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INTRODUCTION AND SUMMARY 

1.1 Executive Summary 

The purpose of this limited study was to investigate six 

specific issues associated with interfacing a Satellite Power System 

(5 GW) with large (by present standards) terrestrial power pools to a 

depth sufficient to determine if certain interface problems and/or 

benefits exist and what future studies of these problems are required. 

The issues investigated and the conclusions reached are as follows: 

1. Stability of Power Pools Containing a 5 GWe SPS 

Using present control methods, the power pools investi­

gated in this study are unlikely to be able to maintain 

stable operation without shedding part of the load 

if the SPS Lhuts down unexpectedly. TIlis might be a 

severe problem ~nd further studies of (a) the likely 

magnitude of the problem, (b) the most co~t effective 

method of alleviating the problem are needed. 

2. Extra Reserve Margin Required to Maintain the 

Reliability of Power Pools Containing a 5 GWe 

SPS 

The use of any type (SPS or conventional) of 5 GWe generator 

instead of five 1 GWe generators requires a significant 

increase in the power pool reserve margin if the system 

reliability is to be maintained; the cost of the extra 

capacity need not be excessively expensive. The problem 

is significant and deserves further study, but a solution 

is available at a reasonable cost. 

3. Use of the §..~S in Load Follm,ring Service (1. e. in 

two independent pools whose times of peak demand 

differ by three hours) 

The use of the SPS in this ID~nner does not allow the 

economics of the SPS to be directly compared with the 

1-1 
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economics of terrestrial peaking plants. The use 

of the SPS reduces the magnitude of the) peak demand 

for conventional generation capaciLy in each pool by 

only 2% but reduces the duration of this peak signifi­

cantly. The effect would be to change the optimum mix 

(base, cycling and peaking capacity) of generation 

equipment in the pools. Further study of this issue 

is required before any further conclusions can be reached. 

4. Ownership of the SPS and Its Effect on SPS Usage and 

Utility Costs 

5. 

Of the three ownership and energy marketing alternatives 

considered, the most promising appears to be ownership 

of SPS by an independent corporation, Rot the operating 

utility, and the sale of energy generated by the SPS 

under long-term contracts. 

Utility Sharing of SPS related RD&D Costs 

A review of the ~lectric utilities' financial commitment 

to EPRI indicates that, given the most optimistic assump­

tions about the desire of the utilities to support SPS 

related RD&D, the utilities will be unable to contribute 

any more than 10% of the required $44 billion. Present 

utility and EPRI RD&D funding priorities indicate that 

the electric utilities will be unwilling to contribute 

as much as Ii. of the SPS's development costs. 

6. Utility Liability for SPS Related Hazards 

At present, the magnitUde and geographic limits of the 

potential hazards are poorly defined. No utility 

can afford to assume the legal liabilities which might 

be associated with these risks. 

1-2 
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Other conclusions reached in this study are as follows: 

• The large size and high plant cost of the SPS are 

major impediments to its inclusion in terrestrial 

power pools as presently constituted. 

.• SPS outages which are limited to the actual duration 

of an eclipse of the sun by the earth would have no 

effect on the power pool's fixed costs (total required 

amount of generating capacity), if the power demand 

in:the pool varies by a factor of two during the day. 

• The large size of the SPS will probably force ·he 

power pool to "shed load" if and when the SPS shuts 

down unexpectedly; this could be true even if there 

.were enough spinning reserve available to compensate 

for the loss of the generation capacity. 

• Utility ownership of the SPS will be financially 

difficult if the "fuel adjustment clause" continues 

in widespread use. 

• The risks associated with selling SPS energy at the 

incremental costs of terrestrial base-load alterna­

tives are probably too large to be assumed by a 

private corporation. 
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Recommendations 

Because of the limited resources available for this study~ 

models with insufficient detail to fully validate the conclusions 

had to be used. The following, more extensive studies of the SPS­

utility interface are recommended before any final decision is 

made to build the SPS. 

• Perform a stability analysis for a specific large 

power pool to determine (1) the required stability 

of the SPS output, and (2) the probable "loss of 

load" associated with an unexpe~ted SPS shutdown. 

• Investigate various methods and the associated costs of 

reducing SPS induced stability problems, e.g., transmitting 

SPS power via multiple high voltage dc transmission lines 

(1 GW per circuit) to five different power pools remote 

from the rectenna site. 

• Calculate the optimum generating mix and operating 

costs for each of the two separate power pools in 

which the SPS is used in load following service. 

• Re-ca1cu1ate the reserve margin requirements of the 

power pool with and without the SPS using 

more realistic models of the power pool generation 

mix and the SPS. 

• Calculate the cost of the required increase in the 

power pool spinning reserve caused by the inclusion 

of the SPS. 
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Calculate the power pool operating costs with and 

without the SPS using a more realistic model of 

the power pool (use Production Costing Programs). 

Using utility expansion planning programs and a 

more realistic model of the power pool than was 

used in this study, calculate the utility costs 

(fixed and operating) as a function of the year 

after the SPS becomes operational, if (a) the 

utilities purchase the SPS, (b) the utilities 

purchase energy from the owner of the SPS, or 

(c) they follow normal (non-SPS) expansion. 

Determine how the availability of SPS power is 

likely to affect the utility generation expansion 

plans. 

Determine the maximum amount of SPS power that 

can be absorbed by power pools of various sizes~ 

Perform those studies which will will be required 

to define the magnitude and location of the hazards, 

if any, likely to be associated with the SPS. 

1.2 Reliability and Stability 

The overall reliability of the bulk electric power network has 

been given the highest priority by the utilities and the F~C. The 

* following are some of the many aspects of system reliability. 

* "Design of Electric Power Systems for Maximum Service Reliability" 
by C. Concordia, CIGRE, 1968, Report No. 32-08. 
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• 

• 

• 

• 

• 

The assurance of sufficient generating and trans­

mission capacity, in view of the projected loads 

and equipment availability, so that the Loss of 

* Load Probability (LOLP) shall not exceed the design 

level; 

The ability to withstand the sudden loss of a major 

generator or transmission line, without inducing 

any other outages; 

The ability to withstand line faults without losing 

any generators; 

The minimization of system breakdown, as ~easured 

by loss of generation, cascading line outage, ani 

loss of load when disturbances more severe than 

expected may occur; and 

The ability to restore service quickly and smoothly 

~fter a complete system breakdown and source 

, ·thterruption. 

Probability that power demand exceeds generation capacity. 

.-~- .. 
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It should be noted that roughly half of these system aspects relate 

to the ability of the system to respond to disturbances without undue 

reaction (what we shall call system stability) and the other half refers 

to the adequacy of generation and transmission equipment to meet the 

demand for electric power (what we shall call system reliability). 

These two criteria are related; a system which is inadequate to meet 

the power demand is more likely to.over-react to certain types of 

system disturbances. 

The question addressed in this report was: What kind of stability 

and reliability problems will arise when an SPS is added to a power 

pool? Within the limits of available resources, the purpose of the 

study was to describe the nature of the problems and estimate their 

magnitudes. 

The problems investigated were: 

• Stability 

• Frequency disturbances caused by sudden changes 

in the amount of generation capacity in the power 

pool. 

• Effect of protection device operation on machine 

stability. 

• Reliability 

• Reserve margin requirements to maintain prescribed 

reliability in power pools containing one or more 

SPS with a variety of assumed outage characteristics. 

• Use of the SPS in load following service. 
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that: 

The relatively qualitative investigation of stability indicates 
\ 

1. The sudden loss of the 5 G~~e SPS output would probably 

cause a loss of load whenever the power pool was meet~ng 

a total load of roughly 40 G\~e or less. The largest 

power pool considered in this study (peak q~mand = 50 m~e) 

meets a load of 40 GWe or less 88% of the time. 

2. Sudden fluctuations in the SPS output could cause 

the operation of protective devices '~hich themselves 

could exacerbate the stability problems. 

The investigation of reliability turned out to be basically a cal­

culation of the total required installed capacity needed in a power pool 

if one or more SPS's (each with a generating capacity of 5 GHe) were 

installed instead of a number of conventional generating plants (each 

with a generation capacity of I GWe). This analysis was concerned primarily 

with the size of the proposed SPS, and therefore, most of the results 

would apply equally well to a 5 GWe terrestrial plant. The results 

indicate that whenever a 5 GHe generation is used instead of five 1 

GWe generators (no change in the forced outage rate)· an additional one 

to two gigawatts ($124 - $250 million) of extra reserve capacity (gas 

turbines at $125/kW) must be added if the system reliability is to be 

maintained. The magnitude of the assumed reliability criterion is not 
critical, since it is not likely to be changed when the SPS is aoded 

to the power pool. 

The total amount of reserve generating capacity required in various 

power pools was calculated for power pools having yearly peak power 

demands of either: 

• 30 GWe, or 

• 40 GWe, or 

• 50 GWe, or a 

1-8 
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• Composite Power PODl made up of two independent 30 GWe Power 

Pools whose times of peak demand differ by 3 hours. 

These power pools contained either ' 

• No SPS (all conventional equipment), or 

• One (5 GWe) SPS, or 

• Two (5 GWe) SPS, or 

• Six (5 GWe) SPS. 

Three different scheduled in.terruptions of the power from the SPS 

were considered: 

• 

• 

• 

Power interruption due tc eclipses only during the 

actual eclipse period; no scheduled maintenance re­

quirements. r~bis was a best case calculation.] 

Pow~r interruption due to eclipses only during the 

actual eclipse period, plus scheduled maintenance 

for 20% of the yea~ [This was a worst case calculation.] 

Power interruption due to eclipses for the entire 

day for all days durins which an eclipse occurs 

(90 days). [This was a worst case calculation; 

the SPS is unlikely to be economically attractive 

under these circumstances.] 

The magnitude of the installed reserve under each of the 

indicated conditions is entered in Table 1.1. The difference between 

the entry of interest and the entry for the power pool which does not 

contain an SPS is the extra installed margin that is required by the 
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TABLE 1.1 

. Installed Generating Margin (GWe) 
For the Various Pools as a Function of the Circumstances 



SPS. For example: If a power pool, which has a peak power demand of 

50 GWe contains no SPS, only 10 to 11 GWe of installed margin (60 

to 61 GWe total) are required to provide for system reliability. If 

this same power pool contains an SPS which must be shut down for scheduled 

maintenance, 12 to 13 GWe of installed margin are required. The power 

pool which contains an SPS needine scheduled maintenance requires two 

more gigawatts of generating capacity than does the power pool that 

contains no SPS. If the SPS needs no scheduled maintenance, only one 

more gigawatt of generating capacity would probably be needed (11-

12 GWe minus 10-11 GWe). 

The results shown in Table 1.1 indicate that if one or more 5 GWe 

generators (SPS, nuclear or fossil fuel) are installed in a power pool, 

the installed generating margin must be increased if the system 

reliability is to be maintained. The percentage increase would depend 

on the size of the power pool; the larger the power pool, the smaller the 

required percentage increase. To demonstrate how the installed margin must 

vary with the power pool size, the percentage installe~ margin is 

plotted as a function of the power pool size in Figures 1.1, 1.2 and 1.3. 

* The plotted values for the composite power pool clearly indicate that 

the composite power pool cannot be treated as if it were a 60 G~e power 

pool. 

The additional generating capacity that the results of this study 

indicate will be required need not be expensive. The extra capacity 

will not be used very often and could be in the form if inex-

pensive peaking units ($125/kW), causing an increased capital require­

** ment of $250 million, 3.3% of the cost of the SPS ($7.6 billion) and 

* 

** 

Two independent 30 GWe Power Pools whose times of peak demand differ 
by three hours. 

"Space-Based Solar Power Conversion and Delivery Systems Study --
Interim Summary Report" by ECON, Inc., March 1976, Report No. 76-
l45-IB. 
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FIGURE 1.1 

REQUIRED PERCENT INSTALLED MARGIN AS A FUNCTION OF THE PO~~R POOL SIZE 

POWER POOLS CONTAINING ONE SPS 
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FIGURE 1. 2 

REQUIRED PERCENT INSTALLED MARGIN AS A FUNCTION OF THE POWER POOL SIZE 

POWER POOLS CONTAINING TWO SPSs 
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FIGURE 1.3 

REQUIRED PERCENT INSTALLED MARGIN AS A FUNCTION OF THE POWER POOL SIZE 

POWER POOLS CONTAINING SIX SPSs 

z ... 
~ 
CI ... 
~ 
on z ... 
~ 

2 
u 
~ ... .. 
"" :! ... 
8-
:l 

so 

T 

\ ,\ 
\ 

\ , , 
40 T 

~ .1.\ 
\ 

\ 
\ 

\ 
\ 
" 

30 

20 

10 

, 
20, 

,T 
-{ .L, 6 SPS Eclipl. 

19 

17 

\ 'is 
1, 

14 

6 SPS Maintenance 

6 SPS No Kaint"' .... nc. 

No SPS 

'OR161N~ PAGE ~ 
OF. pOOR QUAlJ 

I! 

, "O~ ____ ~ __ ~~ ____ ~ ________ ~I __ ' ______ ~ 

30 ev. 40 eva 

'lAIC rown DDWID 

1-14 

so eva Coapodta 

Arthur DLittle.lnc 

.~~~~ .. ~---------------------------



.. -- ---------------------------- -~--. --- --I 

roughly $50 million/year for fuel. If a completely redundant antenna 

were built to eliminate the need for scheduled maintenance~ the total 

cost increase (including 1 GW of gas turbines) would be $1.47 billion, 

19% of the cost of the SPS. 

An additional conclusion was reached while actually performing 

the calculations; if the SPS is shut down by the earth eclipses for 

only the duration of the eclipse, the eclipses will have ~ effect on 

the system reliability. The demand for power during these eclipse 

periods was only half the daily peak and the probability that other 

generation would not be available to supply the required power was 

virtually zero. If the shutdown were to last from one hour before the 

eclipse to one hour after the eclipse, the results would be the same. 

This particular problem had no effect on the system LOLP and should be 

considered further only if it is expected that the daily load curve was 

tending to become flat. 

The composite power pool was found to be unaffected by either the 

SPS maintenance requirements or problems due to the eclipse. Because 

the power produced by satellite in this power pool could be used in 

some way or other throughout the year, it is understandable that the 

maintenance requirements of the ground stations would have little effect 

on the installed margin. The margin's insensitivity to the eclipse 

stems from the large size of the required margin when the pool contains 

no SPS and the uncertainties in the calculation. 

1.3 Possible Ownership of the SPS 

Three different ownership and/or energy pricing arrangements for the 

SPS have been investigated. These arrangements were: 

• Purchase of the SPS by a utility or consortium 

of utilities. 
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• Purchase of the SPS by an independent corporation 

and "lease" (commitment to purchase a share of 

the SPS energy) of the output by several utilities. 

• Purchase of the SPS by an independent corporation 

and the energy sold to the utilities, at below 

cost initially, at a price equal to the incremental 

cost of the utilities' most expensive base load 

generator. 

How the SPS is purchased and by whom can determine how it is used. 

Of these three arrangements, the most promising appears to be the purchase 

of the SPS by an independent entity (corporate or governmental) and 

"lease" of the output by several utilities. 

While all the calculations performed in this analysis assumed 

that the capital cost of the SPS was $7.6 billion, the general conclusions 

reached can be used to infer the effect of the more recent, significantly 

higher estimate of $12.2 billion. The basic conclusion of this study, 

Le., that the "leasing" arrangement is the most promising of the 

three arrangements considered, would be true if the higher cost had 

been assumed. 

The results of this investigation are as follows: 

1. Utility Ownership of the SPS 

• When the ($7.6 billion) SPS first bec,I';'JIles 

operational, a very small increase in the 

~otal cost of meeting the demand for 

electrical energy will probably occur. 
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• If the capital cost of the SPS is $12.2 billion, 
the inclusion of the SPS related costs in the 
utility rate structure would require an i~CLease 
in the total cost of electrical energy to the 

• 

consumer. 

Utilities which use a semi-automatic fuel ad­
justment rate to recoup the cost of fuel will 
have to request a sizable increase in their 
base rates to cover their increased plant equity 
when the SPS comes on-line. Fuel rate reductions 
can occur within a mo~th; base rate increases can 
take as long as a year to obtain. • The higher the 
capital cost of the SPS, the greater may be the 
financial stress caused by regulatory delays. 

2. "Leasing" of the SPS Output by the Utilities 

• The cost of purchasing energy could be r~couped 
by many utilities via fuel adjustment rates. 

• At present, the reduction of the utility capital 
requirements caused by "leasing" energy from the 
SPS would have a beneficial effect on the utilities', 
financial ratings. It is not clear that this sit­
uation will prevail over the next fifty years, nor 
is it clear if the utilities would accept this 
arrangement over such a long term. 

• SL:.~e the utilities make no profit on purcllased 
energy, the effect of the SPS on the total cost 

'ORIGINAL PAG.B tb 
OF. POOR QUAL11'Y 

of electrical energy would be the same for both the 
utility ownership and the private ownership/utility 
leasing plans (assuming that the discount rate is the 
same for both the utility and the private corporation). 
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3. SPS Energy Sold at the Incremental Cost of Base-Load 
Alternativ,es 

• If the inflation rate continues at roughly the 
same as present rates, it would be possible to 
price energy from an SPS (capital cost = $7.6 
billion) at the incremental cost of alternative 
fossil fueled generation and eventually make a 
profit. The size of the profit depends on the 
inflation rates. 

• If the capital cost of the SPS is significantly 
higher than $7.6 billion, the inflation rates 
necessary to eventually make a profit using this 
pricing alternative, would be significantly greater 
than the present inflation rates. 

• Pricing SPS generated energy in this manner 
requires the operation of the SPS at a loss for 
roughly twenty years. The risks associated with 
this arrangement are too large for private industry­
financial guarantees from the government would be 
required. 

• If the government provides financial guarantees to a 
corporation intending to price SPS energy in this 
manner, the interpretation of this decision may 
be that either the government is willing to subsidize 
the SPS or that the government expects the inflation 
rate to continue at its present level or higher. 
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1.4 Utility Participation in SPS Related RD&D 

While the participation of the electric utilities in the SPS 

research, design and development (RD&D) program may be desirable, 

utility activities in this area are likely to be very limited during 

the next five y~ars. EPRI's budget for all solar energy research during 

this time period is only 2% of EPRI's total budget. 

The total research EPRI budget for the next five years is roughly 

$1 billion, including an allowance for inflation. Of this, only $20 

million (approximately $4 million/year) has been allocated for all forms 

of solar energy research, including solar heating and cooling. Unless 

EPRI's priorities shift significantly, the funding available from this 

source to support SPS related R&D will probably be small. Even if EPRI 

supported SPS-related RD&D at the same rate as all other solar energy 

projects combined, its contribution between now and 1995 would probably 

be less than 1% of the required total of $44 billion. If all of EPRI's 

resources were devoted to the SPS, EPRI could only contribute roughly 

10% of the $44 billion required. 

The probability of attracting substantial participation by 

individual utilities in SPS related research is also small; utility 

research priorities are primarily near-term and investment in the SPS 

is unlikely to be a high priority item. 

1.5 Utility Liabilities Associated with the SPS 

Whoever owns the SPS - the electric utilities, a private or semi­

private corporation or a government agency, this owner could be liable 

for all the adverse effects that could results from SPS related activ­

ities; the cost of these liabilities would presumably be added to the 

cost of SPS generated electrical energy via the cost of insurance. At 

present, too little is known about the potential adverse effects 

either to: 
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• identify all the possible liabilities, 

• estimate the magnitude of all identified liabilities, 

• reliably estimate the cost of meeting the liabilities, 

or 

• determine whether the electric utilities would assume 

these liabilities. 

In the past, the electric utilities have assumed the liabilities 

associated with the degradation of radio and television reception along 

transmission right-of-ways. This liability is localized geographically 

and can be reasonably well defined before the transmission circuit is 

energized. On the other hand, the similar problem associated with 

the interference of the SPS microwave beams with communications 

channels, radar, etc., may be neither localized geogLtiphically nor well 

defined before the first two SPSs are built. The utilities would be 

unlikely to accept this type of liability as a condition of purchasing 

an SPS or SPS delivered energy. 

1.6 Structure of the Report 

Each of the six issues investigated in this study is discussed 

in some detail in the following chapters. . Since there was some 

relationship among the first three issues, they ~~ere grouped together 

in Chapter 2. All others are described in independent chapters. 

The results of the study in each area are summarized at the beginning 

of each chapter so that each chapter can stand alone. 
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2.0 RELIABILITY AND STABILITY 

2.1 Background 

The overall reliability of the bulk electric power network has 

been given the highest priority by the utilities and the FPC. The 

* following are some of the many aspects of system reliability. 

• 

• 

• 

The assurance of sufficient generating and trans­

mission capacity, in view of the projected loads 

and equipment availability, so that the Loss of 

** Load Probability (LOLP) shall not exceed the 

design level; 

The reliable operation of the individual pieces 

of equipment; 

The ability to withstand the sudden loss of a 

major generator or transmission line, without 

inducing any other outages; 

• The ability to withstand line faults without 

forcing any generators to shut down; 

• The minimization of system breakdown, as measured 

by loss of generation, cascading line outage, and 

loss of load when disturbances more severe than 

expected may occur; and 

* "Design of Electric Power Systems for Maximum Service Reliability" 
by C. Concordia, CIGRE, 1968, Report No. 32-08. 

** Probability that power demand exceeds generation capacity. 
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• The ability to restore service quickly and smoothly 

in case of a partial or complete system breakdown and 

source interruption. 

It should be noted that half of these system aspects relate to the 

ability of the system to respond to disturbances without undue reaction 

(what we shall call system stability) and the other half refer to the 

adequacy of generation and transmission equipment to meet the demand 

for electric power. These two criteria are related; the less the 

excess of generation capacity over power demand, the more likely 

is the system to react with instability to certain types of system 

disturbances. 

The question addressed in this report was how is the SPS likely 

to affect either the stability or reliability of the existing or ex­

pected power pools? The resources allocated for this study were too 

small to allow an evaluation of these problems in the depth they 

deserve. The purpose of the study was to describe the nature of the 

problems and to estimate their magnitudes. 

Regional Reliability Councils 

The 1965 "Northeast Blackout", followed by another extensive 

blackout in another area in 1967, had wide repercussions within the in­

dustry. Many questions were raised such as: 

• Are the planning criteria correct? 

• Are'design concepts adequate? 

• Should interconnections between power systems be 

strengthened or eliminated? 

Extensive studies of these questions were undertaken 

by both the utilities and the Federal Power Commission (FPC). The 
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results of these studies indicated a need for a high degree of coordina­

tion of the system planning, design, and operating functions between 

interconnected utilities. The National Electric Reliability Council 
" 

(NERC) and the Regional Reliability Councils werE> established to en-

courage th~s coordination. 

The nine Regional Reliability Councils encompass essentially 

all of the power systems of the United States and the Canadian systems 

in Ontario, British Columbia, Manitoba, and New Brunswick. The area 

covered by each of these councils and the abbreviations commonly used 

for each are shown in Figure 2.1. 

Each of the Regional Reliability Councils has developed 

slightly different reliability criteria for testing and evaluating 

simulated future system designs which reflect the differences which 

exist in geography, population density, load pattern, power sources, 

etc. The variation of the load densities -from region to region is 

shown in Table 2.1 as an example. However, the overall goals of 

the various councils are essentially uniform. 

Regional boundaries are only arbitrary lines of demarcation, 

thus criteria in adjoining regions or continguous utilities on regional 

borders must be compatible. Joint agreements between regions exist 

and studies to assure compatibility of reliability criteria are per­

formed. 

Table 2.1 

Regional Load Density (1974) 
(contiguous U.S. only) , 

Region 

ECAR 
ERCXlT 
;-IAhC 
:-IAIN 
AARCA (U.S. only) 
NPCC (U.S. only) 
SERe 
spp 
wsce (u.s. only) 
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Load !)(>ns1ty 
(MW/squarc r.-,ile) 

257 
121 
636 
16~ 

36 
272 
216 
67 
52 
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The North American bulk power supply is not only the 

largest but, by far, the most reliable electrical network in the world. 

The 1975 NERC annual report stated: "The record of the past y~ar (1975) 

attests to the successful operation of the network even under various 

stresses caused by violent weather conditions, equipment failures and 

several acts of sabotage." Another mute testimony to the strength of 

the system was provided by its successful operation during the adverse 

conditions caused by the fuel shortages and bad weather conditions of 

January 1977. 

The Reliability Counci.ls and the operating utilities and/ 

or power pools are quite different. Each of the Reliability Councils 

is based on a voluntary agreement among the member utilities to uphold 

the basic principles of reliable system planning and operation; member­

ship in the Reliability Council is a voluntary agreement. An operating 

utility is a centrally controlled organization having the direct res­

ponsibility of building, operating and maintaining the equipment 

(generation, transmission and distribution) necessary to meet the load 

in its area reliably and at the lowest possible cost. An operating 

power pool centrally controls all the generation and transmission 

equir~ent owned by its member utilities; the contracts which define 

the power pool contain legal penalties for nonconformance to reliability 

criteria. 

A decision to build and operate a 5 GWe SPS to be placed 

in one of the Reliability Regions may have a significant effect on the 

regional planning process; the effect may be no greater than the effect 

of placing any similarly sized generator in the region. The purpose 

of .this section of the report is to investigate the likely magnitude 

of the effects. Since each reliability council operates somewhat 

differently, it has been impossible to do more than indicate the cir­

cumstances under which problems would occur so as to guide the SPS 

design team in their efforts. 
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2.2 Power System Stability Characteristics 

2.2.1 Introduction and Results 

Predicting the stability of a large scale power network 

is an extremely complex problem. In general, because of the intricate 

interactions among the various lines, generators and load devices, a 

full modelling of an electric power network requires the solution of a 

complex system of coupled time varying differential equations. Solutions, 

generally, cannot be obtained within normal time and budget constraints 

on a digital computer. They are certainly beyond the resources of this 

limited study, but even with the larger studies one must usually be 

content with results based on average network properties and with 

qualitative descriptions of potential difficulties at the level of 

individual elements. This section presents a qualitative discussion of 

the system characteristics in order to convey an appreciation of the 

problems that can occur. It should be noted that the stability charac­

teriBtics discussed herein, are the same as those required of conventional 

generation capacity. 

The results of this relatively qualitative investigation 

of stability indicate that: 

1. The sudden, unexpected loss of the SPS output would cause 

a loss of load whenever the power pool was meeting 

a total load of roughly 40 GWe or less. The 

largest power pool considered in this study meets 

a load of 40 GWe or less, 88% of the time. 

2. Sudden fluctuations in the SPS output could cause 

the operation of protective devices which them­

selves could exacerbate the stability problems. 

The key points to be made in the following discussion 

are that if satellite power systems create frequent fluctuations in 
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system generation capacity, the introduction of sucn a power source 

may increase the number of transients of the power network and cause 

frequent redistributions of power flow throughout the network. The 

SPS should be designed so that any fluctuations in output power occur 

as slowly as is necessary to allow earth-bound regulator systems to 

correct for them without creating significant transients. 

Section 2.2.2 provides a discussion of the transient in 

system frequency due to system dynamics resulting from a loss of 

generation capacity. This transient is of concern because off-frequency 

operation has a severely adverse effect on many types of load elements 

and also places undue stress upon generator turbines as a result of 

governor operation at other than design frequencies. In Section 2.2.3 

the effects of protection devices operation on machine stability is 

discussed, indicating the potential for large scale network instability 

as a result of switching operations. 

An example of stability problems is found in the Northeast 

blackout where a variation in the load caused a normally functioning 

protection device to initiate a sequence of events resulting in loss 

of power to most of the northeastern United States. This incident is 

discussed in some detail in Section 2.2.4. 

2.2.2 System Dynamics 

ORIGINAL PAGE If! 
OF POOR QUALITYl 

After the loss of a generator unit in an electric power 

network, a frequency transient will occur whose precise characteristics 

are a function of many factors; e.g., the magnitude of power loss with 

respect to the remaining generation, the time constants of the remain­

ing generators and the dynamics of the governors attached to the net­

work. The detailed solution for such transient problems is complex, 

and in most instances, it is possible only to deal with average system 

properties. In so doing, it is necessary to apply weighting factors 

to the properties of each of the generators in the network. There are 

many ways in which these factors may be selected, but the basic analysis 

is unaltered. 
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In a system with only a single generator, or in which 

all generators are identical, the average system frequency is governed 

by the following differential equation: 

where 

t (t) = 

2H ~~ 
f dt 

o 

= p 
~et 

l: 8 ( t) - P
L 

( F,;) 
Rf 

o 

f-f , the deviation froQ the nominal system frequency of 
o 

f = 60 cps, 
o 

P ,c generated power set by the regulator system, 
set 

PL<S) = load impose:d on the power systerr (a weak function of the 

frequency), 

H c the inertia constant of a particular generator, 

R c the unit change in the power set by the governor for a 

unit frequency deviation, and . -
get) == a time func tion describing the combined dynam,ics of the 

turbine and governor system. 

The same equation gives a good approximation to the solution for a 

more complex system if parameters derived from appropriate weighted 

averages of shaft kinetic energy, governor dynamics, etc., are used. 

Solving this equation for ~(t) assuming that there is a 

change in the available generation capacity at t = 0 provides the 

following expression for the transient response: 

E; (t) 
6 P f 

== _-1L~ 
2HT 

g 
[ 
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where Wo and WI ale the complex natural frequencies of the system given 
as the roots of the equation: 

2 (21I s + s o g + + f LeT ) 
2HT = o (2.3) 

and 
g 

T c the Laplace transform of get), g 
~ P c the change in P t due to sudden change in the anount of g se 

available generation, and 

LC c the percent change in load for a unit frequency deviation. 

The meaning of these expressions can be demonstrated if 
values typical of a network whose generators are primarily steam turbines 
are substituted for the system parameters. 

Letting 

R = 0.05 

LC = 0.03 '"I./cps 

T = 10 sec. g 
H = 4 sec. 

f = 60.00 cps, 
0 

the natural frequencies are computed to be 

Ie -0.163 + jO.496 

= -0.163 - jO.496 

The resulting damped sinusoidal transient in the system frequency is 

~(t) = ~P [-2.75+2.76 cost(0.496t) - j 14.11 sin(0.496t)]e-O.163t g 

The form of the transient is shown in Figure 2.2; the 
maximum deviation from nominal frequency is given approximately by 

.. -10.22 ~p 
g 
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bP is the fraction of the total power being generated. 
g 

The above result indicates that a sudden reduction in 

generation capacity (assuming the system is able to absorb the loss of 

generation with available spinning reserve) will create an approximately 

sinusoidal frequency transient who~e peak value is directly proportional 

to the magnitude of the power loss; this helps to define the required 

stability of the output of the satellite power system. If for example, 

a 2% change in frequency is the maximum to be tolerated, the satellite 

power system would have to maintain its generation level so as to pro­

duce maximum power fluctuations of no more than .12 of the total net­

work generation at the time of the change in the SPS output. If the 

total power pool demand were 30 GWe, the maximum allowable f~uctuation 

would be 3.6 GWe. If the total power pool demand were 10 GWe, the 

maximum allowable fluctuation would be 1.2 GWe. 

Normally, a power pool will have sufficient generation 

capacity on-line to meet the expected load plus a certain amount of 

spinning reserve; the required amount of spinning reserve is equal to 

either a percentage of the maximum expected load (typically 3-7% of 

the system load) or to the output of the largest generator on-line, 

which ever is larger. This ensures that the system will be able to 

absorb any unexpected loss of generation without large frequency 

changes. The large size of the SPS will probably require a significant 

increase in the level of spinning reserve and the operating cost of the 

power pool would consequently increase. 

The modern use of load shedding relays have redu~~d the 

probability of large sr.ale system shutdowns occurring as a result of 

the sudden loss of generation capacity. These relays disconnect part 

of the load so that the system can still meet the larger part of the 

load. Even if the spinning reserve were provided for the example 

given, the sudden loss of the SPS output would" force a loss of load 

operation of the relays whenever the total load is less than 42 GW. 
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This loss of load is undesirable except as an alternative to the total 

shutdown of the power pool. 

2.2.3 Protection Devices 

The use of circuit breakers to protect lines against faults· 

is common practice even though their use may cause generator instabilities. 

This section describes the nature of the instability that can be caused 

by the normal operation of circuit breakers. 

When a line is faulted, generators connected electrically 

close to the fault experience a sharp decrease in their load (since 

the voltage at the fault is zero, no real power can flow in the faulted 

line except for line loss) while other units in the system are required 

to pick-up the fraction of load isolated from the generators on the 

other side of the fault. This means that during the faulted condition, 

some generator rotors are accelerated while others are decelerated. 

Consequently, when the fault is cleared, the system is in a configuration 

in which some generators are advanced and some are retarded from their 

previous equilibrium values. There is a maximum angular displacement 

from which a generator can recover a stable equilibrium. 

To illustrate this point, consider the simplified case of 

a generator supplying an infinite bus through a series of transmission 

lines. Under such circumstances, the power balance of the system is 

described by the following differential equation. 

where 

c5 

P m 
P elec 
Vt 

= 
= 
= 
= 

2H 
w o 

the 

the 

the 

the 

= Pm - Pelec = P m 

generator power angle. 

mechanical power from the 

electric power out of the 

infinite bus voltage. 

EV
t -- sin c5 

X 
(2.6) 

prime mover. 
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x = the combined reactance of the machine and 

the transmission lines. 

H It: the inertia constant. 

OJ 0:: the initial system angular frequency. 
0 

E = equivalent internal generator voltage. 

The maximum power that can be transferred is sinusoidal 

with respect to power angle. For two different circuit configurations, 

the maximum power transfer as' a function of power angle might appear 

as curves I and II in Figure 2.3. The difference might h~ a higher 

reactance bet~een the generator and the infinite bus (~'b" switching 

out of a line) in curve II. 

~ __ ~ __ ~ ____ -L __ ~~ ________ ~~~ 

II 03 n 
2 . 

FIGURE 2.3 TRANSMITTED POWER AS A FUNCTION OF THE GENERATOR 
POWER ANGLE 

In condition I, the equilibrium value of 15 is 15 1 , When 

the line is switched out, the generator rotor begins to accelerate 

because the power transmitted is less than the mechanical power to 

the rotor. The rate of change of the rotor angle is given by 

dIS _ 
--..I I: 

dt (P - P 1 )dlS. m e ec 
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The integral is graphically represented by the difference between areas 

do 
Al and A2 on Figure 2.3. dt will be zero when A2 = AI' At this point, 

where the electrical power is greater than the mechanical po~er, and the 

rate of change of c reverses, the rotor swings back towards angle 0
1

, 

Because there are always losses to damp a real system, the rotor will 

eventually stabilize at a new equilibrium angle O2
, 

Generator instabilities can occur because there is a 

critical value 0c for O. If the rotor exceeds this critical power angle, 

the generator cannot regain equilibrium. This critical power angle 

exists because, as shown on the figure, A2 has a maximum value equal to 

the area between curve II and the line P = Po' If Al is larger than this 

maximum, the rate of change of 0 never reaches zero, and the power 

balance tends further to increase the machine's angle. Thus, there are 

certain critical machine angles which must not be exceeded during a 

switching operation or else some of the machines will not be able to re­

establish equilibrium states. 

If the power network is subjected to freque~t changes in 

generation capacity, the power distribution over the lines of the network 

will be changing often. It is not inconceivable that redistribution 

of power over a network due to generation fluctua.tion could cause the 

power on some line to exceed the setting of its protective device, 

causing the line to be disconnected, creating the sort of transient 

problem described above in addition to the frequency transient set up 

by the loss of generation. Since the switching of the line again 

redistributes the power flow, a chain reaction could o"ccur, magnifying 

the stability problem. 

The magnitudes and frequencies of fluctuations likely to 

initiate a chain reaction of this sort are difficult to forecast; the 

sort of system breakup just discussed is a line-by-line and machine-by­

machine process which does not lend itself to description by average 

characteristics. It is more than a simple cascade of analyses like that 
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of the previous two pages, because after the first event the system is 

usually not in equilibrium when the next discontinuity occurs. Determina­

tion of such a sequence of events requires a detailed transient load flow 

ana1ysi~ at each change of network configuration (i.e., loss of generation, 

switching of lines, or change of load) coupled with a 1ine-by-1ine Gxanina­

tion of power flow and protection device setting, along with examination 

of machine stability limits at the power demands involved. This sort 

of analysis is tantamount to a complete simulation of the entire power 

network. In a ~tudy of this sort, it is impossible to make general 

statements about the magnitude and frequency of power shifts likely to 

cause large scale network shutdown. However, the potential for such 

situations does exist and the larger and more frequent the power fluctua­

tions, the greater the probability of such an occurrence. 

2.2.4 Northeast Blackout 

The Northeast Blackout is an example of instability problems 

which arose from the normal operation of protective devices. Before 

discussing the series of events leading to the blackout, it is necessary 

~o indicate some of the important characteristics of the Canada-United 

States Interconnection (CANUSE). Hydroelectric power constituted 

approximately 26 percent of the CAh~SE generation and is largely con­

centrated in the Niagara Falls area. Most of this power is transmitted 

to loads located far from the generation site. Power which is generated 

by Power Authority of the State of New York (PASNY) plants in the 

Niagara Falls area is transmitted in large part by twin 345 kV lines 

from Niagara to Albany to New York City. 

Niagara and PASNY were interconnected with the Connecticut 

Valley Electric Exchange (CONVEX) and the New England Electric System 

(NEES) by one 345 kV line, one 230 kV and five 115 kV lines (see 

Figure 2.4.) Seven transmission lines carrying from 115 to 230 kV 

connect CANUSE with the Pennsylvania-New Jersey-Maryland (PJM) power 

pool. 

2-15 



PENN.­
NEW JERSEY­
MARYLAf~D 

INTERCONh!ECTION 
PJM 
(6) 

* 

TO BBKV 
_. - 230KV 
--- 345KV 
--;1--- NORMALLY OPEr; 

INTERCONNECTED IN TURN 
WITH THE NEil'jeRK 
EXTErmlt~G OVER -:-HE 
fASTERN TWO-HeRDS or 
r:iE UNITED STAT[S. 

ULlEGHENY 
OWER SYSTEM 

VIRGIN IA ElEC. f.,. PWR CO.'II 

ORIGINAL PAGE n, 
~ PooR QUALITY 

D
" Numbers reler 10 followIOI:: Iisl 01 .. Islem~ normally conlro!ling sUbiisted syslems" 
\' 

, 1. Bo~lon Edison Co ' 
Cambridcc (Iectric Co. 

~ 2. Cenlr~1 Maine POI·.er Co. t! Baneor II/dro E.leclrlc Co. 

o 
n 

3. New Eneland [Ieclrlc Syslem 
{;(-nlral Vermonl Publrc Service 

Corp. I CIIlzens Ulililles Co. 
Green Mounlaln POl'ler Corp. 

Public Service Co. 01 
New Hampstme 

fltchburr, Gas & Elecilic r. 
Yan~ee AtomiC rlccl'lc eo. 

4. Connecllr.ul Valley Eleclllc 
[xchanr,t'- CO:~ V E. X 
Connccl'~ul Llilll « Po' ... ·cr .... J. 
H:trlfcrd ~.!eclllc Licht Co 
United IlIun·I031Inr. Co 
Weslern M;)s~achuseHs EI':cloc 

Co. 

\
5. Nlar.ara Mohawk Power Corp, 

Rcx:hesler G~s & EI~clrlc Co, 

I 
t'OWe" AUlhNII)' SI~te 01 New 

York 
New York Slate Ete-ct and Gas 

Co. (Par\) 
6. Pennsylvania-New Jersey-Maryland 

Inlcrccnnectlon-P j M 
Atlanllc CIlY Electric Co. 
Baltimore G:ts ana E.1(';trlC Co. 
Delaware ro"er t. Lighl Co. 

Jersey Cenlral Power (,. li;:ht Co. 
Lucerne Ele:lrlc (. Gas D:v. 

United Gas Imoro.emenl Co. 
r.\clropalrlan Edison Co. 
New Jersey PO"'C" {. Llf,ht Co. 
Pennsylvania ["'cIne Co. 
Pennsylvania POM' S. llChl Co. 
Phrleooelptlli\ t.j~::trrc Co. 
POlomac (I('clnc Pow(,r Co. 
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INTERCONNECTIONS, CANUSE A...\1) p.m . 

. ' ~ 

2-16 

Anl,,,r I) J "tlp , .... ~-



The event leading to the Northeast Blackout originated 

at the Sir Adam Beck generation complex at Kingston, Ontario (part of 

the Ontario Hydro System). Immediately prior to the blackout, the 

Hydroelectric Power Commission of Ontario was meeting a system load of 

approximately 6400 ~v with Sir Adam Beck generating 1335 }M and with a 

500 MW inflow on two tie lines with PASNY. Approximately 200 }~l of the 

500 ~l inflow was being returned to New York via other interconnections. 

The Beck complex is connected with the Toronto load center via five 

parallel 230 kV lines. 

In 1963, a backup relay on one of the 230 kV lines had 

been set substantially below the line's rating at 375 }M in order to 

achieve coordination with other protection devices in the power net­

work. On the day of the blackout, the average power flow in this 

line reached a level of 365 MW and at 5:16 PM, the 375 MW rating was 

exceeded during a fluctuation in load. This caused the line to be 

opened by the protective relay, resulting in the power flow to Toronto 

being distributed among the remaining four lines, causing each of them 

to be overloaded with the result that they were disconnected by their 

relays. Thus, within a few seconds, the 1335 MW being generated at 

Sir Adam Beck was isolated from its load center in Toronto. This 

caused the generators in the Niagara area to accelerate due to the 

loss of electric load and with this increase in speed came a rapid 

increase in power output. 

This power had to be distributed via the interconnections 

with PAS NY and caused the remaining lines interconnecting Ontario and 

PASNY to become overloaded. Thus, the sole interconnection between 

Ontario at New York existed at Niagara where the Beck plant was 

isolated from Ontario but still connected to New York. The excess power 

output from the Niagara area could not be handled by the remaining 

lines and resulted in the stability limit opening of the two 345 kV lines 
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connecting Niagara with Albany and New York. Almost simultaneously, 

connections with PJM were broken. The result of this chain reaction 

was the creation of several "islands" or relatively small networks 

isolated from the overall network. Some were deficient in generation 

and others had excess generation. The generators ,.ere typically 

unable to respond quickly enough to the changing load, resulting in 

massive shutdowns due to overloading of some units and overspeeding 

of others. 

The above events illustrate the potential instability 

problems associated with normally functioning protective devices. Fluc­

tuating load and generation capacity on a power network alters the power 

distribution over the network lines and, in a complex network, the dis­

tribution resulting from such a fluctuation may be quite difficult to 

forecast. The more widely varying the network power distribution becomes, 

the more likely it is that lines may become momentarily overloaded with 

the potential for chain reactions similar to the Northeast blackout. 
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2.3 Power Pool Reliability 

2.3.1 Introduction and Summary 

Whenever a large conventional generator is added to a power 

pool there can be a significant impact on the adequacy of the total system 

to meet the expected load at the design level of the reliability. The 

interface between the new generator and the grid must be carefully de­

signed so as to minimize any negative impacts on the system. The large 

size and unconventional nature of the SPS makes the design of the inter­

face more important than usual. Because of the limited resources avail­

able for this study not all of these problems have been examined in 

depth. However, some of the critical issues can and have been investigated. 

Electric power networks are designed to provide reliable 

power to the consumer with redundant installations of reliable equip­

ment. Given the nature and size of conventional equipment, it is 

technically and economically feasible to provide a system that will 

meet the demand except for 1 day in 10 years. The Loss of Load Prob­

ability (LOLP) is, therefore, 0.1 day/year. The use ot a 5 GW SPS to 

meet the demand for power could either reduce the system reliability 

(increase the LOLP) or, for the same reliability, increase the required 

amount of redundant equipment. 

This section discusses the impact on a power pool's total 

required installed capacity of installing one or more SPSs each with 

a generating capacity of 5 GWe instead of a number of conventional gen­

erating plants each with a generation capacity of 1 GWe. The ~nalysis 

concerned primarily with the size of the proposed SPS and, therefore, 

most of the results would apply equally well to a 5 GWe terrestrial 

plant. 

The results indicate that whenever a 5 GWe generator is 

used instead of five 1 GWe generators (no change in the forced outage 

rate) an additional one to two gigawatts ($125 to $250 million) of 
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reserve capacity must be added if the system reliability is to be 

maintained. The magnitude of the assumed reliability criterion is 

not critical; whatever the criterion, it should not change when the 

SPS is added to the power pool. 

The most important simplications made in this study and 

a description of the effect that each would have on the required total 

installed generating capacity in the power pool are given below: 

• The conventional generators in the power pools 

were assumed to be identical in their maintenance 

characteristics, fuel economy and power generating 

capacity (1 GWe). This assumption tends to increase 

the required generating margin. Gas turbines are 

usually used to provide the reserve margin. The 

maximum expected size of these units in 1995 is 

300 MWe. 

• The assumed forced outage rate of .05 is relatlvely 

low for thermal units; large fossil fired units can 

have forced outage rates as high as .2. This 

assumption tends to reduce the required margin. 

• The twenty percent scheduled maintenance require­

ments assumed for all plants, SPS ground station and 

conventional, is the upper limit on this parameter. 

This assumption tends to increase the required 

margin. 

• Individual power pool~ \~TS assumed to bE controlled 

by a central dispatcher. This assumpdon tends to 

reduce the margin from what \-/QuId be required if the 

power pool had the transmission system appropriate 

to a centrally controlled system. 
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• The effects of the transmission network on system 

reliability were ignored. This assumption tends 

to decrease the generating margin. 

• The probability that the demand for power as a 

function of time would exceed the expected values 

was assumed to be zero. This assumption tends to 

decrease the required generating margin ... 

• When examining the use of redundant g:rourrd stations 

in order to eliminate any requirement for scheduled 

maintenance of the SPS, it was implicitly assumed 

that the power output of the spaceborne part of the 

SPS had a zero probability of being interrupted by 

any mechanism other than an eclipse of the sun by 

the earth. This tends to decrease the required 

reserve margin. (Scheduled maintenance of the 

satellite will probably be required, slucp an SPS 

with no scheduled maintenance is virtually imp0ssible. 

However, the effect of this scheduled maintenance 

on the availability of SPS energy may be quite small.) 

• Eclipses of the sun by the moon and other SPSs were 

ignored. This decreases the required reserve margin 

from what would be required if all eclipses were con­

sidered. 

Results 
ORIGINAL PAGE .lli 
OF POOR QU.ALITY 

All of the above assumptions have had some effect on 

the results of the reliability study; thus, although the results of 

the calculations indicate that the proposed size of the SPS is likely 

to cause a significant increase in the required reserve margin, these 

results are not conclusive. They merely indicate that a problem 

exists and that a more detailed study is required. 

2-21 

Arthur D UttIc.lnc 



1 
! 

} 

] 

Since the proposed sizp of the SPS would affect the 

installed reserve, it follows that there would be a parallel effect 

on the pool's spinning reserve requirements. This last subject was 

not addressed in this study but should be considered in any future work. 

The total amount of reserve generating capacity required 

in various power pools was calculated for power pools having yearly 

peak power demands of either 

• 30 GWe, or 

• 40 GWe, or 

• 50 GWe, or a 

• Composite Power Pools made up of two independent 30 GWe 

Power Pools whose times of peak demand differ by 

three hours (see Figure 2.5). 

These power pools contained either 

• No SPS (all conventional equipment), or 

• One (5 GWe) SPS, or 

• Two (5 GWe) SPSs, or 

• Six (5 GWE)SPSs. 

Three different scheduled interruptions of the power from each SPS 

were consiciered: 

• 

• 

Power interruption due to eclipses only during 

the actual eclipse period; no scheduled main­

tenance requirements. [Best case calculation.] 

Power interruption due to eclipses only during 

the actual eclipse period, plus scheduled 
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maintenance for 21% of the year (an upper limit). 

• Power interruption due to eclipses for the entire 

day for all days during which an eclipse occurs 

(90 days). [The SPS is unlikely to be economically 

attractive under these circumstances; worst case.] 

The rr.agnitude of the installed reserve under each of the 

indicated conditions is entered in Table 2.2. The difference between 

the entry of interest and the entry for the power pool which does not 

contain an SPS is the ~ installed margin that is required by the 

SPS. For example: If a power pool, which has a peak power demand of 

50 GWe contains no SPS, only 10 to 11 GWe's of installed margin (60 

to 61 GWe's total) is required to provide for system reliability. If 

this same power pool contains an SPS which must be shut down for scheduled 

maintenance, 12 to 13 GWe's of installed margin is required. The power 

pool which contains an SPS needing scheduled maintenance requires two 

more gigawatts of generating capacity than does the power pool that 

contains no SPS. If the SPS needs no schedule maintenance, only one 

more gigawatt of generating capacity would probably be needed (11 - 12 

GWe re~nus 10 - 11 GWe). 

The results of these calculations indicate that if one 

or more 5 ~ve generators (SPS, nuclear or fossil fuel) are installed 

in a power pool, the installed generating margin must be increased 

if the system reliability is to be maintained. The amount of ~he 

increase depends on the size of the power pool; the larger the power 

pool, the smaller the required increase. 

To demonstrate how the installed margin must vary with 

the power pool size, the percentage installed margin is plotted as a 

function of the power pool size in Figures 2.6, 2.7 and 2.8. The 
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TABLE 2.2 . 

Required Installed Generating Margin (~e) 

For a Range of Power Pools According to Various Circumstances 

30 GWe·· 

8-9 

10-11 

11-12 

11-12 

11-12 

13-14 

14-15 

~§ 

S2 
~~ 
~~ 

§~ 
fit· 

40 GWe 

9-10 

11-12 

12-13 

12-13 

11-12 . 
13-14 

13-14 

15-16 

17-18 

18-19 

'50 GWe 

10-11 

11-12 

: 12-13 

13-14 

12-13 

14-15 . 

14-15 

14-15 

17-18 

19-20 

Composite 

16-18 

17-19 

17-19 

17-19 



* plotted values for the composite power pool clearly indicate that the 

composite power pool cannot be treated as if it were a 60 GWe power 

pool. 

For the power pools considered in this study, the smallest 

increase in the generating margin was 1 GWe for every 5 GWe SPS (no 

scheduled maintenance) installed. This means that if an SPS is in­

stalled instead of 5 GWes of conventional bas€load capacity, 1 GWe 

of reserve capacity (probably gas turbin.::s) must also be installed. 

When scheduled maintenance was required, the increase in the generating 

margin became 2 GWe for every 5 GWe SPS installed. 

The additional generating capacity that this study 

indicates will be required need not be expensive. The extra capacity 

will not be used very often and will probably be inexpensive peaking 

units ($125/kW), requiring capital of $250 million, 3.3% of the cost 

** of the SPS ($7.6 billion). If a completely redundant antenna were 

built, the total cost i •• ,:::ease (including 1 GW of gas turbines) 

would be $1.47 billion, 19% ~f the SPS cost. 

The analysis above rpvealed that the eclipses will have 

no effect on the system reliability if the SPS is shut down by the 

earth eclipses only for the duration of the eclipse. The demand for 

power during these eclipse periods was only half the daily peak and 

the probability that other generation would not be available to supply 

the needed power was virtually zero. If the shutdown were to last 

from one hour before the eclipse to one hour after the eclipse, the 

results would be the same. This particular problem should be 

'* 

** 

Two 30 GWe power pools whose times of daily peak demand differ by 
3 hours. 

"Space-Based Solar Power Conversion and Delivery Systems Study -
Interim Sunnnary Report", by ECON, Inc., March 1976, Report No. 
76-l45-IB. 
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FIGURE 2.5 

DEMAND FOR POWER IN THE TWO POWER CONSUMING ELEMENTS OF THE COMPOSITE POWER POOL 
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FIGURE 2.6 

REQUIRED PERCENT INSTALLED MARGIN AS A FUNCTION OF THE POWER POOL SIZE 

POWER POOLS CONTAINING ONE SPS 
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FIGURE 2.7 

REQUIRED PERCENT INSTALLED }~RGIN AS A FUNCTION OF THE PO~~R POOL SIZE 

PO~~R POOLS CONTAINING TWO SPSs 
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FIGURE 2.8 

REQUIRED PERCENT INSTALLED MA-~GIN AS A FUNCTION OF THE POWER POOL SIZE 
~ PO~~R POOLS CONTAINING SIX SPSs 
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reconsidered only if the daily load curves begin to flatten significantly. 

The composite power pool was found to be unaffected by either 

the SPS maintenance requirements or problems due to the eclipse. Because 

the power produced by satellite in this power pool could be used in some 

way or other throughout the year, the maintenance requirements of the 

ground rectenna stations will have little effect on the installed margin. 

The margin's insensitivity to the eclipse comes from the size of the 

required margin when the pool contains no SPS and the uncertainties of 

the calculation. 

2.3.2 Formulation of the Problem 

2.3.2.1 Definitions 

The demand for electric power in any particular 

power pool varies during each day and the daily peak varies during the 

year. Each power pool is designed to have enough individually reliable 

generating units so that there is a high probability of having enough 

generating capacity on-line at anyone time to meet the demand when it 

occurs. The probability of meeting the load at any time is the prob­

ability that the available generating capacity exceeds the probable 

demand for power. The probability of not meeting the load (the "Loss 

of Load Probability" or LOLP) is therefore the difference between unity 

and the probability of meeting the load. The design LOLP for most U.S. 

power pools is 1 day in 10 years. 

Since all equipment has some probability of break­

ing down and needing repair, it is necessary to install more generating 

capacity than the expected peak demand. The total generating capacity 

in a power pool minus the peak demand is called the installed margin. 

Another way of stating the LOLP criterion is that the reserve margin 

shall be greater than or equal to zero except for .1 days ,\'~~!ar. 
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The characteristics of conventional terrestrial 

generating equipment are such that a power pool's installed margin must 

be roughly 25% of the yearly peak power demand in order to meet the 

reliability criterion. The problem addressed in this study is as 

follows: Given that the power pool shall meet the present reliability 

criterion, how will the installed margin of various sized power pools 

change if some of the conventional generators in the pool are replaced 

by one or more 5 GWe Solar Power Systems having a variety of reliability 

characteristics? The magnitude of the assumed reliability criterion 

is not critical; whatever the criterion, it should not change when an 

SPS is added to the power pool. 

The systems considered were: 

• Power Pools 

• Peak Power Demand = 30 GWe 

• Peak Power Demand = 40 G\~e 

• Peak Powt::r nemand = 50 GWe 

• Two 30 OWe Pool!> whose daily peaks are displaced 

relative to each other by 3 hours. 

• Conventional Generating Equipment in Power Pool 

• Generating Capacity = 1,000 MWe 

• Unavailability due to forced outages = .05 

• Unavailability due to schedule maintenance = .2 

• Solar Power Satellite Characteristics 

• Delivered Generating Capacity = 5,000 W~e per unit 

• Unavailability due to forced outages = .05 
" 

• Effect of eclipses 

• No power during actual time of eclipse, or 

• No power during the 90 days when eclipses occur 

• Scheduled Maintenance 
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• No scheduled maintenance (two rectennas) or 

• Unavailability due scheduled maintenance = .2 

The problem is to calculate the probability that 

the demand for electric power is likely to exceed the generating capacity 

of the power pool during the year. This calculation is obtained by the 

following steps: 

1. Calculate the probability that the demand for power 

shall be between specific levels m and (m-l) GW at 

at an arbitrary time t. 

2. Calculate the probability that available generating 

capacity shall be m m~e or more at an arbitrary time 

t. 

3. Multiply the two previously calculated probabilities 

together to get the probability that the lOQ~ between 

m and (m-l) GW will be met by the power pool whenever 

the load occurs. 

4. Sum over all the possible power demand states of 

the power pool to get the probability that the load, 

whatever it is, will be met by the power pool. 

5. Calculate the probability of not meeting the load 

(the loss of load probability). 

The power demand as a function of time used in 

these calculations was determinate in nature, i.e., the power demand 

P at time t was assumed known with certainty. Thus, the probability 
o 0 

that the power demand is between m and (m-l) GWe at an arbitrary time 

t is the source as the probability that t is inside those time intervals 

when the power demand is between m and (m-l) GWe. This prob~bility is 
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the fraction of the total time, T, when the power demand is as des­

cribed. We have defined this time interval to be ot ; the probability 
m 

that t falls in that time interval is ot IT. 
m 

The calculated probability that the available 

power generating capacity shall be greater ti'an some specific value 

depends strongly on the number, power generating capacity and the 

reliability of the individual generator on-line in the power pool. 

These numbers are not constant throughout the year but vary from 

maintenance interval to maintenance interval; i.e., each machine must 

be taken off-line (not available for use as standby generation) for 

20% of the year. Thus, the installed margin must be calculated for 

each maintenance interval independent of all the others and the results 

for all the maintenance intervals combined to give the yearly average. 

The total required installed generating capacity is that which allows 

th~ appropriate number of machines to be on-line during each main-. 

tenance interval and still allows each machine to be off-line for 20% 

of the year. 

The prcblem of calculating the probability that 

the available power generating capacity shall be equal to or greater 

than some specific value during a specific maintenance interval for a 

general set of power pool characteristics is complex. In order to 

simplify the problem, we have assumed the power pool to be made up 

of either (a) n identical machines, each with a generating capacity 

of 1 GWe and a forced outage probability of .05 or (b) n' identical 

machines with the same characteristics and one or more SPS with gen­

erating capacities of 5 GWe and forced outage probability of .05. 

The for'ced oetage probability for any piece of 

equipment is obtained from historical data and is really a composite 

of the forced outage rate (the probability that the unit will fail in 

a unit of time) and the average time required to repair the unit. 

The interpretation of this single number is somewhat ambiguous. It 
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can either be the probability that the unit is completely unavailable 
at an arbitrary time t or it can be the probable fraction of capacity 
of the equipment that is unavailable 100% of the time, or a combination 
of both. For the purposes of this calculation, we have assumed that 
former interpretation. 

2.3.2.2 Power Pool Loads 

Four different power pool loads were considered 
in this study. To simplify the analyses, load curves were idealized 
as simple closed-form analytical expressions. For example, the 
first ~hree varied with time according to the following equations: 

P L IC-

16 
(2ITt 

c~s\~hrs + (2.8) 

where P, the maximum yearly demand, was taken to be 30 GWe, 40 GWe and 
50 GWe for the three dIfferent sized power pools. ~l and ~2 were 
chosen so that the SPS eclips~s occurred when the load was at the 
yearly minimum, P/4. 

The power demand in power pools described in 
Equation 2.8 varies by a factor of 2 during each day and the daily 
peak varies by a factor of 2 throughout the year. The absolute peak 
demand occurs twice a year, assumed to occur once at noon of the longest 
day of the year and once at noon at the shortest day of the year. The 
minimum yearly demand also occurs twice a year, assumed to occur at mid­
night during the autumnal equinox and at midnight during the vernal 
equinox. These latter time periods coincide with the times when the 
longest earth eclipses of the SPS occur. 

The fourth power pool was actually made up of two 
independent (except for the SPS) 30 MWe power pools each varying with 
time as shown in Equation 2.8. The variation of this load with time 
is shown in Equation 2.9. 
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The variations of the demand for electric power 

described in Equations 2.11 and 2.12 are ideal models of what the demand 

can be. This variation is quite different in real power pools. There 

are only a few power pools whose summer and winter peaks have exactly 

the same magnitude. In the southern U.S., the summer peak is signifi­

cantly larger than the winter peak while, in the north, the o'pposite is 

often true. In the north, the urban areas may have a summer peak while 

the suburban and rural areas may have a winter peak. In all areas, the 

daily peaks during the weekdays are significantly higher than the peaks 

during Saturday and Sunday. 

In a limited study it is not possible explicitly 

to take into account all the possible load variations that can occur 

and c~ly idealized power demand curves can be considered. However, 

the difference in peak demand between weekdays and weekends can easily 

be allowed for. 

The probability of not meeting the power demand 

is a dimensionless number. The probable number of days per year when 

the load will not be met is obtained by multiplying this probability 

by the effective number of days in a year. If there is no reduction 

in power demand during the weekend, this number is 365. When the daily 

peak demand during the week is significantly less than that during 

the weekend, the effective number of days in the year is 261. This 

implies that the peak demands during the weekend are so low that 

if there is a 99.95% chance of meeting the weekday peaks, the probability 

of meeting the weekend peaks is 100%. This approximation is often used 
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by the utilities and was used in this study. An LOLP of .1 days/year = 
3.83 x 10-4• 

Each piece of generating eq~ipment required to 

meet the loads described in Equations 2.8 and 2.9 must be taken off­

line sometime during the year for seheduled maintenance. In order that 

this activity can later be taken into account, it is necessary to break 

the year up into "maintenance intervals". The number of machines in 

the power pool scheduled to be available does not change during a 

maintenance interval. In utility practice, the year is broken up into 

thirteen (13) four week intervals. Because of the double yearly p~3k 

assumed for our model load curves, thirteen intervals turned out to be 

inconvenient; instead fourteen (14) intervals, each 26 days long, were 

used. Two of these intervals (numbers 1 and 8) are centered about the 

summer and winter peaks. Four of these intervals (numbers 4, 5, 10 and 

11) have one of the days at the end of the interval occurring at one 

of the two equinoxes, the days when the daily peak is at a minimum. 

ot im is the length of time (hours) du.ing each 

maintenance interval, i, when the demand for power is between m and m-l 

gigawatts. Using equation 2.8 it is possible to calculate the values 

of ot im for each maintenance interval for the three primary power pools. 

(See Appendix A.) 

The composite power pool has three major components. 

Two of the components are power pools (in each power pool, the yearly 

peak demand for power is 30 GWe) and the third component is a 5 GWe 

capacity SPS which can feed its output into either power pool as required. 

The demand for power in each of the power pools as a function of the time­

of-day is shown in Figure 2.5. P represents a power pool on the East 

Coast and P+ represents a power pool on the West Goast. The demand 

for power in P is greater than the demand in P+ for t between o and 

12 hours. The opposite is true for t between 12 and 24 hours. For 
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maximum economic impact, the output from the SPS should be fed into 

whichever power pool has the larger demand for power at that time. 

Thus, for 12 hours each day, the power output of the SPS is delivered 

to the power pool on the East Coast and for the rest of the day, the 

power from the SPS is delivered to the power on the West Coast. The 

demand for power from the conventional generators in P+ as a function 

of time is shown in Figure 2.9. The use of the SPS in this manner 

reduces the peak demand met by the conventional generators in each power 

pool by only 2% but reduces the duration.of this peak significantly. 

Each power pool must be evaluated as if it were 

completely made up of conventional generators for half of the day and 

made up of conventional generator plus one 5 GWe SPS for other half 

of the day. There must be one set of otim's for that half of the day 

when the demand for power in one particular power pool is greater than 

in the other and another set when the conci.tions are reversed. These 

two sets of otim ' the same for each 30 Q~e power pool, are given in 

Appendix A. 

2.3.2.3 Number of Requir~d Generators 

The LOLP of a power pool containing no SPS 

during the ith maintenance interval would be 

LOLP
i 

m=l 
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where 

Tl = the total time in the tlth maintenance interval; 

ot = the number of hours in the ilth maintenance 
1m 

interval during which the demand for power is between 

m and (m-1) gigawatts; and 

n
l 

= the number of generators not scheduled for maintenance 

during the tlth interval. 

The LOLP of a power pool containing one SPS during the tlth maintenance 

interval would be 

n' +S 1. n' -m t n' -j j 

LOLP
t (f; n'tl (.95) t (.05) 

-:'( 1-'\ '-:-", t--J-:' )"-l-j -} ) ( • 0 S ) , 

n' -m+S (t 
jtsO 

n I I 
~ 

(n' t-j ) Ij I 

The yearly average value for the LOLP would be 

14 
LOLP = i4 L LOLP t 

'tal 

n I _j j 
(,9S) t (.OS) 

The number of generators, n, required to meet 

the reliability criteria and the maintenance requirements must also 

satisfy the following equation 

14 n-n 
L~~n 
1=1 
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That is, each machine needs to be off-line for scheduled maintenance 

for three maint~mance intervals each year (3/14 = .21). The derivation 

of these equations is explained in Appendix A. The way that these 

equatior.\s were used to calculate the values of n £, presented in Table 

2.2 is also described in Appendix A. 
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3.0 POSSIBLE OWNERSHIP OF SPS 

3.1 Introduction 

3.1.1 Summary 

Three different ownership and/or energy pricing arrangements 
for the SPS have been investigated. These arrangements were: 

• Purchase by the SPS by a utility or consortium of 
utilities (Section 3.2). 

• Purchase of the SPS by an independent corporation and 
"lease" (commitment to purchase a share of the SPS 
energy) of the output by several utilities during 
the year (Section 3.3). 

• Purchase of the SPS by an independent corporation and 
the energy sold to the utilities, at below cost initially, 
at a price equal to the incremental cost of the 
utilities' most ~~pensive base load generator 
(Section 3.4). 

How and by whom the SPS is purchased can determine how it is ur,ed. 
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Of these three arrangements, only the purchase of the SPS by an 

independent entity (corporate or govermnental) and "lease" of the 

output by several utilities has the promise of overcoming the present 

institutional barriers to the base load utilization of the SPS. 

While all of the calculations performed in this analysis 

assumed that the capital cost of the SPS was $7.6 billion, the general 

conclusions reached using this cost can be used to infer the effect of 

using the more recent, significandy higher estimate of $12.2 billion. 

The basic conclusion reached in this study, i.e. that the '1easing" 

arrangement is the most promising of the three arrangements considered, 

would be true if the higher cost had been assumed. 

The results of this investigation are as follows: 

1. Utility Ownership of the SPS 

• When the ($7.6 billion) SPS first becomes 

operational, a very small increase in the 

total cost of meeting the demand for 

electrical energy will probably be seen. 

• If the capital cost of the SPS is $12.2 billion, 

the inclusion of the SPS related costs in the 

utility rate structure would require an increase 

in the total cost of electrical energy to the 

consumer. ORIGINAL PAGE 1& 
OF POOR QUALITY 

• Utilities which use a semi-automatic fuel ad­

justment rate to recoup the cost of fuel will 

have to request a sizable increase in their 

base rates to cover their increased plant equity 

when. the SPS comes on-line. Fuel rate reductions 

can occur within a month; base rate increases can 

take as long as a year to obtain. The higher the 

capital cost of the SPS, the greater will be the 

financial stress caused by regulatory delays. 

Arthur 0 uttle.lnc 
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2. "Leasing" of the SPS Output by the Utilities 

• The cost of purchasing energy could be recouped 

by many utilities via fuel adjustment rates. 

• At present, the reduction of the utility capital 

requirements caused by "leasing" energy from the 

SPS would have a beneficial effect on the utilities' 

financial ratings. It is not clear that this sit­

uation will prevail over the next fifty years, nor 

is it clear if the utilities would accept this 

arrangement over such a long term. 

• Since the utilities make no profit on purchased 

energy, the effect of the SPS on the total cost 

of electrical energy would be the same for both 

ownership plans (assuming that the discount rate 

is the same for both the utility and the private 

corporation). 

3. SPS Energy Sold at the Incremental Cost of Base-Load 

Alternatives 

• If the inflation rate continues at roughly the 

same as present rates, it would be possible to 

price energy from an SPS (capital cost = $7.6 

billion) at the incremental cost of alternative 

fossil fueled generation and eventually make a 

profit. The size of the profit depends on the 

inflation rates. 

o If the capital cost of the SPS is significantly 

higher than $7.6 billion, the inflation rates 

necessary to eventually make a profit using this 

pricing alternative, would be significantly greater 

than the present inflation rates. 
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• Pricing SPS generated energy in this manner 

requires the operation of the SPS at a loss for 

roughly twenty years. The risks associated with 

this arrangement are too large for private industry­

financial guarantees from the government would be 

required. 

• If the government provides financial guarantees to 

a corporation intending to price SPS energy in this manner, 

this may be interpreted as a statement that the 

government is either willing to subsidize the SPS 

or that it expects the inflation rate to continue 

at its present level or hf \her. 

" \ 
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3.1.2 General Financial Characteristics of the Generation Mix 

The demand for electric power from the utilities varies 

with the time of day, the day of the week, the weather, and the season. 

The shap~ and magnitude of these variations will vary from utility 

to utility. An example of how the demand varied during a particular 

week for a particular utility is shown in Figure 3.1. During this 

period, the demand varied from a minimum of 4.9 GW at 2 a.m. Sunday 

morning to a maximum of 10.3 GW at 2 p.m. on Friday afternoon. 

Looking at Figure 3.1, one can distinguish three different types 

of demand for electric power which can be met by different types of 

equipment. 

Base Load Demand - a power demand which exists 24 hours 

a day for several weeks at a time. The base load demand for the sample 

power pool would be about 5 GW. The equipment used to meet this demand 

would be characterized by relatively high capital costs and low operating 

costs such that the total cost of electrical energy from these units, 

operating between 6,000 and 7,000 hQurs per year, wuuln be less than 

that of energy from other types of generators. Fossil-fueli~d base load 

equipment operates at temperatures and pressures close to the physical 

limit of the materials used in its construction. 'Frequent thermal 

cycling of this equipment in load following service normally leads 

to expensive maintenance. 

Intermediate or Cyclic Demand - a power demand which exists 

for 10 to 20 hours a day. The intermediate load demand for the sample 

power pool would be about 3.5 GW. The equipment used to meet this 

demand would be characterized by moderately high capital and operating 

costs such that the total cost of electrical energy from these units, 

operating between 3 p OOO and 5.000 hours per year, would be less than 

that of energy from other types of generators. Much of this equipment 

is older, less efficient base load equipment. However, equipment built 

to sustain the thermal cycling associated with load following service is 

used extensively. 
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Peak Power Demand - a power demand which exists for up to 

10 hours a day. The peak power demand for the sample power pool would 

be about 2 cw. The primary generators used to meet this demand and to 

provide the reserve capacity are characterized by low capital costs and 

high operating costs such that the total cost of electrical energy from 

these units, operating less than 2,000 hours per year, would be less 

than that of energy from other types of generators. 

Storage generators, both pumped hydro-storage units and 

conventional hydro-generators with associated storage capacity (dams), 

are used to meet the daily peak demands but have the general cost 

characteristics of the generators used to meet the intermediate or base 

load demand. They are operated, however, to meet the daily peak demand 

throughout the year rather than only during the season when the demand 

is the highest,' and easily meet the 3,000 and 5,000 hours/year operation 

criterion of intermediate load generators. 

While generators are purchased by considering the total 

cost of the generated power, each generator, once acqu1Led. is scheduled 

for duty according to the incremental cost of generation. l~e incre­

mental costs are the operating costs that depend directly on the amount 

of power actually being generated (e.g. fuel costs). The scheduling 

criterion requires that the cost of operating the system to meet the 

power demand shall be a minimum. (The fixed costs of each generator 

must be met no matter how many hours they are used.) When the demand 

is low, it is met with those generating units whose generating costs 

are the lowest of all the available units. When the demand inc~eases, 

the generating units have higher operating costs are brought on-line and 

the average cost per kilowatt hour increases. Thus, the number of 

hours a year a generator is likely to be used depends on the time 

variations of the power demand and the relative operating costs of all 

the other generators in the system. 

The decision to add specific types of generation equipment 

to the generation mix is based on the criterion that the "present worth 
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of all future revenue requirements" (pwafrr) for a generator operating 

in the expected manner shall be less than for the other available 

generators. A calculation of the optimum expansion plan for a utility 

must include a calculation of how the power plant is likely to be used. 

The "pawfrr" for each candidate generator can be calculated once the 

expected usage is determined. 

When the SPS comes on-line, and is used to meet base load, 

plants which were base-loaded will be transferred to intermediate load 

service until the demand growth requires them for base load service again. 

Cycling of this equipment in load following service can cause expensive 

maintenance problems and should be terminated as soon as possible. The 

time required before all of these units can be returned to base load 

service depends on the power pool characteristics. 

Two examples of how the duration of this undesirable situa­

tion varies with the power pool characteristics are shown in Figure 3.2 

and 3.3. Both figures show the peak power demand for a power pool as 

a function of time; the growth rate is 5% per year in Fig1Jre 3.2 and 7% 

per year in Figure 3.3. As demonstrated in Chapter 2, the SPS should 

not be placed in small power pools; both power pools have a yearly 

peak demand of 30 GWe in year zero. The plotted values of the total 

required installed capacity are taken from the results of Section 2.3. 

The base load was taken to be 40% of the yearly peak demand; for the 

power demand described in Equation 2.11, 40% of all generators could be 

operated without daily cycling for six of the 14 maintenance intervals • 

The effect on the total generating capacity of adding a 5 GWe 

genl::)..ator to the power pools is quite small and, except for the incre;ased 

margin requirement, disappears within a couple of years. However, 

adding a 5 GWe generator to a pool has a lasting effect on the base 

load equipment. 

If the SFS is added to a 30 GW power pool, 5-8 years (depending 

on growth rates) must pass before all base load units are returned to 
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oase load service; the corresponding time for the addition of a I GW unit 

is I - 1 ~ years. If the SPS is added to a 50 GW power pool, 3-4 years 

are required to return the base load units to base load service. Increased 

maintenance costs for these units will result from this displacement 

but the resources available for this program were insufficient to assess 

the size of this increase. 

Purchase of Bulk Power 

Power is often purchased from nearby utilities either 

directly or by automatic purchases directed by regional power pools 

encompassing several different utilities (e.g. New England Power Exchange). 

Utilities purchase this power because they cannot generate it the:us3lves 

or it would cost them more to do so. Base load power is usually 

purchased only when the utility has not built the appropriate" base 

load generators (e.g., non-generating municipal utilities and slippage 

of the construction schedules for nuclear power plants). However, 

utilities often purchase power to meet their intermediate and peak 

load requirements. 

As previously discussed, each generator is scheduled for 

use according to its incremental cost of generation. Since the 

incremental or operating costs~of the SPS should be low it should be used 

as a base load plant. This would be true even if the total cost of energy 

from the SPS is higher than from conventional plants. However. if the 

SPS is owned by an independent organization and the energy is pr'!ced 

at its total cost, the SPS may be used only to meet intermediate or 

peak loads. For this reason, two other ownership/pricing concepts 

have been investigated. 

If the SPS were "leased" to the utilities, the rental costs 

would be fixed and payment would be required even if the power were 

not used. The incremental cost to the utilities would be zero. On 

the other hand, if the incremental cost of SPS energy were artifically 
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set at the incremental cost of alternative base load generation, the 
SPS energy would be used to meet the base load. Thus. the SPS could 
be owned by an independent corporation and the power still be used 
to meet base load. 

Financial Comment 

Despite the possibility of purchasing bulk power from nearby 
producers, utilities frequently prefer to install sufficient generating 
capacity to meet all of their normal power requirements. In large part, 
the nation's electric utilities are privately-owned and the primary 
financial duty of their management is to secure an adequate return on the 
stockholder's investment. The regulatory commissions in each state allow 
for a return on plant equity but set the rates so that operating costs 
are merely recovered. The financial effect of ~ building base load 

':plants and purchasing base load power from a neighboring utility is 
to transfer revenues from the equity cost category, on which there is 
an allowance for return to the investors, to the operating cost category 
on which there is.no return. This provides a significant incentive to 
the utilities to maintain their own generation mix. This effect. is ex­
plained by the Averich-Johnson theory of utility operations. On the 
other hand, if a utility has difficulty in raising the required funds, 
the only choice may be to postpone or eliminate capital projects such 
as base load generators. 

Broadly speaking, utility companies were once preferred 
customers in the capital markets. This is not now the case. Bond ratings 
provide the best indication as to the borrowing abilities of the electric 
utilities and other companies. Over the last five years, most uti~ities 
have experienced some decline in ratings. Moreover, given the reluctance 
of many regulatory commisssions to authorize timely rate increases, 
many investors tend to apply different standards to industrial and 
utility issues. For example, an institution might invest in industrial 
bond offerings rated A or higher, but might only invest in utilities 
rated AA or AAA. 
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While many utilities experience delays in receiving rate 
increases on their equity, the "fuel adjustment clause" has made the 
recovery of increased fuel costs relatively easy and timely compared 
to conventional rate increases. This factor provides a significant 
disincentive to purchase high capital cost equipment. 
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3.2 Purchase of the SPS by a Utility or Consortium of Utilities 

The major financial obstacles to utility ownership of the SPS are 

all associated with the SPS's high total capital cost ($7.6 billion). 

While all solar energy systems will experience some problem with gaining 

utility acceptance because of their high capital costs per kilowatt, 

the problems associated with the SPS are exacerbated by the SPS's large 

size. The reliability problems previously discussed apply to any 5 GWe 

generator, but the problems discussed in this Section apply only to 5 GWe, 

high capital cost, low operating cost systems like the SPS. Fusion and 

possibly breeder generators are the other proposed new power system 

which may have this ~ombination of characteristics. 

Regulatory Issues 

The operations of the electric utilities are supervised by the 

regulatory commissions in each state. Besides performing the classical 

utility regulation functions of granting a local monopoly and requiring 

the utility to give service to all legitimate customers in the area served. 

these commissions deal wit:i, three main issues. 

• The rates which the utilities can charge; 

• The siting and safety of llew facilities - generation, 

transmission, etc.; and 

• The quality of service, etc. 

The specific operations and responsibilities of each commission 

vary from state to state. The basic responsibility of ·all the commissions 

is to protect the interests of the consumers, both commercial and 

residential, in an area where the normal mechanics of competition have 

been suspended. The rate-setting part of a commission's responsibility 

has an obvious effect on the well-being of the consumer. but the other 

two responsibilities also have a. large effect. The siting of unnecessary 

facilities could drive the utility rates up by forcing the present 

customers to pay for the operationg of equipment that may not be needed 
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for several years. While excess power can be sold to neighboring utilities, 
utility commissions try to ensure that only needed capacity is actually 
constructed. 

In recent years, the participation of consumers and environmental 
groups in the commission hearings concerned with electric power rate 
changes and the siting of new facilities has become more common. This 
trend has lengthened the time required for a utility to win approval 
of any proposed action. The effect has been to make the utilities even 
more conservative in the methods they are willing to use in providing 
power of the accepted quality. If a new method of meeting the demand 
can result in increased costs, it is unlikely to be implemented unless 
these costs can be recovered as they are in~urred. 

The addition of an SPS to a power pool will probably cause an 
increase in the utilities' costs. When the SPS comes on-line, plants 
which were base-loaded 't",ould be pushed up into intermediate load service; 
it has already been shown that the duration of this situation can be 
substantial. The effect:l.ve of purchasing the SPS would be a sudden 
jump in the total utility equity, with the proceeds from energy sales 
insufficient to cover this jump for many years. This situation would 
lead to an increase in the utiliti~s costs. A corresponding reduction 
in the fuel cost which could almost totally offset the increased fixed 
costs might. be expected. 

Calculation of Utility Cost Increases 

The correct method of calculating the aforementioned cost increases 
and decreases would compare the total utility costs when only conventional 
equipment is'used, with the corresponding costs. if an SPS were added to 
the generation mix. Such a calculation, using the production costing 
computer programs used by utilities, is too time consuming for this study. 
The costing programs are run twice, once for the power pool assumed 
to contain an SPS and once with no SPS. The fixed costs and the produc­
tion costs (the fuel and operating costs) required to meet the load, 
given the two assumptions would automatically be provided in the computer 
output. The cost of providing spinning reserve an.d extra reserve 
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margin could also b,e included. This approach has been used by ERDA 

and EPRI to assess the desirability of using fuel cells and 

* batteries. Unfortunately, the resources available for this study do not 

allow this approach to be used and a significantly simpler and somewhat 

less accurate approach has been taken. 

To avoid having to consider, in detail, the costs associated with 

every piece of ~quipment in the power pool, a simple economic model 

unit was used. This model assumed: 

* 

• The average cost of electrical energy in 1974 was 40 mil1s/kW-hr 

• The average fixed costs (equity costs, insurance costs, 

maintenance, f~tC.) of electricity in 1974 was 25 mi11s/kW-hr 

• The fixed costs increased with the general inflation rate, 

ii - inflation a<:f~cts the equity costs by affecting the 

capital cost of equipment added to meet a growing demand 

for power. 

• The avelage cost of fuel to generate electricity was 

15 mills/ld.J'-hr - fuel costs increase at a fuel inflation 

rate, if' which is no'': necessarily equal to the general 

inflation rate but is unlikely to be less. 

• The yearly peak power dem~nd increases at a growth rate, 

g, which is equal to the utilities yearly growth in 

energy sales. 

** • 'The system load factor remains constant at .56. 

"Economic Assessment of the Utilization of Fuel Cells in Electric 

Utility Systems", Public Service Electric and Gas Company, EPl\.I EH-336, 

November, 1976. 

** 
if '" energy sold/.~y,-r __ ...,......_ 

peak demand x8760 hrs/yr 
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The per unit change of a utility's fixed and operating costs with 

time under a variety of circumstances can be estimated by using the 

methodology described in Appendix B. This variation with time (,\Tith 

and without the SPS) is plotted in Figures 3.4 and 3.5 

If no SPS were to be include~ in th~ power pool, the unit cost of 
',(,' 

electrical energy would be 
,0 

25 miJJs (3.1) 
kH-h:c 

,~.' 
n 

where n is the number of year after 1974. These costs are plotted as 

solid lines in Figures 3.4 and 3.5 for the indicated inflation rates. 

When an SPS comes on-line, there are cost illcreases associated with 
,~.\~- "':-,,\ 

the capital and operating costs of the SPS and cost decr'fpases associated 
,;t 

with fuel savings and the fixed costs of unbuilt, alternative base load 

equipment. Alternative base load capacity would have been required in 

increments of P g beginning the year the SPS is installed (P if. the max max ' 
yearly peak power demand). As the total amount of deferred base load 

I 

capacity reaches 5 GW, al').! extra 2 GWe of reserve capacity ($125/kW) would 

be added to the poweL pool. The reSUlting fixed and fuel costs are shown 

as dotted lines in Figures 3.4 and 3.5. 

The fuel savings would initially be based on the average system 

fuel costs, not the qQst of the unbuilt base load generators. For 

5 to 8 Y':"il.rs after the SPS is built, base load units would be used 

to meet the intermediate load and <this would tend to decrease the 

overall fuel costs for the power pool. 

The total per unit CClst of energy plotted in Figures 3.4 and 3.5 

indicate that the purchase of an SPS (capital cost = $7.6 billion in 1974) 

would, under a variety of circumstG.nces, lead to only a very slight 

increase in total costs. If the capital cost of ~te SPS were significantly 

greater than the assumed valu~, clearly the incrcnse would be much larger. 
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This same conclusion could have been reached by calculating the "present 

worth of all future revenue requirements" of the SPS and the terrestrial 

a1 terna tives. 

The total per unit fixed cost of energy also plotted in Figures 

3.4 and 3.5, indicate that the purchase of an SPS (capital cost = $7.6 

billion in 1974) will require those utilities which have semi-automatic 

fuel adjustment clauses to request a better than 20% rate increase on 

their base rates; the base rate would have not cave reached this level 

until at least five years 1at€lr. If the capital cost of the SPS were 

higher, clearly, this increase would have been higher. The regulatory 

delay in answering such a request would probably be quite long. 

The curves in Figures 3.4 and 3.5 indicate that those utilities 

that do not have the fuel adjustment clause or which could include the 

cost of SPS energy in the fuel adjustment clause will find it much easier 

to pay the increased fixed system costs by transferring fuel cost savings 

as needed. Those rate increases that would have been required because 

of inflation wou1a still ~~ required despite the addition of the SPS. 
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3.3 "Leasing" the SPS 

An alternative to ownership through outright purchase of the SPS 

would be provided by utility "leasing" of the plant. The SPS would be 

owned by an independent organization and its power sold to the utilities 

under the condition that they purchase energy at a constant rate through­

out the plant life (except while SPS was off-line for scheduled main­

tenance). The payment (rent) would be due even if a particular utility 

could not or wished not to accept the SPS energy. There are several 

advantages to this approach: 

• The incremental cost of SPS energy would be zero (except for 

negligible transmission costs) and the SPS energy could be 

expected to be used to meet the base load. Payment would 

be required, like any other fixed cost, no matter how often 

the SPS were used. 

• Many of those utilities which have semi-automatic fuel 

adjustment clauses are allowed to include the cost of 

purchased power in their calculation of the fue! ~ate. 

• Operating costs are usually includeci in the electric 

power rat.es without any provision for a return to 

utility IS tockholders • Since the rental costs are 

likely to be passed on to the consumer without a 

mark-up, the effect of this approach on utility 

rates would probably be the same as if the utility 

owned the equipment itself. 

ORIGINAL PAGE I& 
• The utility would not have to exhaust its credit OF POOR QUALITY 

in order to provide the large capital required 

to construct an SPS. 

• The rental fees would increase only slightly due to 

inflation. 
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The "leasing" of the SPS may be unattractive to the utilities 

because the SPS will, when it comes on line, represent a completely 

foreign technology. For example, th.;re is unlikely to be any long 

term reliability and stability data for the plant. In light of the 

unknowns and uncertainties, if the utilities are required to make 

an extremely long term comitment in order to be permitted to purchase 

any energy from the SPS, it is possible that they will not be 

interested. 
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3.4 Pricing SPS Produced Energy at the Incremental Cost of 
Alternative Generation 

3.4.1 Introduction 

If the SPS is pu~chased and operated by an independent 

corporation, and the energy sold to an operating utility or consortiu'm 

of utilities without a fixed term purchase agreement, the price of the 

electrical energy to the utilities would have to be competitive with 

the incremental costs of alternative generation if the SPS is to be used 

to meet the base load. The incremental cost of the conventional generation 

would depend on the mix of different generation equipment in the power 

pool and the cost of the primary fuel. The question is, if the SPS 

generated energy were priced at the incremental costs of the base load 

alternatives, what type of economic pressures would be experienced by 

the corporation owning the SPS? How much of a return on the stochl10lder 1 s 

investment would the ~orporation be able to pay under these circumstances, 

and what would be the repayment schedule? . These questions would be best 

answered by examining the cash flow of the hypothetical corporation. 

Under certain economic conditions, it is possible for the 

corporation that owns the SPS to sell energy to the utilities at a price 

slightly less than the incremental cost associated with conventiC"na1 

generators and still allow for capital recovery and a reasonable rate of 

return to its stock/bond holders. However, the ability to every pay 

dividends would depend on the federal government's inability to control 

inflation. Even if it is eventually possible to recover all of the SPS 

capital costs, it will not be possible to begin repaying the stock/bond 

holders until after the year 2010. The risks associated with this type 

of. pricing scheme are likely to be too high for any private corporation; 

only the federal government is able to assume such a risk. 

When the SPS begins operation in 1994, the parent corporation 

* will owe their stock and/or bond holders approximately $7.6 billion (1974), 

* "Space-Based Solar Power Conversi·on and Delivery Systems Study -
.Interim Sunnnary Report", by ECON, Inc., Report No. 76-l45-IB, 
March, 1976. 
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the capital cost of the SPS (D ); however, it will take some time before 
o 

this money can be repaid. During the first year of operation, the 

corporation will incur expenses equal to $513 million (1974) for system 

maintenance, taxes and insurance plus the amount i D , the cost of using cc 0 

the capital during that year. On the other hand, it will receive revenues 

* equal to ICxESPS ' If there is no inflation between now and 1994, the 

revenues received when the alternative base load generators are nuclear 

or coal-fired are insufficient to cover the $513 million operating 

expenses. The revenue received when the alternative is oil-fired 

generation is sufficient to cover operating expenses and service the 

debt (principal and interest in equal payment) if the discount rate is 

only .03%. 

3.4.2 Calculated Maximum Discount Rates 

Three differ.ent types of base load generators that might provide' 

the base load during the years from 1994 to 2024 are: 

• Nuclear (light water reactors) generators 

• Coal-fired generators; and 

• Oil-fired generators. 

7he incremental costs associated with operating these generators and 

the revenues that could be realized by the corporation if the SPS 

energy were priced the same as these incremental costs are given 

in Table 3.1. 

If the SPS revenues are to be fixed by a consideration of the 

conventional alternatives, the revenues (and costs) must inflate 

~'ith time or it will never be possible to provide a reasonable 

return to the investors. However, it takes some time to perceive 

the effects of inflation, Le. during the first years, the corporation's 

debt will increase substantially and begin to decrease only after the 

inflationary spria1 has had time to affect a significant incr.eas.e in 

fuel prices. 

'It 
L 

2. 

3. 

4. 

D a The capital cost of the SPS. o 
icc • The average discount rate paid to stock/bond holders. 

Ie .. The incremental c.ost of conventiona.1 base l.oad generators. 

ESPS - The energy delivered by a 5 GW SPS in 1 year - 4.16 x 1010 
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Using the equations derived in Appendix C, different assumed 

rates of inflation and the assumption that all debt was to be repaid by 

the year 2024. The maximum allowed rate of return that the corporation 

could pay to stock/bond holders have been calculated. The maximum rates 

of return that the corporation could pay (given that the corporation 

revenues are set at the fuel costs of the alternative generation) are 

given in Table 3.2 through 3.4. The blanks in these tables indicate 

that the maximum allowable discount rate is either zero or that under 

the indicated conditions, the debt can never be zero. The numbers in 

parenthesis are the real maximum rates of return to th~ investors, 

i. e. 

* 

l+i (max) 
ireal(max) = --~l~c~c----­

+ ii 

TABLE 3.1 

-1 

Incremental Costs of Conventional Generation 

Energy Source IC (mills) * 6 
kW-hr REV (10 dollars) 

Light water reactor 6 250 (l+i )20 
f 

Coal 10.9 453 (1+i
f

)20 

Oil 29 1210 (1+i£)20 

"Economic Assessment of the Utilization of Fuel Cells in E)ectric 
Utility Systems", by PSE&G, EPRI EM-"336, Project 729-1, November, 1976. 
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I 

I 
I 

TABLE 3.2 

Maximum Allowed Discount Rate As a Function of Inflation*' -
Revenues Set Equal to Fuel Costs of Nuclear Generator 

i .04 .06 .08 .1 
c 

.04 .067 .142 
(.027) (.098) 

.06 .184 
( .023) 

.08 

.1 

TABLE 3.3 

* Max1.mum Allowed Discount Rate as a Function of Inflt<tion 

Revenues Set Equal to Fuel Costs of Coal Generators 

.04 .06 .08 .1 

.04 .060 .145 .231 
(.019) (.101) (.184) 

.06 .077 .163 
(.016) (.097) 

.08 .098 
(.017) 

.1 

*Numbers in parenth~ es are the "real" rates of return. 
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TABLE 3.4 

Maximum Allowed Discount Rate as a Function of Inflation 

Revenues Set Equal to Fuel Costs of Oil Generators 

i c 

.04 

.06 

.08 

.1 

.04 

.122 
(.079) 

.06 

.230 
( .183) 

.143 
(.078) 

.08 .1 

.358 .529 
(.306) (.470) 

.248 .374 
(.177) (.296) 

.161 .266 
(.075) (.172) 

.180 
(.073) 

< ~ ,~GB \b 
Ol\tGW QU~ 
O¥ ?oO-s. 

The maximum allowable discount rates in Table 3.4 indicate 

that under most economic conditions, it would be possible to set the 

price of SPS energy in the proposed manner (for oil) and the corporation 

would still make a profit. However, it is unlikely that oil will 

be used to meet the base load in the years frmm 2004 to 2024 and these 

particular numbers should be used with great caution. 

Cash Flow 

It has been shown that if there is significant inflation 

over the yp~rs, the price of SPS energy can be set at the fuel cost of 

alternative generators, and the corporation would still make a profit. 

However, the number of ~lears that must pass before the corporation 

would begin to pay back the incurred debt can be large. This year 
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_In-

depends on the inflation rates, the discount rate and the magnitude 

of the revenues received from the sale of SPS energy. We have in­

vestigated 1:\-10 examples in detail, Le. the total debt and the debt 

incurred each year as a function of time have been calculated and 

the results are shown in Figures 3.6 and 3.7. 

The years that must pass before the corporation can begin 

to repay the debt (assuming that the rate of return is set at the 

maximums given in rab1es 3.2 and 3.4) have been calculated and are 

shown in Tables 3.5 through 3.7. There are blanks in these tables 

when no acceptable value of i was found. cc 

TABLE 3.5 

* Year bD Becomes Negative as a Function of Inflation 

Revenues Set Equal to Fuel Costs of Nuclear Generator 
at Maximum Allowable Discount Rates (See Table 3.2) 

i .04 .06 .08 .1 i 

.04 18 22 
(2012) (2016) 

.06 16 
(2010) 

.08 

.1 

* Numbers in parentheses are dates the debt begins to be repaid. 
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* 

TABLE 3.6 

Year 6D Becomes Negative as a Function of Inf1ation* 

Revenues set Equal to Fuel Costs of Coal Generator 
at ~~ximum Allowable Discount Rates (See Table 3.3) 

.04 .06 .08 .1 

.04 15 21 24 
(2009) (2015) (2018) 

.06 18 22 
(2012) (2016) 

.08 20 
(2014) 

.1 

TABLE .. ). 7 

* Year 6D Becomes Negative as a Function of In.f.1ation 

Revenues set Equal to Fuel Costs of Oil Generatol 
at Maximum Allowable Discount Rates (See Table 3.4) 

ii .04 .06 .08 .1 

.04 16 17 17 17 
(2010) (2011) (2011) (2011) 

.06 21 23 23 
(2015) (2717) (2017) 

.08 22 23 
(2016) (2017) 

.1 22 
(2016) 

Numbers in parentheses are dates the debt begins to be repaid. 
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4.0 UTILITY PARTICIPATION IN THE SPS RD&D PROGRAMS 

Introduction and Summary 

~lile the participation of the electric utilities in the SPS 

research, design and development (RD&D) program would be desirable, 

utility activities in this area are likely to be very limited during 

the next five years. EPRI's budget for all solar energy research 

during this time period is only 2% of EPRI's total budget. 

The total research EPRI budget for the next five years is roughly 

* $1 billion, including an allowance for inflation. Of this, only $20 

million (~ $4 million/yr.) has been allocated for all forms of solar 

energy research, inclcding solar heating and cooling. The solar energy 

** budget for 1976 was $2.9 million. Unless EPRI's priorities shift 

significantly, the funding available from this source to support SPS 

related R&D will be small compared to the total requirements for the 

*** SPS ($44 billion). 

The probability of attracting the substantial participation by 

individual utilities in SPS related research is also very small; utility 

research priorities are primarily near-term and investment in the SPS 

is unlikely to be attractive. 

Regulatory Restrictions 

The participation of the electric power utilities in RD&D programs 

was, until recently, severely limited by their ability to finance the 

associated costs. Until recently, few state regulatory commissions 

allowed utilities to include the cost of RD&D progrruns in their statement 

of operating costs and these programs had to be financed out of 

* Private Communication; consistent with published information. 

**" A Sunnnary of Program Emphasis for 1976", Electric Power Research lnst. 
*** ECON, Inc., "Space-Based Solar Power Conversion and Delivery Systems 

Study~ Report No. 76-145-IB, March, 1976. 
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profits. The regulatory argument was that tOday's consumer should not 

be required to pay the costs of developing the technology required to 

* meet the needs of future consumers. This situation generally changed 

about four years ago; however, the fraction of RD&D costs allowed in 

the rate base still varies from state to state. 

While it can be argued that substantial benefits might accrue to 

the utilities from participaticm in the design, development and testing 

of those SPS components which will direGtly affect the SPS utility interface, 

the utilities' ability to contribute to the development of the support 

equipment (e.g., launch vehicles) will be limited. Hence, the electric 

power utilities are unlikely to perceive any legitimate role for them-

selves in the latter area nor are the regula ':ory connnissions likely to 

allow the associated COi3ts to be included in the rate base. 

Electric Power Research Institute 

The Electric Power Research Institute (EPRI) was formed in 1973 

under the voluntary sponsorship of many of the electric utilities -

private, public and cooperative. Its mission was to conduct a broad, 

coordinated program of R&D with the aim of improving electric power 

production, transmission, distribution, and utilization. 

The EPRI program emphasis is primarily on those technologies 

which are likely to have a significant impact on the utilities before 

2000. Hm07ever, it is recognized that very long lead t:iJnes, on the 

order of decades for various systems, make it ~ecessary to begin the 

development of credible technical options decades ahead of the 

projected need. Three different t:iJne frames, indications of when the 

research results are likely to become connnercially available to the 

utilities, have been defined. These time frames, their present 

definitions and their approximate allocation of EPRI research funds 

* This is the same rationale used to disallow the inclusion of CWIP 
(Cost of Work in Progress) from the 'rate base. 
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* are 

• Near-term (1976 - 1985) 45% 

• Mid-term (1985 - 2000) 45% 

• Long-term (beyond 2000) 10% 

** 'The SPS is now perceived by EPRI to be a "long-term" technology and 

shares the quest for funds with other "long-term" technologies, such 

as: 

• Fusion 

• Electric power generation from solar energy 

• Super-conducting magnetic energy storage 

• Cryoresistive and super-conducting transmission lines 

Given the relative emphasis of the EPRI on those technologies 

which are likely to be commercai11y available before the year 2000, 

the probability that it will divert a substantial amount of resources 

to SPS must be considered small. 

R&D Sponsored by Individual Utilities 

Individual utilities directly support R&D projects of their own. 

These utility funds, however, are unlikely to be available to support 

SPS related work. Utility projects usually address the utility's 

*** more immediate problems; for example, testing semi-conducting glazes 

which might reduce high voltage ceramic insulator failure rate. Most 

of these projects deal with "near-term" technologies, and the funds 

that support these projects are not likely to be available to support 

SPS research. 

* 
** 

*** 

itA Summary .of Program Emphasis for 1976", Electric Power Research Inst. 

Private Communication: consistent with published information. 

"1976 Report of Member Electric Corporations of the New York Power 
Pool and the Empire State Electric Energy Research Corporation 
(ESEERCO) pursuant to Article VIII, Section 49-b of the Public 
Service Law". 
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Some utilities have been recognized for their participation in solar 

energy projects, principally because one of their staff, either from the 

research or the planning departments, has participated in one or more 

key studies. These individuals can make a major contribution, but it 

should be remembered that the time available for these studies is often 

limited and other (near-term) tas~~ usually have priority over more 

esoteric subjects. 
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5.0 UTILITY LIABILITY DUE TO THE ADVERSE EFFECTS OF SPS RELATED ACTIVITIES 

Introduction and Summary 

Whoever owns the SPS - the electric utilities, a private or semi­

private corporation or a government agency - this owner could be 

liable for all the adverse effects that could result from SPS related 

activities; the cost of these liabilities would presumably be added 

to the cost of SPS generated electrical energy via the cost of 

insurance. At this point in time, too little is known about the 

potential adverse effects to either 

• Identify all the possible liabilities, 

• Estimate the magnitude of all identified liabilities, 

• Reliably estimate the cost of meeting the liabilities, or 

• Determine whether the electric utilities would assume 

these liabilities. 

It is possible to come to reliable conclusions on only a limited 

number of questions; questions such as 

~ What type and level of liability are the electric 

utilities likely to accept, and 

• What level of liability would indicate that the hazards 

associated with the SPS are large enough to prevent 

its construction? 

This latter question is beyond the scope of this study. An approximate 

answer to the first question can be obtained by examining the history 

of this issue vis-a-vis nuclear power plants. 

In the past, the electric utilities have assumed the liabilities 

associated with the degradation of radio and television reception along 
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transmission right-of-ways; they would be unlikely to accept this liability 

for the SPS. The liability for RFI caused by transmission lines is localized 

geographically and can be r~asonably well defined before the transmission 

circuit is energized. On the other hand, the parallel problem associated 

with the interference of the SPS microwave beams with communications 

channels, radar, etc., may be neither localized geographically nor 

well defined before the first two SPSs are built. The utilities would 

be unlikely to accept this type of liability as a condition of purchasing 

an SPS unless the cost of SPS delivered energy were low enough to 

compensate for any foreseeable claims. 7he standard criterion used to 

purchase generators is that the total levelized costs (includi~g tht 

cost associated with RFI) shall be less than the alternative generation 

equipment. The present projected costs of the SPS are high compared 

to the nuclear alternatives. A very large, but undefined liability 

might increase the cost of the SPS or SPS energy significantly. 

Classification of Hazards 

The various public ~lz.zards of any industrial activity can be 

broken down into the following two categories; 

• Hazards that pertain despite the proper "design or 

operation of equipment, or 

• Hazards that result due to improper and/or negligent 

operation of equipment. 

Each of these categories can be further broken down into 

• Localized, direct hazards, or 

• Indirect hazards. 

Potential hazards are associated with every industrial activity; 

examples of hazards that could pertain despite the proper design 

and/or operation of equipment are: 

5-2 

Arthur D Lilllc.lnc 

. 
" 

-,t 



• General 

• low level radiation for nuclear power plants 

• air pollutants within clean air guidelines 

• SPS. Related Hazards 

• bio-sphere modifications due to the SPS microwave beam 

• interference of harmonics of the microwave beams 

with radio communications 

• genetic damage to wildlife passing through the 

microwave beam 

Examples of hazards that could be created by the improper and/or 

negligent operation of equipment. 

• General 

• radiation release from nuclear power plants 

• puncture of ch~ical tank cars in railroad accident 

• shocks from ungrounded metallic objects along 

the ROW of a UHV transmission line 

• fires, explosion, etc. 

• SPS Related Hazards 

• radiation exposure of rectenna maintenance personnel 

• shuttle crashes 

Localized, direct hazards are well defined hazards which can be 

unequivocally associated with a specific location and piece of equipment. 

The hazards, however small, associated with high voltage power trans­

mission lines fall in this category. The electric shock that could be 

received when touching an ungrounded metal fence in the vicinity of 

a 765 kV overhead transmission line is large enough to cause severe 

discomfort. The source of this hazard is definitely the activated 

transmission line; the hazard exists only within a few hundred feet 

of the right-of-way. 
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Indirect hazards can either occur unpredictably, many miles from 

the origin of the hazard or else its origin cannot be unequivocally 

identified with a particular piece of equipment. The ground hazards 

posed by a crash of a space shuttle being used to build an SPS 

can occur hundreds of miles from the launch site or the SPS ground 

station. 

Pollution problems also fall into this category. Air pollution 

standards are enforced by the Environmental Protection Agency, not 

via the mechanism of making the polluter liable for the damages caused 

by the POllution, because it is usually impossible to prove a direct 

cause and effect relationship between the hazard and the incremental 

pollution caused by specific polluters. 

Interference of the SPS microwave beams with other users of the 

electromagnetic spectrum (RFI) may be similar to air pollution 

problems. RFI could cause a reduction in the signal to noise ratio 

in equipment located thousands of miles from the SF3 rectenna. Because 

of the distance, it may be impossible to prove a direct cause and 

effective relationship between the RFI and the microwave beam of 

any particular SPS. 

Interference of Microwave Beam with Other Users 

While several studies of how the Microwave Beam might affect 

other users of the radio spectrum have been performed, there is still 

no definitive list of what equipment might be affected and how far 

from the rectenna site these effects might be observed. Vario~s lists 

of the types of effects that might be observed have been compiled 

but the experiments that will indicate the magnitude of these effects 

and the resulting magnitude of the Radio Frequency Interference 

(RFI) have not been performed. 

Even the optimistic estimates indicate that the SPS Microwave 

Beam will interfer strongly with the following units: 
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• Citizen's band radios, 

• State police radar, 

• Radio location for defense radar, and 

• Air traffic control radar systems. 

While it may be possible to retrofit this equipment with filters 

to remove much of the SPS induced noise from the received signal, 

because the magnitude of the interference is undefined, it is not 

now possible to reliably estimate the cost of each retrofit project 

nor the number of pieces of equipment that may need retrofitting 

in 1995. It is possible that every single piece of equipment in 

these categories will require filters in order to function once the 

SPSs are built. 

The Price Anderson Act 

The utilities have previously faced an undefined liability 

question in connection with a new technology; that new technology wa~l 

the light water reactor. The issues at that time were 

• The Atomic Energy Act of 1954 as "amended required, as 

a condition for a nuclear facility construction permit, 

proof of financial protection agains~ public liability 

claims arising out of a nuclear incident. 

• No one could reliably define the claims that might be 

lodged against a utility as a result of a major 

reactor incident. 

• No one could reliably estimate the probability of various 

types of reactor incidents - this question is still 

the subject of a significan~ amount of controversy. 

• The damage that could result from the worst possible 

nuclear incident was so high that the utilities would 

have had to purchase more insurance than was available 

from private carriers. 

5-5 

Arthur D Little Illc 



• The AEC was anxious to encourage the use of nuclear 

energy for generating electricity. 

• The cost of electrical energy from light water reactors 

used in base load service was significantly l~wcr t3an 

the energy derived from fossil fuels. 

* In 1955, the AEC requested the private insurance industry to 

study the problems involved in insuring private companies against 

reactor risks. In 1957, four private insurance pools were formed; 

NELIA and MAELU provided liability insurance in amounts up to $46.5 

and $13.5 million per incident, respectively. These policies cover 

third party liability but do not cover damage to the on-site property 

of the insured; damage to the property of the insured is covered 

through joint policies from NEPIA and MAERP. The Price-Anderson Act 

was passed in 1957. The Price Anderson Act essentially limited the 

required utility insurance coverage for each accident to the level 

at which insurance coverage was privately available; all other 

insurance coverage (up to $500 million per ~ncident) was to be 

purchased from the government. Liabilities over the limits set by 

the Price Anderson Act were to be disallowed. 

It appears that the question was not how much of a liability 

would the utilities accept but how much of a liability would an 

insurance company or consortium of insurance companies accept and 

for what price? The answer in 1957 was $60 million per incident. 

The cost of this insurance was to depend upon the specific r'eactor 

type, its use, its rated thermal output, the degree of containment, 

the location of the facility, the population density of the 

environment, etc. The desirability of special legislation to address 

those issues for the SPS which were addressed by the Price Anderson Act 

for the lightwater reactor, might be addressed in future studies. 

* J.F. Hogerton, Arthur D. Little, Inc., The Atomic Energy Deskbook, 
Reinhold Publishing Corporation, New York, 1963. 
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APPENDIX A 

CALCULATIONS OF THE POWER POOL GENERATING 
MARGINS REQUIRED TO MEET THE LOLP CRITERIA 

A.I Introduction 

A variety of criteria are available to assess the reliability 

with which terrestrial power pools meet the demand for electric power. 

Of these, one of the most comm0n is the Loss of Load Probability (LOLP), 

the probability that the demand fClr power shall exceed its availability. 

The most commonly used power pool design criteria is that 

despite the inherent fallibility of generating equipment, the demand 

for power shall exceed the available generating capacity for only one-

tenth of a day each year (LOLP = .1 days/year). Extra generating ca-

pacity (reserve margin) must be installed in the power pool to ensure 

the ability of the pool to meet this criterion. 

Power pools are usually made up of a variety of different types 

and sizes of g~,nerators and these generators each have a different 

forced outage rate. The larger the generator capacity, the higher 

the likely forced outage rate. Calculating the LOLP of such a power 

pool and then the required reserve margin using standard techniques* 

is conceptually simple but computationally complex. 

Because of the limitations on the time and resources available 

for this program, a simpler model (as described in Section 2.3) of the 

generation mix has been used. 

* R. Billinton, et. a1. "Power System Reliability Calculations," The 
MIT Press, Cambridge, Mass., 1973. 
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This Appendix contains the derivation of the equations used to 

calculate the LOLP for each of the maintenance intervals; the LOLP for 

the year is the average of the LOLP during each maintenance interval. 

The total amount of installed generating capacity required to meet 

this criteria and the scheduled maintenance requirements of each gen-

erator is also derived. A detailed description of the calculations 

for the power pools and generators considered in this study are pre-

sented in Section A.3. 

A.2 Calculation of the LOLP 

The probability of m out of a total of n machines are all 

available at the same time (available generating capacity = m GWe) is 

nl 
(m) I (n-m) I 

The probability that m machines or more are available at the 

arbitrary time t is 

n-m 

2: nl (,95)m+i(.05)n-m-i 

(m+i)! (n-m-i) I 
i=O 

The probability that the demand for electric power between 

m G~ and (m-l)G~ can be met at the arbitrary time t when it occurs is 

5tm n-m nl (.95)m+i(.05)n-m-i 

T 2: (m+i) I (n-m-i) I 
i=O 
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where Ot , is the time during which the demand for power is between 
m 

m and (m-l) gigwatts and T is the total time. 

The probability of meeting the load, what ever it is and when-

ever it occurs is 

n 6t 

2:T 
n-m 

2: nl 
(m+i) I (n-m-i) I 

m=l i==O 

The probability of not meeting the load is 

LOLP = 1 

n 

-2: 
m-l 

6t 2:n
-

m 
nl 

----T
m ~~~~--~~ (m+i) 1 (n-m-i) I 

i=O 

(.95)mH.(.05)n-m-i (A-I) 

Manipulating equation A.I using 

n 6t n "( 95)1 n-i 
~ m "" nl • (.05) 
~ -r- = 1 and ~ il(n-i) = 1 
mel i=O 

(A-2) 

yields the equation used in this study to calculate the LOLP for each 

maintenance interval for the power pools that did not contain a Sat-

ellite Power System, 

(A-3) 

where the subscript ~ indicates thqt this equation holds independently 

for each maintenance interval. n t is the number of generators 

th available (not off-line for scheduled maintenance) during the £ 

interval, T. 
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This equation was used to calculate th~ LOPL.e. for the variou'El values 

of n.e. and the sets of ot.em in Tables A.I to A.2; tho~e valuE)s of n.e. 

T 

which yielded an LOLP approximately equal to .1 days/year were used 

in the later calculations. 

Pow~r Pools that Contain One SPS 

The method just described of calculating the LOLP for a 

power pool made up of a number of identical 1 GWe capacity generators 

must be modified slightly if the power pool also contains one or more 

5 GWe SPSs. 

The probability that a capacity ofm GWe is available 

at an arbitrary time t is 

P(m) = p(m)' (1 - p (SPS» + p (m - 5)·p (SPS) (A.4) 

where P (m) = the probability that m GWe of capacity is available 

p (m) = the probability that m one ciigawatt generators are avail-

able 

p (SPS) = the probability that the SPS is available 

The probability of not meeting the load in the lIth 

maintenance interval would thus be 

LOLP
1 

c 

n' +5 
i 

L 
m=1 

n' m n' -j j 

[ 

1- n' I (.95) 1 (.05) 

1- ('" ~i L.-J (ll~i-j)ljl 
j=O 

)(005)' 

(A-5) 

n' -m+5 (t 
jaO 

n' -j j ] 
n' I (.95) i (.05) ) 

(n'1-~)ljl (.95) 
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LOLP for the Year 

The relationship betwe.~p the average yearly value for the 

LOLP and the LOLPs for the individual maintenance intervals is the 

same as the relationship when there is no SPS in the power pool. How-

ever, when the SPS must be taken off-line for miintenance or is shut 

down because of the effects of the earth eclipses, this must be done 

explicitly. Those maintenance intervals during which the SPS in not 

on-line are specified and the LOLPs for thoBe intervals are calculated 

as if the SPS did not exist. The yearly average LCLP is calculated 

for several different assumed numbers of conventional machines in the 

power pool. 

We assumed that the year was broken into 14 equal main-

tenance intervals (utilities use 13 maintenance intervals). The 

average yearly value for the LOLP would be-

14 

LOLP = i4 2: LOLP R­

',lal 

(A-6) 

The lth maintenance interval may contain one, two, three, 

six, or no SPSs. If the LOLP for every interval is just slightly less 

than .1d/year, then the yearly LOLP is just slightly less than .ld/year. 

Number of Generators Required in the Power Pool 

Enough generating capacity must be available during each 

maintenance interval to meet the LOLP criterion and yet be able to 

take each machine off-line for scheduled maintenance for the required 

number of intervals (assumed in this model to be 3 intervals out of 
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every 14) each year. This defines the total installed generating ca-

pacity required for a power pool and thereby the installed generating 

margin (Margin - total minus peak demand). 

The total required number of one gegawatt generators, n, 

can be defined by the following equation: 

14 n-n 
I:~~n 
1=1 

(A-7) 

where n
l is the number of conventional generators required to meet the 

LOLP criterion during the l'th maintenance interval and "a" equals the 

number of maintenance intervals per year when each ge.nerator must be 

off-line. A 5 GWe SPS mayor may not be on-line during the l'th 

interval; its availability should be exp1icity assumed when deriving 
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A.3 Description of Calculations and Results 

The total amount of generation capacity required to ensure that 

each candidate power pool's demand for electric power is reliably met 

had been calculated for the following circumstances: 

• No SPS in the power pool 

• Power pool includes one or more SPSs with the following 

scheduled maintenance requirements. 

• No scheduled maintenance requirements 

• Scheduled maintenance for three maintenance intervals/ 

year 

• Shutdown for total earth eclipse period 

(four maintenance intervals/year) 

A.3.l Length of TiIDe During vfuich Demand is Between m and m-l GWe 

\StR.m is the length of time (hours) during each maintenance 

interval, R., when the demand for power is between m and m-l GWe. Using 

equation 2.8, it is possible to calculate the values of \St im for each 

maintenance interval for the primary power pools. The results of these 

calculations are shown in Tables A.l, A.2 and A.3. Those intervals for 

which no number is given have a \stim of zero. These tables allow the 

reader to appreciate the non-linear dependence of otR.m on R. and m. 

In the composite power pool, the output from the SPS should 

be fed into whichever power pool has the larger demand for power ~ that 

time. For 12 hours each day, the power output of the SPS is delivered 

to P and for the rest of the day, the power from the SPS is delivered 

to P+. 
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m 

30 GWe 

29 

28 

27 

26 

25 

24 

23 

22 

21 

20 

19 

18 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 

TOTAL HRS 

TABLE A.l 

LENGTH OF TIMF (HOURS) DURING WHICH POWER 

DEl-IAND IS BETWEEN m and m-l GHe 
y 

30 GWe POWER POOL 

MAINTENANCE INTERVALS 
111&8 112,7,9&14 113,6,10&13 114,5,11&12 

8il.8 2.9 

49.9 24.6 

37.6 33.1 

32.4 37.8 

29.7 43.0 

28.0 46.0 .9 

27.0 37.1 13.9 

26.7 32. T'-· 22.7 

26.9 
.. 

30.8 30.3 
..... 1'. 

27.6 30.0 37.1 

29.1 30.0 44.6 

31.1 31.0 52.7 

35.2 32.8 49.7 13.3 

43.5 36.4 41.7 36.9 

79.0 44.3 39.9 72.1 

31.7 65.0 40.6 79.3 

45.7 43.6 56.4 

20.8 54.9 51.3 

64.1 50.9 

52.3 54.6 

33.7 67.2 

-1.0 95.5 

46.8 

624 624 624 624 

A-8 

TOTAL 

189.2 

198.2 

207.6 

216.0 

231.4 

243.6 

258.0 

275.0 

298.2 

323.6 

356.6 

397.0 

453.6 

547.0 

783.2 

803.0 
582.8 

508.0 

460.0 

427.6 

403.6 

386.0 

187.2 

8736 
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TABLE A.2 

LENGTH OF TIME ~HOURS2 DURING WHICH POWER 

DEMAND IS BETWEEN m and m -lGWc 

40 GW e POWER POOL 

III KAINTENANCE INTERVALS TOtAL 

11&8 #2,7,9&14 '3 , 6,10&13 ~4t5,11&12 

40 GWe 70.7 141.4 

39 45.8 13.7 146.4 

38 32.5 '21.5 151.0 
37 27.4 25.5 156.8 

36 j'Gl).6 27.9 160.8 

35 22.9 31.0 169.8 

34 21.6 33.3 176.4 

33 20.8 34.6 .9 183.6 

32 20.4 28.3 9.4 191.6 

31 20.0 25.4 14.6 200.0 

30 20.0 23.8 19.6 213.6 

29 20.3 22.9 23.4 225.8 

28 20.6 22.5 27.2 240.0 

27 21.3 22.4 31.0 256.2 

26 22.4 22.7 35.8 278.8 

25 23.7 23.3 40.3 301.8 

24 25.8 24.4 36.4 7.8 326.0 

23 29.6 26.0 34.3 20.9 384.0 

22 36.5 28.9 30.4 34.1 444.8 

21 . 65.6 34.2 30.0 59.5 626.0 

20 31.8 49.8 .30.3 63.2 636.8 

19 40.8 31.6 45.2 470.4 

18 28.4 34.5 40.2. 412.4 

17 12.8 42.9 38.2 375.6 

16 49.7 38.0 350.8 

15 42.5 . 39.6 328.2 

14 35.4 42.9 313.2 
13 22.9 52.2 300.4 
12 1.0 71.7 290.8 
11 

TOTAL HRS 624 624 624 624 8736 
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Each power pool must be evaluated as if it were 

completely made up of conventional generators for half of the day and 

made up of conventional generator plus one S GWe SPS for other half of 

the day. There must be one set of 6t tm
's for that half of the day 

when the demand for power in one particular power pool is greater than 

in the other and another set when the conditions are reversed. These 

two sets of 6t tm , the same for each 30 GWe power pool, are given in 

Table A.4. The set of numbers labelled H is the set that applies when 

the demand for power in the candidate power pool is higher than the 

demand in the other power pool and is used to calculate the LOLP when 

the power pool includes the SPS. The set of numbers labelled L apply 

when the opposite is true and is used to calculate the LOLP when the 

power pool includes only the conventional generators of the previous 

calculation. The LOL~ used in the final analysis is the average of 

the two different LOLPs. 

A.3.l Calculational Technigues - Simple Power Pools 

Using Equations A.3 and A.S and the values of otlm in 

Tables A.l, A.2 and A. 3, the LOLP was calculated for the three power 

pools described by Equation 2.8 as a function of the following param-

eters 

• Maintenance interval 

• Number of available conventional generators 

• Number of available SPS in the power pool 

• No SPS 

e One SPS 

• Two SPS 

A-ll 
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TABLE A.4 

LENGTH OF TIME (HOURS) DURING WHICH POWER DEMAND IS BEnIEEN • and m-l }{We 

COMPOSITE (30 ewe + 30 ewe) POWER. POOL 

• Maintenance Interval 

11,8 12.7.9.14 13.6.10,13 14.5.11.12 TOTAL 

H L H L H L H L 

30 82.1 6.7 2.9 189.2 

29 26.3 23.6 22.3 2.3 198.2 

28 18.8 18.8 24.7 8.4 207.6 

'P 16.2 16.2 25.7 12.1 216.0 

26 14.8 14.9 28.2 14.8 231.4 

25 14.0 14.0 28.6 17.4 .9 243.6 

> 
24 13.5 13.5 18.9 18.2 12.5 1.4 258.0 

I 23 13.4 13.3 16.3 16.4 17.0 5.7 275.0 
..... 
'" 22 13.5 13.4 15.4 15.4 21.1 9.2 298.2 

21 13.8 13.8 15.0 15.0 24.6 12.5 323.6 

20 14.6 14.5 15.0 15.0 28.7 15.9 356.6 

19 15.6 15;5 15.5 15.5 33.2 19.5 397.0 

18 17.6 17.6 16.4 16.4 26.9 22.8 12~1 1.2 453.6 

17 21.8 21. 7 18.2 18.2 20.9 20.8 28.2 8.7 547.0 

16 16.1 62.9 21. 7 22.6 20.0 19.9 53.8 18.3 783.2 

15 31. 7 17.0 48.0 20.3 20.3 45.7 33.6 803.0 

14 9.0 36.7 21.8 21.8 28.2 28.2 583.6 

13 1.2 19.6 24.6 30.3 25.6 25.7 508.0 

12 23.7 40.4 25.5 25.4 460.0 

11 14.4 37.9 27.3 27.3 427.6 

10 4.1 29.6 33.0 34.2 403.6 

» 9 1.0 29.6 65.9 386.0 .., ... -..J 8 3.2 43.6 187.2 
~ 

.--
v 

TOTAL HRS 312 312 312 312 312 312 312 312 8736 
~ ..... 
r: 
~ 
r, 
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* • Six (three) SPS 

The.calculated value of the LOLP never equaled .1 day/ 

year exactly. However, it was possible to identify the minimum num-

ber of available conventional generato~s required to yield LOLPs of 

approximately .1 days/year for each maintenance interval independent of 

the others. (Equation A.5 clearly indicates that meeting this condi-

tion is sufficient to ensure that the LOLP during the whole year will 

be approximately equal to .1 day/year.) The number of pieces of con-

ventional equipment needed to meet this criteria during each mainten-

ance interval, nt, are given in Tables A.S, A.6, and A.7 in the col­

umns labelled NO SPS and ONE, TWO, or SIX SPSs with "no maintenance 

required" • 

Six SPSs in Power Pools 

Including six SPS generators (total generating capacity 

~ 30 GWe) in a power pool whose peak yearly demand is only 30 GWe 

would clearly be uneconomical in that their outputs would be used in 

that power pool only 56% of the year. No calculations were performed 

for this case. The economics of including six SPSs in a 40 GWe power 

pool are also questionable. However, these calculations were performed. 

In the 50 GWe power pool, the six SPSs would have to be used to meet 

the intermediate loads; the daily minimum is always less than the com-

bined output of the six units. 

Scheduled Maintenance for the SPSs 

If there is no need to schedule maintenance for the 

SPS, then the SPS is always on-line and the values of n
t 

contained 

* Three SPSs at a time are shut down for scheduled maintenance. 
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MAINTENANCE NO SPS 

INTERVAL 

1 38-39 
2 35-36 
3 28-29 
4 22-23 
5 22-23 

> 6 I 28-29 
~ 
~ 7 35-36 

8 38-39 
9 35-36 
10 28-29 
11 22-23 

12 22-23 
13 28-29 
14 35-36 

!fo. of Conventional 
-Generators Installed 38-39 

Total Installed 38-39 
Capacity (CWe) 

» Installed Margin (GW~) 8-9 

::l 
:r Percent Installed 26.7-30% c 
'""I - Margin 
v -, 
r. 
::::i r, 

l--~ ~.: I ,: f.. ~ 
I ~ ~ ; TABLE A.S 

Required Number of Conventional Generator. in a 30 GWe Power Pool as a Function of 
Maintenance Interval and Circumstances-

ONE SPS TWO SPSa SIX SPSa 

No No No 
Maintenance Maintenance Ecli sea 
Required Required P 

Maintenance Maintenanc~1i Maintenance Maintenance 
Required Required pses Required Required Eclipses 

34-35 34-~5 3~·-35 31-32 31-32 31-32 

32-33 32-33 32-33 29-30 29-30 29-30 

26-27 26-27 26-27 23-24 26-27 23-24 

20-21 22-23 22-23 17-18 20-21 25-26 

20-21 22-2,1 22-23 17-18 20-21 25-26 

26-27 26-27 26-27 23-24 23-24 23-24 

·32-33 32-33 32-33 29-30 29-30 29-30 

34-35 34-35 34-35 31-32 31-32 31-32 

32-33 32-33 ,32-33 29-30 29-30 29-3() 

26-27 26-27 26-27 23-24 26-27 23-24 

20-21 20-21 22-23 17-18 20-21 25-26 

20-21 20-21 22-23 17-18 20-21 25-26 

26-27 26-27 26-27 23-24 23-24 23-24 

32-33 32-33 32-33 29-30 29-30 29-30 

35-36 35-36 36-37 31-32 33-34 34-35 

40-41 41-42 41-42 41-42 43-44 44-45 -
10-11 11-12 11-12 11-12 13-14 14-15 

33.3-36.7% 36.7-40~ 36.7-40% 36.7-40% 43.3-46.7~ 46.7-50% 

. 
~ 
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Required Number of Conventional Generators in a 40 GWeOPaver Pool 8S a Function of 

MaiRtenance Interval and Circumstances 

MAINTENANCE NO SPS ONE SPS TWO SPSs SIX SPSs 

INTERVAL No No No 

Maintenance Maintenance Eclipses Maintfl~nce Maintenance 'Ecli ses Maintenance Maintenance Eeli 

Required Required Required Required P Required Required pses 

1 47-48 45-46 45-46 45-46 41-42 41-42 41-42 25-26 25-26 25-26 

2 45-46 43-44 43-44 43-44 39-40 39-40 39-40 22-23 23-22 23-22 

3 37-38 35-36 35-36 35-36 31-32 35-36 31-32 140-15 27-28 14-15 

4 28-29 26-27 28-29 28-29 23-24 26-27 28-29 6-7 19-20 28-29 

5 28-29 26-27 28-29 28-29 23-24 26-27 28-29 6-7 19-20 28-29 

6 37-38 35-36 35-36 35-36 31-32 31-32 31-32 14-15 14-15 14-15 

7 45-46 43-44 43-44 43-44 39-40 39-40 39-40 22-23 22-23 22-23 

8 47-48 45-46 45-46 45-46 41-42 41-42 41-42 25-26 25-26 25-26 

9 45-46 43-44 43-44 43-44 39-40 39-40 39-40 22-23 22-23 22-23 

10 37-38 35-36 35-36 35-36 31-32 35-36 31-32 14-15 27-28 14-15 

11 28-29 26-27 26-27 28-29 23-24 26-27 28-29 6-7 19-20 28-29 

12 28-29 26-27 26-27 28-29 23-24 26-27 28-29 6-7 19-20 28-29 

13 37-38 35-36 35':'36 35-36 31-32 31-32 31-39 14-15 14-15 14-15 

14 45-46 45-46 45-46 45-46 39-40 39-40 39-40 22-23 22-23 22-23 

No. of Conventional 
Generators Installed 49-50 46-47 47-48 47-48 41-42 43-44 43-41. 25-26 27-28 28-29 

Total Installed 49-50 51-52 52-53 52-53 51-52 53-54 53-54 55-56 57-58 58-59 

Capacity (GWe) 

Installed Margin (GWe) 9-10 11-12 12-13 12-13 11-12 13-14 13-14 
t 

15-16 17-18 018-19 

Percent Installed 22.5-25% 27.5-30% 30-32.5% 30-32.5% 27.5-30% 32.5-35% 32.5-35% 37.5-40% 42.5-45% 45-41.57-

Nargin 

"::;: 



TABLE A.7 
'. -
"-

Required Number'of Conventional Generators in.a 50 CWe Pover Pool as a Function of 
Maintenat\ce Interval and CircumstancQs 

ONESPS TWO SPSs SIX SPSs 
MAINTENANCE NO SPS 

No No No 
INTERVAL Maintenance Maintenance E Ii Maintenance Maintenanc~ U. Maintenance Maintenance . c pses Required Required c pees Required Required Eclipses Required Required 

1 58-59 55-56 55-56 55-56 52-53 52-53 52-53 35-36 35-36 35-36 
2 56-57 53-54 53-54 53-54 49-50 49-50 49-50 32-33 32-33 32-33 
3 46-47 43-44 43-44 43-44 39-40 43-44 39-40 22-23 35-36 22-23 
4 35-36 32-33 35-36 35-36 28-29 32-33 35-36 12-13 25-26 35-36 

~~ 5 35-36 32-33 35-36 35-36 28-29 32-33 35-36 12-13 25-26 35-36 f'l 6 46-47 43-44 43-44 43-44 39-40 39-40 39-40 22-23 22-23 22-23 > 
.~ , 7 56-57 53-54 53-54 53-54 49-50 49-50 49-50 32-33 32-33 32-33 ~ 

a-
8 

1),,= 58-59 55-56 55-56 55-56 52-53 52-53 52-53 35-36 35-36 35-36 

§! 
9 56-57 53-54 53-54 53-54 49-50 49-50 49-50 32-33 32-33 32-33 
10 46-47 43-44 43-44 43-44 39-40 (.3-44 39-"0 22-23 35-36 22-23 
11 35-36 32-33 35-36 35-36 28-29 32-33 35-36 12-13 25-26 35-36 
12 35-36 32-33 32-33 35-36 28-29 32-33 35-36 12-13 25-26 35-36 
13 46-47 43-44 43-44 43-44 39-40 39-40 39-40 22-23 22-23 22-23 
14 56-57 55-56 55-56 55-56 49-50 49-50 49-50 32-33 32-33 32-33 

Ro. of Conventional 
H Generators Installed 60-61 56-57 57-58 58-59 52-53 . 54-55 54-55 34-35 37-38 39-40 

~ Total Installed 60-61 61-62 62-63 . 63-64 62-63 64-65 64-65 64-65 67-68 69-70 

l 
Capacity (GWe) 

Installed Margin (CWe) 10-11 11-12 12-13 13-14 12-13 14-15 14-15 14-15 17-18 19-20 

:P Percent Installed 20-22% 22-24% 24-26% 26-28% 24-26% 28-30% 28-30% 28-30% 34-36% 38-40% ;::l 
.... Margin 

1\ 
,... 

I 
~ 
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in the columns labelled "No Maintenance" in the tables are always the 

appropriate values. This ability to ignore the scheduled maintenance 

requirements of the SPS equipment on the ground can be obtained by 

providing a second, completely redundant, ground station for the SPS. 

It should be noted tha,t the forced outage availability has not been 

changed. This implies that the level of redundancy has not been 

significantly increased. What has changed is the ability to shut 

one ground stati(;).~, completely down for maintenance while keeping the 

second station operating. The implication that there is a zero 

probability of any interruption of the power delivered to 'either 

ground station should also be noted. 

The values of n1 in the columns labelled "Maintenance 

Required" and "Eclipses" are determined as follows: during those 

intervals when the SPS is scheduled to be removed from the power 

for maintenance, the power pool would resemble a completely conventional 

power pool. The appropriate values of n i would be those given in the 

columns labelled "No SPS". When the SPS is not off-line for main­

tenance, the appropriate values of n
i 

are those in the columns labelled 

"No Maintenance". 

The maintenance of a single SPS in a power pool would 

be scheduled for intervals 4, 5 and 11, (or 12) ~ intervals during 

which the demand for power is near the minimum. The maintenance of 

each SPS in a power pool containing two SPSs would occur sequentially 

during intervals 3, 4 and 5 or 10, 11 and 12. Only one SPS would be 

off-line for scheduled maintenance at a time. Treating the periods 
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1 
J 

J 
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when the sun is eclipsed by the earth as if they were removals of th(· 

SPS from service for scheduled maintenance is the simplest way of 

calculating the amount of conventional generating capacity required 

in the power pool. The SPS is assumed to be unavailable for power 

generation during maintenance intervp-1s 4) 5,11 and 12. (104 days.) 

When there are six SPSs in a power pool, only three 

would be unavailable at anyone time because of scheduled maintenance. 

A separate set of n.Q,' s lvas calculated for maintenance intervals, 

3, 4, 5, 10, 11 and 12 for a power pool containing three SPSs. 

A.3.3 Calculational Techniques - Composite POlver Pool 

Calculating the requi1"ed installed margin when the SPS 

is used to meet the load in two independent 30 GWe p01ver pools whose 

times of peak demand differ by 3 hours is more complex than in the 

previous discussion. When th~re is no SPS in the composite power pool, 

each of the bola 30 mle power pools operate independently. The appropriate 

values for n.Q; in each of these power pools are the same as those 

contained in Table A.5. 

The times of peak demand for power in the two power 

consuming elements of the composite power pool are separated from each 

other by three hours. The variation in the pmver demand in the Cwo 

pools with the time-of-riay is shown in Figure 2.5. The output of the 

SPS at any particular time is fed to whichp.ver of the two pm.;rer pools 

has thp. highest demand for pOvlcr at that time. Thus ~ for half of 

each day of the t'wo pm.,er pools w'ould opera te t:'J if it were a 30 GHe 

.1\-13 



power pool which contained one 5 GWe SPS and for the other half of 

the day, each would operate as if it contained only conventional 

generators. The calculation of LOLPt (and consequently n~) for each 

of these two power pools took this shift into account explicitly. 

Two different sets of values for ottm have been 

calculated for each of the 30 GWe power pools. In one set of numbers 

the demand for electric power in the power pool being considered was 

higher than in the other. For the other set of numbers. the demand 

for electric power in the power pool being considered is lower than 

in the other. These sets of at 's (Table A.4) apply to each of the 
tm 

GWe power pools independently. 

LOLP~ for each of the two power consuming elements 

of the composite power pool was calculated independ~ntly with various 

assumed values of nt for both the Land H sets of ottm's. The L set 

assumed that this pool contained nt conventional gener·.~ ":':; and the H 

set assumed that the pool contained the nt conventional generators 

plus a 5 GWe SPS. Thes e two LOLPs were averaged to give the LOLP 

for each of the component power pools containing n
t 

conventional 

generators for that particular maintenance interval. The values of 

n
t 

which gave approximately the design LOLP (for one SPS) are entered 

in Table A.8 in the two columns labelled "No Maintenance Required". 

If each of the component 30 GWe power pools contained 

only one SPS ground station; each of these stations would have to be 

shut down for 3 maintenance intervals each year. During these intervals 
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the power pool whose antenna is shut down would not be able to accept 

power from the SPS and could be treated as if it were made up of only 

conventional generators. During the intervals when one power pool 

has its antenna shut down, the antenna in the other power pool would 

accept power from the SPS 24 hours a day. 
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MAINTENANCE 

INTERVAL 

1 

2 

3 

4 

S 

6 

7 

8 

9 

10 

11 

12 

13 

14 
Ro. of Conventional 
GenerCltors Installed 

Total Installed 
Capac!ty (Glle) 

Installed ~argin (GWe) 

Percent Installed 
Margin 

P+ 

38-39 

35-36 

28-29 

22-23 

22-23 

28-29 

35-36 

38-39 

35-36 

28-29 

22-23 

22-23 

28-29 

35-36 

38-39 

- ~" 

TABLE" A.8 

- 1 

Required Number of Conventional Generators in Each Portion of the Composite 
Power Pool (30 CWe and 30 eRe) as a Function of Maintenance Interval and Circumstances 

NO SPS ONE "SPS 
No 
Maintenance Maintenance 
Required Required Eclipses 

p P+ p p+ p p+ P 

38-39· 35-36 35-36 35-36 35-36 35-36 35-36 

35-36 33-34 33-34 33-34 33-34 33-34 33-34 

28-29 27-28 27-28 26-27 28-29 27-28 27-28 

22-23 21-22 21-22 20-21 22-23 22-23 22-23 

22-23 21-22 21-22 20-21 22-23 22-23 22-23 

28-29 27-28 27-28 27-28 27-28 27-28 27-28 

35-36 33-34 33-34 33-34 33-34 33-34 33-34 

38-39 35-36 35-36 35-36 35-36 35-36 35-36 

35-36 33-34 33-.34 33-34 33-34 33-34 33-34 

28-29 27-28 27-28 28-29 26-27 27-28 27-28 

22-23 21-22 21-22 22-23 20-21 22-23 22-23 

22-23 21-22 21-22 22-23 20-21 22-23 22-23 

28-29 27-28 27-28 27-28 27-28 27-28 27-28 

35-36 33-34 33-34 33-34· 33-34 33-34 33-34 

38-39 36-37 36-37 " 36-37 36-37 36-37 36-37 

76-78 77-79 77-79 77-79 

16-18 17-19 17-19 17-19 

26.7-30% 28.3-31.7% 28.3-31.7% 28.3-31.7% 



APPENDIX B 

CHANGE IN POWER POOL COSTS DUE TO SPS 

When a five gigawatt SPS is included in a power pool (peak yearly 

demand = P ) instead of five one gigawatt nuclear power plants 
max 

(installed over a 5 - 8 year period), there is a significant decrease 
. 

in the power pool fuel costs and a corresponding increase in the 

power pool fixed and operating costs. Since many utilities have 

separate fuel and fixed rates, the size of these individual changes 

may have a significant impact on the financial position of the utilities. 

In this Appendix, the equations used to calculate the changes in both 

cost categories are derived. 

Fuel Cost Savings 

When the SPS comes on-line, the fuel cost savings per kilowatt 

hour of energy sold (per unit fuel savings) during the first year 

would be 

energy delivered by the SPS x average cost of power 
pool energy 

p.u. fuel savings = ----t-o-t-a-l--en-e-r-gy---d~e~l~i~v~e~r~e~d~b~y--t-h-e--p-o-w-e-r--p-o-o~l-------

It is expected that the SPS will deliver 4.16 x 1010 kW-hrs per year. 

The average cost of energy from the power pool is assumed to be $.015/kW-hrs 

in 1974. If the cost of fuel inflates at the rate of if per year. the 

average cost of energy from the power pool, n years after 1974, would 

n be $.015(1 + if) per kW-hr. 
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The amount of energy sold by the power pool each year is defined 

to be P x .56 x 8760 kW-hrs per year where P is the yearly peak 
~x 

~x 

* 
power demand in 1994 and .56 is the assumed system load factor. 

If the yearly peak demand grows at the rate of g per year, the peak 

n-20 
demand would be P~x(l + g) • 

The total cost of fuel per kW-hr (p.u. fuel cost) of all the 

energy sold by the power pool would be the per unit cost if the 

generation mix r~ined the same minus the per unit savings caused 

by the SPS: 

p.u. fuel costs = 15 mill@.. 
kW-hr (1 + i )n{1_[4.75 x 10

6 
kW l} 

f .56 P (1 + )n-20 
max g 

Fixed and Operating Cost Increases 

The change in the fixed and operating costs of a power pool caused 

by installing an SPS in 1994 is the increase in costs caused by adding 

the SPS and a corresponding decrease caused by E£! adding the otherwise 

required. conventional capacity. 

The cost increases due to the SPS are the sum of the following 

capital recovery costs and the SPS operating costs; 

* 

• 
i 

Capital recovery costs = $7.6 x 109
(1 + ii)20 1 _ (~c+ i )-30 

cc 

where ii a the inflation rate between 1974 and 1994, and 

icce the discount rate. 

load factor a 
average demand per year 

peak demand per year 
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• SPS operating costs = $513 x 106(1 + ii) n 

wheren = the number of years since 1974. 

Oost decreases are due to the deferral of the conventional generation 

capacity that would have been required that year. The amount of capacity 

deferred in 1994 would be P x g where g is the power pool growth 
max 

rate. If all the deferred capacity is assumed to be in the form of 

nuclear generation capacity, the decrease in 1994 would be 

P x g x $490/kW x (1 + i )20 x f 
~x i 

where f is the fixed cost factor assumed to be .15. Forty-six percent (46%) 

of the fixed costs are assumed to continue to rise with inflation and 

the rest is fixed once the plant is built. 

If the SPS had not been built, other conventional generation capacity 

[P • g • (1 + g)] would have been built the following year. The max 

savings associ.ated with this capacity must be added tC' the savings 

due to conventional capacity deferrals from the previous year. This 

continued until the total amount of deferred conventional capacity 

equals 5 GWe. At that point, the cost of the extra reserve capacity 

must be added. Thereafter, the changes in the utilities fixed and 

operating costs are governmend by the general rate of inflation. 

The per unit fixed and operating cost of the energy sold by 

the power pool is defined as follows: 

per unit fixed costs c ~~~; (i + i )2O+n + cost increases 
i .56 x P

max 
x (1 + g)n-20 
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APPENDIX C 

CASH FLOW ANALYSIS - SPS ENERGY PRICED AT THE 
COST OF ALTERNATIVE BASE LOAD GENERATION 

It is possible for the owner of an SPS to price the SPS energy 

to the utilities at the incremental cost of alternative base load 

generation; if the inflation rates are high enough, the SPS owner 
, 

will eventually make a reasonable profit. The amount of debt 

incurred each year as a result of this pricing arrangement and the 

total corporate debt as a function of time, are derived in this 

Appendix. The maximum allowed rate of return is defined by the 

condition that the corporate debt shall be zero at the end of the 

SPS life (30 years). It is this rate of return (i ) which will cc 

determine if this pricing concept is feasible. The numbers of years 

that must pass before the corporation can begin to repay the stock/ 

bond holders will also be important and can be derived from the 

maximum allowable discount rate. 

Inflation Rates 

It is possible to define two different inflation rates; the general 

inflation rate, ii' and the fuel inflation rate if' The fuel inflation 

rate is the rate at which the price of fuel increases each year. While 

historically, these two rates have been roughly the same. This is 

unlikely to remain true as the more convenient fuels become scarce; 

it is the expectation of scarcity which is the basic rational for 

proposing to build the SPS. While if need not equal ii' it is unlikely 

to be less than ii' The general inflation rate affects the capital and 
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and operating costs of the SPS and the fuel inflation rate affects 

the revenues received. 

Corporate Debt 

At the beginning of year one (1994), the corporation's debt 

would be D. During this first year, the corporation would spend DC o 

to operate, incur an additional debt of D i and receive revenues o cc 

of REV. The corporation's debt at the end of year one would be: 

where 

D = 
n 

DC = 

th is the debt at the end of the n year after 1994 

$7.6 billion (1 + i 1) 20 

general inflation rate 

is the operating cost in 1994 dollars 

20 = $513 million (1 + i 1) • 

REV = is the revenue received in 1994 dollars 

20 10 
= Ie (1 + if) x 4.16 x 10 (kW-hrs) 

IC = the incremental cost of the alternative generation 

1n 1974 dollars 

if = the fuel inflation rate 

The corporation's debt at the end of the nth year would be: 

D m D 1 (1 + i ) + DC (1 + 1 )n-1 - REV (1 + i )n-1 
n n- cc i f 
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or 

D c: D 
n 0 

'_tmnp H*=n 

(3.6) 

The debt incurred during the nth year would be: , 

{

i F+i )n-1 - i. (1+i.)n-1} 
~D = D (l+i )n-1 i + DC c . CC 1. 1. 

n 0 cc CC (1+1.) - (l+i.) 
cc 1. 

{

i (l+i )n-1 _ i (l+i )n-1} 
_ REV £ £ cc cc 

(l+i£) (l+i) (3.7) cc 
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