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STUDIES ON THE IN LUENCE ON 'FLEXURAL  WALL DEFORMATTONS ON THE
DEVELOr=MENT OF THE FLOW BOUNDARY LAYER

W. Schiln*

SUMMARY

Flexural wave-like deformations can be used to excite boun-
:x dary layer waves which In turn lead to the onset of turbulence

In the boundary layer. The investigations were performed with
flow velocities between 5 m/s and 40 m/s. With four different
flexural wave transmissions a frequency range from 0.2 ice/s to

=r	 1.5 kc/s and a phase velocity range from 3.5 m/s to 12 m/s was
covered. The excitation of boundary layer waves becomes most
effective if the phase velocity of the flexual wave coincidesr
with the phase velocity region of unstable boundary layer waves.
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SYMBOLS

Y	 local coordinate in the wind direction

A	 amplitude of the oscillator normal. to wall

A s	amplitude of the excitation threshold

A	 wavelength

No	 wavelength of the flexural wave

S*	 displacement thickness

f	 frequency

f 
	 signal frequency

f 	
coincidence frequency

Um	wind velocity in the middle of the tunnel

c 	 phase velocity of the boundary layer waves

a	 amplitude coefficient of the boundary layer waves in dB/cm

cr/U., nondimensional phase velocity

2n fS */U. pond irrrens ional frequency
Re	 Reynolds coefficient

*Physical Institute of the University of Coettingen

**Numbers in margin indicate pagination in foreign text.
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V	 phase angle

Tu degree of turbulence.

1. Test Assembl

1.1 Wind Tunnel

The influence of a flat wall deformed by a propagated wave on the

flow boundary layer at this wall has already been studied on a theo-

retical basis several times [1, 2, 31. The present experimental stu-

dies treat this problem with regard to the excitation of boundary

layer disturbances due to this type of wall deformations.

The wind tunnel used for the studies has a cross-section of 10 cm

x 10 cm, and permits measurement in the velocity range from 5 m/s to

40 m/s. The degree of turbulence in the middle of the tunnel is Tu <

4 x 10-4 . In this tunnel there is a flat plate employed with its

sharp edge parallel to the directionof flow. The middle section of

this plate can be replaced by different sound generators or flexural

wave transmissions.

Without introducing an artificial disturbance, the boundary layer

is laminar along the entire test section (ca. 50 cm); the displacement

thickness ,c* is between 0. 3 mm and 0.5 rani.

To measure the boundary layer deformations, two hot wire anemo-

meters are used; these can be moved in a horizontal or a vertical direc-

tion. The amplitude of the wall deformation is measured by a capaci-

tive sonde (carrier frequency procedure).

1.2 Flexural Wave Transmissions

Different preliminary studies which used a piston oscillator set

Into the wall as a sound generator have shcwn that even at very small

amplitudes (A ti 10-3 rim), a continuous excitation of boundary layer

disturbances can occur. For q more accurate study of the disturbance

excitation, a wa l e deformation shall be induced which corresponds to

a flexural wave. The phase velocity of this flexural wave must be in

the range of phase velocity of ::he free boundary layer wave, so that

coincidence of both waves car. be achJeved over a longer path length.

The phase velocities and frequencies of unstable boundary layer waves

along a flat wall are determined by tho Feynolds coefficient according



` to the theory of Tolltuien and Schlic.ht.ing, 	 [b].	 `There stills	 resulU	 .;
frecluoncy range of ea. 0.2 kkiz to 1.5 kN-- and a wave-length range

°.' t'voin ca.	 5 mm to	 30 tllm,	 for t.ho	 flexural	 wave tratl;;mission	 under
consid o ration of the da ta of thy' W111d tunnel. 	 The phase velocity of

the faexllral w;^ve should thearefore` be varied between 1 m/s and 2t_1 m/s.
^'110 110	 100 velocities citlnot be att ained In n homogeneous material

W111011 s imultaneously has sufficient st at ic strength and small clamping:.
vn1t10

Therefore, an arrangemont was selected for which the flexural
w:ivt , could be modeled by two support paints per wavelength l .	 It coil-

" slits of a plate with a num13011 of parallel slits cavered on the wind-
ward side with an easily bent. foil.	 T'ne resultant chambers are driven
by two pneumatic loudspeakers so that they oscillate in pairs in counter-

phase.	 Figure 1	 shows this type of floxiii , al wave 	 t.ratlsmitter.	 It has
" a constants wavelength which is equal to twice the ;•.lit	 sepnratlo',i.

FOUL	 trzatismit.ter.,, with wavelengths	 1	 _	 9,	 1 11,	 20,	 and	 28 min were used.

This	 ty}^e of litte^ar arrnnge^nient of oscillators rt^diates practically
no sound since it consists of a number of elements oscillating, in coun-
terphase; the separation of these e lements is very small compare d to
the sound wavelongth; accorc3:ittgl,y,	 the field decreases r:it Uiy with

increasing distance from the oscillators.	 In the direction of the
target,, a field decrease of CI O  dB/cm was measured.

CIO

^^^T= 1 --- 111"`	 ^~

z% ,^,,. fI 1'r _	 y1,

F''i	 t1I`e'	 l	 V iew of the	 tlexural 	 wave	 t ranstilitter 	`^^	 =	 1 11 	 mm.

l Ail expansion of thep}?arat us was platlne'd so that the flexural	 wave
r o111	 hE'	 -}t11:t^E'tj 	 i^^:Ith .a maximum oC	 twelve	 support	 points.	 Thus	 .i
signi.fic rintly improved realization of the	 flexural	 leave	 is ensuroki.
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2. Results

The amplitude and phase sequence of this special, periodic, sur-

face oscillat on corresponds to a standing wave. Measurements of the

alternating speed caused by the oscillation in the boundary layer show

that with increasing wind velocity, a propagatizir wave in the direction

of flow becomes more and more pronounced. Figure 2 shows the phase se-

quence measured at 0.5 mm distance from the plate at varicAs wind velo-

cities. The signal frequency fs is 543 Hz, the wind velocity increases

from 7 m/s to 20 m/s. We clearly see the transition from a standing;

to a moving wavy.

Figure 2: Measuring phase curve of the alternating speed in the boull-
dary layer alone; the flexural, wave transmission at different
wind velocities f s = 543 Hz.

Figure 3 shows the course of the alternating speed in the boundary

layer measured above the oscillator for two wind velocities. The phase

position of the individual oscillator is sketched along the abscissa.

At small wind velocities (U ., = 7 m/s, upper section of the figure)

the air flows between the elements vibrating in counterphase corres-

ponding to the short-range field of a group of oscillators whose per-

iods are very small compared to the sound wavelengths— The phase JUMP

of the alternating; speed in the boundary layer is accordingly above the
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Figure 3: Course of the a l ternating speed in the boundary layer at
various points of the flexural wave transmission.

a)tT,u 	S 7 m/s,	 "standing wave"
r

b) U.	 15 m/s, propagating wave.	 The alternating speeds
are relative values	 f500 }1::..

s

middle of each oscillatov.

At greater wind velocities (11 	 = 15 m/ s ,	 the lower section of.0
 figure)the fi	 ) . a propagatingw.zve has formed; 	 this wave is f;u ided byg

the boundary layer and kept in motion by the wall deformation; here
P

the shape of the wall deformation remains unchan t-tid, the transition

to a moving wave lies in the range c?f critical Reynolds coefficient

of plate flow.

The studies have shotirn that this surface deformation lend:; to ex-
q:

citations of unstable boundary layer waves, even at small amplitudes;

these wavers cause a turbulence in the boundary layer. 	 These boundary

layer waves have the frquency of the flexural waves. 	 Figure !j shows

the Increase of this type of sine-shaped boundary layer wive 	 from the
a

periodiceriodic field of the transmission. 	 The alternating speed

t measured at 0.5 mm from the plate surface is plotted. 	 At x = 12 cm,

F the exponential rise stops, the boundary layer wave is transforied

into turbulence.	 This excitation of boundary layer waves occurs at

the given wind velocity U ,, especially at a frequency equal to the
y 4$

F... h.

coincidence frequency f c .	 Outside of this frequency n continuous ex-

citation o f disturbances can only be attained by large increases in

flexural wave amplitudes. 	 For each of the flexural wave transrr^issions

studied,	 the coincidence frequencies measured as a function of wind

` velocity all lie on a straight line. 	 The measured results are shown

- in Figure 5.	 For the transm.tssion N t, = 28 itim the measured values

designated av a o/3 are also plotted;	 these will be disoussed below.



î
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Figure 4: Excitation of a boundary layer wave due to the reflection
wave. The ordinate is plotted logarithmically.

U0 = 15 m/s, f c = 400 Hz, a o = 14 mm, a o f/U. = 0,374

a = 3.37 dB/cm, Re a * = 470, A Pe 2 x 10-3 mm.

At coincidence, the wavelength of the boundary layer wave radiated by

the transmission is independent of the wind velocities and equal to

the wave length of the bending wave A o . Accordingly, its phase velo-

city Cr increases linearly with the wind velocity U . . For all trans-

missions, the quotient of phase velocity and wind velocity cr/UC

a o f/UW is between 0.325 and 0,45 at coincidence. A comparison with

stability theory of plate flow [4] shows that the measured c r/U" -values

lie within a range of phase velocities of unstable boundary layer waves.

Tn Figure 6, all measured values and the theoretical indifference curves

are plotted. From this it is visible that the flexural wave always

excites boundary layer waves when the phase velocity of the flexural

wave lies in the instability range of phase velocities of the boundary

layer waves.

20 mm	 I ,/ — ^
2bmJ ^ a

r l^	 ^

a	 I	 ^

Figure 5: Measured coincidence
frequencies of the various
reflection wave transmissions
as a f;,nction of the wind velo-
city.

wind velocit y --~

6



t ^- ^- M	 â * -	 ,^M'E^ • F ^^	 ^ ^	 1	 ^ -	 a3r : ' . l^.ir. •	 ^	 1
S	 T	 ^r $	

+s	 ..
_µt. ^	 .,'a},a NC	 ^:4;j	 _ ^.	 •, i 	 ^^ ^

.

! i^;,v"	 y	 _ _ a7' .^,;	 f 	 i

The stability theory together with the phase velocity conditions

still requires a frequency condition; that is, only boundary layer

waves of certain frequency and phase velocity are unstable.

For the type of boundary layer wave excitation studied here, the

wavelengths of the disturbance are predetermined. Therefore, a simul-

taneous fulfilment of the theoretical frequency and phase velocity con-

dition is not always possible. In these cases, a boundary layer wave

Is excited when the phase velocity cot,dition is met, although a coin-

cidence of ;gave length of boundary layer wave and reflection would be

possible at the unstable frequencies. However, the reflection rate

amplitude needed for excitation becomes smaller, the closer the coin-

cidence frequency is to the instability region.

In order to perform a comparison of excitation amplitudes, those

reflection wave amplitudes at which a transition from laminar to tur-

bulent flow takes place were determined at a given location downstream

from the reflection wave transmission at the various frequencies and

wind velocities.	 This amplitude value is called the threshold value.

19,50	 —

"ou	 -
c 

^.
14 qa	 I -..4 u

kv d

theoretical
indifference

00 	 S	 10	 15	 20	 2S	 al	 35 rMIS 40

wind velocity) U-

Figure 6: Comparison of the measured, non-dimensional phase velocities
with the theoretical instability range.

^n	 ? A	 a	 =	 8 mm

0	 ao = 14 rim

D	 X 0 = 20 mm

+	 No = 2 8 mm
-.

As already noted in Figure 5, a boundary layer wave of wavelength

r ac
	 is
	 excited for the 28-mm transmission in addition to the base

wave ao (for uneven fractions of the base wave, coincidence over the

entire passage is possible as a result of the point-shaped imaging of

the reflection wave).	 Figure 7 shows that the bast wave of the 28-mm



transmission is far below the instability range, whereas the second

harmonic vibration runs in the interior of the instability range. Ac-

cordingly, the measured threshold values of the base wave are more than

12 dB greater. The other curvi-s entered in Figure 7 illustrate the

course of coincidence frequencies of the other transmissions. They are

both within as well as outside the instability range. As ordinate, the

non-dimensional frequency 2nf6*/U
.
 was selected in Figure 7 in order to

0.12

0 io f 
----I -I

0,08 theoretica
indifference

.06

01%

0,02nF,I	 w	 'w	
AP	 37 MID 4W

wind velocity U_

Figure 7: Comparison of coincidence frequencies of the base waves and
the second harmonic vibration of the 28-mm transmission with
the theoretical instability range. Also plrtted; coincidence
frequencies of the other reflection wave transmissions.

to implement and improve comparisons with the theoretical neutral curves.

A quantitative comparison of the measured threshold values of the

-ransmissions could not be performed. Therefore, in Figurevarious t

the threshold values of the individual transmissions are standardized

so that the curves at U	 20 m/s coincide. As a result of this stan-
OD

dardization all values fall on one section of a curve, the threshold

	

4-	 values decrease greatly with increasing wind velocity because of the
01,

'linear relationship between wind velocity and phase velocity; the phase

velocity is obtained by multiplication of the dimensional coefficients

of the abscissa by 0.375. The ordinate in Figure 8 is plotted logarith.-

mically. For the threshold value of the 14-mm transmission we have 0 dB

A 10- 
4 

mm.

	

1:	 -
The course of the excitation threshold value and of the phase velo-

city of the excited boundary layer waves was also studied In the range

of the coincidence frequency. The results confirm the state of affairs

discussed above. The excitation threshold value was i-neasured at constant

1 

8	
. . .	 . - I 	 —	 __1

t
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Figur-e R • Course of the relative
excitation threshold value at
coincidence as a function of the
wind velocity. The curves are
standardized at U. a 20 m/s to
the sre threshold value. 0 dB
A 10- mtr. ( A = 14 mm) .

Figure 9: Course of the excitation
threshold value as a function of
frequency at constant wind velo-
city U. = 20 ,n/s.

0	 X 0 = 14 mm
sr'' A	 A	 = 20 mmo

+	 a o = 28 mm

'': wind velocity Uco	 20 m/s as a function of the frequency and it shows

a pronounced minimum (Figure 9) at coincidence.	 The coincidence fre-

quency is 543 Hz.	 Figure 10 shows the non-dimensional phase velocities

c r/UOD belonging to it.	 The straight line c r/UOD = 0.374 denotes the

middle of the instability range.	 At coincidence, the curves of the

• measured phase velocities intersect this line.	 Outside the coincidence

range the wavelength of the induced disturbance is not exactly equal

to the wavelength of the reflection wave which is given by the straight
'- Y

line A = 14, rather it lies nearer the instability range.	 The guide

through the reflection wave is not complete.

Downstream from the reflection wave transmission where the guide

h, stops, the wavelength of the excited boundary layer waves changes so

- that its phase velocity ends up within the instability range. 	 The

phase velocities measured along the transmission as well as downstream

.r. from the transmission are plotted in Figure 10, for several frequencies

9
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ted as a function of frequency at constant wind velocity
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