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1.0 Summary

This working paper documents a study of the interaction between the orbiter
primary reaction control system (PRCS) and the remote manipulator system
(RMS) with a loaded arm. This analysis was performed with the Payload
Deployment and Retrieval Systems Simulation {PDRSS) program with the passive

arm bending option. The passive-arm model simulates the arm as massiess

elastic 1inks with locked joints.

The goa1s of the study were {1) to provide additional validation of the
PDRSS program and (2) to provide analysis data to aid in determining if
the PRCS jets can be fired with a loaded arm. The major parameters of

~concern were the arm joint 1oads. SPAR operational loads are provided

Tor comparison purposes.

The study was divided 1into two paris. The first haft was the evaluation
of the response of the arm to step inputs (i.e. constant jet torgues)
about each of the orbiter body axes. The joint torques quickly exceeded
the SPAR maximum operational Joads. For the case with cdnstant torgues
applied about the orbiter ro]].axis, the shoulder jbint cross-axis reached
its maximum operational Toad in approximately one second. The resu1ts

from this part of the study were compared with the results of a similar
study by SPAR.

The second part of the study was the evaluation of the response of the

arm to minimum fmpulse prﬁmary RCS jet firings with both single puise

and pulse tra1n 1nputs S1ng1e m1n1mum impulses were app11ed to the orb1ter

about each of the orbiter body axes and the resulting arm joint torques

caIcu]ated. The responses to the pitch, roil and yaw maneuvers displayed

natura]'pefiods of approximate]y'ZB, 17, and 14 secdnds respectively.
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The magnitudes of the loads due to the yaw mancuver were an order of
magnitude less than those due to the pitch and roll maneuvers. None of

the torques observed exceeded the SPAR mean operational loads.

The results of this study showed that the passive-arm model could be driven
unstable with a pulse train of PRCS minimum impulse jet firings. Several
different freguencies for pulse train inputs which resulted in divergent

arm oscillations were identified and the response of the arm to those

. inbuts was demonstrated. The resulting joint torques were also shown

and compared with SPAR mean operational Toads. The wrist joint proved

to be the most Sensitive, reaching its mean opefational load after only

two pulses had been app}ied to the orbiter. The results from this part

of the study were compared against results predicted by a simplified analyt-

ical model.

Section 2 outlines the purpose and goals of the study. Section 3 defines
the coordinate systems in which the Toad data is presented, presents the
structural load Timits published by SPAR and provides a description of
the modeling technique used to simulate the minimum impulse. Section

4 presents the results from the study. Section 5 contains the conclusions

and recommendations resulting from the study. Section 6 contains a list

of references.




2.0 Introduction
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-Jj ’ The purpose of this working paper is to present the results of a study

of the interaction between the orbiter primary reaction control system

'“é; (PRCS) and the remnte manipulator system {RMS) with a loaded arm. Speci-
Tically the study consisted of two parts:

1) Evaluation of the response of the RMS to step inputs (i.e., constant
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Jjet torques) about each of the orbiter body axes; and
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ﬁi- 2} Evaluation of the response of the RMS to minimum impulse jet firings

"with single pulse and pulse train inputs.

There were two goals for this study, The first was to provide additional

validation for the PDRSS model. This was accomplished by comparing the

results of part 1 with the results of a similar analysis by SPAR and by
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comparing the resulits of part 2 with results predicted by a simplified

analytical model. The second goal was to provide analysis data to aid

in determining if the PRCS jets can be fired with a Toaded arm.

gfﬁp - The Payload Deployment and Retreival System Simultation (PDRSS) program

(References 1 and 2) with the passive arm bending option was used to perform

th{s analysis. The passive arm model simuiates the orbiter and payload

-as rigid bodies and the RMS arm as massless elastic Tinks with locked

joints. A mission situation in which the brakes were on would satisfy

the locked joints assumption..

The SYDS milestone 3.11 version of DAPCYC (Reference 3) provided the model

of the digital adtopi?ot.(DAP) of the onorbit flight control system.




! 3.0 System Definition
This section defines the coordinate systems in which the load data is
presented, presents the load 1imits published by SPAR and provides a des-

cription. of the modeiing technique used to simulate the minimum impulse.

3.1 Coordinate systems
The load data in this report is presented in several different coordinate

systems centoied at each of the joints. This section defines the coordinate

systems in relation to the orbiter body system shown below in Figure 1.

B

Figure 1:  Orbiter Bedy Coordinate System

a
4
3
s

" The longeron coordindte systém (L) is obtained from the orbiter body system
by a 180c rotation about the z-axis and a -19.2¢ rotaiion about the x

axis.
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The shoulder yaw coordinate system (SY) is obtained from the longeron

system by a rotation of 0; degrees about the z-axis where g 15 the shoulder

yaw angle.

The upper arm coordinate system (UA) is obtained from the shoulder yaw

system by a rotation of j2 degrees about the y-axis where g2 is the shoulder

pitch angle.

The Tower arm coordinate system (LA) is obtained from the upper arm syétem

by a rotation of 83 degrees about the y-axis where g3 1S the elbow pitch

angle.

The wrist coordinate system (WR) is obtained from the lower arm system

by a rotation of 44 degrees where g4 is the wrist pitch angle.

The hand coordinate system (HD) is obtained from the wrist system by a

rotation of g5 degrees about the z-axis where g5 is the wrist yaw angle.

Figure 2 illustrates these coordinate systems with respect to the orbiter

body system for the arm configuration USéd fof the minimum impulse analysis

3.2 Structural Load Limits

This section presents the load 1imits published by SPAR in Reference 7.

" These Toads are provided for comparison'purposes. In the following tables,

the non-subscripted coordinate systems are SPAR axes. Subscripted axes

refer to PDRSS notation as defined in Section 3.1.
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Eﬁi (2} Shoulder Yaw Joint Limit Loads, ft-1bs
i
L _ Case Mx My Mz
1 Mean 125 1000 1000
- Max 1500 1200 1200
g

(b) Shoulder Pitch Joint Limit Loads, ft-1bs.

Case My My* Mz
Mean 1200 1000 1550
Max 1440 1200 1860

Table 1: SPAR Operational Loads




(¢) Elbow Joint Limit Loads, ft-1bs

Case Mx1 Mz1 My™* Mx2 Mzp

Mean 1200 1100~ 700 300 1350
Max 1440 1320 340 360 1620

N
“"‘*P:[- Xl 11 ;D

(d) Wrist Joint and End Effectcr Limit Loads, ft-1bs

Case : Mx My Mz

Mean 300 300 300
Max 360 360 360

* . .
Drive Axis

Table 1 (cont.): SPAR Operational Loads
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3.3 PRCS minimum impulse
This section presents the orbiter characteristics for PRCS rotational

maneuvers, describes a minimum impuise PRCS jet firing and describes the

technique used to model a minimum impulse with the DAPCYC model (Reference 3).

Table 2 gives the orbiter characteristics for PRCS rotational maneuvers
(Reference 4). The positive pitch maneuver uses four jets while the negative
maneuver only uses three. This resulfs in a higher orbiter acceleration

for a positive pitch maneuver than for a negative one. The positive pitch

maneuver was used for the single minimum impulse analysis to allow for

the worst case situation.

A minimum impulse jet firing is fhe resu]t of a single jet-on command
from the DAP. The DAP operates at a frequency of 25 hz; therefore, a
new command is issued every 40 milliseconds {msec). Figure 4a shows a
thrust pfofi]e (Reference 5) for a primary RCS thruster for a 40 msec
pulse. The rise time for the thrust is 39 msec. It has just reached
its steady state value when the jet-off signal is commanded on the next

pass through the DAP. The decay time to 10% thrust is another 33 msec.

This profile can be compared with the one output from the DAPCYC model (figure
4b). DAPCYC assumes the thrust magnitude input to the model, normally 100%

max thkust, is achieved instantanecusly at the jet-on cemmand and the thrust

level returns to zero instantaneously at the jet-off command. Using 100%

max thrust as the input to the DAPCYC model imparted a higher velocity to the
orbiter than those given in Table 2. Therefore an effective thrust level,

71% max thrust, was input to the model. This effective thrust level was found
by first integrating the thrust profile in figure 4a to find the total impu1sé

and then dividing the total impulse by one DAP period, 40 msec. The orbiter
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velocities achieved using the effective thrust level matched those in Table 2.
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TABLE 2:

B P R S P S S P S SIS ST SR S

i

e Maneuver Acceleration Jets* ~ Orbiter Aczeleration
H Levels at Max Thrust
i
g - |
;gJ +Ro11 high L4D,R4U 1.38 deg/sec2
R
‘ -Ro11 high 14U, RAD -1.38 deg/sec?
? ;  4Pitch high F1D,F2D, LAU,RA4Y 1.4 deg/sec?
1 -Pitch high F3U,L4D,R4D ~1.06 deg/sec?
+aw  high FIL,RAR 0.777 deg/sec?
n .
~Yaw - high F2R,LAL -0.777 deg/sec2

* See Figure 3
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ORBITER CHARACTERISTICS FOR PRCS ROTATICNAL MANEUVERS

Orbiter Response Due to
Minimum Impuise

3.96 ¥ 10-2 deg/sec
-3.96 X 10-2 deg/sec
4,02 % 10-2 deg/sec

-3.04 X 10-2 deg/sec

2.23 X 10-2 deg/sec

~-2.23 X 10-2 deqg/sec
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Figure 4:  Thrust profiles from PRCS minimum impulse firing
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4.0 Analysis and Resutts

This section contains a description of the assumptions and constraints
used for this study and also presents the results obtained. Section 4.1
documents the first part of the study, the evaluation of the response

of the arm to step inputs. Section 4.2 documents the second part of the
study, the evaluation of the response of the arm to minimum impulse jet

firings.

4.1 Step input analysis

The purpose or the first part of this study waé fo evaluate the response
bf the afm to stép inputs., This section presents the results and also
contains a comparison between those results and the resuits obtained in

a similar study by SPAR (Reference 8). PDRSS runs made were:

o Positive orbiter pitch with paylioad ih"XORB' configuration.
e Positive orbiter pitch with paylcad in 'YORB' configuration.
¢ Positive orbiter roli.ﬁith payload in 'XORB* configuration.
© Postive orbiter roll with payload in 'YORB' configuration.
é Positive orbiter yéﬁ with payload in 'XORB? configuration. |

‘e Postive orbiter yaw with payload in 'YORB' configuration.

The 'XORB' and 'YORB' payload configurations are illustrated in Figure 5.

4.7.17 Assumptions and constraints

In order to combare.resu1ts with SPAR the aSsumptions'and constraints

in Reference 8 were dupiicated as closely as possible. However, Reference
8 did not specify all of the'defai]s of the'Study.. Some uhknown'detai1s |

of the SPAR analysis included: constant jet acceleration vs. active DAP

14
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'XORB' Payload Configuration -
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'YORB' Payload Configuration
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Figure 5: Payload relative positioné for étep input analysis
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‘(digital autopilot), active joint servo vs. elastic joint model, and

d payload orientation.

. The PRCS jets in the PDRSS program were used to match the "peak" orbiter

accelerations listed in Reference 8. The PDRSS runs were made with the

; DAP on and an clastic joint model. Because of the unknown payload orienta-

tion in the SPAR analysis, two payload orientations as shown in Figure

: % 5 were examined. The orbiter and payload mass properties are presented hg
é iﬁ Table 3 and Table 4, respect1ve1y. Table 5 def1nes the RMS conf1gurat1ons. E?
% The RMS configuration used by SPAR is the 'S' configuration. The PDRSS ZE
é runs uéed a s]ijht]y different arm coﬁfiguration, as indicated in Table 2{
% 5, to avoid the singularity associated with O degree elbow pitch angle é;
:_2 in the PDRSS program. | é%
f 4.1.2 _Results 5%
i Figure 6 shows acceleration histories associated with the different maneuvers %ﬁ
_% generated by the PDRSS program. From these‘acce]eration plots one can g%
|- see that the orbiter rotational acceleration is constantly decreasing g;
due to the flexible arm with payload. The sudden dips in the acceleration %%
. 3 curves are due to the DAP jet firings to.maintain qff—axis attitude hold. EE
é For éxamp1e, a positive roll maneuver requires the DAP to fire jeté L4D E;

_and L4U (See Figure 3) until the requested roll rate is reached. However,
| since negative yaw is induced, the positive yaw jets F1L and R4R fire

to hold yaw rates and angles within deadbands. These positive yaw jets

then induce négative roll which accounts for the sudden decreases in roll

acceleration.

Table 6 summarizes the comparisions between the results from this analys1s

and the resu1ts obta1ned by SPAR.

SN ETIE T a e




TABLE 3

ORBITER MASS PROPERTIES

RAMETER MAGNITODE ——  UNITS
Weight 185,244, Pounds

Ix 771,000. Slugs-Fit
Ty 6,013,000, S1ugs-Ft
Iz 6,235,000. Slugs-Ft2
IxZ 113,000. S1ugs-Ft2
Lyy -5000. STugs-Ft2
IYZ 0.0 S1lugs-Ft2
e 89.725 Ft

YR 0.0 Ft

Leg 31.175 Ft

TABLE 4

PAYLOAD MASS PROPERTIES

“FRGRITUDE ONTTS

PARAMETER
Weight 32,000, Pounds
Length 60. Ft
Radius 7.5 Ft
XX 312,112, STugs-Ft2
Iyy 27,973. Slugs-Fi2
177 312112, STugs-F¢e

TABLE 5

RMS CONFIGURATION

SPAR 'S§7 Configuration

PDRSS Configuration

Joint Angle

Joint Angle

S.Y.

P,

P
{.P.
Y

E

M= mtuw

[

0

900

0

0

0
Roll O

S.Y. 0 -
S.P. 950
E.P. ‘ -50

- W.P. 0.
W.Y. 0
E.E
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Figure 6: Acceleration histories for step input analysis




TS RAN L S I TR LA

putf o D AR

t

t * TABLE 6: COMPARATIVE DATA FOR SPAR AND PDRSS INPUT ANALYSIS
i SPAR DATA
’ e Ceaarect) By | orotiendglsesloe | T
- Positive Roll 0.024 1500. (My) 0.6 1.0
; Positive Pitch 0.024 1200. (My) 2.2 Lo
i Povsit'ive Yaw 0.01356 1200. (My) 1.4 2.05
# ..,_.
o PDRSS DATA
f‘ _ ' Maneuver Payload In11:1 al Acceleration Loadm ¥ Orbiter Deflection TMAX
“ % ' Position rad/sec? Q at TMAX (deg) (sec)
;E;? - | Positive Ro11 | X ORB 0.024 1500 (My) 0.54 0.91
b Positive Roll | Y ORB 0.024 1500 (iy) 0.52 0.89
A Positive Pitch| X ORB 0.0238 1200. {My) 0.34 0.75
Positive Pitch! Y ORB 0.0238 1200. (My) 0.35 0.74
Positive Yaw | X ORB 0.0132  }1200 (my) 1.03 1.68
Positive Yaw | Y ORB 0.0132 1500 (Mx) 0.91 1.58
d Positive Yaw | Y ORB 0.0132 11200 (M7) 1.07 1.72
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Figures 7-10 present the moment histories for the shoulder yaw joint.

The results from the SPAR study are also shown for comparision.

Ir the positive rol171 maneuver, the PDRSS runs showed no appreciable difference

in the load histories between the *XORB' and 'YORB' payload configurations.

The shoulder yaw joint Inad history is shown in Figure 7 for the payload
in the 'YORB' position. The moment about the X axis in the shoulder yaw
Joint coordinate system showed the highest moments of the three axes.

Initial orbiter acceleration matches that of Reference 8 (0,024 rad/sec?).

The PDRSS Program was run with a positive pitch maneuver in both !XORB'
and 'YORB' payload configurations with no appreciable difference in the
joad histories. The load history for the TXORB* configuration is shown
in Figure 8. As expected the moment about the shoulder yaw y axis reached

its max design load before the other shoulder moments.

From Reference 8, the roll and yaw maneuver was interpreted as a commanded _1
positiﬁe yaw with its associated induced negative roll. For the roll |
and yaw maneuver with the payload in the 'XORB' configuration the shoulder
yaw joint'1oad.history is shown in Figure 9. The moment about the shoulder
yaw joint y axis reached its max design load before the other‘shou1der
moments. However the PDRSS run reached max torgue about the y axis 0.33

seconds before the SPAR run.

For the PDRSS run with the payioad in the 'YORB' configuration, the shoulder
yaw joint load history is shown in figure 10. However, in this configuration,

the moment about y never yeaches its max design Timit of 1200 ft Tb.

‘The moment about x reached its max design Timit of 1500 ft 1b. first. -
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4.2 Minimum impulsc analysis
The purpose of the second part of this study was to evaluate the response
of the RMS to minimum impulse jet firings. The approach used can be explained
in two steps:
1) Input a single minimum impulse about each of the orbiter body axes
a) Determine the natural frequency of each response
b} Compare the joint torques with mean operational loads
2} Input pulse trains of different frequencies about the orbiter body
pitch axis
a) Identify frequencies of pulse train inputs which will drive the
arm unstable

b) Compare the joint torques with mean operational loads

4,2.1 Assumptions and constraints
The payload was assumed to be a 32000 1b homogeneous 15' by 60' cylinder.

The payload positions relative to the orbiter are shown in figure 11.
The arm angles were initialized as shown in figure 2.

The arm flexibility data was taken from Reference 1.

4,2.2 Analytical approach .

An analytical approach was used to predict the response of the arm to

pulse trains. The purpose qf using a simplified analytical model was
twofold. The first was to proyide additional validation of the PDRSS
program by comparing the results obtained with PDRSS against those predicted
by the.ana1ytica1 model. The second was to identify analytically the

frequencies of pulse train inputs which will drive the arm unstable.




ol

TSP SR p . W PR LR S i 0 bl g A
S PR S e S

: 7
) ”
: ,/
Y% -
’ \ ® / -7
\ 2 o
P e -~
b 5, ’/ -~
¥, \ ’ e
\, / Cd
L \ F ’/
s
N\ |
s \\ ,I/’/
s \ /' //
S N\ 2
¥

- PITCH AND YAH . ISANEUVERS

ROLL MANEUVER

Figure 11: Payload relative positions for minimum impulse analysis
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The pulse trains (figures 12b 55&'3/u}3here input to the simplified analytical

model of the orbiter/RMS/payload system developed in Reference 6 and pictured

in figure 12a. In this model the orbiter and payload are assumed to be
rigid bodies connected by one rigid link with a flexible joint. The link

was connected at the CGs of the two bodies. The transfer function of the

system is
H(S) = ¢(s) = -1
x S 2 2
( ) . Il (S + wk)
8-l
where we = k| 1 + 1
e 2 2.2
- ==

Using Fourier analysis techniques tho steady state response was computed.

¢(t) =Yg + §12 |Yn| cos (mw t + LYp)

n

For pulse trains with pulses in the same direction the Fourier coefficients

are: <
S
Toh
o '1 ¥
- . -j"nf h = . s
Yn < G h s1nc(nf0h) . 0 n 1:2a3’

To Iy [@ - (Zano)Z]

where sinc(x) = sin mx

mx
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(a) orbiter/RMS/payload system

x(t) SR G
=8 -
nanimi £
|| L i H - T
—{ = h % i h
[T.To-{ G
(b) same direction pulse trains
x(t)
G

o o

4l
k—To —y

(c) alternate direction pulse trains

Fiqure 18:

Simplified Analytical Model of

s
Il
m2
12

Wi

Tk

orbiter mass

orbiter inertia
payload mass
peyload inertia
spring constant
joint spring torque
natural frequency
of system

natural period
of system

znfo = pulse train freguency

pulse train period

pulse width

pulse magnitude

= 2wf° = pulse train frequency

Orbiter/RMS/Payload Sycien

pulse train period
pulse width

pulse magnitude

n

keb



The resonant frequencies for same direction pulse trains are those which

satisfy the relationship wk = nwo or alternately nTk = To» N=1,2,3,...

For pulse trains with puises in alternate directions the Fourier coefficients are:

5" 0
-2 s. 4 -c
o G h 1nc(nf°h) 3 junf (h + To/2 + T/2) Sk
n 5 — Nek 5.
1 Il'[9k - (2wnfo) J
Yn =0 h=2:4:6,:::

The absense of even harmonics was expected since the aiiernate pulse trains
have halfwave symmetry. The resonant frequencies for alternate pulse

trains are those which satisfy the relationship wk = nwo Or alternately

Rl = To. 0= 1,355000

The above analysis shows that for the ana]yticé]bmode1 same'&irec£ion

pulse trains with periods equal to intsger multiples of the system's natural
period result in divergent oscillations. Alternate pulse trains with
reriods equzl to odd intejer multiplas of the system's natural period

also result in divergent oscillations. Tie amplitudes at a given time

are twice the ampiitudes which result from same direction puise trains

of the same frequency. Alternate pulse trains wilii pciriods équa? to even
integer multiples of the systems natural period do not result in divergent

oscillations and have a weil-defined steady-state soluticu.

4.2.3 Rasults

Figures 13-18 show the torque histories at the arm joints in response

to a single minimum impulse. The worst case loads for each maneuver and




for each axis are shown. For example, an impulse about the orbiter pitch
axis produces the highest torques at the shoulder yaw joint about the
x-axis of the shoulder yaw coordinate system (See figure 2). Also the
highest torgues about the x-axis of the shoulder yaw system are produced

from an impulse about the orbiter pitch axis.

The responses to a single minimum impulse about the orbiter pitch, roll
and yaw axes displayed natural periods QF approximately 28, 17 and 14
seconds, respectively. The magnitudes of the ioads due to an impulse
about the orbiter yaw axis were in general an order of magnitude smaller
than the loads resulting from the pitch and roll maneuvers. This was
expected because the forces exerted by the payload act through a shorter
moment arm for the yaw maneuver than for the roll and pitch maneuvers.

None of the loads observed exceeded the SPAR mean operational loads.

Pulse trains with periods equal to integer multiples of the system's natural
period were applied to the orbiter using the PDRSS program. The resulting
end effector responses are shown in figures 19-23. These responses matched
the analytical predictions given in Section 4.2.2. Divergent oscillations
resulted from same direction pulse trains with To = nTk and alternate
direction pulse trains with Ty = nTk, n odd. For alternate direction

pulse with To = nTk, N even, the oscillations were small and bounded.

The ramp present in the response to alternate direction pulse trains was

due to the unequal pitch torque magnitudes. (See Section 3.3)
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The results are shown for pitch maneuvers only. Similar results were

obtained for pulse trains applied about the orbiter roll axis.

Figures 24-26 show selected joint torque histories for the cases with
diverging arm osciilations. The response to a single pulse is also shown
for comparison. The tic marks indicate the times at which the pulses
were applied. The wrist joint reached its mean operational load after

only two pulses had been applied to the orbiter. Table 7 gives a summary

for the load histories shown.
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TABLE 7:

MOMENT

Mz

SUMMARY OF LOAD RESPONSES TO PULSE TRAIN INPUTS

MEAN OPERATIONAL NO OF PULSES INPUT
LOAD (FT-LBS) BEFORE DESIGN LOAD
EXCEEDED
(ALT PULSES T = Ty)
300 2
300 9
1350 9
1250 6




6.0 Conclusions and Recommendations
This study showed that PR.CS step inputs with a loaded arm quickly exceeded
the SPAR maximum ¢perational loads. For the roll maneuver the shoulder joint

cross-axis reached its maximum operational load in approximately one second.

The results also showed that a single isolated 40 msec minimum impulse
PRCS jet firing was acceptable. The resulting loads did not exceed the

SPAR mean operational loads.

This study also demonstrated that the passive arm model could be driven
unstable with pulse train inputs. Even though the sequence of pulses
commanded by the pilot will be random, the cequence is expected to contain
some periodic components. Therefore, the response of the arm to periodic

pulse trains is of significance.

For the cases with divergent arm oscillations the joint torques quickly
exceeded the SPAR mean operational loads. The wrist joint reached its

design load after only two pulses.

The results from the study are based on assumptions of massless links,
locked joints and elastic toroues applied at the joints. Based on the
above assumptions it appears that a short pulse train could damage the

arm. However the effects of the torque motors were not considered. There-
fore, in view of the potential problem identified, it is recommended that

this analysis be extended to evaluate the effects of the active joint

servo motors.
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