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SECTION 1

INTRODUCTION

The concept of using a solar sail as a means of transportation

within the solar system was first discussed seriously in the United

States in the 1950's. 1 Recently, the poss-bility of using a solar

sail has been given serious consideration. 2 The earliest contender for

an actual mission would be a rendezvous with Halley's comet in 1986,

with a launch in 1902. After that a solar sail could be used for a

variety of solar system missions including, for example, a ` Mars sample

return. However, recent NASA decisions indicate that cite solar sail

will not be developed for near term missions. Some possible missions

would include a planetary escape or capture segment of the trajectory

in addition to a heliccentric trajectory segment. The thrust acceler-

ation level for sail designs in the near term are low, on the order

of 1 mm/s 2 , and so escape or capture requires a spiral phase from a

law orbit to escape or from initial capture to a lower orbit. Typi-

cally there would be several dozen or even hundreds of orbits. This

system is .similar to other low thrust systems such as electric pro-

pulsion. The principal subjects of this report are the spiral phase

of a planetary escape trajectory and orbit to orbit transfer_. A

computer program has been developed to calculate solar sail planetary

trajectories to a near escape point. It can also be used to calculate

spirals toa lower orbit and for trajectories about Mercury, Venus,

and Mars as well as Earth.

A solar sail consists of a large area of reflective material.

Typically, a very thin plast:.c is coated with a reflective metallic

surface. Sunlight reflecting off the surface imparts a force which

is,approximately normal to the surface. The pressure exerted on a

perfectly reflecting sail normal to the sun at 1 A.U. is 0.9- N/m2.

By varying the angle of the surface with the photon direction, the

force direction can be changed, although there will never ǹe a

component of force toward the sun. If the sail has a--large enough

1
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area, and the total vehicle is light enough, then reasonable aeeelor-

ations will result.	 In heliocentric space it is possible to thrust

so than the sail moves away from the sun by having a component of the

reflective force in the direction of motion. If the force has a

component in the direction opposite to the motion, the total angular

momentum will be decreased and the sail vehicle will fall in toward

the sun. When the sail is in orbit about a planet, the sail direction

can be varied so that the thrust almost always has a component in the

direction of motion and so will increase the semimajor axis or energy

even when the vehicle is moving toward the sun in its planelocentric

orbit. Typically, planetary orbits have periods of only a few hours

or days and, therefore, the necessary sail angle with respect to the

sun direction to obtain desired force directions may be changing

rapidly. Ui practice there are constraints on how fast thesenail

angles can be changed. These constraints are considered only in a

limited fashion in this report.

The Set Propulsion Laboratory has considered two sail models as

possible interplanetary propulsion systems: a square sail and the

heliogyro. More recently a decision was Made to concentrate study

on the heliogyro model. This report stresses the square sail model

which was implemented in the computer code. A heliogyr a model is

discussed which is similar to the square sail model, but which was

not implemented.

The square sail is a large (about 850m X 850m), nearly flat

sheet° with attendant structure, one side reflective and one side dari:.

The heliogyro consists cf a central hub with 12 blades, 6 each in

two parallel planes, each blade about 6 km long and several meters

wide. The heliogyro would spin with a period of about three minutes.

Rigidity is provided by the centrifugal force. Variations in thrust

direction as well as torques for attitude changes are accomplished by

varying the blade pitch, that is, the angle about the longitudinal

axis of the blade.

The purpose of this study was to develop a ptegram to produce

optimal planeocentric solar sail trajectories and to apply that

program to a performance analysis. earlier papers ahve considered

nonoptimal planetary trajectories. Sands  considered a two-dimension•-

aT escape maneuver for a trajectory plane containing the sun-planet

line for the idealized flat sail, perfectly reflecting specularly on

both sides. The sail is assumed to rotate about its axis at half the

v
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rate of revolution a0OUL the planet. Fimplc 4 conoidera)d the three-

dimensional rase of a nail vehicle in orbit about a planet with the

orbital plane normal to the nun F-pl.anaL line, also for the idealized

sail. The sail angle is chosen so that the component of thrust in

the direction of motion is maximized. quasi-circular orbits result

until near escape. Neither Sands nor Pimple included solar motion:

Time optimal holieLntric trajectories have been calculated for the

idealized sail. 7.hukov and LebedaV s considered planar Lraj--torias.

Sauar G generalized this work to three-dimensional Lrajectories.

Maclle117 conceived of tle huliogyro design and with others produced

additional studies.8,9,10

The study reported here built upon a computer program (SECKSPOT)

which had been developed to produce electric propulsion geocentric

orbit• transfers. 11,12 The program uses: (1) the method of averag-

ing 13 in order to reduce the amount of computer time needed to

calculate many trajectories, each of which includes many orbits about

a planet, and (2) equinoctial orbital elements which are nonsingular

for zero eccentricity and inclination. 
14 

Since averaging is valid

only if the thrust to local weight ratio is small, the schemf cannot

by itself yield trajectories to escape energy (infinite semimajor

axis). The scheme can be used to calculate trajectories to a large

semimajor axis (small magnitude but negative energy). The effect of

shadowing by the planet may be included as well as oblateness for
Earth trajectories. The solar sail program (called SUNSPOT `or SUN-

Sail Program for Optimal Trajectories) does not include planetshine

or drag effects which may be important at low altitudes. Although

attitude constraints may be important for some trajectories, they

were not included explicitly in the o ptimization procedure.

Nryloff-Hogoliuboff averaging of both the state and costate is

used. The averaged rates of change of the mean values of t)ie state

and costate are found by numerical quadrature. The differential

equations for the mean state and costate may then be integrated in

large time steps (typically days), The method of averaging has

been used extensively in recent years. Edelbaum
15,16 has used

averaging to calculate analytic solutions for special cases of optimal

low thrust trajectories, and others have used averaging when con-

sidering effects such as oblateness third body perturbations and

non-optimal thrusting. 17,18, 19 ,7asper 20 utilizes equinoctial orbital

elements and averaging in low thrust optimization work. The effect

3
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of oblateness is included by analytically adding its associated rate

of change of the muan state and costate to that due to thrust. The

effects of shadowing are calculated by assuming that there'.is no solar

radiation pressure when the sail is in shadow.

The overall trajectory is optimized by a shooting method.

Initial values of the unspecified states and costates care chosen at the

initial time. An optimum low thrust trajectory is then generated by

integrating the state and costato until the final time. This

will generate an optimal trajectory to the wrong terminal state. A

sensitivity matrix is then generated by varying the initial conditions

and running a set of neighboring trajectories. A Nuwton iteration on

the initial conditions is then used to drive the terminal errors to

within specified bounds. The final converged trajectory is a minimum

time trajectory ( except when a penalty function is added to the cost

to prevent subterran"	 trajectories, in which case nearly minimum

time trajectories result),

A computer program has been developed to calculate planetoaentric

solar sail trajectories. The analysis and code can be used in a per-

formance analysis. A limited set of cases are discussed in the result

section of this report. A paper based on the material in this report

has been presented. 21 Related work for trajectories beginning at

large semimajor axis and continuing to escape energy performed by Green

is reported in Ref. 22. The results of the work reported here and of

the work by Green include the first production of optimal solar sail

planetocentric trajectories.

In the next section some of the general. techniques used are dis-

cussed. The following section contains the mainanalytical contribu-

tion of this study. A number of trajectories are given in the result

section, constituting a partial performance analysis. A preliminary

heliogyro model is discussed in Appendix. A. Results from previous

efforts which are needed for the sail program arh given in Appendices

B - D. As part of the solar sail effort, preliminary results yielded,

non-optimal nor escape trajectories using a maximum energy strategy.

These results were reported to JPL during the course of the work, but

are summarized in Appendix E.
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SECTION 2

GENERAL TECHNIQUE•.

2.1 Introduction

r

	

	 Three areas of general technique are discussed in this section.

One is the method of avers ins essential to the runni ng of at ^--	 g	 ,	 g	 program
a !
	 which generates many trajectories in a reasonable amount of computer,

w	 time. Second is discussed the method of generation of the finaln

Trajectory. A time optimal trajectory is desired. A state and costato

formulation is used which results in a two-point boundary-value problem

which can be solved by a Newton iteration procedure. Finally some

comments on numers.cal techniques are made.

2.2 Averaging

A great savings in computer time can be effected by considering

a first approximation to the state and costate. Short period varia-

tions in the state and costato are eliminated by the averaging tech-

nique. When low thrust propulsion is utilized and the other

perturbations to the inverse squares motion are small and when the state

includes the five slowly varying orbital elements which indicate

the size, shape and orientation of an orbit and possibly other slowly

varying quantities, then averaging may be used. The orbital element

indicating the position of the spacecraft in the orbit is eliminated

by the averaging process.

The averaged Hamiltonian can be defined as

t*T
-	 H -_ T f	 2 11. at	 (2.1)

t 2

+•there H is the unaveraged Hamiltonian and T is the orbital period.

When calculating this integral the state and costate are held fixed.

The motion of the spacecraft is assumed to vary in a manner described

by Kepler'5 equation over the averaging integration. The approximate

state and costate satisfy the canonical equations.

5
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K T ^ ` Ali	 (2.2)

a%

(2.3)
aX

where the overbar inlicaws the approximate quantities.

In what follows the averaging integral for oblateness (J 2 ) is

solved analytically; otherwise a numerical quadrat•i..^e furmula is used.

The differentia3 equations can then be solved numerically using a
N

time step which is much larger than but unrelated to the number of

orbital revolutions.

a..
(4,i

2.3	 Solution of Boundary Value Problem

p• ar̀y A The method used to generate a low thrust trajectory is to develop

ta i the Hamiltonian, to calculate a control (the thrust direction) and to

iwrite the canonical equations for the state and costate.	 The initial

x :"V state is specified.	 Applicat on of transversality conditions for the

r time optimal problem yield aaaitional specifications oct the state and

costate.	 Thus a two-point boundary-value problem results which must

be solved to obtain the requisite trajectory. 	 When these equations

are solved, an extremal trajectory will result which is usually locally

optimal.	 No attempt is made to investigate generalized 7acobimtype

vva conditions to establish local sufficiency. 	 Also, in common with other
V

nonlinear problems, there may be more than one extremal meeting the

same end conditions. 	 The very difficult question of global optimal'tyw
r " u is not considered.
L «,

Cy
The single trajectory generation portion of the code is coupled

with a Newton iterator to solve the two-point boundary-valuevaluep	 y-	 problem..

t, p The unknown initial conditions and value of the final time are iterated

C i on in order to meet the final conditions which are functions of the

final state and costate. 	 The partial derivative matrix of final condi-
Ee.,, tions with respect to the initial costate-is obtained numerically

by calculating neighboring trajectories to a nominal,

The Newton method works by first guessing values for the iteration

`P' parameters, call them x-and t f , and then running a nominal trajectory

which will yield final conditions Y which in general are not equal to

e; the desired final conditions,	 Revi ._d values -	 , t	 may thfor x f	 en
v

_

6



he obtained by calculating a sensitivity matrix or partitil derivative

kJ	
matrix, A, which is generated b y varying slightly, one at a time,

each of the iteration parameters, a, and running a new, neighboring,

trajectory. differencing the resulting values of the final conditions

With the nominal valuen y^ulds a ty for each hxi. in addition &can

be calculated analytically except perhaps for	 All which can be f

approximat-ad numerically by varying t f slightly 5t  and evaluating

the corresponding II, differencing this with the nominal H and dividing by

®Lf . ',then A is an a pproximation for the partial of y, with respect.

to x, tf.
L X1

A u
hX

(2.4)

^x.T
atf

A revised estimato of the iteration parameters can then be obtained by

the formula

NEW	 OLD

A new nominal trajectory can then be generated and the procedure

continued until the final conditions are met to within some tolerance.

In the event that the new x, t f do not yield a reduction in the norm

of the final condition errors, the change in (x, t f ) is reduced in

magnitude by factors of 2. Also there is an option of using a modi-

fied Newton-Raphson procedure wherein the A matrix is not always

recalculated at each iteration by running neighboring trajectories,

but instead a new A may be approuimated using the old A and the

values of the changes in x, tf.

2.4 Numerinal Methods

A Newton-Raphson iterator is used which -calculates the sensitivity

matrix by running neighboring trajectories by changing slightly the

initial values of the iteration parameters, one at a time. The size

of the change in the iteration variables is chosen by the user and

can affect the accuracy of the matrix. A Modified Nev^ton-Raphson

iterator used basically the same technique, but many of the iterations

make use of a modified 'sensitivity matrix rather than calculating a

new one by running neighboring trajectories at each it,<.ration.

7
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Thu low thrust differential equations are integrated using a

fourth order Runge-Hutta method. The time step is selected by the user.

Cutting the size of the time step can increase the accuracy of the

trajectory but rapidly increase run time.

Numerical averagincJ utilizes a Gaussian quadrature. The number

of points sampled on an orbit can largely be determined by the user.

Again, more points increase accuracy at the expense of run time.

8
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A square sail force model was implemented in 
the 

computer code and

this section stresses that Model. 	 Limited heliogyro data was supplied

by JVL and preliminary modeling effort is discuesed in A penaix A.	 This
effort was not included in the com

p
uter code.	 A simple model of the

heliogyro would be similar to that given in this settion

The acceleration exerted by the photon pressure of sunlight on a

flat, perfectly reflecting surface, whose normal has an angle, a, with
the sun direction, has a direction along the normal to the bac.k -of the
sail and a magnitude given by

ac	 2
a 
F	 2 Cos a	 (3.1)

where s o , the characteristic acceleration, is the acceleration at 1 A.U.

caused by the photons reflecting off a sail whose surface is normal to
the sun-line; R is the distance from the sun in A.U.'s.	 If R is -the unit
vector from sun to space vehicle and n the unit normal to the sail back,
the acceleration can be written

ac	 ^T g 2^(.i	 R)	 n	 (3.2)
R

since cos a	 This expression represents the model that has been
used in much of the previously reported work (e.g., Ref. 3 t	 4, 5,	 6).

The square sail model which was under consideration was not-
perfectly flat, nor was the reflection purely specular. 	 The framework
produced a kite-like structure. 	 The sail was bowed somewhat with an

9
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apex .1 1 the center.	 Tied , wat ► rulme ahsu ► l • tit) n .4r ► d :iomv em ► c:t;it,n from both

front an.i back. TO mute accurately model these effects, at. expa diun .-n

coat 0, where a is the anglo betwl c a n the force vector and the u•tn-line,

was fit to more precise (L ► ta feat the ticcrnnetry and rt•f loctive character-

istics r,f the sail model. by the ,iet Propulsion l.aboratory. 23 The follow-

ing relationship was produced;

a F 	^{ (c l + c 2 cos 2u ♦ c 3 cot: Wu	 (3.3)

A
where u_ is a unit vector in the force direction, not necessarily p-:allel

A
with the normal to sail surface. The thrust (Iirevtion a Mould 'a written

as a function of two angles, the cone .u ►►ile, 0, whero cos 0 - RTu mid the

clock angle, which ir; the angl4 between projections of a roforenc:e direc-

tion and the thrust direction onto a plant- normal to the sun- line (see

Figure 3-1). The expression in f:q. (3.3) could also be expressed as a

cloak angle

I	 mvasm ud in plane
norm, ► 1 to min - 1 ine

f n
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Figure 3-2. Locus cf tip of force v

11

function of Cos 2 0 and con 4 6. Th-2 parameters e l ,c 2 ,c 3 are constants which

dep,tjn.i on the shape and reflective qualities of the sail. Note that if

c  R c 2 w 0.5 and c 3 a 0, then the expression reduces to cos 2 r, which

corrcspondz to the idealized square sail. The relationship between a

hody-fixed coordinate frame and ., may be obtained but is not necessary

for our purposes.

One model produced by JPL had cce fficients given by c 1 E 0.367,

e 2 a 0.643, and e 3 = -0.010. The locus of the tip of th, norria 1 ized

force vector for these coefficients and also for the idealized sail

coefficients is plotted in Figure 3-2. A line drawn from the origin at

.+n angle 0 with the horizontal axis and terminating at the curve will

1 C111U_1 IMF
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have a length representing the force magnitude.	 The maximum force magni-

%_JVZa, tude is one, which occurs when the force vector is parallel to the sun-r

Ain lino.	 At 0 = 02.585 1 the force magnitude is zero for the`nonidealized

sail.	 This is the cutoff angle.	 For 0 greater than this angle, the

equation dictates ,a negative force magnitude.
G

R The force model of Eq. 	 (.3.3)	 is only an approximation and its lie-

{ havior for 0 approaching 180 6 is not realistic. 	 If c3 ¢ 0, then for some
zy^ 0 <	 90 0 r b(0) = 0 and for larger 0, b is negative implying a force toward

' the sun, which is impassible. 	 The 0 at which b(0)= 0 was considered a

cutoff point and any 0 which resulted from the mathematical optimization

(l^; ) greater than this cutoff was reset to the cutoff value.	 The cutoff valueg

° ( maybe obtained by setting b(0) = 0 and solving for B analyticall y , as a
P9
8 function	

-1r	 2 r	 3'

a
E'4Q `_

order to calculate the cutoff ang le 	 _ convenientnt to trans

«r,
g

form E	 (3.3) (	 an expression in coscos2 0 and cos 0, i.e.4q' I

^ V

9

_	 II-

b(0)	 =	 k l + k2 cos 2 0 + k3 cos4 0	 (3.4)

44 From trigonometric identities:

!

k1	 1
c	 -

2 
+ c

3	 i

(
g w°d

ok	 ,„

-c

k2	 2c2	 Bc 3 	(3.5)

'

a`

M k3	 Bc3

'1)c For b(0)	 _	 0
Yz q ,

'
k2

Cos 2e
2k 

2	 1 3

3

r'. The coefficient k 2 was always positive and much larger than k l and k3
r

so thatthe positive square root as the correct root. 	 Thus, the

cutoff value of 0 is given by

— --

m

-1 2	 2	 1 3
O c	 =	 cos ._ (3.7)

2k3

pp
tP

Eu

{ [ a 12

{7



r

where Oc is between 0 0 and 90 0 (in the computer code 0 and, therefore,

0o waa assumed to lie between 90 0 and 180 0 ; thus, the sign on the outer

square root was negative). if k3 = 0, the cut-off angle is simply

obtained.

3.2 The Equations of - Motion in Equinoctial Orbital Elements

A variation of parameter formulation using equinoctial orbital

elements was used for the equations of motion. By using equinoctial

orbital elements the singularities that occur for zero eccentricity or

inclinations of zero or ninety degrees when using classical orbital

elements are avoided. (For inclinations near 3.80 0 , retrograde equinoctial

orbital elements can be used, although we will not consider that case

in this report.)

The direct equinoctial orbital elements are defined in terms of

the classical orbital elements by the formulas

a c a

h = e sin (w + R)

k -_- a cos (w +- R) 	 (-3.8)

p	 tan( i sin R

q = tan( Z) cosR

where a is the semimajor axis, a is the eccentricity, i is the inclin-

ation, R is the longitude of the ascending node, w is the argument of

pericenter. A sixth parameter, F called the eccentric longitude, indi-
cates.the position in an orbit. It is given in terms of the classical

variables by

I

Q

i

F = E+R+w	 (3.9)

t,
E;	 where E is the eccentric anomaly. The variable F will be eliminated

by the"averaging process. Further details about equinoctial elements

are given in Refs. 12, 17 and 24.

m	 The inverse relationships are defined by

a - a

z'	 e	 (h2 + k2)1/2

13 -
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t'

(

}

•i
(

c

t -•

r

	

i	 2tan - 1 ( 1) 2 + q 2 )	 (3.10)

tan -1(p/9)

= tan - 1 (h/k) - tan - 1(p/q)

The equinoctial coordinate frame is defined by the basis vectors

w, which are given helow with respect to an inertial coordinate

frame.

1 - p2 + q2

f a	 - -- 
12	 2	 2 p9

ltp tc1
-2p

2pq

	

a = ---^	 2	 1+ p 2 - q 2	 ( 3.11)
1 + p + q

2q

2p

	

w = ---
3 12 — 2	

-2q

	

1 7 p + `3	 2	 2
1 - p - q

This coordinate frame is illustrated in Figure 3-3 where w is normal to

the orbital plane.

ORB ITAL
PLA

^ Y

UNIT

^`	 r	 SPHERE

F^ylire 3-3. The equinoctial coordinate frame.
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The mean longitude is defined by

M + u + ;l (3.12)

The eccentric longitude,	 F, aas defined in cq. (3.9). Kepler's equation

in terms of A and F is then g iven by

a- F- k sin F+ h cos F (3.13)

Position and velocity are given by

r	 =	 X l f +
Y12

(3.15)

r	 =	 ^C l f	 +
f12 (3.15)

where

X1	 =	 a((1 -	 h 2 ;:)	 cos	 F + hk3 sin F - k) (3.16)

Y 1	=	 al (1 - k 2 E)	 sin F + hk3 cos F - h) (3.17)

z
X 1	 nr (hko cos F -	 (1 -	 110) sin F) (3.18)

2
1' 1 	=	 nr Hi - k 2 O) cos F - hkE sin F) (3.19)

and

n	 - (3.20)
a

r  1- k cos F- h sin F (3.21)a

u is the gravitational constant and

3	 ---	 1 _ -- i (3.22)

A h2 - k21 +	 -
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The unaveraged variation of parameters formula for an object in

an inverse square, gravitational field perturbed by a force u is

	

v a M(z,F) u	 (3.23)

where Z represents the - five equinoctial orbital elements (a, h, Y.,` F, q) .

We define the 5 x 3 matrix

az
M(z,F)	 W -.	 ( 3.24)

3r

The elements of this matrix are given in Table B -1 of Appendix B.

3.3	 The Optimization Problem
u

it is desired to calculate minimum time trajectories for escape,

w capture, and orbit to orbit transfer.	 The orbital element and averaging

techniques did not permit trajectories to escape energy when eccentri-
s

city goes to one and the thrust to weight ratio becomes too large.	 For

planetary escape the final state condition is ';.hat energy be zero. 	 This

- is equivalent to infinite semima _jor axis.	 Because of the limitations of

^. the technique, trajectories to a subescape condition are considered.

This is defined as a large, but finite semimajor axis, or equivalently

as a small magnitude, negative energy. 	 The initial orbit is assumed to

be given.	 For orbit transfer the initial orbit is given, and either

the final orbit is completely specified or else three orbital elements

(a, e, i) are specified. 	 The capture problem is considered a special

case of the orbit transfer problem, sines a zero energy initial orbit

cannot be assumed.	 Thus a quasi-capture trajectory problen, assumes that

the initial orbit is given and that the final orbit is at some lower

energy requiring a spiral trajectory downward.

A calculus of variations or maximum principal approach is used.

The initial time and state are given; some subset of the final state is

given.	 The state equations are given by Eq.	 (3.23) with the force given

by Eq.	 (3.3).	 In summary

a
Z = 2 b(e) M(Z,F) u

R
(8.25)



where

` b(p)	 a	 c l 	c 2 cas28 A• c 3 cos40 _ (3.26)

f and

coso	 RTu (3.27)

and el , c 2 , c3 are constants.	 The distance to the sun is . a function of

` time and the direction R depends on the state when using an equinoctial

coordinate frame.	 The characteristic acceleration, a , is ac given

constant.	 The control is the force direction U.-

yThe unaveraged Hamiltonian is given by

^ C'
H	 Til 	 b(8)	 a Tm (3.28)

a R

Applying the method of averaging, define the averaged Hamiltonian as
T

y' T+ z

H	 G	 1	 /	 il(Z, 1,	 F(t),	 t, u)	 dt (3.29)
-_	 Tp-	 l.	 ----,-	 --_	 -__	 ----_	 ___--	 l	 — —	 - - --	 ---

where To is theorbital per

i

od.	 It is convenient to perform the u	 '

integfation with respect to the eccentric longitude, F.	 Then $

T--	 /	 !I (Z, a--, P, ti, u)	 (dF) dT`
—	

..._ (3.30) ^ 	 e• e
a	 _e Pe

where
z

i
_	 -	 T

db	
-	 —°^ (1 - IF cost, - W sinF) (3.31) J

dP	 2n
s

For'convenience define
5s _

^
s(Z,,.F)

	 °	
T	 dt

(3.32)

•t	 Z

er	 3

o

,

4

!
17
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ìn	
l I

'	 e ( The overbar indicates that• the quantities are held constant• during the

averaging interval.	 The V dependence is time t•dependence which does no 	

i

i

depend on the spacecraft location such as the planet - sun position.

r	

`^ 4

Necessary conditions for an optimal trajectory are that the

Luler-Lagrange xquaL• ions be satisfied:

{	 4	 4°

s z	 = dF 3.33
G: az	 J'f a^
ie

p

tl̂
 ̂ '	

_	 _	 l	 _	 aIt a +

^az
11	

as
1 dF	 (3.34)

as

11.
.S b

where	 -	 -

a allS x	 z	 (Z, P, u , r) ( 3.35)aT

t	 r^^
all

XT

iU
azi	 azi^,

k	
fl,

i

 
c	 Jab

c	
a	 1'

M +

1

art	 (ub s (3.36)
)(R^	 aZ

aZ' 

1

a

0 -
e

as	 i	 _ sinF

(3.37)
BZ	 2 Tr - cosF

w. 0

0

[A.

k.^:
ant	 is given in Appendix B.

s az
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y i ,

^1)

From Eqs.	 (3.26)	
and	

3.27) _

D  D  3
(3.30)

Y aX a

where	 -

t ,^	 ,-	 -	 2c 2 sin 29 - 4c 3ab.
sin "AD (3.39)

v
a o _

and
o

e"
1a

r.l;
66

30

A

1	 AT DR_ =	 _ sin0 (3.40)
a _ az_ y

a

But since sin26	 2sin0 cosh and sin40	 4sin0 cos0 cos20 then

a

"

a 3b (14c	 cns0 + 16ccosc^ ros20)
Lq. a R
a (3.41) a ^,

x
2aZ_

3
2Z

: on`

' if R is given in equinoctial coordinates

theAnonzerq partials aregiven by

where R	 ( XS ,	 Ys ,	 ZS ) then

R" y^r
63-

aX
n_ ^P =

- z
2 (qys + Z s ) (3.42)

-  t'

1+ *
p	 q P

u

WXS 2pYs !
c --`—^ (3.43)

+ p2 + q`

m
- rr,

9

2Y 2qx ^.

a
° p	 1

s
+p2 +q

(3.44)

;?

;Ys 2
I	 o q

2— rZ (^ pxs + 7. $ ) (3.45)
:  1+p	 + q

P
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Dz 2x
a' s	 o s—^m (3.46)

+p" +qe

Gl a	 —_2YsU1i5 (3.97)
l + p	 + q

G,
The control must maximize the Hamiltonian. That portion of the

unaveraged Hamiltonian containing the control is

^

D

A( H'	 o
A	 A

b(^U)	 >•_TM u (3.40)

)
Now b is considered a function of u rather than U. It is convenient to

:h identify the primer vector as
E Fy. p

i ave o	 MTa_ (3.49)

1 and define the pri:omer vector cone angle 0 where

k+^ u
o

Tp

r	 ;'

u -

Coss
A	 ART av -

( 3.-50)

The Hamiltonian is then

E	 "^ A	
ZAb(u) ^v u (3.51)

Orr

,p.
The control a can be written as a function of two angles, the cone

angle U an..3 a clock angle, y. 	 Then
1•

-

(w u	 (cosy el + sin^^ e 2 )	 sine + cose Ae	 (3.52)

Jwhere the unit vectors are given by
^y,

o-,,F° -- -	 -	 a33 _	 R (3.53)
4.
a(,

e2 _	 23 (3.59)

u.

A A	 A
e 2. x. e 3 -	 -	 -	 (3.55)

l

-	 -	 -	 -	 - -	 - -	 -	 -

i

'

Av

2 0



s

(' airy	
..	 yn

r4 where V is a reference vector. 	 In this coordinate frame the primor vector

,.	 ^e can be given in terms of 0 and ,t clock angle gy p .	 Then

e nn	 n	 n
^V	 (cosr p e l 4. sill^p e 2 )	 sin0 d	 cos0 03	

(3.56)

i	 t

The relevant portion of the Hamiltonian is then

z	 ,! II'	 a	 b(0) (co" cosu	 + sings sinryp )	 Gino sin0 'h cos0 cos0	 (3.57)

^	 t

Maximizing IV with respect to 0 and $ is equivalent to maximizing H'

with respect to U.	 The clock angle for u must be equal to the clock

angle of the primer vector:	 a	 yp.	 Thus it, IV , and u are in the
2 same plane and from geometry:
r

°` 3 u	 sitt(0 - 0)	 R * sin 	 1	 (3,58)s n -	 -v
c

f
(as in Ref.	 6).

^ 1

gp The 11 	 reduces to

11'
	 _	 (c l + c2cos2o + c 3cos4Q)(cos0 cos3 + sin0 sin0)	 (3.59)

r	 '`

(1}';; Thi: can be maximized with respect to 0 by setting its derivative with

'a respect to 0 to :,ero.p

(	 - all	 (-2c, sin20 — 4c3 sin 4e)(aos0 cos0 + sin(l sing)

{	 = fi +	 (cl + c2 cos20 + c.co'c 90)(- sin0 sin0	 cos0 sin0)

n	 0	 (3.,60)

Now for the Idealized flat square sail c l	 c 2 ^= 0:5 and c 3	 D so thatt
2	 all 

=
	 quadratic 	 tan0 whoseb(0)	 cos 0,	 Then	 0 can be reduced to a	 uad.ratib

solution is	
79

u

1
3cos0 +	 Osin2 0 a• 9cos26

tan0	 =	 (3:61)
4sin0

t
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'	 o OF POOH QUALITY	 4

a• r	 21	 f



a

e

7,

i

where note that a can vary between 0 and 100°, but 0 varies between 0

and 90 0 . This is similar to Ref. 6. In the general case, the oxprvsulon

could be reduced to a polynomial, but it is easier to solve the equation

numerically using a Newton method. If

II = b(0) d(0)	 (3.62)

where

d(0) a cos0 Cosa + Gino sin g	(3.63)

lot

f(0)	 80 o b'(0) d(0) + b(0) d'(0) 	 (3.64)

The prime ,indicates the derivative with respect. to 0. nn initial guess

for 0 is given by the solution for the idealized sail, Eq. (3.61). Then

iterate

B

k
i

)

f

On+l  On - (3.651
_ n

Until O	 0	 < e	 some	 sman+l -	 n	 , sma ll Positive number.	 Also needed is

d f'	 _	 aB 2b'd'	 + b" d + bd ol	 (3.66)

d

9 where

b"	 _	 - 4c 2 cos20 - 16c3 cos46 (3.67)
u
V

and

d"	 _ -d (3.60)

Thus the control u is determined.

Figure 3-4 shows the variation of 0 with a for the idealized sail

and for one net of coefficients:	 c 	 = 0.367, c 2 - 0.643, c 3 = -0.010

which corresponds to one, JPL supplied, heliogyro model. Note the

out off angle of a ^ 62.6 0 which occurs ina region where the model is

not realistic.	 in the computer program, whenever the optimization
i

22
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C3	
2 a (3.69)

PRIMER VECTOR CONE ANGLE (deg)

Figure 3-4. Thrust vector cone angle versus
primer vector cone angle.

called for a 9 greater than this cutoff value, £ was set to the cut-

off value as indicated in the figure. The cutoff angle was given by

Eq. (3.7).

The state and costate 9ifferential equations have been given and

the optimal control derived. It remail,s to epecify the transversality
conditions. For transfer to a subescape point, the final energy, or

equivalently, the final semimajor axin is specified.

This is equivalent to sj.ecifying the final somimajor axis since the

*pass, m, is constant. Transversality conditions then require that

the adjoints to the :emaininq state variables be zero and that the

Hamiltonian be equal to one at the final time.

23



1

1

lI

1 4 ^

1

l	 ^
^	 J

s^

.ti

^r

f•

is

A 
	 a 0

k	
s 0

) p ^ 0

Aq = 0

H	 iTj	 1	 (3.70)

The adjoints to the classical orbital elements, e, i, P, and to should

also be zero at the final time

In the case of orbit transfer, if the urbit is completely speci-

fied (a, e, i, P., w or equivalently a, h, k, p, o) at the final time,

then their adjoints are free and the only transversal.ity condition is

that the final Hamiltonian be one. 	 If three orbital elements (the

sernimajor axis, eccentricity, and inclination) are specified at the

final time, then the Hamiltonian must be ore and ). H and A (A) must be zero.

In terms of Equinoctial elements and their adjoints the following final

state conditions are specified:

a = a(tf)

3h 2 , - k 2	 = e (t f)(3.71)

p2 + q2 = tan (i(tf) /2)

The trar.sversality conditions are:

ha k - kA 	 A^(t.f) = 0

paq - qA p = ) ,( t f )	 - 0	 (3.72)

H = 1

The state and costate differential equations and the initial and

final conditions yield a two-point boundary-value problem. This problem

can be solved with en iterative method. A Newton method was used as

in Ref. 12. The differential equations were integrated numerically with

a Runge-hutta method. At each function evaluation for the Runge-Kutta

method a numerical quadrature was used to average the equations (3.33)

and (3.34). The control wa:i found using Eq. (3.58) and by a Newton search

^	 l

i

23

t

-	 1^.^- -.^.a-•. ..-- r.^..•sry +. ^r.-.;►7'^^"'v.,^`1rrarJN h^awow.ww-rWr+^1!'i°^^yl!YaerrM'+1..n.ra+r.rtl^^#;"f^"O,+R,►!'^J.^.•..^^u r.. tww... r •w• .... ^....,^.... •...



n
I
^	

` i '
.'III '?

CY

for the colic angle.	 Additional complexity is added by incluOing a poll	 -

.^ aliL•y function, shadowing and oblateness.

_	 r	 e
3.4	 e0ricenler, Penalty E'uhction-

t Planctocentrke -solar sail ,trajoctofies typically build up large

eccentricity rapidly.	 This Can^ua particularly undesirable if the ini-

tial altitude is :low.	 Optimization may actually yield trajectories that

intersect the planet's surface.	 Also, large eccentricity orbits often

require rapid changes in thrust direction which, in practice, may be

impossible to implement.	 One way of reducing this problem is to append

ee a penalty- function to the cost (which has been flight time).	 0110
k 4	 ': possible penalty is Ilie integral over the flight time of the inverse

^' x pericenter squared.	 Then the cost is given by

.,^ Q	 tf + 2 f
	

dt	 (3.73)

``	 .`• rpto

This penalizes low altitudes in general-and especially at small semi- a'

1
'j	 _	 penalizes larger eccentricities.major axis.	 To some extent ''t also

F The constant, p, must be picked to obtain a deairable weighting between y

the penalty and the flight time., Experience with a few example cases

indicated that this method could be used tc prevent altitudes which a ^y

t were too sfnall with a very small increase in flight time (less than 5%).
1

Other penalty functions	 one

an inequalitymuch

cl,,eeper nearsso eespe2ific
galtitudeedthusz actinglas 1- (	 )

a	
G 'The Hamiltonian and the,costate equations must be modified. 	 The M6

p 

aricenter is given in equinoctial elements by
L r`.

N --	 1rp	
(3.74)

a( ^

e	
? l _	 h2 + k2)

u
,;t L1 r,

A
k	 ,; =f "

L	 =	 2	
l	 (3.75)

a 2 ( 1 -	 11 2 + k2	 2) :`

y n
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D IY •	 .	 e,

fl
then the Hamiltonian is given by

c H	 a r -°L (3.76)

The averaged Hamiltonian is

D

'.
i

T	 TD

0	 o

^"	 H	 a	 jl	 ^T7 dt + T J	 LfZ) dt	 (3.77)

°	 0	 °	 0

and the costate equation is

u
}

(3.78)

II
tiry The f irst integral ;in Eq.il(3.77)	 is the same as if there were no penalty^,

D function.ion.	 The second integral does not include a time dependence in	 -

the integrand and..so it is,just equal to L(Z).	 Thus, the only thing ,

h.; different  in Eq.	 (3.78) is 	 addition of dL'.	 in particular

Y 'v:
2L_DL

as 	a (3.79)

-	
2L	 h

AT +	 ,	 2 +1.2	
k2

(3.80) 

use

a
^ "

8L	 a	 2L	 w	 k''"— -
(3.81)

t t +k21 -	 13 i` +A2 + k2

^s

.o

aL
	 DL	 =	

0 (3.82)

^y

8

p	 q

' Transversality conditions still require that the final Hamiltonian be

., equal to one, but in this case at t

iT Z	 L	 =-	 1	 - -	 "	 -(3.83)	
,.
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3.5	 Oblateness-

In the previous sections we have considered only perturbations to

the inverse square motion caused by thrusting. In this section, the

effect- of oblateness (J2 ) is considered, Oblateness equations are in-

cluded here for convenience from Ref. 12. Oblateness is included only

for earth-centered trajectories.

The single-averaged perturbing potential due to J 2 has been cal-

culated in terms of equinoctial coordinates in Ref. lA and is repeated

in Appendix C. % is the equatorial radius of the Earth and J2 is set

to .001827. These formulas enter the averaged Hamiltonian as coeffi-

cients of the costate (outside the integral since the averaging effect

has already been accounted for).

If !!a indicates the perturbation due to thrust as given in Eq. (3.33)
then the Hamiltonian is given by

H = - lTZJ2 + X As	 (3.,89)

{ps ; The state equation is

y
7 .'

} Dipi(̀4y. z = zJ	+ Za (3.es)-
2

The cost;ate equation is

r w

t
r

P	 aH1	 =	 - -- = T	 -J2
- a	 -

/	 ,	 aza/	 ^a'	 — s l'	 as 1+	 1	 Z	 dF	 (3.86)
az J	 za

--
J— —a z a

The partials indicated by 2-zl /aZ in the above expression are given in

Appendix C. 2

3.6 - The Shadow Effect

For solar sail missions, there is no thrust while the spacecraft

^g	 is in a planet's shadow. The entry and exit angles are needed in order

°	 to perform the averaging integral. In calculating these angles the

-`

	

	 following assumptions are made. The shadow is cylindrical; the planet

revolves around the sun in an elliptical orbit; and over one spacecraft

v-

	

	 revolution, the sun's direction is fixed. Pertinent equations for the

calculation of the entry and exit eccentric longitudes are summarized

in Appendix D taken from Ref. 12.

i

:.A

r

,
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Q Let FZ refer to the eccentric longitude at entry to the shadow
q

and P i	part of the Hamiltonian	 o thrustat exit.	 That	 proportional L

is then	 u

Z

(F'
11	 =	 J	 N s dF	 (3.87)

d
Fl	

,

A

Thus

1 --

^^^tZ	 Z s dF	 (3.88)

Fw _	 1

and by Leibniu^z ;	rule
k

I

--	 -	
/
F2 n'^ H	

as

dr

1i 

s^y

-	

d	 -s	 H	
F

+. Hs]

[dF

(3.89)
8Z	 87. A ' d J F2 dZ

Fl

1 Fl 	 .

The calculation of dF is discussed in Appendix D.
dZ

-
3.7	 Planetar

y
 Data and Coordinate Frames

Earlier trajectories
d assumed	 wEarth orbitalsmissionsCithfspacecraftcorbitalsile1 elements refer-

s	

l program has

d	

p

been generalized to lincludeatrajectoriLr a	 r	 lboutthefourinner solar

system planets:	 Mercury, Venus, Earth, and ?tars. 	 The gravitational

1
constant for each planet is given in Table 3-1. 	 Also given is the

-
planet's radius.	 This is used in shadow calculations and also the

"internal units" of the code use planetary radii. 	 Oblateness, 421 is

assumed zero for all planets except Earth. 	 The characteristic accelera-

tion of a solar sail is defined'asrthe maximum acceleration at 1 A.U.

Thus, the planet's distance from the sun is needed as well as the sun's

direction.	 An equatorial coordinate frame is used only for Earth tra-

jectories.	 The obliquity angle, the angle between the Earth's equator

and the ecliptic, is thus needed.-	 For all the planets an ecliptic frame

may ,.be used.	 In this frame the X- and Y-axes are in the ecliptic with

IF

a.
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the X-axin toward the vernal equinox dirLOtion and the 'I.-axis is normal

to the ecliptic in a "northerly" direction. 'Another coordinate frame

^iu option is the " planetary" frajne which in referenced to the planct's

orbital plane, the Z-axis normal to the orbital plane, the X-axis pointed

toward perihelion.

Table 3-1.	 Planetary data.

Mercury Venus Earth Mars

Semimajor axis,	 a	 (A.U.)	 0.387099 0.723322 1.0 1.523691

Eccentricity, c	 0.205627 0.006793 0.016726 0.093368'

Inclination,	 1	 7.00399 3.39423 0. 1.84991

Longitude of the ascending	 47.85714 76.31972 0. 49.24903
n ode,	 12 (0)

I•lean longitude of perihelion	 76.83309 131.00831 102.25253 335.32269

Mean orbital motion,	 4.092339 1.602131 0.9135609 0.524033a	 (0/day)

Mean longitude at epoch, 	 c	 222.62165 174.29431 100.15815 258.76729

Obliquity angle	 ---- ---- 23.45 ----

2	 -7- ---- 0.0010827
r4_J

Radius (km)	 2435.0 6052.0 6378.16 3393.4

Gravitational constant,	 22181.6 )24860.1 39E601.2 42828.4
li	 (km3s,:*2)

Data for Epot7h 1960 Jail 1.5 E.T.	 (J.D. 2436935.0)	 from Ref.	 2G except J2,
radius and I., from Ref. 27.

In the ecliptic coordinate frame the unit vector pointing from the

planet toward the sun is

COSR	 -cosi sina	 Uini Sinn

-cos(v+w)Sinn
	 ncosi cos	 -sini cos Qj -Sin (V+W) l (3.90)

0	 Sini ccsi 0t:
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A 

Note tliat for Earth, i and 0 are zero so-that the matrix is the identity
1 matrix.	 The argument of perihelion w is obtained from Table 3-1 since

^	 sri o ^	 p	 -w - ^ ° (3.^^1)

f The angle v is the true anomaly. 	 it can be approximated by (lief.	 26)
e	

9	
T u

r a

w
^ ,.

u r
3

:v	 M + (2e	 a) sinM + A eZ sin2M •h 12 e3 sin3M (39,2)

,•+	 t 5 where 61 is the meananomaly and -

M	 nT + M
O

(3.93)	 i

'z The tiMPL T is measured from the epoch and M. is the mean anomaly at
M ,	 +	 ,dr epoch:

FYI i
t _ m

 M
o''

(3.94)(

F -
+`,.^ The mean orhifal motion, n, is given in the table with other needed

's
-

r̂ (,`.°^ constants. -

The distance to the sun in A.U.'s is
l

f	 —

Y3	
S • l

VV
1
4all	 e2)i	 —

^ Rs l	 •f a cosv (3.95)

GThe difference between the sun-spacecraft distance and the sun- planet
^' y	 ry distance is assumed negligible. 	

s	
°

a.
r For an Earth-equatorial frame+

t

ET
' -cos(w+v)^	 ^

¢

B

Rs	 = -cos0 sin(w+v) -	 (3.96)

sin0 cos (w+v)

- where 0 is the obliquity of the ecliptip.

For a "planetary" framed,	 Sl, and w in Eq.	 (3.90)	 are set to zero.
.iey

-
i
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in the equinoctial coordinate orame
grlh	

T
c	 ^	 ^	 Rs a	 6^^ ^,r B^)	 R^	 (3.',,i7)

Where the equinoctial basis vectors were given in eq. (3.11). Note

f	 that the R vector used in earlier equations in this section is the
j

	

	
vector from the sun to the planet rattier than from thr planet to the

sun.
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A numovr or exdinpre runts were perLurmeu. A compivie perrormdnce

analyr:is was riot done bc•chL- He of the continuing charye in stdtus of the

solar :;ail mission planning. First the square sail wds emphasized.

Then the hrllogyro was picked its the principal solar rail dc-siyn. Fi-

nally, the solar sail lost in competition with ion drive as d contender

for near future low thrust miss:.ons. A complete heliogyro modal W.ts not

imhlementvd. kesulcs in this section are for the square sail model

discussed in Section 3. A limited number of Garth-centered trajectories

will be discussed here. Because of decreased interest, further runs

were not performed. No trajectories about the other inner planets are

Included since the only cases that were run were short test cases to

verifv the coding. A test catie also verified I " o use of the program

to calculate trdjec-tories which spiral down from a high near-capture

orbit to a lower orbit. This is a special case of orbit transfer.

A nu.iber of cases u::iny the square sail n Frex;mation with he:io-

gyro coefficients (r 1	G. 367; C 2 = 0.643; C 3	-0.010) for transfer

to a subescape point will be discussed. These run!, used a 10 day time

step and four 4-point gaussian quadcatures fo g the averaging integral.

A subescape point with a semimajcr axis of 100,000 or 200,000 km was

used (this is equivalent to a C 3 of -3.99 or -1.99 km 2/s 2 , respectively)

A number of fdctftrs determine flight time. The initial orbit is, of

course, of critical importance. An initial orbit with a semimajor

axis of 21378 km, eccentricity of 0.655 was suggested by JPL personnel.

This initial orbit would be representative of a tug-launched sail

(C 3 = -1.8.6 km2/s 2 ) , The longitude of the ascending node (6l) .ind the

argument of perigee (t-)) can be varied. The incl i--tion (i) can be

vdrie,l but differing launch .-nergies would be required if t	 l.^unch

day is fixed. A number of open loop trajectories were run to get a

feeling for the i, 9, and w that would yield the lower flight times.

Than trajectories were optimized for a few cases of specific i, C, and

+'.^;^t^MIG PA(K WTANK NUT F1Lr-I^0

33
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rc

Ls (for convenience, these angles were specified with respect to an

ecliptic frame)'. A launch of March 21, 1904 was assumed. Although an

elliptical Earth orbit- about the sun was modeled, the 1/R 2 effect of

solar-pressure was not included in the examples (a constant 1 A.U. dis-

tance was assumed). Earlier examples indicated that including oblate- 0

jl	 ness has a very small effect on flight times and therefore this effect

ii	 was riot included in the examples shown here. Shadowing was included
r

but the initial orbits were chosen to avoid the shadowed regions.

The results for seven examples are shown in Table 4-1. Cases 1,

3, and A show the effect of varying characteristic acceleration from

0.6 to 1.0 mm/s
2 These cases are also plotted in Fig. 4-1. Case 2

has a final s,emimajor axis of ::00,000 kr xather than 100,000 km as in

ase 1. An°additional 20 days is needed. At 100x000 km the orbital

i period ~is 3.6 days and at 200,000 km it is 10,3 days. Escape would

probably occur in less than 30 more days, about two more revolutions'.

Apccenter for tp'e final orbit was at 347,000 km wherethe thrust/weight

ratio was nearly 0.1 for the 0. mm/s 2 acceleration, so that the aver-

I -	 aging t=echnique has 'limited validity li there.	 -
P'

Case 5 is similar to ease 1 except that the initial orbit is cir-

cular rather than elliptical. The initial C3 for both cases is -18.6

km2/s 2 . The transfer time to a C 3 
of -3.99-is about 4 days longer for

the initially circular orbit case. This behavior is due to the fact

that the initial orientation of the elliptical orbit was chosen so

that the sail was moving away from the sun near apocenter. At this

point, the sail was moving more slowly and therefore, received more

energy. Thus, for the first 80 days of Case 1, the eccentricity

actuall	 .2.y decreases to below 0 	 f

i
Cases 6 and'7 have initial orbits which are normal to the ecliptic

and chosenso that as the Earth moves around the sun,tithe orbits-.will

come closer to being normal to the sunline. Slightly increased trans-

fer times resulted compared to the 45 0 inclination cases. For Case 6,

the eccentricity became smaller and at the final time was equal to

.004. The initial costates are shown for all the runs,

, Case 1 will be" illustrated in more detail-by a series of figures. - -

Figures 4-2 to 4-6 are plots of the classical orbital elements (a, a,

i, ♦.1, and w),. Since the initial time is march 21, the x-axis of the
coordinate frame is 'pointing toward the sun at the initial time.-

Eccentricity and inclination decrease for the first 80 days. The line

34
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of nodes changes slightly but the argument of perigee increases from

-1800 to 350 . Figure 4-7 shows a plot of C 3 . The dotted line at

C 3 a 0 is the escape energy. Although shadowing was included, the -

trajectory never intersected the shadow. Fairly large changes in sail

direction were required in a short time forearly orbits. For example,

on the first orbit a change in the sail direction of over 40 0 in 20

minutes was called for. This occurs in the region where the sail is

near to edge-on; with the sunline and the thrust produced is very small.

In practice a slower non-optimal change in direction would probably have

only a small effect on performance. The cone angle for the primor vector

and the cone and clock angle for the thrust vector are shown in Figs.

4-8 to 4-10 for 3 orbits including the initial orbit, an orbit at So

days, and the 'final orbit.

Figures 4-11 to 4-20 show the history of the equinoctial orbital

elements and their adjoints for Case 1. The initial costate is shown

in Table 4-1. When oblateness was included Zor the same initial condi

corresponding costate is (3355, 22i, - rather than 7

7),A days. Thetions, the flight time was 116.42 d ays
-387, -698,. 1877). A run with a

five day time-step was not appreciably different than the ton-clay case.

I	 The curves in Figs. 4-21 to 4-23 have not been smoothed; the ten day

time step produces corners in the computer plot. Figures 4-21 to 4-23

i-llustrates the'ch n a-in- eri d 	 i	 t	 s d	 to	 , Per cen er,,. n	 aoocen er.

,." Convergence characteristics for the - cases - ot transfer to a sub-

escapeguess of as = 1000 withP	 P	 9	 Typically 

a zero resultedlintialconvergence (to within 3 or 4

figures in the desired semimajor axis) in 4 or 5 iterations.
of CPU time on Draper Lab's Amdahl 470Ths requires about i minute oa

sign ificants 	 euir bout	 a

(a fairly fast computer) at a cost of about $20.

An idealized sail was assumed for an orbit raising case (c l'= c2

4+Q = 0.51 c 3 = 0).	 A launch time of-March 21, 1977 for an initial circu-

{. p lar orbit with a = 7878 km, i = 28.3 	 P = 0 , w = 0	 in an equatorial

7,{

,

coordinate frame and with a characteristic acceleration of 1.0 mm/s2

k was specified.	 Shadowing was not included.	 The desired final orbit 

was equatorial" geosynchronous. 	 For this case the minimum transfer

time.-was 195.8 days.	 The eccentricity increased to over 0.83 at 120

' days before decreasing to zero. 	 Unfortunately, the pericenter de-

Na
,,

uF	 42
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cr-_^ased initially, reaching 4060 kin 	
it 

110 clays,	 III order to prevent

L h	 lowering of puricanter, a penalty funcLiofi,was 
added 

to the cost as

clizoussud in Section 3.-, Aft "^	 some trial and error adjustmenL or- the

^wLwe l ghbing fluctor bet	
on 

Lima and the penalty function, a trajectory

wa s generated with a transfer Lime of 200.7 clays with a inininium Pori-

center of 7650 kin and a maximum^Lcco ntriciLy of 0.72,	 Thus the trans-
ger Lime pefi7ilty was lass than U.	 Figures 4-24^ to 4-27 show the semi-L'A
MaJor axis, occLntrioiLy, inclination and pericenter histories for- the

case with the penalty function plus the pericenter history for the'
ininitnuin time case. 	 Although the trajeciPory was not changed-very much,

Lhf,, costate histories were ch a nged considerably	 For example, the
initial costato for the minimum time transfer was (5842, 3070, 3351,
-54,55, -4979).	 With,the penalty function the initial cosLate,was
(9204, -372,	 65331 , -7903,	 -8536).	 It was necessary to perform a series
of runs with increasing weigh tin-j-..f so Lor in order to obbain',, convergence.

The penaj-'ty function might be necessary for lov , altitude run8 with

shadowing since currently the rhadow code is nc^L valid for Lr^^Jec:Lorifj_----

whirli intersect the planet's su rface.

These results are meant to illustrate the capabilities of the pro-

_^4 'gram and,-- of course, do not - represent an - extensive- perf ormance s Ludy

Typical flight times are indicated, however, and show that the sail
can reasonably be used for Barth escape and for orbit transfer.
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SrCTION 5

CONCLUDt":n REMARKS

I
t

A method forroducinc optimal. solar cail lanetoceentric tra ec-P	 l P	 P	 j	 ^

tori.ea h.iw been devised and implemented in a computer program cd116d

SUNSPOT. A square :ail force* model is assumed although it i:, Himilar

to a simples heliogyro model. Ability to produce orbit to a subescape

point and orbit to orbit transfer exist:;. The r„ethod of averaging

allows rapid computation of trajectories, but since the thrust to
,

weight ratio is assumed small, it does not allow trajectories to escape

energy (infinite semi"r jor axis). The sube6cap.2 point is defined as a	 1

large but finite semimajor axis. Typically one or two more ruvolut.-)n.

would be required for escape and a suboptimal scheme can give: easy and

good ontimates of the remaining flight. time. In order to prevent inter- 	 i
r

section of a plan(., t's Surface, a penalty function mdy be included in

the cost. Trajectories about the four inner planets can be generated.

The program is based on an earlier electric propulsion geocentric 	 i

transfer program. As with the earlier work, s}had:)wing,oblate^ne.-ia,,ind

solar motion may be included. Equinoctial orbit elements are used to

avoid singularities for zero eccentricity and inclination. 	 f

The optimization requires the solution of a two-point boundary- 	
II

value problem. Several trajectories :oust be calculated to obtain con-

vergence to the required boundary condi-Jons. Each trajectory in cal-
1

culated by integrating a first approximation to the state consisting

of the orbital elements and the costate using a time stem of several

days. Averaging integrals are performed using a gaussian cluadrature.

Typically 16 points are used. in order to obtain convergence in a few

iterations, a fairly good initial guess is required, especially for

orbit-to-orbit transfer. Because th , Solar sail always has a component

of force away from the sun, ecccntricity tends to change quickly.

Therefore, attaint:mnt of a particular final eccentricity can be diffi-

cult. Transfer to a subcscape point did not present convergence

difficulties.	
!
F

•	 lsrse^/	 :..^	 ^	 r



`l

i

A number of example traje-etories were produced although a thorough

performance analysis was nept done because of ch:snging candj-tions in the
wail mission punning. Cnitlal conditions op. Haany of the-caaus were

solected to take advantages of geometry to avoid the shadow and decrease
flight time. Examples are for Earth orbital trajectories. Flight

times are reasonable for a low thrust vehicle.

There aril several possible ettensio„s of this 44ork. one is the

inclusion of a more accurate heliogyro sail model, nlanetshine offects

may be important at low altitudes and for Mercury trajectories as indi-
cated by some preliminary effort• for this study. Attitude constraints,

including rate and ra pe change constraints, are important. Such con-

:5traihts wore not inesluded in the optimization although resulting tra-
joctories can be inspected for violation of the constraints. Typically

the constraints are violated during a segment of the orbit when the
thrust is small combared to the rest of the orbit , and so probably a

suboptimal pointing would have a small effect. There is a tendency
for eccentricity t  become large so that intersectionsintersections of the planet's

surface occur. C,&rently, the shadow computations are not valid if
this happens, cauPsing as abort, n penalty function was used to pre-

i
vent surface intro section for some examples, and there was only a_small

I
loss of performance Obtaining convergence can be difficult, especially

for orbit raising when a small final eccentric:'-y is desircal . For a

complete escapee trajectory a precision trajectory integrati n segment
could be connected to the initial averaged section with the appropriate

transition.
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APPENUXX A

rRIMIMINARY 1113-olOGYRO POHCE MODELING

Accurate force modeling of the heliogyro is very difficult.	 Tile
force depends oil the angular momentum Vector, pitch'; angle, rotation

angle, deformation etc.	 In an effort to produce a more simple model
JPL obtained approximate thrust magnitude versus thrust vector cone

angle values for various sun -cone angles 	 (i.e. 
the angle between the

angular momentum vector or spin axis and the sun,linc) 	 Only data

for zero collective pitch was obtained.	 Thus the sun-line, spin axis
and threat direction are assumed to lie in a plane.	 This data is
reproduced in ,rable A-1 and this case is illustrated in Fig. A-1.

TABLE A-I

Valueo of Normalized Force Versus Force Cone Angle

(for two sun cone angles and for 00 collective pitch,
taken from JPL data)

P

P/F Ct

cyclic Pitch

0° . 100	 200	 30O	 400	
-1611 	

-200	 .300 -400

19012	 .080	 A376	 .7640	 .6744	 .0049	 .8376	 .7640	 .6744

0.0	 -4.4753	 -8.7425	 -12.5642	 -15.6465	 44.4153	 +8.7425	 ♦12.5642 	 + 1 5.6465

.0409	 . RM	 AM	 8106	 .753 5	 .7877	 7114	 ^1.6203	 .5244

^13.4921	 r.° 9 253	 + 4.3673	 +21.6079-0.1556	 -4.22S2	 +17.7996	 +2­ 6206	 +2 6. 4 8:3

Of ^
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riy pire A-.I Holiogyro Geometry

The spin vector direction can changf- only very slowly. As a

first cut the data for zero sun cone anylu was used to try to obtain
valuers for coefficients using the square sail model. Since the data

diverges considerably from a cos 2 (, curve, that form did not yield it

good fit. A form using cos4o and cosSO did yield a very good fit.

In r)articul.Ir let

e __ = 0.333+0.7709cosO-- 0.1042 cos88	 (A.1)
.9012

'.hen 'fable A-2 :,how_. a comparison of values from this; formula with

data from 'fable P.-2. Note the cut-off angle of 30o;

1

r



J.-

.
^

-TABLE A-2

/
|
(

Curve Fit Comparison

^
O F^	 /,90lJ	 ydata oalculmtcd/.9012

O 1.0 1,0 4

4.4753 0.9819 0.9824
^
+
~

8,7425 0,9394 0,9293

12,5642 0'8486 0'8452 ^

15.6465 0,7483 0.7483

20 , --- O	 ^*51. ^
25. --- 0.2074

30, --- O. .

û

,̂

Fig. A-3 illustrates the zero sun come aoglc case for positive 9
oa`v] using the nurvc fit of Qg,	 to extrapolate the data to 6~30 .

A curve is nbovu for the sun cone angle of 15 o also. No fit of the

data to a mathematical expr,,! y eion was attempted for that case.

' m	 o	 m	 20	 xn	 40

THRUST cowc ANGLE h^eg>
^'	 _ '	 ^^^^^ ^^^^^''^^ ^_^,^^^^^	 ^^^r^gorc ^-^ xoc^r p° yu^^m^ = ."^^^`
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N1	 A1	 (t.11	 O,	 ^12	 , ^'t.13

m	 O, 11,x .,	 O, M5:3

(1+p2+(l2)Y1

2tm "Fl -1  k^

(I4p2+(l2)XI

2na j 1-]t

• „

APPFNDIX h

THE MATRTX M AND ITS PARTIALS

'fable B-1	 Elements of h1

2\ 1 2X1
n 1 1 1 --^- • 11

12 ^"- •	 11 1:3	
( )

n a n a

1-h	 k 1 1
M

21
r^ _	 (sinF-hR )

Jk n

^	 k7- I d YI	 1 11122 t	 (5in1^'-hp)
na L ak n

1:1;}' 1- pX11

na g 111 11	 k^

—_ ,:ky1 ^t pax!	 1 1n 131
^k -	 (^^,SF'-^c^4 )

na l Ml n	 J
1-I_ i- 1 1M32 -- -	 (cosF-k.4)
IM dh n

- tttyYl-ph
1111:33

/1na2v-t

0
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ti	 f

+ _ Table 13-2	 Partials of }'1 and Y 1 with
J

Respect to h and It

_
t ax 1 = ,n h p cosF-(p-ty) (hcosP-Icsinr 1

all 1-R-°	 J

j
aY l _ kpcosh-i + hk	 (hcosP-IcstnF)

]+
ah 1"^

f 1o

i

7 i h sink-1 - h^ (hcosP"-lcslnh)	 1
a 1-p

1
aY1 _ kastnh+(^+k) (hcosP-lcstnI')
a 1—'h

r

Table 13-3 Partial of M with Respec t 'to a
r .

3 ;7 0	 0	 0	 0" !t;'
1	 0	 0	 0 -

p{
0	 0- 1	 0	 0

as
11R,za

r	
0^0 0	 0	 1

Ij

ff

/
{

/

s a f^avw	 .^ ^,^,y.,- +y-y..y vxY.,:a: ^,.. ^r-ns° ^a[e^m.$ »tn	 -	 a	 w	 -

`-	

^	 •_,	
2	 ^ e."	 .-/ FhL	

}^	
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^ k ( 'ruble 13-4	 Partial of M with Respect to 11
IV

a1V4 111
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1 1	 1-
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1^2^'j)
t

K' 5M 22 -hNl22	 1-1t2 k2 a2Y1	
all (s[nl -h )	 Y1 ( h2(i3)l N

ah
_

1- It2-k2	 la
-

chck	 all 	 tt	 n 1-^ J
4.P owl23 hM23	 k	 aYl	 aXl

-
ti
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^P ^I
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II//

t	 ''
`

all
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Table B-5- Partial or,11 with Respect to k

am 
11	 2	

a^, 	a 111	 a^
12	 2	 1	 13—2--	 0

alt	 n a ak	
bit	

n a ak	 akA,

2
1 2	 911 1_ 11c2	 b x	 ax	 k	

'I
al"21	 21	 R)	 1 hkLq

	

­Wk + -^k	 nna

2_ 2 [^2 yl	 bi	 3
01V1

22	 -)c?vl 2 9	 TI hTk 2	
+	 1 (s[nF-h,,-,-	 1 lilt p

2ak	 1 -	 -1	 al,

BAI 
23	

M	 kNLI	

by p

	

23	 23	 k

k	 -k-ak	 2
na 

/l h 2y	 ^k	 bit -

km

	

31	 DX1 cosF-k	 X,
ak	 h2--k akah	 bit	 n

kTv1	 2 —2	
2,

ybA1
32	 32	 fl li	 I	 cosF-kp	 I

Bit

6k	 I -hr-k̂	 n;r	 Bh	 'c it
	

n	 n

V,	
am33	 kM 33
	 h	 by	 ^x
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p
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0,	 0, 
BA11
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43 6yl
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it	

Y
^j

BM51	
M

'-"53

	

52	 0,
ak	 ak	 Fj It
	

^kx 1

j

74
ORIGINAL PAGE Ib

OF POOR QUALITY

11,4



II	 ^l^l

14

Table B-6	 Not-vcl-o Partials of M with Respect 
to 

11

23

a t)	 2
Ila

am 33

6 p	 1-11 -kna 2

am 
4:1	

py I
	 -

ap	
—1y Ila 

2
it

am 53
	

px I

at)

	 nap

'!able 13-7 Non-zero Part[ats of Al with RLspect to q

t-,-
rf,

am 2:3
Icy I

it
'6q

t	 na2

am 33 -11Y

aq na2

BM43
(ly

aq 21-11 na

am53
qx

a.
aq 1- 11` - It"' na2

4'.. 75

li

Sir



Table, 13-11 Partials of k 1 and Y 1 with Itespect to h nud k

ai l	 n k l slnv+nn2	I (hshtl•'•FkcosP) ( p +b	 } •b h(lslnT`l
all	 r r L	 1-^	 J
'9 	 •all	 c^

•

Y 1 nlnF+na 2
I

lepslnr-hk	 3 (hslnF+Iccosla')^
all	 r C 1-p	 J

ak l	 a 7lcosr+na2	 (IPCOSF•I•hk 3 (hsinh+Iccos1-) 1
ak	 r r	 L l-P	 J
ail	 = n 1' 1 cosF+na 2

I

(hslnr •ukcoSF) (p+lc	 ) •• Icpeosr1
ak	 r r 1-g	 J

Table B-0 Second partials of X l and l'1 with Respect to h and I-
2a X = a l hgI (-hcosr-Hcslnr) 3+h2 02y,)	 _ 2cosr(p+h!e1]

/
ah 1-p ( 1 -p)	 1

-0 J
2 ra ll  lcOl---

I
(hcosh-ketnr)	 I1"I•h (313/2	 31

an 1 -p

-20`—h 	 / d• ^^ cos^a'J
(1- 0)2
	1-p

2,a h1

ak =
11p3

aI— (-hcosF+ksItjF) rl+k2(3 8 -2	 3 )1	 2hk	 3\	 —^-- 3 	 t ^- stnl
1-p (1-^l)	 1-0

.B 2	 1 =	 rlc)3 (heosr-ksinr) /3Hc2(3
,

-20'1 )1	 ((1+k2	 1J-^`—J - Zs[nF	 —
a^

a l
1 -p

1
U-p)	 1-p

J

a 2X 1 62X1	
= n	 (-hcosF+ksinr) ( 1+112 (302 - L B 3 )1	 hkjV 	 (ph2:03)

^
ahak akah 1-P `(I`)T\	 (1-J	 - 1-p 1-(I

a2Y a?11 a	 !^
P3 

(hcosr-ksinl") ^L k2f2-21	 !LL shtT'I•oos1P(p'l{e^p3) 1
aicah ahak 1-p (1-0)	 l	 1-p 1-p	 J
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AF' p 1i	 xx c

r. SINGLE AVERAGED ObnATENESS EQUATIONS
i

a

Iii these equationsit  is the earth's radius,	 Ya is the gravita-
tional constant;, n is the orbital angular speed, J 2 the oblateness

coefficient and A, h, k, 13, q the equinoctial orbital elements.

w ^.	 Table 0 -1 J2 Variation of Parameters 'Equations_

e
3pRCJ2k^1-G(12+q2) I. 3(P Z +q

2
)2D

} I ^ J 2-	 y '2naDo	 -kl ) (1+p +q`) >.

3JJH J2hC1-G(p2+q2)+3(p2Ag2)2D	
-.

k I^
h-_ J2

 2na°(1 -11 	 -k )
	 (14 .P2

 +q 2 )2
	 - s

3pR J 2q(1	 -

-'	 -	
P 2

Lna (1`11 -k")	 (1	 q)
Y b	 r

t'L. 3µll212P(1-P2-q2)
ta'.

R, qJ2 2na	 (1-h -k I	 (1+p2+q2)
k^q

9

Table	 -7.	 Partial of J 2 Equations with liespect to a p ;l a	 ;
K r s ;

,.
7	 li

B a	 2 u ";
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iIAPPENDIX D

r'.

i

I,

SHADOW CALCULATIONS

This appendix essentially reproduces the summary of shadowing

results from Ref. 12. from geometrical considerations an equation

can bo derived which the entry and exit• angles must satisfy. Such

an equation is given in Reference 28 and the equation given in this

section is essentially the name, except- that it is given in terms

of equinoctial orbital elements.

The spacecraft position is given by

	

r - Xlt + Y ig-	 (D.1)

where Xl and Yl were given in Eq. (3.16) and (3.17). Lot the unit

vector from the planet to the sun ae given by

G

	
as - XSE + Ysg + Zsw

This is in terms of the equinoctial coordinate frame and thus depends

on the equinoctial Orbital elements p and q. The calculation of

the sun's direction in the equinoctial coordinate system is discussed

in Section 3. If a  designates the planet's radius, the cosine of

the angle between r and Rs is given by

Rs r	 (w2 _ 12)1/2
-	 (D.2)

ILI	 Irl

or,

X1XS + Y lY s = -oLI 2 - a2) 1/2	(D.3)

squaring and rearranging

S 5 (1-XS )X2 4- (1-Y 2 )Y2 = 2XS YS XIYI - a
2
	 0	 cD.4)

0
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This is the shadow equation which must be satisfied by the entry

and exit angles. Xl and Yl are functions of cosF, sinF, a, h, and k

(see Eq. (3.16) and (3.17). By further manipulations one can derive

a quartic equation in cosF. The coefficients of this quartic equation

are given in Table D-1. Spurious roots can be eliminated by the

criteria that S = 0 and that R • r < 0. In addition, for the entry

angle aS/aF < 0 and for the exit angle aS/aF > 0.

Table D-1 The Shadow Quartic Equation

b l = 1-h2P

b2 = hkP

b3 = 1-k20

dl = 1-X2

1 -Y2d2 = 

d3 = 2YsXs

hl	dl (bl b2) + d 2 (b2-b3) - d3fb1b2-b253)

h2 = -2dlkbl-2d2hb2+d3(kb2+hb1)
a2

h3 = d 1 (b2+k2 )+d2 (b3+h2 )-d3 (b2b3 +hk) - a2a

h4 = 2blb2dl+2b2b3-d3(b2+blb3)

h5 = -2kb2d i - 2hb3d2 + d3 (kb 3+hb2)

AO = hi+h4

Al = 2h1h2 '+ 2h4 h5
	 d a.

A2 = h2 + 2h3h 1 - h2 + h2

A3 = 2h3h2 - 2h 4 [1 5

A4 = h3 - h?

S", a A0 cos 4F+Al cos 3F+A2 cos2F+A3 coaF+A4 	 O

V
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Derivatives of P, and S

The darivaLivc Of P with respect to is needed to evaluate the

cosLaLe equaLion. It cent be obtained implicitly from tha shadow
equation.

dr	 - as /,a5	 (D.5)
da	 92	 Dr

These partials are listed in 'fable D-2. Note that in calculating

8s/3p and 9S/2q we havo taken into account 
the
the fact that the sun's

direction is given in equinoctial coordinates.

Table D-2 Partials nl' the Shadow function

al
2

C
(1-Xy)Xl-YsYsYl

a,1
1 a. 2	 Xs)Yi-XsYsYlL(1- L 1̂

J
cxl
=— =	 n	 2^)sinT^+hk^3cosl^

Jar 1. J

byl a C-h1t0sntV+(1.-k2P)cosP l
alp

as _	 la 
2
L

as a

1,
=	 2

1(

,t
1 .^y)Xl -YsY Yll

axl

all	
2

n	 11
C(1-Yy)Y l -1 sYsZ

1J

aYl
k

Tit -	
2

C
(1	 `{	 )

s ^1	 sYa y l
aX

ak	 2]
(1-YS)Y 1 -^ sY,aY1^

C
aY
ale^f
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ap

-11kl YAX; +.Y Y Y_1"s	 1	 1	 l ^ 1+'.2
^i_-4 [Y 2 Ys+X lY l1   	

e^

eXy

Cl̀+	
.q -J

as _	 -4
Slts •	 1 Y 1Y
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APP> NDIX 114

A STRATEGY WHICH MAXIMIZES MtAN RATE-OF-CHANGE OF ENERGY-

As part of a.solar sail planetocentric performance analysis, a

strategy was developed, coded, and run to produce trajectories which

maximize the mean orbital rate-of-change of energy locally. The

compuLer program (SUNSPOT),which was being developed to produce mini-

mum time escape trajectories, was modified to produce a number of

trajectories using this strategy.

The computer'+.,ode, which uses the method of averaging, is valid

_.for the spiral phase only. T!Je averaging method is valid only if-

ti-ho thrust/weight ratio is smajll. Therefore the trajectories-cansiot

be extended to escape energy '(C 3 = C).

__ --	 Although the computer piogram is designed to--solve a-two point

boundary-value problem, single trajectores can be produced. The

state and costate equations are integrated, starting at a specified

initial orbit, for a specified length of time. The state 'consists

of five averaged orbital elements; the costate consists of the ad-

joints to these elements. In order to produce traje !_tcries using

the maximum rate-of-change of energy strategy, the costate equations

weri not used. Instead the adjoint to the semimajor axis was set

to v nonzero value, and the other adjoints were constrained to be

zero. r;ir:e the energy is proportional to the negative of the

inverse of the semimajor axis, this strategy has the desired result.

This strategy is equivalent to forcing the primer vector to be

tangent to the orbit at all times. (For the solar sail, this does

not mean that the thrust is tangential.).

The strategy requires that the energy change be maximized- where

'the energy, N; is given by

a 2

Thus

%"T4 WQ PAQF;:61A]VK BUT EAtA

as
	

i e4

ti

a^J



av	 4

^y
,

k

k t^

4 ,

t
,^	 w	 rF
YL p.I.I	 C

^I

n E	 .2 a	 (E.2)
U

where in is - the mass (constant), is the gravitational constant, and

a is the semimajor axis. Thus L is maximized by maximizing a. Since

the variation of parameters equation for semimajor axis j,is given by
2

'	 U VT _	 0 )

Then a is maximized when a has the largest projection onto the

velocity vector, V. For the sail, the thrust direction, u, will not

necessarily be colinear with V. The above procedure is simply ` ac-

complisned using the optimization program by constraining the adjoint

to semimajor axis to be a non-zero constant and the other adjoints to

be zero. The variation of parameters equations for all the orbital

elements, z, can be written (M is a matrix):

(E.4)
z = G1 u

Then the Hamiltonian is

F 'tA „	 Then if the adjoint vector is a t = - [k, OT], H = [k, OT) Z = k a
s ,a	-

Thus maximizing 11, maximizes L. Since the optimizing program uses

the method of averaging, it is the mean energy rate that is ac-

tually maximized.

The thrust vector for the solar sail is calculated as a function

of the primer vector (or equivalently, 1 .1T1). For a flat perfectly

reflecting sail, the force acts normal to the y sail and 's propor-

tional to cos 20, where 0, the cone angle, is tns angle between the

normal and the sun - vehicle vector. The relationship between

thrust direction and primer vector has been previously derived,

for example, in Ref. 6. A more accurate force mode'_ for the square

sail is given '- Ref. 22. In this case the force is proportional to

C1 .^ C 2 cos 2 O + C3 cos 40, where the cone angle, 0, is the angle

between the force direction and the sun-vehicle vector. In this

case the calculation of the thrust vector is m.,'re involved, but

has also been implemented in the SUNSPOT code.
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A number, of trajectories were generated using tbu neaximum

rata-of-change of energy strategy.	 Different initial orbits ware

I' assumed; some cases used the idealizcl 	 "l.l, others tue more accurate

` model; sonto cased included shadow.ing. 	 case did not include solar.

motion.	 oblateness - was not included in any of Lim cases. 	 A memo
t

describing these cases was sent to the technical monitor 29.
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