
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



'4	 #	 f t

ADVANCED VERY HIGH RESOLUTION RADIOMETER

FINAL ENGINEERING REPORT

PREPARED BY

ITT AEROSPACE/OPTICAL DIVISION
FORT WAYNE, INDIANA

4f gm
(NASA-CE-156764) ADVANCED VERY HIGH 	 N78-24519
RESOLUTICN RADIOMETER Final Engineering
Report, Jan. 1973	 Dec. 1976 (ITT
Aerospace/Optical Div,) 325 F HC A14/MF A01 	 Unclas

CSCL 14F G3/35 2.1124

CONTRACT #NAS5-21900

PREPARED FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
GODDARD SPACE FLIGHT CENTER

GREENBELT, MARYLAND
20771

^.. I,. i 	 'tip.



•

O

TABLE OF CONTENTS

1.0 INTRODUCTION -----------------------------------
1.1 General Instrument Description -----------------
1.1.1 The Scanner Module -----------------------------
1.1.2 Electronics Module -----------------------------
1.1.3 Radiant Cooler ---------------------------------
1.1.4 Optical Subsystem ------------------------------
1.1.5 Baseplate Unit---------------------------------

0

2.0 SYSTEM SENSITIVI"7Y -----------------------------
2.1 Solar Channels land 2 ------------------  -------
2.1.1 Detector------------------------------ --------
2.1.2 Detector Responsivity--------------------------
2.1.3 Solar Channels System Sensitivity --------------
2.2 Channel 3 Detector and Sensitivity-------------
2.2.1 Mercury-Cadmium-Telluride Detector -------------
2.2.2 Channel 3 Sensitivity --------------------------
2.3 Channel 4 --------------------------------------
2.3.1 Detector ---------------------------------------
2.3.2 Channel 4 Sensitivity--------------------------

3.0 OPTICAL DESIGN ---------------------------------
3.1 General Description ----------------------------
3.2 Scan Mirror--- ----------- -----------------------
3.3 Telescope Design -------- -----------------------
3.4 Channels 1 and 2 Lens Design -------------------
3.5 Channel 3 and 4 Lens Design --------------------
3.6 AVHRR Tolerance Analysis -----------------------
3.6.1 Summary of Mechanical Tolerances ---------------
3.6.2 Surface Quality for Filters, Beamsplitters -----
3.6.3 Mechanical Adjustment Data (Inches) ------------
3.7 Dichroics, Beamsplitters and Cooler Windows----
3.8 Spectral Definition----------------------------
3.8.1 Spectral Definition of Solar Channels ----------
3.8.2 Spectral Definition of Thermal Channels --------
3.9 Channel Registration-=;-------------------------
3.10 Polarization Sensitivity -----------------------
3.11 Scattered Sunlight -----------------------------
3.11.1 Honeycomb Temperature Gradient -----------------
3.11.2. Sunlight Reflections from In-Flight Target-----
3.11.3 Signal Contamination ---------------------------
3.11.4 Sun Scatter Test Results-----------------------

4.0	 MECHANICAL DESCRIPTION -------------------------
4.1	 Overall Instrument Configuration---------------
4 .1.1	 Structure --------------------------------------
4.1.2	 Materials in Structure -------------------------
4.2	 Scanner Subassembly ----------------------------
4.2.1	 Scan Motor -------------------------------------
4 .2.2	 Bearings-------------------------------------

PAGE

1-1
1-1
1-2
1-7
1-8
1-9
1-10

2-1
2-1
2-1
2-1
2-4
2-11
2-11
2-15
2-2D
2-20
2-20

3-1
3-1
3-4
3-4
3-9
3-13
3-18
3-18
3-22
3-22
3-22
3-25
3-25
3-40
3-44
3-45
3-48
3-49
3-49
3-52
3-54

4-1
4-1
4-1
4-4
4-4
4-4
4-10

-i-



TABLE OF CONTENTS

SIR
(CONTINUED)

PAGE

4.2.3 Bearing Fits----------------------------------- 4-10
4.2.4 Lubrication------------------------------------ 4-13
4.2.5 Jitter----------------------------------------- 4-13
4 .2.6 Life Test-------------------------------------- 4-14
4 .2.7 Angular Momentum-------------------------------
4.2.8 Venting of the Scanner Housing----------------- 4-15
4.3 Radiant Cooler Subassembly--------------------- 4-15
4 .3.1 Support Body----------------------------------- 4-15
4.3.2 Detector Location------------------------------ 4-19
4.3.3 Deployable Earth Shield------------------------ 4-19
4.3.4 Materials and Finishes in Cooler--------------- 4-21
4.4 Optics Subassembly ------------------------------ 4-21
4.4.1 Optics Outline--------------------------------- 4-21
4.4.2 Materials and Finishes Used in Optics---------- 4-21
4 .5 Electronics Package---------------------------- 4-21
4.5.1 Electronics Package Layout--------------------- 4-21
4.5.2 Accessibility---------------------------------- 4-21
4.5.3 Thermal Conciderations---------=--------------- 4-25
4.5.4 Radiation Considerations----------------------- 4-25
4.5.5 Materials and Finishes in Electronics---------- 4-25
4 .6 Weight Breakdown------------------------------- 4-25
4 .7 Materials-------------------------------------- 4-25

5.0 ELECTRICAL SYSTEM------------------------------ 5-1
5.1 Electronic Packaging--------------------------- 5-1
5.2 Electrical Design Considerations--------------- 5-4
5.3 Video Scan Timing------------------------------ 5-4
5.4 Power Subsystem-------=------------------------- 5-6
5.4.1 General---------------------------------------- 5-6
5.4.2 Turn on Transient------------------------------ 5-6
5.4.3 Electronics Switching Regulator---------------- 5-6
5.4.4 Power Converter-------------------------------- 5-9
5.4.5 +5V Regulators--------------------------------- 5-9
5.4.6 t15V Regulators-------------------------------- 5-9
5.4.7 Motor Power Supply Switching Regulator--------- 5-10
5.5 Commands and Digital TM------------------------ 5-11
5.6 Analog TM and Patch Control-------------------- 5-17
5.6.1 Analog Telemetry------------------------------- 5-17
5.6.2 Patch Temperature Control---------------------- 5-25
5.7 Motor Logics----------------------------------- 5-29
5.8 Scan Count and Decode-------------------------- 5-30
5.9 Output Data Control---------------------------- 5-34
5.10 Ramp Calibration Generator--------------------- 5-42
5.11 Auxiliary Scan Timing-------------------------- 5-46
5.12 Ch 3 Data Amplifier---------------------------- 5-50
5.13 Channel 4 Amplifier---------------------------- 5-55
5.14 Daylight	 Amplifiers--------------------------- 5-55
5.15
5.16

Multiplexer Board------------------------------
Black Body Mux---------------------------------

5-59
5-60

5.17 Motor Power Supply----------------------------- 5-60
5.18 Power Profile---------------------------------- 5-64
5.19 Interface Connectors--------------------------- 5-64
5.20 zleEt=nics D arviws--- ------------	 --------—	 —	 yur.. Lilt: 	 ^C911. Yltl WY	 'nRIM	 AMY --S= &A.M	 r



6.0
6.1
6.2
6.2.16.2.2
6.3
6.4
6.5
6.6
6.7
6.7.1
6.7.2
6.7.3

. If

TABLE OF CONTENTS
(CONTINUED)

PAGE

RADIANT COOLER----------------------------------- 6-1
Field of View------------------------------------ 6-3
Shi'eld------------------------------------------- 6-5
Co er Temperature-------------------------------- 6-5
Shielding and View Factors----------------------- 6-7
Rad .atar----------------------------------------- 6-10Patc; ------------------------------------------ 	 6-14
Solar":, Exposure----------------------------------- 6-16
Anti-C6r:tamination Provisions-------------------- 6-19
Optical Port Loading----------------------------- 6-20
Optical Loading on the Radiator------- 	 ------ 6-21
Optical Loading on the Patch--------------------- 6-21
Absorptivity"of the Instrument Patch Opening

(Theoretical Model)------------------------- 6-27

CALIBRATION---------I------------------------------ 7-1
Thermal Channels Calibration------- 	 -- -- 7-1
Calibration Accuracy- -------------•------ ------ 7-1
Chamber Calibration Taigets--------------- ------ 7-7
In-Flight Calibration Target ------------ -•--------- 7-19

THERMAL DESIGN ------ 	 -- - "-^------------------- 8-1

TEST AND CALIBRATION'DATA- --„;=----------------- 9-1

LIST OF DESIGN INFORMAT1O1-I Rrpi")RTS- 7 ------- •---•- 10-,1,

7.0
7.17.1.1
7.1.2
7.1.3

8.0

9.0
10.0

•
-iii-



1.0	 INTRODUCTION

The Advanced Very High Resolution Radiometer (AVHRR)

was developed under Contract NASS-21900 over the period from

January 1973 to December 1976. The program covered the design,

construction, and test of a Breadboard Model, Engineering Model,

Protoflight Model, Mechanical/Structural Model, and a Life Test

Model. Special bench test and calibration equipment was also

developed for use on the program.	 .'

Initially, the instrument was to operate from a 906 n.m.

orbit and be thermally isolated from the spacecraft. The Bread-

board Model and the Mechanical/Structural Model were designed and

built to these requirements. During the Engineering Model assembly

phase, the spacecraft altitude was changed to 450 n.m., IFOVs and

spectral characteristics were modified, and spacecraft interfaces

were changed. In addition, the final spacecraft design provided

a temperature-controlled Instrument Mounting Platform (IMP) to carry

the AVHRR and other instruments. The design of the AVHRR was modified

to these new requirements and the modifications were incorporated

in the Engineering Model. The Protoflight Model and the Flight Models

(being built on Contract NASS-22497) conform to this design.

1.1	 General Instrument Description

The AVHRR is a four channel scanning radiometer providing two

channels in the visible-near IR region and two IR channels. The

instrument utilizes an 8 inch diameter optical system. Cross-track

scanning is accomplished by a continuously rotating mirror direct-
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driven by a hysteresis synchronous motor. The two iR detectors are

cooled to 105K by	 g'a two-stage passive radiant cooler. The data from

the four channels is simultaneously sampled at a 40 KHz rate and

converted to 10-bit binary from within the instrument.

A summary of the AVHRR chracteristics is given in Table 1-1.

Figure 1-1 is a photograph of the Engineering Model instrument and

Figure 1-2 shows the configuration of the Protoflight Model.

The AVHRR is comprised of five modules which are assembled

together into a single unit instrument. These modules are:

Scanner Module

Electronics Module

Radiant Cooler Module

Optical Subsystem

Baseplate Unit

These modules are shown in the exploded view of Figure 1-3.

1.1.1 The Scanner Module

This module includes the scan motor, the mirror and the scan

motor housing. The scan motor design is based on the motor developed

for the SCMR , an 80 pole hysteresis synchronous motor. The motor has

two power modes of operation. High power ( a4-5 watts) will be

utilized for driving the scan mirror in air and low power(a38w) willl

be used for nominal in-orbit operation. The scanner housing is an

integral part of the motor and is made of beryllium. The scan

mirror is also made of beryllium and is a 11.6 inches across the

major axis and 8.25 inches across the minor axis. The scan motor

Ira
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Table 1-1 Summary of Characteristics

Ch 1r Ch 2 Ch 3^ Ch 4^^

Spectral Range ( pM)	 .55 -.9 .725 - 1.0 10.5 - 11.5 3.55 - 3.93

Detector Silicon Silicon HgCdTe,' InSb

Resolution (N.M.)	 .59 .59 .59 .59

IFOV (MR) 1.3 sq. 1.3 sq. 1.3 sq.
I

1.3 sq.	 j

SIN @ .5% Albedo 	 >3:1 >3:1 - -

NETD @ 300K - - .12K .12K

MTF (1 IFOV/Single
Bar) .30 .30 .30 .30

Optics - 8 inch diameter afocal cassegrainian telescope

Scanner - 360 rpm hysteresis synchronous motor with beryllium

scan mirror.

Cooler - Two-stage radiant cooler, IR detectors controlled

at 105K

Data Output - 10 bit binary, simultaneous sampling at 40 KHz rate.

Commands - 28

Telemetry - 14 Digital, 20 Analog
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rotates the mirror at the 360 RPM to produce a contiguous scan

of the earth scene., The line-to-line jitter is less than 17 micro-

seconds.

1.1.2 Electronics Module

The electronics module is in two sections both of which bolt

on to the instruments inboard side panel. The curved box (Reference

Figure 1-3) is the motor powet-,supply. Twenty-five electronic

modules are used to make up the electrical system'of the AVHRR.

Nineteen of these are located in the electronics box. The solar

channel preamplifiers for the solar channels and IR channel 3 are

located in the area of the secondary optics. The IR channel 4 pre-

amp !Tier is located on the rear of the radiant cooler housing.

Except for Channels 1, 2 and 4 preamplifiers, all of the

modules are accessible without the removal of the instrument

from the spacecraft.

The following is a list of , the electronics modules:

1. Power Converter and Switching Regulator

2. Logics Regulators

3. t 15V Regulators

4. Command Relay #1

S. Command Relay #2

6. Command Relay #3

7. Patch Temperature Control and T/M

S. T/M Board #2

9. Motor Logics

10. Scan Count and Decode

11. Interface Logics #1
i^
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12. Interface Logics #2

^\3. Ramp Calibration Generator

li. Auxiliary Scan Logics

15. IR Post Amplifier

16. Daylight Post Amplifier

17. multiplexer

18. Black Body MUX logics

19. A to D Converter

20. IR Preamplifier

21. Channel 4 Preamplifier

22. Daylight Preamplifier (Ch. 2)

23. Daylight Preamplifier (Ch. 1)

24. Motor Power Supply

25. Switching Regulator

1.1.3 Radiant Cooler

The radiant cooler module is made up to four basic assemblies..

These are (1) the cooler housing, (2) the first stage radiator,

the patch or second stage radiator, and (4) the cooler cover. The

first stage radiator is configured in such a manner as to shade most

of its 55.2 inch2 area from the earth by the cooler cover when the

cover is deployed. A "single shot" solenoid actuated, spring driven

deployment system is used to deploy the cover. Mounted on the patch

are the two infrared detectors. The patch has a 22.4 in 2 radiating

area. The cooler housing surrounds the cooler on all sides except

d/
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for the radiation area. The housing is vacuum sealed so that

when the bench cooler is clamped to the front of the housing

a vacuum can be pulled on the entire cooler and the system permitted

to cool as it would in space; i.e. radiation to a cold target

located in the bench cooler (except that the cold target is at

liquid nitrogen temperature).

Multilayer insulation thermally separates the first stage
,:	 3

radiator from the housing and the first stage optical window is

thermally isolated and heated several degrees warmer than the 171K 	 a

radiator temperature. The patch is thermally isolated from the

first stage by low emissivity surfaces (gold to gold) and runs

at 95K with no control power. During nominal operation the patch

temperature will be controlled at 105K.

1.1.4 Optical Subsystem

The optical subsystem was designed by Ferson Optics, a

division of Bausch and Lomb, to T^ Specification. (Ferson fabricated

the BBM ETM and PTM optics; however, the Flight Model Optics are

being fabricated by Perkin -Elmer, Costa Mesa, California.) The sub-

system consists of an afocal 8.0 inch aperture telescope (two coaxial

confocal paraboloidal mirrors) followed by secondary optics which

split the radiant input into four discrete spectral bands and focus

them onto their respective field stops. The spectral bands are:

Channel 1: 0.55 to 0.90 microns

Channel 2: 0.72 to 1.05 microns

Channel 3: 10.5 to 11.5 ^ti►irrons

Channel 4 ,. 3.55 to 3.92 micros

1-9



The instantaneous field of view is 1.3 milliradians in all channels

and is defined by an aperture plate in Channels 1 and 2 and by the

detector active areas in Channels 3 and 4. In addition the optical

subsystem has been designed to meet the total system MTF require-

ments with the detectors registered off axis by as much as 1.5

milliradians in Channels 1 & 2 and 1 milleradian in Channels 3 & 4.

Polarization effects have been minimized (<7% in Channels 1

and 2) by orienting the polarization sensitive elements in a pre-

determined way, thus having elements compensate for other elements.

1.1.5 Baseplate Unit

The baseplate unit is the common structure in which all other

modules are secured. Dowel pins are used to establish and maintain

alignment of the scanner and optics modules. Alignment of the

cooler to the optics is established by shims.

1-10



	

2.0	 SYSTEM SENSITIVITY

	

2.1	 Solar Channels 1 and 2

2.1.1 Detector

Both solar channels use the same detectors with the same

operating characteristics as before the modifications. The

detectors used are Harshaw Chemical Co. silicon detectors. The

detector is an oxide passivate, planar diffused, silicon PIN

photodiode with a guard ring and operated. at -15 volts bias. The

device has an active area of 0.100 inch square and is packaged in

a TO-5 can using a metallic hermetic seal. Some of the most

pertinent characteristics of the device are given in Table 2-1.

The detector will be used as a current source for an op-amp

preamplifier. In the current-to-voltage transducer operating mode,

the combination gives excellent sensitivity and frequency response

using a 4M ohm feedback resistor as the effective detector load.

The detectors are used as energy collection devices behind

the 0.0238 inch square apertures which are the defining field stops
for Channels 1 and 2. Optical analysis showed that using a 0.100

inch square detector active area at an effective optical distance

Of 0.146 inch behind the field stop, resulted in a well over 99%

of the rays, which passed through the field stop, being collected

by the detectors of both channels.

2.1.2 Detector Responsivity vs. Temperature

The question was raised early in the AVHRR program as to

the effect of temperature upon, the responsivity of the silicon

detectors. Harshaw ran spectral response versus temperature data

for two of the delivered units. The measured data is of historial

2-1
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Table 2-1 Solar Channel Detector Characteristics

Type Passivated, Planar Diffused
Silicon Pin Photodiode

Manufacturer Harshaw Chemical. Co.

Active Area Size 0.100 Inch Square

Bias -15	 Volts

Spectral Peak 975 t 25 nmeters

Responsivity -Peak 0.62 Amp/Watt

Reaponsivity - Ch 1 Avg. 0.37 Amp/Watt

' r(esponsivity - Ch 2 Avg. 0.54 Amp/Watt

^ 	 Leakage Current at -15 V 17 Namp Maximum

Capacitance at -15 V ° 15 pf Maximum

Table 2-2	 Measured Temperature Vs. Responsivity For Detector Q-3

Wavelength Responsivity at Temperature
Microns -100C +240C +500C

0.50 NC 1.00 NC

0.60 NC 1.00 1.017

0.70 NC 1.00 NC

0.80 1.006 1.00 0.998

0.90 1.008 1.00 1.005

0.95 0.987 1.00 0.997

1.00 0.932 1.00 1.021

1.10 0.541 1.00 1.425

Responsivity (Amp/watt) at +240C is baseline for each wavelength
measured.

.s.M

i 1 ►
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' interest only since the latest predictions indicate a maximum

detector operating temperature of about 24 0C. The data is shown
in Table 2-2. The data shows that as Harshaw predicted, no sensible

change occurs at wavelengths shorter than about 1.0 micron. This

means, of course, no change would occur in Channel 1.

The AVHRR temperature is more controlled by the TIROS-N

TCE and the maximum operating temperature is within a few degrees

of the nominal detector test temperature of +24 0C: The maximum

o-verall temperature change under various operating conditions is

about 100C. The detector responsivity changes are insignificant-
over so small an excursion and so the AVHRR output will not sensibly

change due to detector temperature variations.
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2.1.3	 Solar Channels System Sensitivity0

For channels l & 2, the signal to noise ratio, SIN, is

given by SIN	
0 A

a NEP

where 0 A =	 solar spectral flux incident on the detector

M =	 degradation factor due to electronic noise

pickup, 1/f noise, etc.

NEP -	 effective detector Noise Equivalent Power

0 A is given by

0AX
_	 1	 2	 1	 I	 T p	 D2 e2

I	 T 
p	

AAX	 s	 O e	 a	 AX	 sn	 O

where I AX solar spectral irradiance in the spectral band

incident on the Earth's atmosphere

T _	 transmission of optical system

PS _	 scene spectral albedo'

Da =	 diameter of the collection aperture

A instantaneous field of view'
i
k The NEP is given by

is 2 + i d 2 + 1 1 2 1

NEP ^	 R

where i s =	 shot noise current due to signal flux on the detector

id photodiode leakage current noise.

it load resistor Johnson noise current

R =	 detector responsivity in ampere/watt

Using Thekaekara ' s Tables we find that the total solar

irradiance incident on the atmosphere in channels 1 and 2 (weighted

by the relative response in each band) is:

11
AX

4.24 x 10-2 W/cm2

I2^ 3 : 00 x 10-2 W/cm2
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This is the solar power in the 0.50 to 0.91 micron region (channel

	

10	
1) and the 0.71 to 1.10 micron region of channel 2.

2.1.3.1 System Transmission

The elements affecting the system transmission can be

divided into two broad categories, those that are spectrally

variant and those that are not. The elements that are variant

are the scan, telescope, and folding mirrors, and the gold dichroic

beamsplitter. These elements are analysed in the section defining

the spectral response. Also analyzed are the bandpass filters

and detectors; however, for SIN purposes, it is assumed that the

bandpass filters are invariant across the band and that the detector

has an average responsivity in the spectral band of interest.

Table 2-3 gives the spectral efficiencies of the mirrors

and gold dichroic used in these calculations. These are measured

PTM values and represent expected flight model values. Combining

the three mirror reflections and gold dichroic transmission for

Channel 1 gives an average transmittance of 0.60 for this channel.

Doing likewise for channel 2 (with one more mirror reflectance)

gives 0.43. These are the transmissions through the spectrally

variant elements only.

The elements which can be considered spectrally invariant

are the inconel beamsplitter separating channel 1 and 2, the relay

lenses in each channel, and each bandpass filter (the filter has a

relatively flat response across each band). in addition the

obscuration caused by the secondary mirror and its support must be

considered. The values used in calculating the transmissions are

	

U7'
	 also shown in Table 2-3. There are three relay lenses in each
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SPECTRALLY VARIANT ELEMENTS
CH 2

SPECTRAL SCAN TELESCOPE FOLDING GOLD
POINT MIRROR MIRROR MIRROR DICHROIC
MICRON REFLECTIVITY REFLECTIVITY REFLECTIVITY TRANSMISSION

0.50 .92 .88 - .73

0.55 .93 .92 - .772

0.60 .925 .93 - .80

0.65 .92 .93 - .81

0.70 .90 .93` .84 .81

0.75 .90 .93 .81 .79

0.80 .88 .92 .79 .765

0.85 .875 .915 .79 .73

0.90 .88 .93 .80 .69

01.95 .89 .935 .815 .642

1.00 .89 .93 .825 .59

1.05 .89 .93 .835 .56

1.10 .885 .925 .845 .54

2-6
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Table 2-3 Optical Efficiency of AVHRR Elements

(PTM Measured)

SPECTRALLY INVARIANT ELEMENTS

Reflectivity of Inconel beamsplitter 	 .225

Transmittance of Inconel beamsplitter 	 _ .375

Transmittance of Chan. 1 filters 	 0.85

Transmittance of Chan. 2 Filter 	 = 0.90

Telescope Obscuration	 0.94

Lens Transmittance	 = 0.95



channel so that the combined transmission for the invariant

elements is 0.154 for channel 1 and 0.272 for channel 2. Combining

these with the values for the variant elements gives:

T1	 0.092

T 2	 0.117

i;	 for the expected total system transmission for each channel.

hR	 Allowing a degradation factor for dirt, dust, etc. on each element,,,

s
	 will result in, perhaps, a more realistic overall' sytem trans-

mission. It is reasonable that lens surfaces sealed from ambient

will not markedly degrade. For sensitivity calculations assume

that each channel will suffer a 50% degradation overall thus

T 1 	 .046

T 2	 .058

0
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2.1.3.2	 Detector NEP

The Harshaw detector has a peak responsivity (ampere/watt) of

at least 0.62. The average srsponsivity across the channel 1 spec-

tral band is 0.37 ampere/watt while that in channel 2 is 0.54 ampere/

watt.

Several factors contribute to the noise. The shot noise due to

the detector dark current, the shot noise due to the detector scene

generated current, and the Johnson noise in the preamplifier feedback

resistor are the major noise sources. 1/f noise is negligible across

the 14.5 KHz bandpass of the electronic filter. Contribution of pre-

amplifier transistor noise is also very small compared to the above

sources and so can be ignored.

Both channels use a 4 megohm feedback resistance in the pre-

amplifier so that the Johnson noise at a 300K temperature over a

14.5 KHz bandwidth is 7.75 x 10 -12 ampere. The detector dark current

is 17 nanoamperes maximum in each channel giving a dark current noise

of:

(i 1) = (i 2 	(2 a Id Af) 1/2 = 8.88 x 10 12 ampere

The signal shot noise under minimum signal condition is based

on the current flowing in the detector under that illumination. The

minimum signal flux is calculated later to be 1.68 x 10 -9 watt in

channel 1 and 1.43 x 10 -9 watt in channel 2. The minimum DC current

out of the detectors then is 6.22 x 10-10 amp and 7.72 x 10 -10 amp

for channels 1 and 2. The shot noise then is

i5	 =	 1.70 x 10-12 amp rms

is	1.89 x 10-12 amp rms

The total noise current in channel l is:

1/2
iTl	 =	 ( (7.75) 2 + (8.88) 2 + (1.70) 2 )	 x 10-12

iTl = 1.19 x 10-11 amp

similarly for channel 2

1T2 = 1.19 x 10-11 amp

2-8



The noise is essentially the same in both channels due

to theredominance of i and ip	 L	 d.

A degradation factor a is included in the calculation. This

accounts for stray noises as well as degradations in operation of

the system. For this analysis a degradation factor of 1.6 based

on the measured BBM and ETM values was used.

The detector NEr then is

NEP1	1.19 x 10-11 = 3.22 x 10 -11 watt

0.37

NEP 2 2 1.19 x 10-11 = 2.20 x 10-11 watt

0.54

2.1.3.3 Signal to Noise Ratio Calculation

Using the equation previously given and assuming a minimum

scene as described in the AVHRR specification (p s = 0.5%), a col-

lection aperture of 8.0 inches, and an IFOV of 1.31 milliradians,

we have	 I

01x	 1.73 x 10-9 watt

02	 1.54 x 10-9 watt

and so

SIN	 0 A
aNEP

SIN1	1.73 x 10-9

1.6 x 3.22 x 10 -	= 33:1

S/N2	1.54 x 10-9

1.6 x 2.20 x 10- 11 	 = 44:1

1)
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;moo

Table 2-4 Solar Channel Sensitivity

7

CH 1	 CH 2

System Transmission (Degraded) 0.046	 0.058

Detector Responsivity	 0.37 A/W	 0.54 A/W

Detector NEP (250c) , 3.22 x 10-11 W	 2.20 x 10-11 
W

SIN Ratio at Minimum	 33:1	 44:1
Albedo (25°C)

Specified Minimum Signal
to Noise Ratio	 ,3:1	 3:1
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2.1.3.4 Sensitivity vs Temperature.

The foregoing calculation is based on a detector dark

current of 17 T^anoamps. This is true at 25 00. At higher

temperatures, the detector dark current (and the load Johnson

noise to some extent) increases, thus increasing the noise and

increasing the detector NEP. Ba ped on data from Harshaw and the

results of the thermal math model which indicates very little

variation in detector temperature, the signal to-inoise ratio for

the solar channels will not perceptibly change in operation.

2.2	 Channel 3 Detector and Sensitivity

2.2.1 Mercury-Cadmium-Telluride Detector

The mercury-cadmium-telluride detector is optimized for

bent sensitivity between 10.5 and 11.5 pm wavelengths when cooled

to. 105 Kelvin by the rad ani ti,, cooler. The important characteristics

of the detector are summarized in Table 2.2-1.

The Hg^,,;d Te element is mounted in a small metal enclosure

shown in ITT-A/OD Figure 2.2-1. The aplanat lens is bonded directly

to the metal enclosure and also serves as the window through which

the optical beam passes. The alignment and spacing of the aplanat

lens with respect to the sensing element is accurately maintained

with this arrangement. The detector is tested by the manufacturer

both before and after attachment of the lens to assure a qualified
"
,'unit. The internal volume is filled with an inert gas and then

sealed by the manufacturer. The detectors are inspected both

before and after lens attachment by an ITT- A/OD Quality Control

representative who also witnesses the important acceptance tests

at the manufacturer ' s plant.

2-11



i

• ITEM	 CHANNEL 3

Spectral Band	 10.5-11.5 um

Width of Sq. Sensitive Area 	 0.0068 t 0.0004"

Operating & Spec. Temperature	 105 Kelvin

Field of View, Min. 	 100°

Minimum Resistance	 10 Ohms

Max. Bias Power 	 1.2 m. w.

Avg. D* In Spectral Band At

105K, 2KHz, 1000 FOV,

1.2 M.W. , 1 HZ

Avg. Spectral Responsivity, Min.

Max. Change in R̂esponsivity

Per Kelv^n at 105 Kelvin

Long WavelengzFi Response

Time Constant

Spatial Responsivity Uniformity

Ijf Knee Frequency	 `}

i

i

,(	 f

2.0 x 1010 CMHZ 1/2Watt

5;, 504 Watts

IV

5%

<1% at 18 um

<1 u^ `~-
<2 to 1

<1 KHz

Table 2.2-1 MCT Detector Characteristics

A



Pn
.116"l.0004 LENS DIA. REF.

.SE2 ^'O DIA C BORE

	

100	 SEALANT FOR LENS MUST HOT

	

A.	 It. ,°n N	 EXTEND ABOVE THIS PLANE 	 e
o q o

1--1

I
-	 -^-

L co

1

ISO	 N	 REF G3.001	 N
,110 AR	 6

^O.80 UNF-25	 REF. 4X.10MIN.DEEP THOLES

1818006507-t

mrei %%AL-
A SOOp755

FIG 2.2-1- 0

WITNC33 PLATT: - APLALIAT
ADHESIVE
SPECIFICATION, IR. DETECTOR

CD

_ .OG3fi/Or.1% DIA x .09 MIN Or	 1	 8 ='"6060491t DETECTOR

220!.005 DIA.

10 MAX.-^
EVACUATION TUBE

p.24 [Ji 2

AS NOTED

A

a

f

g^
A ^
^a

1

N
N	 4
W1

1 Z C 8009232-1 LENS
	1 1 	 THIS UNA -1 HOu51NG

I s u I
Kill GrAXW	 NCO.	 mmunwYI N N0.	 .CM/11pN^.

LIST OF MAT77UALS OR PARTB LIST
onto CONTRACT NIX	 32THIDAMACE/OPIICALNIN00N"AM HAS 5-ZIy00	 n n FORT WAVN.. INDIANA, M&A.
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(1)

SIR)

The size of the sensitive area is determined by the

effective focal length (EFL) of the optical system and the

instantaneous field of view (IFOV), which is obtained from the

specified resolution. They are related by the equation

w	 0 x E.F.L.

where w	 edge width of square sensitive area

angular width of square IFOV

For Channel 3, EFL is 132.3 mm (= 5.209 inches) and 0

1.31 millira(iians which gives w equal to 0.0068 inch. A tolerance

of ± 0.0004 inch has been established as being a reasonable

amount consistent with detector fabrication capabilities and size

of the IFOV. In the electrode-to-electrode direction, the length

of the sensing element will be slightly greater (by 0.0005 inch)

to compensate for electrode end effects where the detector

normally has very little response.

A uniformity specification has been incorporated into the

detector specification in order to minimize non-uniformity of

re^prjnse across the sensitive area. A total of nine equally spaced

readings arranged in a 3 by 3 grid will be taken across the sensitive

area and all readings must be equal to or greater than 50% of the

largest reading. The diameter of the test spot is about 0.0015

inch and the readings are spaced by 0.002 inch; the measurements

will be made on a standard "spot scan" test station by the manufacturer.

Acceptance tests are based on measurements made at the antici-

pated operating temperature of 105 Kelvin. Measurements are

made at 90, 95 # 100, 110, 115 and 120 Kelvin in the event that the

cooler must be operated at the backup temperature of 107 Kelvin or
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a cooler malfunction occurs. Details of what measurements are

made at the different temperatures are given in the procurement

specification for the detector.

2.2.2 Channel 3 Sensitivity

System sensitivity in the infrared channels (numbers 3 and

4) is expressed in terms of the noise-equivalent-temperature dif-

ference, NEAT (NETD). The NETD is the difference in temperature

between two targets (several times larger than the instantaneous

field of view) which is required to produce ,a change in signal.

voltage equal to the rms noise of the radiometer. The equation

used to calculate the NETD is given in Table 2.2-3, which also

defines the various parameters used in the equation. The de-

gradation factor, a, and the optical f-number have been made as

small as feasible whereas factors in the denominator of the NETD

equation have been maximized as much as possible. The detector

detectivity is the highest available from any vendor for the

spectral bands, operating temperature, field of view, etc. imposed

by instrument requirements. The field of view, element dwell time

(or electrical bandwidth) and change in scene radiance are all set

by instrument performance specifications. We will discuss in this

section only the degradation factor and the optical transmission

since additional information on the other factors are given in

the Optical Section (3.0) of this report.

The degradation factor, a, consists of two factors for

the case under consideration, that due to 1/f noise from the

infrared detector, and a second factor to account for some ad-

ditional electronic noise. Diffraction effects are negligible
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0
2 f2 a fn

NETD	

`V `^oD Dm T8 td C dT T

NEW = Noise Equivalent Temperature Difference

a	 = Degradation Factor Including 1/f Detector Noise

fn	 = Optical F-number

Do	s Diameter of Optical Entrance Apertur"e

D*	 = Average detector detectivity in spectral band
at the measuring frequency

T	 Transmission of optics including obscuration
effects

6	 Angular width of square instantaneous field of
view

td	= Elemental dwell time ( = 2Af	 where Afo is the

3 db bandwidth of presampling°filter)

/ dN	 = Change in scene radiance for small temperature
T T change at temperature T

Table 2.2-3 Noise Equivalent Temperature Difference Equation
(Channel 3)

M
lak
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f	 ^•	 T

DEGIULDATION	 FACTOR (a)

atotal al/f • a2

f 1/2f \
a1/f 1 + - fu -f t

	

in ^—F

£c _ frequency	 where 1/f detector noise power equals

G-R white noise

fu upper cutoff frequency of the system

fR, lower cutoff frequency of the system

f  1 KHz

f
£

1 Hz

fu 14.5 KHz

ITEM CHANNEL 3

al/'f 1.29

0
►
2 (See text) 1.4

atotal 1.8

I
t

Table	 2.2-4	 Degradation Factor

`	
t•

^`	 .'f	 "1^.	 ^ ^Y•..^ `'_^	 ^^+,.	 ^^ ^ ^	 ^^^.. , y a p ^	 t a,	 .1	 re	 1.	 ^	 ^	 •^` 	 . . .	 ^	 , -'	 ♦ 	 .
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I 0 AVHRR OPTICAL TRANSMISSION

Reflectance or Transmittance
Item Description Channel 3 Channel 4

Scan Mirror 0.95 4.95

--- Telescope Mirrors (2 @ 0.97 Ea)	 0.94 0.90

Transp. Gold B.S.	 (D1) 0.88 0.82

Folding Mirror (M3) 0.96 0.95

Ge Focus Lens,(Ll) 0.819 0.846
Ch 3 (2 @ AV05)
Ch 4	 (2 @ .9200

Irtran II Windows	 Inner .0.92 0.95
Outer 0.82 0.95

Infrared Dichroic (62) 0.81	 (T) 0.92	 (R)
(OCLI Guaranteed.Minimum)

Ge Aplanat Lens	 (L2, L3) 0.94 0.94

Bandpass Filters (F4) 0.80

Telescope Obscuration 0.94 0.94

System Transmission 0,.333 0.331
(Product of Above)

Values Given Above Are Measured PTM Values.

Table 2.2-5 Optical Transmission For Channels 3 and 4

10
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0.

since we are considering scenes which are several times larger

than an IFOV. The equation and parameters used to calculate

the degradation factors are given in Table 2.2-4. The degradation

factor for the electronic noise has been calculated by determining

the noise voltage level from the infrared detector and from measure-

ments on the BBM and ETM.

The apparent electronic pick up was somewhat higher on

the ETM than expected. The apparent, a 2 , on the ETM was about

1.6 and the total degradation factor a  was about 2.1. Several

areas of potential pickup were redesigned on the PTM and a lower

M 2 is expected. A value for a 2 of 1.4 and a total a of 1.8 seems

reasonably conservative.

The optical transmission, T, was determined from the

measured transmittance or reflectance value for each optical com-

ponent in the PTM optical system. The value for each component

is listed in Table 2.2-5 for both Channels 3 and 4. Assuming

some optical degradation as in the solar channels we assign a value of

T 3	a	 .20

T 4	 _	 . 20

for use in the sensitivity calculations.

Table 2.2-6 gives the parameters used and the calculated NEAT.

As shown, the spec. value will be achieved.
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2.3	 Channel 4

2.3.1 Detector

The detector chosen for use in the channel 4 (3.55 to 3.93

microns) is a photovoltaic indium antimonide photodiode built by

Cincinnati Electronics Corp. The detector has a 0.007 inch square

active area and is used in a configuration identical to the silicon

detectors of channels 1 and 2. That is, it is a current source to

an amplifier used as a current to voltage amplifier with a 16.4 M ohm

feedback resistance. The detector is mounted in a Kovar housing

dike the channel 3 detector with the aplanat forming a hermetic seal.

Photovoltaic InSb has better noise characteristics with a

small amount of reverse bias; therefore, a bias on the order of

-30 millivolts is used. The exact bias is determined by

C.E.C. during acceptance testing of the photodiodes. The method

used for bias generation and control is discussed in the section of

the electronics describing the channel 4 preamplifier. Table 2.3-1

summarizes the channel 4 detector parameters.

2.3.2 Channel 4 Sensitivity

The sensitivity of the inSb photodiode is specified in

terms of its quantum efficiency, n, and its noise output for a

given thermal background irradiance. Since noise sources external

to the detector-amplifier system are significant (i.e., background

flux and signal shot noise), this concept is most applicable. The
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use of D* implies a situation where system and detector noise

are the limiting factors.

The following analysis determines the sensitivity of the

system in terms of the detector output current for both the noise

sources and the NEAT. The inital section determines the system

noise. Following that are sections which define the detector

output for the NEAT, effects of an al.bedo signal in this spectral

region, and postamp gain and digitizer effects on the system

sensitivity.

2.3.2.1 System Noise

For Channel 4 there are four noise sources. These are:

1. Background flux noise

2. Preamp noise

3. Signal shot noise

4. Stray pickup

These are discussed separately below. The stray pickup is handled

as a degradation to the total noise.

In the nominal 3.55 to 3.93 micron band, a 300K background

scene causes a signal current out of the detector given by:

Ibs = K A g n Q 	 Eq. 1

K	 optical filtering factor

n	 quantum efficiency (average in band)

q	 -	 1.6 x 10-19

A	 detector area - 2.98 x 10
-4
 cm2

QB	 background photon flux

This assumes that the filter is cold and mounted on the detector.

The optical filtering factor accountq for the fact that when the

detector is mounted in the system on a cold patch, the incidence
2-21



Table 2.3-1 Channel 4 Detector Parameters

Spectral Band

Type of Detector Source

Operating Temperature

Operating Mode

Sensitive Area

Quantum Efficiency in
Spectral Band

Background Noise Level

Bias= Voltage

Preamp Gain

3.55 to 3.93 Micron

Indium Antimonide
Cincinnati Electronics

105K

Photovoltaic

0.007" Square

0.75 Minimum

Maximum 108 over Theoretical
Level

ti 30 mvolts

16 x 106
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angle, 0, of the background is limited by the cooler windows and

reduced by the transmissions of the inner window (Tw), the band-

pass filter (TF ) , and the aplanat (Ta)

K	 TIP .Tw	
T 
	 nsin20	 Eq. 2

For	
T 
	 T  = T  =	 . 85 and 0	 750

K = 1.80 ster

For a 300K scene, the photon flux, 0 H , in the nominal

spectral band is 3.22 x 1014 photon cm-'2 ster-1 sec -1 . Using

n = 0.75, we have

Ibs	
2.07 x 10-8 amp

The noise in this background signal is given by:

ib	 Vii-' 2q Ibs Af	 Eq. 3

The bandiwdth, Af, is 14.5 KHz and so

ib	=	 9.80 x 10-12 amp rms.

The second noise source (the preamp) really consists of

two sources. The input transistor contributes noise as does the

feedback resistance which contributes Johnson noise. Noise data

was measured by G.E. Sonnek on a preamp similar to that required for

Channel 4. His measured data indicated that with a 16 Mohm feed-

back a total rms preamp noise of 4.4.2 x 10 -12 amp is obtained in

a 14.5 KHz bandwidth.

The third noise source, the signal shot noise, depends

on signal level. Since the NEAT spec is at 300K, this is the scene

level of interest. The maximum scene to be viewed is a 320K scene.

AOL
qW
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The detector output current due to the scene is given by:

Is = Ns T R^	 Eq. 4

where Ns 	=	 scene radiance

T	 system thruput

R1 	detector responsivity (amp/watt)

The system thruput T is given by:

T = AQT	 Eq. 5

where A	 collecting area

Q	 solid angle of view

T	 =	 system transmission

For AVHRR, A is 324 cm 2 , n is 1.72 x 10 -6 ster, T is about 0.33;

therefore, T is 1.83 x 10 -4 cm  ster. Using the minimum specified

quantum efficiency of 0.75 gives a R  of 2.26 amp/watt. The radiance

of a 30OK scene in the nominal spectral band is 1.70 x 10 -5 w/cm2

ster. The detector output then, with no albedo contribution, using

equation 4, is:

Is	 7.03 x 10 " amp

The rms noise, i s , is

is = 5.71 x 10-12 amp rms

The last source, stray pickup is a source which is minimized

by design, but never entirely eliminated. We will assume a 1.60

degradation in the TOTAL system noise performance since ETM and PTM

noise degradation appeared to be less in this channel than in

channel 3. This includes a 48 1/f noise contribution. The total
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noise current, in, under these conditions is:

i	 1.6 t9--• 80) 2	 (4 . 42) 2 + (5 . 71):	 x 10 
12 amp Eq. 6

n	 L
in ,^= 1.95 x 10-11 amp rms.

2.3.2.2 System Output for NEAT

The detector output caused by a 0 . 12K scene change at 300K

is determined as follows. Using the Lowan & Blanch "Tables of

Plancke Radiation and Photon Functions", we find that the photon

flux of 301K scene in our band is 3.36 x 10 14 photons cm-2 ster-1

sec 1 . For a 300K scene it is 3.22 x 10 14 . The change in flux

due to a l.OK temperature change in the scene is then 1.37 x 1013

photon cm 2 ster-1 sec
_1 

K-l . For a 0.12K NEAT, the Noise Equivalent

Photon Flux is:

NEF = 1 . 64 x 1012 photon cm-2 ster-1 sec-1

The noise equivalent flux on the detector is simply:

NEFD - T ' NEF

NEFD = A.83 x 10 8 photon sec-1

The detector output current change caused by the scene temperature

change is:

INEF = n q (NEF D)

INEF	 2.19 x 10-11 amp

By definition the NEAT of the system is the AT which causes

a INEF equal to the total system rms noise i n . This analysis then

indicates that with the nominal spectral band, an NEAT of 0.12K is

achievable with a SIN ratio of

(SIN)4	 =	
2.14 x 10-11	 1.12:1

1.95 x 10

The effective NEAT is expected to be . 107K as shown in Table 2.3-2
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Table 2.3-2 Channel 4 Sensitivity Parameters

Collection Op 8.00" Diameter

System Transmission 0.20

IFOV 1.3 mrad

Bandwidth's 14.5 KHz

Background Temp 300K

Degradation Factor 1.6

Quantum Efficiency 0.75

Specified NEAT 0.12K at 300K

Calculated NEAT 0.107K at 300K

1WAIk
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2.3.2.3 Albedo Radiance

In this spectral channel,'the sunlight reflected from

the Earth Scene contributes to the total scene radiance. Using

Thekaekara's table of solar irradiance.we find that a 1.0 albedo

scene at noon at the subsatellite point has a reflected radiance

in the nominal spectralband of 1.06 x 10
-4
 w/cm2 ster. According

to NASA personnel, the maximum actual albedo of a scene in this

band is about 0.10. Further, since the spacecraft is never over

a noon nadir, this value of reflected radiance is reduced by sin

670 (which is the maximum orbit normal to sun angle). These factors

make the maximum reflected solar radiance 9.76 x 10 -6 w/cm2 stern.

If we assume no atmospheric attenuation, this is the albedo

contribution on-the day side of the orbit.

The maximum scene temperature is specified as 320K. The

spectral radiance of this scene is 3.76 x 10 5 w/cm2 ster. The

albedo radiance is then about 25% of the maximum thermal radiance,

and the total scene radiance for a daylight 320K scene is 4.74

x 10 5 w/cm2 ster, if the maximum albedo is 0.10 in this band.

2.3.2.4 Post Amp Gain and Digitizer Effects

The post am,p gain is determined by the output voltage

range and the maximum, scene radiance level. As discussed previously,

the maximum scene radiance for a 	 320K scene is 3.76 x 10-5

w/cm2 suer. This causes a detector output of 2.04 x 10- 8 amp
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F_	 17 1.

(using equation 4). With a 16 Mohm feedback, the preamp , output

is a 0.326 volts. if 6.1 volts represents the output voltage swing

for a full to zero radiance change, then the post-amp gain must

be 18.1 .

Since the A-D converter digitizes to 10 bits (1024 levels),

each level corresponds to:

6.39375	 6.25, m volts
23

The detector current change caused by the NEAT is 2.19 x 10-11

amp. At the digitizer input this is:-

2,	

-

.19 x 10_11 x 16 x 10 6 x 18.7 = 6.5 m volts

Thus each data bit will be about the same as the estimated

noise level of this channel.

It

2-28



3.0 OPTICAL DESIGN

3.1 General Descril2tion

The optical configuration of the AVHRR is shown in Figure 3.1-1

(the rotating scan mirror is not illustrated for simplicity). The

energy from the scene is collected by an 8.0 inch diameter clear

aperture afocal telescope, the primary mirror being the entrance

aperture. In the afocal design, the secondary mirror recollimates

an incoming collimated beam with the angular spread of the exit beam

being increased over that of the input beam by the ratio of diameters

of the input to the exit beams.

Dichroic No. 1 transmits Channels 1 and 2 (solar channels) and

reflects Channels 3 and 4 (infrared channels). The latter two chan-

nels are then partially focused by a germanium lens doublet (LI)

which is axially adjustable for focusing. The beam passes through

a window on the cooler housing and a window on the gold box (or low

emissivity shield), the windows being used to provide a vacuum seal

for bench testing the cooler and to prevent moisture from the multi-

layer getting onto a 105 Kelvin patch-detector assembly respectively.

Channels 3 and 4 are separated by dichroic No. 2 which is mounted

on the patch along with the detectors, bandpass filters and aplanat

lenses (L2 and L3). Dichroic D2 is actually the Channel 3 bandpass

filter designed for the 45 0 incident beam and is used also as the

dichroic since it reflects the Channel 4 energy., The bandpass filters

are multilayer interference type filters which provide the spectral

response requited by the AVHRR specification. Mounting of the two

infrared detectors and dichroic No. 2 in a precision-machine mounting

structure simplifies registration of these two channels to each other.

3-1



IV w

M4

CHANNEL
DETECTOR

L2

w2

:4	 i'
40

0

Ml MIRROR, TELESCOPE PRIMARY
M2 MIRROR, TELESCOPE SECONDARY
DI DICHROIC. T141H GOLD ON GLASS
OAS. NIA FLAT FOLDIN4 MIRRORS
LI INFRARED FOCUS LEM&
WI W 2 IRTRAN II WINDOWS
Di4jmfRAREO DICNROIC 4 CHANNEL 3 FILTER,
FI, F2, FS,	 6ANDPASS FILTERS
l2,LS INFRARED APLANAT LENSES
L4 FOCUS ACMCIMAT LENS ASSY. C4I.1
LS FOCUS ACKRONIAT LENS ASSY, CK-A
DS DEAMSPLITTEI<, INCONEL

AiLCH-ANMEL 2
DETECTOR

, -FIELD STOP APEITURE

L5	 + YF►W

F2

AL

L4

F1	
FIELD STOP APERTURE

+-	 CHANNEL 1 DETECTOR

•	 M 1
DI

Q

Q b

t^.

C140AMEL 4 

LS 
113

DETECTOR	 , / DO ^l	 W
	

M2	 A

N	 Figure 3.1-1 AVRRR OPTICAL LN ,(4U T



The beam which is transmitted by dichroic No. 1 is sub-

sequently separated by beamsplitter D3 which reflects Channel 1

and transmits Channel 2. Mirror M4 and beamsplitter D3 are used

to minimize polarization. Elements F1 and F2 are the spectral

shaping filters for Channels 1 and 2 respectively; they both have

flat faces on both sides and produce no focusing effect since they

are in the collimated beam from the telescope. Lens assemblies L4

and LS are re-focusing elements which form an image of the scene

at the "field stop aperture" (i.e. an aperture plate located in

the final focal plane of the system which contains an opening that

determines the field of view for these two channels). The energy

which passes through the aperture opening is then detected by

silicon detectors are mounted in TO-5 housing with a flat glass

window hermetically sealed to the housing).

The optical performance requirements are summarized in Table

3.1-1. In addition to the instantaneous field of view (IFOV) require-

ment, ITT imposed a larger, extended FOV on the optical subcontractor.

That is, the optical system is designed so that the minimum MTF values

given in Table 3.1-1 are obtained over a larger field of view than

would be required by the IFOV. The reason for this is so that the

detectors can be moved individually in their respective focal planes

in order to register all channels simultaneously without losing MTF

performance. In Channels 3 and 4, only the focus lens assembly L1

is designed for the EFOV'since Channel 3 will be used as the reference

channel (i.e. it will be located on the optical axis and the other

detectors will be,djusted until aligned with it). Since the tele-

scope operates overall four channels, it must cover the EFOV in all

channels. The spatial frequencies listed in Table 3.1-1 correspond
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to the subsatellite target sizes given in the AVHRR specification,

i.e., 385 cycles/radian corresponds to a 0.59 nautical mile ground

target, etc. A complete detailed description of the optical sub-

assembly requirements is given to ITT-A/OD Spec. No. 8007907. A

more detailed description of the optical system and components and

the calculated performance is given in the following sections. 	 -

The initial design and fabrication of the development models

of AVHRR (BBM, ETM, PTM) was performed by Ferson Optics Div. of

Bausch and Lomb. The Flight Model optics are being obtained from

Perkin Elmer, Costa Mesa, California.

3.2	 Scan Mirror

The scan mirror configuration is shown in Figure 3.2-1 (ITT-

A/OD Dwg. No. 8007928). It is made using a waffle or egg-crate

construction to reduce weight while maintaining rigidity. The basic

material is HP21 beryllium with a precision elastic limit of 4000

PSI minimum. After machining of the blank it is electroless nickel

plated to provide a good polishing surface. After polishing to the

specified flatness, the flat surface is aluminized and overcoated

to give a high reflectance in all four spectral channels. The back

surface is gold plated for thermal reasons. The scan mirror is

mounted to the drive motor shaft and dynamically balanced as described

in Section 4.0. The scan mirrors are being procured from Applied

Optics Center, Burlington, Massachusetts.

3.3	 Telescope Design

The telescope assembly is shown in Figure 3.3-1 (ITT Drawing

#8009383). The telescope collects energy from an infinitely distant

source (i.e., the earth) that subtends a solid angle of one IFOV

which is located within the extended FOV. The diameter of the
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f	 f	 I	 I	 f.	 f 1--T-7 i	 _v	 1 . 	 J, 	 I 7"SS

0	 OPTICAL PERFORMANCE REQUIREMENTS
Cam]..	 QLZ	 0a	 CELA

INSTANTANEOUS F.O.V. EDGE	1.31 M.R. 1.31 M.R. 1 .31 M.R. 1.31 M.R.(OF SQ
SPECTRAL BAND Gm)	 0.55-0 . 90 0.725-1 , 1 10,5-11.5 3 . 55-3,93

EDGE WIDTH OF SQ. FIELD STOP 0.0238" 	 0,0238"	 0.00680 	0,0068"

EXTENDED FOV (RADIUS)	 1.1 M.R.	 1.1 M.R.. 2,2 M.R,^ • 2.2 M.R*

TELESCOPE--AFOCAL CASSEGRAIN (TWO COAXIAL, CONFOCAL PARABOLOIDS)

TELESCOPE PRIMARY MIRROR--APERTURE STOP F ENTRANCE PUPIL

DIAMETER OF ENTRANCE PUPIL	 8 . 00 f 0.01 INCHES

DIAMETER OF EXIT, AXIAL TELESCOPE BUNDLE	 1 . 00 INCH

MAX. SECONDARY OBSCURATION (INC. BAFFLE) 	 2.00 INCHES

SPATIAL FREQUENCY r&y—=	 MINIMUM SYSTEM M.T.F.

RADIAN	 CHI O-Z 01 OA

(ALL CHANNELS)

	

19	 0.96 0.96 0,96 0,96

	

257	 0.91 0.93 0.90 0.91

	

385	 0,88** 0.90 0.86** 0,88**

TELESCOPE MIRROR MATERIAL
	

(OWENS-ILLINOIS) "CERVIT"

CHANNEL REGISTRATION
	

SAME AS NASAIGSFC SPEC.

* APPLIES TO FOCUS LENS ONLY.

"DESIGN GOAL MTF IS 90%

AD
Table 3v 171 - Summary of Optics Requirements
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entrance beam into the telescope is 8.00 inches and the diameter

of the exit beam, which leaves through the center hole of the primary

mirror, is 1.0 inch. This reduction in beam diameter caused a

corresponding increase in angular extent, i.e. the IFOV of 1.31 mr

(milliradian) by 1.31 mr into the telescope leaves with 10.5 mr by

10.5 mr beam spread. The largest field angle over which the telescope

must operate) is the extended FOV which has a 4.4 mr diameter in object

space (without the extended FOV, the telescope would have to cover

a field of 1.85 mr).

The telescope consists of two confocal, coaxial paraboloidal

mirrors which are called the primary (large) and secondary mirrors.

The primary mirror clear aperture is both the aperture stop and

entrance pupil of the optical system. It has an 8.00 inch diameter

clear aperture and a focal length of 10 inches giving it an optical

speed of 1.25. The intervertex distance (the axial separation of

the primary and secondary mirrors) is 8.75 inches. This gives a

1.0 inch diameter beam reflected by the secondary for a collimated,

axial beam into the telescope. Because of the extended field of

view, the clear aperture of the secondary mirror must be a minimum

of 1.040 inches. In order to re-collimate the beam, the secondary

mirror must have the same optical speed of t;he primary mirror, i.e.

1.25. The focal length of the secondary mirror is therefore 1.25

inches.

A conical baffle is located around the secondary mirror to

prevent radiation within the EFOV from getting past the secondary

mirror and into the aft optics (i.e. the optical components behind

the telescope). The telescope barrel is made of invar metal which

has a very low coefficient of thermal expansion and therefore maintains
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mirror alignment over the temperature range. The mirrors are

14 made of Cervit (made by Owens-Illinois) and has a low coefficient
of thermal expansion. After polishing, the mirrors are coated with

a biLgh reflectivity coating of aluminum which is protected by an

overcoat layer of silicon monoxide; this coating is used because of

its uniform spectral reflectance in all four channels. Other

mechanical features of the telescope are described in Section 4.0.

A unique feature of the AVHRR telescope assembly is the absence

of any coma or astigmatism.. Thus the angular alignment of the re-

flective, reimaging optics following the telescope is not critcal

with respect to the telescope exit beam. A tolerance analysis of

all optical elements was performed by Ferson Optics which showed

that the only sensitive elements are the primary and secondary

mirrors (i.e. the alignment with respect to each other). The optic

subcontractor not only fabricates the mirrors (as well as all lens

elements) but assembles and aligns the mirrors in the telescope

housing assembly shown in Figure 3.3-1. The primary mirror is first

potted in place and then the secondary mirror is adjusted by position-

ing the entire spider support in an annular ring at the front of

the telescope). The performance of the completed telescope is

checked as a subassembly after potting has cured.

3.4 Channels 1 and 2 Lens Design

The raimaging optics for Channels 1 and 2 are AR coated lenses

consisting of three elements. This triplet design is shown in Figure

3.4-1 which gives the radii of curvatures, axial thickness of each

element, axial spacing, minimum half apertures for each lens surface

3-9
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and the material. The lens materials were selected to control

chromatic aberrations over the wide spectral bands, especially

channel 1 (o.55 to 0.90 um). The triplet design has more than

adequate MTF performance aver the extended FOV and has high

transmission and low manufacturing sensitivity. It has been

possible to achieve a single design which can be used for both

channels 1 and 2 even at the relatively fast effective fjnumber.

The focal plane is located at position No. in Figure 3.4-1.

The field defining aperture (or "field stop") is located at this

position; the size of the opening is 0•.0238 inch by 0.238 inch

and produces. the 1.31 mr by 1.31 mr field of view in object space

in Channels 1 and 2.

The optical performance data for Channels 1 and 2 is summarized

in Table 3.4-1. The optical design was performed by Person Optics

under subcontract to ITT-A/OD. Preliminary design was carried out

using computers at Person's plant while the MTF data for the final

design was obtained using the Grey Diffraction MTF Program on a CDC

6600 computer. Five wavelengths were used for evaluation for each

channel and MTF data was determined for best alignment (on-axis)

and worse alignment (at the edge of the extended FOV) for all

channels. Note that the calculated MTF for 385 cycles per radian*

at the edge of the EFOV is 97.4% for Channel 1 and 96.9% for Channel

2 and is much better on-axis. The required value at this optical

*385 cycles per radian corresponds to 0.831 line pairs per mm
in the focal plane and to 0.5 nautical mile target on the
earth's surface.
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3
42	 5

1	 6
1	 7

>.

•

RADIUS THICK HALF
NO MM 144 APT, MM MAIL.

1 -80.24	 10.00 17.00`1
S	

3
P^.^	 J^

2 1- 51-04	 9,0; 16; 509

13.33
SF 18

-28.70 4,.50

1	 4 1420-65 13.57

5 26.15 11.38 13.92
PSK 53

6 -1218.2 •38."29 12 .55
IMAGE... .

NOTE: 1) THICKNESS BETWEEN SURFACES ON AXIS

Z) HALF APT. SHOWN ARE FOR EFOV EDGE RAY$

DESIGN UNCHANGED BY MODS 6, 7 AND-81

Figure 3.4-1 AVfiRR Triplet Design CH 1 & 2
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AVHRR OPTICAL SYSTEM MTF (PERCENT)

ON AXIS

CH 1 CH 3 CH 4

>99 96 >99

97 91 98

95 88_ . _, 97

>99. 96 >99

-	 96 91 96_

94  88 94

1	 .

CYCLES/RAD SPEC CALC SPEC CALC SPEC CALC

19 96 ->99 96 >99 96 >99

257 93 98,7 `.	 91 >99 90- 98

385 90 98,2 i	 88 >99 86	 j 97

FIELD EDGE

'	 SPEC CALC

I	 96 >99

91
1

98,5

88 97,7

19 96. >99 s 96	 >59; 96

257	 - 93 98,4 . 91	 ^	 98,2 90

^.8^........_^ ^_. 0_.._.1^..._ M-E _. 1._9-7_-3 86

EFOV EDGE

19 96" ~ >99 96	 >99 96

257 93 -98,2 91	 ;	 97,9 90
--_..385_...... _...._._90 ._.

-97,4
..._-

. $8 96,9 86
w

N Table 3.4-.1. Calculated I-ITF Performance
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frequency for Channel 2 is 908 and for Channel 1 it is 888 with a

design goal of 908 for both channels (see Section 3.1). The high

optical performance achieved in the design permits comparatively
i

easy manufacturing tolerances for the lens elements and tolerable

mechanical alignment tolerances (see Section 3.6 for tolerance

analyse results).

3.5 - "Channel 3 and 4 hens Design

The reimaging optics focus the energy coming out of the tele-

scope onto as small a detector as possible. The optics consist

of a focus lens assembly (doublet) made of germanium for Channels

3 and 4; the index of refraction of germanium does not change

significantly between 4 and 12 um. The slight difference in index

is taken care of by locating each detector at the corresponding

focal plane. The focus lenses are axially adjustable to obtain

optimum focus by means of an adjustment external to the radiant

cooler; this also permits use of a smaller opening in the cooler

which lowers the thermal input thereto.

A third germanium lens, called an aplanat, is used just in

front of each detector to do the final focusing of the beam (an

aplanat introduces no additional coma or spherical aberration). The

best signal-to-noise ratio is obtained by using the smallest possible

detector,.area since detector noise depends somewhat on area in

Channels 3 and 4. The detector area can be found from the Abbe sine

law} (see for example, R. C. Jones, Applied Optics, Vol. 1,`,p. 607,

1962 or D. Marcuse, Applied Optics, Vol.	 10, p.	 499, 1971).

-4--1 Z



4	 n.

Aoe 2 = Ad n sin  u

	where Ao =	 area of collecting optics = — r	 Do2

e	 =	 width of square IFOv

A	 =	 area of square detector =	 2
d	 )^	

w 
d

u	 =	 maximum incidence angle of an axial ray at.

the detector.

This can be simplified to Doe = 2 Wd sin u. Using-the sine

definition of f-number, i.e., fn	 1	 this becomes wd = fn
2 sin u

Do e. Since a has been specified ( 9 1.31 m r) and we have

chosen Do = 8.0 - inches, we can only minimize fn (maximize u).

About the maximum feasible value of u is 50°; this gives fn

= 0.653 and wd = 0.0068 inch. The sensitive area of the infrared

detector is the field defining " stop" in Channels 3 and 4; in both

infrared channels the edge width of the square detector is nominally

0.0068 inch ± 0.0004 inch. If we . note that wd/9 = EFL (effective

system focal length), then

f =	 EFL
n	 Do

which is the common definition of f-number.

The aplanat has the effect of optically magnifying the size

of the detector by the refractive index (about 4.0 for germanium

at 12 um) so that the focus lens "sees" a detector image 0.0272

inch on an edge. Since the focus lens sees an angular field spread

of 10.48 x 10-3 radians from the telescope (Channel 3), it has a

focal length of about 2.6 inches. The speed of the focus lens is

1	 also about 2.6 since the beam is 1.0 inch ih diameter (neglecting

field spread) the actual clear aperture diameter of the focus lens

is large enough to accept the beam spread plus some allowance for

mechanical tolerance.	 3-14



The detail design information for the Channel 3 and 4 re-

imaging optics is given in Figure 3.5-1. An enlarged scale drawing

of the optical elements mounted inside the radiant cooler is shown

in Figure 3.5-2. The sensitive area of the Channel 3 infrared

detector is located at position 15 and that of the Channel 4 detector 	 _

at position 20. The position.of the aplanat lens is held very

accurately with respect to the detector sensitive area by mounting

the aplanat directly to the detector housing. This is shown in

Figure 2.2-2 (ITT-A/OD Drawing 8008791), the housing for the

Channel 3 infrared detector. The aplanat lens also serves as the

window for the housing since it is hermetically bonded in place.

The same type of construction has been successfully used by the

same detector vendor on the infrared detectors for other programs.

The MTF performance of the infrared bands for both on-axis

and edge of the EFOV is given in Table 3.1-1. The MTF data given

in the table includes the effects of diffraction. Since Channel 3

is used as the reference channel for registration, the detector-

aplanat assembly for this channel is positioned on-axis. Achieve-

ment of the 85$ MTF requirement for this channel is therefore not

expected to present a problem. The calculated MTF values for both

infrared channels is appreciably higher than the required values

imposed on the optical vendor by ITT-A/OD. Tolerance analysis

studies indicate that the required performance is achievable

without undue difficulty. The axial astigmatism in Channel 3 which

is caused by the tilted dichroic (D2) was analyzed and was found

to be masked by diffraction effects at these long wavelengths.
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IFOV

20

19
Is

6!
	 179	 10L^ /

15

v A 13

t

EFOV

L

I1	
2

I	 3I	 I	 51 1	 18
4	 6 

EFOV -4-J	
7

RADIUS	 THICK MM	 HALFNO,	 MAT- L
W. M	 nN -Axis Am	 mm

1	 -185.15	 10.00	 19.66	
G

2	 -294.56 i 10,00	 20.54
3	 166,29	 10.00	 22.15
4	 -3238,3	 4,32	 21.53

G E

5	 --	 4.78	 15.87	 IRTRAN
6	 17.40	 15.35	 2
7	 1.57	 11.10	 IRTRAN

8	 15.77	 10.93	 2

9	 2.54	 --	
G

10	 7, 60
FILTER

12	 DELETED

13	 4,58	 3.00	 4,43
14	 2.80	 2.48	 2.42

GE

15	 IMAGE , PLANE	 CH 3

9	 11.5	 --

16	 11.01" 4.18
	6

17	 --	 0,25	 4,12
18	 3,90	 -3.00	 3-.52 G E
Iq 1.93	 1,57	 1.51

PLANE	 cR 4

Fiaure 3.5-1 Infrared Reimaging Optics Data

zu	 IMAGE

FjON"

-IFOV

AVHRR CH 3 & 4
ELEMENT PRESCRIPTION
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CHANNEL 4

1	 096

- . -- 1.504

NV

-	 •^ 4.120
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3.6 AVHRR Tolerance Analysis

A tolerance analysis was run on the AVHRR Optical Design

using a Person Optics computer program. The program provides

information of changes in the OPD * (in Raleigh units) due to

perturbation of optical design parameters about their nominal

values. From the OPD variations due to perturbations, the mechanical

tolerances for manufacture can be determined. The , data presented

here is for individual elements as well as gkoups of elements

which are mounted on subassemblies. Figtres 3.6-1 and 3.6-2

show concentricity and parallelism for group data in schematic

presentation. Mirrors and dichroics are not shown but must be

considered when distributing the parallelism and concentricity

tolerances. A summary of the recommended tolerances follows.

3.6.1 Summary of Mechanical Tolerances**

Channel 1 and 2 - Focus Lens

a. Focus Lens Diameter - OD + 0.000 -0.002

b. Focus Lens Cell - ID +0.002 -0.000

c. Minimum Clearance for Thermal Expansion - 0.001

d. Triplet concentricity relative to telescope optical

axis - 0.010

e. Triplet parallelism relative to telescope optical

axis - 4 mr

OPD = Optical. Path, difference.

** Linear dimensions in inches, angles in milliradians (mr).

0) 3-18
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f. Spacer Data

Lenses	 16-17*	 17-18*

Length	 ±0.002	 ±0.003

ID	 ±0.001	 $0.001

OD	 +0.000 -0.002	 +0.000 -0.002

*See Figure 3.4-1.

Channels 3 and 4 - Focus Lens

a. Focus Lens Dia. - OD +0.000 -0.002

b. Focus Lens CE11 - ID +0.002 -0.000

c. Minimum clearance for thermal expansion - 0.001

d. Doublet concentricity relative to telescope

optical axis - 0.005

e. Spacer Data

Length - ±0.003

ID - 10.002

OD - +0.000 -0.002

Channels 3 and 4 - Aplanat

a. Outsider Diameter Aplanat +0 . 000 -0.002

b. Diameter aplanat cell - +0.002 -0.000

c. Concentricity of cell diameter relative to detector

axis - 0.002

d. Mounting Surface deviation relative to detector

surface - ±0.001

^i
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3.6.2 Surface Quality for Filters, Beamsplitters

Ch. 1 and 2	 Ch. 3 and 4

a. Scratch	 60	 80

b. Dig	 40	 50

c. Flatness	 10 fr	 2 fr

d. Irregularity	 1 fr	 2 fr

e. Wedge	 1 mr	 1 mr

3.6.3 Mechanical Adjustment Data (Inches)

Back	 Focus	 X-Y
Focus	 Adjust	 Adjust

Channel 1	 1.512	 10.050	 :0.040

Channel 2	 1.515	 :0.050	 ±0.040

Channel 3	 0.0976 : 0.002	 ±0.050*	 :0.040

Channel 4	 0.062 : 0.002	 ±0.050*	 :0.040

*An additional adjustment of 0.0606 for Channel 3 and

0.0343 for Channel 4 toward the focus leans is required

for room temperature testing.

Position of Channel 4 aplanat relative to Channel 3 aplanat -

±0.002.

3.7	 Dichroics, Beamsplitters and Cooler Windows

Dichroics Dl and D2, Beamsplitter D3, the Irtran cooler windows

and the Channel 3 filter are being obtained from OCLI (Optical Coating

Labs, Inc., Santa Rosa, Calif.). The function of the two dichroics and

the beamsplitter is to separate the optical beam exiting the telescope

into four separate beams before final focussing in each of the four

channels. Dichroic D1 consists of a thin "Transparent" coating of gold

evaporated onto a flat glass substrate. This type 3ichroic reflects

3-22
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radiation in Channels 3 and 4 with approximately 828 efficiency and

transmits Channels 1 and 2 with approximately 758 and 708 efficiency,

respectively. It does polarize the energy in Channels land 2 and is

the reason why an additional folding mirror (M3) is used. More complete

details of this dichroic are given in ITT-A/OD Spec. No. 8009262.

Dichroic D2 reflects Channel 4 radiation and transmits Channel 3.

This dichroic is the bandpass filter for Channel 3 which is designed for

a 450 incidence angle and the focused optical beam when cooled to 105

Kelvin. The "filter-dichroic" reflects energy in the 3.5 to 4.0um

spectral band. The reflectance for Channel 4 radiation is 908 minimum

and the transmittance for Channel 3 radiation is 758 minimum. The

substrate material for the dichroic is optical grade germanium; the

thickness was made as large as feasible to minimize bending when it is

cooled to operating temperature. More complete details of this dichroic

are given in ITT-A/OD Spec. No. 8008792.

A detail layout drawing showing the extreme optical rays at

Dichroic D1 1 Heamsplitter D3 and folding mirrors M3 and M4 is shown

in Figure 3.7-1. The angle of beamsplitter D3 with respect to the

optical axis was minimized in order to reduce polarization effects.

Since the spectral bands of Channels 1 and 2 overlap each other, D3

cannot be a dichroic beamsplitter but must be a neutral density

separator. The neutral density beamsplitter consists of a thin

evaporated coating of inconel on an optically-polished, flat glass

substrate. The minimum average reflectance is 228 for Channel 1 energy

and the minimum average transmittance is 348 for Channel 2. Complete

details for beamsplitter D3 are given in ITT-A/OD Spec. No. 8007932.

I
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The cooler windows are optically-polished, flat circular

discs of Irtran 2 material (Eastman Kodak trade name). They are

antireflection coated by OCLI to give a minimum transmission of

858 in both Channels 3°and 4. The coated windows meet standard

military specifications for adherence, hardness and humidity. The
r^

outer cooler window (W1) is comparatively thick since it must with-

stand atmospheric pressure when the cooler is evacuated for bench

cooling tests.

The Channel 4 bandpass filter is a conventional multilayer

coating on a polished germanium substrate. The bandpass character-

istics such as cuton and cutoff slopes, tolerances on location of

the 508 transmission wavelength, etc., are given in Section 3.8.2.

3.8	 Spectral Definition

3.8.1 Spectral Definition of Solar Channels

In order to determine the AVHRR system spectral response in

Channels 1 and 2, it is necessary-to determine the effects of those

elements having a varying spectral characteristic. These elements

are:

a. Mirror Coatings

b. Gold Beamsplitter

c. Lens AR coatings

d. Silicon Detectors

e. Spectral Bandpass Filters

Since the relative spectral response of the above elements affects the

system spectral response in the given bands, and since their absolute

response affects the signal to noise ratio, both requirements (spectral

'and sensitivity) must be considered together. The spectral
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characteristics of the above five groups will be discussed individually

below, followed by their combined effects.

3.8.1.1 Mirror Coatings

A complete study of the various potential mirror coatings was

done in the preliminary design of the AVHRR. It was decided that to

achieve maximum sensitivity in Channel 2 (where overcoated aluminum

mirrors have a dip in their reflectivity) silver mirrors would be used

for the telescope mirrors. For polarization compensation, however,

the scan mirror and the folding mirror behind the solar channel beam-

splitter were aluminized. The silver coating chosen was the Muffelleto

Optics "low pit" coating which was supposed to survive the required

humidity and temperature extremes.

In the process of building the Breadboard and Engineering Model

telescopes, r' "silver coating was found (at reasonable cost) which

passed the humidity test. In all cases the mirrors degraded extensively

when placed in the humidity test. , Therefore, the decision was made to

use aluminum mirrors which have a reflectivity equal to or greater than

that shown in Figures 3.8-1 and 3.8-2. The coating after which the

reflectivity curves were fashioned is the Evaporated Metal Films Corp.

"enhanced aluminum" coating.

3.8.1.2 Gold Beamsplitter

The dichroic to split Channels 1 and 2 from Channels 3 and 4

is the thin gold film type at 45 0 to the incident beam with the near

IR and visible energy being transmitted. Figure 3.8-3 shows the

measured solar channel reflectivity of the gold dichroic used in the

PTM.
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(S	 -3.8.1.3 Lens ARCoatings

The anti-reflection coatings on the three relay optic lenses

used in each channel do not materially affect the relative spectral

response of the solar channels. A MgF12 type single layer coating is

used and the total lens transmission will change from about 978 near

the band center to 958 near the edges. Even for three lenses, the

effect is insignificant.

3.8.1.4	 Silicon Detectors

Because of the wide spectral bands covered by Channels 1 and 2,

the detector in each is an important factor in defining the band edges.

Quotes were solicited from six different companies, and all were

requested to define the spectral characteristics of their proposed

device. Selection of the vendor was based on both the relative spectral

response and the absolute sensitivity. The definition of the Channel 1

spectral band edges is complicated by the fact that the silicon detector

'relative response is down to about 308 at 0.50 micron. This means that

above some relative transmission value (about 408) the spectral bandpass

filter does not define the system response. The response is basically

defined by the detectors and the other spectrally variant elements.

This effect could have been reduced by cutting the detector peak

spectral response and lowering the system signal-to-noise ratio; however,

it was decided that the slow cutbn of the system spectral response is

more acceptable than a reduced signal-to-noise ratio.

As stated previously, one detector design is used for both

solar channels. This approach provides excellent sensitivity in both

channels and simplifies (and so reduces the cost of) the detector.

The measured spectral response of one of the detectors is shown in

Figure 3.8-4.	
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3. 8.1.5 Spectral Handpass Filters

The spectral filters were purchased from Fish -Schurman Corp.

and have the responses shown in Figures 3.8-5 through 3.8-7. The

Channel 1 filter consists of a two piece laminated sandwich with one

puce being a 3 mm thick Schott glass filter and the other being a

2 mm thick clear substrate upon which a multilayer coating is applied.

The multilayer is placed inside the sandwich and is sealed by the

epoxy sealant from ambient conditions. The problem of spectral varia-

tions as a function of absorbed water is eliminated. This approach

was used in the ATS-F VHRR solar channel filter. The epoxy sealant is

Summers Laboratory C-59 which meets MIL- 3920 and has measured outgassing

characteristics of 2.94 % weight loss and 0.108 % condensible materials.

(This information was supplied to ITT by NASA /GSFC.) This is the same

sealant used to seal and focus lenses in each solar channel of the AVHRR.

The filter generates its spectral bandpass using a Schott glass

filter for the short wave cut-on and a multilayer coating for the long

wave cut off. The slopes of the filters are all about 6% between the

5% and 80 % response points. Short wave out-of -band blocking is defined

by the Schott glass and is complete. Long wave out of band blocking is

defined by the multilayer and, while not as good as the Schott glass,

results in an out of band signal well below that specified as discussed

later (the detector has cut off by the time the filter transmission

comes back up).

In Channel 2 the spectral filter is simply a 3 mm thick Schott

glass RG-715 long pass filter. The long wave cutoff of Channel 2 is

defined by the silicon detector.

F y
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3.8.1.6	 System Spectral Response

Figures 3.8-8 and 3.8-9 show the measured PTM AVHRR Spectral

responses for Channels 1 and 2.

3.8.1.7 Out-of-Band Signal

Since the bandpass filters have transmission outside of the

bands of interest, some of the output signal results from radiation

out of the spectral hand. The specification requires that the total

r out of band responses shall be less than 28 of the total integrated

response within the passband when viewing a' source simulating the

solar spectral energy distribution. The Channel 1 passband is defined

in the specification as extending from 0.06 micron below the lower 50%

response point to 0.04 micron above the higher 50% response point.

For Channel 1 then the passband is 0.47 to 0.935 micron. In Channel 2

the passband is from 0.65 micron to the detector response cut off.

Since the detector response is about 0.3% at 1.30 microns, this will

be taken as the cutoff point for purposes of this analysis.

Using the solar spectral distribution curves generated by

Thekaekara and the system response curves we can caluclate the amount

of signal both in and out of the two spectral bands. In Channel 1,

Table 3.8-1 shows that the in-band signal is 3422 while the out of band

is 21. Since the in-band transmission of the spectral filter is about

80%, we must reduce the in-band level to 2740. We have then a maximum

out of band signal of	 21	 = 0.8%.
(. 80) r3M 2T
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TABLE 3.8-1 IN BAND AND OUT OF BAND SIGNAL FOR CHANNEL 1

SPECTRAL CH 1
INTERVAL SYSTEM SOLAR SUMMATION

`F 'MICRON RESPONSE ENERGY OF FACTORS

<0.20 0 0.05

0.20 - 0.47 0.1* 18.2 -'	 1.8

0.47 - 0.49 0.5 3.00- 1.5
0.49 - 0.50 10 1.44 14.4
0.50 - 0.51 27 1.42 38.3
0.51 - 0.70 75 22.9 17.7
0.70 - 0.89 97 15.8 1534
0.89 a 0.92 56 1.97 110

0.92 - 0.93 13 0.64 8.3
0.93 - 0.95 6 1.89 11.3
0.95 - 1.00 1.8 2.94 5.3
1.00 - 1.10 0.55 4.95 2.7
1.10 - 1.20 0.06 3.97 .24
>1.20 0

*Maximum specified allowable transmission.
Actual filters are less.

TABLE 3.8 -2 IN BAND AND OUT OF BARD SIGNAL FOR CHANNEL 2

SPECTRAL CH 2
R INTERVAL SYSTEM SOLAR SUMMATION

MICRON RESPONSE ENERGY OF FACTORS
<0.65 0.1* 41.6 4.2
0.65 - 0.68 0.1 3.3 0.3

0.68 - 0.69 0.5 1.04 .52
0.69 - 0.70 5.0 1.02 5.1

0.70 - 0.72 45 1.99 89.6

0.72 - 1.00 90 2062 1856

ff 1.00 - 1.05 72 261 188
1.05 - 1.20 25 6.30 157

1.20 - 1.30 1.0 3.25 3.2

1.30 - 1.40 .16 2.68 .43
>1.40 0 15.7 0

*.1$ is maximum specified allowable transmission of
filter. Actual filter much less than this.
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	 Similarly in Channel 2, the in-band signal from Table 3.8-2

is 80% of 2300 while the out of band is 4.6. The ratio of out of

band to in-band signal is	 4.6	 = 0.25%.
300

Measurements on both the ETM and PTM verify that the out-of-

band response is well below the 2% maximum allowed in both channels.

3.8.2 Spectral Definition of Thermal Channels

The spectral characteristics of the bandpa$s filters for

Channels 3 and 4 are summarized in Table 3.8-3. The filters are the

dominant element in defining the spectral response of the AVHRR

instrument. The response of the indium antimonide detector varies

smoothly from 3.5 to 4.0 um, being about 5% less at the shorter wave-

length side of the band. The Hg Cd Te detector procurement specifi-

cation contains a requirement that the response at any wavelength

between 10.5 and 11.5 'um be no less than 80% of the maximum in-band

response. Therefore, the detectors should not appreciably affect the

system response. The complete procurement specifications for the

bandpass filters are contained in ITT-A/OD Specifications 8008790

(Channel 4) and 8008792 (Channel 3).

The germanium lenses have some effect on the response of

Channel 3 due to their increased absorption toward longer wavelengths.

This effect causes the Channel 3 response to be somewhat skewed to

shorter wavelengths in the band. Figures 3.8-10 and 3.8-11 show the

measured PTM channels 3 and 4 spectral response.

The out-of -band response for both channels was analyzed by

graphing the product of the detector response and the 300 Kelvin emis-

sion as a function of wavelength. The area under the curves was then

measured with a planimeter and the in-band value multiplied by the
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TABLE 3.8-3

FILTER CHARACTERISTICS
`a

CHARACTERISTIC CHANNELLf3 CHANNEL 4
4

508-of-Peak Cuton Wavelength 10.5t0'.09um 3.55t.06um

508-of-Peak Cutoff Wavelength 11.5t0.09um 3.93t.06um

Cuton and Cutoff Slopes < 38 < 38

Response at 10.0 and 12.Oum < 1% N.A. y

i

Response at 3.40 and 4.12um N.A. < 18 f

Transmission less than 0.1% From 1.8 to From 1.8 to

9.8um and 3.2um and from

from 12.2 to 4.3 to 7.0um
:a

18.Okim

In-Band Transmission > 75$,,.Avg. > 758 Avg.
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614	
expected in-band transmission ( 80% average) and the out-of-band value

by 0.1%. The ratios of out-of-band response to in-band response were

1.6% for Channel 4 and 0.748 for Channel 3.

Measurements on the ETM and PTM verify that the response in

both channels is below the 2% maximum allowed.

3.9	 Channel Registration

The approach used to register the AVHRR channels consists of

first registering the two thermal channels at a subassembly level.

The patch, with both detectors mounted, is placed in a test vacuum

dewar and illuminated through the relay optics, by a collimated beam.

The collimator is a germanium lens which has a slit target and chopped

radiation source. The slit is moved while the outputs of the two

channels are recorded. The difference between the 50% response points

is the misregistration. This is repeated with a slit rotated 90 0 so

that the distance that each detector must move is measured. The patch

is then removed from the dewar, the adjustment made, and the patch

retested to verify alignment.

The following procedure is used for channel registration.

a. Determine the physical location of the focal

points for Channels 3 and 4 with reference

to the optics subassembly during optics ac-

ceptance tests.

b. Place the subassembly into the AVHRR and mount

the cooler to place the detectors in their proper

position.

tl)
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c. With the solar channels centered in their EFOV,

determine the misregistration between all the

channels. If the error is more than can be

corrected by moving the solar channels, reposi-

tion the cooler to place the IR detectors in the

correct location.

d. Remeasure the misregistration and move the solar

channel detectors to complete the registration

procedure.

Step c. essentially eliminates ' the tolerance buildup problem

in the , instrument by actually measuring the positions and correcting

accordingly. If the initial placement of the cooler is sufficiently

close to place the IR detectors within the solar channel EFOV, then

no cooler repositioning will be required.

The procedure has been used to register both the ETM and PTM

instruments well within the specified value.

3.10	 Polarization Sensitivity

An analysis was made of the polarization sensitivity of

Channels 1 and 2 with the object of meeting the requirements of the

GSFC Specification.

P	 T1	 T2	 < .053
T 1 + T2

This equation holds at nadir (or at 900 from nadir) as a

result of the orientation of the optical elements that contribute to

the polarization. (On the Flight Model instruments, the maximum allowed

polarization sensitivity is .07 . 1 The transmittances obtained for the

parallel and perpendicular polarizations are the extremes for any

linearly polarized wave that travels through the optical train.

J
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The theoretical and measured polarizations of the elements

are given in the tables contained in the DIR's. The channel transmit-

tances were calculated by giving a weight of 1/2 to the spectral end

points (i.e., originally 0.5 and 0.9 pm in Channel 1 and 0.75 and

1.00 um in Channel 2; revised to 0.55 to 0.9 um in Channel 1 and 0.725

and 1.1 um (silicon detector cutoff) in Channel 2).

The analysis performed during the design phase of the AVHRR

program considered several options including the angular position of

the dichroics and beamsplitters, the addition of reflecting surfaces

for compensation, and the types of coatings on reflective surfaces.

The complete analysis is detailed in AVHRR D.I.R. #6 and 7.

Several changes have been made to the orginal polarization

sensitivity design of the AVHRR. In particular, the gold dichroic has

been made by OCLI so that the percent polarization of that element is

considerably less than originally thought. The scan mirror coating is

the major compensating element for the polarization of the gold dichroic.

The high reflectivity coating used on the PTM and Flight Models also has

less polarization (because the reflectivity dip around 0.86 micron is

minimal). The combination results in a measured PTM polarization

sensitivity as listed in Table 3.10-1. The Polarization sensitivity as

a function of scan mirror position was measured on the PTM as a matter

of interest. As can be seen the instrument performs quite well and it

can be expected that the Flight Model units will be well within the 0.07

allowed.

Af

3-46



1*
TABLE 3.10-1

MEASURED PTM AVHRR POLARIZATION

SENSITIVITY

SCAN MIRROR CHANNEL 1 CHANNEL 2

POSITION P.S. P.S.

Soo (Sunside) .032 .047

25° (Sunside .039 .049

Nadir .037 .053

250 (Antisunside) .038 .047

500 (Antisunside) .030 -.049
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3.11	 Scattered Sunlight

We have studied the following effects of direct sunlight:

a. The temperature gradient it produces across the

honeycomb of the in-flight target.

b. Its reflection from the in-flight target and the

resultant calibration errors.

c. Scattering and the resultant signal contamination.

Because the above occurs only during the nighttime'portion of. the

orbit,; we need to consider only Channel 3 (10.5 to 11.5 um) and

Channel 4 (3.55 to 3.93 um).

From our studies to date, we conclude that:

a. The honeycomb gradient is not sensibly changed

from its value in the 906 n mi orbit.

b. Under the worst conditions, reflection of sunlight

from the in-flight target introduces a significant

error (0.65K) in Channel 4. As a result, it may be

desirable to restrict the Channel 4 calibration

period, e.g., to the portions of the orbit when the

target is shaded by the earth, spacecraft, instruments,

or sunshields (if added). The corresponding error in

Channel 3 is negligible (0.002x).

The temperature errors quoted in b are for the preliminary TIROS-N

instrument/spacecraft layout shown in NASA/GSFC Drawing GDSK-4799.

Two separate instrument orientations are of interest, for scattering

from the telescope and from the scan mirror.
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3.11.1 Honeycomb Temperature Gradient

This problem was analyzed in DIR #18 (Worst Case Honeycomb

Temperature Gradient in the In-Flight Thermal Calibration Target,

May 9, 1974; included in Section 7.1). The analysis was revised

for the new altitude of 450 n mi and the new range of sun angle 3

(memo of May 2, 1974). The results are:

For S < 27.830 , min, 8 = 62.170 at 3	 27.830

For g > 27.830 , min. 6 = 62.170

(To - T1 ) 1 = 2.5130

(T0 - TR ) 2 = 0.6390C

Effective cell gradient= (T0 - TX ) = 0.951C

Effective calibration gradient = 0.079 (To - T^) = 0.0750C.

The effective calibration gradient is not sensibly changed from its

previous value of 0.0770C.

3.11.2 Sunlight Reflections from In-Flight Target

Sunlight reflected from the in -flight target introduces a

calibration error in addition to .those errors we have previously

considered. The error is negligible in Channel 3, but can be

significant in Channel 4.

The solar exitance reflected from the target is given by

Ms = Es p As

AT

where Es	= direct solar incidence (irradiance) in the wave-
length band and perpendicular to the sun ' s rays.

P

	

	 diffuse hemispherical reflectivity of the in-flight
target

F

As	 = exposed target area projected perpendicular to the
sun s rays

t.	 AT	 = effective target area viewed by radiometer
=	 n (8) 2 /4 in2.

d
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	 The values of solar incidence were calculated from the table given

by Thekaekara (Optical Spectra, March 1972, p. 32); the results are

Channel 3 (10.5 - 11.5 um), E s = 1.71 x 10 -5 Wcm'2

Channel 4 (3.55 - 3.93 um), E s = 2.52 x 10 -4 Wcm-2

The reflectivity p can be calculated from the limiting formula

of Treuenfels (J. Opt. Soc. Am. 53, 1162, 196.3) or by interpolation

from the graph of Sparrow and Cess (Radiation Heat Transfer, Brooks/

Cole, 1966 p. 165). In either case, an assumed paint emissivity of

0.92 (3M 401 black) results in a hemispherical cavity emissivity of

0.980 and a reflectivity of 0.020. As . shown in the graph of Sparrow

and Cess, the limiting emissivity of a cylindrical cavity is reached

at a length to radius ratio of about 2:1 when the paint emissivity

exceeds 0.7. The length to radius ratio of a honeycomb cavity is 8e1.

The ratio of flat to total target area is 0.045, so that the hemis-

pherical reflectivity is 0.0227. It would be desirable to have

spectral emissivity (or reflectivity) data on the 3M 401 in the bands

of interest. However, data could only be found for 3M 101 and;

therefore, an. average 401 value of approximately 0.92 was used.

The exposed area A s normal to the sun's rays was determined

from scan cavity projections supplied by J. D. Crawford. The worst

case situation is shown in Figure 3.11-1. It occurs at a a angle of

27.830 , when the spacecraft leaves the earth's shadow, and an orbital

position 150 north of the plane of the ecliptic in the night-time part

of the orbit. The value of A '-a 10.9 square inches when shading from

the anticipated spacecraft is included. We then have (in the absence

of any sun shield)
Ms (Ch. 3) = 8.43 x 10 -e Wcm 2

Ms (Ch. 4) = 1.24 x 10' 6 Wcm 2
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Projection of scan cavity pF.pendicular
27.3 and8to sun's rays at 0. 

165° . The scan mirror is shown viewing
the in-flight target.

Figure 3.11-1
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The comparative effect of the reflected sunlight is shown in Figure

3.11-2. In Channel 3 1 the sunlight produces an exitance level that

is more than 4 orders of magnitude below that of the 295K self-emission.

On the other hand, the reflected sunlight in Channel 4 is only about an

order of magnitude below the self-emission.

The calibration error introduced by reflected sunlight may be

expressed as an effective temperature increase;. it is given by

6T  = Ms
dM/dT

where dM/dT is the rate of change of in-band blackbody exitance at the

nominal target temperature of 295K (22 9C). For the bands of interest,

we have

dM	 (Ch. 3) = 4.263 x 10
-5
 Wcm 2 K -1 at T = 295K

dM	 (Ch. 4) = 1.905 x 10 -6 Wcm-2 K"1 at T = 295K
dT

The calibration errors for the worst case are then

ST  (Ch. 3)	 0.0020C

ST  (Ch. 4) = 0.650C

3.11.3 Signal Contamination

With the AVHRR mounted as shown in Figure 2 of GSFC Specifica-

tion 5-731-P-liS (Rev. C), there is a large effective sunshield (i.e.,

the spacecraft itself) that limits direct solar exposure of the instru-

ment to the night y-time portion of the orbit. During this time, of

course, Channels 1 and 2 are not used. As a result, we need to 'consider

the effect of scattered sunlight only in Channels 3 and 4. In common

with the reflections from the in-flight target, the larger effect is in

Channel 4.
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We may define the required attenuation coefficient for

scattered sunlight as the normal solar incidence (irradiance) out-

side the earth's atmosphere divided by one-third of the minizo-am

radiant signal,
Ea =	 s

(1/3) (NER)AR

where NER = noise equivalent radiance = 1.6 x 10 -6

Wcm 2 ster -1 (Ch. 3), 8.0 x 10-8

Wcm-2 ster' z (Ch. 4)

AQ = throughput of optics = 5.43 x 10- " cm2 ster.

The NER values were supplied by R. J. Koczor for the nominal spectral

bands and a 0.12K NETD. We therefore require

a (Ch. 3) = 5.87 x 10" cm 2 = 3.79 x 105 in-2

a (Ch. 4) = 1.74 x 10" cm-2 = 1.12 x 10 8 in-2

Attenuation coefficients for scattered sunlight were measured

as part of an earlier study on the HRIR (Final Technical Report, Solar

Sun Shield Study for the HRIR on TIROS-M Satellite, Feb. 6, 1967,

ITT-A/OD Report No. 14-16400). The HRIR had a 3.7 pm band channel and

was to operate in a 750 to 900 n mi sun-synchronous orbit over a sun

angle "range from 37.5 0 to 500 . The instrument had a modest external

shield and simple internal baffles with a Cassegrain telescope and a

reflective secondary optic. With the scan mirror looking 45 0 from

nadir on the sun side, attenuation coefficients of 0.6 x 10 8 in-2 and

higher were measured, the value depending on the sun angle and orbital

position.

3.11.4 Sun Scatter Test Results

The BBM AVHRR was tested to determine the level of scattered

light getting into Channels 1, 2 and 4. The tests for Channels 1 and

2 were run together while that for Channel 4 required a modified set up.
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3.11.4.1 Channel 1 & 2 Test Setup

The BBM was placed on a 2-axis rotary table which rotated

the instrument about its pitch and yaw axes. A 9 inch aperture

Astrola telescope was used to illuminate the scan cavity. A 24 Hz

chopper and a tungsten iodide lamp (with a Lucalox diffuser) were

used as the radiation source at the Astrola focal plane.

Signals were taken out of the Channels 1 and 2 preamplifiers

(to reduce system noise) and fed to an electrical ,bandpass filter

(20 to 31 Hz) then to a Ballantine True RMS voltmeter. The BBM was

operated from the P.T.E.

3.11.4.2 Test Procedure

As discussed in Sectoon 3.11.3 the procedure is to calculate

an attenuation factor for the scattered light at . various angles of

irradiance. The detectors in the BBM were used for the test. They

were removed from the unit (mechanically not electrically) and

illuminated directly by the chopped collimator signal, thru the

appropriate spectral filter. They were then placed back in the unit

in their proper location to measure any scattered signal.

The collimator is used to irradiate the scan cavity at sun

angles 0 of 0 0 to 670 and orbit angles u s of 2300 to 230 0 . Initial

readings were taken with the scan mirror positioned at nadir and ±450

from nadir; however, no change was observed and so further testing was

done with a nadir-looking scan mirror only.

3.11.4.3 Test Results Channel 1 & 2

The data obtained in this phase of the test is given in

Table 3.11-1.'"The data is given as a function of sun angle then

orbit angle. The irradiance level signal measured at the scan cavity

was 6.40 volts in Chann;'A 2 and 4.00 volts in Channel 1. As can be
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Measured Irradiance

Channel 1
Channel 2

Onto Scan

4.0 volts
6.4 volts

Cavity

SUN ORBIT CHANNEL 1 SIGNAL	 o CANNEL 2 SIGNAL
^NGLE ANGLE .58 my NADIR -45 +45 NADIR o-45

670 280° 58 my .58 my .60 my .53 my .55 my .53 my
270 .56 .58 .61 .52 .53 .54
260 .62 .63 .62 .51 .53 .53
250 .60 .60 .63 .52 .53 .55
240 .63 .60 .62 .54 .52 .57
230 .66 .63 .66 .56 .57 .58

58 280 .65 .60 .60 .55 .50 .52
270 .65 .65 .65 .50 .50 .50
260 .58 .60 .60 .53 .46 .53
250 .56 .57 .57 .45 .48 .52
240 .58 .62 .57 .51 .50 .50

r > r 230 .57 .57 .58 .55 .53 .53

500 280 .62 .56 .60 .52 .54 .62
270 .60 .61 .59 .54 .53 .52
260 .60 .60 .58 .52 .51 .51
250 .65 .63 .62 .54 .50 .53
240 .65 .62 .64 .55 .54 .54

` 230 .64 .67 .65 .63 .62 .64

41°	 280 .62 .55
270 .58 .52
260 .58 .52
250 .60 .56
240 .62 .60
230 .63 .60

29°	 280° .55 my .58 my
270 .56 .59
260 .62 .58
250 .65 .58
240 .63 .61
230 .63 .60

180 280 :58 .55
270 .60 .57
260 .63 .57
250 .60 011I(,TN AL PAGE IS . 6 0
240 .60 Yo()It QUALITY .60
230 .56 OF .5.6

9° 280 .63 .56
270 .61 .57
260 .61 .59
250 .62 .61
240 .60 .60

f^ 230 .61 .62

TABLE 3.11-1
CHANNELS 1 & 2 SCATTERED SIGNAL AND NOISE LEVEL J	 3-56
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seen in Table 3.11-1, the measured signal and noise level Channel

1 was on the order of 0.65 m volts.	 This is a ratio of

4-- 000	 6150:1
.65

Similarly in Channel 2 the ratio is

6400	 11000:1

There was no evidence of a measurable scattered light signal

in either channel at any of the measurement points. This was verified

by blocking off the source. The numbers given in the Table are only

the noise in the test setup.

Using the formula given earlier, we have

	

a	 Es

Es/7r x .005 x 1/3 x S2A

In the above case the coefficient gives the attenuation required for the

scatter to be equal to the specified noise Equivalent albedo (1/3 of 1/2%)

Using the coefficient we can calculate the required ratio of S 1 (colli-

mator irradiance) to S 2 (scatter signal measured in system) as

Sl/S2	 Ad X A

Where. Ad is the test detector area. In our case AVHRR thruput is 5.43 x

10— " cm2 ster (including secondary obscuration) so that

a=2.24x10 7 in-2

The test detector has a 0.010" square aperture so that the ratio that

would be measured in the test set up if the scattered signal were

equivalent to the specified Noise Equivalent Albedo is

	

Sl/S 	 (.01) 2 x 2.24 x 10 7 = 2240:1
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0	 In both channels our test ratio was at least 3x better than this.
Therefore, we conclude that if there is any scattered signal in

the orbits and at the angles measured (which are the computer-

projected "worst cases"), they are at least three times less than

the Noise Equivalent Albedo specified.

3.11.4.4 Channel 4 Test Set Up

The BBM AVHRR was in place on the two axis table with the

collimator in position as for Ch 1 and 2. 	 However, an .027" square

active area InSb detector was placed at the focus of the IR Relay

lenses. A Channel 4 filter is set in place in front of the detector

so that only the spectral band of interest is viewed. This detector-

filter combination is placed at the scan cavity for incidence

measurement as above. The radiance source is a 900°C blackbody source

chopped as before at 24 Hz.

The scan mirror was checked at several angles on various sun

positions, but no measurable effect was observed. All recorded data

is for the scan mirror at nadir.

The procedure was basically identical to that previously

described; however, since Channel 4 can be used at night, the orbital

angles which were checked were extended to a range of 230 0 to 310 0 .

Table 3.11-2 gives the measured results.

3.11.4.5 Test Results Channel 4

The maximum measured scattered signal plus noise was 85 micro-

volts. With an incidence signal of .636 volts, we have a ratio of

63--$00	 = 7480:1

F
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\&/ ORBIT

.• ANGLE SUN ANGLE B
sS

^f
/y \ 7© 180 29 3 4 54© §7©

2300 20 20 15 15 20 15 25
^^ J

240 20 20 15 15 25 20 30

/

^f

250 20 l5 15 15 15 30 25

•
? { 260 15 25 20 20 25 20 30y

«
^ :	 -

270 25 30 20 25 45 50 85

`t1 t 280 15 25 25 20 25 35 30

` \ 290 20 20 30 15 20 20 15

\	 / 300 20 15 15 15 30 25 25	 .

.̂: & 310 25 15 15 30 20 25 20
k }/.̂:

Readings are in microvolts

MEASURED IRRADIANCE ONTO SCAN CAVITY IS .636 volt rms

1 §E2 = 24 microvolts

TABLE 3.11-2

CHANNEL 4 SCATTERED SIGNAL PLUS NOISE LEVELS
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The required attenuation coefficient for Channel 4 has been

calculated to be 1.12 x 10 9 in -2 for a scattered signal equal to 1/3

NER. The ratio Sl/S
2 

for this channel is

Sl/S	 m	 (1.12 x 10 4 ) (.027 in )2	 81650
2

where . 027" is the InSb detector width. This means that the maximum

scattered signal found is equivalent to

81--1650	 3.6 NER
3 x 7480

SUMMARY

Measurements in the solar channels indicate that no measurable

scattering exists in these channels at solar incidence angles which

computer projections indicate are worst case conditions. In Channel 4,

the measured scattered signal is less than two NER's for orbits with sun

angles below about 48 0 and at all orbit angles except 270°. The maximum

measured any where is 3.6 NER's.

It is apparent that no sun shield is required for the solar

channels. Further because of the low level and limited extent of the

scattered signal in Channel 4, it is probable that no sun shield is

required in that channel. Further, assuming a reasonably sized shield

attached to the AVHRR, it is not possible to eliminate the scattered

signal completely since the irradiance is reaching the telescope through

the shield area which would be cut out to allow an earth view at the

maximum scan angle.

^34 ^̂  ^
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4.0	 MECHANICAL DESCRIPTION
e

4.1	 Overall Instrument Configuration

The AVHRR instrument design provides for a basically

modular configuration. 	 An exploded view of the instrument which

depicts the various modules is shown in Figure 4 . 1-1.	 The basic

modules are:

1.	 Base plate with related cover plates

2.	 Scanner

3.	 Optics

4.	 Radiant Cooler

S.	 Electronics

An outline drawing of the assembled instrument is shown in ITT

Drawing No. 8008778 which is reproduced in Figure 4.1-2.

4.1.1	 Structure

The base late can be seen in Figure 4.1-1. 	 Provision is

made for locating the scanner and optics on the base plate by means

of dowel pins.	 The radiant cooler is positioned by means of shims

in order to align the Channel 3 and 4 detectors to the optical axis.
4;W

The electronics package attaches to the side of the instrument by

means of machine screws and dowel pins for rigidity.

zz

The structural integrity of the instrument was proven

during the extensive vibration testing given both the Mechanical

Structural Model and the Engineering Model. 	 The Engineering Model

successfully passed vibration tests per ITT Procedure No. 8120266

and acceleration tests per ITT No. 8120267 with the exception of

4-1
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channel registration. The required registration stability was

achieved on the PFM after improved methods of securing certain

optical elements Were incorporated into the design and pinning

and staking procedures were improved.

In order to prove the structural integrity of the radiant

cooler prior to vibration ,a computer analysis of the configuration

was conducted by Computer Sciences Corp. and Butler Analyses, Inc.,

under NASA Contract NAS 5-24012 Mod. 10. Copies of the Final

Report of this analysis were reviewed and are on file.

4.1.2	 Materials in Structure

The primary structural material is 6061-T6 Aluminum tooling

plate (Alcoa Type 200). The scanner housing is fabricated from

HP-20 grade Beryllium or equivalent. In some low stress areas

structural parts are fabricated from AZ31B magnesium.

The magnesium surfaces are finished with DOW-7, and the

aluminum is finished with Alodine 600. Where thermal control is

required, the surfaces are painted.

Beryllium is electroless nickle plated.

4.2	 Scanner Subassembly

An assembly drawing of the scanner is shown in ITT Drawing

No. 8009201 u-1.1tich is reproduced in Figure 4.2-1,-'

4.2.1	 Scan Motor

The 80 pole hysteresis synchronous scan motor was procured

from Schaeffer Magnetics, Inc., Chatsworth, California. The motor

is described in ITT Specification No. 8007929. Typical performance test

RIA
*°^f	 curves for the scanner motors are shown in Figures 4.2-2 through

4.2-5.
4-4
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0	 4.2.2	 Bearings
;i The motor shaft bearings are a set of DB duplex bearings

IM
separated by 2 inch spacers. 	 The bearings are specified in ITT

Drawing #8007937.	 Each bearing has a static radial non-brinell

load capacity of 602 lb. and a dynamic radial load capacity of

125 lb. for 17,500 hours of operation at 360 rpm.

-` An unusual feature of this bearing is the square ball

pockets in the retainer.	 It was determined during the SCMR program

that the shape of retainer ball pocket is a major factor influencing

jitter.	 Square ball pocket bearings exhibited less jitter than

round pockets.	 Based upon that, the AVHRR bearings were procured

with square ball pockets.

' Tests have shown that bearings with improved surface finish
k-

" on the races (achieved both by diamond honing by the manufacturer

and running in at ITT) can perform within specification when
Ax,.

lubricated with the proper amount of lubricant.	 Tests have also

shown that performance is appreciably degraded when too much lubri-

cant is used.

4.2.3	 Bearing Fits

Table 4.2-1 shows the shaft and housing fits for the

AVHRR.

4.2.3.1 Thermal Consideration of Bearing Fit
Bearing, shift and housing materials and coefficients of

thermal expansion are noted in Table 4.2-2.	 The deviation from
F

nominal bearing fit over the temperature range, 0 to +40°C, is

considered negligible.
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SHAFT, BEARING AND HOUSING PITS

ID OD

Bearing Shaft Bearing Housing

1.0623
1.0625

1.0622
T-.-0620

1.5000
1.4998

1.5000
1.50-02

TABLE 4.2-1

SHAFT, BEARING, AND HOUSING DIMENSIONS

fi

ID OD

Loose Loose Tight Loose

0.0001 0.0005 0.0000 0.0004

4,10
4-11



THERMAL EXPANSION CHARACTERISTICS

OF BEARINGS

Item	 Material

Bearing	 440 C SS

Shaft	 Inconel X750

Housing	 Beryllium

Coefficient of

Thermal Explosion

5.6(10) -g	/OF

6.96(10) -6 /OF

6.4(10) -6	 /OF

With all parts measuring nominal dimensions at

200C, the total changes in fit at 320 00 from

nominal will be:

Change in Bearing to Housing Fit 	 -4.32(10)' 5 IN +4.32(10)- 5 IN

Change in Bearing to Shaft Fit 	 -6.13(10)`5 IN +6.13(10)' 5 IN

d)



I f 1

(2)	4.2.4	 Lubrication

The bearings of the scanner are lubricated with Krytox

143AB. This lubricant was selected after evaluating a number of

lubricants and upon the recommendation of GSFC.

A summary of the pertinent characteristics of KRYTOX

143AB is shown in the following:

Weight loss $ - 30 days at 5000 &10' 6 mm Hg	 .0238

Lubricity - cycles - A151550 Block
150 lb. @ 100 RPM	 106 + cycles

Viscosity 32F	 140 CS

Viscosity 77F	 49 CS

Viscosity 10OF	 36 CS

Radiation Resistance - min. safe dosage	 108 rads

The amount of lubricant in each bearing is critical for

achieving proper scanner performance. Nominally, 7 +1 mg of KRYTOX
-0

143AB is used in each bearing. , To achieve this level, ITT

Procedure No. 8008007 is followed for cleaning and lubricating

each bearing.

	

4.2.5	 Jitter

The current jitter spec calls for:

"scan line to scan line jitter as measured on the

leading edge of the synchronization pulse shall

be less than 1/2 of an IFOV for 988 of the data

points when data is taken every scan line for a

20 minute period.

'D
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	 "The jitter of the synchronization pulse between any

two scan lines.within a 20 minute period shall be

within an IFOV ( 34 microseconds)."

Jitter characteristics of Engineering Model, Life Test

Model and Protoflight Model instruments were all within this spec

as noted below:

	

Vertical	 Line/Line	 Line/Line
Jitter	 Jitter	 Jitter

	

TP 8121091	 TP 8120888	 TP 8121133

R t:='1•	 ETM	 99.9%

LTM	 --	 99.9%	 --

PFM	 --	 --	 99.8%

4.2.6	 Life Test

*r

	

	 A nominal one year life test was run at ITT on the Life

Test Model Scanner. The motor survived the life test as indicated

by its end-of-test performance characteristics. As of this writing,

-: a complete teardown of the LTM had not yet been accomplished.

LTM performance characteristics are noted below.

.° Start-of-Test End-of-Test

.^ Coast Down	 1.21 min. 2.25 min.

Jitter-Line/Line	 78.7 % (within 8usec) 99.98	 (within 8 &
16usec)

Torque
	

3.3 in oz at Drop Out	 4.O in oz at Drop Out

4.2.7	 Angular Momentum

Angular momentum of the ETM scanner is calculated to be

^ 35.8 in. oz sec based upon a measured moment of inertia of .9502

in. oz sec t . Momentum vector direction is along y axis.

4-14
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D
Moment of inertia was measured with a Model XR50 moment

of inertia tester manufactured by Space Electronics, Inc.

4.2.8 Venting of the Scanner Housing

Because of the limited torque margin of the scanner motor,

shaft seals are not used. A close clearance labrinth cap does

cover the shaft clearance through the housing for the purpose of

limiting the outgassing toward the scan mirror and optics. Details

of the cap are shown in Figure 4.2-8.

A vent hole is included in the-motor housing to allow an

escape path for air during decompression to preclude large volumes

of air from rushing through the bearings and causing contamination.

Some concern has been expressed because open vent holes could allow

lubricant vapor to escape after the instrument is in orbit. While

this does not appear to be a problem when Krytox is used provision

has been made for a fitting to be attached to the vent hole as

requested by NASA/GSFC.

4.3 Radiant Cooler Subassembly

An exploded view of the radiant cooler is shown in Figure

4.3-1.

4.3.1 Support. Body

The radiator is supported by nine support rods fabricated

of glass epoxy composite tubing (G10 Synthane) and stainless steel

inserts, or end caps:

2 pcs .25" O.D. x .19" I.D. x 1.31" total length or .98" thermal length

2 pcs .25" O.D. x .19" I.D. x 0.82" total length or .52" thermal length

5 pcs .38" O.D. x .28" I.D. x 3.40" total length or 3.15" thermal length

4-15
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Figure 4. 2-8	 Shaft Clearance Cap
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Explodad View Radiant Cooler	 FIG 4.3-1
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The patch is supported by four rods of the same

materials as above:

.19" O.D. x .16" I.D. x 3.06" total length or 2.70" thermal length

A 041 
1 ;e
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4.3.2	 Detector Location

The detectors for Channels 3 and 4 are located on the

patch. A layout of the detectors on the patch is shown in

Figure 4.3-2.

	4.3.3	 Deployable Earth Shield

The radiant cooler Earth shield is a "one-shot" device

which will be deployed by torsion springs located at the hinge

pins. A mechanical latch holds the shield in the closed (un-

deployed) position. Two rotary solenoids are utilized to release

the latch. Each is independent of the other and each capable of

unlatching the shield.

Switches located at both the open and closed positions

will indicate shield position.

A positive mechanical stop which is an integral part of

the radiator will stop the shield in the open position.

Hinges consist of music wire torsion springs rotating in

polyimide bushings. No lubricant is required.

The shield can be manually closed without the aid of

special tools.

In order to deploy the shield in a lg gravity field for

test, the torsion springs develop 162 in. oz of torque of which 40

in. oz are required to lift the weight of the shield and 2 in. oz

are required to overcome friction in the bearings. With torsion

springs designed to produce 162 in. oz torque, the torque margin in

orbit is greater than 80:1.

An analysis of the earth shield door motion was made and

reported in DIR #36.

4-19
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4.3.4	 Materials and Finishes in Cooler
fl

Generally, the major cooler components are fabricated

from 6061 T6 aluminum. Radiator surfaces are electroplated gold

and painted black with 3M401. The back of the patch and the

surfaces of the gold box are electroplated gold. The earth shield

is electroless nickle plated and polished optically. Then it is

coated with evaporated aluminum. Aluminized polyester film multi-

layer insulation-is used inside the cooler with,polyester mesh

separators.

4.4	 Optics Subassembly

4.4.1	 Optics Outline

The optics assembly is shown in ITT Drawing No. 8008030 -

Figure 4.4-1.

4.4.2	 Materials and Finishes Used in 22tics

Generally, 6061 Aluminum is used as the main structural

material.. The corrugated tube,in the telescope is invar. Graphite

filled polyimide is used as the separator material for lens elements.

4.5	 Electronics Package

4.5.1	 Electronics Package Layout

The Assembly Drawing No. 8009235 of the electronics package

is shown in Figure 4.5-1.

4.5.2	 Accessibility

All electronics modules are accessible from the Earth side

of the instrument when it is mounted on the spacecraft with the

exception of Channels 1 and 2 preamps.

445)
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4.5.3	 Thermal Considerations

Louvers on the spacecraft platform are used for thermal

control. Heat sinks on each PC board conducts the heat into the

structure of the electronics package.

4.5.4	 Radiation Considerations

Nominally 1/8 inch thick magnesium plates are used for

all external walls of the electronics package. This thickness will

provide adequate radiation shielding.

4.5.5	 Materials and Finishes in Electronics

The entire electronics package is fabricated from AZ31B

magnesium with Dow 7 finish.

4.6	 Weight Breakdown

A weight breakdown is shown in Table 4.6-1.

4.7	 Materials

The Materials List has been issued as ITT Drawing No.

8009466.
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MASS PROFILE

ITEM WEIGHT

STRUCTURE 6,200 GMS'

SCANNER 4,370 GMS

OPTICS 4,200 GMS

COOLER 2,575 GMS

ELECTRONICS 9,433 GMS

THERMAL BLANKET 425 GMS

TOTAL IN GRAMS (GMS) 27';198

EQUIVALENT IN PDS (LBS) 59,96

<y	

TABLE 4,6-1

4-26



a k̂ 5.0 ELECTRICAL SYSTEM
•Y N,

The basic function of the AVHRR electronics is to provide

outputs of four data channels in digital form and supporting

telemetry signals. Given inputs of power, a reference clock, and

commands, the AVHRR electronics provides the command storage, power

conversion and regulation, timing and control signal generation,

a signal amplification, and analog-to-digital conversion necessary

to perform its function.

A simplified block diagram of the AVHRR electronics is shown

in Figure 5-1. This diagram shows the basic functions and inter-

connections of the electronics.

5.1 Electronic Packaging

The majority of the AVHRR electronics are mounted on printed

circuit boards. The following is a list of the AVHRR boards:

1. Power Converter Assembly in a metal can

consisting of:

a. Power Converter and Switching Regulator

b. Logic Regulators

2. t 15 Volt Regulators

3. Command Relay No. 1

4. Command Relay No. 2

5. Command Relay No. 3

6. Scan Count and Decode Logics

7. Motor Logics

8. Auxiliary Scan

9. Patch Temperature Control and Telemetry

10. Telemetry Board No. 2

11. Lnterface Logics No. 1

12. Interface Logics No. 2	 5-1
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13. IR Post Amplifier

14. Daylight Post Amplifier

15. Multiplexer

16. Ramp Calibration

17. Blackbody Mux

18. Motor Power Supply

19. Switching Regulator

20. Ch 3 IR Preamplifier

21. Ch 4 IR Preamplifier

22. Daylight Preamplifier

The first 17 cards listed are mounted as plug-in units in

the electronics assembly.

Items 18 and 19 are mounted in a metal can which is located

between the electronics assembly and the scan motor. These two

cards are hard-wired inside the can. The entire can assembly is

a plug-in unit with two connectors, one to the electronics assembly,

the second to the scan motor.

The Ch 3 IR Preamplifier (Item 20) is mounted in a metal can.

The assembly is mounted outboard of the electronics package.

The Ch 4 IR Preamplifier (Item 21) is located on the cooler

vacuum housing in the proximity of the cooler interface headers.

The preamplifier board is mounted in a metal can.

Two daylight preamplifiers (Item 22) are located within

the optics package with the silicon detectors connected directly

to the PC board. The board is hard-wired within the optics module

and is provided with copper shielding.

5-3
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Break connectors are provided between the electronics

package and the wiring required in the remainder of the instrument

making the electronics package in its entirety a plug -in unit.

The final major assembly of the AVHRR electronics is the

analog-to-digital converter. This unit is located in the electronics

package with short connections to the post amplifiers and output

connectors.

5.2 Electrical Design Considerations

The electrical design is to the extent possible based upon

existing designs used on space qualified instruments. Parts

selection criteria include the use of parts on the NASA/GSFC

Preferred Parts List where possible and the use of previously

approved parts where the PPL parts are not suitable. Derating

of parts is in accordance with the requirements of the PPL and

consideration of the special environment of the AVHRR.

5.3 Video Scan Timing

Figure 5-2 shows the timing relationship of the scene as

viewed by the scan mirror and the sync pulse which is the time

reference point. Time intervals of 1 millisecond before and after

the sync pulse have been provided by insertion by the MIRP of

coded pre-cursor signals. The tolerance of the viewing times due

to spacecraft attitude control tolerance are indicated.

The times indicated on this drawing and times and frequencies

listed on all other timing diagrams and schematics are based on

a normal 1 MHz clock. To obtain actual times the numbers must be

multiplied by 1.0016. To obtain actual frequencies multiply

numbers of 0.9984.
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IR VIDEO DATA

DAYLIGHT VIDEO DATA

0 10	 20	 30	 40	 50	 60 70	 80	 90 100	 110	 120	 130	 140	 150	 160

f LINE SYNC SIGIIAL 166.4

0-0.1 LINE SYNC 34.2 NADIR NOMINAL

0.5-1.5 MIRP PRE-CURSOR TIME 62.6 SPACE START WORST CASE -EARLY S/C ATTITUDE

E	 1.8 RADIOMETER SPACE VIEW START 63.1 SPACE START NOMINAL

f	 1.9-3.5 RADIOMETER SPACE SX4PLE 63,6 SPACE START WORST CASE -LATE

3.5-4.0 RAMP CALIBRATION 65,6-65.8 IR TARGET TEMPERATURE
f

4.13 SPACE END WORST CASE -EARLY 65,8-66.0 PATCH TEMPERATURE 

117,1 IR TARGET FULL VIEW START
5,3 SPACE END NOMINAL

117.6-118.4 IR TARGET SAMPLE
5,8 SPACE END WORST CASE - LATE

119.0 IR TARGET FULL VIEW ENDt S/C ATTITUDE
165,0-166,0 MIRP PRECURSOR TIME



5.4 Power Subsystem

5.4.1 General

The +28V DC input from the spacecraft is regulated to

obtain isolation from spacecraft voltage variations converted

to develop a system ground, and re-regulated to obtain noise

rejection and precision.

The schematic for the Power Converter and Switching Reg-

ulator Board is shown in Figure 5-3. The schematic for the

Logic Regulator is shown in Figure 5-4. Both boards are assembled

in a conetic can with LC EMI filters on all inputs and outputs

with the exception of the clock signals.

5.4.2 Turn on Transient

Turn on transients are suppressed by limiting the base

voltage rise time of the input pass transistor Q4 of the PC & SR.

The changing path is through. T2 and R17. This circuit limits the

surge current into the input filtering. The input switching

regulators have long time constants on the reference inputs which

slows the build-up of all the circuits beyond that point.

5.4.3 Electronics Switching Regulator

Two input switching regulators are provided usA.ng Harris

RA2620 amplifiers as comparators: The circuits are self starting

and driven by a 62.4 Kh signal for synchronization with the space-

craft clock. A +34V boost voltage derived from the Power Converter

provides the drive voltage for the pass transistor to provide

good saturation for minimum dissipation.

4b,	
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5.4.4 Power Converter

Two DC/DC Converters are provided, one powered from each.

Switching Regulator. These circuits establish signal ground

for the AVHRR and provide the proper voltage inputs to the

electronics regulators. They are driven converters being

synchronized with the same 62.4 Kh clock signal as the switching

regulators. The converters operate from.switching regulator

outputs and therefore the maximum VCE on the converter transistors

is limited to 44V.

5.4.5 +5V Regulators

A switching regulator is used to provide +5 volts for logic

circuits. The output of the switching regulator directly feeds

the logic circuits required for motor frequency countdown and the

input clock circuits. The major portion of the logics is powered

through a switching transistor from the regulator output. This

transistor is turned on with the Electronics ON command.

5.4.6 ± 15V Regulators

The 15 volt regulators are linear circuits utilizing the

Harris HA2620 I.C. as the voltage comparator. The schematic

for the ± 15V Regulators is shown in Figure 5-5.

Also on this board are the pass transistors for the channel

enable/disable commands and Electronics ON command.

The +15 volt regulator uses a +20 volt "boost" voltage from

the power converter to enable a low input/output differential

and minimize the pass transistor power loss. The circuit will

regulate under full load with an input/output differential equal

-rr	 to the collector/emitter saturation voltage of the pass transistor

which is typically 0.2 volt.
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5.4.7 Motor Power Supply Switching Regulator

The schematic for the motor power supply switching

regulator is shown in Figure 5-6.

The circuitry is similar to the electronics switching

regulator, the exception being that the motor switching regulator

will regulate at one of two voltage levels selected upon command.

5.5 Commands and Digital TM

The following is a list of the presently planned co-m-mands

for the AVHRR:

1. Scan Motor/Telemetry ON

2. Scan Motor/Telemetry OFF

3. Electronics/Telemetry ON

4. Electronics/Telemetry OFF

5. Ch 1 Enable

6. Ch 1 Disable

7. Ch 2 Enable

B. Ch 2 Disable

9. Ch 3 Enable

10. Ch 3 Disable

11. Ch 4 Enable

12. Ch 4 Disable

13. Voltage Calibrate ON

ti 14. Voltage Calibrate OFF

15. Patch Control High Mode

16. Patch Control Low Mode

'T
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j	 17. Cooler Heat ON

18. Cooler Heat OFF

19. Scan Motor High Mode

20. Scan Motor Low Mode

21. Telemetry Locked ON

22. Telemetry Unlocked

23. Earth Shield Deploy

24. Earth Shield Disable

25. Patch Control ON

26. Patch Control OFF

The following is a list of the functions performed by

executing the listed commands.

Command No.	 Function

1. Scan Motor/Telemetry ON	 Applies Power to:

2. Electronics/Telemetry

1. Electronics sw. regulator

2. Motor sw. regulator

3. Power converter

4. t15V regulators

5. +5V logic reg.

6. Clock receiver

7. Motor logic

8. Analog telemetry circuits

9. Patch temp. control

Applies Power to:

1. Electronics sw. regulator

2. Power converter

3. f15V regulators

5-13
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.
Electronics/Telemetry - Continued

4.	 +5V logic regulator

5.	 +5V electronics circuits

6.	 Analog telemetry circuits

7.	 A/D Converter

8.	 Scan timing logic

9.	 Clock receiver

10.	 Motor logic

11.	 Patch temp. control

5. Ch 1 Enable If "Electronics ON" has been

executed - Applies Power to:

1.	 Ch 1 preamplifier

2.	 Ch 1 Post Amplifier

7. Ch 2 Enable If "Electronics ON" has been

executed - Applies Power to:

.1.	 Ch 2 Preamplifier

2.	 Ch 2 Post Amplifier

9. Ch 3 Enable If "Electronics ON" has been

executed - Applies Power to:

1.	 Ch 3 Preamplifier

2.	 Ch 3 Post Amplifier

11. Ch 4 Enable If "Electronics ON" has been

executed - Applies Power to:

1.	 Ch 4 Preamplifier

2.	 Ch 4 Post Amplifier

13. Voltage Calibrate If "Electronics ON"

has	 been executed -

1.	 Deactivate IR & Daylight

detectors.
5-14



	

fi ^r	 f"J'^,4 1'^	 'il i r	 i ^'^'hC	 y.	 1	 ^*aW2	 r r'	 +F ^ n. u'sMo	
, A T {4 +( .r	

,t ...

	

lk	 + 
M.

1,.,

7,71

^r,wrka i)

2. Provides simulated earth

scene and backscan video.

If "Telemetry ON" has been

executed

1. Sets patch temp control

point to 1070K

If "Telemetry ON" has been

executed

1. Sets patch temp control point

to 1050K

If "Electronics ON", "Motor ON"

or "Telemetry ON" has been

executed - Applied Power to:

1. Radiator Decontamination Heater

2. Patch Decontamination Heater

If "Motor ON" has been executed -

1. Sets motor sw. regulator

voltage to HIGH LEVEL

If "Motor ON" has been executed -

1. Sets motor sw. regulator voltage

to LOW LEVEL

Applies Power to:

1. Electronics sw. regulator

2. Power converter

3. t15V regulators

4. +5V logic regulator

5. Clock Receiver

6. Motor Logic

1m	 13.
15. Patch Control High Mode

`rat

16. Patch Control Low Mode

17. Cooler Heat ON

19. Scan Motor High Mode

*J A • ,

20. Scan Motor Low Mode

21. Telemetry Locked ON
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23. Earth Shield Deploy

24. Earth Shield Disable

25. Patch Control ON

?''''.	
^7	 ' 4'^.f1* emu-
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7. Analog Telemetry Circuits

8. Patch control, circuitry

Applies Power to:

1. Earth Shield Circuitry

Removes Power from:

1. Earth Shield Circuitry

If "Telemetry ON" has been executed -

1. Applies Controlled Heat to Patch

Digital T M

The following is a list of the Digital T/M functions:

1. Scan Motor Status "1" ON
"0" OFF

2. Electronics Status "1" ON
"0" OFF

3. Ch 1 Status 101" ON
"0" OFF

4. Ch 2 Status '"1" ON
"0" OFF

5. Ch 3 Status 101" ON
"0" OFF

6. Ch 4 Status "1" ON
"0" OFF

7. Voltage Calibrate "1" ON
Status "0" OFF

8. Patch Control Mode "1" 1070K
"0" 1050K

9. Cooler Heat Status "1" ON
"0" OFF

10. Scan Motor Mode " 1" IIGH POWER
"0" LORI POWER.

(3
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11.	 Telemetry Status	 "1" ON
r "0" OFF

12.	 Earth Shield Status	 "1" DEPLOY
"O" DISABLE

13.	 Patch Control	 "1" ON
"0" OFF

The schematics for Command Relay #1, 2 and 3 are shown in

Figures 5-7, 5-8 and 5-9.	 Command Relay's are P&B HL11D 12VDC

Latching Type.	 For Commands and Digital T/M "1" true or O.OV Level "0"

= False or +S.OV Level.

5.6	 Analog TM and Patch Control

5.6.1 Analog Telemetry

The following is ,a list of the presently planned analog

telemetry points.

1.	 Patch Temperature

2.	 Patch Temperature Extended

3.	 Patch Power

4.	 Radiator Temperature

S.	 Blackbody No. 1 Temperature

6.	 Blackbody No. 2 Temperature

7.	 Blackbody No. 3 Temperature

8.	 Blackbody No. 4 Temperature

9.	 Electronics Current

10.	 Motor Current

11.	 Earth Shield Position

12.	 Electronics Temperature

13.	 Cooler Housing Temperature

14.	 Baseplate Temperature

.D
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.ass.
	 15. Motor Housing Temperature

16. A/D Converter Temperature

17. Detector No. 3 Bias Voltage

18. Blackbody Temperature IR Ch 3

19. Blackbody Temperature IR Ch 4

20. Reference Voltage

The circuitry for telemetry points 1-16 is located on the Patch

Temperature Control and Telemetry Board shown schematically in

Figure 5-10 and the Telemetry #2 Board shown schematically in

Figure 5-11.

The following is a list of the range and resolution of the

analog telemetry points.

Range
	 Resolution

1. Patch Temperature

2. Patch Temperature
Extended

3. Patch. Power

4. Radiator Tempera ture

` I 	5, 6,7,8. Blackbody Temp
1,2,3 & 4

9. Electronics Current

10. Motor Current

11. Earth Shield Position

12. Electronics Temperature

13, 14, 15. Cooler Housing
Temperature
Baseplate Temperature
Motor Housing
Temperature

+0.2V = 90.7°90
+5.OV = 115.9 K
+0.2V = 99.4 6
+5.OV = 316.0 K
+0. • 2V = 0.08 MW
+5.OV = 50.0 ^W
+0.2V = 148.7 K
+5.OV = 317.3°K
+0.2V - 5.086°9
+5.OV = 44.974 C
+0.2V 39.3 MA
+5.OV = 982.5 MA
+0.2V = 12 MA
+5.OV = 300 MA
3 Levels

+0.2V = 38.7°
+5.OV - 10.8 9+0.2V - 33.2	 C
+5.0V = 3.95 C

0.1935V/Degree

0.02216V/Degree

0.067V/mm at
32 mw out.
0.0285V/Degree

0.1203V/Degree

5.088MV/Milliamp.

16.6 MV/Milliamp

+5.OV Open
+3.OV in Between
+1.OV Clos8d
0.171735V/ C

0.129V/°C

w	
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16. A/D Converter
Temperature

17. Detector #3 Bias Volt.

a

3	 } 'J,j
1

18. Blackbody Temp. IR Ch 3

19. Blackbody Temp. IR Ch 4

20. Reference Voltage

+0.2V = 84.49°C 0.12V/oC
+5.OV = 44.510C

1.923 = -13V	 0.23/V/V
2.384 = --11V

To be Calibrated*

To be Calibrated*	 #

+0.2V = 0.266V	 0.750V/V
+5.OV = 6.657V

*Range and value of calibration dependent on individual instrument
calibration. Equations derived from EM matched l to Calibration
from 0 C to 40 C are

Ch 3 - °C = 1.1V2 - 33.2 V + 330.2

Ch 4 - 0  = - 3V2 + 11V + 302.3
2000 Ohm ice Point Platinum sensors are used for the

following telemetry.

1. Patch Temperature

2. Radiator Temperature

3. BB No. 1

4. BB No. 2

5. BB No. 3

6. BB No. 4

30K ohm Y.S.I. Thermistors, 0.1 0C interchangeability, are
used for the following telemetry.

1. Baseplate Temperature

2. A/D Converter Temperature

3. Electronics Temperature

4. Cooler Hsg. Temperature

5. Motor Hsg. Temperature.

Diodes have been provided on all operational amplifier outputs
to limit analog telemetry points voltage range to -0.7'7 to +6.0.
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5.6.2 Patch Temperature Control

"V.M circuitry for temp. control is shown on the Patch Temp

Control and Telemetry schematic, Figure 5-10.

it is a proportional control with a DC output (steady state)

to eliminate transients.

The temperature sensor is a platinum resistance unit, Rose-

mount Model. No. 164MA with an ice point resistance of 2000 ohms.

This will provide the input amplifier with a low .impedance, stable,

and linear source with a resistance change of approximately 8.6 ohms/

degree.

The heating unit on the patch is a high rel. RNR55 2000 ohm

resistor.

The operational amplifiers are Harris devices, HA-2700. They

were selected for the low offset voltage, typically 0.5 m y and

offset voltage as a function of temperature typ. 0.25 my from 0

to 50°C.

5.6.2.1 Theory and Operation

The R3, R4 resistors are used to zero.the 1st stage amplifier

offset voltage at +250C.

The R6, R7 1 R8, combination is tailored to match the platinum

sensor resistance at 105 and 107 Kelvin. R-2 limits the sensor

dissipation to the values in the following table and establishes the

input voltage change to the lst stage amplifier at 12.5 my/degree.

	

Sensor Power	 Dissipation	 Sensor Dissipation/mw

	

95°	 1.31

	

100°	 1.41

f	
105°	 1.50

i	 1100	 1.59

	

323°	 3.15
5 ?5



('211)	 R-5 is selected for a first stage gain of approximately 70 and the

amplifier output is 0.0 volts at the selected control point.

With the 0.0 volt inverting input on the second stage and

0.134 volt established. by Rll, R12 on the non-inverting input,

the second stage amplifier output = (0.34 x 67.6) =9.07 VDC. With

a 0.6 volt drop across CR1 the patch control output is 8.4 volts

at the selected temp. control point. With the 2.OK heating unit

on the patch, the patch control circuitry provides 35 milliwatts

at 105.0 or 107.0 degree Kelvin.

Figure 5-12 indicates the deviation in temperature of the

control point with variations in control heat requirements (35 mw

nominal).

5.6.2.2 Circuit Stability

The resistor types used in the patch control are Vishay

S202 high rel units with shelf life and load life data available.

Calculations from these data indicate that the resistor stability

is a negligible factor.

The operational amplifier stability can be related to a milli-

volt/degree factor at the first amplifier input. The typical initial

offset voltage for the HA2700 is 0.5 millivolts which is compensated

for at board test. With the loop gain indicated on the schematic,

a long term offset voltage change of 1.25 millivolts would be

required to result in an error in temperature control of 0.1 degree.

The relative location of the detectors, temperature sensor and

heater is shown on ITT Dwg. #8008799 Detector/Frame Assembly,

Channel 3 and 4 Figure 5-13.
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The sensor and heater is located as close as possible to

the detectors to minimize sensor/detector/heater gradients and

provide the input circuitry with feedback which is a monitor of

detector temperature as opposed to the patch temperature.

5.7 Motor Logics

The clock receiver arrangement utilizing the Texas Instruments,

Inc. SN55107 clock receiver, as specified in the GFSG specification

for an Advanced Very High Resolution Radiometer, is located on the

motor logics printed circuit board. An output of the clock receiver

is available on a connector pin for use in the interface logics.

The motor countdown logics convert the 0.9984 MHz clock

receiver signal into 62.4 KHz for use in the switching regulators

and 240 Hz 20 for use in the motor power supply.

The 0.9984 MHz input signal is first divided by 16 in a

ripple counter to achieve the 62.4 KHz signal at pin 9 of A7.

This signal is then buffered and is available for use in the

switching regulators.

To obtain the 240 Hz 20 signal, the 62.4 KHz signal is

divided in a series of counters. The first is a divide by thirteen

counter which produces a 4.8 KHz signal at pin 9 of A4. This

signal is then divided by 10 to obtain a 480 Hz signal at pin 9

of Al. The inverted and non-inverted forms of this signal are

further divided by tin their respective J-K flip flops, and the

240 Hz 1p signal is present at pins 9 and 12 of B1. A reset

circuit acts as a monostable and supplies a pulse to the clear

:.1 1
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input of one of the J'•-K flip flops, B1 pin 2. The reset pulse

0.	 insures the proper 90 phase relationship between the 20 240 Hz

output.

A portion of the scan count logics is also included in the

motor logics circuit. The time base for scan counting is the

spacecraft 0.9984 MHz clock. A divide by 100 counter provides

a 100 usecond (10 KHz) time base for the remainder of the counter

and decoding.

The counter is designed to count continuously and be reset

by the pick-up sync pulse. The reset logics for the entire scan

count circuit are on this circuit.

The final circuit on this board is the sync pick-up circuit.

There are two magnetic pick-ups in the motor housing which provide

the inputs to the sync pick-up circuit.

The HA-2700 operationz. amplifiers act as level detectors

and provide logic level pulses to the logic circuitry. The circuit

is designed for redundant operation such that if either pick-up

fails, a sync pick -up pulse will still be present at the output.

Drawing No. 8008045 is the schematic diagram of the motor

logics (Figure 5-14). The mo tor logics timing diagram is shown

in Figure 5-15.

5.8 Scan Count and Decode

The scan count and decode board provides the basic count-

down of the scan period and the decoding of gating signals for

the AVHRR electronics. The schematic diagram is given on Drawing

8008049 (Figure 5-16).

010'
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A 10 KHz clock from the motor logics is the time base

for the counter. The first six flip flops are a conventional

binary ripple counter. The last four counting stages are a

divide by 13 ripple counter. The counter is designed to repeat

the scan period automatically but is normally reset by magnetic

pick-up initiated reset pulse.

The method of decoding is setting flip-flops at the

beginning and end of the desired time interval and decoding the

set condition of the first and the reset condition of the second.

The clock input is always the highest frequency of the decoded

time, which arrangement when used with a ripple counter, provides

unambiguous decoding.

The timing of the normal operation signals is shown in

Figure 5-17. Timing for the voltage calibration signals is

on Figure 5-18.

5.9 Output Data Control

The logics for controlling the conversion of Analog to

Digital Data and the transmission to the MIRP is shown on Schematic-

Interface Logic No. 1 - 8009206 Figure 5-19 and Schematic Inter-

face Logic No: 2 - 8009209 Figure 5-20. The timing for the output

Data Control is shown in Figure 5-21.

By specification, the minimum timebetween samples from the

MIRP can be 25 micro-seconds. With minimum timing, the A to D

converter operates in the hold or convert mode for 16 microseconds

and in the track or sample mode for 9 microseconds. For longer

5-34
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intervals between sample pulses, the track time is increased.

The sample signal from the MIRP determines the transition from

track to hold.

The A to D converter operates on a basic 3 microsecond

conversion time. The time allowed for Channel 5 conversion

is increased to 4 microseconds to minimize the data storage

and gating circuits required.

The A to D converter provides for six input data channels.

The target five channels correspond to the five channels of the

specification. The sixth channel has multiplexed telemetry data

and is switched in under logic control in place of channels 3,

4, and 5 of the appropriate time in the line scan.

Three microseconds (4 microseconds for channel 5) after a

channel is selected a strobe signal is sent to the A to D which

stores the digitized data in the•A to D internal register. The

data of this point is in Grey code. Within 0.5 microseconds

the Grey to binary conversion is completed and valid binary data

is present on the A to D output lines.

The data is later strobed into an intermediate storage

register and in sequence to the output register whose outputs

directly connect to the output drivers for the MIRP lines.
The following chart gives the timing data for the sequence

in microseconds with respect to the MIRP select pulse.
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CH 1 CH 2 CH 4 CH 3 CH 5

Analog to Digital 0-3 3-6 6-9 9-12 12-16
Conversion

Data in A to D 3-6 6-9 9-12 12-16 16-3*
internal register

.0 (Grey Code)

A to D output 3.5-6 6.5-0 9.5-12 12.5-16 16.5-3*
(binary)

Data in Inter- 4-7 7-10 10-15 15-20 20-4*
mediate register
(Reg.	 1)

Data in output 5-10 10-15 15-20 20-25 25-5*
register
(MIRP Signals)

Time of next conversion cycle.

Channel 5 input is connected to the Output Data
Amplifier of Channel 3.
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0 5.10 Ramp Calibration Generator

The ramp calibration and simulated calibration functions

have been combined to have the same digital to analog converter

be the signal source for both and have the signal control and

switching only a logic function. Drawing No. 8007963 sheets 1

and 2 is a schematic diagram of the ramp calibration generator

(Figure 5-22).

The counter for the ramp calibration is a conventional 10-bit

ripple counter. The outputs are gated to the D to A converter.

The system is connected such that each successive scan will give

a one-step voltage change in the direction of increasing radiance.

This means that the signal will be increasing in voltage in

channels 1 and 2 and be decreasing in voltage in channels 3 and 4.

Since ramp calibration signals of both polarities with

respect to zero radiance are required, a digital offset (Binary

Number 43) is maintained at all times other than ramp calibration

time. During space look, the data amplifiers will re-zero on

this offset allowing ramp calibration signals of both polarities

from zero radiance. The following tables will.illustrate this

further.

Since the zero radiance voltages were specified at different

intervals from the limits of the ramp calibration voltage (+0.25

volts and -0.1 volt) and +6.2 volts and +6.4 volts) the difference

was split maintaining the 6.5 volt ramp calibration range giving

a 0.275 volt excursion below minimum radiance. This gives a binary

value of 1023/6.5 volts x 0.275 volt = 43 bits.
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The earth scene during simulated calibration is derived

from a divide-by-3 counter. The three states are decoded and

gated through the two most significant bits giving signals of 1.626,

3.253, and 4.879 volts above minimum radiance.

A test connection has been added to allow three known values

of ramp calibration signal to be sequentially gated out when

calibrating. This signal must be matched to the amplifier gain

which is a function of detector sensitivity.

The clock signal for both counters is derived from the
s.

scan timing logics.

'- The D/A Converter is a 10-bit current switching type

converter.	 The output of the converter is a positive going 0

to 10.23 volt ramp consisting of 1023 steps. 	 The output of the

D/A converter is sent to a unity gain inverting amplifier located

` on the multiplexer board.	 These two outputs provide both polarity

ramp signal for insertion into the data channels as required by

circuit configuration.

The ramp calibration generator also provides ± 6.2 volt

outputs for use as a stable reference voltage.

VOLTAGE	 CHANNELS 1 and 2

+6.475	 Channel Ramp Calibration Limit - Binary 1023

6.39375	 A/D Converter Signal Limit

x 6.1	 Maximum Scene Radiance

0.25	 Zero Radiance - Binary 43

0	 A/D Converter Signal Limit

-0.025	 Channel Ramp calibration Limit - Binary 0
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CHANNELS 3 and 4

+6.475 Channel Ramp Calibration Limit - Binary 0

6.39375 A/D Converter Signal Limit
7.

6.2 Zero Radiance - Binary 43

0.3 Maximum Scene Radiance

0 A/D Converter Signal Limit

-0.025 Channel Ramp Calibration Limit - Binary 1023

-	 5.11 Auxiliary Scan Timina

The auxiliary scan timing circuitry is added to provide

continued operation of the AVHRR in the event of the loss of

the pick-up signal which synchronizes the scan timing with the

 ..scan mirror position.

A block diagram of these circuits is given in Figure

5-23. The complete schematic is shown on Drawing 8008052 (Figure

5-2 4 ). The timing for auxiliary scan operation is shown in Figure
3

	

	
5-25. Timing signals are generated on the Scan Count and Decode

Board.

The circuit operation is based on the fact that the minimum

output signal on Channel 3 occurs when the radiometer views space.
r	 '

With the loss of the synchronizing pulse, the scan counter period

is the same as the mirror rotational time but not in synchronism.

Two samples of the output voltage are taken at time the scan counter

timing indicates that the instrument is viewing space. From this

point two different modes of operation ensue. If in the remainder

of the scan a signal level lower than the average of the two samples
'F	

is detected, the scan counter is reset. When the cold target

L .	
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j, which causes the reset is space, the reset places the counter

within a few milliseconds of the correct ^'.nt. This operation

is performed only every 128th scan to allow the data amplifier

to settle with the new reference. When the scan counter is near

synchronism, a logic gate inhibits this circuit while the mirror

is viewing space on the trailing edge of the earth view.

For finer positioning, the relative amplitudes of the

two samples are compared. An up-down counter sums the net number

of differences over sixteen scans. If a sufficient unbalance

exists, the logic will cause a 40 KHz clock signal to be added

or omitted, depending on the direction of unbalance. The counter

limits are unbalanced in an attempt to cause the samples to go

to the early portion of the space view as in the normal scan cycle.

F.. 5.12 Ch 3 Data Amplifier

The schematics depicting the Channel 3 amplifier chain

`	 are shown on Drawing 8008101 (Figure 5-26) and Drawing 8008078
r`•

(Figure 5-27).

The preamplifier has a positive and negative voltage

regulator to provide additional regulation for the detector bias

and to provide power supply isolation from the remaining electronics

for these low level signals.

The input stage of the preamplifier is a differential pair

consisting of transistors Q5 and Q7. Transistor Q4 provides a

constant current source for Q5 and Q7. The detector signal is

inserted at the base of Q5. Stage feed-back, zero -reference feedback,

ramp calibration signals, and a DC offset signal are all summed at

the base of Q7. This transistor circuit provides an open loop
^	 r

gain of approximately 2500. Amplifier U3 is included in the

first stage to provide a single ended output for the signal.
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Amplifier U4 is an additional stage of voltage gain.

Transistors Q3 and Q6 perform the function of shorting

out the detector bias and the offset bias when operating in

the Voltage Calibration mode. The removal of bias from the

detector effectively eliminates the detector signal. The offset

bias is simultaneously removed to allow the zeroing reference

circuit to operate at close to normal operating,'conditions.

The first two post-amplifier stages comprise the pre-

sampling filter. This filter is a four pole transitional Butter-

worth Thomas filter. The relative frequency response curve for

the filter is shown in Figure 5-28. The two filter stages give

a DC gain of approximately 9 to the chain. An additional stage

provides additional gain and a relatively wide band output stage.

A unity gain amplifier is used to provide a buffered output to

the test connector.

The final amplifier output (inverted) is sampled through

a FET and fed back to the preamplifier. This signal is stored

in capacitors C14 through C18. This signal is fed back to the

preamplifier input stage through amplifier U5 which is an FET

input amplifier operating as a low pass amplifier. This amplifier

is operated as a non-inverting amplifier providing feedback to

the input during the sampling interval.

Sampling time constants are selected such that the amplifier

output can be restored to zero during the 2 millisecond sampling

time. The DC gain of the U5 amplifier stage allows correction

I.	 t.
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R

of DC offsets with very low DC shifts in the output signal.

A significant amount of tailoring is required in the

Ch 3 amplifier to match the possible detector responsivity and

bias currents.	 Provisions are made in several of the amplifier

stages for a systematic adjustment by tailoring of gain with

fixed resistors.	 The ramp calibration signal must then be

tailored inversely to the overall amplifier gain.

Individual amplifier stages are designed for essentially

flat frequency response (except for the filter stages) through

the cut-off frequency. 	 For board test the combined gain of the

preamplifier and post amplifier will'be set at approximately

50,000 which is more than any anticipated requirement. 	 Any

tailoring will then be a gain reduction which will not have an

adverse affect on frequency response.

5.13	 Channel 4 Amplifier

The schematic for the channel 4 preamplifier is shown

on 8009217	 (Figure 5-31).	 The channel 4 post amplifier is

physically located with the channel 3 post amplifier (Figure 5-27).

The channel 4 preamplifier is a current to voltage converter'

F with a high (16 meg) feedback resistor for low noise operation.
The detector is maintained with a low back bias for minimum

detector noise output. This bias is tailored to match each detector.

The Post Amplifier is identical to the Daylight Post Amplifier.
j.,	

5.14 Daylight Amplifiers

The schematics of the daylight amplifier system are shown

in Drawing 8008130 (Figure 5-29) and Drawing 8008096 (Figure 5-30).

The amplifiers for channel 1 and channel 2 are identical except for

the tailoring required to match detector responsivity.

The preamplifiers are located in the optics module with

the detectors directly connected to the preamplifier terminals.
5-55
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	 1 rt>	 Rro	 ,.or	 r fs^	 -- - -0 l.^f(TiiR

	

ffx	 ".r	 c//	 fry ,/^ a M	 ^•_^	 ^
c.i..3 rV	 -	 --	 .w,L	 1/.d r1 let ♦B fir rs.	 -	 ^T^^ Jts r.^ .

	

fa'r	 Yr	 for	 -	 -^V"'cV1r1̂ •^ JO —^ -4.I r NYr	 -

iv
4w	1•BM	 1^	 f^lY'r	 ^.

too	 •/~r	 N!	 w^
- Cla	 ^^	 'aft at/	 ♦.a3 	 —®c.MrJ Isr	 -_-y•1•A7wfJ	 f> y L	 u/	 lua ^-^ (.n. ;	 - r^ ♦fr .ff	 -	 _ f	 ,rfs r	

--- 1	 /a+

	

iri ^f^ r	 r	 f
tiv^.

M . w ^r	 3q	 •ter. •iii	 n	 7̂^sr	 .f l	 le.Y. +ter	 B
wlf 11	 - ten-	 •w.-f' tiw w► -	 +rf• '	 ae.

,avr^ly/©__	 cf	 N fff	 • (	 aDI	 ff	 __	 __	 ^^ j.
far - ^ifrr r/y J^ ^	 tiff i ^	 r-T	 -	 ' ^1J rM/ir.Y Yl[,F,la 	

-,

	

11f-T''''	 .Y[ sv^anav[i wa w^ w+^.3 	 !^Y	 7 Art c.w(.s4rra' 3©twl A•r .3
1	 L^	 J	 ^rr1	 o	 r l	

^ w.raw ,w...r-^ .rr[ rtr [ir	 t
Kiwi	 tni»t	 .Mr••	 1	 - _F-1	 3 .♦ 	

^rouo^r iu.^ - if. sr

cf. • •sw	 _	 for al Mr far for /-	 e^ a frt .°°	 -71

.riii	 ^	 r r	 ^	 r•f•. ~ TfT +fe	 r. v.
ff AI X	 3 'I/l	 ^— -- lot—^3,.r Y. ^ Y A'l f

	

1.^	 ♦ ^	 r f/ JoY ♦ lr Jtr • )^	 _	 w^. writ •rrr•r ^ Y •rTWr. ew r•rn i^
fn► 'A	

lIr	 MI	 J>^	 --- w	 .W s	 aw14a ^/frlCl/ 1^N

	

_	 _	 .̂.w.^.•^.`Zw.ri	 s 1. seo	 ....-- _..,-. w^	 - _	 -

	

--	 - - F!%x Oil	 _r^°'u"a'	 _	 ^'	 SCNEMA7-1C-

	

_--	 3.-bb 	 Alr .r,.wp..ffo was _- sr r	 OA YL /GHT

	

1/ •	 ^^ —	 005rAA0P1- /FjER

319i	 Oro

--- -- .	 I	 I	 I 
L

J	 ^	 '



^ ^ 1 ^	 2	 I t

wcvlslol+S	 t.^A00 [Dt
.go[/IpH M'.1 Y.ww[o

^ p ► OCJIO C0.	 t CV -IL-TS J
RCN 4^..OG-Z O Z.	 )-.. Y	 _,1.^I 6 c	 v►i.slrM^^- - + .t-A A0^ ptTKTO(

1 ^ ^

Re

'6.z WSC.

R1
1\SV	 E1 — -

tS0
Cut pj R4

2 • s.l 2A.jKW\N+.^..
CI
4.b 1 7
7SV

,2.20	 ^ °V`t AMP OUT PUTa ! 5	 GH►J^ 4

/ 2 0 /ct.vw ♦ D O t i
p[TRGtOR ^MVT G Z•.SD2^ D2 1 5111

r^-- D _	 111s2 t • Lo Mw

6
1

tOOV
+	 /I • -cf. R6 [t..	 5 C^LD

_
\OtFS6V	 1 OA t ZOO LOOV

—A 1 R 7 R9
I t GK IOOK

1
Slt [ ^

- 1SV	 t2 t+OTI S'.

1 \SO UNLESS CJTMl.CW \7sG SPECt^EO'
I c z2

C N10 C ♦ \. ►,^` RtLStLT/UaG( VF.WE-J ►•.Rf \N ON MS +
2 \ ^. 	 \/.o W.

I- -
1I S9V Imo_ T^V 2. 1.^ U.PA.G\TAJ1lE VAV74S ARE \H Q
' ` IJ 1 M.\C SiP P1^Rt.OZ 2\07i O

___ 1 -- '^ lS+1LUR s^j\T.LT - trdJ\\IJ1^` VN.\JQ
/ to

EG
LIt,R NO, ubEO
at% ut
C6	 OL
cta t

F I G 5 - 31 T"  tOWTIRM p.	 O[M?IIftOM
LIST OF UATOIIALS OR ►ASTV LIST

YA 7ZAtAL III[JN OIIO.AH[M[CNI[O mMIYCf IIO. ]= AHIOMAC[/OPMOL DWSAOM
Y^I[I^IOIr AY MMCIH[AIO ^'•^'~ 16 - Z\90o /WT IFArML	 1MOIANA, U.A '^_ MLANO[CIHYICY1TAMt^. HtII•.ttMY /I4IMIIN HUNY[NMY+nNa II^T[O IIIMtN[ A.7wOtlALS

TOLJ[JIANCV °"`""	 - SCNEMA^\C CHP.NNEL 4rrllw
^ A. PRE AMP\_\fir\ER 1tboo9zt9 at400 [^ a

IHR AML7LI 11[[O^ ---- tIIMA[ 1.Y t.
/V/IIG TIOII .

0115[
«[Id

Y
t.S[
s^

!
i

iN' IRAO^ - .w c.N r.. _
N wrwr .....,..

trw.a.•s DO! tDT [GALA /'0MT //Jt/ II^	 /'!:	 +) C 31550
Q	 4QOO9^`^

w^^
^.s%

•M tt•rMK'nrN w•A w/ Y COHI T^ T. AOL1.^ _
^ ^ / JI JJ ^^.Y.v	 wtYM^ MI01 .'IIAC7KL M IM A./LJr[ • KALJI ^.

Ln r= I 1	 n	 .^
_y»1

Ln
i	

co

t



J_J ^..

_	 The detectors are operated in biased mode as a current source.

A 4 megohm feedback resistor is used to minimize noise current.

The post amplifiers for the daylight channels are essentially

the same as the post amplifier for channel 3. The space sample

for the zero reference is fed back to the input stage of the post

amplifier. The ramp calibration signal is summed in at first post

amplifier stage. A FET is used to short out the preamplifier

signal during the Voltage calibration mode of operation.

5.15 Multiplexer Board

This printed circuit board contains the multiplexer for

the 6th input channel of the analog-to-digital converter, the

blackbody temp. IR TM circuits, and over-temperature monitor

circuits for the patch and radiator.

The multiplexer consists of five FET switches feeding amplifier

U3. The logic timing signals for control of the FET's are generated

on Black Body Mux board. The four Black Body TM signals are

sequenced in the same time position on a line scan basis. During

the fifth line scan, none of the signals are gated providing a 0

volt marker in that time position. The low range patch temperature

is the oth--r multiplexed signal.

The blackbody temp - IR telemetry signals are two identical

sample and hold circuits (amplifiers U12 and U13). The sample logic

signal is generated on the Scan Count and Decode board and is to

provide a sample of the two IR channel outputs at the time the

scan mirror has a full view of the internal calibration target

(internal blackbody).

,I
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The patch and radiator temperature TM voltages are fed

to amplifiers U6 and U8 operating as comparators with a reference

voltage. The amplifier outputs drive switching transistors in

the patch and radiator heater circuits to remove power if the

temperature exceeds the allowable figure (currently 400C).

The schematic diagram for this board is shown in Figure

5-32.

5.16 Black Body Mux

A ,logic divide by five counter of the BB Temp (logic)

signal with four of the counter states decoded provide the logic

control signals for the time multiplexing of the four Black

Body TM signals. The fifth undecoded state provides the marker

scan.

Individual transistor Q2 and Q4 are used to drive each Earth

Shield deploy solenoid. Feedback from the shield position switches

remove transistor drive current.through amplifier U6. The Earth

Shield Disable removes all power from these circuits. An R-C

delay in the base circuit limits the input current surge. See

Figure 5-33.

5.17 Motor Power Supply

The motor power supply converts +22 volts DC (high power

mode) or +18 volts DC (low power mode) into a two-phase 240 Hz

square wave to drive the 80 pole scan mirror motor. The circuit

is a conventional bridge switching inverter. Drawing No. 8007941

is the schematic diagram of the motor power supply (Figure 5-34).

The input signals from the Motor Logics circuit are AC

coupled for ground isolation. The HA2620 operational amplifiers

act as comparators and provide sufficient drive for the primary

circuit to insure saturation of the inverter transistors.

5-60
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5.18 Power Profile

4	 +,
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Figure 5-35 depicts the power usage under the mode

of operation indicated.

5.19 interface Connectors

Table 5-1 lists the connections and type of connectors

for the AVHRR Electrical Interface.

5.20 Electronics Drawings

Table 5-2 is a list of the drawings for the electronics

printed circuit boards.

11

5-64

I



^.,..,,.--j,.>Y:..... _. c 	_ -+r:. ..;c^..."i^?a'i+g•ni .,:?.,^ym.Y-:..v a rv^n.r

r^

POWER PROFILE

FU14CTION POWER NORMAL
OPERATION

TELEMETRY
ONLY

MOTOR
ON

COOLER
NEATER

INSTRUMENT
OFF

ANALOG TELEMETRY 1.89W X X X X

A-D & ELECTRONICS	 ** 12.91W X

SCAN MOTOR HIGH 4.48W X X

SCAN MOTOR LOW 3.67W X

MOTOR LOGIC 1.3W X X X X

CHANNEL 1 '. 8 9W X

CHANNEL 2 .84W X

CHA14NEL 3 1.5W X

CHANNEL 4 1. 16W X

COOLER HEATER 24. 6W X

COOLER COVER DEPLOY 56.9W*
•

STANDBY HEATER
22;83***

X

**24.92W 3.19W 6.86W or
7.67W . 27.79W 22. 8W***

* Required only once for a period of approximately 1 sec.

** Measured PFIA-values. ETM total was 25.51W.

** Supplied from JCL̀ - not from T28V buss.



Table 5-1 Interface Connectors

NO. FUNCTION CSFC STYLE

J1 Command 311P405-4P-C-12

J2 Digital TM 311P405-3S-C-12

J3 Power 311P405-3P-C-12

J4 Analog TM 311P405-4S-C-12

J5 Clock 311P405-1P-C-12

J6 Data Processor 311P405-2P-C-12

J7 Test 311P405-5S-C-12

J33 Pulse Load Heater 311P405-18-C-12

DESCRIPTION

37 Pin Male

25 Pin Few ale

25 Pin Male

37 Pin Female

9 Pin Male

15 Pin Male

50 Pin Female

9 Pin Female

I

r

1

tir:y

1



Jl COMMAND

PIN NO. FUNCTION

1 Elec/Telemetry On

2 Elec/Telemetry Off

3 Motor/Telemetry On

"- 4 Motor/Telemetry Off

± 5 Telemetry Not Locked On

6 6 Telemetry Locked On

.` 7 Channel 1 Enable

^+^ 8 Channel 1 Disable

. 9 Channel 2 Enable

10 Channel 2 Disable
Y,,aE

11 Channel 3 Enable

12 Channel 3 Disable

13 Channel 4 Enable

14 Channel 4 Disable
<`r 15 Motor Low Power

16 Motor High Power

17 Patch Low

X
18 Patch High

19
ar5

20 Patch Control Off

1 21 Patch Control On

22 Earth Shield Disable
yt
ss

?.. 23 Earth Shield Deploy

24 Cooler Heat Off

: 25 Cooler Heat On

^ 26 Voltage Calibrate Off'
W

27 Voltage Calibrate On

x	 t
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J1 COMMAND (Continued)
r'

PIN NO.	 FUNCTION

28

29

37	 Chassis Ground



J2 DIGITAL TM

PIN NO.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

FUNCTIO14
i

Earth Shield Status

Patch Control Status

Patch Mode Status

Motor Mode Status

Voltage Calibrate Status

Cooler Heat Status

Electronics/Telemetry Status

Motor/Telemetry Status

Telemetry Lock Status

Channel 1 Status

Channel 2 Status

Channel 3 Status

Channel 4 Status

25
	

Chassis Ground

f,
5-69
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J3 POWER

PIN NO.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

FUNCTION

+28V Buss

+28V Buss

+28V Buss (Motor)

+28V Buss (Motor)

Power Ground

Power Ground

AC 28V Return

AC 28V Return

+10V Buss

+10V Buss

+5V Buss

+5V Buss

Interface Power Ground

Interface Power Ground

Signal Ground

Signal Ground

Chassis Ground

Chassis Ground

M,

16 :	 '91

7
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J4 ANALOG TM

PIN NO. FUNCTION

1 Radiator Temp. TM

2 Patch Power TM

3 Patch Temp TM Low Range

4 Patch Temp TM Ext Range

5 Black Body N1 TM

6 Black Body N2 TM

7 Black Body #3 TM

8 Black Body $4 TM

9 Motor Current TM

10 Elect. Current TM

11 Earth Shield Position TM

12 Electronics Temp. TM

13 Base Plate Temp. TM

14 A/D Conv. Temp. TM

15 Motor Hsg. Temp TM

16 Cooler Hsg. Temp. TM

17 Detector Bias Volt Ch. 3 TM

18

19 BB Temp. IR Ch. 3 TM

20 BB Temp. IR Ch. 4 TM

21 Offset Voltage TM

37 Chassis Ground

4 W,
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I-	 .	 1

J5 CLOCK

!z
	

PIN NQ.	 FUNCTION

1
	

Clock - Ref

2
	

Clock

3
	

Clock Shield

4
	

Chassis Ground

MF
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J6 DATA PROCESSOR

PIN NU. FUNCTION

1 29 MIRP Data

2 28 MIRP Data

3 27 MIRP Data

4 26 MIRP.Data

5 25 MIRP Data

.6 24 MIR? Data

7 23 MIRP Data

8 22 MIRP Data

9 21 MIRP Data

10 20 MIRP Data

11 Chassis Ground

12	 — Sample Pulse From MIRP

13 Chassis Ground

14 Sync Pulse

15 Chassis Ground

....,a_.
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J7 TEST

I

4L) PIN NO.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

17

FUNCTION

Test - Pick-up loss sim.

Ramp Cal. 3 level

Ch. 3 Test

Ch. 4 Test

Ch. 1 Test

Ch. 2 Test

REf. V Test Point

Pick-up #1 Test

Pick-up #2 Test

-15V Test

+15V Test

Clock Rcvr Test

solenoid +28

Solenoid +28

+5V Test

Sync Pulse

50	 Chassis Ground

i
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J33 - PULSE LOAD NEATER

PIN NO.	 FUNCTIONi

1	 Pulse Load Heater

2	 Pulse Load Heater Ret.

3	 Temp. Control Sensor

4	 Temp. Control Sensor

5

6

7	 Chassis Ground

8

9
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CIRCUIT NAME

Table 5-2

SCHEMATIC

AVHRR DRAWING

BOARD

NUMBERS

ASSEMBLY
DRAWING

ASSEMBLY
PROCEDURE

T--ST
PROCEDURE

POWER CONV. & SW. REG. 8007970 8007971 8007972 8008230 8008278

LOGICS REGULATORS 8007975 8007976 8007977 8008231 8008279
±15V REGULATORS 8007980 8007981 8007982 8008232 8008282
MOTOR SIN. REG. 8007944 8007945 8007946 8008233 8005297

C=—LkND RELAY # 1 8008800 8008801 8008802 8008234 8008280

COVU AND RELAY #2 8008794 8008795 8008796 8008235 8008281
COMMAND RELAY #3 8009213 8008795 8008796 8009224 8009227
PATCH TEMP CONT. & T/M 8008120 8008121 8008122 8008236 8008290

T/M. BOARD #2 8008127 8008128 8008129 8008237 8008291
9

MOTOR LOGICS 8008045 8008046 8008047 8008238 8008283

SCAN COUN	 & DEC. 8008049 8008050 8008051 8008239 8008284

INTERFACE LOGICS #1 8009206 8009207 8009208 8008240 8008293

INTERFACE LOGICS #2 8009209 8009210 8009211 8009225 8009228

RAMP CAL. GEN. 8007963 8007964 8007965 8008241 8008285

AUX SCAiN LOGICS 8008052 8008053 8008054 8008242 8008286

CH. 3 PREAMP 8008101 8008102 8008103 8008243 8008294

CH. 4 PREA14P 8009217 8009218 8009219 8009226 8009229

IR POST AMP 8008078 8008079 8008080 8008244 8008288

DAYLIGHT sREAMP 8008130 8008131 8008132 8008245 8008295

DAYLIGHT POST A14P 8008096 8008097 8008098 8008246 8008289

MULTIPLEXER 8008133 8008134 8008135 8008247 8008292

MOTOR POWER SUPPLY 8007941 8007942 8007943 8008248 8008296	 ~-

!^	 BLACK BODY MUX 8008250 8008251 8008252 8008249 8008287
rn
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6.0	 RADIANT COOLER

The radiant cooler has a simplicity of design (Figure

6.0-1) that reflects the advantageous orbit and the absence of

spacecraft extensions in the anti-sun direction. It is a

conservative design that employs proven hardware and techniques;

there is ample cooling margin for both temperature control and

possible thermal degradation. The specific requirements imposed

on the detector cooler are as follows:

a. The cooler shall be mounted on the anti-sun side

of the space vehicle and shall look into a hemi-

sphere (of cold space) except for the solid angle

subtended by the earth. The cooler must be shaded

from earth radiati6n.

b. The nominal temperature of the infrared detectors

shall be actively controlled at either 105K or 110K

(selectable by command). At the beginning of orbital

life, the uncontrolled temperature shall be 95K or

less.

c. During acquisition, the cooler field of view can

sweep through the sun at a rate of 0.5 rpm for an

undeterminate period. The cooler must operate with

no degradation after this exposure.

We have assumed the earth shading requirement (a) applies to

the patch or second stage of cooling and that the margin require-

ment (b) applies to the nominal orbit (450 n mi altitude and
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FIG. 6.0 -1 BASIC DESIGN OF RADIANT COOLER (DIMENSIONS Its- INCHES)
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....,.. 3Z. 50  orbit normal to sun angle) 	 The earth shield will be

used as a pro `` ective cover during acquisition; exposure is limited

to the shield cover, which reaches a maximum temperature of about

00C during a continuous 0.5 rpm sweep through the sun (Section 6.5).

The design of the radiant cooler is described in detail

in Sections 6.1 through 6.4. The performance is analyzed for

the nominal condition and for variations in the orbital parameters.

The anticontamination provisions to protect both thermal and

optical surfaces are described in Section 6.6. Because of the

relatively large amount of thermal loading through the optical

port to the cooler, we have established detailed models that have

been verified by thermal test. (Section 6.7).

The nominal in orbit characteristics of the cooler are

summarized in Table 6 . 0-1 and 6.0-2.

6.1	 Field of View

The hemisphere above the cooler patch is cold space except

for the earth. As a result, any point on the patch can be shaded

by a semicircular shield that matches the angle subtended by the

earth and any vertical line by the semicircular shield for its

top point. The smallest shield for the entire patch is then

obtained by translating the latter shield along the horizontal

dimension of the patch. We'have modified this shield and increased

the shading of the radiator by the use of small vertical sides. The

maximum angle subtended by the earth is the solution to sin

am = Rm/Rm + h, where Rm is the equatorial earth radius ( 3444'.3

n mi) plus the tropical atmospheric height ( 9.1 n mi) and h is
0" 

^ ^ P,
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Temperature (a)

Power radiated (a)

Radiating area
Conductive input (a)

Insulation input (a)

Covers input

Optical port input (a)

dT/d ,b (b)

Earth input

170.6 K

1.66 W

55.2 in 

0.195 W 11.7%

0.592 35.6

0.210 12.7

0.388 23.4

0.275 16.6

2.05 K	 (0.1 W)-1

0	 Table 6.0-1 Nominal Characteristics of the Radiator

(a)For housing at 250C

(b) Rate of change of temperature with input power
at temperature shown.

Table 6.0-2 Nominal Characteristics of the Patch

Temperature (a) 105 K

Power radiated 96.6 mW

Radiating area 22.4 in 

Conductive input (b) 10.0 mW 10.4%

Insulation input (c) 15.4 mW 15.9

Joule heat input 2.3 mW 2.4

Optical port input 25.3 mW 26.2

Shield input 9.1 mW 9.4

Control power 34.5 mW 35.7

dT/d, 0.31 K (mW)-1

(a) Nominal control point.

(b) Including effect of support shields

(c) Radiative decoupling
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the spacecraft altitude (450 n mi).	 The solution is Bm 	 62.200

The actual shield completely covers 63.79°, which leaves a margin

of 1.59° for spacecraft wobble (1°) and cooler alignment.

6.2	 Shield

Figure 6.0-1 shows the radiant cooler shielded designed

for use at an altitude of 450 n mi.	 The shield completely

shades the patch (second stage of cooling) from'the earth.

6.2.1	 Cover Temperatures

Both the vertical and horizontal earth shields are

insulated from external inputs by shield covers.	 The three

optically polished shields are thermally and mechanically

connected.	 However, the two vertical covers are not connected

to the horizontal cover. 	 The cover temperatures are listed in

Table 6.2-1 for the range of sun angles(S s )at the 450 n mi

altitude (see memorandum of May,2, 1974).

The thermal balance equation that determines the temperature

T	 of a cover isgiven byc 4
< sin i >a Tc 	F( C c We + a

c Wr) + ac soc	 ce

where	 cc	 emissivity = 0.72 (silvered Teflon)

ac 	solar absorptivity	 0.08

F	 view factor from cover to earth; sin g aecs
for a horizontal cover and cos

7r e
Re ) for a vertical cover, where Se (62.170)

is the mean angle from nadir to the earth-

tangent line.
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Element Weight* Fie

a

b

c

d

e

f

g

Radiator

0.1046

0.1046

0.1345

0.1345

0.05575

0.12485

0.3412

1

0.011 832

0.012 734

0.013 825

0.075 471

0.002 673

0.037 845

0

0.019 454

0
Table 6.2-1 Shield Cover Temperatures

0s

0 
27.83

37.5

67

Vertical Horizontal

167.8K 232.0K

187.4 241.9

190.1 238.6

195.6 238.7

Table 6.2-2 View Factors from Radiator to Earth

*Relative area.
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0	 <sin i> = orbital average of the solar incidence

angle, taken to be zero when the cover is

shaded from direct sunlight; 	 1sin Ss

(1 + cos AVe ) for a horizontal surface and

1 sin Ss (1 + cos AVe) for a vertical
27r

surface.

Aue	 arccos (cos 0e 
/sin S s ); zero when sin 0 < cos Se,

i.e., when the spacecraft is in direct sunlight

throughout its orbit.

We	= infrared exitance'of earth- = 2.1 x 10-2 Wcm 2

Wr	= reflected solar exitance of earth =

1.68 x 10-2 sin S s Wcm 2

so	= solar constant - 0.14 Wcm-2

The equation for Wr is derived in Appendix I to Part I

of the Final Report on Contract NAS5-10113 (Dec. 1967).

6.2.2 Shielding and View Factors

Figure 6.2-1 shows the projection of the shielded onto

the scan earth disk as seen from an upper corner of the patch

(i.e., from the most difficult point to shield). The shading

from the earth is complete up to a disk angular radius of 63.79
0 .

The view factor Fre from the black radiator to the earth

was determined by dividing the radiator into 14 elements, as

shown in Figure 6.0-1. By symmetry, there are seven elements

are shown in Figure 6.2-2. The view factors were calculated

by means of the contour integral technique (R. V. Annable, Applied

Optics, Jan. 1970 and July 1972). The results are given in Table

4	 6.2-2.
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The view factor FPs from the patch to the shield was

calculated in two parts. First, the view factor to the

horizontal shielded was calculated using view factor algebra

and the formula for two perpendicular rectangles with a common

boundary (E. M. Sparrow and R. C. Cass, Radiation Heat Transfer,

Brooks/Cole, 1966, Section 4-3). The result is

Fpsl	 0.37161

Secondly, the view factors to the vertical shields and their

specular images in the horizontal were calculated from the

center of the patch by the contour integral technique. As shown

in Figure 6.2-3, each vertical shield and its complte specular

image can be seen from the patch center. By symmetry, the view

factors are the same to either vertical shield. The results are

Fps2 = 0.00359 to shield

Fps2	 0.00339 to shield image

Finally we determine an effective view factor that can be

used directly in the design equations. It is given by

Fps = Fpal + 2Fps2 + 2 (1 - E s) Flps2^

where (1 - e s ) - 0.965 is the reflectivity of the horizontal

shield.

The result is

F
Ps	

0.3853

6.3	 Radiator

The radiator and earth shield have a temperature T r that

is the solution to:
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Er CA  Tr a = Oer + 0 c + 0i + 0k + 0 
where Dab	 = radiant power from a that is absorbed in b

e	 = earth (infrared and reflected sunlight)

r	 = black radiator, c - shield covers

to	 = input from instrument through a

i	 = multilayer insulation; k : supports and wires;

o = optical port

Oer	 = Pre (er We + ar Wr ) Ar
CAc	 a	 4

Ocr	
= A
	 (Tc -Tr ) + Kc (Tc -Tr ), for each cover
c

Fab	 = view factor from a to b; Aa = area of a

Ea	 = emissivity of a; a = solar absorptivity of a

We =	 earth infrared exitance = 2.1 x 10-2 Wcm 2

Wr =	 earth reflected sunlight exitance

=	 1.68 x 10-2 sin 2 s = orbit normals Wcm; Q

to sun angle

Ac (horizontal) - 104 in2 ; Ac (2 vertical) = 7.5 in2

A 	 = 55.2 in2;

Pre	 = 0.01945 (Section 6.2)

Er	 = ar = 0.97 (honeycomb cavity array covered

with black paint)

sC	 =	 E	 -1; EC = emissivity of gold platingc
on facing surfaces of shield and cover = 0.035.

•
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K 	 thermal conductance of supports between shield

and cover

= 2.88 x 10-3 WK 1 (horizontal),

= 1.44 x 10-3 WK 1 (2 vertical)
4	 4

0 i i cA
i
	(M -T-Tr	 ); Ai	115 in2 ; Si	50

Si

Th	instrument temperature

0k	 Kr (Th -Tr); Kr - thermal conductance between1•
h and r - 1.14 x 10 -3 Wk-

0 0	 = 0.257 (Th, = 200C) 0.275W (250C), 0.313 W (350C) ;

Because the thermal time constant of the radiator-

shield is much greater than an orbital period, orbital averages

are used for the earth inputs. The insulation factor of 50

is the minimum expected and was achieved on the ETM.

The thermal conductance K r between the housing (main

instrument) and the first stage of cooling consists of 1.35

x 10-3 WK 1 from the synthane support tubes and 0.18 x 10-3

WK 1 from the following electrical connections:

Quantity Diameter (inch) Material

2 3.9 x 10-3 Copper

-3
To radiator

4 3.0 x 10 Chromel components

2 5.0 x 10-3 Chromel

-3
4 3.0 x 10 Chromel

2' 3.9 x 10-3 Copper To patch

-3
components

4 2.0 x 10 Nickel

All the electrical connections have a conductance length of

3.15 inches.

4-0
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Table 6.3-1 shows the radiator temperature range of the

450 n mi altitude. The housing temperatures (Th) are estimates

based on the thermal analysis.

Table 6.3-1 Radiator Temperature Range

Ss	 T 	 Tr

0 	 200C	 165.6K

27.83	 35	 173.7

37.5*	 25	 170.6

67	 20	 170.1

* Nominal orbit (8:30 AM or 3:30 PM).

6.4	 Patch

The thermal balance equation for the patch is

	

aePApTp4	0s + 0k + 0i + 0 j + 0o

where p = patch

s	 earth shield (upper side)

k	 thermal conductance including the influence of

radiative inputs from the support shields

i	 gold-to-gold radiative insulation

j	 joule heat of detectors and temperature sensor

o	 optical port

^s	a F. es ApFps Tr4

0k	 M K  (Tr -Tp); M = dual mode multiplier

^i = SAi	 (Tr4 -Tp4 ); Si	 2	 -1

	

i	 i
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0 
	 -	 2.3 x 10-3 W

f0	=	 2.30 x 10-2 W (Ss = (10 ); 2.83 x 10-2 W (27.830);

2.53 x 10-2 W (37.50); 2.41 x 10-2 W (670);

E
	

W 0.97 (black paint on honeycomb cavity array)

Es = 0.035 (vacuum deposited aluminum)

e 	 0.035 (gold plate)

Ap -	 22.4 in2 ; Ai	 32.6 in 

Fps =	 0.1 3853 (Section 6.2)

K 
	 = 1.1875 x 10-4 WK l ; M = 1.28

The ',thermal conductance K  between the radiator and hatch

consists of the following connections:

Quantity	 Diameter (inch)	 Length (inch)	 Material

4	 3/16 x 5/32	 2.70	 G-10 synthane

4	 0.002	 2.70	 nickel

4	 0.003	 2.70	 chromel

2	 0.005	 2.70	 chromel

The dual heat mode multiplier M was calculated using the approach

described in the memorandum "Combined Radiative and Conductive

Heat Transfer in the Patch Supports", from Contract 5-21651. A

shield emissivity Ss of 0.035 was used in the calculation; and the

analysis was carried out for the case Ts = Tr (i.e., the thermal

gradient was evaluated a x = t).

The above equation does not include the input present

during chamber testing as a result of reflection of the radiator

power from the cold space target. Based on thermal tests and

Alk
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their analyses, we estimate this input to be given by

T 4	 4r
7.5 x 10-3	 W

164

for the 22.4 in  black radiating area.

The solutions to the patch thermal balance equation

are listed in Table 6.4-1. In the nominal orbit, the tempera-

ture margin is 10.1K at the 105K control point. The corresponding

control power is 35.7% of the total patch load. ` Or, stated

another way, all other thermal inputs would have to increase

by 55.5% in order to use up the margin.

6.5	 Solar Exposure

if the cooler sweeps through the sun during acquisition,

both the patch and radiator will be protected by the shield/cover.

The exposure is therefore limited to the (horizontal) shield

cover (which is in a vertical position during storage). The

worst case is when the sun s edps through a plane perpendicular

to the plane of the shield cover. Even then, as shown by the

following analysis, the shield cover has a worst case average

temperature of only -0.50C and a worst case maximum of -0.20C.

During this period, the cooler temperature willthen be regulated

at 40 O by the outgassing power circuit.

We may treat the shield cover as thermally isolated from

the instrument. Its thermal balance equation is then

Q T4 + a EC	 dt	 a Hs (t) + We + a W
C	 e

6-16



Table 6 .4-1 Patch Temperature Range

T  (chamber)

95.5K

99.6

97.8

97.2

a s T  (space)

00 92.8K

27.83 96.7

37.5* 94.9

67 94.3

t

^ ^, ^ ^,	 Mt	 ' ^ ` e.. •
^^

v	 ^

MIA

;e:.	 , tom "1 ^' ''^
^.....

„^	 f	 ^-	

.r_ _^

* Nominal orbit.

ATp/AO

Nominal margin

Maximum margin

Minimum margin

Table 6.4 -2 Other Patch Parameters

0.34K/mW @ 94 . 9K,	 0.31K/mW @ 105K

7.2K, chamber

9.5K, chamber

5.4K, chamber

10.1K, space;

12.2K, space;

8.3K, space;
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where e = 0.72 is the emissivity of the cover and a = 0.08 the

solar absorptivity. The cover is treated as a plate of thickness

6, density p, and specific heat c. H. (t) is the solar irradiation

as a function of time. For the sun in a plane perpendicular to the

radiator, Hs (t) is a train of cosine pulses given by

	

Hs (t) _ —	 So	 1/2 + Re E c  exp (jwnt)
n=1

where So is the solar constant, Re is real part of, and

-1(-1) n/2
C1 = it/4, C  =	 n2 _1	 , n =. 2, 4, 6 . . .

w =	
27rp	

,P	 = frequency of rotation (0.5 rpm).
n

We is the infrared exitance of the earth (Section 6 . 2.1), and Wrm

is the maximum reflected solar exitance. W is given by (Appendixrm

I to part I of the Final Report on Contract NAS 5 -10113, Dec. 1967)

_	 cos 2 a ,
W •m -
	 e	 sin 0. So A,

L -STN Se

where A = 0.4 is the average solar reflection factor for the

earth.

The worst case orbit is then S s = 670 , so that we have

-2
Wrm = 4.86 x 10-2 Wcm

The steady state solution to the above differential
4	 a

equation is crT0 = 
ire	 so and yields the average radiator

's	 temperature of To 272.7K - -0.5°C . For small temperature changes

=.	 about To we may now linearize the equation by means of T - T o + WT
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and extract the equation of the transient solution

	

3	 d (AT)

	

4vT0 AT + a dt	 = nE So Re E C  exp (jwnt)

where a	 dpc/e. The solution is

a SO	 C exp (jw t)
DT (t)	 _	 --	 Re E	

n	 n

2iraeTo	
1 + jwnT

3
where T - a/4oeTo is the thermal time constant. For a 0.03 inch

aluminum plate (p - 2.7 gms/cm 3 , c - 0.895 joules/gm°C), we obtain

T = 10.34 mins. Taking the real part of the sum, we obtain

So	 Cn
	AT(t) =	 E	 (cos wn t +wnT sin wnt).

4nvcT0 	n = 1 1 + wn T

The maximum value of ATM occurs at t = 0.19 P when t = 0 is the

point of zero solar incidence angle. The resultant value is

w	 AT = 0.29°C
s.`

The peak difference from average is reached about 550 of rotation

after normal incidence and is very small compared with the average

temperature.	 The maximum temperature, in fact, is only - 0.2°C.

6.6	 Anti-Contamination Provisions

The radiant cooler is designed to prevent optical or

thermal contamination by either the cooler components themselves

or by the instrument/spacecraft atmosphere.	 Specific provisions

are (1) conditioning and de-contamination,	 (2) elimination of
Ni N

internal outgassing paths, and (3) positive protection of sensitive

areas.
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4)

4)

To outgas the cooler and prevent condensation of

external contaminants from the instrument and spacecraft,

the cooler will be heated to approximately 40 0C for an extended

period after acquisition. The same heaters will be used for any

subsequent decontamination. The times required for a complete

decontamination and for the cool down to operating temperatures

are estimated in DIR No. 19. The cooler will be outgassed with

the shield/cover closed and decontaminated with it open. In the

open position, we require a power level of 14.0 watts on the

radiator and 6.4 watts on the patch to achieve a 250C temperature.

Internal outgassing paths are eliminated by windows that

seal the openings between the instrument and radiator and between

the radiator and patch. The volumes within the cooler can outgas

only by paths that lead directly to space.

To provide positive protection for sensitive areas, the

window on the radiator is heated a nominal 8K above the radiator

temperature and protected by a cold trap at the radiator temperature.

The design and analysis of the window heater is covered in DIR.

No. 15. The optical elements on the patch and the low emissivity

rear areas of the patch are protected by a cold trap at the patch

temperature.

6.7	 Optical Port Loading

Three thermal tests were run on a feasibility model cooler

and two tests run on the BBM. These tests were used to establish

a mathematical model for the loading from the optical port opening

onto the radiator and the patch. The opening is shown schematically

in Figure 6.7-1. This is the configuration of the instrument final

design.
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6.7.1 Optical Loading en the Radiator

0 The optical loading on the radiator is
a	 1

`for - Ela T  Al	F12 (1 -P2 ) + (1 -F12

where Al equals n r 12 and P2 is the fraction of room temperature

radiation passed by the inner window. For an inner window of

irtran 2. P2 is about 0.5 (corresponding to a cutoff wavelength

of 14 um). The emissivity of the opening is 0.9 in the instrument,

where an outer germanium window is added. Using the data given

in Figures 6.7-1 and 6.7 -2 plus Table 6.7-1 and 6.7 -2, we obtain

the calculated optical port loadings on the radiator in the final

instrument design are then:

0 o (Th - 20
0C) - 0.257W

0 o (Th - 25
0C) - 0.275W

0 o (Th - 35
0C) - 0.313W

6.7.2 Optical Loading on the Patch

The optical port loading on the patch consists of inputs

from the instrument and the radiator. We will restrict the

radiator input to that from the inner window itself; radiation

at the radiator temperature (ie., the cold trap) is efficiently

absorbed in the window. The input from the instrument to the

patch is given by
4

013 - el oTh P2T 2 F31 Y3 A3

where T2 is the transmittance of the inner window for greybody

radiation at the temperature T h , Y3 is the effective aborptivity

of the patch opening.
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A4

y

rl	 r2	 r3	 S13	 S23

Instrument 0.630 0.570 0.415 	 0.855	 0.07

S12

0.685

Instrument Radiator
Opening Opening

Germanium Irtran 2

Patch
Opening

Optical elements
& gold baffle

Figure 6.7-1 Characteristics of the Optical Opening to the
Radiant Cooler (Dimensions in Inches)
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Y 1

rl	 r2	 r2	 S12
	

F12

0.630
	

0.430	 0.570	 0.685
	

0.303

Figure 6.7-2 Optical Opening to the Radiator
in the Instrument (Dimensions in Inches)

6

w
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F32	 0.875

F31 M 	 0.319

F12	 =
	

0.303

Table 6 . 7-2 Temperatures Within the Optical Opening
(Instrument Test)

Instrument Radiator

w	 200C, 350C 173.6K^
181.7K

250C, 200C 178.6K	 (a)
178.1K

(a) Heated Window

(b) Control Point

Patch

105K (b)
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The effective absorptivity Y 3 is given by

Y3 ' 03 + (1 -03 ) p2 F331 a3 + (1 -a3 ) 2 x

p2 2 (F33") 2 a3 + . . .

Y3	 a3

1 -p2 (1 -0 3 D F33'

where a3 is the actual absorptivity of the patch opening, p2

is the (specular) reflectance of the inner window, and F 33 ' is

the view factor from the patch opening to its own specular image

in the inner surface of the window. The value of Y 3 was experimentally

determined from; a theoretical model of a 3 is described in Section

6.7.3.

,The input from the inner window attached to the radiator

is given by

023 - QTw4
	 e2 F32 Y3 A3

The window temperature T  is equal to the radiator temperature

plus 8K. For an inner window of Irtran 2 and for greybody radiation

in the range from 160K to 175K, the window emissivity e 2 is

approximately 0.6 and the window reflectance 
p2

,
 
approximately 0.2.

Using the theoretical a 3 value of 0.675 (Section 6.7.3) and test

values for p2 (0.1), and F33 ' (0.743), the theoretical value of Y
3

is 0,2 692. The experimental Y 3 is 0.773 and is based upon test data
04

from a feasibility model cooler.

Using the experimental value for Y3 and the instrument

parameters listed in Figures 6.7-1 and 6.7-2 and in Tables 6.7-1

and 6.7-2, we calculated 
0op 

for the final instrument. The results

areg iven in Table 6.7-3
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0 Table 6.7-3. 'Calculated Patch Loading from Optical
Port (Instrument)

as T 0 o
0 200C 0.0230 W

27.83 35 0.0283

37.5 25 0.0253

67 20 0.0241

.., ,

i

r,
6-26
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6.7.3 Absorptivity of the Instrument Patch opening (Theoretical

Model)

To complete the consideration of optical port loading, we

constructed a theoretical model for the absorptivity a 3 of the

patch opening in the instrument cooler. A view of the patch

opening as seen from the inner window is shown in Figure 6.7-3.

The area b  occupied by the Channel 3 spectral filter and its

specular image b2 in the infrared dichroic are effectively black.

Thus in area bl , some radiation is absorbed in the Channel 3

filter or transmitted by the filter and absorbed in the cavity

below; the remainder is reflect to b 2', where it is either absorbed

or transmitted by the dichroic and absorbed below.

The effective absorptivity of the area d (dichroic minus

area b2 ) is igven by
I

ad = ad + (^ -ad) ag'

where ad a actual absortivity of area d = 0.4

agI = effecti .ve absorptivity of gold baffle g

This equation assumes that radiation not absorbed or transmitted by d

(the fraction ad) is specularly reflected to the gold baffle. The

value given for ad is an estimate for the infrared dichroic on a

germanium substrate. Thus for radiation at the instrument temperature,

only about 0.5 is transmitted through the inner Irtran window. For

a dichroic with a separation wavelength of 9.0 um, about 0.4 is

transmitted and therefore absorbed. For radiation at the radiator

temperature, about 0.2 of the total is reflected if the dichroic

reflects over the band from 9 um to 16 um. if the dichroic has
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g	 =	 Gold Baffle

b 	 =	 Opening For Channel 3

b2	=	 b  Reflected In Dichroic

d	 =	 Dichroic Minus b2

Figure 6.7-3 Top View of Optical Opening on Patch
(Note that the model applies to the
breadboard model used in Test 4.)

0
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the properties of a go,rmanium substrate beyond 16 um, the

remaining raction of 0.8 has are absorptivity equal to ap-g	 P	 Y q

proximately 0.47 0 the transmittance of the substrate. The

value of ad for radiator emission is then 0.8 x 0.47 or about

0.4.

in order to calculate the effective absorptivity a g , of

the gold baffle, we assumed that the gold is in the form of a

diffuse gold plating. We then have

I
ag	a  + (1 -ag)	

F 9 
a  + Fgbl + Fgb2

where a  is the infrared absorptivity (0.035) of the gold plating

and Fij is the view factor from area i to area j. This equation
I

can be solved for ag ; we then have

=	 ag + (1 -ag) Fcb + Fgb + Fgd (ad + <1 -ad> Fdb )
1	 2	 -	 —	 1

1 - (1-ag) Fgg + Fgd (1 -ad) Fdg

The view factors Fij were approximated by

F13 _	
it 

E Aj

This equation is strictly true only for a sphere. For the components

in the patch opening of the instrument, we have

A3	0.636 in  (0.9 inch diameter opening)

Abl	 0.126 in  (0.4 inch diameter)

Ab2	 a Abl = 0.178 in 

Ad =	 Tr 0.7 x 1 -Ab2	 2.021 in 

ML

a 
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Ag - 1	 n 0.45 x 0.75 - Abl = 0.404 in 

EAi = 3.365 in 

Fij = 0.12

Fib1- 0.04

Fib2 = 0.05

Fid = 0.60

Fio = 0.19

We then have for the effective absorptivities

ag e	0.435

ad , =	 0.66

Finally, the value of a3 can be calculated as the area-

weighted average

a3	 1	 Ag Ag ag + Ab + A 	 + Ad ad
A3	1	 2

where the primes on the areas denote projection into the opening A3

Ag' =	 0.210 in 

Abl =	 0.041 in 

A,b2	 0.126 in 

A'd	 0.259 in 

For the above values of a g e and ad s , we then have

a3	-	 0.675.
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7.0	 CALIBRATION
1

7.1	 Thermal Channels Calibration ^	 s

The infrared calibration signal to the AVHRR is the

difference in signals from a calibration blackbody of known t

temperature and a blackbody of essentially zero exitance. 	 The

zero level source is provided by deep space during in -flight

calibration and by a liquid nitrogen cooled black cavity during

chamber calibration.	 Other calibration requirements are listed

in Table 7 . 1-1.	 We have interpreted the temperature calibration

accuracy of the chamber targets (B.b.) to mean the equivalent

temperature accuracy determined by all error sources.

7.1.1	 Calibration Accuracy
j

The absolute radiometric calibrationof the instrument is to -

have an accuracy of i 0.5K throughout the calibration range of each

channel. Before we consider how this requirement can be met, let's

define some terms. In particular, we can differentiate between

precision (or sensitivity) and accuracy by means of the following:

Precision: A measurement is regarded as precise if the

dispersion of values, i.e., the standard

deviation a, is small.

Accuracy: A measurement is regarded as accurate if

the values cluster closely about the correct

value.

By accuracy of an individual measurement or of an average

of measurements is usually meant the maximum possible error (constant

and/or random) that could influence the observed value. It is fre-

quently thought of in terms of the number of significant figures

to which a value can be regarded as correct.
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TABLE 7.1-1 Requirements for Thermal Channels Calibration
rr#'

rr^

A. Inflight Blackbody

a. Measured with platinum resistance thermometers

Appropriately arrayed to adequately define the

temperature.

b. Temperature sensor instrumentation accuracy of

±0.1K.

c. To be compared with the chamber targets during

thermal vacuum calibrations.

B. Chamber (Standard) Blackbodies

a. Greater emissivity, temperature stability, and

temperature sensor accuracy than inflight target.

b. Absolute temperature measurement accurate to

±0.5K.

1
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The precision is limited by the instrument noise, i.e.,

by the sensitivity. In order to measure the noise of the instrument

and to reduce its effect on the absolute radiometric calibration,

a set of n measurements will be made at each calibration point.

The precision (or sensitivity) is then given by the best estimate

of the standard deviation (see for example, D.C. Baird, Experi-

mentation:

Design, Pri

a

where x is

ments. On

An Introduction to Measurement Theory and Experiment

:ntice - Hall, 1962).

E (x -x / (n-41

an individual measurement and x the average of n measure-

the other hand, the standard deviation of the average

of n measurements is given by

an = a/nh

The influence of the instrument noise and of all other random

errors sari therefore be reduced to the point where the accuracy

of a calibration is determined by the systematic errors in the

calibration target itself. This could be done during both the

chamber (Section 7.1.2) and in-:slight (Section 7 . 1.3) calibration.

There are 10 calibration points (elemental dwell ti--s) during

each scan of a target, and so for a 1 minute period, we have

n = 3600.

Before we consider the errors in the calibration targets,

however, let ' s list all the components and procedures that can

limit the accuracy of a calibration. We can identify two major
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areas, within which there may be important subareas. They

are as follows:

j	 A. Calibration target
Sensor

a. Temperature: Measurement Instrumentation

Gradients or uniformity

Control (chamber)

-^'	 b. Non-blackness
dY

B. Electronics

a. Noise (NETD)

b. Signal processing: Digitization

Recording
(In-flight)

Transmission

Ground Processing

We will limit ourselves to errors from sources A and B.a. We

are therefore assuming that the experiment is so designed that

the errors contributed by B.b. are negligible by comparison.

If the difference in surround between chamber targets can

be made zero or very small, the non-blackness errors will be

greatly reduced and the accuracy of the calibration limited only

by the errors and uncertainties in the calibration target tempera-

ture. Accuracy estimates for the chamber calibration are given

in Table 7.1-2 and for the in-flight calibration in Table 7.1-3.

We see that we have met our objective of 0.5K for the

total channel calibration error throughout the temperature range

of both channels.* in addition, the total in-flight error at 295K

r

* We have arbitrarily set the lower limit in Channel 4 at 250K,
where the noise equivalent temperature difference is approximately
1K.

r^	 7- 4
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t0.05K

±0.05

f0.05

10.10*

f0.06

±0.0026

±0.00045

.0. 32K

62T

+0.018K

-0.046

+0.027

-0.016

6 T

0.35K

0.37

0.37

0.34

r +

Table 7.1-2 Accuracy of Chamber Calibration

Temperature:

Sensor

Measurement	 Instrumentation
i
f Control

Gradients' base (uniformity)

Honeycomb (1K)*

r Diff from box (±1.K)
Wall -'

Gradient within (5K)*

Accuracy (max of errors + uncertainties)

Non-blackness

Net from standard-cold space difference

(10K difference in surrounds):

Channel	 T

3	 185K

3	 320

4	 250

4	 320

Total accuracy (including noise for n = 3600)**
Channel	 T

3	 185K

3	 320

4	 250

4	 320

* Actual value of gradient.

** Based on specified NETD of 0.12K at 300K.
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Gradients

1 Instru ae. tation

Rasp

Honeycomb (1K)

±0.10

±0.08

10.08

±0.31

yam,	
.,•	 b r4 ,..F, 't	

^	
" v'"̂'J

f

Table 7.1-3 Accuracy: of In - flight Calibraticn For T = 295K

Temperature:

j Sensor	 ±0.05K
Measurement

Non-blackness:

Channel	 6 T

3	 -0.080

4	 -0.029

Total accuracy ( including noise for n = 3600)

Channel	 d T

3	 0.39K

4	 0.34

* Exclusive of errors from scattered sunlight ( Section 3.11)

r
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has a comparable value when the calibration is made in the

absence of direct sunlight (See Section 3.11). In the following

sections, we consider in detail how we obtained the estimate

listed in Tables 7.1-2 and 7.1-3.

7.1.2 Chamber Calibration Targets

Errors and uncertainties in the exitance (emitted Wc 2 )m

of the calibration target arise from its temperature inaccuracies

(Section 7.1.2.1) and its deviation from blackness (Section

7.1.2.2). Because a calibration signal is equal to the difference

in signals from a calibration target *and a cold space target,

the inaccuracy from non-blackness is greatly reduced by making the

two targets the same form and exposing them to the same surround.

7.1.2.1 Temperature Uncertainty

The accuracy of the calibration target temperature is

limited by measurement errors, control stability, and gradients.

The uncertainty in a temperature measurement relative to the

international practical temperature scale (IPTS-68, which is

essentially identical to the absolute thermodynamic temperature

scale) is 10.10K. About half of this is the calibration accuracy;

the remainder is produced by the sensor, bridge, and power supply.

The latter produce errors that are largely random in nature, as

do the readout device and temperature controller. The readout

device introduces an error that can be kept small, about t0.01K

for an integrating digital voltmeter. The stability of the

controller is about t0.05K.
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The base gradient or uniformity can be held to tO.10K.

We have included this variation as part of the calibration

error. In fact, the base temperature will be measured with

an array of calibrated platinum sensors. The average of this

array should then provide a measurement whose gradient error

is less than the actual gradient. The gradient through the

honeycomb can be estimated from the measurements , on a similar

target (A. R. Karoli, J. R. Rickey, and R. E. Nelson, Appl.

Opt. 6, 1183, 1967). The honeycomb gradient was 1.6K in a 290K

target that had a view factor of about 0.5 to a warm surround at

250C. If the target temperature were reduced to 210K, the

gradient would increase to about 2.5K. However, the view

factor to the warm surround is reduced to 0.2 in our design,

so the gradient is about 1.OK.

Moreover, the corresponding increase in the radiance

temperature is much less than the gradient because most of the

normal emission comes from the base and walls near the base.

When the instrument views the calibration target at normal

incidence during a calibration, the nominal cavity emissivity of

0.999327 (Section 7.1.2.2) may be divided between the base honey-

comb and the cavity walls. For the nominal paint emissivity of

0.92, the base has a normal emissivity of 0.996696. Therefore

0.002631 of the normal cavity emissivity arises in the cavity

walls (and is seen by reflection in the base). The emissivity

of the base may, in turn, be divided among emission from the

base bottom, the flat top area of the honeycomb, and the walls
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of the honeycomb. The fraction of flat area of

the emissivity from the top is 0.92 x 0.025 and

0.92 x 0.975. The remainder of base emissivity

0.076 696 arises in the sides of the honeycomb.

that the walls of the cavity emit at the bottom

the base and that the base honeycomb sides have

0.025, so that

from the bottom,

0.996 696 - 0.92 =

We will assume

temperature of

an exitance equal

to the average of the basebottom and honeycomb flats. The effective

exitance ME of the target seen at normal incidence is then

0.999 327 ME - 0.061 348 MF + 0.937 979 MB,

where F denotes base flats and B base bottom. Now a calibration

temperature will be the measured value of the base bottom B. in

both Channels 3 and 4, we find that a honeycomb gradient T F-TB =

t1B resulte in a calibration error T  -T B = t0.061K (see Table

7.1-6 in Section 7.1.2.2).

The temperature errors introduced by deviations in the

cavity wall temperature were analyzed for Contract NASS-21651

(HIRS for Nimbus F)*. This analysis shows that the wall tempera-

ture deviations (difference from the base and internal gradient)

introduce a temperature uncertainty of only about t0.003K. As

a resu-r:., the total temperature uncertainy in the chamber target

is approximately 0.32K.

7.1.2.2 Deviation from a Blackbody

The uncertainties in the calibration of the instrument

are expressed as absolute temperature errors in blackbody sources

*Memo from R. V. Annable "Deviations in the Wall Temperature
of the Chamber Calibration Target", dated 6-28-72.
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µ	 within the calibration range of each channel. The principles

and practice of absolute radiometry are explored by R. E.

Bedford and A. R. Karoli in Volume 14 of Advances in Geophysics

(Precision Radiometry, ed. by A. J. Drummond, Academic Press,

1970). We have already covered the uncertainty in the temperature

of the calibration target (Section 7.1.2.1). We now wish to

consider the uncertainties produced by non-black calibration

and cold space targets.

The real problem here is not the small decrease in

target emission below that of a blackbody, but the reflection

of the higher temperature surround. The calibration target

consists of a honeycomb array with a length to width ratio of

4:1 (or its emissivity equivalent in another geometrical form)

housed in a tube whose length is equal to the aperture diameter

(Figure 7.1-1). The tube is covered on its inner wall with a

honeycomb array whose length to.width ratio is 2:1. In this

way, we obtain a second, large cavity in addition to the array

of small cavities. It is also equivalent to controlling a

large fraction of the target surround. The tubular enclosure

must not be thermally attached to the base calibration target;

this would induce significant thermal gradients in the target.

in addition, the cavity mouth and base must be sufficiently

large that only the base is seen by the instrument during a

calibration.

Because a calibration depends on the difference in

signals from the calibration and cold space targets, the accuracy

can be further increased by making both targets in the same form

and exposing them, as nearly as possible, to the same surround.

We have an estimate of the residual non-black error based on a

Ma

I^
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Figure 7.1-1 Chamber Calibration Target
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, ! calibration target surround of 293K and a space target surround

of 283K; it ranges from +0.018 to -0.046K in Channel 3 and from

0.027 to -0.016K in Channel 4.

The base of the calibration target is in the form of honey-

comb cavity array in which the cavities have a length to width

ratio of 4:1 (A.R. Karoli, J. R. Hickey, and R. E. Nelson, Appl.

Opt. 6, 1183 (1967)). A single cavity may be approximated by a

cylinder whose emissivity is given by (P. Campanaro and T. Ricolfi,

J. Opt. Soc. Am. 57, 48 (1967).)

2
c c = e + p-	 (1 +--2	 -1

a

	

p2 a2	 1 + 2

2

(1 +	 4 2	 )a

where a = ratio of height to radius

e = normal surface emissivity

p = hemispherical surface reflectivity

For high emissivity materials, the normal and hemispherical emis-

sivity are nearly equal (m. Jakob, Heat Transfer, Vol. I, Wiley

1949, Sections 4.9 and 7.2) and p is nearly equal to (1 -e).

The flat area of the array is about 2.5 percent of the

total source area. The effective normal emissivity of the array

is then

e 	 = 0.975 e 	
+ 0.025 e

1
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	 The formula of Companaro and Richolfi for the normal

emissivity of a cavity in the array can also be used to calculate

the emissivity of the large cylinder (i.e., the complete target).

The cavity array normal emissivity becomes the wall emissivity

of the cylinder. To use the formula, we also need the hermi-

spherical emissivity of the cavity array. This can be calculated

from the limiting value formula of Treuenfels (J. Opt. Soc. Am.

53, 1162, 1963) or interpolated from the results of Sparrow

and Cess (Radiation Heat Transfer, Brooks/Cole, 1966, pp. 164-165).

However, when the cavity array normal emissivity and hemispherical

reflectivity are used in the formula of Companaro and Ricolfi,

we find that the normal emissivity of the cylinder exceeds unity

even for an initial surface emissivity as low as 0.89.

To overcome this problem, we will use the formula developed

by Bauer and Bischoff (Appl. Opt. 10, 2639, 1971). For a cylindrical

cavity with a plane bottom perpendicular to the axis, they obtain

a normal reflectivity of
-1

PC = P 	 (1 -p o)-1 
1 + (L/R) 2

where p  is the normal reflectivity of the inner surface and

L/R is the length to radius ratio (a in the formula of Companaro and

Ricolfi). According to the nomenclature developed by Nicodemus,

et. al. (Appl. Opt. 9, 1474, 1970), p  is the directional-

hemispherical reflectance for normally incident flux, that is,

the fraction of normally incident flux that is reflected into

a hemisphere. It is also equal to the hemispherical-directional

i/

1	 ._..;
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reflectance for normally incident flux, that is, the fraction

of normally incident flux that is reflected into a hemisphere.

It is also equal to the hemispherical-directional reflectance

factor for normally reflected flux, that is, the fraction of

hemispherically incident flux that is reflected in the normal

direction.

Euqation (1) is based on experimental measurements and

holds for large value of a, the range of validity depending on

the value of p o . However, it yields a conservative result at

all values of a, i.e., the calculated value of pc is always

greater than or equal to the experimental value. To begin

with, we applied the equation to the cavity array in which

2.5 percent of the area is flat. The results are given in

Table 7.1-4, where they are compared with those from the equation

of Companaro and Ricolfi. We will assume the surface emissivity

has a nominal value of 0.92.

The normal reflectivity p  of the complete target can

now be calculated from equation (1) by setting po 1= 1 -CA . The

space in the chamber limits the a value o--,' the large cylinder to

2:1. The measurements of Bauer and Bischoff top. cit.) show that

the actual reflectivity will be less than that calculated from

the formula because of the relatively low value of a. The results

of the complete target are given in Table 7.1-5 at four values of the

initial surface emissivity E when the walls also have an L/R ratio

of 8:1.

tf
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Table 7.1-1 Normal Emissivity of the,Honeycomb Cavity Array

C	 EA
Surface	 B&B	 C&R

	

0.89	 0.99 6 396	 0.99 5 451

	

0.91	 0.99 6 266	 0.99 6 304

	

0.92	 0.99 6 696	 0.99 6 726

	

0.93	 0.99 7 121	 0.99 7 145

Fraction of flat area	 0.025

L/R ratio of cavities =

Table 7.1-5 Normal Reflectivity of In-Chamber Target With

4:1 honeycomb Array on the Base and Walls

C
	

pN

	

0.89
	

0.000 925

	

0.91
	

0.000 750

	

0.92
	

0.000 663

	

0.93
	

0.000 577
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If we neglect multiple reflections between the wall

0-
and base of the cavity, we can write the cavity emissivity as

e 	 =	 e  -!- a ew ►

where b = base, w - wall, and a is a constant. For 4 : 1 cavities

on both the base and the wall, we have

_	 e
a -

eb	
-1 = 0.002 050

If the 4 : 1 honeycomb on the walls is replaced with 2 : 1, the wall

emissivity is reduced to 0.993013. Using the same value of a,

the normal cavity emissivity is then reduced to

e 
	 =	 0.996 696 _ 0.002650 k 0.993013 - 0.999 327

Now the deviation of e N from unity produces an apparent

change in the target radiance given by

SM = (1 -eN) (Ms -Mt)

where M is the blackbody exitance and the subscripts s and t

denote surround and target, respectively. If the change in exitance

is small, the corresponding change in effective blackbody temperature

is given by

ST =
	 SM

DM/dT

The values of M are given in Table 7.1-6 for Channels 3 (4) at

temperatures in the range from 185K (250K) to 321K. The values

of ST at representative temperatures are then as follows:

Channel	 T	 ST

3	 185K	 0.229K

3	 320	 -0.0164

4	 250	 0.0903

4	 320	 0.0118
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GRI Again a calibration depends on the difference between

the calibration and space targets, and we can further reduce

the non-black errors by constructing the targets in the same

geometry and placing them in surrounds as identical as po ssible.

In order to estimate the residual error after taking the dif-

ference between targets, we will assume that the calibration

target has a surround at 293K and the space target, a surround

at 283K. The relative net error in terms of blackbody radiance

is then
-1

M^	 =	 3.7413 x 10 4	1.4388 x 104 _1

11	 XT

d2M = e  Mt + ( 1 -e N) Msl - (1 - 
eN) Ms2 - Mt

6 2M = (1 -e N ) (Msl _M s2-Mt)

where sl denotes the surround the calibration target and s2

the surround of the cold space target. The corresponding

errors in blackbody temperature are given in Table 7.1-7-for the

representative temperatures.

7.1.2.3 Surround Difference Measurement

In order to verify that the space clamp target and

calibration target are exposed to the same surrounds, it was

suggested early in the AVHRR program that the two targets be

switched in the chamber. This would show if surround reflections

were contributing any error to one or the other target. A simpler

check can be done by simply comparing the channel 4 signals

when it views each target. When the calibration target is run
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Table 7.1-6	 In-Band Radiant Exitance

T	 ( K) ( Emitted W cm- 2 )

Channel 3: 185 1.973 x 10-4

186 2.047 x 10-4

283 2.304 x 10-3

293 2.703 x 10-3

295 2.787 x 10-3

296 2.829 x 10-3

300 3.003 x 10-3

301 3.048 x 10-3

320 3.962 x 10-3

321 4.013 x 10-3

Channel 4: 250 4.174 x 10-6

251 4.436 x 10-6

283 2.479 x 10-5

293 3.931 x 10-5

295 4.295 x 10-5

296 4.481 x 10-5

300 5.331 x 10-5

301 5.561 x 10-5

320 1.183 x 10-4

321 1.228 x 10-4

Table 7.1-7	 Net Non-Black Calibration Error

Channel T 62T

3 185K 0.0184 K

3 320 -0.0464

4 250 0.0266

4 320 -0.0156 7-18
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to 175K, its exitance is below the noise level of the AVHRR

in Channel 4. if the output of Channel 4 is then, the same

when viewing the cold space target, we can assume that the

surrounds are not influencing the accuracy of the calibration

in the thermal channels.

Table 7.1-8 shows the calibration data taken in channels

3 and 4 of the ETM on October 6, 1975. The baseplate temperature

is +300C. The data shows that in channel 4, the-output is identical

when viewing the cold space target and the calibration target. As

expected the channel 3 output shows some signal from the calibration

target at 175K.

From this we conclude that there is no significant calibra-

tion error introduced into the thermal channels due to surround

differences.

7.1.3 In-Flight Calibration Target

The in-flight calibration is provided by views of the

internal blackbody at the housing temperature and of the zero

level signal at deep space temperature.

;.	 7.1.3.1 Temperature UncertaintyFti,

The temperature measurement error is ±0.05K from the

sensor calibration and t0.10K (specified value) from the

instrumentations. Additional temperature uncertainties arise

from the gradients within the internal target. The nominal gradient

across the base of the target is t0.08K, as determined by the

thermal analysis of the instrument. The effective value of

this gradient will again be reduced by using an array of

7-19



CHANNEL 4 OUTPUT

Cal. Target Space
Signal Signal

mvolts m volts

931.2 6256.8

1879.0 6256.5

3357.1 6257.1

4325.6 6258.1

5035. 6257.1

5495. 6258.1

5822.8 6263.7

6007.1 6264.0

6123.4 6263.7

6189.3 6263.1

6230.0 6264.6

6247.5 6264.0

6254.0 6264.0

7-20

CHANNEL 3 OUTPUT

Cal. Target Cal. Target Space
Tamp.	 Signal	 Signal

K	 mvolts	 mvolts

320

315

305

295

285

275

265

255

245

235

225

215

205

195

185

175

760.0

1112.8

1769.3

2349.6

2878.4

3438.4

3893.4

4284.3

4636.2

4960.3

5225.0

5450.6

5641.2

5906.2

5993.7

6187.5

6187.5

6187.1

6187.5

6187.5

6188.1

6193.7

6193.4

6193.1

6193.7

6193.7

6193.1

6192.8

6193.4

6193.7

a

	

6259.0	 6263.1

	

6264.6	 6264.6

TABLE 7.1-8
	

ETM AVHRR CALIBRATION RUN SHOWING

SURROUNDS EFFECT
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calibrated platinum sensors to measure the base temperature.

The worst case honeycomb gradient is 1.OK (DIR No. 18). Follow-

ing an analysis similar to that given in Section 7.1.2.1, we

find that the corresponding uncertainty in radiance temperature

at normal incidence is 0.08K. The total temperature uncertainty

of the internal inflight target is then 0.31K.

7.1.3.2 Deviation from a Blackbody

The internal target has a normal emissivity of 0.995 when

coated with a black paint whose emissivity is 0.92. The deviation

from a blackbody reduces the signal from the target itself but

introduces an additional signal from the surround. To obtain

the most accurate calibration of the internal target, we would

have to compare its signal with that of the more accurate chamber

target when the internal target is --.n the range of surrounds en-

countered in orbit. The worst case non-blackness errors is shown

below to be about 0.08K in Channel 3 and -0.03K in Channel 4.

The internal calbiration target is in the form of a honey-

comb cavity array in which the length to width ratio is 4:1.

Specifically, the basic material has a thickness of 0.001 inch and

a cavity width (distance between flats) of 0.060 inch. Each

cavity has two walls of its own (where the joined material has

a double thickness) and four shared walls or a total of four.

The ratio of flat to total target area is then

4 Aw

Ac + 4 Aw

,^ ,	
7-21
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where Aw is the top area of a wall and A c the area of a cavity.

If w is the distance between flats and t the thickness, we then

have

Aw	 t	 (w -t)

Y'

Ac =	 2 f3 (<1/2 > w _t)2

when the cavity openings are in the form of hexagons. For

the above dimensions, the ratio of flat to total surface area

is 0.045, and the normal emissivity is given by

EN = 0.045E + 0.955 e 

where a is the emissivity of the black paint and e  the normal
M	 emissivity of the cavity.

jThe value of e  can be calculated from the formula of

Bauer and Bischoff (Section 7 . 1.2.2). The results are listed

in Table 7 . 1-9; the paint emissivity is 0.92.

In the case of the in-flight target, the non-black

temperature error is given by

6T	 SM

dM/dT

where dM/dT = 4.263 x 10-5 Wcm 2 K-1 in Channel 3 and 1.859 x

10-6 Wcm 2 K 1 in Channel 4 for a target at T = 295K. The

apparent change in target radiance dM is given by

6M = (1 -eN )	 Fte Me - (1 -Fti ) Mt



E
	

c 

	 EN

0.89 0.998 099 0.994 584

0.91 0.998 478 0.994 947

0.92 0.998 662 0.995 122

0.93 0.998 842 0.995 294

AELL

Table 7.1-9 Normal Emissivities of the Internal

Inflight Calibration Target

(0,
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	where Fte	 = view factor from target to earth = 0.21

	

Fti	 = view factor from target to instrument = 0.741

	

Me 	infrared exitance of earth

	

Mt 	= infrared exitance of the target and instrument

The view factors are taken from the thermal analysis of the

instrument; they are the values when the instrument is viewing

the internal target. As a worst case, the we will assume the

earth is at its minimum temperature of 185K. * Using the exitance

values from Table 7.1-6 and the target emissivity of 0.995 122,

we obtain

	

ST	 (Channel 3)	 = -0.080K

	

ST	 (Channel 4)	 = -0.029K

for the non-blackness errors in the inflight calibration at

T = 295K.

7.1.3.3 Scattered Sunlight Error

Depending on its location on the spacecraft and the orbit

normal to sun angle (0 s ), the in-flight target may be exposed to

direct sunlight during the nightime portion of the orbit. The

diffuse - reflection of direct sunlight from the target can produce

a significant error in the calibration of Channel 4; this subject

is covered in Section 3.11.

* The corresponding exitance in Channel 4 is 1 . 944 x 10_
8
 Wcm2.

D_I^
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8.0	 THERMAL DESIGN

The thermal design of the AVHRR Instrument was described

in Dir #38 on the pages which follow. The validity of the thermal

design was established during Solar Simulation Tests performed at

NASAJGSFC using the ETM.

The Thermal Interface Drawing for AVHRR is given in

Figure 8-1 (page 8-19) .
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I9CT	 DMSIAN
b } 	 r 37W E. Pontiac Street

Fort Wayne, Ind. 46803

	

To:	 R. H. Foote	 1219) 623-9636 - TWX 810332.1413

	

From:	 J. D. CrawfordfJ el	
Date: April 13 1 1976

	

Sugiect:	 DIR #38 Final Thermal Model Analysis

CC:	 R. Annable, T. Diederich, C. Soest,.J. Stark

Summary

The analysis of the AV:?RR thermal model has:been com-
pleted. This analysis has included orbit normal to sun angles
of 0', 28', and 68 which correspond to the warmest, coolest,
and extreme orbits. Worst case studies were made within each
orbit with the warmest orbit being analyzed with maximum solar,
earth IR and albedo inputs; surface finish maximum alpha and
minimum e; and g$od attainable insulation blanket. The coolest
orbit was the 68 orbit which was analyzed with minimum solar,
earth IR and albedo inputs; surface finish minimum alpha and maximum e
and a not too good insulation blanket. Studies were made with
the instrument electronics "on", "Off" and "off - with make-up
heaters."

The radiating area of the baseplate, node 50, was trimmed
to .35 ft 2 resulting in an effective louver a of	 a
.44 for the warmest nominal orbit. This same area resulted in an
effective louver a of between . .32 and .26 for both the nominal
0 and 68° orbit. Worst case studies for the hot orbit indicated
that the maximum louver a would be . 45; while the worst case
study for the coldest orbit indicated that the louver effective e
would be .16.

Analysis of the worst case off instrument for heater size
indicated that for the coldest orbit 22.8 watts were required to
maintain an instrument baseplate temperature of 14.6°C.

Procedure

The thermal analysis for the TIROS-N AVHRR has been performed
with the 100 node BAN program supported by view factor, projected
area, flux calculations and summation programs. A preprocessor
was also used to prepare the data formats for the view factor and
projected area programs and also to be data for computer plots. A
list of the nodal designations is included in Table I and Figures A
and B show the relative node location.

The solar input and albed8 inputs were ocalculated for 10°
orbital steps throughout the 0 , 28 and 68 orbits. Those values
were then summed and averaged to get the steady state orbital
average value. The solar constant used was 429 B/h Ft 2 , the IR

^a	 flux value was 75.15 B/hr Ft 2 and the albedo used was .30. Values
#-

	

	 for a and a are listed in Table IIA and Table IIB and include the
range of values expected for the listed materials and nodes. The
values for the internal power are measured values and will not change 8-2
by any significant amount.
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{

0 Conduction Couplings

All conductive couplings are
taken from detail drawings. The
the couplings is listed in Table
is used for all applicable joints
B/hr Ft2.

calculated from dimensions
value for the conductivity of
III. Conductance through joints
and assumed to be a nominal. 72

Radiative Couplings

The radiative couplings were obtained from calculated and
estimated view factors and calculated areas. Where the configuration
was repetitive, a view factor calculation program was run to get
the necessary factors; if a particular shape appeared only once,
its value was estimated from a shape factor graph. Block F's were
used in this simulation program. Since all of the internal emis-
sivities were relatively high, a product was used rather than the
effective emissivit.es.

Scan Mirror Modeling

The view factors for the scan mirror and cavity areas were
obtained by calculating the view factors for ten mirror positions
and averaging these values. Solar, albedo and Earth IR inputs to
the scan cavity area were calculated with no mirror blockage and
then 50% of the flux was assigned to the mirror (25% each to front
and back) and 50% to the scan cavity area in question. While these
assignments are rather arbitrary, they are better than assuming no
mirror as in previous models.

Nominal Case Analysis

The AVHRR instrument was thermally designed to the nominal
solar input and surface finish values of the 0, 28 and 68 degree
orbits (orbit normal to sun angle). Active thermal control is
maintained by using louvers to maintain a nominal IMP temperature
of 15 C with an effective emissivity of between .26 and .45. This
range of effective louver emissivity was obtained by using a silver
teflon surface on the plus velocity electronics surface and trimming
the base radiating area - node 50 - to .35 ft 2 . All other exposed
surfaces, except insulation surfaces, have black surfaces to minimize
scattered light. The insulation surfaces consist of an aluminized
Kapton outer layer with 10 layers of multilayer insulation.

Table IV is a listing of the nodal temperatures and emissivities
for th8 nominal case orbits and a radiating area of 1.26 ft 2 . In
the 28 orbit the warmest instrument node temperatue in the 15 volt
regulator board which is 37C and the remainder of the instrument
temperatures range down to 7C° in the electronics baseplate area.
The insulation blanket ranges from -99C to 40C 	 These temperatures
are maintained with an effective emissivity through the louver of
.44.

6i
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In the colder orbits (0° and 68°) the warmest electronic
temperature is ag$in the 15 volt regulator and the coolest
temperature is .6 C in the electronic baseplate area. Two
tempegatures to note are the 57 C on the scan mirror when in
th8 0 orbit and the telescope temperature of 21 C when in the
68 orbit. The scan mirror scans through the sun each rotation
and receives maximum solar illumination with no blockage. The
temperature of the mirror will be reduced rapidly at about a 4°
orbit angle due to S/C blockage. The telescope temperature changes
very slowly the incidence angle and area change are offset by
the increase in exposure time. Emissivity for the cold orbits
is between .2 5 and .31.

Worst Case Analysis

The AVHRR instrument was modeled for the worst case hot and
cold orbits using the radiation area established in the steady
state run. Worst case is defined as the range of values that
could be expected at launch - surfaces were not degraded by the
space environment. The following list defines the worst case
condition:

a

Variable

Emissivity
Solar Radiation
Absorbtivity
Earth IR
Albedo
Blanket Conductance
Power

Warmest

Minimum
Maximum
Maximum
Maximum
Maximum
Best Expected
Nominal

Coldest

Maximum
Minimum
Minimum
Minimum
Minimum
Worst Expected
Nominal

Simulations were run to determine if the worst case equivalent
insulation conductance was the best or worst conductance. For
the cold orbit the worst case is the worst expected blanket
conductance, which leaks more heat to space, and the best expected
blanket conductance in worst case for the warmest orbit, which
leaks least heat to space. Table V list the temperat8res and 
emissivities for the worst case hot (28 ) and cold (0 and 68 )
orbits. The hot orbit a is .OS below the maximum and the cold E
is .01 above the minimum.

Both the warmest and coldest nodes occur in the 0 degree obit,
the telescope receives no solar heating and the scan mirror is in
the sun during the entire orbit with no S/C blackage. In the 68
degree orbit th8 scan mirror and scan cavity are the coldest nodesrunning at 12 C.

tl
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Off Instrument Worst Case

When the instrument is turned off, make-up heater must
be turned on to maintain a baseplate temperature of 14 C. Table
V. indicates the temperatures expected with 22.84 watts of heater
power. Heaters rated at 15 . 8 and 7.0 watts are mounted on the
baseplate and scan moor respectively. These haters will maintain
the scan mirror at 11 C: and the telescope at 16 C.

4)
8-5
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NODE NO.
,r

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

NAME

Power Converter

+ -15V Regulator

Relay Ed 1 & 2 & 3

Pater Temp & TM

Telemetry #2

Aux Scan Logic

Scan Counter

Motor Logic

Black Body MUX

IR Post Amp

Daylight Post Amp

Ramp Calibration

Interface Logic #1

Interface Logic #2

Multiplexer
A/D Converter

Pre-Amplifer (vis)

Scan Motor

Channel 1 Detector

Channel 2 Detector

Electronic Box, Anti-Sun

Electronic Box, Sun
Connector

Harness

Electronic Box - Vel
Partition 1

Partition 2

Partition 3

Radiator 1

Pre-amplifier (IR)

Earth Shield, Specular

Earth Shield, Insul.
Not Used

Not Used

Not Used

MATERIAL

Nickel

P.C. Board

P.C. Board

P.C. Board

P.C. Board

P.C. Board

P.C. Board
P.C. Board

P.C. Board

P.C. Board

P.C. Board

P.C. Board

P.C. Board

P.C. Board
h

P.C. Aluminum

Steel
Beryllium

Aluminum

Aluminum

Magnesium
Magnesium
Epoxy

Teflon

Magnesium
Magnesium

Magnesium

Magnesium

Magnesium

Magnesium

Aluminum
Mylar

FINISH

None

Solithane

Solithane

Solithane

Solithane

Solithane

Solithane

Solithane

Solithane

Solithane

Solithane
Solithane

Solithane

Solithane
of

Black Paint

Nickel

Black Paint

Alodine

Alodine

Dow 9

Dow 9

Dow 9

Dow 9

Dow 9

Dow 9

Dow 9

Dow 9

Dow 9

Specular
Silver Teflon

8-8
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NODE NO.
R4.

NAME MATERIAL FINISH

36 Not Used

37 Scan Motor Hsg Aluminum Alodine, Black Paint

38 Radiator, Electronics Magnesium Silver Teflon

39 Scan PS Magnesium Black Paint

40 Scan Mirror Front Beryllium Aluminum

41 Scan Mirror Rear Beryllium Gold

42 Cavity, Sun Magnesium Black Paint

43 Cavity, A-Sun Aluminum Black Paint

44 Base Cavity Aluminum Black Paint

45 Cal Target L Aluminum Black Paint

46 Cal Target S Aluminum Black Paint

47 Bulkhead, Tele Aluminum Black Paint

48 Telescope Invar Black Paint

49 Bulkhead, Center Aluminum Alodine

50 Base, Telescope Aluminum Alodine, Black Paint

51 Base, Optic Aluminum Alodine, Black Paint

52 Cooler Housing Aluminum Gold

53 Telescope Optics Aluminum Alodine

54 Channel 1 Relay Aluminum Alodine

55 Channel 2 Relay Aluminum Alodine

56 End, Optics Magnesium Dow 9

57 Cover, Electronics Magnesium Dow 9, Black Paint

58 L.W. Relay Aluminum Alodine

59 Insulation + Velocity Mylar None

60 Insulation Anti-Sun Mylar None

61 Insulation - Velocity Mylar None

62 Insulation, Sun Mylar None

63 Insulation, Nadir Mylar None

64 Spacecraft -- --

TABLE 1 (Continued)

9

y12
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4)
T a e

Surface Min Max Min Max

Silver Teflon (.005) .06 - .12 .74 -	 .78

3 M Black Velvet .94 -	 .98 .89 -	 .93

Black Honeycomb Target .98 .99

Gold Plate .32 -	 .36 .04 -	 .08

Aluminum Scan Mirror .08 -	 .16 .04 -	 .05

Kapton-Aluminized (.003) .43 =	 .47 .77 -	 .83

Table II A Values of Surface Finishes Used On

External Surfaces

41-11i),
8-10
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Surface

3 M Black Velvet

Black Amodize

Alodine

Nickel Plating

Deposited Aluminum

Stainless Steel

Teflon

Solithane 113

C

.91

.85

.85

.06

.05

.17

.90

.82

Table II B Value of Surface'Finishes Used On

Internal Surfaces

8-11
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Q. )z,

Material

Aluminum

Stainless Steel

Invar

Synthane G-10

Fused Silica

Beryllium

Copper

Magnesium

Heat Conductive Epoxy

Thermal
Conductivity
Bjhr-in-Fo

10.65

.572

.517

.015

.067

7.04

18.92

7.48

.074

Table III Thermal Conductivity Values For

Materials Used in the AVHRR Instrument

8-12
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TABLE IV NODAL TEMPERATURES FOR AVHRR/1 INSTRUMENT ON,

15°C CONTROL POINT, NOMINAL SURFACE FINISHES

28° 68° 0°

i
2

28-A7
36.95

28.52
36.69

28.24
36.40

3 24.90 24.59 24.29
4 22.60 22.19 21.97

24.36 24.-12 23.85-
6 26.63 26.45 26.17
7 25.56 25.40 25.11
8 26.85 26.68 26.40
4 93_03 99_R0 925_

10 27.84 27.44 27.23
11 31.27 31.04 30.79
12 28.68 2.8.50 28.22
13 25. q0 7 5-1-A _. 75.44.
14 26.16 25.98 25.70
15 27.02 26980 26.55
17 28.78 28o28

 21 ^OA
18 20.66 15908 23.31
19 22.71 20.65 18.62
20
21

22.655 20.60
17-Al

18.58
1

22
18.
20.55 20.17 '

Z.1.3____
19.99

23 22.52 23.16 22.60
24
25

16.94
29-6D

18996
29.35

17.93
99.09

26 21.27 20.75 20.58
27 21.09 20.58 20.41
Go
29

GV.,V	 GV017	 LV.VV
18.,3 2_ 1 _29_ 11.1.8-

30 18.58 17.54 17.43
31 18.01 16.95 16.78
32
33

18.02
JA-12

16.95
 17_99

16.79
1 7. 1 R

34 18.32 17.29 17.18
35 18.33 17.30 17.18
36 18.33 17:30 17.1837 90_ IA 14.65 -7 2..2.4=_
38 18.22 17.91 17.41
39 18.99 14.01 17.96
40
ft I

25.86
75-R6 .14.98

14-98
57.30
5Z.2

42 18.24 14.02 1	 .69
43 17.53 13.25 17.11
4i 1 7- 6 5 13- n6 ____16.B.R^
46 18.05 13.14 17.38
47	 16.88 14.35 15.87
48	 28.754Q-	17_49 21.0416_4 10.7916-3A
50 16.43 15.30

_
15.74

51 16.20 15.73 15.62•
52	 17.55 16.40 16.16
53	 70.76 15.97 1.6..35-
G,&	 11.04 1a	 C IA 11.	 aZ^

ORIGINAL PAGE 1
8

OP ?OP.?OP.4U*̂+ aa

55	 21.04
56	 17.73

5	 . 6
59 -13.38
60 -99.11
61..= 5.4..IIb,
62	 39.46
63 -58.92
64 -•269.44

18.93
16.91

-9.19
-93.95

--z--4-9.m.= 
-21.43

51.19
-269.44

16.83
16.71
L6 * 53

-66.86
-102.57

-. =&Q,..D5_...
34.44

-88.07
-269.44

e	 .44	 .26	 .32
8-13

LOWER RADIATING AREA 1 . 26 ft.2



Ks•	 ^,	 r  ^	 $ `"  3 +,+,pt 	^	 ,y^' ) ^ 	 ."kti , t^^¢.	, j	 z .	 rv,..	 Y... ^F 	'`mY	 ^	 ^ y T tai Xy`	 *	
^`

;`	
a.°,k^^ r ^"^	 c r a- ^T>^ ♦fir 

5	
"C;a°.+
	 ,q,. .,^ (" f	

r ^^  t +..	 '	 ^^..^ ^,. t` "	 f i.- 	 ^'	 j 1^ . f  ^

BLE V NODAL TEMPERATURES FOR AVHRR/1 INSTRUMENT ON 15 C CONTROL POINT,
TA

WORST CASE HOT AND COLD AND INSTRUMENT OFF WITH HEATERS

HOT 0 BIT	 COLD  ORBIT	 COLD ORBIT OF^FF WITH HEATERS

28	 6 8

NT.	 isi CE tct_5
CEN T
	 2	 36.1	 °2	 36.7	 3	 23.9 '	 4	 11.1	

>;
3	 24.6	 4	 71-6
4 	 22e3 5	 1 0_ 7 	 •^

6	 25.9	 6	 1

18_ 5	

0.6	 °: ` Y ;  ry+

7	 25*2	 R	 216:2	 8	 10 .5 	 :r

	

•	 lqs 11-4^9	 26.7 9 	22.2

11	 31.0	
11	 30.5	 12-	 10.6

112	 2288.3	 i3	 25.2	 10.5	 i {;

	

1426.8.	 15 25.2	 15 10.5
15	 26o7	 t 6	 77_5	 16	 10.8

17	 21.5	 18	 1^ 4 t

18	 22.2	 19	 19.7 19	 13.0
19	 22.8	 20	 19.6	 21	

13.0
20	 22.8	 t 2_n-

2	 10*23	 w,
22	 20.3	 23	 23.4r;s.

24	 16.1	 25	 21 6	 25	 tole
25 22^	 27	 10.9
26	 21 0	 0
27	 20.8	 ^a	 i 4:4	 2g	 i 1.7 

30	 lb 8	 30	 15e 1
•

	

7	 31	 32	 12.331	 17.	 ^^	 1
15.9
5_9--	 a^	 11_732	 17.7 _ 33	 16. 

34	 16 . 1	 35	 11. T34	 l7o9	 35	 16135	 17.9	 •a	 . t	 .-d :^	 36	 1 1 . 7
7

	

•	 38	 17 2	 11.
36	 18.0	

^ ^	 39	 .0
39	 20 . 1	 3 n	 12?.5-	 P^	 ^^	 ii:3
400	 29.8 42	 13.0	 '^^ ^^	 43	 10.8	 x42	 1901

45 	 1 0 :8-44	 18*b	 44	 ^ ^-^ 	 ^45	 12.04	 t 8.5-	 9
46	 18 9	 47	 13.5	 4T	 11.9

48	 30 •e3	 's	 19-7	 49	 i?.9,`
	49	 1 5.7

5	 16.5	 51	 15.3	 51	
13.1

52	 17.4	
7	 15.6	 514	 L^:t6

5.3-------
54	 21.2	 55	 17.

9
9	 56	 11.9

56	 17.6	
^`	 t4_t	

58	 12 9	 4^

	

t	 •57	 ^-	 58	 17.3	 59	 2.2
59	 23.2

61	
.8- 50 ba -46^-	 6^ -47- 'A 

62 2 63 -5 03.
	63 -52.5	 64 -269.4	 64 -269.4

.4.

	

64 -269.4	 y
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To:

From:

Subject:

AEROSPACE/OPTICAL: f

DIVISION r

3700 E. Pontiac Street
Fort Wayne, Ind. 46803

R. H. Foote	 J,719) 423.9636 - TWX 810.332-1413

J. D. Crawfor d̀,f̂ 6 	 Date: May 6, 1976

Revised: May 10, 1976

Revised Answers to MDR Question 15

Attached are Tables 1 and 2 which list the solar

and earth inputs for the external nodes. Table 3

lists the radiant outputs for the external nodes.

These values have been updated to the thermal run:

dated 4/7/76.

/am

Attachment

j

f

+g,.A

r",A

_^q54

"^hX

r
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Node NOMINAL8M
No 

INAL
28N ORBIT

NOMINAL
Number Desciiption ORBIT 680 ORBIT

BTU/HR BT.U/BR. .	 ..	 .	 . .	 _	 , BTU/HR
ER 'ERTH ALB ER ERTH ^ ALB 'ER ERTH ALB

37 Scan Motor Housing U Z.b .2 J.6 Z.b .15 -. i '2.6 1.3
38 Radiator Electronics . 0 2.9 .2 11.3 2.9 1 . 1 14.8 2.9 1.6
39 Scan Power Supply .0 2 .6 . 3 3.5 2.6 1.1 . 3 2.6 2.2
40 Scan Mirror Front	 61.4 7.2 .5 10.7 7.2 1.9 .1 7.2 3.1
41 Scan Mirror Rear	 61.4 7.2 .6 10 . 7 7.2 1.9 .1 7.2 3.1
42 Cavity, Sun .0 .4 . 1 .0 .4 .1 .0 .4 .2
43 Cavity Anti-Sun .6 .0 .0 1.5 .0 .0 .2 .0 .0
44 Base Cavity .0 10 .0 .0 0.0 .0 .0 .0 .0
45 Cal Target, Large .0 5.3 .4 3.6 5.3 1.5 .1 5.3 2.6
46 Cal Target, Small . 6 4.0 .3 8.9 4.0 .8 .0 4.0 1.2
47 Bulkhead, Telescope . 0 2.2 .2 3 . 1 2.2 .6 .0 2.2 1.1
48 Telescope .0 5.9 4 21.2 5.9 1.5 11.2 5.9 2.7

59 Insulation + Velocity o 8.8 .7 39.8 8.8 1.4 41 . 4 8.8 4.5
60 Insulation Anti-Sun .0 7.9 .0 0.0 7.9 1 . 9 .1 7.9 5.1
61 Insulation - Velocity .0 12.9 1.0 1.0 12.9 3.4 .9 12.9 6.5
62 Insulation, Sun	 143 . 6 17.6 4.1 153.2 17.6 6.8 34.3 17.6 10.0
63 Insulation, Nadir 28.9 7.3 36.5 29.0 26.1 31.1 29.0 50.3

M I

TABLE 1

SOLAR AND EARTH INPUTS FOR THE AVHRR/l EXTERNAL NODES, NOMINAL
00	 SURFACES FINISHES

Ch
	 .r.

WL



[Number
de
 Description

WORST CASE
680 ORBIT
BTU/HR

ER	 ERTH

COLD

ALB

WORST CASE HOT
280 ORBIT
BTU/HR

ER	 ERTH	 ALB

37 Scan Motor Housing . 1 2.5 .9 3.8 2.7 1.0
38 Radiator Electronics 14.4 2.8 1.5 11 . 9 3.0 1.1
39 Scan Power Supply . 3 2.5 2.0 3.7 2.6 1.2

40 Scan Mirror Front . 1 7.0 2.5 11.3 7.4 2.2
41 Scan Mirror Rear . 1 7.0 2.5 11.3 7.4 2.2
42 Cavity, Sun .0 .3 .1 .0 .4 .2
43 Cavity Anti-Sun .2 .0 .0 1.6 .0 .0
44 Base Cavity . 0 .0 .0 .0 .0 .0

45 Cal Target, Large .1 5.1 2.3 3.7 5.4 1.6

46 Cal Target, Small . 0 3.9 1.1 9.4 4.1 .8

47 Bulkhead, Telescope . 0 2.1 1.0 3.3 2.2 .6
48 Telescope 10.7 5.*8 2.4 22.2 6.1 1.7

59 Insulation + Velocity 56.0 8.6 4.2 41.8 9.1 1.5

60 Insulation Anti-Sun .1 7.7 4.8 .0 8.2 2.1
61 Insulation - Velocity . 9 12.5 6.1 1.1 13.3 3.6
62 Insulation, Sun 51.7 17 . 1 9.4 160.7 18.1 7.2

63 Insulation, Nadir 29.7 28.1 47 . 0 38.3 29.8 27.8

-New

TABLE 2

SOLAR AND EARTH INPUTS FOR THE AVHRR /l EXTERNAL NODES, HOT AND COLD CASES

i
FjJ

C	 ^ i
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Revised May 10, 19 -
r---- NOMINAL SURFACE FINISHES

WORST CASE OFF
QROUT QROUT	 QROUT QROUT QROUT 22.8 WATT
A° ORBIT 28° ORBIT	 68° ORBIT HOT COT,D HEATERS

Description	 WATTS WATTS	 WATTS WATTS WATTS WATTS

37 Scan Motor Housing 4.3 4.1
38 Radiator Electronics 3.4 3.4
39 Scan Power Supply 1.8 1.9
40 Scan Mirror Front .5 .3
41 Scan Mirror Rear .9 .6

42 Cavity, Sun .5 .5
43 Cavity Anti-Sun .7 .7
44 Base Cavity 1.4 1.4
45 Cal Target, Large 4.2 4.2
46 Cal Target, Small 2.2 2.2
47 Bulkhead, Telescope 3.3 3.3
48 Telescope 3.7 4.7

44

50 LOUVERS 14.3 19.8

51
F_ EFFECTIVE a OF LOUVERS .32 .44

3.8 4.1 3.8 3.7
3.4 3.4 3.5 3.1
1.7 1.8 1.7 1.7
.3 .3 .3 .3

.5 .4 .6 .6

.5 .5 .5 .5

.7 .7 .7 .7
1.3 1.4 1.3 1.3
3.9 4.3 3.9 3.8
2.1 2.2 2.0 2.0
3.2 3.2 3.2 3.1
4.2 4.6 4.2 4.0

11.7 20.0 7.4 6.5

.15
.26 .45 .16

TABLE 3

RADIANT OUTPUTS FOR THE AVHRR/l EXTERNAL NODES, NOMINAL AND WORST CASES
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9.0	 TEST AND CALIBRATION DATA

Resumes of test results for Engineering Model and

Protofliaht Model and DIR #40. Final Re port of the Life Test

Model are given in the following pages.
'r.	 For detailed test results and calibration data, refer

to

Alignment & Calibration Data Book,

AVHRR/l, ETM

Alignment and Calibration Data Book,
ti 	 t

AVHRR/l, PFM

Test Report, AVHRR/1 PFM

J

9-1



Te, -yt

	

tL	

J t,nl ., f
	 7

0 ^

0

AVHRR
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SUMMARY OF MISCELLANEOUS ITEMS

ITEM

SIZE

WEIGHT

ACCELERATION

VIBRATION

ACOUSTICS

JITTER

SPEC LEVELS	 MEASURED

MAX. 31" X 11" X 15"	 EXCLUDING THERMAL BLANKET

30-1/4" x 9 3/4" x 14"

60 LB. MAX.	 58 LB. - 150Z (LESS THERMAL

BLANKET)

18G LONGITUDINAL &	 NO PROBLEMS

3G LATERAL FOR 1 MIN.

+Z AND +X

+Z AND +Y

COVERED PREVIOUSLY

LEVELS REVIEWED AND 	 NO PROBLEM

COMPARED TO PAST PROGRAMS NO TEST RUN

t 17 ,k SEC/98%	 22.5V ± 8 (SEC/100%

CENTER OF

GRAVITY

DOOR OPEN DOOR CLOSE

ACTST ACT

X 3.42" 4.86" 4.72"

Y 11.8" 13.12" 13.12"

Z 2.73" 1.20" 1.27"

9-.



ETM AVHRR TEST -

RESULTS

SPECIFICATION

± 100 MV

OVER TEMP. RANGE

100C To 300C

SEE PARA. 3.4.2

OF SPEC

0.12K

a 300K

MEASURED

NOT CHECKED DUE TO

STABILITY OF VIS CAL,

CHECK TGT.

CHAN 1 CUTON SLOPE

.047 . ALL OTHER

PARAMETERS OKAY,

CHAN 2 ALL OKAY.

CHAN 3 0.06K

CHAN 4 0.07K

w,`

' Ŷh ,*r	

e y	
ia^',, sy'^ s`+̂ lot,	 `+*^'	

h
'K4.'' ^.. 5	 .r :.pry 4 ^ ya+	 -; .. .Y"' ^ ^	 f	

"y .	 , i .^

^'

`^

,... "Y Y
3 

y_

t

h

t. PARAMETER
j^, wr

wyyn

r'k	 3 CHAN 1 8 2 SIGNAL

M`3 STABILITY

=y

t CHAN 1 $ 2 SPECTRAL

RESPONSE

p`

THERMAL CHAN.

NEAT

CHAN 3 & 4

SIGNAL STABILITY

6

L'

CHAN 3 & 4

;. a SPECTRAL RESPONSE

r SCAN J ITTER

3

SCAN LINEARITY

± 100 MV
	

CHAN 3 CH 4

OVER TEMP RANGE
	

160 Mv 41 My

lOOC To 300C

SEE PARA 3.4.2
	

CHAN 3 CUTOFF SLOPE OUT.

OF SPEC.
	

CHAN 4 ALL OKAY

98% WITHIN ±	 SCENE — 100%

16gSEC	 LINE - 100%

LINE TO LINE: k	 < k IFOV
IFOV (98%)

20 MINUTES: 1 IFOV < 1 IFOV
(981014)

9-4
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ETM AVH KR TEST

RESULTS

PARAMETER SPECIFICATION MEASURED
Scan	 Cross Scan

IFOV SIZE TO 50% 1.3 : 0.2 MILLIRADIANS CH 1	 1.20	 CH 1 1.24

POINTS CH 2	 1.30	 CH 2 1.26

CH 3	 1.34	 CH 3 1.38

CH 4	 1,30	 CH 4 1.28

CHANNEL ALL CENTERS WITHIN INITIALLY	 0.07 MRAD

REGISTRATION 0.10 MRAD AFTER VIB	 1.0	 MRAD

SYSTEM MTF >30% AT LIMITING FREQ CH 1: 46%	 CH 3: 39%

CH 2: 449	 CH 4: 37%

POLARIZATION <10%, CHAN 1 CHAN 1	 1.6%

SENSITIVITY + CHAN 2 CHAN 2	 12.9%

Slit RATIO .19.4 MVOLTS CHAN 1:	 2.0 MVOLTS

SOLAR CHANNELS NOISE CHAN 2:	 1.3 MVOLTS

SUN SCAN SURVIVE AND RETURN TO SURVIVED:	 CHAN 1, 6MV

CALIBRATION CHAN 2:	 25Mv

CHAN 3:	 37 My

CHAN 4:	 1 My

STRAY RADIANCE <2% WITH CH2 =	 1.2%

SUPPRESSION PK SIGNAL NEAR AXIS CH1 =	 1.2%

SCATTERED LIGHT -- CHAN I & 2 -- NONE

SIGNAL CHAN 4	 - <3 NER

IN HIGH SUN ORBITS

9-5



0 ETM AVHRR TEST -

RESULTS

PARAMETER SPECIFICATION MEASURED

SIGNAL AMPLITUDE IOOZ ALBEDO = 6.1 ± .IV 6.188V	 CH. I
CHAN 1 & 2 SPACE LOOK = .25 ± .05 6.249V	 CH. 2

1250 VOLTS BOTH

' CHANNELS

SIGNAL AMPLITUDE 320K SCENE = 0.3 ± .1V
CH 3
.7GO	 .931	

4

CHAN 3 & 4 SPACE LOOK = 6.2 ± .05 6.187	 6.256

-A _

r	 =: I a

9-b



ITEM SPEC MEASURED

COMMAND OPERATION OPERATION AND DIGITAL TM

LEVEL VERIFIED.

ANALOG TM INSTRUMENT STATUS MEASURED.?

TURN ON TRANSIENT 150% OF STEADY ELECTRONICS ON	 .6 AMP

STATE MOTOR	 ON	 .6 AMP

COOLER HEAT ON	 2.4 AMP

CONDUCTED RIPPLE 2% OF STEADY MOTOR ONLY LOW	 -6 MA

STATE MOTOR ONLY HIGH -6 MA

ELECTRONICS & ALL CHANNELS

-26 MA

FULL INSTRUMENT -26 MA

SUSCEPTIBILITY .25 VPP TO 1.5 KH MAX. SUSCEPTIBILITY AT

.50 VP TO P TO 500 Hz, 0.9V P TO P

10 MHz



ITEM SPEC MEASURED

OVER-VOLTAGE 28V To 39V ±.15 V REGULATED VOLTAGES

VARY 2 MV MAX FROM 26V TO

39V -

AMPLIFIER ZEROING CH 1 .250 t 0.050 251.119 mv

CH 2 .250 :t 0,050 256.169 mv

CH 3 6.2	 0.050 6183.23 mv

CH 4 6.2	 0.050 6268.61 mv

*INITIAL ZERO LEVEL

SET PRIOR TO REDUC-

TION OF NOISE

AMPLIFIER + 6.25 mv CH 1-2.27 mv	 MEASURE WITH

LINEARITY CH 2	 0	 RAMP CAL AND

CH 3-3.43 mv	 DATA CONVERTER

CH 4	 0

RAMP CAL RANGE -0.1 TO +6.4 CH 1 6452 SWING

CH 2 6585 SWING

CH 3 6496 SWING

..	 .	 ..... CH 4 .6498 SWING

00



ITEM SPEC MEASURED

AMPLIFIER DROOP 39% OF FULL SCALE CH 1 ,369 My

(25 Mv) CH 2 .007 My

CH 3 5,47 My

CH 4 .50 My

TM DATA

VERIFICATION OF TM BB1 2320 2318,"75

IN DATA STREAM BB2 2389 2387,18

BB3 2379 2376,25

BB4 2439 2439.68

ATCH
EMP 3032 3033.11

TM DATA

BB SAMPLE TM -- CH-3 2173 2174.23

CH 4 4183 41%9.26

VOLTAGE CAL
10 EARTH SCENE LEVELS

VERIFICATION ,1 B.B. LEVEL VERIFIED

DETECTOR DISABLED

^o
i
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ITEM SPEC MEASURED

AUXILARY SYNC PULSE TO COLLIMATOR TARGET

SCAN NORMAL	 45150JISEC

WITH AUX	 =

SCAN	 45832 To 45860 µSEC:

JITTER	 ± 8 gSEC	 97.027%

+ 16 4 S EC 99.4999 .

0



^z-- it. n.61.

CALIBRATION- EQUATIONS

RADIATOR TEMP OK 35.12V + 1418* 7

PATCH POWER mw 2V2

PATCH TEMP Low
RANGE OK 5,16V + 89,7

PATCH TEMP Ex
RANGE OK 45,12V + im

BB#1 TM Oc 8.31V + 3,424
BB#2 TM Oc 8,31V + 3.424

BB#3 TM Oc 8.31V + 3, ' 424
BB#4 TM Oc 8.31V + 3.424

MOTOR CURRENT MA 60V
ELECTRONICS CURRENT MA 196,5V

EARTH SHIELD

POSITION .(<2V) cl (2-4)MID >A OPEN

ELECTRONICS TEMP Oc -5.82V + 39.9
BASE PLATE TEMP Oc -7.75V + 34.8

A To D TEMP Oc -8.33V + 86.16
MOTOR HOUSING TEMP O C -7.75V + 34.8

COOLER HOUSING TEMP Oc -7.75V + 34.8

DETECTOR BIAS VOLTS 4,33V - 21,33
BB IR CH3 Oc -1.1V2 -13.2V + 330.2
BB IR CH4 Oc -3V 2 +11.3V + 3023
OFFSET VOLTAGE TM 1.33V

9-11 1



ETM RADIANT COOLER PERFORMANCE

TEMPERATURE OF ORIGINAL;	 MEASURED 150C BP
DESIGN WARMEST ORBIT

COOLER HOUSING 220C 2630C 14,70C
(c)

OPTICS 250C 23,40C 19.60C (c)

RADIATOR 170o9K 168,4K 166.OK

PATCH 
(a) 105,OK 105,6K 105,OK

CHAMBER MARGIN 
(b) 7,3K 7,6K 8.7K :t 0.6K

25,6 mW 27.2 mW 30.1 mW :t 1,8 mW

ORBITAL MARGIN 
(b) 1O,OK 10,2K 11,3K :t OJK

34,4 MW 35.5 mW 38,0 mW :t 1,8 mW

(a)
CONTROL POINT

(b)
CALCULATED VALUES WITH RESPECT TO

CONTROL POINT
(c)

FROM THERMAL ANALYSIS

9-12
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AVHRR

RESUME OF PFM TEST RESULTS
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PFM AVHRR TEST RESULTS

ITEM	 SPEC LEVELS

SIZE	 MAX. 31' x 11" x 15"

WEIGHT	 60 LB. MAX

ACCELERATION NO TEST ON PFM

POWER	 27 WATTS

MEASURED

EXCLUDING THERMAL BLANKET

30.18" x 9-5/8" x 14.15"

59 15 dz (WITH THERMAL

BLANKET)

NA

24.92 WATTS

PASSED 3RD VIBRATION

PROBLEMS COVERED BY MFR'S

NA

MET SPEC AT B.P.

150 AND HIGHER

SEE MFR 02526

VIBRATION
	

SEE SPEC.

PARA. 4.4.4.3

ACOUSTICS
	

NO TEST ON PFM

JITTER
	

± 17 SEC/98%

e.

x

CENTER OF	 DOOR OPEN	 DOOR CLOSE

GRAVITY

t	 X	 4.77	 4.68

Y	 12.98	 12.98

Z	 1.14	 1.24

9-14
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PFM AVHRR TEST RESULTS

PARAMETER SPECIFICATION MEASURED

CHAN 1 & 2 SIGNAL t 100 MV CHAN #1 - 25 MV

STABILITY OVER TEMP. RANGE CHAN #2 = 82 MV

IOOC To 300C

CHAN 1 & 2 SPECTRAL SEE PARA. 3.4.2 CHAN #1 ALL OKAY

RESPONSE OF SPEC CHAN #2 ALL OKAY
F

THERMAL CHAN. 0.12K CHAN 3 .040K

NEAT a 300K CHAN Cc .060K

CHAN 3 & 4 t 100Mv CHAN 3 CH 4

SIGNAL STABILITY OVIiR TEMP RANGE 331.25 My	 61.56

100C TO 300C *SEE MFR #02504

s
y CHAN 3 & 4 SEE PARA 3.4.2 CHAN 3 ALL OKAY

= SPECTRAL RESPONSE OF SPEC. CHAN 4 ALL OKAY

SCAN JITTER 98% WITHIN t SCENE — 99%

17	 SEC (1/2 IFOV) 'LINE - 98%

*SEE MFR #02526

SCAN LINEARITY LINE TO LINE: ± 1/2 <	 1/2 IFOV

IFOV (98%)

20 MINUTES; tl IFOV < 1 IFOV

(98%)



flflEt(il.11

0
PARAMETER

IFOV SIZE To 50%

POINTS

CHANNEL

REGISTRATION

SYSTEM MTF

POLARIZATION

SEPISITIVITY

S/N RATIO

SOLAR CHANNELS

PFM AVHRR TEST RESULTS

SPECIFICATION

1.3 i 0.2 MILLIRADIANS

ALL CENTERS WITHIN

0.10 MRAD

>30% AT LIMITING FREQ

CHAN 1 _	 5%

CHAN 2 _	 5.3%

10.0 MVOLTS NOISE

3/1 a .5% ALBEDO

MEASURED

SCAN	 CROSS SCAN

CH 1 1.38 CH 1 1.39

CH 2 1.38 CH 2 1;:41

CH 3 1.54 CH 3 1.51

*SEE MFR 02527

CH '4 1.41 CH 4 1.41

INITIALLY < 0.08 MRAD

AFTER VIB 10.08 MRAD

CH 1 49% CH 3: 39%

CH 2: 489 CH 4: 45%

CHAN 1 3.7 NADIR

CHAN 2 5.3 NADIR

CHAN 1: 1.83 MVOLTS

CHAN 2: 1.89 MVOLTS

SUN SCAN
	

No TEST PFM
	

NA

STRAY RADIANCE
	

No TEST PFM
	

NA

SUPPRESSION

SCATTERED LIGHT
	

No TEST PFM
	

NA

SIGNAL

9-16
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PFM AVHRR TEST RESULTS

'	 PARAMETER SPECIFICATION MEASURED

CH 1 CH 2

SIGNAL AMPLITUDE 100% ALBEDO a 6.1 t .1V 6051.52 6176.92

CHAN 1 & 2 SPACE LOOK	 = .25 t .05 256.25 251.24

CH 3 CH 4
SIGNAL AMPLITUDE 320K i IN = 0.3 t .1V 468.75 275.00

CHAN 3 & 4 SPACE LOOK = 6.2 t .05 6212.50 6187.87

lip
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ITEM	 I	 SPEC	 I	 MEASURED

COMMAND OPERATION
	

OPERATION AND DIGITAL TM

LEVEL VERIFIED.

ANALOG TM
	

INSTRUMENT STATUS MEASURED

TURN ON TRANSIENT (28V

ELECTRONICS

MOTOR

COOLER HEAT

EARTH SHIELD

CONDUCTED RIPPLE (280

MOTOR - LOW

MOTOR - HIGH

ELECT. & ALL CH'S)

FULL INST.	 )

`SUSCEPTIBILITY

4A MAX. a 20 MA/uSEC
.4A MAX. a 20 MA/uSEC

.8A MAX. FOR 2 M.S.

JA MAX. FOR 1 SEC

8MAP- P

8MAP-P

20 Hz 3% (27 MA)

20 Hz 1% (9 MA)

.25 vPP To 1.5 KHz

.50 VP To P To 10 MHz

680 MA - 3 MA/uSEC.

680 MA - .56 MA/uSEC
2.8A FOR 500 uSEC

1.6A FOR .88 SEC

5MAP-P

5MAP-P

<20 Hz - 14 MA/>20 Hz - 2 MA

<20 Hz - 15 MA/>20 Hz - 5 MA

WORST CASE

.8v a 15 KHz.

CONDUCTED RIPPLE (+20V) 1 MA MAX.	 NONE - DISCERNIBLE

CONDUCTED RIPPLE (+50 1 MA MAX.	 NONE - DISCERNIBLE



6

0

ITEM

OVER-VOLTAGE

l AMPLY I ER ZEROING

28V To 39V	 ±15 V REGULATED VOLTAGES
VARY 0 MV - +5 v SUPPLY

VARIES 32 MV.

CH 1 .250 t 0.050	 250.00 My

CH 2 .250 t 0.050	 350.00 My

CH 3 6.2 t 0.50	 6211.00 My

CH 4 6.2 ± 0.50	 6173.00 My

AMPLIFIER
	

6.25 MV (±DATA CONV.) CH 1 - 10.1 MV MEASURE WITH
LINEARITY
	

CH 2 10.4 My RAMP CAL AND
CH 3 6.25 My DATA CONVERTER-
CH 4 8.3 My

RAMP CAL RANGE 0.025 To +6.475	 CH 1 6506 SWING

CH 2 6508 SWING

CH 3 6499 SWING

CH 4 6476 SWING

^o
ir
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ERIFICATION OF TM

IN DATA STREAM

SAMPLE TM

IOLTAGE CAL

VERIFICATION

ITEM

LIFIER DROOP

i
3

.39% OF FULL SCALE CH 1 0 MV
(25 Mv) CH 2 0 MV

CH 3 .1 My
CH 4 6.11 My

I&- DATA

-- BB1 1.247 1.243

BB2 1.276 1.268

' BB3 1.321 1.309

BBBB4 1.319 1.309

PATCH
3.018

ILL DATA

-- CH 3 2.594 2.594
CH 4 4.653 4.659

1	 2 3	 4
3 EARTH SCENE LEVELS CH 1 1862 3493 5113	 5922

1 B.B. LEVEL CH 2 1864-3494 5118	 5925
DETECTOR DISABLED CH 3 1356 2975 4606	 549

CH 4 1362 2975 4587	 567

VERIFIED DET. DIS.

MEASUREDSPEC

Afth

^o
iNO



^	 O
ITEM SPEC MEASURED

AUXILIARY NONE SYNC PULSE TO COLLIMATOR TARGET

SCAN NORMAL 42857,3 - 42800,0
WITH AUX	 42812.8	 - 42760.7

.

SCAN

j
1

i

s

JJ
1

3

i

I
i
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I f	
^ ^ I

CALIBRATION EOUAT4 ONS

RADIATOR TEMP	
OK	 35,12V
	

+ 141,7

PATCH POWER	 ,MW	 = 2V2

PATCH TEMP LOW

RANGE OK

PATCH TEMP EX

RANGE OK

BB#1 TM OC

BB#2 TM OC

BB#3 TM OC

BB#4 TM OC

MOTOR CURRENT MA

ELECTRONICS CURRENT MA

EARTH SHIELD

POSITION

ELECTRONICS TEMP OC

BASE PLATE TEMP
OC

A TO D TEMP
OC

MOTOR HOUSING TEMP
OC

COOLER HOUSING TEMP OC

DETECTOR BIAS VOLTS

BB I R CH3 OC

BB I R CH4 OC

OFFSET VOLTAGE TM

= 5,16V +	 89,7

= 45,12V +	 90,4

= 8.31V +	 3,424

= 8,31V +,	 3.424

= 8.31V +	 3,424

= 8,31V +	 3,424

= 60V

= 196.5V

( <2V) C1 (2-4)MiD ' O OPEN

-5,82V +	 39,9

-7,75V +	 34,8

_ -8,33V +	 86,16

-7,75V +	 34,5

-7,75V +	 34,8

= 4,33V -	 2133

-1,1V 2 -13,2V + 330,2

_ -3V2 +11,3V + 302.3

= 1.33V
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V)
AVHRR S.N.----	 DATE

10-Y-76

ss

IN

ENGINEER 
L- C)

CHANNEL	 1	 I _	 CHANNEL 2 -____--
SPEC	 MEASURED

within 0.02 um
of 50% Wv'ln.	 7^

SPEC.

within 0.10 um
of 50; Wv'ln.

ME	 D—

6 ZgShort slave 80% Wv'ln.

Short Wave 50% Wv'ln. 0.55 ± •0.05 um 5^^ Z 0 . 725 # .025um 1 O.7

Short Wave 5% Wv'ln. within 0	 Um
of 50% Wv I tn. . Y9 7

within 0.04 um
of 50 % Wv'ln* 9

Amb > . yL

Long Dave 80% Nily ' ln. within 0.02 um
50% Wv'ln.of 8l to H. R.

•	
l

Long Wave 50% W' 1n. 0.90 ± .0.05 um  Ov N. R.,

Long Wave 5%	 Wv'ln. within 0.04 um
of 50% Wv'In.

a
39

N.R.
7

Response between S.W. 80% Wv'ln.
o

p
and L.W. 80% Wv'ln. 80% !lin. > 8u 80% Min. $0 7/a

Out-.of-Band	 Response NASA Spec NASA Spec.	 GSFC
GSFC S-731-P-118 Rev. D
Para.	 3.4.2.1.5 ^,

S-731-P-118 Rev. D,
Para.	 3.4.2.2.6

N.R. = No requirement	 I
*	 S.W. 5% Wv'ln. of Ch. 2 must, always exceed 0.685 um

**	 or 0.65 um, whichever is grel ter .

TABLE 6
CHANNEL 1 & 2 SPECTRAL CHARACTERISTICS



A^'IIRR S.N	 DATE 10- 2-7of	Q•C•

EZIGINEER

CH_ANN_E_ L 	 3 c:n^uvtvr:L	 ;_

SPEC. -R9D SPEC MEASURED	 I

Short Wave 50% Wv ' ln. 10.5 ± 0.1 um 1 O • s Z 3.55 t 0 . 06 Pm ^^ SQ

I S.W.- 80 % of 1st Peak Wv'ln.i See, S.W. Slope 0•6Q See S.W. Slope
i

^• ^^

S.W.	 5% Wv'ln. See S.W. Slope , O U D See S.W. Slope ^ s^

S. W. Slope * < 3.0% / % < 3.0$
.2•s

t
I!	 I

Long Wave 50% Wv'ln.	 t

f

11.5 ± 0.1 um / / • ^js•
( 7

3.93 t O.00 um
1- 19 

I L.W.	 80% of lst Peak Wv ' ln.	 ( See L.W. Slope / / /^

•

See L.W. Slope

I L.W.	 5% Wv ' ln. See L.W. Slope See L.W. Slope O

iL.W. Slope * <	 0%

'• 7

<3.0%

Response between S . W. 80%
i Wv' ln.	 & L.W.	 80% Wv'ln.

t

80% .din. g0^ 80% Min.
t

> g Q
O

p

Response at Wv'ln. <10.0 um and < 1% / (y N/A	 O N.A.
>12.0 um O

Response at Wv ' ln. < 3.40	 and W.A. N.A. < 1%	
Cr-	 b ^a> 4.12umi i

Out-of-Band Response
1 
NASA Spec. Para 3.4.2.3 5 ©I NASA Spec.

5 0 tPara. 3.4.2.	 0

* Slope = [(80% of first peak Wv'ln. - 5% Wv'ln.) L. 5% Wv'ln.] x 100%

TABLE	 CHANNEL 3 & 4 SPECTRAL CHARACTERISTICS
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AEROSPACE/OPTICAL
DIVISION
37010 E. Pontiac Street
Fort Wayne, Ind. 46803
1219) 423-9636 - 71Nx 81 x332-1413

From: C. L. Soest	 S	 Date: December 22,. 1976

Subject. D I R #40
AVHRR/1 LTM Final Report

CC:	 Ref: ITT 8120888 - Test Procedure for AVHRR Life Test
D. Melton	 Model (LTM)
J. Stark

ITT 8009480 - Procedure for AVHRR LTM Scanner
Dismantling (with attached notes)

NASA/GSFC Memo by A. J. Babecki, "Examination of
Ball Bearings from the AVHRR Life Test"

Instruction

The AVHRR LTM Scanner was dismantled on March 17,
1976 for the purpose of investigation and analysis''(primarily
of the ball bearings). The scanner had operated in a vacuum
in excess of 8500 hours and temperature cycled between 150C
and 350C. The complete test plan is outlined in ITT 8120888
and the test data is recorded in the LTr1 Logbook.

The scanner was dismantled according to procedure
8009480 by ITT engineering personnel (J. Stark) and wit-
nessed by GSFC personnel (E. Stengard). Appropriate notes
were taken during the dismantling and are attached to the
procedure.

Discussion

The motor was carefully disassembled and parts
were checked for signs of wear and lubricant migration.
No signs of lubricant migration was evident, and this
was confirmed when the bearings were weighed. There were
slight wear rings on the bearing journals of the rotor
shaft, and small debris patterns on the front bearing
cover, bearing spacer, and bearing nut.

The bearings were carefully weighed to check on
weight loss of the lubricant, and then disassembled. The
front 'gearing lost 1.5mg and the rear bearing lost 2.8mg ofs	 lubricant.

f

I=TT
To: )B__2Q0te
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F. I

0 R. Foote	 - 2 -
AVHRR/1 LTM Scanner Dismantling

December 22, 1976

After the bearings were disassembled, they were
cleaned and the wash solutions passed through a filter
to collect particulates that might have been present.
The filters were submitted to GSFC for analysis and the
examination disclosed very little debris, and not enough
for analysis.

The bearing races, balls, and ball retainers were
examined by ITT personnel at magnifications up to 30X and
then forwarded to GSFC for evaluation. NASA's examination
confirmed our findings of very little wear on' the bearings.
The bearing races exhibited uniform ball tracks that were
off center which indicated the presence of preload on the
bearings. The balls did not show any wear rings and showed
no evidence of wear.

Upon completion of the examination by NASA, the
bearings were sent to Split Ballbearing for examination
and preload measurement. Their measurements indicated
a preload of 5 oz. A copy of their findings is attached.

Summary

After operating for over 8500 hours in a vacuum
the LTM scan motor bearings exhibited very little wear'
and lost approximately 1.5 - 2.8mg of lubricant from
approximately 27-29mg of total lubricant originally
present. Jitter measurements were 100%, coast down time
2'-15", and running torque 0.8 oz-in.

Q-111
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Split Ballbearing
DIVISION OF MPB CORPORATION
HIGHWAY FOUR, LEBANON, NEW HAMPSHIRE 03766

M PB TELEPHONE: 603.446.3000
TWX: 710.366-1661

August 24, 1976

ITT Aerospace/Optical Division
3700 ". Pontiac Street
Fort Wayne, Indiana 46803

Attention: Clarence Soest

Subject: Life Test Bearings, 3TAR 17-24-145
S/i1 007

Dear Mr. Soest:

As you requested, we have reassembled the subject bearings and
checked the preload. We find the preload to be approximately
5 oz. as compared to a spec of 1 1/2 to 3 1/2 lbs. This re-
duction in preload may be due to the diamond polishing whic ?h

was performed at Goddard Space Flight Center. Historically,
their polishing has reduced the preload on this type of beELring
by approximately that amount.

The races appeared to be in excellent condition, showing only
a very light frosted contact path which in no way had destroyed
the geometry of the race.

We hope this answers your questions and are sorry for the initial
mixup concerning these parts. Should you have any further

`	 questions please do not hesitate to contact this office or our
Field Sales Engineer, William Cotton. The bearings are ent.1osed.

Regards,

Neal. C. McBain
Product Engineer

,101/n1
cc: WC, Chic.
Enclosures

t
-9-32
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UNITED STATES GOVERNMENT

1Vlemorandurm
TO	 . Mr. M. J. Donohoe, Code 726	 DATE: May 12, 1376

FRoit	 Mr. A. J. Babecki, Code 755
Materials Engineering Branch

SUBJECT: EXAM1NATION OF BALL BEARINGS FROM TIME . ,,WHRR LIFE TEST

--`"	 Background

I
x.71

.,	 y

r
The two STAR ball bearings, which N ere in the Tr.?IiR scan motor life
test for one year in vacuum., were submitted to this Code for eyamin::tin.r,
after ITT-Ft. Wayne had disassembled and cleaned them. During the
cleaning operation, ITT had passed the gash solutions through a filter
pad to collect particulates, and that pad also was submitted.

Examination of the filter pad at magnifications up to about 3ON disclosed
very little debris, and certainly not enough for analysis....

During-the life test, the spin axis had been ke nt vertical. Therefore,
the two SIN 007 bearings are identified as top and bottom. Because of.
the simulated mirror mass that the bearings supported during; thL- test,
the bottom bearing should have experienced a heavier load than the top
one. During the life test, the bearings rotated continuously at 360 rpm
and were subjected to some thermal cycling.

Although this Code had polished the ball groove surfaces to remove
the original coarse surface condition, the bearings were lubricated by
ITT, r eportedly with the recommended Kry tox 143 AB oil. This

	

,^.	 lubrication included vacuum impregnation of the phenolic laminate
ball cages and the addition of a small amount of free oil to the balls
and grooves

Examination

The bearings were visually examined at low ma gnification. It was noted
that the inner races had one face stamped with Split Ball Bearing Co's
identification and that the ball track on each was off-center in the ball
groove way from the stamped face. Later it was learned that thea 
stamped faces faced each other in the mechanism and, therefore, the
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tracks indicated that the inner races were preloaded against each other (DE).

There had been some cone ern that .the polishing ope ration wou Id have
removed enough metal from the races to remove the preload. 	 However,
the presence of ball tracks that were off center indicated that there was
a preload of some value. 	 Figure 1 pictures the ball tracks on the inner
and outer races of the top bearing, and Figure 2 pictures them on the
bottom bearing.	 The ball tracks were tmiformly spaced and uniform

- in width arcand each race, which suggests that there was no looseness
in the bearings as there might be with no axial preload. 	 however,
the track on the bottom bea_•ing apl:eared to be s igl lv 1^= ^r than
on the top bearing, which would be L *ected con:!-*clerirr the YrF:.+.,^r
load that it carried.

Low power examination of the balls indicated that they were uniform
in appearance, that they, did not sport any wear rings, and that they did

' not show evidence of any significant wear.	 Figure V9 pictures the surface
at high magnification of a randomly - selected ball from the bottom bearing.
It 'is noted that tIce surface condition looks good.	 The figurea .lso illustrates
the as-polished surface condition of the ball groove -and the slight change
in it effected within the ball track of the bottom bearing. 	 Fi gure 4 depicts

Ao="@ the ball and track surfaces in the top bearing. 	 Again, the changes
,; effected by the life test operation were minimal.A

A chemical analysis was made by IR spectrophotometry of a sample of
the oil from the bearings at the conclusion of the life test.	 lair. Fred

! Gross of this Code reported that the lubricant	 was not degraded and
that it was, indeed, Krytox with a small amount of aliphatic hydro-
carbons and esters that did not appear unusual.

Discussion

The examination of the bearings and oil, and the lack of wear debris
I on the filter pads show that there was an extremely small amount of

wear of the bearings in the one year vacuum operation. 	 Other
informatiuu i ►uiu !TT indicated that only 1.5-2.8 mgms. of oil was

,.,." lost from the approximately 25 mgms. original quantity in each
bearing.	 In addition, ITT reported seeing no oil film outside of the
bearings, which indicates that there was no oil creep problem.

9-34
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^^ 	 There is no doubt that the balls of the bearings floated on 4a film of oil
with little or no metal-to-metal contact between Chem and the races.
This desirable condition was due in part to the properties of the oil,
but also to the fine surface finish given to the races by this Code.
It is understood, however, that the flight bearing ,--', will not have
races polished by this Code, although their surface finishes
reportedly are better than the life test ones originally were.

If the flight bearings have surface finishes which are significantly
rougher than the life test bearings after polishin g. . it is probable that
the wear that is developed will be greater. How much greater is not

•	 known, but it may be significant if the axial prel.cad is high and if the
oil quantity for some reason is less than in the lift' test bearings.

Because the flight units may be in storage for a year or more before
integration into the spacecraft, consideration will have to be given to
the storage conditions to minimize contamination and to preserve the
integrity'of the lubricant. Such steps as sealing in a nitrogen atmosphere
and periodic operation to spread the oil are minin:um considerations.
Perhaps vacuum sealing and witness mirrors and temperature limits
also should be considered.

Recommendations

"•r 4

•

i
r

In order to gain confidence that the flight unit will perform as well as
the life test model, it is recommended that
1) This Code be given a sample bearing of the new lot to inspect anti return,
2) The axial preload applied be as low as practicable,
3) A greater quantity of oil be added if the bearing surface finishes are

coarser than the life test bearings had, and
4) Adequate storage and periodic operation be incorporated in the plans.

i Alfred J. Babe'cki
Engineering Metallurgy Section

cc: 755 Distribution
Tiros-N Project List
J. Stern/325
D. Smith/921
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As above, but on
the outer race.

.i 

71-
22.5X

iT-T ^	 ";	 1	 ^^	 1	 +	 t.y nom.	 -

r

i

Figure 1

Ball groove (arrows)
and ball track (X)
on the inner race
of the top bearing.

22.5X
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i
Ball pocket of the
phenolic laminate
ball cage with rub
spots..flu-
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_A
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Figure 2

Ball groove and ball
track on the inner
race of the bottom
bearing.

22. 5X

As above, but on the
outer race.

22.SX
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Figure 3	 y

Surface of a ball
from the bottom
bearing appears flow-
less at 200X.

ORIGIN AL PAGE IS
OF POOR QUALITY

Polished surface of

i
	

the inner race ball
groove .outside of
the ball track at
200X.

^ ^•	 #Mlgr;,ylan	
,r...: ^ . t xq••; a^yr ^?L7 e^ . 	 r	 ..T,'..

Surface of the ball
track on the inner
race of the bottom
bearing at 200X.

•	 ^ ' ^, •• ter ;.•	 ^^.	 ;S. ' I

^'^:=•: '... .^	 -	 •}aft•'	 4%••tom	 ;
^!^ ^
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Figure 4

Surface of a ball
from the top bearing
at 200X.

Surface of the ball
i

	

track on the inner
race of the top bearing
at 200X.
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PROCEDURE

FOR

AVHRR LTM SCANNER DISMANTLING

ASSE, Y

Assy . 140.

APP0.9Y	 asawfoo .40.	 Rev.
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1.0 SCOPE

This procedure describes the order of disassembly and
inspection of the LTI1 Scanner. The purpose of the pro-
cedure is to ensure that no data chill be lost in disassem-
bly of the motor prior to the investigation and analysis
of all pertinent data.

2. 0 INSTRUCTIO14S
4

All LVI parts should be carefully handled with clear
polyethylene gloves. Any pertinent data-should be re-
corded below. Photograph parts as required.

3.0 PROCEDURE

3.1 Measure LTM motor current in-air at 22.5V	 /C 7	 „^^• ,

t
3.2 Measure coast down in air / = /(,,_ f "	 7"c :<.^.? / .3

I	 3.3 Operate LTM motor for a minimum of 24 hours in vacuum
(approx. 1 micron) and measure current at 22.5V / 3

3.4 Measure coast down in vacuum ;L '-16' 7

3.5 Measure current at 22.5V in air AL- 7
3.6 Measure coast down in air ^! SS. n

3.7 Remove motor from life test set-up and take to clean room
environment. Carefully inspect assembly and note ob-
servations. Photograph if necessary. 	 y

3.8 Check axial and radial play of shaft. ?axial
Radial

3.9 Measure following torque at 22.5V. slip__ 3--
s to 11

3.10 Make torque/current measurements on breadboard motor, and
utilizing the breadboard motor as a drive source, measure
running torque of the LTM running in the operational
direction (CW looking at the motor from the mirror end).
Measurements will be made with the motor in the horizontal
position-and 22.5V.

- JL1 -`4 •r mo. 31SSU	 9-41
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Breadboard Motor--otor	 ORIGINAL PAGE IS
OF POOR QUALITY

Torque Current ^ ^'^^

No Load	 / ^^	 ^''	 •
0.5oz-in.	 ^7D	 Current measurement of BB

V	 1.0	 motor while driving
1.5	 /J' 5% '^p	 LTM	 7 9

2.5	 ^• _'	 Resultant running torque
3.0 	 5' o	 of LTM

3.5

ya>

4.5 	 '	 ln7,0 I J_7 v

5.5 
	 " 0

	 5.0 	 L(?`?	 j0

6.0	 ^.

p	 3.11 If possible, rotate entire assembly (BB motor driving
LTM motor) to the vertical direction and note any
change in current reading 	 ;W 4t .

3.12 Start disassembly of LT14 with careful observations
along the way for any signs of debris, corrosion,
lubricant outside of bearings, evidence of binding,
cocking, walking of bearings on the shaft or housing,

j\	 walking of spacers, etc. Photograph if necessary.

3.13 Record front and rear bearing.

front (mirror end) $'..0 a ,'^	 r'^

rear (rotor end)

3.14 Measure 
to7/;7,-

e required to remove bearing retainer
nut ^ 	 is/-

3.15 Remove bearings and spacers and visually examine at
magnification (ti lOx - 30x) for evidence of oil or
debris on the outside of bearings and separators.
Photograph as required. 	 %`3

3. 16 Weigh bearing assembly to nearest 0 .1 mgm,t'. • • "^^ = i -7.7^#9c/"^•:^.y'-
tf

3	 8009480
•..^1•a^1.A	 N!Yi'tRLWtn.^YMf•^....ai^.TaM.At.t'tl.l O

irTFWL -19 7 	 CODE IDEFt1T HO. 31550 	 9-42
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OF POOR QUALITY

3.17 Examine interior of bearing at magnification for oil,
'	 debris, meniscus, non-wetting, etc. Photograph as

required.

3.18 Check bearing set for preload

3.19 • Measure- running torque wi.th gram gage and torque

	

watch & 5G;,x1s	 7S " gm gage. _. L Z	 Alt-' /
^.

	

1:5	 l,y torque watch.

3.20 Disassemble bearing set and examine at magnification
for debris and dear. Photograph as necessary.

3.21 Weigh retainer

3.22 Clean metal parts in filtered freon, and filter wash
after cleaning.

3:23 'Examine filter at magnification. Photograph if neces-
sary. Save wash and filter and send to GSk for
analysis.

g 	 Y	 P	 S `^ ^i^tS'.	 ^^ L 4 7% G ,Y s•	 3.24 Weigh dry metal arts /'7, 

3.25' Examine cleaned metal parts at magnificatiori''to-,200x
for evidence of wear, cracks on races, wear rings on
balls, etc. Photograph as necessary.

3.26 Examine retainer pockets for wear at magnification.
Photograph as necessary.

3.27 If bearing set has preload, send to SBB for measurement.
t

N Tc	 .
`	 .3 . / 9 ^Gr% ._'r c E'r_ ^i.tJ r' 11 ,1U 9_ oW 3-0 1-/  71 w i 7W 7,12 PE O X/ 0. a

dF S^fiGEQ

^'9EAS^,^^fr^yrr ^.:AS .^^- .o^^^ ^.xi .^ -J:l r^ vlix^r sre/xlf

G n U+I^^^So^^tS: 1.3 z aZ ^u 	^. .^r

'(o vE — r.s - r.^ ^ e^ -IN	

sL^P	
_.	 7 -	

s'fltl •r^

A

K

	

.»......	 ...^	 a ^.Q.^..,...,.^.
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 9, I

FRONT SIDE

1. Debris ring on front cover where contact with bearing is made.

2. Debris pattern of holes on spacer adjacent to

Obsolete lub. reservoir holes.

3. Nothing observed in bearing or races on examination while

still installed and nut tight.

4. Debris ring on each side of nut.

5. Debris ring on outside of spacer

3.15 6. Wear ring on ends of bearing journals and shoulder of step

on rotor end

j .L I Al,-)	 L.:,C uA -' J

i	

J	 i

O

OcQf:i^, Parr_ c ^/^

0	 0

Yr^^

r

Q)
9-44



r

w

0 7. Bearing I.D.'s show-a couple of wear spots.

8. Bearing toward mirror has chevron toward mirror

-°--40	 ENO

9. Slight blade ring around bearing bore

and bores feel dry - no oil film detected.

*10. (Front bearing)

1. Balls have wear tracks (before disassembly) pattern

2. Meniscus in bearing (Front bearing)

3. No evidence of non wetting

4. No debris buildup

5. No large particles on balls or elsewhere.

6. No rainbow effect

*11. (Rear bearing)

1. Is a meniscus

2. No evidence of non wetting

3. No debris or large particle;

4. No wear traces

5. Rainbow-effect on balls - lub.

6. Surface of balls smoother than other bearing

7. Seems to have more lub - observation and feel.

	

11 Wgt	 17.76339 grams Front Bearing A

"	 17.76494 grams Rear Bearing /

	

'Orig.	 n 3.7.76492	 /%-.17.76777  (Test Plan)

	

A 17.76339	 17.76494

A	 .001,53 grams	 .00283 grams



3.20 >(1) Apparent wear track on inner race

(2) Congealed oil in groove - both races

(3) Balls clean, shiny, no evidence of wear

(4) No evidence of wear on retainer

Free oil on surface of cage

Wear spot on leading edge of ball contact point.

3.21	 /	 .50299	 0.50292 J
	.49106	 ( .49079

}
}

W4 1
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10.0 LIST OF DESIGN INFORMATION REPORTS

Design Information Reports written on this program
are listed below.

DIR #

1.
2.
3.

4.

5.

6.

7.

9.
P

i'
10.
11. 

12.

13.
14.

a,x 15.

16.
17.

18.

`. 19.

20.

21.

22.
23.

24.

Subject

AVHRR Sensitivity - Harber/Koczor
AVHRR Collimator - Diffration Effects - R. Koczor
Effects of Optical Surface Errors on Diffraction

Limited MTF - R. Annable
Approach to the Optical Alignment: and Channel

Registration of the AVHRR - R. Annable
The Effect of Detectors on the Instrument

Spectral Response, Part 1, Channels 3 & 4 - R. Koczor
Theoretical Design to Meet the Polarization Requirements

in Channels 1 and 2 - R. Annable
Polarization Design and Analysis Based on

OCLI Measured Data - R. Annble
Using "Standard" Silicon Detectors for Channels

1 and 2 - R. Koczor
Effect of Scan Mirror Power on Diffraction

Limited MTF - R. Annable
Visible In-Flight Calibration - R. Koczor
Orientation of the Visible Calibration D.R.T.

R. Koczor
Solar Channel Spectral Characteristics, Part 1

R. Koczor
Solar Channel Sensitivity - R. Koczor
The Absence of Coma in an Afocal Pair of Confocal,

Coaxial Parabolic Mirrors - R. Annable
Heating of the Radiator Window for Contamination

Protection - R. Annable
AVHRR Test Collimator Design - R. Koczor
The Effect of Collimator Aberrations on the Diffraction

Limited MTF - R. Annable
Worst Case Honeycomb Temperature Gradient in the

In-Flight Thermal Calibration Target - R. Annable
Cool Down and Decontamination Times for the

Radiant Cooler - R. Annable
Scanner Jitter, Linearity, and Alignment Tests -

R. Koczor
Optimization of IFOV Size and Shape, Pre-Sampling

Filter, and Sample Rate R. Foote
Thermal Math Model Analysis - Crawford/Wright
Thermal Math Model Analysis, OFF Instrument -

Crawford/Wright
Measurement of Low Emissivity - R. Koczor



f

0 DIR # Subject

25. AVHRR Scan Motor Lubricant Evaluation and
Selection - J. Stark

26. AVHRR TM Calibration - N. Franklin
27. MSM Vibration Test - J. Stark
28. BBM Acceptance Test Results - Owens/Koczor
29. Completion of Thermal Math Model - J. Crawford
30. MSM Vibration #2 - J. Stark
31. Effect of Loss of Radiant Cooler Temperature

Regulation - R. Harber
32. Worst Case Analysis - L. Roffelsen
33. AVHRR MSM Vibration #3 - J. Stark
34. Spectral Response Measurements on AVHRR ETM -

R. Harber
35. Pinning of Critical Parts - C. Soest
36. Cooler Door Momentum - C. Soest
37. Scattered Light Test Results of AVHRR BBM -

R. Koczor
38. Final Thermal Model Analysis - J. Crawford
40. LTM Final Report - C. Soest
42. AVHRR Data Amplifier Signal Droop - H. Kalina
43. Channel 4 Coherent Noise in AVHRR PFM - R. Foote

J


