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BONDED ORTHOTROPIC STRIPS WITH CRACKS*

by

F. Delale and F. Erdogan
Lehigh University, Bethlehem, Pa.

ABSTRACT

In this paper the elastostatic problem for a nonhomogene-
ous plane which consists of two sets of perijodically arranged
dissimilar orthotropic strips is considered. It is assumed
that the plane contains a series of collinear cracks perpendi-
cular to the interfaces and is Toaded in tension away from and
perpendicular to the cracks. First the probiem of cracks fully
imbedded into the homogeneous strips is considered. Then the
singular behavior of the stresses for two special crack geome-
tries is studied in some detail. The first is the case of a
broken Taminate in which the crack tips touch the interfaces.
The second is the case of cracks crossing the interfaces. An
interesting result found from the analysis of the Tatter which
may have an important bearing on a possible delamination frac-
ture jnitiation at stress-free boundaries in bonded orthotropic
materials is that for certain orthotropic material combinations
the stress state at the point of intersection of a crack and an
interface may be bounded whereas in isotropic materials at this
point stresses are always singular. A number of numerical
exampies are worked out in order to separate the primary mater-
ial parameters influencing the stress intensity factors and the
powers of stress singularity, and to determine the trends regard-
ing the influence of the secondary parameters. Finally, some
numerical results are given for the stress intensity factors in
certain basic crack geometries and for typical material combina-
tions.
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1. INTRODUCTION

In considering the failure ¢ a given structural component £
if the corresponding material is homogeneous and isotropic in
its strength and thermomechanical properties, the related frac- ;
ture process is relatively well-understood and the techniques -
dealing with such problems are sufficientiy well-developed.
This is particulariy true in the absence of large scale plastic
deformations around the dominant flaw from which the fracture
failure would develop. On the other hand in composites, parti-
cuiarly in fiber-reinforced laminates, the situation is much
more complicated not only beczuse of the nonhomogeneity and
anisotropy of the material which make it very difficult to ana-
lyze the problem, but also because of the highly nonhomogeneous

and nonisotropic distribution of the strength parameter making
the development and the application of a proper fracture cri- L
tericn also very difficult. In such materials it is quite "
possible that the concept of the progressive growth of a domi-
nant crack with a well-defined Teading edge is not an appro-
priate model for the characterization of gross fracture beha-
vior. Very often the damage zone develoving arocund the dominant
flaw is somewhat irregular and diffused and the fracture process
is generally governed by a principle of "weakest 1ink", the
local fracture propagation being progressive or in discrete
steps. Nonetheless, whatever the gross mechanism governing the

i sl mE i SV

process of fracture failure in the structure, one may nearly

atways assume that Tocally fracture initiation and propagation
will take place along the leading edges of the existing flaws
where the conditions of the relevant fracture criterion are

satisfied. Thus, in order to treat the Tocal fracture pheno-
menon in composite materials quantitatively., one may need the
solution of the mechanics problem for flaws or cracks located 7
at or near the phase boundaries or bimaterial interfaces. E

frua L

For composites which consist of bonded isotropic materials
a wide variety of crack problems have been solved in which
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fgi; either the asymptotic behavior of the stress state around the
'f # points of geometric singularity or the results for a specific
E crack geometry have been djscussed (see, for example, [1] and
[2] for review and references). Compared to the isotropic
4 materials, the crack problems for homogeneous or nonhomogeneous
] anisotrapic materials remain to he relatively unexplored. Most
, of the existing solutions refer to infinite plenes [3-7]. The
RE | crack problem for an orthotropic strip is considered in [8] and
| that bonded to two orthotropic half planes is discussed in [9].
The details of the problem for a finite crack located in the
nejghborhood of or intersecting a bimaterial interface in
bonded anisotropic materials do not seem tc have been investi-
T gated, Even though the probiem is rather complicated mostly
ngjf because of the large number of independent constants entering
Liifi the analysis, it may be managable under certain simplifying
assumptions. The main assumptions made in this paper are {(a)
both materials are orthotropic, (b} the nonhomogeneous medium
consists of two sets of periodically arranged dissimilar strips
having aifferent thicknesses, and (c) the cracks in the strips
are collinear, perpendicular to the interfaces, and also periodi-
. cally arranged (Figure 1). Thus, one can take advantage of the
‘ ﬁi symmetry of the medium and formulate the problem for two bonded
1 strips only. The corresponding problem for isotropic layers
' gr strips were considered in [10] and [11]. 1In [12] the effect

'fé of the thickness and the elastic properties of the adhesive
| layer on the stress intensity factors in bonded dissimilar iso-
- tropic strips was considered.

2. GENERAL FORMULATION OF THE PROBLEM

i_ff Consider the plane problem for an orthotropic medium.

.? ; Referring to, for example, [13] if u and v are the x and y com-
RIS ponents of the displacement vector, the equations of equili-
brium may be expressed as follows:

Tl
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: 9%u . 3%u 3%y
] By=— ¥ S ¥ Bog—e— = 0
: 3%y B2y %y |
; t Bt Boggay = 0 (Tash)
§ ax? 2ay? 3ox2y ’ |
f whare g
b W B, = ByEyo/E By = 1T+ Byyr  (2) i
i for generalized piane stress, and ;
L By = byq/lyp s By = bpp/lyy s By = T 4+ byp/Byy (3) 3
3
for plane strain. Here, E;s, vyys and Giy, (i.3) = (1,2,3), ;
are the engineering elastic constants, indexes (1,2,3) refer i
to the {x,y.,z) directions, and the matrix (bij) is given by '
(byg) = B = AT1 L A= () - (1.3) = (1.2,3) .
!
53 © 1/Eii H aij = “Vij/Eii = aji » (1#3) . (4) g
The stress-displacement relations are :
Sl Sxx = P11ax t Pizsy t Tyy T Prasx t Paady %
: oy = Bxylay * %) (5) :
for plane strain, and :
%—"l = -gly- - Y—&\X- g s -a-l = _:éii. g + %..ﬂi s
i X o Exx Exx YWY ¥ yy % Fyy
au . 9v _
5y T ax - Txy/Bxy (6)
‘ for generalized plane stress.
, Consider now the periodically arranged two seis of bonded
,_}; orthotropic strips shown in Figure 1. In addition to the geo- ;
. metric symmetry indicated in the figure, it will be assumed ?
.I L
4
‘s: 5
\l &
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that the medium is Toaded away from the crack region, parallel
to the strips, and symmetrical with respect to the x-axis.

Thus, the soTution of the problem may be obtained hy the stan-
dard superposition technique, from the viewpoint of fracture the
important component being the perturbation solution in which the
crabk surface tractions are the only external loads. One may
note that because of symmetry it is sufficient to consider the

. prob]em for one quarter of each strip only. Let (x ],y) and

(xz,y) be the local axes for the sets of strips 1 and 2 as
shown in Figure 1. Let the displacements be expressed in terms

~of the following Fourier integrals:

(==}

2% 2 .
uj(xj,y) Trfofj(a,xj) cos ya do + Wfogj(a,y)51n xja da

n

vj(xj,y)

27 . 5 [
%{bmj(aaxj) sin yo do + ;{Onj(a,y) cos xju de ,

(7a,b}
where j = 1, and j = 2 refer to the strips 1 and 2, respectively.
Substituting from (7) into (1) one obtains a system of ordinary
d1fferent1a1 equations for the unknown functions f TREL P which

are coupled in pa1rs So1v1ng these equatIOns we f1nd

. - oy J | .
- S, 0X.
- JkTH
k£1cjkAjk(a)e
4 S. CY/B. N
g.(a,y) = 2B, (o)e 9K A n-(“J)'
J 1 ;jk
4 | S ay/B
_ Jgk J5 s
?dJkBJk(u)e (j=1,2) (8)

~In (8) S5k s (i=1+2 . k=1,..,4) are the roots of the following

characteristic equation:
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3 sj3 = ‘-Sj-] 3 53-4 - “sz Y

= 2 2 .
Big = (B35-By1Byp=10/B57 » B35 = Byp/Bsq 5 4 = 1,24(9)

The functions Ajk and Bjk s (§=1,2 , k=1,..,4) are unknoﬁn
and the constants Cjk and djk are given hy

= 2
CJ.-I = -CJ.3 = (1-Bj-‘551)/8j35j] s

. 2
Cjp = ~Cyq = (1-BjS35p)/Byg850

_ 2 2
di1 = -d33 = {s51-B;51875) /853551855 »
dep = ~d., = (s, -8. g% 1/ B:iaS:oB. (10)
j2 ja j2""§{.7454/ 733 3235

The unknown functions Ajk and Bjk which appear in (8) are
determined from the boundary and the continuity conditions of
the problem. In addition to the assumed nature of symmetry in
~loading and geometry, it should be emphasized that in the per-
turbation problem under consideration the only external Joads
are the Tocal self-equilibrating crack surface tractions.
Consequently, both components of the displacement vector would
vanish for y»++=, and the x-component of the displacement, u;
(i=1,2) would be zero along the axis of symmetry x; =0,
(j=1,2). Thus, the sixteen conditions which have to be used
to determine the unknown functions Ajk and Bjk (i=1,2; k=1,..,4)
may be stated as follows:

uj{ijfg*ﬂ 3 VjcijY)+0 ] (j=132) for y+w ? (]])
u](hq;Y) = U2(~h2,y) 2 V}(hT:Y) = VE(“hE:y) s

O<y<e= (12)

= Uaxy('hzsy) y Ogy<e :(13)
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-in terms of the new unknown functions

‘equivalent to

ui(osy) =0 , 0

(U:Y) =0 , O<y<= , (j=]:2) 3 (14)

Xy
Oixy(X3:0) =0 x5 [<h; (3=1,2) , (15)
O1yy (¥120)0 = pylxg) s xql<a
VT(X1,O) =0 , a<lx.[|<h1 . (16a,b)
Tayy(%250) = pylxy) 4 e<|xyl<d
VZ(XZ’U) =0 , 0<lx2l<c » d<fx,(<h, (17a,b)

In (9) it may arbitrarily be assumed that
Re(sj1)>0 R Re(sj2)>0 (i=1,2) . {18)

From (7), (8), (171) and (18) it therefore follows that
Bj1(a) =0 , sz(a) =0 {(j=1,2) . (19)

Ten of the remaining twelve unknown functions may be elTiminated
by using the homogeneous conditions (12-15) in (8), (7) and (6).
The Tast two unknown functions are then determined from the
mixed boundary conditions (716) and (17). The probliem may be
reduced to a pair of integral equations by defining

5;— vy (x ,0) = b (x ) » (§=1.2) , (20)
j

and by replac1ng the cond1t1ons (16) and (17) by {(20). Thus
all the unknown functions Ajk and Bjk may easily be expressed
ﬁ and ¢2. We now observe
that part of the mixed conditions, namely (16b) and (17b) is

,0<Ix-l<h-

| - o - a
' {
6y (%q) =:0.','a<lx1[<h1 ; th](:ac-l)dx.J =0 |, (21)
-a
L - | d
$,(x5) = 0 0<Ix21<c ) d<]le<h2 ; ng(xz)dxz = 0{22)

| “Through equations.(8), (7), and (6), substituting the results

into the conditions (16a) and (16b) we obtain two integral
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equations to determine ¢1 and ¢2.

Because of the large number of 2lastic constants and un-
known functions the process of deriving the integral equations
is rather complicated and lengthy. However, the technique 1is
straightforward and is quite similar to that followed in [10]
and [11]. Therefore, the details of the derivations will not
be given in this paper. As in [10], it can be shown that the
integral equations are singular and may be expressed as Tollows:

[tz Ty Ry (xgat) = kg (xgamt) T ()

Ly
# [Ty p0aq58) = Uy am81ap (0068 = f=py(xg)
Lo
XTEL] .
_ 1 1 1
[Ekm(xzst) - kyq(xpa-8)T0q (£)dt + [Hom + )
. L2 2 2
* gy (ipat) = Kyplaya-t)1a (808 = oy (x)
Xo€ly (23a,b)

where L] and L2 refer to the cracks on (y=0 |, Oix]<h1) and

(y=0 0532<h2) in the strips 1 and 2, respectively, and

*
Wy © 2E1yy714/(1'“1xyv1yx) » Mo = 2By, Y14/(1"’2xy\’2yx)‘
| (24)

In deriving the integral equations one needs to define in a

systematic fashion a large number of elastic constants and

intermediate functions. Therefore, in order to conserve space

the definitions leading to the expressions of the kernels

*
kij,(i,j=1,2), and the constants Y12 and Yig and to the
relationships between the functions Ajk’ Bjk and by will also

N P P
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be omitted in this paper‘#). These definitions and the details

‘of certain derivations may be found in [14] for the group of

orthotropic materials which would give a characteristic equa-
tion having only real roots sjk,(j=1,2; k=T1,..,4) (defined
henceforth as the orthotropic materials of type I), and in
[15] for materials which would give a characteristic equation
with only complex conjugate rcots (defined as the orthotropic
materials of type II)(** .

The kernels kij which appear in (23) are of the following

form:
kij(xf:t) = [:ij(xiatam) du ] (i:j=132) . (25)
EXxamining the behavior of Kij for o+0 it can be shown that
C..
=
Kig = ==+ O(1) (26)
where c.. are known constants., Even though this may imply

1
divergent Kernels, by writing

Ik s (xyst)e;(2)dt = I¢Jdtf(x -~%i)d@
J Lj
+I¢ dt f ~—ldu , (i.35-1.2) (27)

and hy using single- va1ue§ness cond1t1ons (see (271).(22))

[¢J(t>dt =0, (§=1,2) (28)

it is §£an that the singularity at o = 0 may easily be removed.

Also, by examining the behavior of the integrands Kij’ (i,3=1,2)

~for o+« it can be shown that they decay exponentially provided

the series of collinear cracks L (i=1,2) are fully imbedded in

& )Note that the constant Y12 is the same as the constants m,,
zni réﬁ defined in [8] {(egqs.*16 and 19) and the constants
efin

%

( )In practice, since B., in the characteristic equation (9)
appears to be always a_nééative quantity, the third type of mater-
ial giving four pure jmaginary roots is not a realistic one.

in (24) correspond to 4u/(1+¢) for the isotropic materials.




the homogeneous strips (i.e., they do not touch or intersect
the bimaterial interfaces). Thus, in solving the integral
equations (23), kij may be treated as Fredholm kernels. In
this problem since the kernels of the integral equations have
only a Cauchy type singularity, the functions ¢4 wouid have a
square root singularity at the end points,L; and the equations
may easily be solved by normalizing the intervals and by using
the technique described, for example, in [16]. After solving
the integral equations, the stress intensity factors may be
obtained in terms of the functions ¢5. For example, let Fig-
ure 1 describe the crack geometry, i.e., let Ly=(0,a}, Lsp=
(c,d); then, the stress intensity factors may be defined

and obtained as follows [8]:

k(a) = Tim v2{t-a) G]yy (t,0) = -1im u1J21a-ti o ()
t+a t+a

k(c) = 1im v2(c~1) °2yy (t,0) = llm uz#zit -C) @2( Y o,
t>c +C

k{d) = 1im vV2(%-d) GZyy(t’U) = -1im u2¢2(d -t) oo (t)

t+d t+d

(29a-c)
3. CRACK TOUCHING THE INTERFACE

Two 1imiting cases of the problem discussed in the pre-
vious section are physically important and mathematically in-
teresting. These are *he cases of a broken laminate corre-
sponding to a crack touching the interface (e.qg., a=hq, d<hy,
Figure 1), and a crack intersecting the interface (e.g., a=hy,
d=h,, O<c<hy, Figure 1). For example, referring to Figure 1,
tet a=hy and d<hg. 1In this case it may be shown that as g+
and for -hi<(xy.t)<hy, c<(lxz),|t])<d the integrands Kyp, Kgy,
and Ky, in (25) decay exponentially. Therefore, the kernels
Kip» k21, and kpp are bounded in their respective ciosed do-
mains. On the other hand for xy+hy, t+h; the exponential
decay in Kyj{x1,%t, ) disappears, indicating that k11(x1.%)
may cantain terms which become singular as x7 and t appr.zch

10

[ A N S A




oy Looae e v T B B 3
T T T SRR AN SECUN NGt A0Sl st e SN N FEC S SIS0 S SO
e ik RS T S B PR Y ho [ T I A Yot SR 1 T Vet S ey

the end point hy simultaneously. These singular terms can be
' separated by studying the asymptotic behavior of the integrals

11

given by (25) (see [16] for the technique and {101, [wal, 0173 %:f; ﬁ
and [18] for the application). To give an idea about the na- ; : .
ture of these additional singular kernels let 5  S
Ky (xpat) = Kypglayst) + kppelxpat)d 5 0 (3D 5 by s L
where k]]s represents the singular terms and Kqyq¢ is bounded { *wff
in the related closed domain. Let the material be of type I %’ .
with the real roots (see equation 9) f ;f
‘ ] ] S
syp = w10 s syp Twpdl s Syg T omey s Syg T e L
(31) o
Then the asymptotic analysis of (25) would give 5 §:;€
[
, _ (hy-~t)Byg/uythyu S
mkypg(Xqs ) = Agg 2 : L
[(h]-t)ﬁ]Slm-[H'l-‘m]] "‘(N-‘x'l)‘ % £ ‘!
\ (hy-t)Byg/uytuyhy Py
5% [(hy-t)8y5/uythyup]*=(ugky )
"88 2 2 R
[(hy-)8yg/wpthyup]®=(upxy) gl
0 < (xy.t) < hy (32) i
o
where Aggs...>igg are known constants and depend an the elas- % b
tic properties of the materials only [14]. if‘ii*
! . | -
i
;
i
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Together with 17{(t-x1), ki1 9ives a generalized Cauchy
kernel. Substituting from (30) into (23) and adopting the
crack geometry shown in Figure 1 (with a=h1), the dominant
part of (23) may be expressed as

h

1 1 -

'ﬁ: J'h [t_x.[+Wk]]s(xlst)]¢](t)dt—P-!(X-I) s —h-I‘(J{-I(h.! s
0

d
.I = w
JC Toxg go(t )dt=Pylx,) (33a,b)

=4[

s c<x2<d s

where the bounded functions P] and P, contain all the non-
singular terms in (23). It is clear that the solution of
(33b) is of the form
- -1/2

05(t) = Fp(£)[(tc)(d-t)] . ccted (34)
giving the stress intensity factors as defined in (29). The
singular behavior of the solution of (33a) may be studied by
letting

¢(t) = Fy(e)/(h}-t>)Y . O<Re(y)<l , -hy<i<hy (35)
and by using the function-theoretic method described in, for
example, [16]. Thus, if we define the following sectionally
holomorphic function

h1 ¢,(t)
6(z) = 1 [ -5 dt L (x = Re(z)) (36)
~h,
by using (35) the asymptotic analysis of (36) gives
_ iny
G(Z) - F'{( h'[)e 1 ) F'!(h-l) 1 + GO(Z) i
(2hy)Ysinmy (z+hy)Y  (2h))¥sinwy (z-h))Y
le (z)] e (v) (37a,b)
G.(z)i<x ——————— , v XRe ) 37a,b
0 |z¥h1|Y° 0 Y

12
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where C0 and Y, are real constants. Now, substituting from
(37) and (32) into (33a), we obtain the following characteris-
tic equation to determine the unknown constant y:

m%'zﬁ m1"Y wé_Y
-2C0STY + Agp——— + Agp———— * Agqy——
85 1~v 86 v, i-v 87 v, 1~
Bis wabs wiByg
wé’zY
*Aggy =0, (38)
BT5

where, again the material type I is assumed. It can be shown
that for all material combinations (38) may have only one root
in the strip 0<Re(y)<1 and this root is always real. It can
also bhe shown that as the orthotropic material constants tend
to those fTor a pair of isotropic materials, the root 7 obtained
from (38) approaches the root of the corresponding isotropic
characteristic equation given, for example, in [10] or [18].

For this crack geometry the "stress intensity factor" may
be defined in terms of the cleavage stress Sayy in the neigh-
boring material which, from the fracture viewpoint, is the
most important stress compenent. To calculate this we note
that (23b) gives the expression for ozyy(xz,o) for ~h23x25h2,
that is in the uncracked as well as in the cracked portion
of the strip. We also note that in the neighberhoad of |x,[=h,
the singular behavior of Toyy will be governed by the density
function ¢, and the singular part of the kernel kz]. As in K]],
it may be shown that for av e, t+h1, x2+-h2,the exponential decay
in Ko disappears, indicating that k21(x2,t) may contain terms
which become singular as Xy and t go to the end point simul-
taneously. If we again let

ka1 (X2.t) = Koy (xput) + Kppelxytd s (39)

the singular part of the kernel may be separated and may be
exprassed as

13




’ - . -

o

(h “t)815/w +a1 o

Thoq o (X,,t) =
2ls*m2? 101
[(h1“t)515/N1+31 2] “(u] 2)
+ ]OZ(hT“t)B15/m1+&2 9
[(hy=t)8y 5/ aghy 12-(agky)?
oy (hytiByslupteqhy
]OBE(hT )815/m2+a1h2]2-(a]x2)2
. (h]~t)815/w +& & ’

104““1‘”315/‘“2*“2“2] ~(apxy)?

O<jtishy; & 0gfx,[<hy (40)

where & and 0o are the positive roots Soq and Sop of the
characteristic equation {9) expressed for the strip 2 and the
constants A are defined in [14]. Thus,for the purpose of ana-

Tyzing the singularity Toyy may he expressed as

Toyy

where p contains all the nonsingular terms. Upon substitut-
20

h
{xzﬂo) = u2£43k21s(x23t)¢](t)dt + on(xg) (41)

ing from (35) and (40) into (41), the asymptotic analysis gives
k(h])
2¥(x,+h,) Y

where Uo(xg) remains bounded as x2+—h2 and the "stress intensity

OEyy(XZ’D) = + UO(XE) (42)

factor" k(h]) is found to be

14
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k(hy) = wplim 27(hy ) Y4, (t)
t-+hy

Ha 1 ey YT (T
~Y
s1an[A101a7 ( ) T AMo2% ( Bys r

i

~
no
i

+ Mm‘f(-—“’——)‘"* + ama;(-—?——)“ﬁ : (43)

4. CRACK CROSSING THE INTERFACE

Consider now the case of a crack crossing the interface.
In this problem the integral equations (23) are still valid
.Wwith the two end points of the cuts L4 and I.2 joining at the
interface. For example, referring to Figure 1, let a = h1,
d = ho s and c¢>0. In this case at the end point Xy = hT or
Xo = hy all four kernels kij(xi’t) will have singular terms.
The singular parts k]]S and k215 coming from k]? and k2] are
separated and are given by (32) and (40). Quite similar
expressions may easily be obtained for ky,. and ky,o [14,15].

The dominant part of the system of singular integral equations

may then be expressed as

z i@ B+ Ky () T0 (0t = (%)

% J 1 1
L] = ("h]ihj) L] Lz = (C:hz) 3 XiSLi 2 (i=132)(44)

where in the analysis the symmetry condition of ¢2(x2) =

~¢2(~x2) is used. If we now let
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5
Fy(t) R, (t) Sh

0q(8) = ——— , 9, (t) = . R
(.h% -t?) (hy-t)" (t-c)

0<Re(g,5)<1 (45a,b) o

and define the following sectionally holomorphic functions

hygq(t) hyto(t) S
6y (2) = %{ it 6y(2) = 1{ 22 —at (46a,b) i

B S S

T :
- C 3

The asymptotic egpressions for 81 and Gz i‘ay be obtained as [16] i;a
Fi(-hy)e' ™ Fo(h) e
(20y)°sinmg ~ (z+hy)P (z-hy) A

# t R

, ind
; G,{z) = FZ(C)E 1 N Fa(hz) 1 l;f
2 (hz"C)B'Sin'ﬁ'ﬁ (Z"'C)G (ha-c)asinﬂ-s (z...hz)B }

+ Gylz) (47a,b)

where Gjo(j = 1,2) has a behavior similar to that of Go(z)

e 5 M
K T KA

which is given by (37b). Noting that outside their respective

cuts @, and G, are holomorphic, substituting from (47) into
(44), and following the procedure outiined, for example, in

[16] (see, also [14] for details) we obtain

Fo(c)cotws = 0 (48}

2
§fij(s)Fj(hj) =0 , (i=1.2) . (49)

where the coefficients in the functions fij(s) depend an the

elastic constants of the two strips only and are gjven in [14].

'r

.

e

A

Since Fz(c) and Fj(hj) -~y (j=1,2) are nonzero constants, (48) Egyg
16 ?_%j
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gives the known vresult § = 1/2 and from (49) we obtain the

fallowing characteristic equation to determine the power of

singularity g:
alg) = |,

el =0 , (i,3=1,2) , O<Re(p)<1 . (50)

It is also important to note that the end point values F1(h])
and Fz(hz) are not independent and are related by
Folty) = -Fq(hg)Fyq(8)7F 1, (8) (51)

where g is the root of (50). An additional condition such as
(51) i{s necessary to obtain a unique solution for the system
of integral equations (23), since in this case there is only
one single-valuedness condition which has to be satisfied by

the displacement derivatives o1 and P namely

h h -
I 2g, ()dE + f bo(t)dt + J Ez(t)dt =0 . (52)
c -Nq ~ho

A systematic study of (50) jndicates that for all material
combinations the characteristic equations may have either no
root or only a single real root in the strip O<Re(B)<i. Also,
g = 0 is always a root and there are no other roots with Re(B}
= 0. In the foragoing analysis only the possibility of a power
singularity is investigated. The results show that for certain
material combinations (50) indeed has no root in 0<Re(B)<1,
implying that for these materials at the intersection of the
crack and the interface the stress state would be bounded.

" However, this analysis does not prove that in such cases there

may not be a weaker, namely a logarithmic singularity. To

17
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investigate this question fin (45) we et g = 0 and substitute
the result into (46). We would then obtain the following

asymptotic relations:

o F F. (-1
G, (z) = T( 1)109(1 hi) - —lf——1340g(2+h ) * Gyq(2)
..cmc)eiﬂa " Fylhy)
GE(Z) - sinwd (Z-—C)G ¥ ﬂ(hz_c)610g(z_h2)
+ Gyq(z) (53)

where 611 and 62] are bounded near and at the end points

z = ?hj and G has a behavior similar to (37b) in the neigh-
borhood of z = ¢. Substituting now from (53) intoc the integral
equations (44) we obtain

Fo(c)cotms = 0 | (54)

Tog(h, -x, )? a;5F5 () = Ry(xg) 5 (i=1,2) (55)
where R1 and R are bounded functions and the constants 9i5 >
(i,j=1,2) depend on the elastic constants only. Equation (54)
again gives the known result & = 1/2. For {58) to be valid

at x; = h; (i=1,2)} the coefficient of singular terms must

i
vanish, or we must have
2 '—
"E[: gij Fj(hj) =0 ) (1—]:2) . (56)

Since Fj(hj) . (j=1,2) are nonzero constants, from (56) it

follows that

18
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To shﬁw'(SY)'aha1ytica11y seems to be impassible. HOWeyér,_a -

© systematic numerical analysis indicates that for the material

.-combfnations_havingiﬁ{='0 as the bnTy acceptable power singu-

"Ta%ity'(57)'is indeed satisfied 1:dentically. Furthermore,

| these stud1es also show that (56) always gives

p1(ng) mh)

| The resu]t expresseu by (58) meaning that in the composite

_ med1um the derivative of the crack surface displacement is con-

tlnuous at the 1ntnrface 13, of course, the physically expected

: _resu]t,

For the pair of materials in which (50) has a root in

"0§s<1,'dt fhe poiht'(y=0, x1=h] or xzé-h ) the stress state

| 'wi11 be singular. At th1s point, since the important stress

-.components are the normal and shear stresses on the 1nterface,
we may dwrectTy ana?yze the s1ngu]ar behavior of these stresses
7To do th1s one has to gu back to the original formulat1on of the

problem and express these stresses in terms of the density
ﬂ'%dﬁétfdn$'¢1:ahd'¢a...Thuég after somewhat lengthy but straight-
Forward analysis we Find [14,15]

1 _ 12 _
E{“?xi(hﬂy} o IEJL hij(yas)dzj(S)ds s (i=x,y)
S - - i

9



Studying the asymptotic behayior of the kernejs h, i it can be

~1E shown that as y+0, s~:~+h.I 1n<—h1<s<h1, and s+h2 1n c<s<h simul-

'taneous1y the kerneis become unbounded By express1ng

hyylrss) = F f(y s} + hyse(yss) s

the singular parts h.

ids
For exampTe, for hx1s(y,s) we obtain
| (hots)y./2 (h,-s)yq/2
”2T13hx15(Y=5)“: 1 1 : - ] ]

(h]+3)2+(w1¥/ﬁ15)2 (h]“sjzfﬁﬁ]y/ﬁjs)z

(h+s)vpyy1/2vyp  (hy=s)Yp1y1/27gp
..(h1+SJ?+(92¥/515)2 .(h1_$)%+(m2¥/815)2

Yarg1¥Targs (h1‘5)315/¢1
ABO [(h1'5)315/w112+y2

vghgatrargy (hy-S)Bygluy, . (60)
. ASOI [(h1-s)815/w2] +y

‘uywhere the def1n1t1on of the mater1a1 constants v and A as well
- as the express1ons for the remaining functions h h , and

h,

_ yis
v2s ‘may be found in [14] and [15].

If the materials are such that the stress state at

(y=0, x1=h1) is singular, i.e., 0<8<1, then one can again de-
fine ¢, and Gs s (i=1,2) as in (45) and (46) and obtain (47).
Now observing that outside the cuts Lq and LZ’ specifically

along the y-axis G, and 62 are holomorphic, one can use (47)

.ZQ

of these kernels can again be separated.
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where the "stress intensity factors" may be expressed in terms
of the density functions as follows:
Keg = Uy 1im (0y=8)80q(8) .
t—»h.l_ .

k Ilm (h1—t)3¢1(t\ . (622 ,b)
1 . -

xy *Hxy g,
The constants gxx and p,, are known functions of the elastic

constants and may be found in [14] and [1§8].

For the material combinations in which ¢1 @ and LY have
no singularity at xq = hy. xa = <hy, (i.e., if g = 0 is the

only acceptable root of (50)), since the kernels hij have

'sihgu1ar parts of the form (60), from (59) it is not at all

obyvious that the stresses too would he bounded at the point
(y=0, x]=h1). This question can be examined by stustituting
from (45) with g = 0, § = 1/2 inte (59) and by going through
a routine asymptotic analysis, which yields

U]xx(h1’y) = F1(h1)exx10g y + C(y)

ijy(h11y) = D(y) (Ssaib)

2]

. - ey 3 ' : ' 1 | Co %
: [ o S I e
S TN O T NN C O R C L SO AT S
'to eva1uate the 51ngu1ar terms 1n (59) (see, for example
L]SvTBJ) It can then he shown that
e
oy hyay) = ra oo ly) 5 (y»0)
GTxy“HQY)‘—_;% T (y) 3 y>0 (61a3b)




where C{y) and D{y) are bounded functions. It turns out that
in all material combinations for which g = 0, the constant

By, 15 identically zero; therefore, the stresses are bounded.

Considering the fact that in 1sotropic materials the
stress state at the intersection of an interface and a crack
is always singular (i;e., g>0}, from the viewpoint of delamina-
tion or debonding fracture the practical importance of the pos-
sibility of having bounded stresses at such locations in design-

ing with certain orthotropic materials needs no elaboration.
5. . NUMERICAL SOLUTION

In this paper the numerical results are obtained for
several spécific types of crack geometries In the first
group'of solutions it is assumed that the cracks are fully
imbedded in homogeneous strips and (see Figure 1)

a<hy , ¢ =0 ,d=b<hy, . (64)

The single crack, a = 0, b # 0 or a # 0 b =0 is considered

~as a special case. In this problem the integral equations (23)
are solved by using the Gauss-Chebyshev integration method [16]
with Ly = (-a,a) Ly = {b,b) and under the single-valuedness
conditions (28). The stress intensity factors are then ohtained

from (29a2) and (29c) with d = b.

In the second group of solutions it is assumed that a = hy
and 05p<h2. In this case the Gauss-Jacobi integration method

is used to solve the integral equations. The details of the

22
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numerical method may be found in [16,4 or 18]. After obtain-
ing the density functions the stress intensity factors are

calculated from (29¢) (with d=b) and (43).

In the third group of solutions it is assumed that the
crack crosses the interface, that is, a =“h], d = hy, o<c<h2
(Figure 1). 1In this case for B>0, the integral equations (23)
are solved by substituting from (45) and by usfng the Gauss-~
Jacobi integration method. Here the additional conditions are
(51) and (52). After obtaining ¢y and ¢, the stress intensity
factors are determined from (29b) and (62) (see again [16],

[T#]'or'[]S]'for numerical procedure).

23
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6. RESULTS

The elastic properties of the materials used in the nu-

'mericaTVexampTas are shown in Table 1. Materials 3, 4, and 6

are basically isotropic and the remaining materials are ortho-
tropic. For the materials 1 through 8 the roots of the charac-
teristic equation {9) are real, meaning that they are of type
I. Materials 9 and 10 are of type 11 for which (9) has complex
conjugate roots. The numerical results given in this paper are
all for the case of plane stress. Table 2 shows the material
combinations used in the numerical analysis. The table also
shows the powers of singularity y and 8 at the point of inter-
section of the crack and the interface corresponding to a crack
terminating at the interface {a=hy, d<hp), and that crossing the
interface (a=hy, d=hp, c>0), respectively (Figure 1). Unlike
the isotropic materials, the characteristic equations (38) and
(50) giving y and g8 in bonded orthotropic materials are quite
complicated. They contain six independent material parameters
and hence do not lend themselves to a relatively simple syste-
matic parametric study. However, once the material combination
is specified ¢ and g can be determined quite accurately.

Even though it is very difficult to_separatevthe material
parameters which influence most of the values of B and y, and
the stress intensity factors for the imbedded cracks, the cal=+
culations show that in this respect perhaps the most important
single material parameter is the lTongitudinal stiffness ratio
Eyyy/Epyy. In order to assess the effect of the remaining ma-
terial constants a rather large number of calculations were
done by fixing E1yy and Ezyy, by systematically varying one at
a time the remaining six constants, and by calculating v, B,
and the stress intensity factor k(a), the latter for imbedded
cracks in material 1 only. The general trend is as follows:
As Eygxs Gygys and vy, (of the medium 1 containing the crack)
are increased, y and k(a) increase, and as Egyy, Goyys vagy
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Table 1

Elastic constants of the materials

used in numerical calculations®.

Exx/ Eyy/ Gxy/
No 109N/ m? 09N/m2 09N/m2 vy

(108psi) (106psi) (106psi)
OO B 0 I B S (627) | ©0-036
200 | g8y | fas) (357 | 0-880
3(1) }3§:Z§7> }ggfg? tg.e35) | 0-300
“OLBrsy | Gas | feiosy | o-s00
500 | Giag) | (a9 (6.128) | 0-036
IS0 N S 1S S B OO0 (1:57) | 0-400
o) | 821 {67y | o-020
80) | {50y | (ie0) (o75) | 0-350
s) | G | {oig) | 0-200
o) | e | (g titey | 0760

(*) The materials are boron-epoxy and grdph1te Epoxy

w1th various ply orientations.
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Table 2

The power of stress singularity vy for a

crack in medium 1 terminating at the in-
terface and g for a crack crossing the
The properties of materials
used in various combinations are given

interface.

in Table 1

Comb Materials Power of Sing. E1yy GTxy
Med.1 | Med.2 Y 8 E2yy | Gaxy
I 1 2 | 0.55048 | © 5.50 | 0.20
I1 3 2 | 0.65699 | 0.04248] 5.02 | 2.48
111 4 2 | 0.66549 | 0.04887| 5.50 | 2.58
IV 4 6 | 0.68914 | 0.14547| 5.50 | 5.75
v 4 5 | 0.80352 | 0.05354| 5.50 | 70.8
VI 7 8 | 0.74523 | 0.05197| 22.5 { 1.40
VII 2 T 0.42258 | 0 0.182] 5.00
VIII 2 3 | 0.36911 | 0.04248| 0.199| 0.403
IX 9 10 | G.61554 | 0.08520] 3.88 | 2.6
X 10 9 | 0.43410 | 0.08520| 0.268] 0.384
308 B
OBﬁyiﬁfuégﬁﬁjTi
of *
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are increased, y and k(a) decrease. Among these variables
the most significant factor influencing vy and k(a) appears

to be the ratio of shear moduli G]xy/62xy' This may partly
be observed alsoc from Table 2 and Figure 2. The figure shows

“the stress intensity factor k(a) for imbedded cracks in ma-

terial 1 as a function of the width ratio hp/hy for a fixed
relative crack length a/hy=0.8 and for material combinations
I, 111, IV, and V given in Table 2. For these material pairs
the stiffness ratio Eiyy/EZyy is constant whereas Gyyxy/Gpyy
is 0.2, 2.58, 5.75% and 70.8, respectively. It is seen that

_k(a) is consistently higher in material pairs having the

greater Gyyy/Gpyxy ratio. Figure 2 also shows that for h2-+0,
as expectad, in all material combinations k(a) approaches the
periodic collinear crack solution in an infinite plane which
is the same for all homogenecous orthotropic as well as iso-
tropic materials.

A close examination of the results giving 8, y, and k(a)
jndicates that generally one could accomplish a certain relax-
ation in the stress singularity at the point of intersection
of a crack and an interface in composites by introducing ortho-
tropic materials. This may be seen, for example, by comparing
the p values for various material combinations given in Table
2. In fact for certain orthotropic material combinations it
is even possible to have g=0, i.e., no singularity, whereas
in isotropic materials g is always positive, i.e., the stress
state is always singular. The value of g has, of course, an
imﬁortant v2aring on the initiation of a possible delamination
fracture from the stress-free hboundaries in bonded materials.
Even though the result regarding the possibility of g=0 may
appear to be somewhat paradoxial, considering the fact that
in two isotropic wedges forming a half plane 8 is dependent
on the wedge angles as well as the material constants and may
be zero for certain ranges of wedge angles, it should not be
completely unexpected. The possibility of reduction or com-
plete elimination of singularity power B by varying the

27




secondary material constants seems to introduce an added
flexibility in designing against the edge delamination {ip
bonded materials.

In solving the integral equations it is assumed that the
composite medium is under a state of generalized plane stress
and is subjected to external Toads away from and perpendicular
to the cracks. Thus the crack surface tractions in the per-
turbation problem considered in this paper are constant and are
at the following ratio: |

P1(X) _ "P1
Pp(X] ~ =Py

E
= Y (65)
2yy

The stress intensity factors obtained for the imbedded cracks
locatad in the first or second set of strips are given in Fig-
ures 3-7. Comparison of the results given in Figures 3 and 4
shows that for the same longitudinal stiffness ratio E1yy/E2yy
and the same material 2, k{a) calculated for an isotropic me-
dium 1 is consistently greater than that calculated for an ortho-
tropic material 1. This means that by introducing material
orthotropy it is possible to obtain certain relaxation in the
stress intensity factor. However, as seen from Figure 2, due
to the effect of the secondary material parameters the aopposite
is also possible. 1In Figure 2 note that the combination IV
refers to an isotropic~isotropic material pair - whereas III
and V are isotropic-orthotropic pairs giving stress intensity
factors which are respectively lower and higher than that of
IV. Corresponding results for the stress intensity facter k{b)
for cracks imbedded in the second medium are given in Figures

6 and 7. Materials in Fiqures 5 and 7 are of the type Il and
those in Figures 2, 3, 4 and 6 are of type I. It should be ob-
served that as the thickness of the uncracked strips go to zero,
the stress intensity factor in the cracked strips approach that
of the periodic crack problem in the infinite homogeneous (iso-
tropic or orthotropic) medium.
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Figure 8 shows a sample resuit for a composite medium in
which both sets of strips contain cracks. Additional results
for two as well as one set of cracks may be found in [14] and

[15].

The stress intensity factors for the case of a broken
laminate (i.e., for a=h1 and c=d, or a=0 and d=hp, c=0} are
given in Figures 9-12. Figures 9 and 10 show the results for
material combinations I and II where all materials are of type
I and Figures 11 and 12 give an example for the material com-
bination IX where both materials are of type II. The figures
show that in all cases as the width of the uncracked strip
(i.e., the net Tigament between the cracks) goes to zera, as
expected, the stress intensity factors become unbounded. In
these problems the stress intensity factor is defined by (42)
and is calculated from (43).

The results for a crack crossing the interface are given
in Figures 13-19. 1In these problems the stress intensity fac-
tor at the crack tip k(c)=ky is defined by and calculated from
(29h). For those material combinations in which g>0 the stress
intensity factors at the point of intersection of the crack and
the interface kxx and kyy are defined by (61) and are calculated
from (62). For the material combinations II, IX and I used in
these examples, Table 2 shows that power of stress singularity
v for a crack in material 1 touching the interface is greater
than 1/2. Therefore, as the crack length 22 approaches 2hy or
as c+hg, the stress intensity factor kp at the crack tip calcu-
Tated on the basis of 1/2 power becomes unbounded. Also, as the
length of the net Tigament 2c goes to zero kp again becomes un-
bounded. These feattres of the solution may be observed from
Figures 13, 16, and 19 giving the crack tip stress intensity
factor as a function c/hp. Figures 13 and 16 show kp for ma-
terial combinations II and IX in which g>0. Figure 19 gives
an example for the case in which g=0. It may be noted that
- qualitatively the results for the twe cases are quite similar.
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The stress intensity factors kyy and kyy for material
combinations II and IX are given in Figures 14, 15, 17, and
18. Note that in the Timiting case of c=hp, that is for the
case of the crack touching the interface, the power of the
stress singularity at the interface would be y which is al-
ways greater than g. Therefore, as expected and as seen from
the figures, for c+hp the stress intensity factors calculated
on the basis of singularity power g become unbounded. 1In
these problems for the type of loading under consideration
the normal component kxx of the stress intensity factor seems
to be negative. Since there is no crack surface interference,
physically this means that normal stress along the interface
near the crack surface is compressive, there is no inconsis-
tency, and the singularity should be interpreted in the same
way as in punch problems.
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Figure 3 Stress intensity factor k(a)=ka for cracks imbedded

in strip 1 for material combination I
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Figure 4

Same as Figure 3 for material combination II
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Figure 7 Same as Figure 6 for material combination IX
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Figure 8 Stress intensity factor k(a)=k; for the crack in

material 1T in & composite medium where both sets
of strips contain cracks. Material combination

width ratio hy/hz=4
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The stress intensity factor k(hy)=ka for broken

Figure 9
laminates 1 in material combinations I and II
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Figure 11 Same as Figure 9, material combination IX
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Figure 12 Same as Figure 10, material combination IX
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Figure 13 The stress intensity factor at the crack tip
k{c)}=ky for cracks crossing the interface in
material combination II
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Figure 14 Normal component kgxx of the stress intensity factor ﬁf

at the intersection of the cracks and the in- e

terfaces in material combination II -
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Figure 15 Shear component k Xy of the stress 1ntens1ty factor )
at the intersection of the c¢racks and the- 1nter~;
faces 1in mater1a7 combination I1I
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Figure 16 Same as Figure 13-in material combinationflx
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o Figure 17 Same as Figure 14 in material combination IX
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Figure 18 Same as Figure 15 in material combination IX
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Figure 19 Same as Figure 13 in material combination I
where g=0




