suction Slit
 

The changed boundary layer variables II behind the slit can be. de­

termined from the residua, profi!ei-with. the assumption that the mass, 

momentum, and energy of the initiated residual profile Idonot change,l 

'during the motion over the slit
 

If we select a single parameter velocity profile /41
 

( -) f( r, H3 2 ,) 

.,with the profiles according to (5.1)
 

!i[ ]- - ) ] 

2L3 -- 3--u-- Iu u'), d 

0 

and the initiation point is at the.relative height'tq = y /&- then 

the boundary layer variables of the residual profile are
 

U2 

(U) (UJ (7.1) 

36u u d 
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In this way we obtain the changed variables for the boundary layer
t 
,calculation behind the suction ;lit
 

Z, J11 (7.2) 

H 2 c3u]Ijl 

In order to again order the velocity profile II into the family of 

the single-parameter velocity profiles, instead of the shade parameter 

_ /42H3 2 1 1 we will introduce the averagIed value 

H (' (7.3) 

32], (H32 +1 32R (73) 

where
 

H32f (H121j)= = f ( 7 ) (7.4) 

The functional relationship in (7.4) is unique for single-parameter
 

velocity profiles. Theshape parameters H' and H" deviate only
 

slightly from one another.
 

In the case of single parameter velocity profiles ahead of the
 

suction slit, the boundary layer variables behind the slit only depend
 

onthe shape parameter H3 2 1 and thet relative suction height no.
 

7.2.2 Suction Variables
 

By using the following definition of the relative suction thick­

ness
 

-)d (7.5)* (= 0 Sc 

we can calculate the amount of air sucked away by a slit corresponding­

,to the suction height lQ, referred to the slit length b (body of revo­

lution: b = 2ir)'. 
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b Q&- u Q
T= U(. Q
 

or the local suction coefficient amount
 

qb- =6.u (7.6)CQ_ U Q U T 

Cr0
 

In addition, we define the nondimensional suction amount coefficient
 

c c - 2/- - (7.7) 
Q a ReS2 -- /6, 

where /43
 

Re Re, 

Re2ftT71 Zi u,o 

which only depends on H 3 2 1 and nQ for a single parameter velocity pro­

file ahead of the slit.
 

According to Gregory [631, the disturbance of the boundary layer
 

due to the slits is minimal if the slit s is equal to the suction height
 

TIQ. Accordingly, the optimum slit width is
 

T qfr- (7.8) 

The nondimensional slit width
 

* s Rel us _'IQ 
s T Rec,2 U. fi " (7.9) 

only depends on H 3 2 1 and flQ for single parameter velocity profiles.
 

Using the continuity law, we obtain the average suction velocity
 

in the slit as follows:
 

Urn, ro (7.10) 
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7.3 The Amputation Principle to the Laminar Boundary Layer
 

7.3.1 Suction Relationships
 

The relationships in Chapter 7.2 apply for any boundary layer
 

state. Here, we will derive relationships for influencing the lami­

nar boundary layer by suction slits. We will assume the laminar velo- /44
 

city profile ahead of the suction slit can be approximated by the single
 

parameter model of Geropp [161 ... ..
 

u - 1-(I-r)c (+alq+a2 2 +3 3) (7.11)
 
Us
 

with the coefficients
 
a 1 = c-c
 

a A c (c+) 1
 
02 2 cs+ 2 	 (7.12)
 

a A c (c+1) + c (c+1) (c+2)
a3 2 c - E 2 + 6 

and 	the following analytic expressions for
 

c = 5,22550 + gl,30839A +10,85171' 

The Pohlhausen-shape parameter which occurs in these relationships is
 

related to the shape parameter
 

fy 	means of the following approximations
 

(7.14)
A= 38,745 - 7,1178 B2 + 6,3726 j3 

and
 

B = 	-2788,62 + 5439,97 H32 - 3539,62 H32 + 768,15 H32 

for 1,5237 H32 1,5729 

2 3 C7.15) 

= -35461,01 +67123,15 H32-42356,63 H32 + 8910,45 H32 

for 1,5729 < H32 C 1,6239 
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/45 The Geropp model is valid in the following range: 


-0.1988 < < 1.0 \ iane ] 

Separation profile I stagnati(n_
point profile,.< 1.5237 <-H32 < 1.6239 

The boundarV layer thickness used as the reference variable for
 

the suction height is defined in many ways*:
 

- in the boundary layer theory of Prandtl C = y(U/Up = 0,99) 

- in the approximate model of Geropp &t=y(u/u&p = 1,0). 

One must distinguish between the following relative suction height
 

ri
 

of practical interest, and the theoretical quantity
 

G=
 

which occurs in the suction relationships. 

The relationship G 

S =f(H 3 2) 

is shown in Figure 10 and can be approximated by the following polynomial
 

- - 5378,67 - 12707,78 H3+ 11189,97 H -4346,14 H3+ +627 H4 

sO 32 32 32 32107H16 
for 1,5237 - H32 < 1,6239 

The boundary layer variables ahead of the suction slit are written
 

using the.velocity model of Geropp
 

*The quantity 62 is introduced as a reference quantity for the suction
 

relationships independent of the selected velocity model, but the eval­
a-tio. of the following integral expressions would become much more
 

difficult.
 

40 



/46 

f (I - F' 
-j 

I -61 U -d-) = 2 (717)
1 0i
 

63 u' )2 1d-2-31 +1 

4 C5. U 21+3U 6 

The integral expressions 

I of ( )C +a1 + O2 + a 32)dq 

3 3 dq =f(H ), (7.18)21 = l (_ )2C(,+,lr +a2 2+ 3 2 

13, = )3c(l+,+, 2 a 3)3(I- + d 

are evaluated in the appendix.
 

A-crcordingly, we convert the boundary layer variables of the re­

maining profiles
 

dlii_
 

fI-n(I- ) dq = I] 

S2I1 _uu 

6u 6 

s-= f f dr = Ii -I1 3 

the boundary layer parameters of the remaining profile
 

[S2[11/III[2] (7.20)
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. ... .... .... /47
 

1321 o2 n/ = 2'-TI/2 13n 

(7=20) 

(continu ed )
l 

_f(H 2 - l- _ _ ­

1_2_/ In - 12R 

and the nondimensional suction variables
 

- = _-__ IIc d/d+ 
T
Qc2-

6 li-
G T 2i (7.21) 

0 0 
qQ _ qQ
 

The relationship,H" =f(H )in (7.20) is approximated by
 
32a 1211 

+ 0,276058 H2H"3 2,660594 - 0,922220 H 
4 1232R3 123 


- 0,036478 H12+0,001836 H12
 

,,or 1,5237 H 2 , 1,5726
 

(7.22)
H32. 1,741773 - j0,038887 H12 - 0,072234 

fTBF 1,5726 < H" < 1,6667 analog (5.15) 

3211 2 
-


- 1,4418 + 0,07444 (3,738 H 1 2H 2 

-o, H2 > 1,6667 analog (5.16) 

The integral expressions
 

i =.[(-) c2C (+al +a2q2+a 3133,2dr
-) 2 


T =,(1) (1+aq+a 2q +a3 ) dqQ

H 2 3 = 0(7.23) 

3 = (1-q)3c (l+alq + a29 + a3 q3)3 di 

are evaluated in the appendix.
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7.3.2 Results 'for Arbitrary Pressure Gradients
 

Figure ll.shows the velocity profiles behind a suction slit which
 

was produced for different relative suction heights from the Blasius
 

profile ahead of the suction slit.! Much more full'velocity profiles
 

occur already for small suction heights.
 

For arbitrary pressure gradients, we have plotted the following: 

- Figure-12, the shape parameter behind the suction slit H3211 

Figure 13, the ratio of the thickness parameter before the 

suction slit; ZIi/ZI 

- Figure 14, the:nondimensionfal suction-amount coefficient c
iQ 

- Figure 15,'the optimum nondimensional suctionwidth, s*. 

er aeadof 

and the relative suction height , the shape parameter H can vary 

As a function of the shape parameter ahead of thehe suctionsctin slitsit H 321
 

321
 
in the limits ­

1,6239 ,.I
1,5237 H32 


for which Geropp velocity model istvalid. For complete boundary layer

I -_­

suction removalr 0 - = l,'one obtains a rectangular profile CH3 2) 

with 2 1 /Z = 0 as a limitingjvalue behind the suction slit. In 

addition, Figures 12 to 15 show the asymptotic suction profile as a 

limiting case for continuous suction. 

In the case of the plate boundary layer (H32 1,5726)', there is
 

a relationship between the suctionlamount coefficient c* and the suc­
i Q 

tion height rr' which is shown inl Figure 16, Since in this case there
 

is only one free parameter, the shape parameter behind the suction slit,
 
the thickness parameter ratio ZII/ZI and the slit width s* can be repre­

sented as functions of the suctionamount coefficient cQ* as shown in
Q

Figure 17. 


In order to evaluate the slitsuction, it is important-how fast /49
 

the suction effect drops off behind the slit. The variation of the
I 
boundary layer parameters H32 and Z/I behind a suction slit shown for
 

a flat--plate as a function of-the suction amount coefficient c shows
 

the following:
 

- The shape parameter increase decays behind the suction slit, as 

the thickness parameter reduction still has a large effect at a large 

distance behind the slit. 
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as the suction amount increases, the shape parameter increase 

along the trailing slit edge increases, but it decays faster because 

of the related thickness reduction. 

This is shown in Figure 18. I 
This .means that for a certainisuction amount, the influence range 

of a suction,slit becomes a maximum. For large suction amount coef­

ficients, the laminar boundary laydr behind the slit becomes thinner,
 

but not more stable.
 

Figure 19 shows the example of a Fpane boundary layer, The shape
 

parameter influence behind the suction slit decays faster, the thinner
 

the boundary layer.-ahead-of the, sl-t..-. Therefor-e,--we- can already draw
 

the conclusion that as the boundary, layer thickness increases, the slit
 

separations increase in the flow directioh.
 

7.3-3 Comparison Calculations
 

As in a test example for the approximate solution for determining, 

the laminar boundary layer influence bysuction -slits, we can use a 

:suction strip over a plane plate,, which has been discussed by several 

authors. I 
Krause [64] calculated the influencing of the boundary layer by
 

,suction strips of various widths for a constant amount of sucked-off
 

flow, as shown in Figure 20. If inthe case of slit suction, the cor­

responding suction.amount coefficient is
 

S -fRe S 
C -V x0 _U, 6-4Q-xQ w Reg- 2 - 0,6641 

If the boundary layer influence plotted against the width of the /50 

suction strip is- extrapolated to the width of the suction slit, then 

we find the following: 

- The thickness parameter reduction ZII/Z I through a suction slit 

agrees well with the thickness parameter reduction through a suction 
'strip. 

H 32
- The shape parameter increase (H32 - ) through a suction1 


slit can not be completely verified by tU exact solution for a suction 

'strip; for example, we have to consider the fact that at:Re 10 8 the 

narrowest investigated suction strip is about 220 times wider than the 
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corresponding suction slit.
 

- The comparison calculation given in Figure 21 shows that for the 

same suction amount, the influence on the boundary layer behind a suc­

tion slit according to the amputation method and behind a suction strip 

according to the calculations of Rheinboldt [56]; Smith and Clutter 

[57], Bethel [59], and Krause [64] are very.similar if the slit is ar­

ranged in-the middle of the strip. The relationship.
 

S/XO V 

1+s/x 0. 0,6641 

exists.
 

isThe reliability of the amputation method has therefore been proven.
 

Therefore, the results of the slit, suction calculation apply approxi­

mately for narrow suction strips.
 

7.4 Sink Effect of Ring-Shaped Suction Slits
 

An additional velocity is induced through each suction slit, which
 

is superimposed on the potential flow. /51
 

In 
U6 , U61 

'd- x 
xc 

Influencing of the Velocity Distribution By Means of a Suction Slit.
 

In the case-of a body of revolution, we have the problem of esti­

mating the additional velocities induced by ring-shaped.suction sinks'.-

We will assume that a source ring (XQ. rQ) with yield qQ (cP) ­
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qQ = const. ,nduces-the following axial andradial elcity c6mponents., 

Y~E olhfT P{Thi7KF,-I 

qQ *
 
Uqx -

2lrrQ Uqx
 

(7.24)
 

Uqr 
 2rr 
 Uqr
 

The reduced, induced velocity components! .... /52

I . __ * ] :-


Uqr rQ 'r 

werEabuttRd-by Kue-chemann and deber [65] as well as Dreger [663.
 

SIf we introduce for the yield q0 for the suction amount coefficient cI
 

,according to (7.6),.
 

°
Q cc U0 (7.25) 

Q 2irr , 2 irr 

then it is possible to write the 'velocity components in a dimension­

less form
 

Uqx a 0/12 * 

UC 41r2 (r./1)2 uqx 

(7.26)

U
 

qrC 0 0/1 2 U* 

U O 412 (r/1)2 qr
 

The tangential component-

Uqx dr Uqr 

Uqt _ U uC Uq (7.27) 
Urn dr 2 UCO 

+ ( )
 

is the additional velocity induced on the body surface by a suction
 

ring.
 

For small suction amount coefficients, the sink effect is restric­

ted to the immediate vicinity of the suction sink, so that when there
 

are several suction sinks, only the influence of the two adjacent sinks
 

46
 



Uu. _U~qi- + (7.28) 

U U U U 
00 Co 00 Co 

- X Xi/53 
has ' to be considered in the range - -T - 7 

The additional velocity that isapositive ahead of the suction
 

sink is negative behind the sink. This !means that there is a pres­

sure drop due to the sink effect in the vicinity of the suction sink,
 

which is superimposed on the shape-determined pressure distribution.
 

Pgudges )2lc = i -(7 

The sink influence is estimated for a circulaP cylinder in axial,
 

flow having a suction ring in the center, which is given in Figure
 

22. Because of r = rQ const., and dr/dx = 0, we have the followingj 

for the circular cylinder 

U U 

Since the slit width in relationship to the boundary layer s/6
 

r< 1! the additional velocity in the immediate vicinity of the suc-/
 

tion slit depends substantailly on the boundary layer thickness and
 

increases with increasing incident Reynolds number.
 

As can be seen from Figure 22, the additional velocities induced
 

by ring-shaped slits over a body of revolution in the case of laminar
 

boundary layer suction are so small compared to the incident velocity
 

over the Reynolds number range of interest that they can be ignored.
 

7.5 Optimum Suction
 

7.5.1 Optimum Position of Suction Slits
 

In technical applications we are interested in the configuration
 

of the suction slits, so that a body surface can be made laminar using
 

the minimum number of suction points.* /54
 
*Technically we are also interested in the question of how the body surface
 
can be made laminar with the minimum amount of sucked-in flow for a speci­
fied position of the suction slits. The maximum possible slit separations
 
are then taken from the present paper.
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The suction relationships in Chapter 7.3 say nothing about the po­

sition of the suction slits, but instead contain the following free 

iparameters: 

- the boundary layer parameter ahead Of the suction slitsIZ. , H 

and the relative suction heights _ _ 

A condition for avoiding boundary layer transition is that the la"
 

minar boundary layer remains stable in the entire suction: region. If
 

#the state is partially unstable, the boundary layer perturbations would
 

,be built up in an uncontrollable manner in spite of suction, and this
 

twould lead to premature transition. The stability criterion (6.1)
 

therefore is a boundary.cond-it.ion for optimum suction of the laminar 
!boundary layer. 

The first suction slit is an exception to this, ahead of which one 

1can allow an unstable laminar boundary layer- as experiments bv Pfenni­

;nger have shown [61 - if there is a sufficiently long suction region 

:behind it, which serves as a damping path. Therefore, we..will introduce 

!the transition criterion (6.8) as the boundary condition for the first 

suction slit. With this assumption we can bring about a substantial 

ireduction in the number of slits because as will be shown later on, 

the slit separation required for the stability criterion is small. 

I By introducing the stability Condition or the transition condition 

jinto the suction relationships, we [specify the bo.undary layerpar-:ars ­

'meters ahead of the suction slits.1 The position-of the suction slits 

Idepends only dnthe relative suction height-i for a specified body 

.shape and incident Reynolds number.-

The region of influence of a suction slit can not be arbitrarily /55 

extended by increasing the relative suction height, as we showed in 

Chapter 7.3.2. it becomes optimumat a relative optimum suction height 

:Qopt"
 
When optimizing the relative suction height for maximum slit sepa­

ration, we will assume the same relative suctionheight forll-s-uction
 

slits.
 

The end of the suction region is one of the free variables.
 

17.5.2 	 Total Sucked-In Flow
 

The total suction amount of ajbody in a flow with nQ suction points
 

is,
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Q = Q.
 

The total suction amount coefficient of a body of revolution is
 

calculated from
 

Q _ 2Tr r 

u /i2 . T (7.30) 

where the local suction amount coefficient is defined by (7.6).
 

Accordingly, the total suction amount coefficient of a plane con­

tour is
 

Q _ fQ 

cF i CQ. (7.31) 

7.5.3 Consideratfin of Suction Power -in the Drag Balance
 

When evaluating a body in a flow with boundary layer suction, it
 

is necessary to consider the required suction power in the drag balance
 

calculation. The references Edwards [67] and Torenbeek [68] contain
 

approximate calculation methods for the suction power for special suc­

tion installations over wings.
 

Assuming that the suction amount does not contribute to the thrust, 

that is; it emerges with u = u. and p = p, at one point of the body 

again, the following pumping power is required for the suction slit 

'(i.), in the case of incompressible flow 

QiiP2Q co VdN u - Q. (AP.+APVi) (7.32) 

The pumping efficiency -p and the pressure losses Apv i on the suc­

tion points and throttling points, as well as in the lines, are only 

known after design of the suction installation has taken place. The 

publications of Pfenninger [691 and Gregory [63] state that the total 

pressure losses of a suction installation are rarely greater than 

Apv = (0.1,+jO.2) q.. In order to estimate the suction power, it is 

therefore possible to ignore the pressure losses, and we can set the 

pumping efficiency np = 1 so that approximately we have the following 

for the suction point (i)i. 

/56 
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NQi Qi (q -tsp) 1 (7.33) 

and for nQ suction points,
 

nQ
 

= )
NQ Q' (qoo-Api (7.34)
 

Instead of the suction power, we will define an internal or equi­

valent suction drag
 

NQ UC(7.35)
 

Accordingly, using (7.6) we can calculate the equivalent suction drag
 

coefficient of a body of revolution
 

W 21 n ri (7.36) 

0 i (1-cpi
Z T 

and of a plane contour
 

nQ
WQ c (1-c (7.37) 

W. qco F - i 

We then obtain the total drag of a body with consideration of the
 

suction power from the sum of the external and internal drag values /57
 

W =W N + WQ, (7.38) 

Accordingly, the total drag coefficient of a body of revolution,
 

with respect to the surface is
 

W
 
Cwo q O Cw +wc (7.39)
 

and with respect to the volume, it is
 

W 0 
w (7.40)


cWV - V/ =O 77 

which is determined from (5.38) as cwN.
 

In the plane case, the total drag coefficient is
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http:qoo-Api(7.34


W+
 
C - _ W + (7.41)

WF ao N W 

where cwN is given by (5.39).
 

7.5.4. Comparison Calculatidns
 

Asia test-example for a body in a flow with slit suction, we can
 

use the suction exeriments of the Pfenninger group [6] with the test
 

aircraft F-94A. In the test experiments the boundary layer was held
 

laminar along the top side of a wing without sweep back using 69 suc­

tion slits in the range 0.410 < Xbs/l < 0.953 up to the Reynolds num­

ber Re1 = 3.6 x i07. It was keptilaminar into the region of the trailing 

edge. 

Figure 23 shows the contour and the pressure distributioncor the
 

profile topside for the lift coefficient cA = 0.15. This lift coeffi­
4 7

cient corresponds to-the incidentReynolds number Re1 = 3 x 10'. where 

the comparison calculations were made.
 

The positionof the first suction slit in the experiments agrees
 

very well with the calculated transition point positions for the case
 

without suction, xAbs/l = 0.410. 

Using the computer program discussed in Chapter 81, however,_we can
 

not simultaneously maintain the suction conditions of Pfenninger
 

- slit number n = 69 i 

- total suction amount coefficient cQ =3 x 10­
-
I­

\bocause they are not optimum withirespect to minimum slit number.
 

Therefore, in the comparison calculations we vary the parameter so
 

that one suction condition of the experiments each was satisfied. The
 

comparison calculations are given inFigures 231and,,2m.
 

- if n = 69 is specified, th~n the calculation gives about the 

same slit separations, a substantially-reduced suction amount, and a
 

-somewhat reduced total drag compared with the suction experiment.
 

- if CQ = 3 x 10 - 4 is specified, then the calculation gives sub­

stantially less suct~onrpdnts butf about the same total drag.
 

We should consider that the suction experiments were performed at
 

the Mach number M = 0.6, but that the calculation was restricted to
 

-incompres-s-b-le-fle-.- . 
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/59 

The comparison calculatiors confirm that the equivalent suction drag 

can be approximated-using the approximations agreed to in Chapter 7.5.3. 

Therefore, the drag coefficients calculated for slit suction are valid. 

If the relative suction height is suitably selected, it is possible to 

substantially reduce the number of slits and the suction amount compared 

with the suctiorn-configuration of Figure 9. 

8. 	Descr-ption-of Computer Program
 

8.1 	Preliminary Remarks..
 

A computer program was developed for characterizing the boundary
 

layer and drag of bodies in flows with laminar influencing suction
 

slits. It allows the following systematic variations:
 

- rotationally-symmeti'ic or-plane contnurs
 
*thickness ratio d/l
 

Nose) 1B/l
 

*length ratio of Middle hart 1 M/1
 

Tail tH"
 

nose rB
 

*body function -of "
 

tail H f(CH) 

-- the suction conditions for slit suction 

* relative suction height 

Beginning
 

-*suction-region-x 
 Abs/l
 

-End
 

-- number of suction pointsin

IQ
 

transition point position xU1 in the case without suction
 

* 	 natural I
 
completely laminar
 

* 	 forced, especially 7t/
 
complbtely turbulent
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- and the incident Reynolds number Re 
Using the program, the following are calculated: /60 

- the boundary-layer variables at the support points Z/1, H32, 

Re 2'= f(xs/1). 

-The boundary layer and suction variables at the suction points 

G 
Z1/1, H321 ZI1 , H32 ' '-a s/1f(x0 /) 

-The boundary layer variables at the points 

Z/1, H3 2 , Rec 2 = f(xK/1) 

-The total suction rdniovai boefficf-entcQ
 

-And the drag coefficients c , c , c ,
Ww CWa CVo WV,
 

8.2 Structure of Computer Program
 

8.2.1 Numerical Methods
 

Boundary Layer Calculation Using the Step Formulas (5.22).
 

The boundary layer variables Z, H32 at the end of interval (i) are
 

determined by iteration from the values at the beginning of the inter­

val (i-1). For the first interval iteration step v = 0, the variables
 

at the previous interval (i-l) are used, The iteration accuracy is
 

H ( ) H(-)I 5'10-5 (8.1)
32r 32i 

l_1 iteration converges rapidly
 

1 0,03 (8.2) 

and
 

IH 0 H3 2  0,003 (8.3) 

In the program, there is a step selection which is automatic, star­
/61


ting with the distance to the next,support point 


,i(0) x x. 
A x , (8.4) 

T T 
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The step is cut, in half
 

i~ - _ _ _-ii-1 	 (8.5) 

when 	the convergence-conditions with the selected step are not satis­

fied, or if the accuracy cannot beireached in v = 10 iteration steps. 

A maximum of - = 80 step halving operations r allowed. Investigations
 

of the time optimization of the boundary layer calculation were performed
 

by Otte £70].
 

Determination of .the-Excepti6ial foints,-na Boundaiy Layer Calculation
 

'* The following are exceptionallpoints for the boundary layer varia-


Ition (G):
 

- suction slits
 

- instability point
 

- transition point
 

- laminar separation point
 

- turbulent separation pbint i
 

-,end of the region where the-'rotationally-symmetric boundary layer
 

4calculation is valid
 

for which the criteria ,(K) are specified. The calculation of these
 

points leads'.to determining the zeroes of the function
 

FG() FK(i) = 0 	 (8.6) 

with 	the'required accuracy
 

x K xj1.j -4 (8.7)

S T 

Since the function (8.6) is not available in analytic form, the /62
 

zeroes are calculated numerically by boxing in.
 

8.2.2 	 Program Structure
 

The computer program consists of the following:
 

- the main parts
 

* initial calculations 

* boundary layer calculations 
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*Initial calculation
 

- and the routines 

*suction slit 

*Mangler transformation. 

In the "suction slit" routine,; the suction tariables are I 

shown in Figures 12 to 15. 

In the "Mangler" transformationroutine, the Mangler constant &L/l 

and the average shape parameter, HT32 which are requird for the transi­

tion point determination. Formulas' (6:17) and (6.18) are used. 

8.2.3 	Special Conventions-


The possibilities of the computer program can be found in Chapter
 

8.1. 	 Additionally, the following conventions are agreed upon: 

- there is boundary layer transition at the laminar separation 

point, 

- there is no drag calculation for turbulent separation 

- the drag calculation from the boundary layer variables is done 

as follows:
 
*At the point 62/r = 1/151 for rotationally-symmetric contours,
 

*At the last support point for plane contours.
 

-	 the last boundary layer transition occurs as follows; 

*at the boundary layer 62>r = 1/16 for-a rotationally-symmetric 

contour, 

*at the next-to-last support point for a plane contour. /63 

- the suction-region ends prematurely, 

*for a forced boundary layer transition 

*as.soon as 1.5237 > H > 1.6250 applies.ahead of the suc­

tion point. 

If the laminar boundary layer is still unstable behind the first 

Isuction .1slit, then the suction height is increased until a stable state 

is reached. 

I 

8.3 	 ALGOL-Program
 

The computer program is written in ICL-ALGOL for the ICL 1900
 
1 	 1 

computer installation of the Berlin Technical University.. Compared
 
-The computer program is available from the Institute For.Aircraft Design
 
for T.U., Berlin.
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with 	ALGOL declarations, there are 'nly slight modifications.
 

The program has a memory requirement of nominally 13,250 locations
 

in this computer. For 100 supportpoints and 100 suction points, this
 

is expanded to about 17,500 locations. In calculations without suction,
 

the memory requirement is substantially reduced, if the program varia­

tion 	is used without the suction slit "routine".
 

The calculation time primarily depends on the number of slits.
 

Without suction, it is about 30 seconds and increases to about 7 min fi
 

for about 100 suction slits.
 

Figures 3, 7, 8, 23, and 24 show test calculations with the pro­

gram.
 

For systematic contour variations, the program can be coupled with
 

a pressure distribution program, which contains a suitable shape sys­

tematic program and a support point Interpolation. If the input and
 

outputs of the programs are coordia-ted, then the input of the support
 

point values is reduced to certainiparameters which characterize the
 

body shape. A program for pressure distribution has been given by
 

'Oehler for bodies of revolution [93.
 

9. Results of theVariation Calculation
 

The computer program discussed in Chapter 8 affords-the possibility
 

of extensive parameter studies. We will select a few to give an idea
 

about technical applications.
 

9.1 	Plane Plate: Variation of Suction Conditions
 

Already by using the example of a plane plate in longitudinal-flow
 

(pressure gradient dp/dx = 0), we can obtain basic information about
 

,the optimum configuration of the sction slits. In this case, the
 

most important inflencesin the variables are the following:
 

- the incident Reynolds number Re1
 

- the relative suction height lQ
 

- and the suction region xAbs/l.
 

The Reynolds number Re' is given by the problem formulation. The
 

suction heihtnQ should be loptimizedifor a minimum number of slit; if 

we agree that the suction region is suck that it starts in the transition 

point and ends for a relative plate length of x/l = 0.35. 
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Figure 25 shows the boundary Ilayer variation for Re1 = 107 and
 

JQ = 0.1. Figure 26 shows the suction variables plotted over the
 

plate length. As already discussed in Chapters 7.3.2, the suction slits
 

with small suction heights bring about a substantial shape parameter
 

increase and a slight thickness parameter decrease. The boundary layer /65
 

thickness increases in the-flow direction, nevertheless. However, the
 

suction action behind a slit:decreases more slowly the thicker the boun­

'dary layer is. At n - = const. the slit separations become greater with 
'path length. Accordingly, the optimum slit widths and the local suction 

amount coefficients increase in the flow direction. In the literature, 

this basic fact has,not.yet-be.en.pbished... 

Figure 27 shows that the slit separations, slit widths, and- the 

local suction amount coefficients are reduced within -increasing inci­

,dent Reynolds number because of the decrease in the boundary layer 

thickness. -

The increase in the number of slits with increasing incident Rey­

nolds number shown in Figure 28 is icaused by the earliest beginning of
 

,suction and the reduction of the s it separations.. The reduction in
 

;drag due-to suction is also considerable, if one considers the suction
 

power. For fQ = 0.1, the drag coefficient, of the plate which has been
 

made laminar by the suction slits is only slightly above the Blasius
 

curve. The total suction amount coefficient first increases b cause
 

,of the increase in the number of slats with incident Reynolds number.
 

It then reaches a maximum value, anId then decreases again at high Rey­

nolds numbers, because then the reduction in the suction Iamount coeffi­

:cients has a greater effect than the increase in the number of slits.
 

If the suction already starts at the instability point, then the slit
 

number increases at all.Reynolds numbers. The drag coefficients and
 

the suction amount coeffidients.only increase in the-lower Reynolds
 
I
number range. 


The results of the simultaneous variation of relative suction height
 

and infinite Reynolds number are shownin Figures 129 and 30. The
 

optimum relative suction height is almost independent of the Reynolds
 

number, at which the number of slitis becomes a minimum,
 

opt Q (nmin) 0,1I 

If less air is sucked away at Yhese suction points, then the drag
 

and- the. amolnt.dtrtabuxV rjquired soallstctoslit number
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increases rapidly (fQ < 0.1). AtYiQ = 0.02, one comes very close to
 

the case of continuous suction, see Figure 29. An increased suction iQ>O.l
 

is out of the questiori, then the slit number and the drag, as well as the
 

total suction amount, increase considerably.
 

9.2 Bodies of Revolution
 

9.2.1 Variation of Suction Conditions
 

For a body of revolution we will investigate the ways in which the
 

influence of the pressure gradient affects the optimum configuration I 

of the suction slits, compared with the plane plate. For this purpose, 

we must vary the incident Reynolds number Rel, the relative suction height 

Q, as well as the suction range xAbs/l.
 

As far as selecting the body shape is concerned, it should be men­

tioned that without suction, spindle shapes with a pointed nose part have
 

been suggested, see Hertel [1 to 3]. These satisfy the condition for
 

minimum specific drag much better than conventional shapes with a long
 

cylindrical central part and a small thickness ratio. It has been found
 

that these spindle shapes are favorable in the case-of suction, compared
 

with conventional shapes.
 

Since the nose contour of low drag spindle bodies is approximately
 

parabolic according to [2] and [3], as a basic shape we will select the
 

following symmetrical paraboloid for the variation calculation, where
 

the length ratios are 11 = 0,5; -m 0F 7­
d 

T = 0,2the thickness ratio is 


and the contour functions are B
 
=I- HI 

= 1- 2 

This ibasic shape can be matched to various pronlems by changing the 

thickness setback and the thickness ratios, From the transition and /67 

drag curve of the basic shape shown in Figure 31, we can see that the 

"laminar effect" is lost at high Reynolds numbers. As we will now 

show, making the flow laminar using slit suction in this area leads to 

substantial drag savings. 

Figures 32 and 33 show the boundary layer variation and the suc­
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tion variab2lsz. of the paraboloid distributed over the body shape, for
 

the incident Reynolds number Re ! 5 x 107 and the suction conditions
 

lQ = 0.1 and xAbs/l = 0.5. They are very similar to those of the plane 

:plate shown in Figures 25 and 26. fThe length of the laminar buildup path
I
 

behind the last suction slit is substantial.
 

Figure 34 shows that in-spitelof the reduction.in the stabilizing
 

pressure gradient, aP rIQ = const.4!the slit separations of a spindle 

'body are increased in the flow direction with the exception of the tail 

'end, where there is a steep pressure increase.- The relative slit width 

and the local suction amount coefficient depend on the Reynolds number
 

and increase greatly because-o-f the-thickening-.of the boundary layer at
 

the tail end. Increasing the slitseparations in the tail area of the
 

!bodies of revolution comes about because in the case of bodies of revo­

:lution, the reducing pressure gradient is opposed by an increased boun­

;dary layer thickness, due to a decrease in the body radius. This effect 

;does not occur in plane flow, as shown in Figure 23. 

L For applications, various suction regions are possible for bodies 

!of revolution, for example, ­

_ - in the case of an aircraft body, it only seems that keeping the
 

nose part of the aircraft laminar is promising because of the disturbing
 

influence of the'wings, . 

a - it seems promising to make the entire body surface of an under­

iwater vehicle laminar using suction slits.
 

Figures-35 and 36 show the results of a suction region variation 

;and Reynolds number variation at n = 0i. Already a small suction 

;region with a corresponding low suction amount is sufficient to-keep 

the nose part laminar, and this islassociated with a substantial savings
 

;in drag. The entire body surface can be kept laminar with a small - /68
 

'number of additional suctiom slits, but the total amount of sucked air
 

:increases drastically. The extremely low drag coefficients in thecas~e
 

iof suction to the area of-the tail tip are caused by the fact that when
 

'the body surface is made completely laminari not only is the friction drag
 

-reduced-, but the pressure drag is also greatly reduced-, The jump in the
't ioJ h da of 
.displacement of the transition point, and the reductionJ' the drag coef­

ficient due to a suction slit are covered by special conventions in the

I I 

computer program, see chapter 8.2.3.
 

When there is a simultaneous variation of the relative suction
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height and the incident Reynolds number, Figures 37 and 38 show that
 

the-slit number becomes a minimum for bodies of revolution, indepen­

dent of the Reynolds number. If the suctdn height is
 

1 = 'kept 01 

Figure 39 shows that the optimum relative suction height is also approx­

imately independent of the suctionregion The--variation of the suc­

tion conditions over a.spindle body shows that nQ = 0.1 is an optimum 

suction parameter for technical a~plications of slit suction. 

9.2.2 Variationjof Body Shape
 

In applications we are interested in the effect of the change in
 

the body shape of a body of revolution on-the configuration of the
 

suction slits.
 

AtuQopt =--0.1, we will investigate the influence of
 

- the thickness setback- or the relative noselength PB/nl
 

- and the thickness ratio d/l 

on the minimum slit number. - We wi;ll start with the base shape dis­

cussed in the previous chapter.
 

Figure 40 shows the contour and the pressure distribution of spin- /69
 

dle bodies where the thickness setback was varied with the same thick­

ness ratio d/l = 0.2, and shows that in the case without suction, the
 

bodies with a large thickness setback have the lowest drag in the low
 

Reynolds number range, because of ithe long laminar buildup paths. At
 

the higher Reynolds numbers, this tendency is reversed. The influence
 

of the thickness setback on the optimum suction configuration (nQ = 0.1)
 

is given in Figures 42 and 43. With the exception of small Reynolds
 

numbers, the slit number is-substantially reduced with decreasing
 

thickness setback.
 

Figure 44 shows the contour anId the pressure distribution of spin­

dle bodies, in which the thickness ratio has been varied for the same
 

t-hickness setback nB/F = 0.5. Figure 45 shows that in the case w-ithout
 

suction, the thicker bodies have a higher drag. One exception is the
 

medium Reynolds number range, where the long or laminar buildup paths
 

produce a smaller drag for the thicker shapes. It is remarkable that 

for a thickness ratio d/l = 0.3, there is still no turbulent boundary 

1ayer separ-ationr.tthail-..-.. ...... 

6o__
 



The effect- of the thickness variation on the opt.imum suction con­

figuration.( = 0.1),is shown in Figures 46 and 47. As the body thick­

.ness increases, the slit number decreases in the entire Reynolds number 

range. I 

The thickness setback variation and the thickness variation of a 

'spindle body clearly show that the pressure gradient over the nose part
I 

is most important for determining the minimum number of-suction points,
f
 

,even if suction takes place near the tail tip.
 

10. Summary 

In aviation and underwater theory, only slits, gaps, or perforated
 

!strips can be used for practical boundary layer suction applications. /70
 

,Up to now, continuous suction has been almost the exclusive case which
 

'has been treated, 6ince the investigations are usually restricted to
 

plane contours.
 

In the present paper, we discuss the technically interesting case'
 

;of keeping a boundary layer laminar using suction slits over bodies of
 

irevoiution in incompressible flow.1 1-

The calculation of the rotaticnanly-symmetric laminar and turbulent
 

.haundary layers is done by the integral conditions for momentum and
 

energy, and assuming a single parameter velocity profile.
 

A new semi-empirical criterion-is introduced for determining the
 

laminar-turbulent transition-point of bodies of revolution, and its
 

reliability has been demonstrated from transition measurements.
 

The changed boundary layer variables behind the suction slit are
 

determined approximately'from the remaining profile which remains after
 

,suction. By comparison w-ith exact solutions-, which are available .in
 

the special case for a.narrow suction strip, we confirm the reliability
 

:of this method. From these results we draw the.conclusion that the
 

effects which can be brought about 1by the suction 'Itts can also be
 

approximately-,reachedb vperforaed suction strips,
 

I -n- calculated the
-order to evaluate the sliticonfiguration, we 


drag with consideration of the suction power. This calculation was
 

'confirmed by suction experiments. I
 
The ALGOL program was developed for the systematic variation of
 

body shape, incident Reynolds number, and suction conditions, which also
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includes the case of no suction and the calculation of plane contours.
 

In addition to the stability and transition conditions, we also
 

!introduce the relative suction height and the suction region as para­

meters in the suction relationships. For constant relative suction
 

iheight, the slit separations in the flow directions are increased, as
 

!long as there is no great pressurefincrease.
 

The local suction- amount coefficients andfrelative slit widths 

increase greatly towards the tail tip. 

The variational calculations Show that, independent of -the body 

!shape, incident Reynolds number and suction region for the relative 

suction height, the slit separations-.ar.e.amaximum. and consequently 

the number of slits are a minimum.[ Compared with the continuous sue­

tion -( , n~ c the suct-ionamount coefficient increases dras­

:tically at n = 0.1. The drag coefficient only increases slightlyQ
with consideration.of suction power.
 

Finally, we investi-gated the influence of the body of revolution
 

shape on the optimum configuration dfthe suction slits. It is found
 

that pointed spindle shapes with a large thickness ratio and a small
 

Ithickness setback can be made laminar using a relatively small number
 

,of suction slits due to the large ressure drop over the nose, even at
 

1high Reynolds numbers,
 

* 	 The combination of favorable dody shapes and optimum suction con­

_ditions
peadsto solutions,'which satisfy the condition for a small
 

flow resistance with a small number of suction points and a small suc­

tion amount, for the most part, at high Reynolds-numbers.
 

62 



3 

11. REFERENCES.. 

Ila. Hertel, H.: Biological Technical Research on Structures, Shapes,
 
Drives. VDI-Zeitschrift, Bd. 109, Nr.-.18, 19,-22, 24, and-26,
 
1967.
 

lb. Hertel, H.: Biological Technical Research on Structure, form. and
 
movement in "Bioengineering', an Engineering View". Herausgeg
 
von G. Bugliarello, San FranciscoPress, Inc., 1968..
 

;2a. Hertel, H.: Body Shape with Minimum Specific Drag for an Aircraft
 
at a High Subsonic Velocity!. German Patent Application P 1556934.4,
 
1965, USA-Patent 3,76,o336,,!19 9 --­

i 2b. Herte!, H.: Measures for Reducing the Drag of Bodies of Revolition. 
German Patent- Announcement,IP 1531 422.4.- 22, 1967. 

Hertel, H., Oehler, C., Thiede, P.: Studies for selecting a body
 
of minimum specific drag for new aircraft projects in Incompres­
sible flow. Report of the)Inst. f. Luftfahrzeugbau TU Berlin;
 
1966. 	 I 

. 	 -
;4W TTenninger, 19.: Investigatins about Friction Reduction over
 
Wings, Especially using boundary layer suction. Inst. f. Aero­
dynamik, ETH Zurich, Nr. 13k 1946.
 

5. 	 Pfenninger, W.: Experiments on a laminar suction aerofoil of17%
 
thickness. Journal Aero Sci. 16, 1949.
 

6. 	 Pfenninger, W.; Groth, E.: Low drag boundary layer suction experi­
mehts ±n flight on a wing glove of an F-94A airplane with
 
suction through a large-number of fine slots. In "Boundary
 
Layer and flow control", Vol. 2, Herausgeg. von G. V. Lachmann,
 
Pergamon Press, Oxford, 1961.
 

7. 	 Lachmann, G. V.: Aspects of Design, Engineering-, and Operational
 
Economy of Low Drag Aircraft. In "Boundary Layer and Flow Con­
trol, Vol. 2. Herausgeg. von G. V. Lachmann, Pergamon Press,
 
Oxford, 1961.
 

8. 	Koschmeider, F. P., Valz, A.: Simple Shapes for Profiles of Low
 
Mechanics. Unpublished newversion of a 1943 restricted publi­
cation of the central for Scientific Reporting of the DVL PB,
 
1961.
 

63 



9., Oehler, C.: Subsonic Flow Around Bodies of Revolution in Axial Flow.
Dissertation TU Berlin, 1969.
 

10. 	Schlichting, H.: GrenzschichtTheory (Boundary Layer Theory, 5th
 
Edition, Verlag G. Braun, Karisruhe, 1965.
 

11. 	Walz, A.: Stromungs- und Temperaturgrenzschichten (Fluid.and Tem­
perature Boundary Layers), Verlag G. Braun, Karlsruhe, -1966.
 

112. Mangler, W.: Relationship between plane and rotationally-sym'getric
 
boundary layers in incompres'sible fluids. ZAMM Bd. 28, Heft 4,
 
1948.
 

13. 	Hartree, D. R.: On an Equation Occurring in Falkner and Skan's
 
approximate treatment of the'equations of the boundary layer.
 
Proc. Cambr. Phil. Soc., Vol'. 13, Part 1, 1937.
 

14. 	Walz, A.: A new Trial Solutionfor the Velocity Profile of the La­
minar Friction Layer, LilienthalNHeport, 141, 1941.
 

15. 	Mangler, W.: Momentum Method for Approximate Method of the Laminar
 
Friction Layer. ZAM Bd. 24, 1944.
 

16. 	Geropp, D.: Approximate theoryi for compressible and laminar boundary
 
layer with two shape parameters for the .velocity profile. Dis­
sertation. TH Karlsruhe, 1963.
 

17. 	Walz, A.: Application of the Energy Theorem of Wieghardt to single
 
parameter velocity profile in laminar boundary layers.- Ing. Arch.
 
14, 1948.
 

I18. Fernholz, H.: Semi-empirical laws for calculating turbulent boun­
dary layers using the method of integral conditions. Ing. Arch.
 
33, Heft 6, 1964.
 

19. 	Iglisch, R.: Exact Calculations of the laminar friction layer in a
 
Plane Plate in Longitudinal Flow with Homogeneous Suction. Publi­
cations of dtsch. Akad. d. Lhftfahrtforschung 8b, 1944. No. 1.
 

20. 	Schlichting, H., Bussmann, K..: Exact solutions for laminar friction
 
layer with suction and blowing. Literature of the dtsch. Akad,
 
d. Luftfahrttorschung 7B, 1943.
 

64 



21. Schlichting, H.: An Approximate Method for Calculating the Laminar
 
Boundary Layer with Suction. Ing'. Arch. 16, 1948.
 

22. 	Head, M. R.: Approximate Methods of Calculating the two-dimensional
 
laminar boundary layer -with suction. In "Boundary Layer and Flow
 
Control", Vol. 2, Herausgegvvon G. V, Lachmann, Pergamon Press,
 
Oxford, 1961.
 

23. 	Eppler, R.: Calculation of Laminar and Turbulent Suction Boundary
 
Layers, Ing. Arch. 32, Heft '4, 1963.
 

24. 	Howarth, L.:On the Solution of the raminar boundary layer equation.
 
Proc. Roy. Soc.., LondonA 164, 1938.
 

25. 	Rotta, J.: Shear Stress distribution and Energy Dissipation for
 
turbulent boundary layers. Ing. Arch. 20, 1952.­

26. 	Truckenbrodt, E.: A quadratureltmethod for calculating the laminar
 
and turbulent friction layer for plane and rotationally-synmetric
 
flow. Ing. Arch 20, 1952. I
 

27. 	Ybung, A. D.: The calculation pf the total and skin friction drags 
-o f bodies of revolution at, zcraincidence.. R and M 1874't2939. 

28. 	Pretsch, J.: Theoretical. Calculation of Profile Drag of Bodies of
 
Revolution. Dtsch. Luftfahrtforschung UM 3185, 1944.
 

29. 	Scholz, N.: Rational Calculatibn of Flow Drag of Slender Bodies
 
with Arbitrary Rough Surface'. Schiffbautechnf.fGes., Bd. 45, 1951.
 

30. 	Schubauer, G. B., Skramstad, H,. K.: Laminar-Boundary Layer Oscil­
lations and Transitions on a flat plane. NACA Rep. 909, 1948.
 

31. 	Tollmien, W.; The Production of Turbulence. First communication,
 
Nachr. Ges. Wiss, Goettingen1, 1929.
 

32. 	Lin, C. C.: On the Stability of Two-Dimensional Parallel Flows,
 
Quart. Appl. Math. 3, 1945.
 

33. 	Schlichting, H.*, Ulrich,' A., Calculation of Laminar-Turbulent Tran­
sition. Yearbook dtsch. Luftfahrtforschung, 1942,
 

65 



34, Pretsch, J.: Stability of a Plane Laminar flow for a pressure drop
 
and Pressure Increase. YeArbook. dtsch. Luftfahrtforschung,
 
1941.
 

35. 	Tetervin, N.:-Charts and Tables for Estimating the Stability of
 
the Compressible Laminar Boundary-layer with Heat Transfer
 
and Arbitrary Pressure Gradient. NASA MEMO 5-4-59L, 1959.
 

36. 	Bussmann, K., Munz, H.: Stability of the Laminar Friction Layer
 
with Suction. Yearbook dtsch.I Luftfahrtforschung, 1942.
 

37. 	Ulrich, A.: Theoretical investigations about the drag savings by
 
keeping the flow laminar with suction. Publication of dtsch.
 
Akad. d. Luftfahrtforschung &B, 1944.
 

38. 	Schlichting, H.: Influence in!the Boundary Layer By Suction and
 
Blowing. Yearbook Dtsch. Akad. d. Luftfahrtforschung, 1943/44.
 

39. 	Michel, R.: Study of the Transition over Wing Profiles. Estab /77
 
lishment of a criterion for determining the transition point
 
and calculation of the profile drag in incompressible flow.
 
ONERA Rap. 1/1578, A, 19511
 

40. 	Smith, A.M.O., Gamberoni; N.::Transition, pressure gradient,.and
 
stability theory. Douglas Aircraft Rep. ES 26388, 1956.
 

41. 	Pretsch, J.: Buildup of unstable perturbations in a laminar fric­
tion layer. Yearbook dtsch. Luftfahrtforschung, 1942.­

42. Granville, P. S.: The calculation of viscous drag of bodies of
 
revolution. Navy Department. The David Taylor Model Basin.,
 
Rep. 849, 1953.
 

43. 	Pretsch, J.: Stability of Laminar Flow Around a sphere. Luftfahrt­
forschung, 18, 1941.
 

44. 	v. Ingen, J. L.: A suggested semi-empirical method for the calcu­
lation of the boundary-layer transition region.- Delft,-Rep.
 
V.T.H., 74, 1956.
 

45. 	Moeller, R.: Evaluation of Laminar-Turbilent Measurements for an
 
for an Empirical Transition Criterion. Diploma Thesis at Inst.
 
f. Luftfahrzeugbau, TU Beriin, 1966.
 

66
 



46. 	v. Doenhoff, A. E.: Investigation of the boundary-layer about a
 
symmetrical airfoil in a wind tunnel of low.turbulence. NACA
 
Wartime Rep. L-507, 1940.
 

47. 	Braslow, A. L., Visconti, F.: nvestigation of boundary-layer Rey­
nolds number for transition on a NACA 65(215)-114 airfoil in
 
the Langley two-dimensional low-turbulence pressure tunnel.
 
NACA TN 1704, 1948.
 

48. 	Jones, M. B.: Flight experiments on the boundary layer. JAS Vol.
 
5, Nr. 3, 1938.
 

49. 	Zalovdik, J. A,.,,Sko-og,: R.. B..:, Flight, Investigation of boundary layer
 
transition and profile drag of an experimental low-drag wing
 
installed on a fighter-typd airplane. NACA Wartime Rep. L-94,
 
1945.
 

50. 	Wetmore, J. W., Zalovtik; J. A. Platt, R. C.: A flight investiga­
tion of the boundary layer Icharacteristics and profile drag of
 
the NACA 35-215 laminar flow airfoil at-high Reynolds numbers.
 
NACA Wartime Rep. L-532, IQ'41.
 

51. 	Smith, F., Higton, D. J.: Flight tests on "King Cobra FZ 440! to
 
investigate the'practical-requirements for the achievement of
 
low profile drag coefficients on a low drag airfoil. R and M
 
2375, 1945.
 

*­

52. Davies, R.: .Some Aspects of F~ight Research. JAS 55, 1951.
 

53. Plascott, R- H.:, Higton, D. J;. Smith, F., -Bramwell, A.: R.: Flight
 
tests on "Hurricane II Z. 3687" fitted with special wings of
 
low-drag design. R and M 2546, 1946.
 

.54. Boltz, F. W., Kenyon, G. C., Allen, C. Q.: The boundary-layer /79
 
transition characteristics !of two bodies of revolution, a flat
 
.(plate and an unswept wing in a low-turbulbnce wind tunnel. NASA­
TN-D-309, 1960.
 

55. Boltz, F. W., Kenyon, G. C., Allen, C. Q.; Measurements of Boundary
 
Layer Transition at low spewed on-two bodies of'revolution in a
 
low turbulence wind tunnel, NACA RM A 56 G175 1956j
 

56. 	Rheinboldt, W.; Calculation of steady boundary layer for continuous
 
suction with discontinuous suction velocity.- J. Rat, Mech.
 
Anal., Vol. 5, No. 3, 1956.
 

67
 



57. 	Smith, A. M. 0., Clutter, D. W.: Solution of the Incompressible
 
laminar boundary layer equation. AIAA Journal, Vol. 1, No. 9,
 
1963.­

58. Krause, E.: Numerical Solution of the boundary-layer equations.
 

AIAA Journal, Vol. 5, No. 7j 1967.
 

S59 Bethel, H. E.: Approximate solution of the laminar boundary-layer
 
equations with mass transfer. AIAA Journal, Vol. 6, No. 2, 1968.
 

60. 	Wuest, W.: Approximate Calculation and Stability Behavior of Lami­
nar Boundary-Layer Suction ith Suction by Single Slits. Ing.
 
Arch. 21, 1953-. ­

.6-1a. Walz, A.: Theory of suction df the friction layer. ZWB-Report
 
1775, AVA Goettingen, 1943.
 

61b. Walz, A.: Approximate Theory for Boundary Layer Suction Individual
 
slits. DVL-Report 184, 1962.
 

62. 	Wuest, W.: Development of a Lamihar Boundary Layer Behind a Suction
 
point. Ing. Arch. 17, 1949.1
 

63. Gregory, N.: Research on Suction surfaces for laminar flow. In
 
"Boundary Layer and Flow ControlV vol. 2. Published by von.
 

G. V. 	Lachmann, Pergamon Press, Oxford, 1961.
 

64. 	Krause, E.: Shape Parameter of Incompressible Boundary layers for
 
large suction rates. DVL-Report 889, 1969.
 

65. 	Kuechemann, D., Weber, J.: Aerodynamics of Propulsion. McGraw-

Hill, New York, 1953.
 

66. 	Dreger, W.: A method for calculating the Potential suction. Schiff­
technik Bd. 6, Heft 34, 195%.
 

67. 	Edwards, J. B.: Fundamental Aspects of Propulsion for Laminar Flow 
- -Aircraft. in "Boundary Layr and Flow Control, published-by 

G. V. Lachmann, Pergamon Press, Oxford, 1961 (vol. 2.)
 

68. 	Torenbeek, I. E.: The Propulsion of Aircraft with Laminar Flow
 
Control. Department of AerOnautical Engineering.. Delft Univer­
sity of Technology. Rep. VTH-150, 1968.
 

_68
 

/80 



69. Pfenninger, W.: Some General jConsiderations of losses in boundary

layer suction-ducting systes.- Northrop Rep. BLC-29, 1954.
 

70. Otte, F.: Determination of the Drag Around Bodies for Optimum
 
Suction of the Laminar Boundary Layer by Single Slits. Study
 
Paper at the Inst. f. Luftfahrzeugbau, TU Berlin, 1968.
 

I6
 

69 



Figures
12. 


Body shape r(x)
 

PdB 9 d4 

Body dimensions
 

-Thickness ratio 

Nose A_§
1E 

Length Ratios Middle Part --

Tail I_ -

Relative nose radius 9oT 

Tail tip angle 0
 

Nose IA
 

Relative apex radii
 

Tail 9dH 

Contour Functions n = f(E) 

'IB Tim TIH 

nose 1 1middle part 

0 0
 

0 0 1 0CB M CIH 

Figure 1: Contour of a Body of Revolution.
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approximation: according to Eppler [233 
according to Walz [1] 
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Figure 2: 	 Relationships for laminar velocity profiles with suction
 
influence.
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Comparison:-	 Delayed stagnation point flow 
Laminar separation point - -

Exact solution of Howarth [24] XA/J=Q1198 

Present calculation method with approximations of Eppler

[23] xAo/2 Q1i96 

0
 

o 3.,
Qo i0 3-

WI­

1,58 

Blasius profile
 
,56­' 6% 

4 ' 
54. 	 aminr separation, 

__ profile 

0,5 0 15 
Irelative bodylnt /p 

'0 q,5 ,10 

Figure 3: 	 Delayed stagnation point flow. Laminar separation point. 
Calculation method - ex'act solution 
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Stability Calculations
 

without suction 	 with suction
 

oTollmien, Lin (Blasius Profile) i:Bussmann, Muenz (asymptotic suction
 
[313, [323 profile) [36]
 

ASchlichting, Ulrich (Pohlhauseni_*Ulrich (Iglisch Profile)[37]
 
P6 Profile) [33]
 

_a Pretsch (Hartree Profile) [34] LUlrich (Schlichting-Bussmann
 
profile) [38]
 

> Tetervin (Hartree Profile) [35]
 

Stability Criterion:
 

Approximation i .%,.4,556 - 76.87 .670- ,. 

pHartr-eeseparationAIBiains Fsymntc suction 

profile ' [Profile Iprofile
 

0 0 

r JI 	 ,016 

S 10
 

W155 	 1'6 165 
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Figure 4: 	 Stability of the laminar boundary layer with pressure gra­
dients and suction.
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,Parameter: 	 filled-up exponentifl,dt 

H- 1,515 H~ 1, 572 	 -1,625 

15
 

P 

,' 	 C­+,,,.,+/ 0-,; 

-o,2 0 ,2 o,. ~ 1+,0
 
IGS-shaped parameter +5 

Figure 5: 	Build-up curves of the Iartree velocity profiles according
 
to Pretsch [41].
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Transition Measurement
 

Wind Tunnel 	 Free Flight
 

Plane 	 o Braslow, Visconti [47 * Jones [48]
 

Flow 	 o v. Doenhoff [46) M Zalovcik, Skook [49] 
a Schubauer, Skramstad [30), A Wetoore, Zalovcik, Platt [50] 

7 Boltz, Kenyon, Al len [54] v Davies, Smith, Higton (51] [52) 

. . . . .* 	 Plascott, Higton,
 

Soith, Bra well [53]
 

Rotationally * Boltz, Kenyon, Allen [55] 
Symmetric -. - -... ..... .. 
Flow 

Transition Criteria
 

Approximation
 
-
1,515Ad 1,560: log (Reb2u-RebS2) = 1,6435-24,20 (1,5150-932)2 


1,560< H32 1,625 : log (Reb6,-Reb 21 ) = 1312 -967,5 (1,6250- f32 )2"1I 

3
 = e
Buildup a 


Empirical, according to Granville [42]
 

Hartree separation Blasius Profile iplane stagnation 
profile ', -- point profile ­

a 	 A 
= '10 ­ 12 

.00 

10 

d C 

0 -Hi 

2. 

1,50 1,55 	 1,60 
1 Average 	Form Parameter 32 

Figure 	6: Length of the buildup paths for natural transition of the
 
laminar boundary layer with pressure gradient.
 



Comparison: Flat Plate
 

Known solutions
 

Present computation method
 

to. 

4 ~ ~ ~ 4V'16 

Stransitiono +'V
 

H rH 

jo uo'T Toa., 

0,002 
005 

-is -n 
utrulsnt 

_ II_,__Is-,_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [10 

incident Reynolds numberRe,
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Figures 12-15: Influencing of laminar boundary layer through a suction
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Figures 40-41: Bodies of revolution with various thickness setbacks.
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Figures 44-45: Bodies of Revolution of Various Thicknesses 



Parameters; Thicknesiaib d/i 

,ReifatinoelenE7, 8z/i =45 

end of sucTin region,(" end of suction region.,'
 

XAbSE/i = 0,5 /I =49 

80 

410 With sueion 

-- 20 420 

o)-p 410 
H 0...
with sucin 425 

0,30LM0 40 430 

4 4 415 

wihtui -. suction.
with 


" 0,2420 
'
 

00 06100S001 425 10
 

r Bitio s aitous Ti
 
0 0,002 

-0) 42 . suctions wih 

Figure 6: BdeoRvlution suton'Vaiu0Tikese3 ihsltse
 

* titoncton 
0-S, 1 0 =f(e ,Prmtrd. 

4 10 1 

Cb 0092 



REPRDODUCIEITy OF Ta.Z
 
ORIGINAL PAGE MB POOR ..
 

afParameter: Incident Reynolds number. Re, 

end of UcEtion regi6f _eTnd of suction-regi-n 
XAb* E/Z =5 ×AbE/Z = 49 

---.extrapolated&
4)60- 21 
10
 

"' J 402 3-1 o 
5"10
 

4' o4 io3 30'
 
-H 0 2*IO 5*io
 

5.1o7
 
P 4001 


S
 
2 -1os
H1 
 101 

o 4DI0o .H ­
4)3 '10
 

W -1 OO02­

0 0I i 0-0 001 (2 j0 0 5 O2 , (3
 

o)CH 0­

;o 4)C10 415 420 425 q30 410 41 42 45 43 
1I - thickness ratio'1Id/ei thickness-iratlo7 d/e 

Figure 47: Bodies of' Revolution of Various Thicknesses with Slit
l0M
 
Suction. Relative nos ;elength 1B/1 =0.5.
 

'flQ , c cc=Q f (d/2), Parameter Re2 , XAbSE/ 

100 



:13. Appendix /110
 

Calculation of Integral Expressions used in Chapter 7.3.1
 

The integral expressions (7.18) and (7.23)
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[(c + 4)(c + 3)(c + 2) + REPRODTJCIhLTTy OF THE 

+ a, (c +4)(c + 3) + Poop 

+ 2a2 (c+4) + 

+ 	 6a 3 1 

(2 c + 7)(c + 3)(2 c + 5)(c + 2)(2 c + 3)(c + 1)(2 c 1) 

[=(2c + 7)(c + 3)( 2 c + 5)(c + 2)(2c + 3)(c + 1) +
 

+ b, (2 c + 7)(c + 3)( 2 c + 5)(c + 2)( 2 c + 3) +
 

+ b2 (2c + 7)(c + 3)(2c + 5)(c + 2) +
 

+ 3b3 (2c + 7)(c + 3)(2c + 5) +
 

+ 6b4 (2c + 7)(c + 3) +
 

+ 30b5 (2c + 7) +
 

+ 90b6 ] 

1 
I = ~ (3c + l0)(c + 3)(3c + 8)(3c + 7)(c + 2)(3c + 5)(3c + 4 )(c + 1)(3c + 2 )(3c + 1) 

+[(3c + I0)(c + 3)(3c + 8)(3c + 7)(c + 2 )(3c + 5)(3c + 4 )(c + 1)(3c + 2) + 

+ 	 2c2 (3c + 10)(c + 3)(3c + 8)(3c + 7)(c + 2 )(3c + 5)(3c + 4 )(c + 1) +
 

2
+ c2 (3c + 10)(c + 3)(3c + 8)(3c + 7)(c + 2 )(3c + 5)(3c + 4) + 

+ 2 c3 (3c + 10)(c + 3)(3c + 8)(3c + 7)(c + 2 )(3c + 5) +
 
+ 24 c4 (Sc + lO)(c + 3)(3c + 8)(3c + 7)(c + 2) +
 

+ 40c 5 (3c + 10)(c + 3)(3c + 8)(3c + 7) +
 

+ 80c 6(3c + I0)(c + 3)(3c + 8) +
 

+ 1680c 7 (3c+0)(c+3)+ 

+ 4 4 80c(3c + 10)+ 

+ 13440c9] 
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'III 	 I 

= 
n (c + 4 )(c + 3)(c + 2)(c + 1)
 

S[ao (1-T)c+1 (c + 4 )(c + 3)(c + 2) +
 

+2+ I (c+ 3 ) + (1-T)	 4 )(c+ 

+3 + 6i2 (1-flc (c+ 4 ) +
 
6 c+4 ]
 

+03 (i-n Q 

12 (2 c + 7)(c + 3)( 2 c + 5)(c + 2)(2c + 3)(c + 1)(2 c + 1) 
[o (1 -6)2c+l (2 c + 7)(c + 3)(2c + 5)(c + 2 )(2 c + 3)(c + 1) + 

+ b (1G7+2 (2c + 7)(c + 3)(2c + 5)(c + 2)(2c + 3) + 

+ 	 b2 (1 _I )- 3 (2 c + 7)(c + 3)( 2 c + 5)(c + 2 ) + ­
4
+ E (1 _T 	 .C+(2 c + 7)(c + 3)( 2 c + 5) + 

2 +5 +-b4 (]1f) c (2 c + 7)(c -3) +
 
+b 5 (1 c6
 

_i (2c±+7) + 
+ g6 (1 2 -?7 ]

1- G2+	 16" 

'3r (3c + I 0)(c + 3)(3c + 8)( 3 c + 7)(c +2)(3c + 5)(3c + 4)(c + 1)(3c + 2 )(3c + 1) 

S[Eo(I -Qn)3+cX3c + I0)(c + 3)( 3c + 8)(3c + 7)(c + 2)(3c + 5)(3c + 4)(c + "1)(3c + 2) + 

+ l(1 -rc )3 0?(3c + 1 0)(c + 3)(3c + 8)(3c + 7)(c + 2 )(3 c + 5)(3c + 4 )(c + 1) + 

+ E2 (1 -l,) 3c 3c + 10)(c + 3)(3c + 8)(3c + 7)(c + 2)(3c + 5)(3c + 4) + 

+ E3((1 e3 c + IO)(c + 3)(3c + 8)( 3 c + 7)(c + 2 )(3c + 5) + 

+ 34(1 - c°*3c + IO)(c + 3)( 3 c + 8)( 3 c + 7)(c + 2) +
 

+ E(-n~a+t(3c + lO)(c + 3)(3c + 8)(3c + 7) +
 

+ E6(I-'1 0 t7(3c + IO)(c + 3)(3c + 8) +
 

+ E7(1-rI°Jt3c +10)(c +3) +
 
+ E8(1-' 9 (3c + 10) + 

-
+ 10(1 4)3c+1O	 I 

10~4
 



The integral expressions in condensed notation are:
 

6a 3 +(c +4) [2a2+(c + 3)al +(c +2)1
 
(c + 4)(c + 3 )(c + 2)(c + 1)
 

- 90: 	 + (2c + 7)[30bg + (c + 3)[6b4 + (2c + 5)[36 + (c + 2)[b2 + (2c + 3)[b, + (c + 1)]]]] 
(2 c + 7)(c + 3)( 2 c + 5)(c + 2)( 2 c + 3)(c + 1)(2 c + 1) 

1344 0cq + (3c + 10)[44 80c,+ (c+ 3)[ 168 0 c7 + (3c + 8)[80c + (3c + 7)[40cq + 
33 (3c + 10)(c + 3)(c + 8)(3c + 7)(c + 2 )(3 c + 5)(3c + 4)(c + 1)(3c + 2 )(3c+ 1) 

+ (c + 2)[24C4 + (3c + 5)[2c3 + (3c + 4f2c2 + (c + 1)[,ic, + (Pc + 2)]1]]]]I 

and
 

C 4 	 c+4 c+3 + +2C"Z- r<12 	 + T _ C' +oL1 r] ­

(c +4)(c 	+ 3)(c + 2)(c + 1) 

c +5 2	 + 2 r; 2c-+-3F +
714b 5+[+ 2c+5+ 

__	 

L + 1+2 1 L ]i]]
" (2c + 7)(c + 3)(2c + 5)(c + 2)(2c + 3)(c + 1)(2 c + 1) 

7 c+ 2
3c "io 3c+ 10 + c+3r. 3c+8 3c+ ­

° 	 E4
-f 7 16f+I(1-nJ 1 	 1-nqe T+ QG 1 

(3c + 1)(c + 3 )(3 c + 8)(3c + 7)(c + 2 )(3c + 5)(3c + 4)(c + 1)(3c +2 )(3c + 1) 

p I 	 I +- rl 3 -"2 0 
3c+5 rc3+ 3c+4 r-c2 c+1 113+2 

RPnu y OFPO THJESPOORPAG 
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