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BONDED ORTHOTROPIC STRIPS WITH CRACKS

by

F. Delale and F. Erdogan
Lehigh University, Bethlehem, Pa.

ABSTRACT

In this paper the elastostatic problem for a nonhomogene-

ous plane which consists of two sets of periodically arranged

dissimilar orthotropic strips is considered. 	 It is assumed

that the plane contains a series of collinear cracks perpendi-

cular to the interfaces and is loaded in tension away from and

perpendicular to the cracks. First the problem of cracks fully

imbedded into the homogeneous strips is considered. Then the

singular behavior of the stresses for two special crack geome-

tries is studied in some detail. The first is the case of a

broken laminate in which the crack tips touch the interfaces.

The second is the case of cracks crossing the interfaces. An

interesting result found from the analysis of the latter which

may have an important bearing on a possible deIamination frac-

ture initiation at stress-free boundaries in bonded orthotropic

materials is that for certain orthotropic material combinations

the stress state at the point of intersection of a crack and an

interface may be bounded whereas in isotropic materials at this

point stresses are always singular. A number of numerical

examples are worked out in order to separate the primary mater-

ial parameters influencing the stress intensity factors and the

powers of stress singularity, and to determine the trends regard-

ing the influence of the secondary parameters. Finally, some

numerical results are given for the stress intensity factors in

certain basic crack geometries and for typical material combina-

tions.

This work was supported by NASA--Langley under the Grant NOR-39--
007-011 and by the National Science Foundation under the Grant
ENG77-19127.	 I



I.	 INTRODUCTION

In considering the failure ` a given structural component

if the corresponding material is homogeneous and isotropic in

its strength and thermomechanical properties, the related frac-

ture process is relatively well-understood and the techniques

dealing with such problems are sufficiently well-developed.

This is particularly true in the absence of large scale plastic

deformations around the dominant flaw from which the fracture

failure would develop. On the other hand in composites, parti-

cularly in fiber-reinforced laminates, the situation is much

more complicated not only because of the nonhomogeneity and

anisotropy of the material which make it very difficult to ana-

lyze the problem, but also because of the highly nonhomogeneous

and nonisotropic distribution of the strength parameter making

the development and the application of a proper fracture cri-

terion also very difficult. In such materials it is quite

possible that the concept of the progressive growth of a domi-

nant crack with a well--defined leading edge is not an appro-

priate model for the characterization of gross fracture beha-

vior. Very often the damage zone developing around the dominant

flaw is somewhat irregular and diffused and the fracture process

is generally governed by a principle of "weakest link", the

local fracture propagation being progressive or in discrete

steps. Nonetheless, whatever the gross mechanism governing the

process of fracture failure in the structure, one may nearly

always assume that locally fracture initiation and propagation

will take place along the leading edges of the existing flaws

where the conditions ort the relevant fracture criterion are

satisfied. Thus, in order to treat the local fracture pheno-

menon in composite materials quantitatively, one may need the

solution of the mechanics problem for flaws or cracks located

at or near the phase boundaries or bimaterial interfaces.

For composites which consist of bonded isotropic materials

a wide variety of crack problems have been solved in which
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either the asymptotic behavior of the stress state around the

points of geometric singularity or the results for a specific

crack geometry have been discussed (see, for example, El] and

C?_] for review and references). Compared to the isotropic

materials, the crack problems for homogeneous or nonhomogeneous

anisotropic materials remain to be relatively unexplored. Most

of the existing solutions refer to infinite planes [3-7]. The

crack problem for an orthotropic strip is considered in [8] and

that bonded to two orthotropic half planes is discussed in E9].

The details of the problem for a finite crack located in the

neighborhood of or intersecting a bimaterial interface in

bonded anisotropic materials do not seem to have been investi-

gated. Even though the problem is rather complicated mostly

because of the large number of independent constants entering

the analysis, it may be managable under certain simplifying

assumptions. The main assumptions made in this paper are (a)

both materials are orthotropic, (b) the nonhomogeneous medium

consists of two sets of periodically arranged dissimilar strips
having different thicknesses, and (c) the cracks in the strips
are collinear, perpendicular to the interfaces, and also periodi-
cally arranged (Figure 1). Thus, one can take advantage of the

symmetry of the medium and formulatethe problem for two bonded

strips only. The corresponding problem for isotropic Iayers

or strips were considered in [10] and Ell]. In [12] the effect

of the thickness and the elastic properties of the adhesive

layer on the stress intensity factors in bonded dissimilar iso-

tropic strips was considered.

2.	 GENERAL FORMULATION OF THE PROBLEM

Consider the plane problem for an orthotropic medium.
Referring to, for example, [13] if u and v are the x and y com-

ponents of the displacement: vector, the equations of equili-

brium may be expressed as follows:
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aLu vu	 k! _v0
l ax ,	 ayZ	

3 ax8y
 =

aLv  	 ac v + ^ awu = 0 ,	
(la3b)

8x-	 2ay2	
3ax0y

where

51:0.
 12v21)G12	 2	 l 22 11	 3	 1 2i

for generalized plane stress, and

	

0 1 = bll/G12	
02 ` b 22tG 12	 53 = 1 + bl21G12	 (3)

for plane strain. Here, E ij , V ij , and GiP (1 j ) = (1:2,3),
are the engineering elastic constants, indexes (1,2,3) refer

to the x,y,z) directions, and the matrix (b ii ) is given by

( b i a) = 8 = A wl	 , A = ( a i j )	 , ti , j ) - (1 ,2,3)

a ii - l/E i .i 	: ai.7 = _v ii /E7i - aji	 ^i .7}	 -	 (4)

The stress-displacement relations are

	

aka	 av	 au	 av
a
xx = b llax	 b 12ay	 ^yy = b 1 2ax	 b22gy

au	 au^xy = Cxy(ay ax)

for plane strain, and

2-u = !Y_X 	 !AL	 ^_V = _!XX_	 + !YLax	 xx	 xx	 yy	 yy

ry + ax = e xy/Cxy	 (fi)

for generalized plane stress.

Consider now the periodically arranged two sets of bonded

orthotropic strips shown in f= igure 1. In addition to the geo-

metric symmetry indicated in the figure, it will be assumed

(g)
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that the medium is loaded away from the crack region, paraIIel

to the strips, and symmetrical with respect to the x-axis,

I:
Thus, the solution of the problem may be obtained by the stan-

dard superposition technique, from the viewpoint of fracture the

important component being the perturbation solution i n which the

crack surface tractions are the only external loads. One may

note that because of symmetry it is sufficient to consider the

problem for one quarter of each strip only. Let (x I ,y) and
(x2,y) be the local axes for the sets of strips I and 2 as

shown in Figure 1. Let the displacements be expressed in terms

of the following Fourier integrals:co

u  ( x j > y )	 7r f o f j (a,Y cos ya da +	 ogj (a,Y) s in x j a da

cov^ (xJ,y)	 if . m^ (a,xJ ) sin ya da + 2 f n j (a,y) cos x
j
a da

	o 	 J q

(7a,b)
where j - 1, and j = 2 refer to the strips 1 and 2, respectively.
Sub.st.ituting from (7) into (1) one obtains a system of ordinary

differential equations for the unknown functions f^,— ,n i , which
are coupled in pairs. Solving these equations we find

fj(a,xj)	 S 
R•k(a)e s k ax?

J	 m-(a,x•)	 r
k=l 

E 
c 

A	 sikaxj

k=1 j k j k ^a)e

g • ( a , y )	 EB (a)es	
i

i 
kaY/!3j 5	

n (a-Y)l jk 

Ed jk B jk(a)eS ik
UY/0 js	

, (, =1,z) (^)
1

	

In ( B ) si k s ( j= l ,2	 k=l , .. ,4) are the roots of the following
characteri stic equati o n;

i
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S4 + 6 j4 s 2 + ^J 5 = a	 sag - ` s a 1 	sj4 = -sa2

5a4 = (R 3- ^a1aa2-1)/sa l 	 0 5 = ^a2/^j1	 - 1,2,(9)

The functions Ajk and Bak	 (j=1 1 2	 k=1,..,4) are unknown,
and the constants cjk and dak are given by

cj1 - -j3	 (1-^jlsjl)/Bagsjl

ca t - - cj4 = (1-ails22) /Rj3sj2

djl - - dj3 - (s j1 -$jl 5}/5a3saIaa5

dal = - d a4 = ( S 
2- a^ 53 5 ) /sa 3 s a 2 0 	 (10)

The unknown functions Aa k and Bak which appear in (8) are
determined from the boundary and the continuity conditions of

the problem. In addition to the assumed nature of symmetry in

loading and geometry, it should be emphasized that in the per-

turbation problem under consideration the only external loads

are the local self-equilibrating crack surface tractions.

Consequently, both components of the displacement vector would

vanish for	 and the x-component of the displacement, ua

(j=1,2) would be zero along the axis of symmetry xj = 0 ,
( j = 1,2). Thus, the sixteen conditions which have to be used

to determine the unknown functions Aa k and Ba k (j=1,2; k=1,..,4)
may be stated as follows:

ual Xa,VT? .0	 , va(Xj	 (J= 1, 2) for y-}^ ,	 (17)

u l ( hl Y) = u2(-h2sY.)	 vl (h l ,y) = v2(-h2=Y)

o<y<CO	 a	 (12)

a 1xx (h 1'Y) - a2xx(-h2'Y)
	

°ylxy(hr Y)

a2xy(`h2,Y)
	 , 0<y<- ,(13)
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u (a,Y) = 0	 Cr	 (0 Y) = 0	 o<y<- , (^ = 1 ,2)	 (1.4)

aixy ( xi , o) = 0	 x jxj ( <hj	 ( j =1 2)	 (15)

Cr(xl.10) = p l ( x l	 xl f <a	 a

v l (x 1 ,0) = 0	 a<lxll<hl	 (16a,b)	 a

Cr
(X
	

p2(x2)	 c<lx2l<d
	 ~

v 2 (x 25 0) = 0	 0<Ix21<c	 d<1x21<h2	 (17a,b)

In	 (9)	 it may arbitrarily be assumed that

Re(sjl )>0	 ,	 Re(s j2 ) >0 	,	 (j = 1,2) (18)

From	 (7),	 (8),	 (11)	 and	 (I8)	 it therefore	 follows	 that

Bjl (a)	 =	 0	 ,	 B j2 (a)	 =	 0	 ,	 ( j= 1 : 2 ) (19)

Ten of the remaining twelve unknown functions may be eliminated

by using the	 homogeneous	 conditions	 (12-15)	 in	 (8),	 (7) and	 (6).

The Iast two unknown functions are then determined from the

mixed boundary conditions (16) and	 (17).	 The problem may be

reduced to a pair of integral 	 equations	 by defining

ax	 vj 
(xj 90) 	 _	 ^ j ( xj }	 s	 0<1 xj I < h j	 ,	 (j=1,2)	 , (20)

0
and by replacing	 the conditions	 (16)	 and	 (I7)	 by	 (20). Thus

all	 the unknown functions AJ k and Bjk may easily be expressed

.in terms of the new unknown functions	 and 0 2 .	 We now observe

that part of the mixed conditions,	 namely	 (16b)	 and	 (17b) is
equivalent to

a

l _(xl }	 _	 0	 a< (x l (<h l	 O, ( x l ) dx I 	=	 0	 , (21)
-a	

d

2 (x2 )	 = p	 0<Ix21<c	 d<lx2l<h2 fc2(x2)dx2 = 0.(22)

Through.equations (8), (7), and (6), substituting the results

into the conditions (16a) and (16b) we obtain two integral

7
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equations to determine 0 1 and ^2.

Because of the large number of elastic constants and un-

known functions the process of deriving the integral equations

is rather complicated and lengthy. however, the technique is

t;
straightforward and is quite similar to that followed in [10]

and fllj. Therefore, the details of the derivations will not

}	 be given in this paper. As in [10], it can be shown that the

integral equations are singular and may be expressed as follows:

f^ ( t -x l + t+X l ) k kll ( x l , t ) - kll (xi -t)]^ 1 (f dt

L1

+ f 'l 2 (x l 't) - ' 12 ( x 1 , - t)1 2 (t)dt	 Ppl(xl)

L2

x  eL1

Ck2l ( x2 ,t) - kzl (x2 ,-t)] f l (t)dt + f 	 l + 
t^-x2)

^	 L2

+ k22 ( x2' t ) - k22 ( x 2 , - t)1^ 2 (t)dt = LZp2(x2)

x2 eL2 ,	 (23a,b)

where L1 and L2 refer to the cracks on (y =0 , O<x 1 <h 1 ) and

(Y=o , O<x2<h Z ) in the strips 1 and 2, respectively, and

Il l = 2E
lYYY l41(l -v l xyvlyx)	 u2 = 2E2

YY Y14/ (1-v 2xyv2yx ) .

(24)

In deriving the integral equations one needs to define in a

systematic fashion a large number of elastic constants and

intermediate functions. Therefore, in order to conserve space

the definitions leading to the expressions of the kernels
k i j , (i , j=1 ,2) , and the constantsY

14
 and y 4 , and to the

relationships between the functions A jk , B jk and ^i will also

8
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be omitted in this paper y . ) . These definitions and the details

of certain derivations may be found in [14] for the group of

orth q tropic materials which would give a characteristic equa-

tion having only real roots s j k, (j =1 1 2;	 (defined
henceforth as the orthotropic materials of type I), and in

[15] for materials which would give a characteristic equation

with only complex conjugate roots (defined, as the orthotropic

materials of type 11) (**).

The kernels k ij which appear in (23) are of the following

form:

kij (x; ' t ) _	 K ij 
(x i litaa) da	 (i ,j=1 ,2)	 (25)

Examining the behavior of K ij for a-0 it can be shown that

Kij = a + on

where c ij are known constants.

divergent kernels, by writing

kij (x i ,t)^j (t)dt = f ^jdt

3	 L 

+I
L•

^jdt

and by using single-value Ness

s

f^j (t)dt = 0 s ( j=1 2 )	 (28)

it is l en that the singularity at a = 0 may easily be removed.

Also, by examining the behavior of the integrands Kij , (i,j=1,2)

for a-1- it can be shown that they decay exponentially provided

the series of collinear cracks L i 0 = 1,2} are fully imbedded in

Note that the constant Y 14 is the same as the constants m14
and r	 defined in [81 (eqs. 16 and 19) and the constants
definIA in (24) correspond to 41a/(l+K) for the isotropic materials.
(**) In practice, since ^- in the characteristic equation (9)
appears to be always a n g^ative quantity, the third type of mater-
ial giving four pure 'imaginary roots is not a realistic one.

(26)

Even -though this may imply

C	 c
( Kij - « )da
0

w1c..

	

-11d a	 (i x,7-1 ^2}	 (27)

conditions (see (21),(22))

9
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the homogeneous strips (i.e., they do not touch or intersect

the bimaterial interfaces). Thus, in solving the integral

equations (23), ki3 may be treated as Fredholm kernels. In
this problem since the kernels of the integral equations have

r	 only a Cauchy type singularity, the functions ^i would have a
Ofsquare root singularity at the end points Li and the equations

may easily be solved by normalizing the intervals and by using

the technique described, for example, in [16]. After solving

the integral equations, the stress intensity factors may be

obtained in terms of the functions ^1. For example, let Fig-
ure 1 describe the crack geometry, i.e., let L l =(O,a), L2=
(e,d); then, the stress intensity factors may be defined

and obtained as follows [81:

k(a) = lim /F (_t_-a7 alyy(t,0) = -lim ul 2 a-t 01(t)

	

t-}a	 t-3-a

	k(c) = lim	 c-t a 2yy (t,O) = Iim u2 2 tWc ^2(t)

	

tsc	 t-^ c

k(d) = lim 2 t-d a2
yy 

(t,0) = -lim uz 2 d-t ^2(t)

	

t--rd	 tad
(29a-c)

3. CRACK TOUCHING THE INTERFACE

Two limiting cases of the problem discussed in the pre-

vious section are physically important and mathematically in-

teresting. These are the cases of a broken laminate corre-

sponding to a crack touching the interface (e.g., a=h l , d<h2,
Figure 1), and a crack intersecting the interface (e.g., a=hl,

d = h 2 , O<c<h 2 , Figure 1). For example, referring to Figure 1,
let a =hl and d<h2. In this case -it  may be shown that as
and for -hl<(xl,t)<hl, c<(jx 2 j,jtj)<d the integrands K12 , K21,

and K22 in (25) decay exponentially. Therefore, the kernels
k121 k21, and k22 are bounded in their respective closed do-
mains. On the other hand for x l a-h l , t-}h l the exponential
decay in Kll(xl,t, ) disappears, indicating that kll(xl,t)

may contain terms which become singular as xl and t appr.sch

10



k 11 (x l' t)	 k,Is (XI 13t) + k ilf (X I ,t)

the end point Ill simultaneousl y . These singular terms can be

separated by studying the asymptotic behavior of the integrals
given by (25) (see [16] for the technique and [101, [14], [17(

and [18] for the application). To give an idea about the na-

ture of these additional singular kernels let

where k11s represents the singular terms and k 11f is bounded

in the related closed domain. Let the material be of type I

with the real roots (see equation 9) P

s l1 - w1>0	 s12 - w2>{:	
s1	 - -wl	 s14 = -w	 a

31	 i

Then the asymptotic analysis of (25) would giver

O31-t)815/wl+hlwl.

	

1TI. 11s (xl' t) _ X35 C(h1-t)s15/w1+ hlwl 3 2
-

(w 1 x 1 )^	 .

( h l -t)151w1+w2h1.
t 

86 
	 I

	

[(hl-t}515,wl+hlw212-(w20x1 )'ry 	 F

( h l -t) b15f w 2 +h l wl

l87 Uh --t)	 /w +11 w 1i--(w x ) `	 t r
1	 15	 2	 1 1	 1 1

f

( X1 1 -t) 615^w2+111 cat 	
t, `

,88 [011-t)^15/w2+hlw2];—Cw2^1)`,
n

g < (xl,t) c h 1	 (32)	 '.
f' 3

where X85 ,... X 	 known constants an.d depend on the elas-
	 ;.,	 q

,i

tic properties of the materials only [14]. 	 -.

i -
11

i
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Together with 1/(t-xl), klls gives a generalized Cauchy
kernel. Substituting from (30) into (23) and adopting the

crack geometry shown in Figure 1 (with a = hl), the dominant
part of (23) may be expressed as

I
 fhl

	

[ t XI + Trkl7s(xI a t )]^ I (t)dt = P I ( x l )	 hI<xI<hI

-hl

1f d 	 1
^r J	 t-x2 ^2t	 )dt = P 2 1,x2 )	 c<x2<d	 (33a,b)

c

where the bounded functions P l and P 2 contain aII the non-
singular terms in (23). 	 It is clear that the solution of

(33b) is of the form

0 2 ( t ) = F2(t)1(t..c)(d-t)]-1/2	 ,	 c<t<d	 (34)

giving the stress intensity factors as defined in (29). The

singular behavior of the soIut,on of (33a) may be studied by

letting

^ l ( t ) = F I (t)/(h2 ~t 2 ) Y 	
a	 G<Re (Y) < l 	 hl<t<hl	 (35)

and by using the function-theoretic method described in, for

example, [16]. Thus, if we define the following sectionally

holomorphic function

G(z) _ ^ hl 0
1 (z) dt
	 (xI = Re(z) )	 ^	 (36)

f 	-

-h7

by using (35) the asymptotic analysis of (36) gives

G(z) - Fl (-hl )ei7ry 	 I	 y	 FI ( h l )	
l	

(z)+ G
(2h I ) Y sin^ry (z+h l ) Y 	(2h I ) Y sin7ry (z - hl )Y 	°

C

I G ° Wk	 °	 ! yo.-'-Re(Y)	 (37a,b)
z+hl I Yo

12



where C o and y o are real

(37) and (32) into (33a),

tic equation to determine
Wz-2Y

-2cos7Ty + X85 1	 +

a1 5Y

constants. Now, substituting from

we obtain the following characteris-

the unknown constant y:

(01-Y 	 wI-Y

86W
20I5Y	^87W1SIbY

^I-2Y
+	 2	 = 8	 if

8801-Y
15

where, again the material type I is assumed. It can be shown

that for all material combinations (38) may have only one root

in the strip O<Re(y)<I and this root is always real. It can

also be shown that as the orthotropic material constants -tend

to -those for a pair of isotropic materials, the root 7 obtained

from (38) approaches the root of the corresponding isotropic

characteristic equation given, for example, in [IO] or [I8].

For this crack geometry the "stress intensity factor" may

be defined in terms of the cleavage stress a 2yy in the neigh-

boring material which, from the fracture viewpoint, is the

most important stress component. To calculate this we note
that (23b) gives the expression for a 2yy (x 2 ,O) for -h2<x2<h2,

that is in the uncracked as well as in the cracked portion

of the strip. We also note that in the neighborhood of jx2l=h2

the singular behavior of o 2yy will be governed by the density

function ^1 and the singular part of the kernel k 21 . As in K,l,

it may be shown that for a-}-, t-)- h l , x 2-^-h
23

 the exponential decay
in K2 , disappears, indicating that k 27 (x 2 ,t) may contain terms

which become singular as x 2 and t go to the end point simuI-

taneously. If we again let

k 2l (x 2 ,t) - k21s(x2lt) + k 2lf (x 2- t) ' (39)

the singular part of the kernel may be separated and may be

expressed as

13



7rk21s(?^2't)	 X141 [(h - t )5/w +a	 ^{a x2
1	 i5	 1 	 1 1 2,12	 1

( h l -tt) 5 1 /wl ^-a2.h2

+ ^i42[(hl-t )515 /wl+a2h2]2_(a2x2.)z

1- t)^15/w2+ai h2
X143[ (

h l _t)015/w2+al h2l2„(alx2)71

(hl--t)515/w2"2h2 a144[ 
(hl 

_t) X
1
0 2la2h2 ^a _ ( a2x 2 ) z

0<It1:h i 	, o< jx2j<
h2 	 (40)

where al and a2 are the positive roots s 21 and s 22 of the

characteristic equation (9) expressed for the strip 2 and the

constants A are defined in [14]. Thus,for the purpose of ana-

lyzing the singularity 62YY may be expressed as

	

a2YY rx2 ' 0) 
^ P2hik21s(x22t)ol(t)dt + 

p 20 ( x 2 )	 (41)
fJ_h

i
where p20 contains all the nonsingular terms. Upon substitut-

ing from (35) and (40) into (41), the asymptotic analysis gives

ff 2YY (x2' 0) -	
Cr

k(hl)
	+	 (x)
	 (42)

2Y(x2+h2)Y	 o 2

where a, (x 2 ) remains bounded as x 2-+--h 2 and the "stress intensity

factor" k(h l ) is round to be

14



^i

1-11,^..! J

k(h I ) = .0*l 
im 2Y(h1 ^-t ) y^ 1 (t)
+hI

P2	 11 2
° ^ n ^^101a1Y(w ] 5 )I-Y +- A l 02a2Y(SI5)I^Y7

+ 
X 1 O3"	 1Y( W 5 ) I -Y + a

104 a2Y ( sI 5 ) 1 ^Y^	
`43 )

4. CRACK CROSSING THE INTERFACE

Consider now the case of a crack crossing the interface.

In this problem the integral equations (23) are still valid

with the two end points of the cuts L I and L 2 joining at the

interface. For example, referring to Figure 1, let a = hI,

d	 h 2 , and c>O. In this case at the end point x  = h I or

x2	 h
2 all four kernels k

ij 
( x i ,t) will have singular terms.

The singular parts kI I s and k 2I s coming from k 11 and 
k21 

are

separated and are given by (32) and (40). Quite similar

expressions may easily be obtained for k12s and k 22 [14,15].

The dominant part of the system of singular integral equations

may then be expressed as

2 
f 

L_
[W !-x I k ijs ( xj 3 t )] j (t) dt - Ri(xi}

a	 a

L I	 (-h l ,h l )	 L2 = (c,h 2 )	 xicLi	 (i=1,2) (44)

where in the analysis the symmetry condition of 0 2 (x2 ) =

-0 2 (-x 2 } is used. If we now let
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F 1
 fit}

^2(t)
FZ(t)

(h 2 -t) O (t-c)6	
7

0<Re(5,S)<1	 (45a,b)

and define the following sectionally hoiomorphi. c functions

G 1 (z) = I 
hl

$( z ) dt 	 G2

	

(x) _fh 2_x dt	 {46a,b}
J

Th 1	c
The asymptotic expressions for G 1 and G2 i!ay be obtained as [16]

G 
(z) =	 1	

[ Fl (- h l ) e
i7rD

- F1 ( h l ) ] 
+ G	 (z)

l	 (2h1)5si n Trg	 (z+h1 } 0	 (z-hl )a	
10

F2(c)e
iTrS
	1	 F'2 (h2)	 l

(h 2 -c) S sinws (z-c) s 	(h 2 -c) 6 sin7rs (x-h2)R

+ G 2G (z)	 (47a,b)

where Gio (3 = 1,2) has a behavior similar to that of Go(z)

which is given by (37b). Noting that outside their respective

cuts G 1 and G2 are holomorphic, substituting from (47) into

(44), and following the procedure outlined, for example, in

[16] (see, also [14] for details) we obtain

F 2 (c)co+7r6 = o	 (48)

2
Ef i j (6)F^ ( h j ) = a	 (i =1 2)	 (49)

where the coefficients in the functions 
f i3
W depend on the

elastic constants of the two strips only and are given in [14].

Since F 2 (c} and Fi (h-)	 (j=1,2) are nonzero constants, (48)



t	 ^	 n

gives the known result S = 1/2 and from (49) we obtain the

following characteristic equation to determine the power of

singularity 5:

'&W = IfulLIGA = 0	 (i,i = 1,2) , 0<Re (5)< 1 	(50)

It is also important to note that the end point values F1(hl)

and F 2 (h 2 ) are not independent and are related by
F 2 (h 2 ) = - F l (h l )f l l (R) lf l2 (a)	 (511

where 5 is the root of (50). An additional condition such as

(51) is necessary to obtain a unique solution for the system

of integral equations (23), since in this case there is only

one single-valuedness condition which has to be satisfied by

the displacement derivatives ^1 and ^ 2 , namely

E
h2

yt)dt. + { 1 (t)dt + j ^ 2 (t)dt = 0	 (52)
J	 J
c	 -hl	 -h2
A systematic study of (50) indicates that for all material

combinations the characteristic equations may have either no

root or only a single real root in the strip O<Re(0)<l. Also,

5 = 0 is always a root and there are no other roots with Re(5)

0. In the fcregoing analysis only the possibility of a power

singularity is investigated. The results show that for certain

material combinations (50) indeed has no root in 0<Re(^)<l,

implying that for these materials at the intersection of the

crack and the interface the stress state would be bounded.

However, this analysis dons not prove that in such cases there

may not be a weaker, namely a logarithmic singularity. To

17
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invest .i gate this question in (4.5.) we lei; 5 = 0 and substitute

the result into (46). We would then obtain the following

asymptotic relations:

F (h }	 F (.-h )

G 1 
(z) _	

Tr1 
1og( z - h l ) - l 

Tr 
1 log( z+h l ) + G11 (z)

(z)

.F2(c.)e77r8	
1.	

F.2.(.h2).

	

=	 g(G 2 	 sin^rS	
^z-c)d + 

^(h2-c)S10 z-h2

+ G 21 (z)	 9	 (53)

where G11 and G21 are bounded near and at the end points

z = ±h j and G21 has a behavior similar to ( 37b) in the neigh-

borhood of z = c. Substituting now from (53) into the integral

equations (44) we obtain

F 2 (c)cotTd = D	 (54)

1 og(h i - x i )Egi j F j (h j ) = R  ( x i )	 0=112)	 (55)
1

where R1 and R2 are bounded functions and the constants gij

(i,j =1,2) depend on the elastic constants only. Equation (54)

again gives the known result S = 1/2. For ( 55) to be valid

at x i = hi , (i = 1,2) the coefficient of singular terms must

vanish, or we must have

1 g i j Fj(hj)	 Q	 (i=1,2)	 (56)

	

Since F  ( h j )	 , (j=1,2) are nonzero constants, from (56) it
follows that

18



y	 f t

g ^J i	
0	 (57)

To show (57) analytically seems to be . impossible. However, a

systematic ` .nomerical analysis indicates that for the material

combinations having - 0 as the only acceptable power singu-

larity (57) is indeed satisfied identically. Furthermore,

these studies also show that (56.) always gives.

^l (h l )	 ^l (hl) 	 -1	 ( 5 8)
T	 ^`	 - j

}	 The result expressed by (58) moaning that in the composite

medium the derivative of the crack surface displacement is con-

1	 tinpous at the interface is, of course, the physically expected

result.
For the pair o f material s i n whic h (50) has a root in

0<0<I, at the point (y = 0, xT = h l or x 2 =-h 2 ) the stress state

will be singular.  At tM s point, since the important stress

components are the normal and shear stresses on the interface,

we may directly analyze the singular behavior of these stresses.

To do this one has to go back to the original formulation of the

problem and express these stresses in terms of the density

",':unctions . I and 2 . Thus, after somewhat lengthy but straight-

forward analysis we find CI4,I51

l^ 
^1Xi(hI,Y)	

1 E
	 hi .(Y's)^•(s)ds	 , (i=x,y)	 zl	 ^ lf
L^ j

L 	
(-hl ,h l )	 L2	 (c, h 2 )	 (59)

79
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Studying the asymptotic behavior of the kernels 	 h i .	 it can be

shown that as y-^0,	 s-^fh^	 ins-•h l ^s^h l z	 and	 s-^h z 	i n .c<s<h 2 	s-imul -

taneous ly the kerne'is	 become unbounded.	 Sy expressipg
j

h^	 (y,s} h	 3f (J', $ )	 +	 h ijs ( y , $ )	 , y

the singular parts h i p s	 sof these kernel	 can again be separated.

For example, for h xl
g(y ,$) we obtain

JJ.

(h^+s )Y 1 j2	 (hI-s)YI /2 }^

Yl	 XIS
(hl +s.)	 +(w I Y/R15 .)	 (hl-s.)	 (	 lY/015)

F .

iprp

(h l
	 Y	 /2Y	 (h	 -s)Y Y	 /2y

I	 2	 11	 1 2 	 I	 2	 l l	 l2
:..

}
-	

15( h l +S)	 22+(m y /i3	 ) 2	 (h	 s ) 2+ (^ Y/^	 ^^
 '^-	 2	 75

Y3X81+Y4a$2	 (h l - s} 5 /m I p
+

x` 80 	 [(hl-s)i3I5/wl.a2 +y2
f:

Y3^` 83+Y 4 X 84	 (h l 1 - 	(60)
!

X 80	 1 ( h i -5)0 5/w2 12
+y

2
.

where the definition of the material 	 constants y and X as well

as the expressions for the remaining functions h x2s , hyl s, and

hy2s may be found in [14] and [15].

If the materials are such that the stress state at

(y=0, x l =h l ) is singular, i.e., 0<5<1, then one can again de-

fine ^i and C i , (i=1,2) as in (45) and (46) and obtain (47).

Now observing that outside the cuts L l and L 2 , specifically

along the y-axis G 1 and C 2 are holomorphic, one can use (47)

20
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to ey aluat e the singular terms in	 (59)	 (see,	 for example

11.6-183.).0	 It	 can then	 be shown that

i`xx
cr	 (h	 Y)	 cr	 (Y)	 3	 (Y % 0 )	 ^!xx

k^

alxy(h1 :Y) _ ^ + T o (y )	 Y>Q (61 a, b)

Y

where the "stress intensity factors" may be expressed in terms

of the density functions as 	 follows:

kxx	 IIxx lim	 ( h l	t)	 ^J (t)

t+h 1 i
k xy _	 x	 L	 (hl-t)R^J (t)

4

lim (62a,b)
- _i- h F

k
i^

The constants. xx and	 are known functions of thexY
elasti c

constants	 and may be found in	 [14]	 and	 [151.

For the material	 combinations	 in which ^l	 and ^ 2 have t,

no	 singularity at x l 	=	 h l ,	 x 2 =	 _h 2 ,	 (i.e.,	 if	 0 is the

only acceptable root of (50)), 	 since the kernels	 h id have

singular pa r ts of the form (60), from (59)	 it is	 not at all

obvious thatthe stresses too would be bounded at the point

(Y= O,	 x 1 = h l ).	 This	 question can be examined by stustituting

from (45)	 with	 0,	 a =	 1/2	 into	 (59)	 and by going through

a routine asymptotic analysis, which yields

alxx(hl , y )	 =	 F l ( h l) 8x ,1 o g y + 0(Y)
}

'71xy(hl jy)	 =	 0 (Y) (63a,b)
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where C(y) and D(y.) are bounded functions. It turns out that

in all material combinations for which 	 = 0, the constant

E)XX is ideni;ically zero; therefore, the stresses are bounded.

Considering the fact that in isotropic materials the

stress state at the intersection of an interface and a crack

is always singular (i.e., 0>0), from the viewpoint of delamina-

tion or debonding fracture the practical importance of the pos-

sibility of having bounded stresses at such locations in design-

ing with certain orthotropic materials needs no elaboration.

6.	 NUMERICAL SOLUTION

In this paper the numerical results are obtained for

several specific types of crack geometries	 In the first

group of solutions it is assumed that the cracks are fully

imbedded in homogeneous strips and (see Figure 1)

a<h l , c= 0	 d= b<h 2 .	 (64)

The single crack, a = 0, b ^ 0 or a ^ 0 b = 0 is considered

as a special case. In this problem the integral equations (23)

are solved by using the Gauss-Chebyshev integration method [16]
1	 ,

with L I = (-a,a)	 L2 = (b,b) and under the single--valuedness.

conditions (28). The stress intensity factors are then obtained

from (29a.) and (29c) with d = b.

In the second group of solutions it is assumed that a = hl

and O-^b<h 2 . In this case the Gauss-Jacobi integration method

is used to solve the integral equations. The details of the

22
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numerical method may be found in 116,4 or 18]. After obtain-

ing the density functions the stress intensity factors are

calculated from (29c) (with d=b) and (43).

In the third group of solutions it is assumed that the	 F

crack crosses the interface, that is, a = h 1 , d = h 2 , o<c<h 2 	3

t(Figure 1). In this case for P0, the integral equations (23) 	 3
are solved by substituting from (45) and by using the Gauss-

:.

Jacobi integration method. Here the additional conditions are

(51) and (52). After obtaining fl and ^2 the stress intensity

factors are determined fro m (29b) and (62) (see again [16],

[14] or 1181 for numerical procedure).
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6, RESULTS

The elastic properties of the materials used in the nu-
merical examples are shown in Table 1. materials 3, 4, and 6

are basically isotropic and the remaining materials are ortho-

tropic. For the materials 1 through S the roots of the charac-

teristic equation (9) are real, meaning that they are of type

F. Materials 9 and 10 are of type Ii for which (9) has complex

conjugate roots. The numerical results given in this paper are

all for the case of plane stress. Table 2 shows the material

combinations used in the numerical analysis. The table also

shows the powers of singularity y and 5 at the point of inter-

section of the crack and the interface corresponding to a crack

terminating at the interface (a-h l , d<h 2 ), and that crossing the

interface ( a=h l , d-h2, c>Q) , respecti vEl y ( Figure 1 ) . Unlike
the isotropic materials, the characteristic equations (38) and

(60) giving y and s in bonded orthotropic materials are quite

complicated. They contain six independent material parameters

and hence do not lend. themselves to a relatively simple syste-
matic parametric study. However, once the material combination

is specified	 and B can be determined quite accurately.

Even though it is very difficult to separate the material

parameters which influence most of the values of ^ and y, and

the stress intensi. lCy factors for the imbedded cracks, the cal -

culations show that in this respect perhaps the most important

single material parameter is the longitudinal stiffness ratio

E 1 yy/E 2yy . In order to assess the effect of the remaining ma-

terial constants a rather large number of calculations were

done by fixing E lyy and E 2yy , by systematically varying one at

a time the remaining six constants, and by calculating y, 8,

and the stress intensity factor k(a), the latter for imbedded

cracks in material l only. The general trend is as follows:

As E lxx , 01xy, and v ixy (of the medium 1 containing the crack)

are increased, y and k(a) increase, and as E 2xx , G2 xy, v2xy

24
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Table 1 Elastic constants of the materials
used in numerical calculations*.

Exx/ 1	 Eyy/ Oxy/
No. 109N/mz 109N/m2 109N1m2 Vxy

(10 6 psi) (106psi) (106psi)

1(0) 55.16 170.65 4.83 0.036
(8.0) (24.75) (0.7)

2(0) 134.45
(19.5)

31.03
(4.5)

24.13
(3.5)

0.650

3(1) 154.77 155.83 59.68 0.300
(22.447) (22.6) (8.655)

4(I) 0.300
(24.3) (24.75) (9.05)

5(0) 10.07
(. 1.46)

31.03
(4.5)

0.833
(O.I28)

0.036

6(1) 30.34
(4.4)

31.03
(4.5)

10.83
(I.57)

0.400

7(0) 44.82
(6.5)

155.14
(22.5)

4.83
(0.7)

0.020

8(0) 34.48
(5.0)

6.895
0 .0)

3.45
(0.5)

0.350

9(0) 21.37
(3.1)

66.88
(9.7)

17.93
(2.6)

0.200

10(0) I7.24 17.24 6.895 0.760
(2.5) (2.5) (1.0)

i:;

N The materials are boron-epoxy and graphite-epoxy
with various ply orientations..
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Comb.
Materials Power of Sing. Elyy

E 2yy
81xy

G 2xyMed.1 Med.2 y ^

I 1 2 0.55048 0 5.50 0.20

II 3 2 0.65699 0.04248 5.02 2.48

III 4 2 0.65549 0.04887 5.50 2.58

IV 4 6 0.68914 0.14547 5.50 5.75

V 4 5 0.80352 0.05354 5.50 70.8

VI 7 8 0.74523 0.05197 22.5 1.40

VII 2 1 0.42258 0 0.182 5.00

VIII 2 3 0.36911 0.04248 0.199 0.403

IX 9 10 0.61554 0.08520 3.88 2.6

X 10 9 0.43410 0.08520 0.268 0.384
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are increased, y and k(a) decrease. Among these variables

the most significant factor influencing y and k(a) appears

to be the ratio of shear moduli G 1xy/G2 xy . This may partly

be observed also from Table 2 and Figure 2. The figure shows

the stress intensity factor k ( a) for imbedded cracks in ma-

terial l as a function of the width ratio h21h l for a fixed

relative crack length a/hl = 0 . 8 and for material combinations

I, III, IV, and V given in Table 2. For these material pairs

the stiffness ratio E-lyyjE 2yy is constant whereas Glxy/G2xy

is 0.2, 2.58, 5.75 and 70.8, respectively. It is seen that

k(a) is consistently higher in maternal pairs having the

greater Glxy/G2xy ratio. Figure 2 also shows that for h2-3--Q,
as expected, in all material combinations k(a) approaches the

periodic collinear crack solution in an infinite plane which

is the same for all homogeneous orthotropic as well as i so-

tropic materials.

A close examination of the results giving $, y, and k(a)

indicates that generally one could accomplish a certain relax-

ation in the stress singularity at the point of intersection

of a crack and an interface in composites by introducing ortho-

tropic materials. This may be seen, for example,,by comparing

the P values for various material combinations given in Table

2. In. fact for certain orthotropic material combinations it

is even possible to have 5 = 0, i.e., no singularity, whereas

in isotropic materials 5 is always positive, i.e., the stress

state is always singular. The value of ^ has, of course, an

important staring on the initiation of a possible delamination

fracture from the stress - free boundaries in bonded materials.

Even though the result regarding the possibility of 0 =0 may

appear to be somewhat paradoxial, considering the fact that

in two isotropic wedges forming a half plane 0 is dependent

on the wedge angles as well as the material constants and may

be zero for certain ranges of wedge angles, it should not be

completely unexpected. The possibility of reduction or com-

plete elimination of singularity power B by varying the

27



bonded materials.

In solving the integral equations it is assumed that the

composite medium is under a state of generalized plane stress
and is subjected to external loads away from and perpendicular
to the cracks. Thus the. c-rack surface tractions in the per-
turbation problem considered in. this paper are constant and are
at the following ratio:

p l (x)
	 rp l	 E1Yy

PT XT -p2 EZYy

The stress intensity factors obtained for the imbedded cracks
located in the first or second set of strips are given in Fig-
ures 3-7. Comparison of the results given in Figures 3 and 4
shows that for the same longitudinal stiffness ratio ElyyIE2yy
and the same material 2, k(a) calculated for an isotropic me-
dium I is consistently greater than that calculated for an ortho-
tropic material 1. This means that by introducing material

orthotropy it is possible to obtain certain relaxation in the

stress intensity factor. However, as seen from Figure 2, due
to the effect of the secondary material parameters the opposite

is also possible. In Figure 2 note that the combination IV
refers to an isotropic-isotropic material pair -- whereas III
and V are isotropic-orthotropic pairs giving stress intensity
factors which are respectively lower and higher than that of
IV. Corresponding results for the stress intensity factor k(b)

for cracks imbedded in the second medium are given in Figures
6 and 7. Materials in Figures 5 and 7 are of the type II and
those in Figures 2, 3, 4 and 6 are of type I. It should be ob-

served that as the thickness of the uncracked strips go to zero,

the stress intensity factor in the cracked strips approach that

of the periodic crack problem in the infinite homogeneous (iso-
tropic or orthotropic) medium.

(65)
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Figure 8 shows a sample result for a composite medium in

which both sets of strips contain cracks. Additional results

for two as well as one set of cracks may be found in [14] and

[15] .

The stress intensity factors for the case of a broken

laminate (i.e., for a = h l and c =d, or a=0 and d-h2, c =0) are
given in Figures 9-12. Figures 9 and 10 show the results for

material combinations I and II where all materials are of type

I and Figures 11 and 12 give an example for the material com-

bination IX where both materials are of type II. The figures

show that in all cases as the width of the uncracked strip

(i.e., the net ligament between the cracks) goes to zero, as

expected, the stress intensity factors become unbounded. In

these problems the stress intensity factor is defined by (42)

and is calculated from (43).

The results for a crack crossing the interface are given

in Figures 13-19. In these problems the stress intensity fac-

tor at the crack tip k(c)=k b is defined by and calculated from

(29b). For those material combinations in which s>O the stress

intensity factors at the point of intersection of the crack and

the interface kxx and kxy are defined by (61) and are calculated

from (62).	 For the material combinations II, IX and I used in

these examples, Table 2 shows that power of stress singularity

y for a crack in material I touching the interface is greater

than 1/2. Therefore, as the crack length 2Z approaches 2hl or

as c- .h2, the stress intensity factor kb at the crack tip calcu-
lated on the basis of 1/2 power becomes unbounded. Also, as the

length of the net ligament 2c goes to zero kb again becomes un-
bounded. These featares of the solution may be observed from

Figures 13, 16, and 19 giving the crack tip stress intensity

factor as a function c1h 2 . Figures 13 and 16 show kb for ma-

terial combinations II and IX in which 5>0. Figure 19 gives

an example for the case in which s-0. It may be noted that

quali tatively the results for the two cases are quite similar.
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The stress	 intensity factors k Xx and k Xy for material
combinations	 II	 and	 IX are	 given	 in	 Figures	 14,	 15,	 17,	 and

18.	 Note that in	 the limiting	 case of c=h 2 ,	 that is for the

case of the crack touching	 the interface,	 the power of the

stress singularity at the interface would be y which 	 is	 al-

ways greater than s.	 Therefore, as expected and as	 seen from

the figures,	 for c-}h2 the stress	 intensity factors calculated

on	 the basis of singularity power 5 become unbounded.	 In

these problems for the type of loading	 under consideration

the normal	 component k xx of the stress	 intensity factor seems

to	 be negative.	 Since	 there	 is no	 crack surface	 interference,

physically this means	 that normal	 stress	 along	 the interface

near the crack surface	 is	 compressive,	 there	 is	 no	 inconsis-

tency,and	 the	 singularity should 	 be	 interpreted in	 the same

way as	 in	 punch	 problems.
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Figure Z
	

Crack geometry for periodically arranged bonded
orthotropic strips
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Figure 2	 Stress intensity factor k(a)=k& for cracks imbedded
in strip 1 (0<a<hl, b=d=c) for material combinations	 -
I, III, IV and V. EY=ElYY' E*=E2yy, a/h1=0•8=
constant	 --'-
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Figure 6	 Stress in. te-nsity. factor kb =k(b) for cracks imbedded
in strip 2 (a=O,. c=O, d=b<h?) for material combin-
ation I ^ I '.l
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Figure 8	 Stress intensity factor k(a)=ka for the crack in
material 1 in a composite medium where both sets
of strips contain cracks. Material combination T,
width ratio hl/h2=4



Figure 9	 The stress intensity factor k(hl) = Ica for broken
laminates 1 in material combinations I and II
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Figure 11 Same as Figure 9, material combination TX
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Figure 15 Shear component kxy of the stress intensity factor

at the intersection of the cracks and the inter-- 
faces in material	 combination II
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Figure 16 Same as Figure 13 in mate ria l combination IX

►^^^^.^=aaawaca.^.^: <+^.+3ia€^rtakt^.1^6^M;r^xr. ^- 	 ,,.kA^...,,..._ ._ _:...^ . .. --	 _ -	 -- ---	 ^`----•	 -	 --:_-----,



-. 'ci+....,5.^rr.^.,...^,.,:^;....P-..n.. r„n ..r -..e.... .. F..•,Tn^ew^.a.,+.,•F++o.r«..,...-..n^,^,-...w..^a m^-mrs_r:•s.+^a.*v^ ^11R1^?t^rP•̂!".'^,°^"'S^'
'r:^^a _y,d+ ^`_-.-̂c,̂ ,F1^;'°T'4'i^K'T'+a'±5'1P',4uTa";fR`"^'.Q"S?"^c.°,3^`r°.'n'n'^":

MNIm moo





12 kb/pz

10— =.

h l h2=4.0 p, p

21
r

s
h 2 hi h21

s
hlh =10-

4
w

- r

1.0 0.8 0.6 0.4	 0.2 c 1 h	 0.^

Figure 19	 Same as	 Figure 13 in material	 combination	 I
where a=0


