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ABSTRACT_

The elastostatic problem for an infinite orthotropic strip con-

taining a crack is considered. 	 It is assumed that the orthogonal
^y

axes of material orthotropy may have an arbitrary angular orientation

with respect to the orthogonal axes of geometric symmetry of the un-

cracked strip.	 The crack is located along an axis of orthotropy,

hence at an arbitrary angle with respect to the sides of the strip.

The general	 problem is formulated in terms of a system of singular p4'

integral equations for arbitrary crack surface tractions. 	 As ex-

amples Modes I and II stress intensity factors are calculated for

the strip having an internal or an edge crack with various lengths

and angular orientations.	 In most calculations uniform tension or

uniform bending away from the crack region is used as the external

load.	 Limited results are also given for uniform normal or shear

tractions on the crack surface.

,2.

Permanent address:	 Faculty of Engineering and Architecture,
Technical University of Istanbul Macka, Istanbul, Turkey.
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1. INTRODUCTION

Because of the ever increasing use of fiber-reinforced composites

in a great variety of en!llneering structures, in recent years the

problems regarding their structural integrity and failure have been

studied quite extensively. In these studies the material is generally

assumed to be homogeneous and orthotropic if either the structure is

free from flaws which may be the cause of an eventual failure initia-

tion, or the structure may have a flaw but its size is large in com-

parison with the local microstructural length parameters such as the

fiber diameter and the distance between the neighboring fibers. Other-

wise, in failure initiation studies the material has to be treated as

a nonhomogeneous continuum containing local flaws with certain geome-

tries. In composites, as well as in wood and certain metallic ma-

terials, from the viewpoint of structural failure, a distinguishing

feature of material orthotropy is that the material is generally not

isotropic with respect to its fracture resistance. Furthermore, in

most cases the planes of orthotropy are generally also the planes of

weak fracture resistance. Thus, in orthotropic materials regardless

of the overall geometry and loading conditions, the fracture propa-

gation would be either along a plane of orthotropy or would have a

zig-zag path.

Partly because of the fact that some of the most important

structural applications of composites have been in sheet form, and

partly for analytical reasons, the crack problems in orthotropic

materials have been studied mostly -for 'the cases of plane stress or

plane strain. In plane problems, if the medium is infinite con-

taining a line crack or a series of collinear cracks, it was shown

that the stress intensity factor is identical to that found for an

isotropic plane with the same crack geometry [1-4]. However, it

was also shown that if the medium is bounded the material orthotropy

would have an influence on the stress intensity factors, and depend-

ing on the nature of the orthotropy, the stress intensity factors



may be greater or smaller than the corresponding isotropic values [5].

In [5] a uniformly loaded orthotropic strip having cracks perpendicular

to the sides was considered and the plane of the crack was assumed to

be one of the planes of material orthotropy. This and similar solu-

tions would be adequate to study the fracture problems in sheet struc-

tures in which the stress-free boundary is parallel to one of the

planes of material orthotropy. On the other hand if the stress-free

boundary of the sheet does not coincide with a plane of orthotropy

and yet, as expected, if the crack lies on a plane of orthotropy, then

the solution of the so-called inclined crack would be necessary to

study the related fracture problem. Such a problem is considered in

this paper for an infinite strip. The crack is assumed to have an

arbitrary location and orientation in the strip (Figure 1), the only

restriction being that the plane of the crack is a plane of material

orthotropy. The problem is formulated for arbitrary normal and shear

tractions on the crack surface and the cases of both internal and

edge cracks are considered. The corresponding internal crack problem

for an isotropic strip was considered in [6].

2. FORMULATION

The plane elastostatic problem under consideration is described

in Figure 1 where xl and x2 refer to the axos of orthotropy and the

crack is located on the line x, =O, a<x2<b. The solution of the

problem is _expressed as the sum of two states of stress derived from

the Airy stress functions Fl(xl,x2) and F2(x,y) where the coordinates

(xl,x2) and (x,y) are defined in Figure 1. Referred to (x l ,x2) axes,

in terms of the stress function F1 the stress components are given by

( 1) 92F 	 (1)	 a2F1	 (1)	 a2F1

a ll	 -Tx-T-1 '22	 ax s alt :. _	 (1)
axl ax2

The stress function Fl must satisfy the following differential equa-

tion [7]:
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The elastic constants aij are defined through the stress-strain rela-

tions as follows

eil	 all'll + al2022	 E22 _ a 2l'll + a22022	 2E12 - '66'12

(4)

In terms of the engineering constants they are given by

all = 1/E ll ' a22 - 
l/E22 ' a12	 _"12 /El
	 a21 ' a 66	 1/G12

(6)

By using the Fourier transform in the variable x 2 , (2) gives the

following characteristic equation:

M4 _ 02m2 + al	 0	 (6)

Let the roots of the characteristic equation (6) be

ml	W1	 -1113 	 m2 = w2 = -m4	(7)

The known constants wl and w2 are real if a?>45 1 and are complex

i

	

	 conjugates if 02<4p l . The solution of (2) may then be expressed in

terns of the following Fourier integrals:

-wl IsI xl 	-w21 slxl -isx2
Fl(xlSx2 ) 	2n ( r (s)e	 + B(s)e	 a	 ds , xl>0

m
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1 r-[	 wl ^s^x l 	w21s1x1^ -isx2
Fl(xl,x2) = 2ir JI LA 1 (s) e	+ B1 (s)e	 a	 ds	 xi <0

(8)

where oi l and w2 are selected in such a way that they have positive

real parts. Observing that

Fl( +0 ,x2) = Fl (-O,x2 ) , Bxl F1
(+O,x2 )	 axl Fl (-0,x2 ) ,	 (9)

equations (8) may be written as

	

1 A	

_w ,s,x	 -w (s,x ^ -isx

F1 (xl ,x2 ) - 7r	
s)e 1
	 1 + B(s)e 2
	 1 e
	 gA(	

ds	 x1>0

	

(	
'
	 w IsIX

F1 (xl' x2 )	 2n J rl [l A(5) + c2g(s)I 1	 1

	

l	 w2lsIx11	
-isx2

+ 1c
3A(s) - c,B(s)]e	 j e	 ds , xl <O	 (10)

where

w1+w2	 2w2	 2,,,

c	
-w

l = _ wl2 , c2	 wl-w2	
c3	

wl=w2	
(11)

If we now define the discontinuity in the displacement derivatives by

fl( x2) - ex2 1ul
^( +O,x2) - ui ) ( -0,x 2 )7 ,

f2 	 _ ax [u2) (+O,x.d - 
u2) 

(-A,x2 )1	
(12)I	

2

`	 and assume that

fl(x2) = 0	 f2(x2)	 0 , -,<x2 <& , 
b<x2<-	 (13)
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after some manipulations the unknown functions A and D c^vl be obtained

in terms of fl and f2 and the stress components may be expressed as

( l )	 1	

( Lb	 (t-x2)fl(t)/wl+U(xlf2(t)
°11 (X1' x21 = ,ra22 w t -w2 f	 t-x2 +wlxl

+ (t-x2)fl/w2+w2xlf2(t)	
dt

t-x2 +Wp	
(t4)

(1^fb wt(t-x2)f2(t)-wlxlfl(t)

Q12 (x l ,x2) - 2na22 w
T7;2 Ja L tt-x2 +wtxt

+ w2xtft(t)-w2(t-x2)f2(t) 	
dt ,(—t-X2) 

+w2x1	
(15)

O	 1	 b 11(t- x2)ft(t)+w^xif2(t)

Q22 (xt' x2 )	 2na 22 wt -w2 7a L	 t-x2 +wiX1

w2(t-x2)ft(t)+wz)^1f2(t)^

Referring now to the second solution in which the stress function

F
2 

isexpressed in coordinates x,y (see Figure d), it can be shown

that the compatibility condition reduces the following differential

equation:

a 4 F2 	34F2	 a4F2	 a4F2	 a4F2 =

8x .+ Y1 away + Y2 a^ay2 + Y3 sx—	+ Y4 ay+ g ,	 (17)

where

2H6	 2H4+H3	 2H5	 Ht

Yt = - H2 , Y
2 = H2 	 Y3 = - H2 Y4 = H2	 (18)

-5-
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Hl = all cos g o + a22sin 4 o + (2a12+a 66)sin 2ecos 20 ,

H
2 = allsin4e + a 22cos 4 e + (2a 12+a66 )sin 2ecos20 ,

H3 - a 66 (cos 2e-sin 2o) 2 + 4(all+a22-2a12)sin2ecos2e

H4 = a12 (cos 4 e+sin 4 e) + (all+a22-a66)sin2ocos29

H 5	[(a66+2a12 )(cos 20-sin 2o) - 2(allcos2e-a22sin2e)]sinecose

H6 0 [ - (a66+2a l2
)(cos 2 0 - si n 2e) - 2(allsin2e -a22cosze)]sinecoso

(19)

Let the solution of (17) be expressed by the followin g Fourier

integral

m 4	 rkys -ixs	
20

F2 (x,Y) ' 2n J E C
k (s)e	 a	 ds	 ( )

L l

Then, substituting from (20) into (17), after some analysis the charac-

teristic equation giving r l ,...,r4 is obtained as

Yrr4 - 
i.y3

r3 - Y2r2 + i Yl r + 1 = 0 .	 (21)

(21) are complex and satisfy(The roots rl ,...,r4 of 

1 (22)r3 = - r2 , rq =	 rl

For the second solution the stress components are found to be

1

m 4	 r sy -ixs

f	 aXX(x,Y) = a2ayz 2, E s2rk^ke k e	 ds	 (23)
-^ 1

Once  may also note that for e =
0 the roots are real, and if r ,..,r4

are the roots correspond i n g to the angle el, then for the angl^

e=e1+1r/2 the roots are rl,..,r4.`

-6-
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ax^( X,y)
02F	 42
DXDY	

1	

S2rk0kQ
rksy

 C- 
ixS 

ds (24)

0 2F	 4	 J'k SYqyy ( x ,y)	 2	
S2C	

- 
ixs

3x -.1	 r	 e	 dske

It will now be assumed that at i given point in the cracked
orthotropic strip shown in Figure I	 the stress state can
by the

be expressed
sti ll]	 O f the stresses given by equations (14-16) and (23-25))

namely

3 i j(x l IX2 )
(2)

= a i j(xl,x2) + a i J ( 'x 1' x2 )	(i,j=1s2) (26)

or

a	 (x,y)aa
j 0 

( X ,Y) + a Was	 " O(X,Y)	 (a's)	 -	 (X,Y) (27)

In ap plying to the boundary conditions,	 (26) and (27) Should be used
with the following transformations:

1111('x
	 x 2 1'xx	 2ayy	 2n Il a1 2 XY

"l 2 ( 
x (n2-n2) ( 2 )	 (2)	 (2)

1	 2 axy + n
1.

11 2 (a
xX -0YY) (28a,b)

and

CY 
(1)

X ,y)
xx

( n2a(111)
I	 + n2 22 + 2n 1 It 2a l 2

a 
( I

) (X,Y)XY

IE

(n2n2) 
( 1 ) -	

11	 11	
( 1 )	 (1-

1	 2 012	 1	 2 ( " l l -a22
)
) (29a,b)

where the direction cosines are given by

coso
112 =	 s ' D8	 - (30)

-7-
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3. THE INTEGRAL EQUATIONi

The formulation of the problem given in the previous section

contains six unknown functions, C k (s), (k= 1,..,4) and fj (t), (j=1,2).

Referring to Figure 1, these unknowns can be determined by using the

following boundary conditions:

ayy( X , O ) _ aXy(X,O) - ayy(x,h) = Yxy (x,h)	 = 0	 ,	 --<x<W	 (31)

gll(Q,x2)_= P1(x2) ul2(O'X2) = p2 (x2 )	 I	 a<X2<b
	 (32)

where the crack surface tractions p l and p2 are known functions and

are assumed to be the only external loads applied to the strip.

Solutions to other types of loading may be obtained by using the

standard superposition technique. Substituting from equations (14-

16, 24, 25, 27, 29) into (31), we obtain the following system of

algebraic equations expressing Ck(x), k=1,..4, in terms of fl and

f2:

4	 4
CO S) = Rl(s) ,	 rkCk( s ) = R2(s)

4	 rksh	 4	 rksh
Ck (s)e	 = R3 (s)	 E rk C k (s)e	 R4(s)	 (33a-d)

where the functions Rj(s), i =1,..,4, as well as the solution of the

algebraic system (33) are given in the Appendix A.

Substituting now from equations (14, 15, 23-26, 28) into (32)

and using the appropriate expressions for C k (s) found in Appendix A,

the following system of singular integral equations are obtained for

the functions fl and f2:

oli( O ,x2) =3 fa l [t- Z + kij(x2't)^ f
j (t)dt = Pi(X2) , i=1,2TrD

a<x2<b	 (34)

-8-
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where

D1 = 2a 22wl w2 (wl +w2) , D2 = 2a22 (wl +w2 ) .
	

(35)

and the expressions of the kernels k id , (i ) d =1,2) are given in the
Appendix B. Referring to the definition of f l and f2 given by equa-

tion (12) and the assumptions (13), it is clear that, in addition

to (34) f •, and f2 must satisfy the following single-valuedness con-
ditions:

bJfd( t ) dt = 0	 d=1,2	 (36)

a

From the results given in Appendix B, the kernels kid(x2,t), (i,d=1,2)

appear to be complex valued functions. However, by using the proper-

ties of the roots w d , (d =1,2) and rk , ( k=1,..,4) of the characteristic
equations, it t.an be shown that, as expected, ki d are indeed real

functions.

Note that the index of the singular integral equations (34) is

+1. Therefore, the solution is of the following form:

fi ( t ) = Qi(t)[(t-a)(b-t)]'' , a<t<b	 i=1,2	 (37)

where the functions gl 
and g2 are bounded and continuous in [a,b].

It may also be noted that equations (34) give the stress components

a ll (O,x2) and a12 (0,x2) outside as well as inside the region

(xl = 0, a<x 2<b). Therefore, from (34) one may easily obtain the

stress intensity factors in term-- of the unknown functions gl and g2.

The stress intensity factors are defined by

kl (a) = lim	 2 a-x2 all(O,x2)
x2+a

-9-
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k2 (a)	 = lim 2a-x2 o12(O,x2)
x2aa

k l ( b )	 - lim
'172b7 all ( O ,x2 )	 ,

x24b

k2 (b) - lim 2x2-b a12(O,x2)	 (38a-d)
x2ab

Since the kernels kij (x2,t), (i,f =1,2) are bounded in the closed

interval [a,b], from (37) it follows that the functions

k i (x 2 ) 
= it ! al

b F ki] (x2 ,t)fj (t)dt
	

0=112) , (0<x2^h/cose) (39)

are also bJ EiiuJ. Thus, defining the fundamental function

X(z) _ /Fz•	 z-a	 (z=x2 + ix2)

from (34) and (37) we obtain

b g (t)dt
D3 ali (O,x2

) = a 1a (t-x 2)X+ (t) + ki
(x 2 ) , (J=1,2)

Defining now the sectionally holomorphic functions

b g.(t)dt

a (t-z)X (t)

and observing that ml and p2 
are holomorphic outside the cut (a<x24b,

x2=0), we find

D
j
a
lj

(x2 ,O) = - 'pi (x 2 ) + k] (x2 )	 (J=112, x2:a, x2>b)	 (43)

On the other hand, following [8] from (42) it can he shown that

-10-
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^j(z)	 X zz) - Pj (z)	 j = 1,2 (44)

where Pj (z) is the principal part of gj /X at infinity. Thus, it is

seen that

Djal,i(x2,0) _ - X x2) + Pj (x2 ) + kj (x2 ) , (ya, x2>b)	 (45)

Finally, from (38), (45), and

X(x2 ) =	 x 2-b x2-a	 _ -	 b-x2 a-x2	 (45)

we find

kl ( a ) = Dl 9 l ( a )/ b-a /2	 k2(a)	 p 92 ( a )/ b-a /2
2

kl (b) _ - 	 9 1 ( b )/ b-a/2	 k2(b) _ - 02 92(b)//(F--a7/-2

(47a-d)

4. NUMERICAL SOLUTION AND RESULTS

Thes stem of singular integral equations (34) is solved numeric-

ally by first normalizing the interval (a,b) to (-1,1) and then using

the Gauss-Chebyshev integration formulas [9]. The important problem

in the numerical analysis is the evaluation of the kernels kij(i,j=1,2).

To do this a highly accurate and relatively simple technique for the

calculation of the roots ri, (i =1,:.,4) of the characteristic equation

(21) was needed. An outline of such a technique may be found in [10].

Even though complex algebra had to be used throughout the numerical

calculations, values of the kernels were, of course; always real.

First, changing the material constants or the geometry, the isotropic

results given in [6] and the results of the symmetric crack geometry

for the orthotropic strip found in [5] were verified. The numerical

-11-
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results are then obtained for the following two basic ioading condi-

tions (see Figure 1):

p l (x2 ) = - GRICOS 2 0	 p2(x2) a - aR1sinocose	 (48a,b)

which correspond to uniform (membrane) loading o xx(y,	 aim, and

2X2

PI (X2) = a b ( —F coso-l)rosxo

2x,

P2(x2) = a
b(r coso-1)sinecoso	 (49a,b)

which correspond to "pure bending." Here ab is the surface stress in

the strip under bending away from the crack region. Some results are

also obtained for uniform normal or shear tractions on the crack

surface in order to explain certain anomalies arising from the in-

clined crack solution. As an example a boron-epoxy composite sheet

with the following material constants is considered (see equations

4 and 5)s

E ll = 24.75 x 106 psi (170.65 x109 N/m2)

E22	
8 X 106 psi (55.6 x 10 9 N/m2)

G12 = 0.7 x 106 psi (4.83 x 10 9 N/mz)

112 = 0.1114

For this material the roots mi or wj, (j = 1,2) of the characteristic

equation (6) turn out to be real.

The results for the strip containing an internal crack are given

in Tables 1-4. The st ress intensity factors given in the tables are

defined by equations (38a-d) and are normalized with respect to

12
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aA or vbv, c R (b-a)/2. Table 1 shows the results for a synunetri c-
al ly located internal crack (i.e., for a - (h/coso) - b) and for vari-

ous values of the angle o. Table 2 shows the results for an excentric-

ally located internal crack. In this case the crack tip x 2 = a and the

crack angle o are fixed (a = 0.2h/coso, 0:1 1h) and the crack length
b-a is varied. The stress intensity ratios kj and kZ shown in this

table are defined in Table 1. The general rule for an excentric crack

perpendicular to the sides of the strip is that k l (a) is always greater

than k(b) if a<h-b. This result is also expected for an inclined crack

provided the external load is either uniform pressure or uniform shear

traction on the crack surface. However, in the inclined crack case

under more general loading conditions this rule may not always be valid.

For example, from Table 2 it is seen that for b = 0.4h/coso, kl(b)>ki(a).

Even though this result appears to be somewhat unexpected, it can

easily be explained by the coupling effect between the shear and nor-

mal crack surface loadings arising from the inclined crack geometry.

The stress intensity factors due to only normal or _shear traction on

the crack surface are shown in Tabls 3. Note that for the primary

stress intensity factors (i.e., k l for normal loading and k2 for shear

loading) the general rule mentioned above remains to be valid.. How-

ever, since the coupling effects (i.e., k l for shear loading and Q

for normal loading) can be positive or negative, the type of anomalous

results observed in Table 2 should not be entirely unexpected.

In reference [5] it was shown that in an infinite orthotropic

strip containing cracks perpendicular to the sides the stress state

in the plane of the crack in general and the stress intensity factors

at the crack tips in particular are not affected by a 90 0 rotation of

the axes of material orthotropy. From the proof given in [5) it can

be seen that this rather general result will not remain valid for an

inclined crack. Table 4 shows the result of an example regarding the

rotation of material axes. In the strip labeled b y 30° the stiffer

material axis Ell makes 30 0 with the x-axis, and in that labeled

-13-
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Table 4. Comparison of the stress intensity factors for isotropic
and orthotropic strips with a symmetrically located internal
crack. Tension: a = ax x +-,y ), bending: oX	 b b 0 -2y/h),
(b-a)/(h/cose) = 0.	 c = ^b-a)/2, a = ( h /cose] - b

I

e= 0 e =,r/6
Tension Tension Bending

kl /om^ lm /c— k2/amp k l /o bi k2/ob/

Isotropic

Ortho.	 (30°)

Ortho.	 (120 0 )

1.303

1.226

1.226

1.080

1.420

1.172

0.504

0.553

0.518

0.248

0.288

0.258

0.137

0.141

0.138

by 1200 Ell axis makes 120° with the x-axis, i,e., in the latter case

the material has been rotated by 90° (see figure 1). The isotropic

results are also given in the table. The table shows that in the in-

clined crack problem not only the material orthotropy but also the

orientation of the axes of orthotropy may have a -significant effect

on the stress intensit y factors.

In the case of an edge crack, i.e , for a =0, b<h/cose, the in-

tegral equations (34) remain unchanged, H;:wK.ver, the unknown functions

fl (t) and f2 (t) are bounded at t= 0 and the conditions (36) are no

longer valid. In this case the integral equations can be solved nu-	
?1

merically by first normalizing the interval (O,b) to {-1,1) through

the change in variables
	

)

t = 2 (r+1) , x2 = 2 (s+l) , -1<(s,r)<l ,
	 (50)
	

)

and then using again a Gauss-Chetyshev integration formula. A conven-

ient technique in this problem is defining the unknown functions by



:II

and using the collocation points s j obtained from Un-l(sj)= 0,

(J=1,..,n-1) and the condition Gi(-1) =0 (to ,iccount for boundedness

of fi(t) at t=0) to calculate Gi(rk), (W,..,n) Tn(rk) = 0, where

,r	 Tn and Uu are Chebyshev polynomials. Table 5 shoos the calculated

results for the edge crack. In this problem too the external load

is either a uniform tension or a uniform bending applied to the strip

?	 away from the crack region.
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R I (s) n 2

) 1 1 	 w2	 1
'	 n

= Alf(wln 2 	 I 
+ ("' - n 2	 )I I + ON 3	 2(,)

71	 1	 2	 1 1	 2w	 1

n2WI)JI+ (n	 + 2nln2[wlK	 2'	 K I - w, Ll2'w2	 1 2	 Z	 1 -w	 2	 1 +w2 2

R 2(s)
Al7- {nln,[( wl 	 w-wl )I J14 2 	 2(-L+w2)Il - (wl+w')J'

+	 -(w2+w')J'l + (nfn')Ew,Kl -w 2 K' -w,Ll +w2
L' I}2	 2	 1	 2	 1	 2	 1	 2

R 3 (s)

2
n	

n^- n
_	

2 I 	 12 + (((A	 n i'w l	 7
1	

Vf + (-
2 	

2w 
1	 2	

n'w' - n'wl )jf
I	 w	 1	 1	 1	 2	 1

2	 2 -
	 -+ (n z	 I)JI + 2n n [w K	 w K 2 w L 2	 w 2 L2]}2w2 - n W

1	 2	 2	 1	 2	 1	 1	 2 2	 1	
+

1	 2

R4 (s) A1 12	 -	 (W,+(1^3)J2
+w2)1	

{n l n
2 l-*(-WL, +w l )1 12 + (-WL	 2	 12

++	 ] + (n	 ) [)j(w	 W3l	 K2	 2] 1
2	 2	 2	 f-n'w,	 2-w,1	 2	 I-w2K2 L 12+w2 L 2

p' 1
	 21ra 22(wT-wYS

I k (s) b	 k
f	

Ei (s,t)fI (t)dt	 ,
a

Jk(S)
b F^(s,t)f2 (t)dt	 ,

fa

K^(s)
b

Fk(s,t)ff	 i	 l(t)dt
a

b

(Al -A4)

(A5)

T

APPENDIX A

Expressions of the functions Rj (s) and the solution of equations
(33):

L ^ (s)	 E (s,t)f2 (t)dt	 (j,k) =(1,2)	 (A6-A9)

fl
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+ i	 s 	c] cos c] st - in l ai sin cyst]TT

E	 s' t
^() -IsIXJ(h-nit)

= ire	 {-nlajcos[cjs(t-nlh+nlwlh)]

+ cjsin[(s(cj(t-nlh+nlwlh)]

+ ic]	s	 cos [sc](t-nlh+wlnlh)]

+ in l aj sin [scj (t-n l h+wjl n l h)])	 ,	 J =1,2	 (A10,All)

FI (s,t)
-	

[-
^s^a^n i t	 c

=	 e	 cos cyst + n l b] sin cjIsIt
J

+ i + n l b3 Cos cyst + i ,;^ sin cast]

F2(s,t) =rte
-lslx . (h-n t)	 c

J	 1	 {	 cos[scj (t-nl h+0 nlh)]Wi

+ nibjsin[lslcj(t-nlh+wjn,h)]"

+ i Ts nlbjcos[scj(t-nlh+0nlh)]

- i w sin[scj (t-n l h+w^n l h)]	 j-1,2	 (Al2,A13)
J

a^ = w^/(00+n2) , b^ = 1 /(njw^+n2) , c j = -n2*20+n2)

J =1,2	 (A14-Alb)

Solution of equations (33):
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C k (s) = ZILST ni
k3 (s)R3 (s)	 k-1,..,4

1

rlsh	 r2 sh	 r4 sh	 r3sh
A(s) _ (rl-r3 )(r l -r4)(e	 -e	 )(e	 - e	 )

r2 sh	 r3 sh	 r l sh	 r4sh
- (rl -r3 )(rl'r2 )(e	 - e	 )(e	 - e	 )

r2 sh	 r4 sh	 r l sh	 r3sh

M11(s) = r4(r	
(r2+r3)sh

3 -r2)e	 + r3(r2-r4)e (r2+r4)sh

(Al 7)

(All)

+ r2 ( r4 
-r3 )e(r3+r4).sh

1"12 (s) = ( r2 - r3 ) e
(r2+r3)sh 

- 
(r2-r4)e(r2+r4)sh _ (r4_r3)e(r3+r4)sh

M13(s) = r2(r4-r3)e r2sh + r3(r2-r4)e r3sh + r4(r3-r2)e r4sh

'N(s) = ( r3-r4)e r2sh + (r4-r2)e r3sh + (r2-r3)e r4sh

(rl+r3)sh	 (rl +r4)sh
m2l(s) = r4 (rl -r3 )e	 - r3(rl-r4)e

+ rl(r3-r4)e 
(r3+r4 )sh

M22(s) = (rl-r3)e
(rl +r3)sh 

+ (rl-r4)e(rl+r4)sh

+ (r4-r3)e (r
3+r4 )sh

rl sh	 r3sh	 r4sh
m23(s) = rl (r3 -r4 )e	 - r3 (rl -r4 )e.	 + r40. r3 )e
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A .;

t

`1 c g

m24(s) _ (r4-r3)e rash + (rl-r4)e rash - (rl-r3)e r4sh,

(rl +r4 )sh	 (r2+r4)sh
M31(s) ° r2(rt-r4 )e 	 + r^(r4_r2)e

-
r
4 (r1 -r2 ) 

e(ri +r2)sh i

(rl +r4 )sh	 (rl+r2)sh
m32 ( s ) _ (r^ -r4 )e	 + (r^ -r2)e

(rl+r4)sh

M33(')	
rash

r^(r4-r2)e	 - r2(rl-r4)e 
r2sh - 

r4(ri-r2)e 
r4sh

r,sh	 r sh	 r sh
M34(s) = (r2-r4 )e ,	 - ( rl -r4 )e 2	 + (r, -r2 )e 4

(rl+r2)sh	 (rl+r3)sh

M41(s)	 r3 (r^-r 2 )e	 - r2(r^-r3)e

ri(r2-r3)e (r2+r3)sh,

M42(s) = - (r l -r2 )e (rl+r2)sh + (rI-r3 )e(rl+r3)sh

+ (r3-r2)e (r3+r2)sh9

m4 3 ( s ) = rl(r2-r3)e rash
	 r2sh	 rash

r2(rl-r3)e	 + r3 (r l -r2 )e	 ,

r a sh	 r2sh	 rash
m44 (s) = (r3 -r2 )e	 + (r l -r3 )e	 - (r

l
-r2 )e	 (A19-A34)
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APPENDIX B	 Or PUUft QUAIATY

Expressions of the kernels k ij ( x 2 ,t), (i.J-1.2):

k ij (x2, t ) - d i I-[Gij(x2.t,$) + G ij (x 2 ,t,-s)] ds 	(i,J) _ (1.2)

	

10	 (B1)

W11^.``	
d -
	 1	 ; (B2.B3)

^^ n 	 W l -W 2 ) •	 2	 n W1-J2/

-in2x2s

	

G 11
{ x 2 .t.$) = e	 s	 [hl E1+h2E2+h3El+haE2+h6 W1F1

- h5`2F2+h6W1 F 1- ` ^6W2 F '2]•

-in2x2s

	

G1Z ( x 2 ,t.$) - e u s	 [ W h E+h E -WhE +151W252161^'2h6E2

	

+ W h 1 F'+^,,2h 2 F2 +,,,2 h 3 F ' +w2h^ F 2^	 •

-in 2x2s F

	

G (x 2 ,t s) s e	 s	
1E1+v2E2+ SE1+v4E2+v5''1F1

21	 '

- v 5 ) F2+vow F^-v6w2F2^

-in 2x2s

t ' s) = e A s	 ^W1v5`1+W v 5 E 2 ,,,1v6E1+``'2v6E2
G22(x29 

+ W 2 v F 1 +W

	

	 F I +W 2 v F'+,.,'-v F2^	 (B4-P1)
22 1 31 242J

where the functions E^(x,t) and F^(s,t), (J.k = 1,2) are given by equa-

tions (A10413 ) , „(s) is given by 013), and	 ^^



li

(B8-BI 3) 	 ,i

4
h l (x 2 .$) _	 'AOXVs)[`'lmkl+ia2mk2l

1
4

h 2 (x 2' s) = 1 `Ak(a3mkI+ia4mk2)

4
h 3 (x 2 ,$) =	 a k (a

l mk3
+ia 2m k4 )	 ,

4
h4 (x 2' s) = 1 ak(a3mk3+ia4mk4)	 ,

4
h 5 (x 2 ,$) _	 ak[2n1n2mk1-i(n^-n2)mk2l

1

4

h6 (x 2 ,$) _	 cxk[2n1n2mk3-i(n1-n2)mk4l

rnxs
ak (x 2 ,$) 	 (nfrk- ►2- 2inln2rk)e k 1 2	 (k-1,..,4)

4
v 1 (x 2 ,$) a 

1 
6i (a l m

jl
+ia 2m

j2
)	 ,

4

v 2 (x 2 ,$) _	 t?^(a 3m
j1

+ia 4in
j2

)	 ,

4
v 3 (x 2 ,$) = F B

i
( a I m

D
+ ia 2m

j4
)	 ,

1

4

v4 (x 2 ,$) = 1 S
i
(a 3m

j3
+ia 4m

j4
)	 ,

4
v 5 (x 2 ,$) =	 p^[2n1n2nj1-i(n•z- ,^2)mj21

1
4

v 6 (x 2 ,$) = L 6 [2n1n2mj3-i(n1-n2)mj4l

1

(B'4)

(B15-620)

s

t

r.n l x 2s
(x29 s) = [n 1 n 2

r^+n 1 n 2
+i(n^-n2)r^le 3	 (J=1,..,4)	 (B21)

l
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-ffl

n'
z	 2a, a n,,'1

2

a 3 = -n^w2
 + u'2	

a4 = - 
n 1 

2 - nln2w2
2

(B22-B25)

and the functions m kj (s), (k,j=1,..,4) are given by equations (A19-A34).
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