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ABSTRACT

The antiplane shear problem for two bonded d i s s i m i l a r half

planes containing a semi-infinite crack or two arbitrarily located

collinear cracks is considered. For the semi-infinite crack the

problem is solved for a concentrated wedge load and the stress

intensity factor and the angular distribution of stresses are

calculated. For finite cracks the problem is reduced to a pair

of integral equations. Numerical results are obtained for cracks

fully imbedded in a homogeneous medium, one crack tip touching

the interface, and a crack crossing the interface for various crack

angles.
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1. INTRODUCTION

In analytical studies relating to the fracture of structural

solids, solutions of anit-plane 'shear'problems serve two distinct

purposes. First, they may be: used to shed some light on the quali-

tative behavior of the solutions for the corresponding somewhat

more difficult in-plane deformation problems. Secondly, they may

have practical applications in their own right in situations such

as torsion or three-dimensional problems in which the so-called

third mode is separable. Particularly in the fracture of nonhomo-

geneous materials initiating from the flaws in the close neighbor-

hood of phase boundaries, such as in the growth of microflaws in

polycrystals and cracks in composites, the third mode of fracture

may be quite important. With this in mind, it seemed to be worth-

while to report some new results regarding the anti-plane shear

cracks in nonhomogeneous materials. The main problem is that of

a slanted crack in the neighborhood of a plane bimaterial interface,

including the geometries of the crack touching or crossing the

interface. The cases of semi-infinite crack and the half plane

consisting of two bonded wedges are also considered as they relate

to the main problem.

The general antiplane shear problem is wel1-understood and the

basic techniques dealing with its solution have been thoroughly

documented in literature. Therefore, to include in this paper an

exhaustive review of the subject and the details of the analysis

did not seem to be necessary. The problem under consideration is

the generalization of that considered in [1] where only the case



of the cracks perpendicular to the interface was studied. The

general method has also been described in [2]. References on the

crack and dislocation problems may be; found in [1] and [2j.

2. SEMI-INFINITE CRACK AND THE HALF PLANE

The anti-plane shear problems for bonded d i s s i m i l a r half

planes with a semi-infinite crack and for a half plane which con-

sists of two dissimilar wedges are described in Figures 1 and 2.

In the case of semi-infinite crack under a concentrated anti-plane

shear loading given by

TlQz(r,0) =
 T
3ez(

r>°) = q<5(r-ro), (1)

using the standard M e l l i n transforms the solution may be found as

w.(r.e) = -ô r f [A.(s)sin(s0)+B.(s)cos(se)]r~sds,
^ Jc-i°°

T.jQz(r,e) = 2^- | . yJ.s[AJ.(s)cos(se)-B.(s)sin(se)]r~
s~1ds,

i rc+i°° <. i
T,rz(r,0) = -̂r- u.slA.(s)sin(se)+B.(s)cos(se)]r~ ds,
J t T T l J ^ ' o o J J J

(j = 1,2,3) . (2a-c)

where w- is the z-component of the displacement, T. and T. are
J J8z Jrz

the stresses in the jth wedge shown in Figure 1, and

qrs

Al(s) = A3(s) = -silf ,

-yrAr(s)sin.(2s.Tr)

sin(sTr)K(s)



( <: ̂  -V ; sin(sir)K(s)

W3 V J' cos[s(9o-Tr)J

A«(s)sin(s6HB,(s)cos(se,J-A,(s)s1n(s8 )
n / ,. \ _ £ 0 C 0 0 / ̂ \

BI(S) cos(s9o) : ' (3a'e)

K(s) = (y1-u2)cos[s(7r-290)] - (y] +y2 )cos (sir) , (4)

Of particular practical interest is the shear cleavage stress in

the half plane 2 which, for r«rQ, may be expressed in the following

asymptotic form:

0(r/r°)Vl). '
60<e<e0 + TT , (5)

rtrt+7r) . (6)
o — — o

where s is the root of K(s) = 0 with 0<Re(s1)<l and it can be shown

that there is only one such root in this strip which is always real,

and Re(s2)>l. Table 1 shows the power of stress singularity for

various material combinations and for various values of 9Q. Expres-

sions similar to (5) can be developed for other stress components

in the two materials. Figures 3-5 show some sample results for the

function G ,(e) in the entire range 0<9<2ir. Analytically, it can

be shown that G ^e) becomes maximum for 8 = TT indicating that the

plane of the crack is the weak shear cleavage plane in the bonded



medium. One may also note that (arbitrarily) defining a stress

intensity factor by

k3 = lim^/fr
3 T

2Qz(r^) . (7)

it is seen that in this problem

k3 = /2~ q rjj 6_ - ] ( T T ) . (8)

Also, referring to Figure 1 and defining the stress intensity factor

in terms of the crack opening displacement as (see [1]),

k
3 = lining /? y*g£ [w,(r,+0) - w3(r.-0)] (9)

we find

y* -y2cos(s1eo)cos[s1(TT-60)] ^ (1Q)

si n[s, (fr-6)Jcos[s, (fr-0 ) ] + s i n ( s -, 6 )cos (s, 8 )

Figure 6 shows an example for the angular distribution of the

asymptotic values of T which, for the nonhomogeneous medium, is

seen to be discontinuous at the interfaces 8=9 and 9 = rr + e .

For the half plane shown in Figure 2 the basic equations (2)

are still valid where for the external load

the functions A.(s) and B.(s), (i=l,2) are given by

q,rs sin(s9 ) 2
Al(s) = y^K^s) =yy A2 ( s ) '

q,r^ cos(s9 )

Ms) = 2y~{(y1-
|-u2)sin(sTT) + (p2-y] )sin[s(7r-29o)]} . (13)



Table 1. Power of stress si ngul ari ty/3 , for a crack
terminating at the interface, l̂ l̂ = ^.0072 for
Boron-Epoxy, 0.043 for Alurninum-Epoxy, 1.0 for homo-
geneous medium, 23.08 for Epoxy-Aluminum, andf38.46
for Epoxy-Boron.
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0

0
IT

16
TT
T
3TT

T6
IT

4
STT
T6"
3TT

"8"
77T

T6
IT

2

0.0072 0.043 1.0 23.08 138.36

0.5 0.5

0.890 0.753

0.919 0.809

0.931 0.836

0.938 0.851

0.942 0.860

0.944 0.865

0.946 0.868

0.946 0.869

0.5 0.5 0.

0.5 0.468 0.

0.5 0.432 0.

0.5 0.391 0.

0.5 0.344 0.

0.5 0.290 0.

0.5 0.228 0.

0.5 0.165 0.

0.5 0.131 0.

Table 2. Power of singularity $' at
for bonded wedges
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Examining the asymptotic behavior of the solution for r«r , it

can be shown that for e <ir/2 the power 3' of the dominant term is

negative if y-j<y2 ( i - e - > tne stress state at r = 0 is bounded),

and positive if Vh^o 0 - e - > the stress state at r = 0 is singular)

Near the apex the shear cleavage stress is (Figure 2)

H.(6) c ,
T. (r.6) = 3- _J - +0(r/r)

s2-') , (14)
I6z ro (r/r0)

p

(y1-y2)sin[s1(92-e)]-(y1+y2)sin[s1(e2-e)]Hi(e) = - Lis-p - •
-2y?sin[Sl(e -6)]

H2(e) = — * L(s j — ^ - , e2 = 7r-eo , (15)

L(s1)=(y1+y2)7rcos(s17r) + (y2-y1)(7r-29o)cos[s1 (7T-260)] , (16)

It can also be shown that the displacement derivatives and the

cleavage shear along the bond line 6=0 are related by

yl Ir wl(0'"eo) = Uy1-y2)cos[s1(TT-20o)]

+ (y1+y2)cos s^} ̂  w2 (0 ,Tr-60) . (17)

06Z

-2y1y2sin[s1(TT-6o)]
l (y2-y1)cos[s1(7r-2eo)]-(y1+y2)cos(s1u)

Table 2 shows some sample results for &' where the modulus ratio

used as examples correspond to Al umi num-Epoxy and Boron-Epoxy

material pairs.



3. FINITE CRACKS

Referring now to Figure 7 we consider the bonded half planes

containing two collinear cracks (a-i<r<b, , 9= 9-, ) and (â ^̂ p ,6=71+9-, )

It w i l l be assumed that the crack surface tractions

r'e+7T) = <l ( r) (20)

are the only external loads acting on the medium. The results for

all other types of loading may be obtained through the standard

superposition technique. Defining the unknown functions

fi(r) = ^fl>i(r>V0) - W1(r,61-0)] , 92 = TT + 91 ,

i = l,2 (21)

noting that (see Figure 7)

fjdO = 0 , 0<r<a. , b.<r<» , i = l,2 (22)

and using the standard dislocation solutions as the Green's func-

tions [3], the problem may be reduced to the following system of

integral equations:

a2

f2(s) {?̂ P + k(s,p,61)}ds
a2

b,
ds, (a2<p<b2) (23a,b)

8



where

X =

k""s-v = ̂ (ĝ sm*;, + cos?; • (25)

From (21) and (22) it follows that (23) must be solved under the

following single-valuedness conditions:

fbi f.(r)dr = 0 , i=l,2 . (26)
J a .
ai

The solution of the system of singular integral equations is

of the form

G,(s)
Ms) = - J - — , j = l,2 , (27)
J (bj-sJ^ts-ajjBj

where G.(s) is a bounded function in the closed interval a-<s<b..
J J~~ ~ J

The coefficients a. and 3i may be determined from the application
J J

of the function-theoretic method to the singular integral equa-

tions [4]. Thus it can be shown that

31 = 32 = , for a^O , a2>0 ,

B1 = 3 , 32 = ^ , for a1 = 0 , a2>0 ,

6] = 32 = 3' , for a1 = 0 = a2 , (28a-d)

where the real numbers 3 (0<3<1) and 3' (0<3'<0.5) are the powers

of stress singularity found in the previous section for a semi-



infinite crack and for a nonhomogeneous half plane, respectively .

(see tables 1 and 2).

The integral equations (23) are solved by introducing the

following normalized quantities

2s - (b. + a.) 2p - (b.+a.)
tj = bj - aj
f j (s ) - * j ( t ) .

.
j _ J

b . - a . j+p j j

-V1)- c- t j ) <uto
q-j(p) = Q-j(x) , (-l̂ Cj.t..)<!) , (j = 1,2) , (29)

and by using Gauss-Chebyshev or Gauss-Jacobi integration formulas

(see, for example [5]). For crack geometries a,>0 and a2>_0 or

a-j^O , 32>0 the conditions (26) are v a l i d and the solution is

rather straightforward. For a, = 0 = a? (26) reduces to the fol-

lowing condition

f ] f,(s)ds + [ 2 f?(s)ds = 0 , (30)
J0 J 0

stating that the crack surface displacements at r = 0 must be

continuous. The additional condition which is necessary to insure

the uniqueness of the solution of (23) comes from the function

theoretic analysis (see, for example [5]) and is given by

( y 1 + y 2 ) c o s

(31)

In this section it is assumed that 0<9n<5-. Hence, if y,>vi0, the1 2 i d
characteristic function is K-j(s) = 0 as given by (13), and if y
then in (13) y, and y2 are interchanged, where s, is the relevant
root with 0<s-|<l , 3' = 1-s-j.

' "10 '



4. STRESS INTENSITY FACTORS

For the crack tips fully imbedded in a homogeneous medium,

(i.e., for a-|>0,a2>0) the stress intensity factors are defined by

k3(b.) = Hmr^b>[2(r-b1)]tTi (r.Sj) ,
1 9z

k3(a1) = limr^a [2(arr)FT.
i 62

T. re.

i = 1,2 . (32)

For the crack terminating at an interface, for example, for

a, = 0; ap>0 , k3 is defined as

k3 = Hm^Q/Z r
3< tr (r.8,) . (33)

9z

For the crack crossing the interface, assuming that 0<0,<ir/2 ,

at the intersection of the crack and the interface stress state

is singular only on one side of the crack. In this case the stress

intensity factor is (arbitrarily) defined in terms of the inter-

face shear stress as follows:

kg(0) = limr^0/2~ r
3f T] (r,ir/2) , k~(0) = 0 , for V

6z

k g ( 0 ) = "MiV0/2~ rB< T ] ( r , -V2) , k g ( 0 ) * 0 . f o r y ]
9z

(34a,b)

In the numerical analysis the stress intensity factors are obtained

in terms of asymptotic values of the functions f-(r) and fo(r) or

in terms of g,(+l) , (j = 1,2) (see equation (29)).
J

The calculated results given in the next section is based on

constant crack surface tractions, namely

11



q.(r)=Qi(x)= q.Q , a.<r<bi , -l<x<l , i = 1,2. (35)

For example, if the nonhomogeneous plane is under uniform anti

plane shear

Tlxz(°°'y) = T « q

then

10

(36)

(37)

Or, if the plane is under displacement loading

then

q!0 = -yl£ocosei ' q 20

(38)

(39)

5. NUMERICAL RESULTS

The numerical results for a crack lying in one half plane

only (i.e., for a2 = b2) are given in Tables 3-5 where

aQ = (a-j+b^/2 , c = a1 + aQ. (40)

The tables show the normalized stress intensity factors defined

by

r / x i t - k3(b1} , (41)

K(-D =

, for c>aQ

k3(0)
(42)

laolqio
, for c = aQ

The material pair of aluminum and epoxy is used as an example

In Table 3 VU^-i , in Table 4 y2
<yl ' anc' in Tab^e 5 y^ = 0 (the

half plane). For the crack tip terminating at the interface

12



(i.e., for a-, = 0 or c = aQ) the corresponding power 8-1 = 3 of

the stress singularity is given in Table 1.

The results for the problem of a crack crossing the boundary

are given in Table 6. In this case the normalized stress intensity

factors shown in the table are defined by

Mb,) k ( b )

k'(0)
K3(0) =

 J . (43a-c)

3 ^l1

In this example the external loads are assumed to be the displace-

ment loading given by (38) and (39).. Note that since Mi^o and

0<6-j<ir/2 , kg(0) = 0. The related power of stress singularity

$1 = 3' is given by Table 2.

Figures 8 and 9 show some sample distributions of the density

functions f, and f« for a-, = a2 = 0 which are normalized in the

following form:
b 3

-Ut^l , 0<r<b1 , i = 1 ,2 (44)

where eQ is the load parameter defined by (38). Note that at r = 0

or t. = -1 the density functions become unbounded having a common
_3 n

r~ 1 type singularity.

Figures 10 and 11 give some idea about the crack opening dis-

placement again for the case of a crack crossing the interface.

Here, the normalized displacements W, and Wp are defined by

W.(t.) = 2(-l)i £0(4)
ei+F twj-wTJ . i = 1,2 . (45)

13
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It should be emphasized that at the interface even though the
displacements W] and Wg are continuous, their derivatives are
always discontinuous. This means that at r = 0 the crack
opening displacement would always have a "kink".
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0

Figure 1. Semi-infinite crack terminating at a bimaterial
interface in bonded half planes.
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0 = 0
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Figure 2. Half plane which consists of two dissimilar
bonded wedges.
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m= 23.077

G-, 0.2 -

0

F i g u r e 3; A n g u l a r d i s t r i b u t i o n o f t h e m e a s u r e o f s h e a r
c l e a v a g e s t ress T Q i n b o n d e d h a l f p l a n e s w i t h
a s e m i - i n f i n i t e c r a c k - ( s e e F i g u r e 1 and e q u a t i o n
5 for t e r m i n o l o g y ) . M a t e r i a l pa i r : A l u m i n u m -
Epoxy, 8 = iT/8.
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F i g u r e 4. Same as F igu re 3, QQ - u/4
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Figure 5. Same as Figure 3, 8 '= ir/2.
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m = 0.0433

-0.6 =*—

Figure 6. Angular distribution of the s t ress component

for 6 = Ti/4 (see Figure 1 for terminology).
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Fig. 7 Bonded half planes containing arbitarily located
collinear cracks.
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F i g u r e 8. D i s t r i b u t i o n o f t h e n o r m a l i z e d d e n s i t y f u n c t i o n s
in bonded n a i f p l a n e s w i t h a crack c ross ing the
in t e r f ace '(s?.e e q u a t i o n s 21, 2.9 and 44 and F i g u r e
7 for d e f i n i t i o n s ) .
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Figure 9. Same as Figure 8,
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Figure 10. Distribution of the normalized crack opening dis-
placement in bonded half planes with, a crack cros
sing the interface (see equations 45 and 29, and
Figure 1 for.definitions).
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Figure 11. Same as Figure 10, bj/b- - 2.
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