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SLECTION 1

IRTRODUCTIGH

The concept of using a selar sail as a means of transportation L
within the solar system was first discussed sexiously in the United o
States in the 19565.1 Recently, the poss bility of using a solar
sall has been given serious GOﬂSLdoration.z The earliest contender for
an actual mission would be a rendezvous with Halley's comet in 1986,
wlith a launch in 1982. After that a solar sail could be used for a
variety of solar system missions inecluding, for example, a Mars sample
return. However, recent NASA decisions indicate that the solax sail
will not bhe developed for near term missions. Some possible missions
would include a planetary escape or capture segment of the trajectory-
in addition to a heliocentric trajectofy segmént. The thrust acceler- ‘1L
ation level for sail designs in the near term are low, on the order |
of 1 mm/sz, and zo escaps or capiure requires a spiral phase from a :
low orbit to escape or from initial capture to a lower orbit. fTypi-
cally there would be several dozen or even hupdreds of orbits. This
system is similar to other low thrust systems such as electric pro-
pulsion. The principal subjects of this report are the spiral phase
of a planotaty escape trajectory and orbit to orbit transfer. A
comﬁhter prograﬁ has been developed to calculate solar sail planetary -
trajectories to a near escepe peint., It can also be used to calculate
spirals to a lower orbit and for trajectories about Mercury, Venus,
and Mars as well as Earth.

A solar sail consists of a large area of reflective material.
Typically, a very +thin plastic is coated with a reflective metallic 2
surface, Sunlight reflecting off the surface imparts a force which |
is approximately normal to the surface. The pressure exerted oq ‘a
perfectly reflecting sail normal to the sun at 1 A.U. is 0.9 h/n .
By varying the angle of the surface with the photon dlrectlon, the
force direction can be chandged, although there will never ba a
component of force toward the sun. If the sail has a large enough
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arca, and the total vehicle is light enovgh, then reasonable acceler-
‘ations will result.. In heliocentrie space it is possible to thrust
so that the sall moves away from the sun by having a component of the
reflective force in the direction of motion, If the foree has a
component in the direction opposite to the motion, the total angular
momentum will be decreased and the sall vehiele will fall in toward
the sun. When the sall is in orbit about a planet, the sail direction
can be varied so that the thrust almost always has a component in the
direction of motion and so will increase the semimajor axis or energy
oven when the vehicle is moving toward the sun in its planetocentric
orbit., wypically, plenetary orbits have periods of only a few hours
or days and, therefore, the necessary sail angle with respeet to the
sun diraction to obtain desired force airections may be changing
rapidly., 1In practice there are constraints en how fast these sail
angles can be changed. ‘These constraints are tonsidered only in a
limited fashion in this report.

s
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fhe Jet Propulsion Lahoratery has ¢onsidered two gail models as
possible interplanetary propulsion systems: a square sail and the
heliogyro. Hore recently a decision was made to concentrate study
on the heliogyro medel. ‘This report stresses the square sall model
which was implemented in the computer code. A heliogy:so model is
discussed which is similar to the sguare sail model, but which was
not implamented.

e S e b = T b e

The square sail is a large (about 850m X 850m), nearly flat
sheet with attendant structure, one side reflective and one sida dark.
The heliogyro consists ¢f a central hub with 12 blades, 6 each in
two patallél planes, each blade about 6 km long"ahd several meters

‘wide. . The heliogyro would spin with a period of about three minutes.
Rigidity is provided by the centrifugal force. Variations in thrust
direction as well as torgques for attitude changes are accomplished by

" varying the blade pitch, that is, the angle about the longitudinal
axis of the blade.
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The purpose of this study was to develop a prsgram to produce
optinal planeocéntriC"solar sall trajectories and to applf that
- program to a performance analysis. BRarlier papers ahve considered
nonoptimal planetary trajectories. Sands® consideréd f two-dimension~-

al escape maneuver for a trajectory plané‘bontaining the sup~planet
. line for the idealized flat sail, perfectly reflecting specularly on
- boﬁh sides. The sail is assumed to rotate about its axis at half the
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rite of revelution apour the planct. Fimple4 considernd the threo~ p
dimensional ease of a sall vehicle in orbit about a planet with the
orbital plane normal to the sun-planet line, alse for the idealized
sail. The sall angle is chosen so that the component of thrust in
the dixection of motion is maximized. Quasi-cixrcular orbits result
until near escape, MNelther Sands nor Filmple included solax motion.
Time optimal helleentric trajectories have heen caleulated for the
idealized sail. zhukov and Lebedev5 consldered planar traj-z2tories.
Sauu:6 goncrulized this work to three~dimensional tradectories,
mactieil’ conceived of tire haliogyro design and with others produced
additicnal studies. 8,9,10

The study reported here built upon a computer program (SECKSPOT)
which had beon developed to produce electric propulsion geocentric
orbih-transfers.ll'lz The program uses: (1) the method of averag-
ing’13 in oxder to reduce the amount of computer time needed to
calculate many trajectories, each of which includes many orbits about
a planet, and (2) equinoctial orbital ¢lements which are nonsingular
for zero eccentricity and inclination.*? sinee averaging is valid
only if the thrust to local weight ratio is small, the schems cannot
by itself yield trajectories to escape enexgy (infinite semimajor
axis). The scheme can be used to caleulate trajéctories to a large
gemimajor axis {small magnitude but negative energy}. The effect of
shadowing by the planet may be included as well as oblateness for
Barth trajectories. fThe solar sail program (called SUNSPOT for SUN-
Sail Program for Optimal Trajectories) does not include planetshine
ox drag effects which may be important at low altitudes. Although
attitude constraints may be important for some trajectories, they
were not included explicitly in the optimization procedure.

Kryloff-Bogoliuboff averaging of both the state and costate .is
used. The averaged rates of change of the mean values of the state
and costate are found by numerical quadrature. The differential
equations for the mean state and costate may'thén be integrated in
large time steps {typically days). The method of averaging has
been used extensively in rcéent years, Edelbauml5 16 has used
averaging to calculate analytic solutions for special cases of optimal

.low thrust trajectorles, and others have used averaging when con-

s;derlng effects such as oblateness; third body perturbations and

17,18,19 20

non-optimal thrusting. Jasper“” utilizZes equinoctial orbital

elements and averaging in low thrust optimization work. The effect

o - ..  ORIGINAL PAGE IS
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iy
of oblateness is included by analytically adding its assoclated rate
of ehange of the moan state and costate to that due to thrust. The
; effects of shadowing are caleulated by assuming that there 'is no solar
i) radiation prassure when the sail is in shadow.

The overall trajectory is optimized by a shooting method.
tnitial values of the unspecified states and costobes are chosen at the
initia) time. An optimum low thrust trajectory is than genzrated by
integrating the state and costate until the final time. This
will generate an optimal trajectory to the wrong terminal state. A
sensitivity matrix is then generated by varying the initial conditions
and running a set of neighboring trajectories. A Newton iteration on
the initial conditions is then used to drive the terminal errors to
within specified bounds. The final converged traj&chry is a minimum
time brajectéry ( except when a penalty function is added to the cost
to prevent subterrant  trajectories, in which case nearly minimum
time trajectories result), "

A computer progrém has been developed to caleulate planebocentric
solar sail trajectories. "The analysis and code can be used in a per-
formance analysis. A limi&ed set of cases are discussed in the result
seckion of this repert. A paper based on the material in this report

has been presented. 21 Related work for trajectories heginning at
. _ . large semimajor axis and continuing to escape energy performed by Grcen
;} is reported in Ref, 22. The results of the work reported here and of
the work by Green include the first production of optimal solar sail
planetocentric trajectories.

In the next section some of the ygeneral techniqgues used are dis-
| cussed., The following section contains the main analytical contxibu~ -,
" tion of this study. A number of trajectorles are given in tlie result

section, constituting a pa;tlal performance analysis. A preliminary
heliogyro model is discussed in Appendix A. Results from previous
efforts which are needed for the sall program are given in Appendices
B ~-D. As part of the solary sail effort; preliminary results yielded
non-optmmal nnar escape *ragectorles using a maximunm energy stratcgy
These raesults were reported to JPL during the course of the work but
are summarized in App&ndix B.

iy
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SECTTION 2

GENERAL TECHRIQUR

2.1 Introduction

Thrae areas of general technigue are discussed in this section,
One is the method of averagine, essentianl to the running of a program
which generates many trajectories in a reasonable amount of computer
time. Second is discussed the method of generation of the final

trajectory. A time optimal trajectory is desired, A state and costato

formulation is used which results in a two-point boundary=-value problem
which can be solved by a Newton iteration procedure. Finally soue
comments on numer.cal techniques aré made,

2.2 Averaging

A great savings inh computexr time can be effected by considering
a first approximation to the stute and costate., Short period varia-
tions in the state and costate are eliminated by the averaging tech-
nique. When low thrust propulsion ﬁs utilized and the other
parturbations to the inverse squara motion are small and when the state
includes the five slowly varying orbltal elements which indicate
the size, shape and orientation.oﬁ an orbit and possibly other slowly
varying quantities, then averaging may be used. The orbital element
indicating the position of the spacecraft in the orbit is eliminated

", by the averaging process. . -

The averaged Hamiltonian can be defined as

JI! .
toa ;
1
Ho= 5[ 2wnat | .. {2.1)

T
E-s

where H 45 the unaveragéd Hamiltonian and T is the orbital period.

“@hen caleulating this integral the state and costate are held fixed.

The motion of the spacecraft is assumed to vary in a manner described
by Kepler's equatlon over the averaging integration. The approximate
state and costate satlsfy the canonical equatlons. ' :

e
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z:’l‘ = -P-.l:‘la # (2.3)
ex

' where the overbar indicatis the approximate quantities,

In what follows the averaging integral for oblateness (Jz) is
solved analytiecally; otherwise a numerical guadrative formula io used,
The differential) egquations can then be solved numerically using a
time step which is much larger than but unrelated to the number of
orbital revolutions.

2,3 Solution of Boundary Value Problam

The method used to generate a low thrust trajectory is to develop
the Hamiltonian, to calculate a control (the thrust direction) and to-
write the canonical equations for the state and costate, The initial
state is specified. Applicatlon of transversality conditions for the

“time optimal problem yield adaltional specificatxons oit- the state nnd
costate. Thus a Lwo-point boundary-value problem results which mush

be solved to obtain the requisite trajectory. When these equations

are solvaed, an extremal trajectory will result which is ubually locally
optimal. No attempt is made to investigate generalized Jacobi~type
conditions to establish local sufficiency. Also, in common with other
nonlinear prublems, there may be more than one extremal meeting the
same end conditions. The very difficult question of global optimal'ty
is not considered, 5

" Thie single trajectory generation portion 6f the code is coupled
with a Newton iterator to solve the two-point boundary-value problem.

The unknown initial conditions and value of the final time are iterated

on in order to meet the final conditions which are functions of the
final state and costate. The partial derivative matrix of final condi-
tions with respect to the initial costate-is obtained numerically

by calculating neighboring trajectorles to a nominal,

The Newton method works by first gu9551ng values for the iteration
parameters, call them % -and tf, and then running a nomlnal trajectory
which will yleld final condltions Y whlch in general are not equal to
the desired final conditions, Yar Revii.-d values- for Xs tg may then
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he obtained by caleulating a sensitivity matrix or partisl devivative
mabrix, A, which is generated by varying slightly, one at a time,

ecach of the ifteration perameters, x, and running a nov, neighboring,
trajectory. Differencing the resulting values of the final conditions
with the neminal values yiwulds a &y for cach A%y In addition %% ean
be caleculated analytically edcept porhaps for 3 which can be £
approximated numerically by varying g slightly It and evaloating
the corvesponding I, differencing this with the nominal H and dividing by
Auf. Then A is an approximation for the partial of y with respect

to %, tg. :

o -
Lx?
A i PR
bx
(20"’)

] zT
“Bcgu_

)

A revised estimatc of the iteration parameters can then be obtained by
the formula

x X -]

X s | 2 - AT yyg) {2.5)

t..f t

L £
- NEW OLD

A new nominal trajectory can then be generated and the procedure
continued until the final conditions are met te within some tolerance,
In the event that the new x, tf do not yﬁeld a reduction in the norm
of the final condition errors, the change in (%, tg) is xeduced in
magnitude by factors of 2, Also there is an opiion of using a modi-
fied Newton-Raphson procedure wherein the A matrix is not always
recaloulated at each iteration by running nelghboring tvajectories,
but instead a new A may be approximated using the old A and the
values of the changes in x, tf. .

2,4 Numerical Methods

A Newton-Raphson iterator is used which calculates the sensitivity
matrix by running neighboriné trajectories by changing slightly the
initial values of the iteration parameters, one at a time. The size
of the change in the iteration variables is chosen by the user and .
can affect the accuracy of the matrix, A Modified Newton-Raphson
iterator used basically the same technique but many of the iterations
make use of a modified sensitivity matrix rather than calculating a
new one by running neighboring trajectories ak each iteration.
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The low thrust differvntial equations are Integrated using a
fourth order Runge-Kubta method., The time step ig selected by the user.
cutting the size of the time step can increuase the accuracy of the
trajectory but rapldly incroase run time.

Numerical averaging utilizes a Gaussian guadrature. The number
of points sampled on an orbit can largely be determined by the user.
Again, more points increcase acecuracy at the expense 0f run time,
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o | "/ SECTION 3 \ *
. . ANALYSIS T " i
g = = f i
3.1 Sail Perce Model | 4 . B
A square sail force model was implemented in the computer code and z%
- L
this section stresses that model. Limited heliogyro data wap supplied g
by ari and preliminary modeling effort is discussed in pendix A, 'This b
" éffort was not included in the computer code. A simple, modeL of the N
i . e
heliogyro would be similar to that given in this sec tion. ;f ﬁju
The acceleration exerted by the photon pressure of sunliqht on a 5{
flat, perfectly ¥eflecting surface, whose noxrmal has an angle, «, with 4%y
the sun direction, has a dlrecLion along the normal ta the back_of tho" v

_bail and a magnxtude glven by - - y o i

a . : .‘ 
a, = £ cos?u (3.1
F .2
. ‘ R .
)
where aé, the characteristic acceleratlion, is the acceleration at 1 A, u. Eﬁ
caused by the photons refle€ting off a sall whose burface is normdl Lo N ﬁ
the sun-line; R is the distance from the sun in A.U.'s, If 3 is the unit i§
vector from sun to space vehicle and ﬁ_ﬁhe unit normal to the sail back, . g@
) the acceleration can be written £
; . ] . e
s
.ooTel S y . ' g - . §
(L ST ' o ac Ala . 24 . au
- e A, = o (R)n : , 3.2y &
- R s
‘ o s -
rince cés a = ﬁ?g. This expression reprebents the model Lhat has been 5
used in much of the previously repcrted work {e.qg., Ref 3, 4, 5, 8).

The square sail mod@l whlch was under conSLderatxon-Was not
‘Jpeffectly flat, nor was the reflection purely speculax. The framework
produced a kite-like structure. The sail' was b6wed_somewhat"yith an




apex at the venter, Thero was some absorption and some emission from both
front and back, To more accurately model these effects, an expa sion .n
cos b, where 6 is the angle between the force vector and the s'in-line,

was fit to more precise data for the geometry and reflective character-
istics of the sail model by the Jet Propulsion Laborntury.zJ The follow-
ing relationship was produced:

a -
ap = ;% (¢, + ¢, cos 20 + ¢, cos 46)u (3.3)

where i is a unit vector in the force direction, not necessarily p-.allel
with the normal to sail surface. The thrust direction g could 'e written
as a function of two angles, the cone angle, 6, where cos 0 = E?g and the
clock angle, which is the angle between projections of a refcerence direc-
tion and the thrust direction onto a plane normal te the sun-linc (see
Figure 3-1), The expression in Eq. (3.3) could alsoc be expressed as a

clock angle
measured in plane
normal to sun=!ine

-~
a

le»

-~

B L
(sun=1ine)

to

ORIGINAL p
AGE 1§
tml'fﬁJCHl (}LH‘LJ11r

Figure 3-1., Sail geometry (in the plane of the sun-line
and force vector).
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function of coszﬁ and con‘#. The parameters €1+€,,C4 are constants which
deperd on the shape and reflective qualities of the sail. Note that if
Gy = 95 0.5 and Cy = 0, then the expression reduces to conzr. which
correspondz to the idealized square sail. The relationship between a
body-fixed coordinate frame and 5 may be obtained but is not necessary
for our purposes.

One model produced by JPL had ccefficients given by €, = 0.367,
€, = 0.643, and €y = -0,010, The locus of the tip of th. normalized
force vector for these coefficients and also for the idealized sail
coefficients is plotted in Figure 3-2, A line drawn from the origin at
an angle 06 with the horizontal axis and terminating at the curve will

1 SUN-LINE

05 +

c0s20 MODEL

50,367 + 0.647 cos 20 - 0.010 cos 40 MODEL

o

W T
0.5

- | SUN-LINE

Figure 3-2, Locus cf tip of force vector as cone angle varies.
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have a lengkh representing the force magnitude, fThe maximum force mugni=-
tude is one, which oceurs when the forceée vector is parallel to the sun-
line. At 0 = 62.585° the force magnitude is zero for the nonideslized
sail. This is the puteff angle, For & greater than this angle, the
gquation dictates . & negative force magnitude, . |

The force model of Eq. (3.3) is only an approximation and its be-
havior for B apﬁfoaching 180° is not realistic, If Cy ¥ 0, then for some
0 < 90%, b(0) = 0 and for larger 0, b is negative implying a force toward
the sun, which is impcssible. The 6 at which b(0)= 0 was considered a
cutoff point and any 0 which resulted from the muthenutical optimization
greateyr Lhan this cutoff was reset to the cutoff value. The cutoff value
may be obtained by sett;ng b(#) = 0 and solving for & analytically, as a
function of ¢, €,, and Cye '

In order to calculate the cutoff angle it ie convenient to trans-
form Eg. (3.3} ﬂo an expression in:cos28 and cosda, i.e,
I\ i B » -
| B(O) = K+ k, cos?0 + ky eosto (3.4)

From trigonometric identities:,

kl = ¢ - Cy f Cq 7
k2 = 2c2 - Bc3 {(3.5)
k3 = Bc3

For b(f) =0 R

00526 = R ' (3.6)

The coefficient f was always positive and much larger than k, and ké
so that the poqltLVe sgquare root is the correct root. 'Thus, the
cutoff value of p is given by

)
T

- (3.7)

- k e "l\ - 4k
2}, -

12




whordlﬁc is between 0° and 90° (in the compuber code ¢ and, thercfore,
0, was assumed to lie between 90° and 180°; thus, the sign on the outer
sguare root was negative). If k, = 0, the cut-off angle is simply

obtained,

3.2 The Equations of Motion in Equinoctial Orbhital Elements

M
h

A variation of parameter fermulation using equinoctisl o#bital

_elements was used for the equations of motion. By using equinoctial

orbital elements the singularities that occur for zero eccentricity orx
ineclinations of zero or ninety degrees when using classical orbital

elements are aveoided. (For inelinations neaxr 180¢, reﬁrograﬂe equinoctial

orbital elements can be used, although we will not consider that case
in this report.)

The direct equinoctial orbital elements are deflned in terms of
the classical orbital elements by the formulas

Ha = .a .

h = e sin (u + Q)

k--= cQs“{Q“+“g) e e e (3,8Y
p = tan{%) sin Q “

g o= tan(%) cosfl
where a is the semimajér éxisl @ ls the eccentricity, i is the inclin-
ation, ! is the longitude of the ascending node, w is the argument of
pericenter. A sixth parameter, F; called the eccentric longitude, indi-

cates the position in an orbit. It is given in terms of the classical
variables by )

F = E+Q+u O (3.9)

where I is the eccentric anomaly. The variable F will be eliminated
by the'averaging process, Further details about equinoctial elements

are given in Refs. 12, 17 and 24,

The inverse relationships are defined by

a = a
(Hz + k2)1/2

]
1

il kT i il Lo i T e Ryt b £ b S

P




{ = uan'l(.@ + q%) (3.10)
N = tan'ltp/q)
w = tan-lih/k) - tnn-l(P/q)

The equinoctial coordinate frame is defined by the basis vectors
i, 9, g, which are given below with respect to an inertial coordinate

frame,
B
rl-p2+q2
s 1
£ B re— — 2pq
1+P2+“f;'"F i .
..p -
i 2pq W
~ 1 2 2
R ey S l1+p =4¢q £{3:11)
J+p + 8 5
- q B
- zp -
" 12*—'—5 =29
l+p° +4¢q 2 2
b - p? - ¢

This coordinate frame is illustrated in Figure 3-3 where Q is normal to
the orbital plane,

L] 2
1 ORBITAL
! PLA.Z

< SPHERE

b
‘B Figure 3-3. The eguinoctial coordinate frame.
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The mean longitude is defined by
- M+u+n (3.12)

The eccentric longitude, F, was defined in Zq. (3.9). Kepler's equation

in terms of ) and F is then given by %:
) = Fe-ksinF + hcosF £3:18) ¢
Position and velocity are given by ;
r = xli + Yli (3.14)
o= %,f+ 8,9 (3.15)
where
X, = al(l = h?¢) cos F + hk8 sin F = k] (3.16)
¥, = al(l - k%) sin F + hk8 cos F = h] (3.17)
ky = P2 (nks cos F - (1 - h?g) sin F) (3.18)
. na2 2 -
¥, = 5= (01 - k%) cos F = hké sin F] (3.19)
ard
n = ;“3 (3.20)
£ = l-kcosF =~hsinF (3.21)

p is the gravitational constint and

(3.22)
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! The unaveraged variation of parameters formula for an object in
L an inverse square gravitational field perturbed by o forece u is

. o= M(2,F) 4 (3.23)

2 omw rwas nak

where 7 vepresents the five equinecctial orbital elements (a, h, k, B, q).
We define the 5 » 3 matrix :

S

M(Z,F) = (3.24)

o3 ar
!?ﬁ-‘ (R3]

Lok b e

The elemaents of this matrix are given in Table B-1 of Appendix B,

3.3 The Optimization Problem

A L R

It is desired to calculate minimum time trajectories for ascape,
capture, and orbit to orbit transfer. The orbital element and averaging
techniques did not permit trajechries to escape énergy when cccentri-
city goes to one and the thrusit to weight ratio becomes too large. For
b : planetary escape the final siate condition is that energy be zeroc., This
is. eguivalent to infinite semimajor axis. Because of the limitations of
the technique, trajectories to a subescape condition are considered,
This is defined as a large, but finite semimajor axis, ox eguivalently
as a small magnitude, negative eneryy. The initial orbit is assumed to
be given. For orbit transfer the initial orbit is given, and either
the final orbit is completely specified or else three orbital eléments
{a, e, i) are specified. The capture problem is considered a special

" case of the orbit transfer problem, sinci a zero energy initial orbit
cannot be assumed, Thus a guasi-capture trajectory problen assumes that
the initial orbit is given and that the final orbit is at some lower
energy requiring a spiral trajectory downward.

N T W 0 LR i

bW T S O PO I Y
[y .

=150 EkF
t

1oy 1T g0 e

; A calculus of variations or maximum principal approach is used,

© Phe initial time and state are given; some subset of the final state is
given. The state eguations are given by -Eq. (3.23}) with the force given
by Eg. (3.3). In summary . )

X
'

T

e SEY

e

2 B o= =% bie) niz,E) 0 43.25)
?11;1 R : Bl
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rw

whoro

t—f - " .
blg) = ¢y + ¢y cos2d + ¢, coudd

and

3090 "
\

f

(3.26)

(3.27)

and ¢y, c2,“03 are constants, Thé distance to the sun is a function of
time and the direction i depends on the state when using an eguinoctial
¢obrdinate frame. The charactoristic acceleration, a,, is a given

constant. The control is the force direction u,

The unaveraged Hami

H o= A

DI
i 'T

Iﬁ =

ltonian is given by

(3.28)

Applying the method of avefaging, define the aﬁpraged Hamiltonian as

where"l‘o is the orbital period, Tt is convenient to perform the
integpapion with ruspect to the eccentric longitude, F, Then

where

oje.
ofe

" .

For  conveniance define

o

o I

T
[»]
T

—

R ‘/n i
Y [

T

T .
5%”(1 - ¥ cosF, - R sinr)

s(Z, F)

tZ, X,

17

3
,TO

F(t), €, 1) dt

'n1m
st

F.
1
u
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L
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i
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The overbur indicates that the quantities are held constant during the
averaging interval, The t dependence is time dependence which does not
depend on the spacecraft location such as the planct - sun positien.

Necessary gonditionsﬂfor an optimay trajectory are that the
Buler-Logrange aquations be satisfied:

A - :
44 §i o
-+ ~ . T T .
4] o= AL . f S o oap (3.33)
i ax ax - )
: = ~ =
(.
4 T
41 = '
1 o - f (—Lfi 5+ H ﬁé)—ara (3.34)
di 24 2% YA ‘
1 -~ -1 = —-
q:
1 B3
‘]4 where
g
i3 au~ : . "
1K . = 2 {2, Iy u, t) (3.35)
Ay X -
i
i
o .
% aH or 2L
°0Z, T 0y
X __ ’ 8 o1 Ja3b M |~ :
- £ -—:“,- '_X_" —— M+ b ——s u s {3.36)
" ) 0 ]
! 3 oy |~ sinF| ,
7 5 27 |- cosF " (3.37) -
\ - 0
b 0 -l -
oM . . 7 " s Lo o -
-— -is given in Appendix B, = . . .
0z Y '
S ORIGINAL PAGETlg
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i} B f

‘i
L re i

y LRI 1) ¥ ’ (3.38)
(Ej i . a‘?g . e a.z_
& where ’
R 3= -2, sin 28 - dc, sindo o (3.39)
and
. ' 3R :
38 R -
R - (3.40)
2T sing YA _ o
But since sin2@ = 28ind cosf and sindd = 4sind cos® cos20 then
‘ aﬁ .
gg = (4c, cosd + 1l6c, cosd cos20) O - (3.41)
32 iy 32 o ‘

It R is given in equinoct;al coordinatesnéhere R'= (x ' ! ' Z ) then
the nonzaro partials are given by

- “ s = G (GYg + 3) 3,42

it W . (3.43)

Y, L {3.44)
’ n °P Lept gt T
I ‘%, ~ ' ga ; ] i
b —— w (= PX_ + 2.) (3.45) -
‘\‘ - . 5q_ 1 4 p2 i+ q? o 5 5.5 o

+
x

K

i
)
"
3!
13

g
AT s ey e
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™,
J

9

i} 25
?Tﬂ = ””__,g 5 (3.46)
P 14 p%+q
02 ~2Y
|4 5
B S (3.47)
9g l+p2+q‘£

The control must maximize the Hamiltonian. That portion of the
unaveraged Hamiltonian containing the control is

o= b(a) ATM D (3.48) ,

Py

Now b is considercd a function of Q rather than 0. It is convenient to
identify the primeér veckss asg

T a .
A, = WA “ (3.49)

and define the primer vactor cone ahgle g where
i -

S ) __cosé ﬁ.ng? 2v e . {3.50)

The Hamilionian is theﬁ

o= b)) A

v 2 (3.51)

The cont:ollﬁ can be written as a function of two angles, the cone
angle 6 and a clock angle, V. Than

§ = (cosy & + siny §,) sinb + cosd g, (2.52)
whgre"thé unit veﬁtors are given by -
e; = R o o (3.53)
éz = é;):sy {3.54)
gy = 84 % &g " . (3.55)

20 -

- \l:ﬂm._;v-wwm-~"'*'““'-";" T
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0 o

i?'s where V is a refexence veeter., In this coordinake frame the prirer vector
' canh bae glven in terms of B and ~ elock angle wp. Then

g “ ; i A ~ i ~ 5

Ay {cosy, @) + sing, g,) sinb + coub g, - (3.56)

The relevant poxtion of the Hamiltonian is then

' = bilo) {cosy cosy, + ginyg s;n¢p) 8ind sinf + cosl cosh (3.57)

P
Maximizing ' with respeet to 0 and ¥ is equivalent to maximizing H'
with respect to ﬁ. The clock angle for ﬁ must be equal to thé closk
angle of the primer vector: ¢ = wp. Thus ﬁ, iv’ and g are in the
same plane and from geometrys: :

- o [ad
g sig(ﬁﬂ 8) R o+ gige Av (3.58)
(gs in Ref. 6).
QE;) | The H' reduces to
H' = (c:1 4 czééSZB + 03cos46)(cosencosﬂ + 5in0 sinf) {3.59)

Thi« can be maximized with respect to 0 by settihg ite derivative with
respect to 0 to zero. '
H .

L («2¢. sin26 - 4c., sin 46) (cosb cosf + sind sing)
L 2 3 ‘

+ (e) + ¢, cos20 + ca_cob 48) {- sind ging 4 cos@ sinp)

_— " - E (3.60)

Now for tlie idealized flat square sail e, = €, = 0.5 and ¢y = 0 so that

b(g) = cos20, Then %% = 0 can be reduced to a quadratic in tanl whose

solution is

[] 2 2 :
- 3cosf + Vésln B 4+ 9cos”B (3.61)

tang = i5ing
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where note that B ean vary between 0 and 180°, but § voarles betweoen ¢
and 90°, This is similar te Ref. 6. In the general casce, the oxprasslon
could be raduced Lo a polynomial, but it ip casier to solve the cguation
numerically using & Newbon method, If

H = by a{0) (3.62)
=where
d(Q) w  oogfd cosf + sind sing {3.63)
let
£(o) = S bre) d(e) + bo) a'(0) (3.64)

The prime indicates the derivative with respeckt to 6. An initial guess
for ® is given by the solution for the idealized sail, Ra. (3.61). Then
iterate "

Oy = Oy - ?gn (3.65)

= 25 = 2h'd' 4+ b a + ba" {3.66)

“ o
where
b;' = = 4de, cos20 - ZL6c.3 cosdd {(3.67)
and |

d" = d {3.68)

Thus the control Q_is determined.

. Figure 3-4 shows the variation of § with 8 for the idealized sail
and for one seh of coefficients: c, = 0.367, ¢, = 0.643, ¢, = =0.010
which corresponds to one, JPL supplied, heliogyro model. HNote the

cut off angle of & = 62,6° which occurs in a region where the model is

not realistic. In the computer program, whenever the optimization

22
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sob 00178 MODEL

0,367 + 0.643 cos 20 - 0.010 cos 460 MODEL

THRUST VECTOR CONE ANGLE (ceg)

| 1 ol
60 120 180

PRIMER VECTOR CONE ANGLE (deg)

Figure 3-4, Thrust vector cone angle versus
primer vector cone angle,

called for a 9 greater than this cutcff value, € was set to the cut=-

off value as indicated in the figure. The cutoff angle was given by
Eg. (3.7).

The state and costate lifferential equations have been given and

the opiimal control derived. It remains to specify the transversality
conditions, For tiansfer to a schescape point, the final energy, or
equivalently, the final semimajor axir is specified.

(3.69)

™

L]
e

0

i

1

w3
1k

This is equivalent tc specifying the {inal semimajor axis since the
mass, m, is constant. Transversality conditions then reguire that

the adjoints to the remaining stcate variables be zero and that the

Hamiltonian be egual to one at the final time,

23
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Ay = O
Ay * 0
dp = 0
g = 0
H o= 378 = 1 (3.70)

The adjoints to the classical orbital elements, e, i, 22, and w should
also be zero at the final time.

In the case of orbit transfer, if the urbit is completely speci=-
fied (a, e, i, 1, w or equivalentlv a, h, k, p, q) at the final time,
then their adjoints are free and the only transversality condition is
that the final Hamiltonian be one. If three orbital elements (the
semimajor axis, eccentricity, and irclination) are specified at the
final time, then the Hamiltonian must be one and Aﬂ and lu must be zero.
In terms of equinoctial elements and their adjoints the following final
state conditions are specified:

a = a(tf)

h? - %2 s eity) (3.71)

2 2
g, M- = tan(i(tf)/Z)

The transversality conditions are:

hi, = ki, = ) (tg) = 0
Phg = 9, ® Agltg) = O (3.72)
H = 1

The state and costate differential eguations and the initial and
final ccnditions yield a two-point boundary-value problem., This problem
can be solved with en iterative method. A Newton method was used as
in Ref, 12, The differential equations were integrated numerically with
a Runge-Kutta method. At each function evaluation for the Runge-Kuita
method a numerical quadrature was used to average the eqguations (3.33)
and (3.34). The control was found using Eg. (3.58) and by a Newton search
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i

for the cone ﬁngle.
ality £unctiont shadowing and oblateness.

Purxcenter Penalty Function - 0o '

| |

Planutocuntriu solay ball LrachLo}iLs typically build up large
eccentyicity rapidly. Thisg can ba partirularly undLbirnbla if the ini-
tial altitude is low. Optimization may actually yleld Lrajectorinu that
intersect the planet's surface. Also, large eccentricity Grhitsioften
require rapid changes in thrust direction wq}gh, in practice, may be
impossible to implement. One way of reducing this problem is to append
a penalty function te the cost (which has been flight time). OClie
possible penalty is the integral over the flight time of the inverse
‘pericenter squared, ‘Then the cost is given by ;

| JF
ty

Thisipenalizes low altitudes in general and especially at small semi-
major axis,
The constant, n, must be picked to obtain a degirable weighting between
the peﬁalﬁy.and the flight time.
indicated that this method could
were too shall with a very small
OLher penalty functions might be

I o= byt aa (3.73)

N

L
£ 2
. r P

To some extent it also penalizes larger eccentricities.

Experience with a few example cases
be used t: prevent altitudeés which
increase in flight time {less than 58%).
used,'for example, one which is much "

steeper near’ some specific altitude, thus acting as an inequality

cbnstraint (see Ref, 25).
r\ i o
i rThe Hamiltonian and the costate equatlons must be modified. The
parlcenLer is given in equxnoctlal elements by
- . ‘ - L - " T l N . - 5‘.‘
i ‘ P ' : (3.74)
: : a(l - vh% +k%) .
1" | i
- o= 3§ - (3.75)
Y 2 2
; L a“{ l - ¥yh* + k%)
- v

25 3

Additional comp1caiLy ls added by incluéing i pun"ri
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then the Hamiltonian is given by (
'lv o ‘ (.;
H & A4 =1 (3.76)
- The averayed Hamiltonian is . |
= - i
i To T .
) ~ - 1 : i\ 1 o
O o= f AT dE + L(Z) at (3.77)
.} . e 4y o 7
i .
/ :
and the costate equation i3
i - -~ !‘i [ N
. . ! .A_..-T = e P‘g ) (3.78)
i Y
_ The first integral .AAn Bg. | (3.77) is the sami as if there were nho penalty
function.- The second in.Egral does nat include a time"dépendence in -
the integrand and.so it is just equal to L(Z) Thus, the only thing
" different in Eyg. (3.78) ia\the addition of . In particular -/,
- ) l iz ;
. N ,u - - U
. L i .
T b BT e R e -
- e 5 == ._ {a. 79)
3Ll | _ 2L _ h ,
?h 7 ) ~{3.80)
R ORI r
N i
aL c2nL k' 9 g1
ﬂ ~ K /,5_ . (3.81)
1l - vh® + k /h + k
- -a-—Iu.- = -aa—I—‘ =
55 55 = O (.3:82) _
Transversalify conditions still reguire that the final Hamiltonian be
equal to ohe,~but in this case at te:
__ ” H = A2™-1 = 1 - ¢ (3.83)
A ) =
mos 26
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3.5 Oblateness

In the previous sections we have considered only perturbations to
the inverse square motion caused by thrusting, In this section, the
cffect of oblateness (62) is censidered, Oblatenass egquations are in-
cluded here for convenlence from Ref, 12. Oblateness is included only
for earth-centered trajectories. '

The single-averaged perturbing potential due to J2 has heen cal-
culated in terms of eguinoctial coordinates in Ref. 14 and is repeated
in aAppendix C. R, is the equatorial radius of the Earth and J, is set
to .001827. These formulas enter the averaged Hamiltonian as coeffi-
cients of the costate (outside the integral sincé the averaging effect
hag already been accounted fox),

~ o IE Z indicates the perturbation due to thrust as given in Eq. (3.335

then the Ham ltonian is given by

. ve oe - . -
H = -_J‘\__@J_z t AT, (3.84)
The state equation is
The COSﬁéte equation is
SE il o
. - 247 3z ]
e -2 - -f-:g--f[fw?sﬁz’”gaas aF  (3.86)
3z 3Z 7 3z 8z :

The partials indicated by BZ /8Z in the above expression are given in
Appendix C. 2

3.6 The Shadow Effect

For solar sail missions, there is no thrust while the spacecraft

is in a planet's shadow. The entry and ealt angles are needed in order

to perform the averaging integral., . In calculating these angles the
following assumptions are made, The shadow is cylindrical; the planet

revolves around the sun in an elliptical orbit; and over one spacecraft
< revolution, the sun's direction is fived Peyiinent equations for the

caleulation of the entry and exit eccentrlc longitudes are summar;zed

in rppendxx D taken from Ref. 12. -
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" Let F, refer to the eccentric longi
and Pl at exit, ‘That part of the Hamilteo

is then -
i : P,
' H o= f H s
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‘The calculatloniéf Q: is dlSCUSSPﬁ ﬂn App

az

3.7 Planetary Data and Coofdinafe Frame

tude at entry to the shadow

nian propa:t;enal to thrust
!

ar | (3.87)

(3.88)

(3.89)

endlw D.

5

Earlier versions of the code for el
assumed Earth orbital missions with space

"enced to an egquatorial coordinate frame.

been generalized to include trajécéarébs
system planets: Mercury, Venus, Eafth &
constant for each planet is given in Tabl
This is used in shadow

“znternal units" of the code use planetar

planet’'s radius,

assumed zeroc for all:glgngts except Earth.

tion of a solar sail is défiﬁed“&s.the wa

|

ectrie propu;sion-tréjgctories
craft orbital elements refer—
Phe snlar sail program has

‘about the four inner solar

nd Mars.
e 3-1, Also given is the
calculations and also the
Oblateness,
The characteristic accelera-

The gravitational

y radii. Jz, is

ximum acceleration at 1 A.U.

Thus, the planet's distance from the sun is needed as well as the sun's

direction.
jectories,

and the ecliptic, is thus needed.
may . be used,

An equatofial coordinate frame is used only for Earth tra-

The obligquity angle, the angle between the Earth's equator

In this frame the X- and Y-axes are in the ecliptic with

For all the-pianegs-an eeliptic frame
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the Xe-axis toward the vernal équinox‘ditﬁcticn and the 4-axis iz normal
gy, Lo the eeliptie in a “"northerly" direction, ‘aAnother coordinote frame ot
option is the “planetiry® frame which is referenced to the planct's

orbital plang, the Y~axis normal to the erbital plane, the X-dxis peinted

towanrd perihelion, :ﬂ
Table 3-1, planetary data. =
Mexcuny venus Barth Mars :
Semimajor axis, a (A.U.)} - 0.387099 0.723322 1.0 1.52369) .
Becentrieity, e 0.205627 0.006793 0.016726 0.093368 :
Inclination, i (°) 7.00399 3.39423 0. o L.8499) e
Lohgitude of the ascending 47.85714 76.31972 0. . 49.24903 | =
node, (°) ) ’ B “f?
Meaﬂ_longitudb'of perihelion 76.683309 131.00831 - 102,25253 335.32269 Epgg
« { o ) - . . :\ H “:‘r:‘ :
i - i . b
. - } ) ) N A
- " Mean orbital motion, 4,082339 1.602131 0,985609 0.524033 A

PR

T S

n (°/day) _
Mean longitude at epoch, &  222,62165 174.29431 100.15815 258.76729

=

oK

. Obliquity nngle-- (.n)..... e o e - -

PP

RN g e A ek
. i

- e s g T TR i

s o, — e 0.001.0827 —— ;
Radius {(km) : ' 2435.0 6052.0 6378.16 ©3393.4
Gravitational constant, 22181.6 /azdsso.l 3098601.2 42828.4

p (km3s=2)

I i —
Y -

~ Data for Epoith 1960 Jan 1.5 E,T. (J.D, 2436935.0) from Ref. 26 except J,,
2 radius and g from Ref. 27. C . .

i i
In the ecliptic cooidinate frame the unit vector pointing from the g
‘ i
planet toward the sun is , i
, R - - ._‘hi’
. . . ria
cosi ~eosi sinf sind sin{l ~cos (v+w) Lo
i - P“I‘a
. o \ . - : - D
E% = ['sin{ cosi cosil -8ihd cosil =510 {viuw) (3.90) i
’ oy
0 " sini . T ogesi - | .0 ) LN




Note that for Earth, i and 9 are zero SO’Lhah the matrix is the identity
matris, The argument of perihelion w is obtnined from Table -1 since g

~

: - . - 3
A P SN (3.91)
‘: \ i, ¢
SH 4 The angle v is the Ltrue anomaly. It can be appraximated by (Ref, 26)
[ '; x:.\ - ~ .
S P | A |
i B
S e a5 a2 13 3
i:?:g ] %'\ v u M+ {(2a """&") sinM + 'y e” g8in2M + 7 e sindM - (3:92\)
i g | ; N
54
q! where M is the mean anomaly and
i Moo= nToE M . ' (3.93) -
“d: fE 7 ‘ ;_ W 4 b - f}g-\\
&) The time 7 is measured from the epoch and M, is the mean anomaly at
LY epoch: - ' -
ek i . ” - { /
- ‘ ) ) (-r. S . R
i C e
e M, = & u “ ; (3f94)
; gé' The mean orhiﬂal motlan, n, is glven in Lhe table- with other needed ,
constants' T T T T T T s T e o :_:____, T T e e e
The distance to the sun ip A.U.'s is P
i
Ij ) ) . R
7 ‘ oafl - e?) -
:,/ |R5| i L + ¢ cosv (3-95)
“The dlfference between the sun—spacecraft ‘distance and the sun—planet
! dlstance is assumed negllgible. - o g
' For an Earth-equatorial frame - !
' -cos (w+v)
s . 5; = | ~cos0 sin{wtv) . oo (3.96)

L~sino cos {wiv).l

where 0 is the obliguity of the ecliptie,

For a "planetary" frame i, £, and & in Eq. (3.90) are set to zero,




0w 3, ak ,'.‘f‘i . !
In the equincetial ecordinate framo '
N ) ~ L~ ~ A ~ i B i':"\ . . ‘
where tho cquinoctial basis vectors were given in Bg. (3.11). Noto \
that the R vector used in earlier eguations in this scction is the .
veetor from the sun to the planet rather than from the planet to the o
sun, £

[ T
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SECTION 4

NUMERICAL RESULTS

A number of example runs were performed. A complete performance
analyuis was not done becavse of the continuing charge in status of the
solar sail mission planning., First the square sail was emphasized,

Then the heliogyro was picked as the principal solar sail design. Fi-
nally, the solar sail lost in competition with jon drive as a contender
for near future low thrusi. miss.ons. A complete heliogyro model was not
implemented. Resulus in this section are for the square sail model
discussed in Section 3. A limited number of Earth-centered trajectories
will be discussed here. Because of decreased interest, further runs
were not performed. No trajectories about the other inner planets are
included since the only cases that were run were short test cases to
verify the coding. A test case also verified the use of the program

to calculate trajectories which spiral down from a high near-capture
orbit to a lower orbit. This is a special case of orbit transfer.

A nuaber of cases using the square sail approx mation with helio-
gyro coefficients (Cl = G,.367; C2 = 0.643; 03 = -0,010) for transfer
to a subescape point will be discussed. These runs used a 10 day time
step and four 4-point gaussian quadratures foir the averaging incegral.
A subescape point with a semimajcr axis of 100,000 or 200,000 km was
used (this is equivalent to a CJ of -3.99 or ~-1.99 kmzfnz, respectively).
A number of facturs determine flight time. The initial orbit is, of
course, of critical importance. An initial orbit with a semimajor
axis of 21378 km, eccentricity of 0.655 was suggested by JPL personnel.
This initial orbit would be representative of a tug-launched sail
(C3 = -18.6 kmzlsz). The longitude of the ascending node (1)) and the
argument of perigee (w) can be varied. The incli-~tion (i) can be
varied but differing launch energies would be required if t launch
day is fixed. A number of open loop trajectories were run to get a
feeling for the i, 0, and w that would yield the lower flight times.
Then trajectories were optimized for a few cases of specific i, 0, and
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w (for convenience, those angles ‘were specifiad with respect to an
Ceoliptie frame). A launeh of Mareh 21, 19684 was assumed, Although an
elliptical Barth orbit about the sun was modeled, the I/R effect of
‘solar pressure was not ineluded in the examples (a constant 1 AU, dis-
tande was assumed), Barlier examples indicated that including oblate- ¢
ness has a very small offect on flight times and therefore this effect
was not included in the examples shown here. Shadowing was included
but thi initial orbits were choseén to avoid the shadowed regions,

_The rasults for seven exumplas are shown in Table 4=1l., Cases 1,
3, and 4 show the effect oh varying characteristic acceleration £rom
0.6 to 1.0 mm/a . ' These cases are also plotted in Fig, 4~1, Case 2
ﬁhns a final semimajor RXin ‘of 500,000 krirather than 100,000 km as in
“Case 1. Anadditional 20 days is needed, At 100,000 km the orbital
iperiod is 3.6 days and.at 200,000 km it-is 10,3 days, Escape would
probably oceur in less than 30 more days, about two more revolutions.
. ApﬂccntLr Ior tHc final’ orbit was at 347 000 km whera Phe Lhrust/weight
rat;o wag neaxly 0.1 for the 0.6 mm/s nccelezation, so that the aver-
. aging teclinigue has limited valiﬁity(thera. -

Case 5 is similar to Qase 1 exce@t that the initial orbit is cir-
cular rather than elliptical. The lnitial c3 for both cases is -18.6
"kmz/sz. The transfer time to a Cy of =-3.99.is about 4- days longer for -
‘the ;ﬁitlally circular orbit cabe. This- behavior is dus to the fact
that the initial orientation of ‘the elliptical orbit was chosen so .
that the sail was moving away from the sun near apocenter. At this
point, the sail was moving more slowly and therefore, reuexved more
enﬁrgy. thus, for the first 80 days of Case 1, the eccanhricity

ks

actually decreases to below 0. 2,

. Cases 6 and 7 have initial orb‘ts which are normal to the ecl;ptic
i and choben 50 Lhat as the Earth moves around the sun; the orbits.will

- come closer to being normal to the suanne. SllghLly 1ncreased trans-
- fer times resulted compared to the 45 1nc11natlon cases. For Case 6,
the eccentricity became smaller and at the final time was equal to
.004, The injtial costates are shown for all the runs.-

s

‘case 1 will be illustrated in more detaill by a series of figures.
Figures 4=2 to 4-6 are plots of the classical orbital éLements (a, &,
i, 2, and w). sinée the initial time is March 21, the x-axis of the
coordinate frame 15 pnintlng toward the sun at the initial time,
ECCERtthltY ‘and inclination decreéase for the first 80 aays. ‘The line

i 0 (e S 1 CL ey - Il ol E B L iy sl s W



TABLE 4-1

Transfer to a Subescape Point

casg 1 2 3 4 5§  ewr g S
Initial a (km) 21378 21378 21378 21378 21378 21378 21378
e 0.655 0.655 0.655 0.655 - 0.0 0.655 9.655
i 450 a5 4ge g3 a5e gg°  gge
a 150° 1s0° 15@° 156° 150° _ 0° o 0o
. w . 180° 180° 180° 180° 180° ~9p° -gg°
-, Characteriséic - ' .
Acceleration (mm/s%) 0.5 0.6 0.8 1.0 0.6 0.6 . 0.6
Final a (xm) 1000600 200000 . 100000 160000 160000 - 16060C __ 200000
' Flight Time (days) 116.5 147.4  gs.1 70.3 120.3 122.8 153.3
Costate Ay | 3389 3750 2579 2097 . 3444 3753 3653
Ay 255 g4 ~112 -249 -B01 1272 1616
oo Ay | 453 -464 -366 - ~347 1365 66 66
: 2;'5:‘*3 A, | ~B69 —2614  -966 -972 -603 763 804
=8v§ . Ay 1840 : 20 1312 977 1059 -2 -1
g2
E @
e ‘
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‘uillustrates the’ chanqe in-period,- Dericenter ‘and anocenter.

of nodes changes slightly but the argument 6€ perigee incroeases from
-186% to 35°. Figure 4-7 shows a plot of cs; The dotted line at

Cy =0 is the escape cnergy. -Although shadowing was included, the -
trajectory'never intersected the shadow. Fairly large changes in sail
dlrection were rnquired in a short time for early orbits. Fcr'eaample,
on the first orbit a change in the sail @irection of over 40° in 20
minutes was called for. This occurs in the region where the sail is

near to edge~on with the sunline and the thrust produced is very small,
In practice a slower non-optimal change in direction would probably have
only a small effect on pexformance, The cone angle for the primor vector

‘and the cone and clock.angle for the thrust vector are shown in Pigs.

4-8-to 4-10 for 3 orbits including the inltial orbit, an orbit at 50
days, and the final orbit. -

Figures 4-11 to 4-20 show the history of the equinoctial orbital
elements and their adjoints for Case 1, he initial costate is shown
in Table 4-1. When oblateness was included Zor the same initial condi-
tions, the flight tlme was 116, 42 days rather than 116.52 days. 'The
corresponding costate is (3355, 227 ~387, -698, 1877)., A run with a
five day- time-step was not appreciably different than the ten-day case.

- fhe curves in Figs. 4-2) to 4-23 have not been smoothed; the ten day

time step produces corners in the computer plot., Figures 4-21 to 4-23

i -

F Lonvergence characteristics rox the. cases obl transter to a sub-

;escape p01nt were good, Typically an lnltlal guess of A = 1000 wﬁth
. the other adjOlnts zerc resulted in convergence (o w1th1n 3 or 4

significant figures in the desired semimajor axis) in 4 or 5 iterations.
ThlS requires about 1 minute of CPU time on Draper Lab's Amdahl 470
(a_falrly fast computer) at a cost of about $20. . .

wAn idealxzed sail was assumed for an orbit raising case (cl = c,
= 0.5, Cq = 0). A launch time ofﬁﬂarch 21, 1977 for an initial circu-
lar orbit with a = 7878 km, 1 = 28. 3@ y = = 0° in an equatorlal
coordinate frame and w;th & characteristic acceleration of 1.0 mm/s

‘was specified. Shadow1ng was not included. The desired final orbit
‘was eguatorial ‘geosynchronous.” For bhis case the minimum transfer
time was 195.8 days. The eccentricity increased to over 0.83 -at 120

'aays‘before decreasing to zero. Unfortunately, the pericenter de-

e as T X, A el MBI s e s an B
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Figure 4-11 Semimajor axis history in planetary radii
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Figure 4-22 Pericenter history
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‘ercbgsed initially, rcnching 4060 km at 110 days.,

gantey mf 7650 km and a maxtimum’ LccunLrLciLy of 0.72.,

In order to proevent
lowering of purtnenter,'a panalby Eunctionrwas added to the cost os
hfbor 5ome trinl dand errer udju4ﬁmenL of the

Laa
Laz

dizoussed in Section 3.-

- wesghbing factor between time and’ the penalty funcbtion, a LrnJLcLary

wa Y generaLLd with & transfexr time of 200.7 days with a minimum peri~
Phus the trana-
fer Lima penalty was less than 3%. Plgures 4-24, to 4-27 show the semi--
maﬁor axis; eccentricity, inclination and pericanfet hfstories for the
case with the penalty function plus the pericenter history for the’ .
minimun time case. Although the tragchory wils not changed -very mucﬁ, 5
the costate historiles were changed considerubly._ For cxample, Lhe ‘
initial costate for the minimum time transfer wvas (5842, 3070, 33;1. E
-géﬁa, -4979) With .the penalty function the inlbial costate was
(9204, —372, 6533, -7903, -B8536), It was necessary to perform a scrjea
of runs with increasing wetghtlnq Jactor in order to obtain convergence.
The penaLty function might be necessary for low altitude runb with

shadowing since currently the rhddow code is nQL valid £or LrajecLoriunwwkk

._-_Y o

wh‘ch intersect the p]angt's surface. m

’"R These résults are meant to illusktrate the capabilities of the pro-

Typical £llght times are indicatied, however, and show that the sail

ean reasonably be used for Barth escape and for orbib transfer.
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Figure 4-24 Semimajor axis history
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SECTION

CONCLUDING REMARKS

A method for producing optimal solar sail planetocentric trajec-
tories has been devised and implemented in a computer program called
SUNSPOT. A square . ail force model is assumed although it is similar
to a simple heliogyro model., Ability to produce orbit to a subescape
point and orbit to orbit transfer exists. The nethod of averaging
allows rapid computation of trajectories, but since the thrust to
weight ratio is assumed small, it does not allow trajectories to escape
energy (infinite semimajor axis). The subescape point is defined as a
large but finite semimajor axis., Typically one or two more revolut.ons
would be required for escape and a suboptimal scheme can give easy and
good estimates of the remaining flight time. In order to prevent inter-
gection of a planet's surface, a penalty function may be included in
the cost. Trajectories about the four inner planets can be generated,

The program is based on an earlier electric propulsion geocentric
transfer program. As with the earlisr work, shadowing,cblateness, and
solar motion may be included. Equincctial orbit elements are used to
avoid singularities for zero eccentricity and inclination.

The optimization requires the solution of a two-point boundary-
value problem. Several trajectories must be calculated to obtain con-
vergence to the required boundary condi-ions. Each trajectory is cal-
culated by integrating a first approximation to the state consisting
of the orbital elements and the costate using a time step of several
days. Averaging integrals are performed using a gaussian quadrature.
Typically 16 points are used. In order to obtain convergence in a few
iterations, a fairly good initial guess is required, especially for
orbit-to-orbit transfer. Because ths =olar sail always has a component
of force away from the sun, eccentrivity tends to change quickly.
Therefore, attainment of a particular final eccentricity can be diffi-
cult, Transfer to a subescape point did not present convergence
difficulties,
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A number of @ lmmplu ruj ctories were produced although o thorough
peyformance analysis wasg nmu done because of changing conditdiony in Lhe
sall mission planning. TniLﬂal‘conditionB on many of tho-cases were
gelecked to take advanbtage of geometry to avold the ahadow and docrease
flight time. Examples are for Earth orbital trajectories. Plight
times are reasonable for a low thrust vehicle.

There aru several possible extensicus of this “ork. One is the

_ inalusxon of a more nccurate heliogyro sall model. Planetshine effecks

may be important at low altitudes and for Mercury triajectories as indi-
cated by spme p*eliminary effortt for this study. Atbtitude constraints,
includinu rate and rare change constraints, are n.mpor:tant...= Such con-
straints were not included in the optimization although resulting tra-
jectories can be ingbected for violatinn of the constraints, Typically
the constraints arefviolated during a segment of the orblit when the
thrust is small cowBarcd’to the . rest of the orbiﬁ and so probably a
suboptimal po;ntinq would have a small effect. There is a tendency

for eccentricity tb bacome large so that intersections of the planet's
surfasce occout. Currently, the shadow computations are nobk valid- if

"this happens, cau%ing an abort., A pehalty function was uUsed to pre-

vent surface 1ntvrsecLlon for some examples, and there was only a small
loss of perforﬁa%cnm Obtaining convergence can be dlfflcult, gppecidlly
for orbit raisi?g when a small final eccentric.ty is desirsd. TFor a
complets egcapefLrajectory a precilsion trajectory inkegration segment
could be conneoted to the initidl averaged ssction with the approprlate

transmt;on.
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PRELIMINARY HELIOGYRO PORCE MODELING

Accurate foree nodoling of the heliogyro is veﬂ& aifricult. The
force depends on‘thé angulaxr ﬁomentum vactor, pitcﬁgangln, rotation
angle, deformation ete. .In an effort to produce a more simple model
JPL obtained approximate thrust magnitude versus thrust vector cone
angle values for various sun done angles (i.e. the angle between the
angular momentum vector ox spin_axié and the sun-line). Only data
for zero collective pitch waé obtained. Thus the sun-line, spin axis
and thrust direction are assumed to lie in a plane. This data is
raproduced in Table A-l and this case is lllustrated in Fig. A-l.

) ji -

;
I \

TABLE A-L

Values of Normalized Force Versus Force Cone Angle

_ (for two sun coae anglas and for 0° collective piteh;
taken from JPL data) )
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F IN SUN-SPIN PLANE

SUN @

DIRECTION

SPIN
AXIS

rigure A-1 Heliogyro Geometry

The spin vector direction can change only very slowly. As a
first cut the data for zero sun cone angle was used to try to obtain
values for coefficients using the square sail model. Since the data
diverges considerably from a coazﬁ curve, that form did not yield a
good fit. A form using cosd40 and cos86 did yield a very good fit.

In particular let

g = 0,333+0.7709c0s46-0.1042 cos8d (A1)
9012

Then Table A-2 show: a comparison of values from this formula with
data from Table 2-2, Note the cut-off angle of 30°g
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TABLE A=~-2

Curve Fit Comparison

0 Faata’/ 9912 Fealculated/.9012
0 1.0 1.0
4.4753 0.9819 0.9824
8.7425 0.9294 0.9293
12.5642 0.8486 0.8452
15.6465 0.7483 0.7483
20. — 0.5651
25. - 0.2974
30. — 0.

Fig. A-2 illustrates the zero sun cone angle case for positive §
and using the curve fit of Eq. (A.l) to extrapolate the data to 8=30°,
A curve is shown for the sun cone angle of 152 also. No fit of the
data to a mathematical expression was attempted for that case.

1.0 4+
s

09012 |
0.5

= : B ‘b

AL PAG
%Brlee‘cum QUALT
-|¢0 0 1;0 ‘;0 3'0 4:0

THRUST CONE ANGLE (deg)

Figure A-2 Force magnitude variation with cone angle
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APPENDIX B

THE MATRIX M AND 1TS PARTIALS

Table B-1 Elements of M
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"Respect to h and k
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‘,_‘.:"'l‘ublu B~ Non=zero Partials of M with Respect to p
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Table 3-7 Non-zero Partials of M with Respeet to g
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@ : APPINDIX C y
& { -

SINGLE AVERAGED ORLATENESS EQUATIONS

Ih these »équahions Rg is the earth's radius, u is the gravita-
tional constant, n is the orbital angular speed, J, the oblatencss
coefficient and a, h, k, p, ¢ the eguinoctial orbital elements.

b

Table 0 -1 Jq Variation of Parameters Equations ‘ i
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Table €=3  Paetial of J, Equatlons with Respeet to h
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Table C~-4  Partial of J, Xquations with Respect to k
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Table C-8 IPartial of Jy Bauations with Respeet Lo g
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APPENDIXE D

SHADOW CALCULATIONS

Phiy appendix essentially reproduces the summaxry of shadowing
rasults From Ref., 12, From geometrical considerations an eguation
can ba derdved which the entry and exlt angles nust satisfy, Such
an eguation 18 given in Reference 28 and the cequation given In this
section 1s essentially tho same, except that it is given in terms
of eguinoctial orbital elements,.

The spacecraft position is glven by
r = Xl£ + Ylg {D.1)

where Xy and ¥, were given in Eg. (3.16) and (3.17). Let the unit
vector from the planet to the sun e given by

Rg ght YLt LY

This is in terms of the egquinectial coordinate freme and thus depends
on the equinoectial orbital elements p and g. The calculation of

the sun's direction in the equincctial coordinate system ls discussed
in Section 3. If Ly designates the planet's radius, the cosine of
the angle between r and ﬁs is given by

R,z (1z]? - a2 /2
- SR W (D.2)
|z |x]
or,
. . 2 2,1/2

XXy + ¥y, o= ~{|x]° - ag (D.3)

Squaring and rearranging
RS- 2 SRS It R -
5 g (1 xs}xl + {1 YE)Yl = 2xsysxlyl ag 0 iD.4)
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‘This is the shadow equation wiich must be satisfied by the entry

and exit angles. X; and Y, are functions of cosF, sinF, a, h, and k
(see Eq. (3.16) and (3.17). By further manipulations one can derive
a quartic equation in cosF. The coefficients of this quartic eguation
are given in Table D-1. Spurious roots can be eliminated by'the
criteria that § = 0 and that R - r < 0. In addition, for the entry .
angle 35/3F < 0 and for the exit angle 3S/3F > 0.

Table D-1 ‘The Shadow Quartic Equation"

by = 1-b°g
b, = hkp
by = 1-k%p
a4, = 1-X2
d, = 1-¥2
dg = 2Y X,

N 2,2 W22 o

h, = =2d,kb)~2dyhb,+dy(kbythb,) )

hy = dl(b2+k2)+d2(b§+h2)-d3(b2b3+hk)-af‘z

hy = 2b1b2d1+2b2b3-d3(b§+b1b3)

hy = ~2kbyd; - 2hbyd, + dy (kbghby)

Ag = bj+ng

A, = 2hjhy+ 2hyhg ; ;

- 2 02,2
Az = h2+2h3hl h4-+h5
A, = 2hgh, - 2h,he

2,2

3
1

S+ = Ao r:c>.‘54F+A1 c053F+A2 c052F+Ad coslf‘¥A4 = 0
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Berivatives of I and 8

The derivative of F with respect to % is needed to evaluate the
" mostate equation., ‘It éan be obtained impliecitly from the shadew
equation. . o e

ar L .38 08 _ T
az 0z  OF ‘

These partials are listed in pable D-2. Note that in caleulating
as/ap”=and 08/9¢ we have taken into account the faet that: the sun's
direction is given in equinoctial eocrdinates.

Table D=2  Partials of the Shadow Function

' X aY1
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) APPENDIX B

A YTRATEGY WHICH MAXIMIZES MEAN RATE~-OF-CHANGE OF ERERGY -

As parl of a.solar zail planetocentric performance analysis, a

© strategy was duvuloped, -aoded, "and run to produce trajectories which

maximixa Lhc mean orbital rate-of- change of energy ‘locally. 'The
computer program (SUNSPOT) ,which was being developed to produce mini-
mum time éscapa trajectories, was modiﬁxed to produce a pumber of
Erajectories using this strategy. o

The computer sode, which uses the method of averaging, is vdlid
for the spiral phase only. Tle averaging mefhod is valid only if

xhe LhrusL/we1ghL ratio is smnll Tharefore Lhc trajectories- -.cannot

be exLended to escape erergy (C = 0},

o Althcugh the- computer pzcg*am Ls- design9a to-solve a-two. poan-

boundary-=value problem, single trajectories can be produced. The
state and costate equatmons are lntegrated, startlng at a specified
initial orbit, for a specified length of time. The state ‘consists
of five averaged orbital elﬁments, the costate consmuts of the ad-
joints to these elégments. In order to. produce Lvaje:torles using -

~ the maximum rate-of- change of energj strategy, the: costate equations

werﬂ not used. 1Instead the adjoint :o the sumlmajor axis was set

to & _nonzero value, and the other adjoints were constrained to beé
zero. #inle the energy is proportional to the negative of the
inverse of the semimajcr axis, this stratégy has the desired result.
This strateay is eguivaleiit to forcing the primer vector to be
tangent to the orbit at all tiimes. (For the solar sail, thla does
not mean that the thrust is tangential}.

The strategy requires that the eneérgy change be maxim#ZEG-hhere

the énergy, E; is given by :

&l

NWB

Thus
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S where m is the mass . {constant), w is the gravitational ccnstant, and
a is the semimajor axis. fThus B is maximized by ma?im;zing a. Since
the variation of parametcrs equation for semimagor awis is given by

& o= 22yl y | e

Then a is maximized when u has the largest projection onto the
valouity vector, V. For the sail, the thrust direction, u, will not
necessarily be colinear with V. The above procedure is simply ac-
complished using the optimization program by constraining the adjoint
to semimajor axis to be a non-zero constant and the other adjoints to
be zero. The variation of parameters equations for all the orbital

- elemants,'g, can be written (M is a matrix):

(E.4)

z = Mu
Then the Hamlltonian is : i
. , CoH=A R (2.5)
i Lo " NN S ' T, .
Then if the adjoint vector is A~ = [k, 0°}, H= [k, 07] 2 =k a

e

Thusg maximizing H, maximlizes a. Since the optimizing program uses
thé method of averaging, it is the mean energy rate that is ac-

L e e e
i BT

tually maximized.

The thrust vector for the solar sail is caleculated as a function
of the primer vector (or eguivalently, MTA) Por a flat perfectly-
reflecting sail, the force acts normal to the sall and is propoxr-
tional to coszﬂ, where 0, the cone angle,; is tha ahgle between the
normal and the sun - vehicle vector. The relatioaship between
thrust direction and primer vector has been previously derived,
for example, in Ref. 6. A wmore accurate farce model for the square
sall is given = Ref. 22, In this case the force is préportional to
€, * C, cos 2 ¢ ¢ Cy cos 48, where the cone angle, &, is the angle
between the forse directien and the sun-vehicle vector. In this
case the caloculation of the thrust vector is more involved, but

has also been implemented in the SUNSPOT code.
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A number of trajectories were generated using the maximum
rate~of-change of energy strategy. Different initial orxbits were
agsumed ; some cases used the idealizer -+1l, others tie more accurate

model; some cases included shadowiung, case disl not include solarx
motion. Oblatencss was nobt included in any of the cases. A memo
! ' 29

degeribing these cases was sent to the technical monitor®”.

]
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