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NOMENCLATURE

a Length and width of a square plate

t A' Coefficients defined by Equation (2.4g)

A^ Determinant defined b	 Equation	 2.18c	 equal to twiceY	 4	 (	 ).	 a theq	 c

.' triangular element area

(B ] Symmetric Matrix defined by Equation (2.12d)

[G ] Matrix of element vertex coordinates defined by Equation

TV (2.18b)'

dk Distance from bottom reference surface to bottom of kth layer

{d)ij
Displacement Vector for the j th element in the ith layer ^	 t

E Young ' s Modulus of Elasticity for isotropic material, psi

Eij
Material modulus. psi

[E] Material modulus matrix

(GJ Matrix defined by Equation (2.19c) i
ij ^	 r

Gij Material transverse shear modulus
^r

g ,g
a	

^

`First fundamental quantities of shell reference surface for 4:

lines of curvature coordinates A

h Thickness of single layer plate or shell
1

10"N) Integrals defined by Equations (2.13)

[K] i Element Stiffness matrix for jth element of ith layer defined

by Equation (2.20b)

L Width of .^,oa	 layered8	 lateY	 p

M-,M^ Layer bending moments per unit length of layer middle surface

Taa pm Layer twisting moments per unit length of layer middle surface

Ni ,X Layer normal force moments per unit length of layer middle
A

surface

.	
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NaS ,N
i
a Layer inplane shear force moments per unit length of

layer middle surface

Qa,Q
i

Layer transverse shear force moments per unit length

of layer middle surface

q Applied surface load

R Radius of inner surface of a cylindrical shell

r,Q,z Cylindrical coordinates
r

Ra,R^ Normal curvatures of the reference surface in the
It

U direction of the line of curvature coordinate curves

[R] Matrix defined by Equation (2.19c)

R
ij

Components of [R]

Si Strain energy of each layer per unit reference surface

area

[TQ],[T s ] Transformation matrices for stress and strain com-

ponents, respectively

U Strain energy of the shell

S
A

».
w..

ua ,u^ Tangential displacements

V Potential energy of layered shell

V Normal displacement

W Work of the conservative, external loadings

s,y,z Cartesian Coordinates

a,a,; Lines of curvature coordinates

Ea ,s%J ,yae
Strains of line elements originally in a,s direction

,Y
Yak	 R^

Transverse shearing strains

Normal and shear stresses parallel to the shellaa ,Q O ,Ta$

v Poisson's ratio for isotropic material
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ABSTRACT

^	 The finite element method is used to investigate the static behav-

ior of laminated composite flat plates and cylindrical shells. The

structures are composted of an arbitrary number of layers with arbitrary

material properties and fiber direction within each layer. The analy-

sis incorporates the effects of traverse shear deformation in each

layer through the assumption that the normals to the undeformed layer

midsurface remain straight but need not be normal to the mid surface
6

after deformation.

The. present finite element formulation is based on assumed first
l:.

order polynomial displacement functians. TYe nodal displacements are

obtained by minimizing the corresponding potential energy to establish

approximate equilibrium equations. The solution of these simultaneous

equations is then the ultimate; goal for the study. A digital computer

program which utilities part of the available SAP V computer program was

developed to perform the required computations. The program includes

a very efficient equation solution Cade which permits the analysis of

large size problems.

To assess the behavior of the developed finite element, solutions

were obtained for some laminated composite plate and cylindrical shell

problems for which analytic solutions are available. The accuracy of

the stress and displacement results obtained by using the developed

finite element is determined for different plate and shell proportions.

The rate of convergence and limitations on the use of the developed

element are also discussed. The method is finally applied to the prob-

lem of stretching and bending of a perforated curved plate.

Xi
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CHAPTER I

INTRODUCTION

Thin shells have become a popular subject in the field of struc-

tural mechanics in the past two decades. Numerous books and papers on

their analysis have been published because of their use in such struc-

tures as aerospace structures, pressure and underwater vessels, and

nuclear reactor structures subjected to both static and transient laods.

The advent of advanced fiber-reinforced composite materials which has

been called "the biggest technical revolution since the jet engine" (1),

` has led to increasing use of laminted shells.

{ In fiber-reinforced composites such as boron -epoxy and graphite-

f̀ epoxy combinations, the fibers provide the majority of the strength and

stiffness.	 The function of the matrix is to support and protect the
t

fibers as well as to distribute and transmit load between the fibers.

i The latter function is especially important if a fiber breaks, for then

load from one side of the broken fiber is transferred to the matrix and

subsequently to the other side of the broken fiber and to the adjacent

fibers.	 The matrix is of such low shearing stiffness compared to the

fibers, however, that shearing deformations become important in appli-

cations involving loads normal to the structure.

k" In laminated structures the desirability of accounting for shear

deformations in each layer has made it necessary to extend the classical

1

^a

^j
1
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analyses based upon the Kirchhoff-Love hypothesis which neglects the

effects of transverse shearing deformation entirely (references 3,4) or

upon the Timoshenko-Mindlin modification which deals with an average

shearing deformation (references 5-11). The importance of a more rigor-

ous analysis is indicated by the work of references 12-0 which investi-

gates particular elasticity problems of the layered plates by means of

exact analytic solutions.

For more general problems it is difficult to obtain an analytic

i'

f

r__2

L;

i

{

solution, however, exact or approximate. Due to developments in compu-

ter science and digital computers, the finite element method offers the

possibility of yielding numerical results for problems unsolvable by

other methods. Some investigations utilizing the finite element method

for laminated plates including shear deformations are already available

in the literature. In references 16 and 17 the finite element model

includes only average shearing deformation effects. Mau, Tong, and

Pian (reference 18) provide for general laminate behavior by allowing

each layer to undergo independent rotations of the normal to its unde-

formed middle surface in a hybrid finite element model. A modified hy-

brid finite element has been developed by Spilker, Chow, and Orringer

(reference 19) who seek to obtain reasonable accuracy with a consider-

ably reduced number of nodal degrees of freedom.

Because the element used is generally a rectangular plate element

in these investigations, however, the solution of such problems as lami-

nated plates with perforations for the determination of stress concen-

tration effects around the hole cannot be readily studied. In the

present investigation the stiffness matrix for a triangular curved

2
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element which has better application to these and other problems is

derived and applied to various problems. The study is limited to a

cylindrical shell and flat plate element which consists of a right

triangle in the lines of curvature coordinate system and with the per-

pendicular sides oriented in the directions of the lines of curvature

coordinate curves. For other shells and element shapes a numerical

integration technique (reference 20) is possible.

In the study a displacement finite element model rather than the

similar hybrid stress model of previous investigations is used. The

motivation for this simplified model was a belief that much the same

accuracy as the hybrid stress model could be obtained, with a consider-

able simplification of the calculations involved. This belief is borne

out to some extent by a comparison of displacements and stresses for

several problems solved numerically by the two finite element models,

in that much the same results can be obtained, at the price, however, of

a slower rate of convergence.

The finite element model is based upon a theory of layered plates

and shells which retains the Love -Kirchhoff assumption of a normal

deformation which is not a function of position in the shell thickness

coordinate. The assumption that straight lines normal to the undeformed

shell remain normal to the deformed shell is replaced by the assumption

that straight lines in each layer normal to .the unformed shell remain

straight but rotate with respect to the normal to the deformed shell by

an amount which varies from layer to layer. A similar assumption has

been utilized for beams by Swift and Heller (references 21-24) and by

Durocher and Solecki (references 25-26) for two and three layer plates.

3
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The limiting case of an infinite number of infinitesimally thin layers

has been shown to yield good agreement with the results of three
A

dimensional isotropic plate theory by Boal and Reissner (reference 27).

For a single layer plate the theory reduces to a form similar to that

r
of Libove and Batdorf (reference 28) for sandwich plates.

F
The derivations that lead to the finite element stiffness formula-

tion are discussed in Chapter II.	 A computer program based upon theR

j

_
t

results for circular cylindrical shells and flat plates is discussed in

Chapter III and listed in Appendices A and B. 	 Finally the results for

several problems investigated with the present analysis are discussed

in Chapter IV.
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L II. THEORETICAL BACKGROUND

2.1	 Assumptions

EA

The thin shell theory adopted here is associated with the following

set of assumptions:

1.	 The shell is composed of layers of orthotropic material, the

r
principal material directions of which do not necessarily coincide with

the coordinate directions. (Fig. 2-1).

2.	 There is a linear distribution of tangential displacements
t	 ''

through the thickness of each layer.	 The linear distribution may vary

ti
from layer to layer, (Fig. 2-2).

3.	 The normal displacement is constant through the entire thick-

ness of the shell at each point on the shell reference surface, provided

there are no portions ox one or more interior layers missing.

The various elements of the theory are as follows.

2.2	 Strain-Displacement Relations

The strain-displacement relations used are obtained from three-

dimensional elasticity theory. 	 A system of orthogonal curvilinear coor-

dinates for points within the shell wall is defined by the coordinates

a and 5 corresponding to the lines of curvature on the bottom surface
I

and distance	 along the normal to the surface, (Fig. 2-3).	 Then, from

reference 29, the following equations can be established:

u W	 a8	 g a1	 1	 a
E W -	 +	

u M +	 w(^	 (2.1a)
DOa	

(1+	 )g	
Da	 q	 S	 Ra

RS	a

5

}'	 1



E^0;) s aa^
(2.1c)

e

L

1	 uaw 1 ags	 gs
E^(5) s	 as + g act uaW + R w(^)

(1+ 1-) g5 a	 S
(2.1b)

il 1	 auam _ 1 aga

Yak<^)
	

(1+ 
I )g	 as	 gs as ua(^)

Rota

1	 aua(^)	 1 a%

+	
u

(1+	 a)g	 as 	 g

S

au (^)
1	 aw(^) - ga u	 a

(1+ ^-)g	 as	 a (x	 + a^
R_ a

(2.1d)

(2. le)

YS^(^)	
1	 aa^^) _ 

Rs us(^) 
+ aua^^>	

(2.1f)

(1+ R )g^

where ua and u^ are tangential displacements, w is the normal displace-

ment, ga and g, are firs, fundamental quantities for the lines of curva-

ture coordinate curves on the reference surface and Ra and R are normal
s

curvatures of the reference surface in the directions of the coordinate

curves.

The basic assumptions in this study are those of linear tangential

,^.	 displacement and constant normal displacement distributions through the

layer thickness. For the ith layer, then,

ua«) upi,(1-h)+ a+l h 	 (2.2a)

Us	 us(1- h) + ui+l 
h	 (2.2b)

i	 i
6



F	
k	

1

f

w  W i w	 (2.2c)

whereu^ and us are tangential displacements of the kth interface and

are functions of a and B only. The coordinate C is now measured in

each layer from the bottom of the layer so that 0 < < h i . Eqs. (2.1)

then become

EiW Lei (1- ^  )+ F. 1+ -^ 1
a	 a	 hi	 a hi 

AaM

E  ME (1--C ) + Ci+1 h i
	i 	 i AB(0

	

Yi 	 Yi	 Yi+1	 Yi+1

YaB W ' i a + is (1- h) + i + 
S	 h

AaM ABM	 i	 Aa( ^) AB(^) i

0

i
a

Yiac	 A(-, W

i
Y_ z_YiB^(^)	 i
AB W

where

k k
aua us

aga ga \k 1
^

+REa^ ga as + g
B

aB a wI
k	 k

	

Ek 1	 au B ua aB gs l
B	 s aF6 + ga as + R w/B	 B

k	 k
k 

g
1 auB "a aga

Yan
au

 _g Oa	 B 
D

2.3a)

(2.3b)

(2.3c)

(2.3d)

(2.3e)

(2.3f)

(2.4a)

(2.4b)

(2.4c)

7



(2.4d)

..<..,	 i

auk 	uk ag
k 1 a

YS
_

as	 as$^ ga

	

i..	 Yi	 1 a^+^ ua+l (1+ aR 1- ua (1+Ra
a	 ga	 i	 \	 a / 	 \	 a J

1	 1 aw 1	 i+1	 di	 i t	 di+1lYS^ 
g as + hi IU 0	 (1 + RS	 - us 1 + R^ J

k

d +^

A'

	

	 1 + iR
a

d +

	

>	

AS M 1 + iR

	

^	 k-1

d  '	 hi	
d 	 0

J-1

(2.4e)
	

i

(2.4f)

(2.4g)

(2.4h)

(2.41)

2.3 Material Properties

The material of each layer is assumed to be anisotropic in surfaces

parallel. to the reference surface of the shell. In accordance with the

usual assumptions of plate and shell theory, layer strains are assumed

independent of transverse stresses.
r

The stress-strain relations are then taken as

{Q} - [E] {E} 	 (2.5a)

where {Q} and {E} are respectively the stress and strain matrices

!^	 g



(2.5c)(2.5b) ,

Ea

ES

{E}	 Yas

yac
YS4

Qa
Qs

{a)	
Ta$
Tai

Tsc

111	

r	

^	 %

t

t

t- 0

and E is the symmetric material constant matrix

E11 E12 E13	
0	 0

E21 E22 E23	
0	 0

[E]	
E31 E32	 E33	

0	 0

0	 0	 0	 G
44 G45

0	 0	 0	
G54 G55

(2.5d)

The material constants 
E11' E12... to G

55 are generalized Young's moduli,

Poisson's ratios, and shear moduli as discussed in detail in Ref. (2).

For an orthotropic material with the principal material directions coin-

ciding with the coordinate axes, Equations (2.5a) may be written as

{Q} _ [E'] { E }	 (2.6a)

where

E11	 E12	
0	 0	 0

E21 E22	
0	 0	 0

[VI	 0	 0	 G33	 0	 0	 (2.6b)

0	 0	 0	 G44	 0

0	 0	 0	 0	 G55

The principal material directions for an orthotropic material often do

not coincide with the coordinate directions, however, especially in a

laminated composite structure where the orientation of material can be

9



varied from layer to layer. Therefore it is convenient to effect a

transformation of the stress-strain relations from local material axes

to the overall coordinate axes. Let the .angle between the global and

local orthogonal layer material axes be denoted as 6 (Fig. 2-4). Then

fa"} - [T^] {Q}	 (2. 7a)

WI - CTE] (el	 (2.7b)

where

Cos 2^ sin 2e sin26 0 0

sin 26 Cos 2e -sin26 0 0

CTS] _ --1 sin26- 2 in26 cos26 0 0

0 0• 0 cose sine

0 0 0 -sine cose

Cos 2e sin 2e (sin26 0 0

sin26 cos26 --1 sin26 0 0

CTS] -sin26 sin26 cos26 0 0

0 0 0 cosh sine

0 0 0 -sine cosh

(2. 7c)

(2.7d)

These transformations are derived in most texts on strength of materials

and theory of elastiicty, for example Ref.

Then
-1	 -1

{Q} - ITC.( {CF"} - CTS.] CEI WI

CTE: J T CE"] CTS] {E:}
	

(2.8)

10



and a comparison of Eqs. (2.5a) and (2.8) yields

[E] - [TEI T[V] [T el(2.9)

The individual elements of the transformed modulus matrix are as follows:

	

E 11 E11 cos 6 + 2(E12 +2G33) sin2
6 cos Q + E22 sin 46	 (2.10a)

E22 = EA

	

11 sin 4B + 2(E12 +2G33) sin26 Cos 28 + E22 Cos 46	 (2.10b)

E33 = GA+ 1(Ei l
33	 2 + E22 - 2E12 - 4 G33) sin 22B	 (2.10c)

b12 = E21	 E 12 +
4(E11 + E22	 4 E12 - 2G33) sin 22B	 (2.10d)

E13 E31 4(E11 - E22) sin26 + $(Ei
l	 + E22 - 2E12 - 4G33) sin4B

(2.10e)

E23 E32 4(Ei
l - E22) sin26 - 8(E11 + E22 - 2E12 - 4G33 )  sin46

(2.10f)

G44 = G44 cos 2 8 + G55 sin26	 (2.10g)

G55 G44 sin
26 + G55 Cos 2 8	 (2.10h)

G45 G54 = 2 (G44 - G55) sin 26
	 (2.101)

2.4 Principle of Minimum Potential Energy

The theorem of virtual work states that if an elastic body is in

equilibrium under the action of prescribed body and surface forces, the

work done by these forces in a small additional displacement is equal to

the change in internal strain energy. From the theory of elasticity the

internal strain energy for a layered shell is given by

qi

11
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N	 ^=h

	

1	 i	 T

	

U = 2	 {oi (01 {Ei(0 }ga(^)g5(^) d4dada	 ( 2,11a)

CL 

With the stress-strain relations given by Eqs. (2.5) the strain

	

energy may be written as

 f N

U Z

	 i t-hi

{e 	 }TW [Eil{E ( ^) } Aa(',CYA'( ^) d;dS	 ( 2.11b)
^

where the surface integral is over the area of the reference surface and

dS = gagSdada	 ( 2. Ile)
4

i
The components of the strain matrix for each layer are given by Eqs.

4

	

	 (2.3) and [EiI is the material modulus matrix for each layer of the form

of Eq. (2.5d). Multiplication of the matrices in the integral then

yields the following expression for the strain energy

Us	 SidS	 '(2.12a)

fSi=1

where Si , the strain energy of each layer per unit reference surface

area is given by

Si= 2{Ei}T[gi]{£i}	 (2.12b)

J
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(2.12c)

and [Bi] is a symmetric matrix given by
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21	 33 i	 (S33 3 E33 l31	 1313 eE23 I3i (S 'a)E33 6 E33	 0

h

121 (a I O)E33 ^13 I3i(a'R)E23 6 33 l31(a'S)E33	 0

	

I4i(R'a)E11 3 E12 "4i (R 'a)E13 3 13	 0

I4i (a '. S)E22 3 23 I4i(a' R)E23	0

Z7	 141MOE33 r^33	 0

b ^
SYM	 O^ r

I liOAG44 h Gi
i 45

1 (a, R)Gi

(2.12d)
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	 where

I (u,,1) =

JO

i Aui 	hi +

li	
ids=RJR

Ax	u

R^
`"'-R

u

1+d
i+1/R^

In	
1+d

/R 	.13a)
(`

i

CU,a)	
fhi	 Au	 =

Ili	 I	 h )	 i U
	 R`

i/ A

1 hi
3 R

u

-	 Ra`	 RX	 di
1- R 1 1+ h	 1+ R

u	 i	 a0	 x

l+d	 /R	 R
In	 1+d+/R	 + 2	 + h^ (1+i	 A

d \
Ri

f
(2.13b)

i a

(u^a)	
hi	

/	 ` AuIii	 =	
h	

I1- 
h	

i d?;
1 hi 	 Ra	 1

= Ra 6 R +
	 1- R 2

u	 u`ii
C

i	 i	 A'o
_

h^
(1+ 

Rai	 1- 1+ ĥ
i	 -^l	 i

1+ Ri 
1ai

1	 i+1RR,1In	 (2.13c)
i	 a 1)

_	 .

I(u,.\)	 hj C 2 Au dC _ R 1 hi + 1- Ra 1
4i0

hi) A`	
C 3 Ru	 Ru 2

1i

RX (1+ di	
%1-	 : 1+ 

d, 
In 

I+di+1/Rx	 (2.13d)
hi	 R^	 hi,	 R^	 I+di/RX

If the applied forces (Fig. 2-5) are conservative the work done by

these forces is given by

W _f
ST

^^1 u^ i + T^^1 us I + a+1W 1 1+ dN+ll 1̂+ R+11
I ^ 	 o J	 J

 R

(;1 C. 1
LC 

+
r1 us 

+Q w) dg
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N4-hi
+	 .	 CTns(^)us(^) + Q

ri
Mun (O + %

;-(OW
]

C
I. fo

d +^ 2 d ^ 2

I(
1+ iR
	

+ R
	

dsd^
s	 ns

(2.14)

t

	 where 1/R
3
 is the normal curvature of the reference in the direcl:ion of

the boundary curve and 1 /Rns is the twist of the surface referred to
k
	

surface coordinates normal and tangential to the boundary curve, while

Tns , - Tn are the applied stresses parallel, normal, and tranverse to

the boundary curve, respectively.

The principle of virtual work can now be stated as follows as the

principle of minimum potential energy:

Of all displacements satisfying the given boundary condition on dis-

placement, those which satisfy the equilibrium equations make the poten-

tial energy HP = U-W stationary. An expression such as 
11  

is called a

functional to imply that 11p is not simply a function of displacements 	
3

and displacement derivatives but depends on their integrated effect.

s

2.5 The Finite Element Method

`s

	

	 The principle of minimum potential energy is the basis for some

procedures for obtaining approximate solutions for problems which cannot
i

be solved analytically. The older classical procedure known as the

Rayleigh-Ritz method (ref . 31) expresses the solution in terms of-series of

known trial functions which each satisfy geometric boundary conditions

ohich are continuous and have continuous derivatives over the entire

region of interest.. The coefficients which multiply these functions in
Pi

.e
i.
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the series are determined by the condition that the potential energy be

a minimum, yielding the conditions that the derivatives of the functional

Hp with respect to each of the coefficients must vanish.

The finite-element method is a variation of this procedure which

seeks to define the .solution in terms of different trial functions,

usually polynomial expressions, for different discrete regions of the

structure. Only the trial functions and, in some cases, certain of

their derivatives are continuous at the common boundary of adjacent

regions. Such a series of functions is said to be a piecewise continuous

fit to the solution. The solution within each discrete region is ex-

pressed in terms of displacements and, if necessary, derivatives at

discrete points or nodes, usually on the boundary. Thus while the form

of the polynomial expression is the same for each region, the coeffi-

cients vary from region to region. The potential energy of the entire

structure is then obtained in terms of these nodal quantities which take

the place of the function coefficients in the classical Rayleigh-Ritz

procedure. Extremalization of the potential energy then yields equations

for determination of the nodal quantities:(for example refs. 32 and 33).

The advantage of the finite element method over the classical

Rayleigh-Ritz method is that the same discrete region functions are

valid for any boundary conditions on the structure. Thus the algebraic

manipulations yielding the form of the potential energy expression need

be carried out only once, after which an algorithm to yield the results

for regions having the same general shape but different parameters may

be written for automated digital computer applications.

J
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P

a	 2.5 Finite Element Formulation

The finite element model usually chosen to represent a plate or

`

	

	 shell structure is a series of triangles or rectangles since the analysis

of the structure is reduced to that of a two-dimensional continuum. For
k_

the present problem the inclusion of shearing effects in each layer re-
a

	

_	 quires the analysis of a number of interacting two-dimensional continua,

one for each layer interface. Thus an element consists not of a single

rectangle or triangle but a number of these, one above the other, for

IJ
corresponding regions on the layer interfaces. While a rectangular ele-

went shape is adequate for a structure with regular boundaries, the
t

	A	 shape of the element is chosen to be a triangle in the a,a plane to be

	

1 
j ?	 better adaptable for the analysis of regions with irregular boundaries,

1	 }	 I

as shown in Fig. 2-1.
J

If the vertices of the triangle element are numbered as shown in

Fig. 2-7a and the shape of the triangle is such that a3>a2 >ai and s3>aj
the corresponding strain energy Ui of the j th triangular element of the

j

ith layer is given by

sj —0	 sj —sj
l	 a	 s^+ a8-a (a-a^)	 a3	 ^1+	 (a-a2)

t	 3 1	 a3-a1
'! !

	 Uij	 SidS	 +	 SidS	 (2.15)

OJ2 1	 s3—a2	 jfi	 al+	 (aj-a2)	 a2	 S2+	 (a-aj)

a2-ai
	 a3 a2

C'
l	 If, however, the vertices of the triangle are numbered so that a3>a2>ai

but S3<R2 (Fig. 2-7b), the limits of integration on S are reversed.

In evaluating the strain energy of a typical triangular layer ele-

went the displacements in the j th element of interface i are assumed

18
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to vary linearly within each element as

uaj = aij a + bij a + clj

uij = aij a + bij S + c1j (2.16)

bij 5 + cijwij	 aij a +

The coefficients may be obtained in terms of the corner displace-

ment by means of the equations

j	 ja 1 S 1 1
ij	 ij

al	 a2
ij ij

ual
ij ij

a3 u01 wl

a3 83 122
bij bij21

bij
3

= uij
a2

uij wij
2

(2.17)
U

aj 61	 1 cij cij cij uij uij wij
3	 3 1	 2 3 a3 $3 3

uij uij uij uij a
a al	 a2	 a3

use = u$1 use u$3 [c l sj

wij wij wij wij 1
1	 2	 3

(2.18a)

yielding

where

S^ -R3 ai -a3 aj sj -aj sj2 3 3 2 2 3 3 2

[Cj] = A. S3-sl ai-a3 a3s1-a2Ri

+6J a2-ai ais2
-aJOJ

A.	 det

a1 S1 1

a2 s2 1

a3 s3 1

(2.18b)

(2.18c)
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ij
ul

u2

•ij
u18

(2.19a){ d }i j = a

r
d	 '

In addition the numbering system shown in Fig. 2-3 is introduced. Then

a relationship between the element strain matrix {Ek j and the displace-

ment matrix

can be obtained as

{-
Ej- 

(Gl^ { d
}ij
	 (2.19b)

where

20
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and the quantities Rk are the components of the matrix

(S 3-0bot + (ai-a b o + ai$J-aisj (01-0bot + (ai-ab o + ai si-ais1 (0J-0ba + ((.% J-aj)S + 011 01- ajoi2 3	 3 2	 2 3 3 2	 3 1	 1 3	 3 1 1 3	 1 2	 2 1	 1 2	 2 1

[R]B _	 a2-O3	 S3-S1	 S1-R2

a3-a2	 ai-a3	 a2-ai

(2.19c)
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0

F" 0ij	 {d 
}T[K] ij {d}11 (2.20a)

Note that only the last two rows of the matrix [G] change from layer to

layer. Then the layer element strain energy is given by

with

and

	

j J	 J j
aj	 sj+ S3 ^ 1 (a-aj )	 aj	 33+ 

g3-

^ 1 (a-'a3 )

	

fiaj+ * 

1 j j	 1	 3	 1 j j	 1

	

a3^ 1	 °L 3^ 1

[K] ij =	 [F (a, $) ] dads +	 [F (a, a) ] dad$

sj -Rj	 ij	 s3-aj 	 ijfi 	 2 I a-aj)aj a j+ 3 2 (a-a3
1 	1 aj -a3	 1	 2	 2 aj -aj	 2)

2 1	 3 1	
(2.20b)

	

[F (a, S) l ij = [G] ij .[Bil [Gl ij gag$	 (2.20c)

F

ll

u
u

OI

I'.

The element stiffness matrix [K] ij may be obtained in an integrated
form if the components of the first and second fundamental forms have a

simple variation with the lines of curvature coordinates a and s and if

one has the patience to carry out the matrix multiplications and the

integrations. An alternative approach is a computer program which will

carry out the matrix multiplications at selected points and perform the

required integrations numerically.

Similar operations will yield the work done by applied surface

loads. For example, work of normal surface loading on any element is

	

given by * 	 $J-6j	 sj -Bj

	

aj sj+ 3 1 (a-aj )	 a	 j
2	 1 a j -a j	 1	 3	 1+ aj -a j (a-a 1)

	

3 1	 3 1

	

wi 	 gjwj dSj +	 gjwjdSj

j'	 S3'+	 (a- j)	 a3
47aja	 S3+	 (a--a3)	 (2.21a)1	 1 j j	 °1	 2	 2	 j j	 2

	

a2-a1 	a2-a3
24
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where

qj = N+1 1+ Rw)(1+ dw) - Q	 (2.21b)

	

a	 S
i

and wj is given by

t

faw	 {w w w }[^ ] R	 (2.21c)
j	 ij 2j 3j
	 j	 l

If q is assumed to vary linearly within the element as an approximation
j

to the actual distribution, q j is given by an expression similar to that

of Eq. (2.21c). Then

wij

h wj	
{qlj q 

2 q3j} [Cj ] [Ij ] [cj] W 2	 (2.22a)	

I

w•3 
j	 E

with

aj	 sj+ 3-^1 (a-a1)

2	 i	
j j

1 i	 a

	

a3-0f'	 a2 aR a

	

[I j] =	 as ^2	 gagsdad$

f sl+ 
j-S^ 

(a-a2)

	

VP
f	 a3-a2,

Sj _S^

t	 a3 al+ 
^ ^ 

(a-ai)
a3

	

-a1	
a2 as a

fi	
as 02 a gag^dads	 (2.22b)

a S	 1

 
s3-S2 	 j

a2 $2+	 (a-a2)
k'	 a3--a^

i 
9

The potential energy is now given by

	

?	 N M	 M

r	 V = E	 ,	 AW.	 (2.22G) -

	

1	 i=1 j=1	 j= 1 	 3
,,	 C	
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sj(^)

ij (^)

Tap M
I

T ijs() 0	 0	 0	 0	 0

0

0	 0	 [G] ij [d] ij

0	 0

1	 0
Aa(C)	 (2.23)

0	
1	 .

A$(0

	

A^ 
P AGE YS	

26

L0
0	 0

0	 0

	

Uhi	 Vhi

	

Ai(^)	
AS (4)

a

0	 0

0	 0

a	 r

and is expressed in terms of the displacements at the nodal points of

the structure. Minimization of the potential energy with respect to

each of these nodal point displacements then yields a set of linear

equations for their determination. Convergence of the process to the

correct solution occurs as the size of the elements become smaller with

an increasing number of elements.

With the displacements known at the vertices of each triangular

prism layer element, the stress distribution within each element may

be obtained from the relationship

1-4/h	 4/hi	 i0	 0	 0 	 0

1-4/h	 4/h
0	 i	 0	 0	 0	 i

1-;/hi 1-4/hi

0	 0	 A1	 1 A$(4)	 0	 0

0	 0	 0	 0	 0	 0
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t	 +

k.^

k	 ^l

ii

r

A better approximation to the transverse shear stresses Tap and T
ap 

can

be obtained by using the equations of equilibrium of stresses within

each layer as in reference 29.

2.7 Specific Results for a Right Triangle Element of a Circular

Cylindrical Shell and a Flat Plate

For a right triangle element of a cylindrical shell, with a taken

as the coordinate x along the generator and Ras the circumferential

angle 0 so that

ga = 1

gR = R

=R	 co
a

RS 	R

the matrix [G ]i3. is given . by

27
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0	 0 0 0
0 p 0 0

0	 0
R 11 1R 12 R 13 0 0

k
0

0	 0 0 0
0 0 0

0	 0 0 0 0 0 0 0

0	 0 p 0 0 0 0
.
p

p	 1
R x 0 0 0 lit 1 1

R 11 012 R 13

0	 0 0 0
0 0 0 0

Rex ) 	0 0 0 0 0 0 0

hiR13	 0 _ ^ ^
2 ej 0

X012
&ej
2 0

e
(1+ 1)A

hi	

R	 13	 0 0
2Rexj 2Rexj 0 -	 xj xj21t

N

A

v

(2.24)

With

exj - x
2-xl (2.25.)

Ad - 
03-8

1 (2.256)

R!1 - e0j(x2-x) (2.250

R12 - Aoi (x-xl)-exj (®-01) (2.25d)	
.

R13 - exJ(p-01) (2.25e)
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:A

In addition

l+di+l/RI (x,0) - R 1n	 (2.26a)
1 j	 1+di/R

M^

^'	 1

jt+FFjt 	 I1j (O,r) = hi 1+ di+R i 	 (2.26b)
ka

	R+d 2	 l+d /R	 R+d
t	

I2i(x,0) = R[(1+ -h ' In l+d+/R	 2- h i	
(2.26c)i

1	 di+ -I4-hi^

I2i(0'x)	
hi 1+ R
	

(2.26d)

	

R+di 	R+di	 l+di+1/R

I3i (x,0) 
= R I + h [I- (,+ h
	 In l+d /R	

(2.26e)i	 i	 i
l

Y {

d+
Iii(©,x)	

6 
hi 1+ 

iR ? i	 (2.26f)
j

	R+d.	 R+d	 1+d /R
I4i (x,0) = R 2- 

h 
1 1- h i In l^+^R 	(2.268)

.	 i	 i	 i

d+
t	 I4i(0,x)	 3 hi 

1+ 
iR 

4 i	 (2.26h)

The stiffness matrix is given by

2 01+ '10:4
i

 
(x-xi)

rf
K	 /	 j	 6'^	 R [G] 

T 
[B] [G] dxd0	 (2.27)i

j xI 01

while the work expression of Eq. (2.22b) is given by
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A J-11

1/12 1/24 1/24 wij

Wj	
{q lj q2j 

q3j} 1/24 I/12 1/24 w2j 
MO

j ,&xj	(2.28)

1/24 1/24 1/12 w3j

The integrations of Eq. (2.27) have been carried out and have been

incorportated in the computer program listed in Appendix A. In doing

so care was taken to distinguish between the four differently oriented

right triangles shown in Fig. 2-9 for which various terms in the com-

ponents of the stiffness matrix change sign.
F ^

	 I

Similar results hold for a flat plate for which R is infinite 	 1

while R QO - Ay . Theng

Iij (x,0) - Iij (O,x) - hi	(2.29a)

I
21

(x,0) - I
21

(O,x) - I41(x,O) = I4i (O ,x) - 1	 (2.29b)

(x, 0) - 
131 (O,x) - 

^
3i	

i	 (2.29c)
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^SS

r^

the matrix [G] becomes

0	 0	 0	 0

-ny	 0 nYj 0	 0	 0	 0	 0	 0	 0	 0	 0	 0,	
°

	

0	 0	 0	 0	 0	 0
p	 0 p -nx3 0 

AX  
0 0 0 0 0 0

	

7	 0	 0	 0	 0	 0	 °	
0	 0	 0	 0	 0	 0

p -ny3 0 nY	 0	 0

p	 0 -nx	 0

	

3	 nx3 0	 0	 0	 0	 0	
°	

0	 0	 0	 0	 0	 0	 0

0	 0	 0	 0	 0
0	 0	 0	 0	 0	 0 -Ay3 0 Ay  0	 0	 0	 0

[G] = n	 p	 p -nx3 0 AX	 0	 0	 0	 0	 °	
0

x^ y^	
0	 0	 0	 0	 0	 0	 0

j	 a H	
-n 
j p o

y^ 0	 0	
°	

0	 0	 0	 0	 0
►^^	 o	 0	 0	 o	 p	 o	 o	 Y

Sy	 0	 0	 0 p

b	 o	 0	 0	 0	 0	 o	 p	 o -nx^ o nx3 0	 0	 0

1	 1 3
.R	 -R 2	 -R 13	 R11 ° R12 0 R13 0 - 1 yj ^Y^ 0 - 2 y 2

py 
°

^	 11 0 h1	
p h
	 0 hi	

hi	 h3	 1

	

`-"	 h	 i	 i	 R	 1 
j
	 1 j —nx^

	

i	
_R	 -R12	 -R13	 R11 o R12 

° h13 d	 0 - 2 x^ 
2nx	 0 2nx 2
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0 h	 h	 hi	 hi	 ^
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CHAPTER III

COMPUTER PROGRAM FOR THE ANALYSIS OF LAYERED PLATES AND SHELLS

The finite element theory of the preceeding chapter using the

particular right triangular element developed for flat plates and

cylindrical shells has been incorporated into the computer code listed

in Appendix A for which input and outputdata:are given-.in  Appendix B. The

code utilizes a number of subroutines taken from the SAP IV and SAP V

codes (references 23-25) together with some additional subroutines de-

vised for the present program. The SAP system codes are particularly

efficient subroutines for the processing of input data, the generation

of the system of equations to be solved, and the solution of an equa-

tion system of large size and bandwidth. The added subroutines deal

with the input and output peculiar to laminated plates and shells.

The subroutines and their functions are as follows:

1. HEDPRT - Reads the total number of nodal points,

elements, layers, and the type of analysis.

2. INPUT) - Reads or generates the coordinates and the

u

0
u

i

{

t

restraint conditions of each nodal point, reads

the material properties and thickness of each

layer, generates the variable number of each

degree of freedom.

3. LAYSHL, AYSHL - Reads or generates the layer element type

and the nodal points forming each element, cal-

culates the element stiffness matrix, calls ADDSTF

and CALBAN
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4. In - Reads or generates nodal forces.

5. CHECK - Verifies sufficiency of input data. Prints an

error message if criteria not met.

6.	 ADDST F - Stores layer element stiffness matrix in proper

g
location in overall stiffness matrix, divides

the stiffness matrix and load vector into blocks

for storage.

7.	 CALBAN - Calculates bandwidth of system of equations.

8.	 SOLEQ - Controls input and output data from subroutine

SESOL.	 Calls PRIND, STRESS, STRSC.

9. SESOL - Solves positive definite symmetrical system

equations by Gaussian elimination.

10. ERROR - Prints error message if limit on storage require-

ments is exceeded.
a

j	 11. STRESS, STRSC - Calculates stresses for each element.

12. PRIND - Prints out all required input and output.

The input data required for the static analysis of layered plate

jand shell structures is given '-. detail below. The nodal points should

be numbered consecutively along straight, normal lines from the bottom
E;

-}	 layer to the top layer before proceeding to another nodal point on the

bottom layer. The elements should: also be numbered consecutively

through the thickness before proceeding to another element on the bot-

tom layer. The computations were carried out on the USC School of

Engineering DEC-10 System Computer.

1I
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} I,	 Heading Card (12A6) )

{} Columns variable. Entry

^

(}.

^. ) \
{

1-72 HEO(12) Enter the heading information to be (

)\

printed with the output

}.\ «

.) » tI,	 eter control Cara (415, 14, Il, 415,	 2x, 	 311,	 315,.5X, e10.0)
|. )	 <.. {

Columns Variable Entry \<

! } 5 NUMNP Total number of nodal  points in the model (
!}

^ 6-10 NEL^ 1 \,

^g 11-15 LL Number of Structure load cases

` 4 16-20 « F O\

21-24 KDYN O]

} 25 NDYN O

^^!\ {]
(/ [j

.
26 ]O MODE Program  execution soda

0 if problem solution wanted ]
.	 ] § {! \)

}\

1 if only data check wanted ]

j!! /) 31-35 §AD 0 .;yg

\ / . 36-40 IEQB O .:

®- 41-45 §IOSV O

(. } . }\ 48 O

°\ . 49 GENPR 0 if printout of overall stiffness ^^
}]

» \\ matrix not wanted

1 if printout of overall stiffness
-

 \

- matrix wanted

^ ).,
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Columns	 1hriable	 Entry

50	 ELPRT	 0 if printout of element stiffness

matrices not wanted

1 if printout of element stiffness

matrices wanted

51-55

56-60

61-65

66-70

71-80

IWTC	 0

MINBND	 0 if bandwidth minimization not wanted

1 if bandwidth minimization wanted

IPLT	 0

NRSC	 0

GRAV	 0

III. Structural Data (415)

Columns	 Variable

	

1-5	 NELTYP

	

6-10
	

NUME

	

11-15
	

NUML

	

16-20
	

NUMFX

Entry

13 if cylindrical shell element

14 if flat plate element

Total number of elements

Total number of layers

Total number of restrained nodal points

IV. Material properties (F5.1, F3.1, 9F8.0) (One for each Layer)

Columns	 Variable	 Entry

1-5	 A	 angle- of the layer material axes of

orthotropy to global crordinate

system (Equal to 0.0 if material

is generally anisotropic)
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Columns Variable Entry

6-8 H Thickness of the layer

9-16 E
11

17-24
E12

25-32
E13

33-40
E22

41-45 E23 Material elastic moduli (E13 s
 E23

49-56 G45 = 0.0 if material is ortho-E33

57-64
G44

tropic and properties are referred

65-72 to axes of orthotropy).G45

73-80 G
55

V. Nodal Point Data (I3, 3F7.4) (One for each nodal point)

Column	 %riable	 Entry

	

1-3	 I	 Assigned number of the nodal point

numbered consecutively through

the structure thickness before

proceeding to next node in bot-

tom face

	

4-10	 X (I)	 X.-ordinate

	

11-17	 Y(I)	 Y-ordiante

	

18-24	 Z(I)	 Z-ordinate

I
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VI. Restrained Point Data (I3, 3I1) (One for each restrained nodal point)

Columns Variable Entry

1-3 N Number of restrained nodal points

4 ID(N,l) Restraint condition in x-translation

1 if point is restrained

0 if point is not-:restrained

5 ID(N,2) Restraint condition in y-translation

1 if point is restrained

0 if point is not restrained

6 ID(N,3) Restraint condition in z-translation

1 if point is restrained

0 if point is not restrained

VII. Radius For Shell Element (F13.3) (outfitted for flat plate

analysis)

VIII. Element Load Multipliers (4F10.0)

Columns Variable Entry

1-10 EM(1) 0.0

11-20 EM(2) 0.0

21-30 EM(3) 0.0

31-40 EM(4) 0.0
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IX. Element Data 015,M) (One for each element)

Columns	 Variable	 Entry	 Notes

1-5	 M	 Element Number	 (1)

6-10	 I1	 Vertex of the element	 (2)

11-15	 J1	 Vertex of the element

16-20	 Ki	 Vertex of the element

21	 L	 Layer number of the element 	 (2)

22	 MCD	 Element Code	 (2)

23	 ML	 0 without load on the element (3)
1 with load on the element	 (4)

Notes: (1) Numbered consecutively through the structure thickness

before proceeding to next bottom layer element

(2) There are 4 different elements based on their orientation

as shown in Fig. 2-9. In all cases

I2-I1+1

J2 n J1+1

K2-K1+1

(3) When there is no load acting on the element, input

the next element data

(4) When there is any load acting on the element, input the

load data (next input) before the following element data

X. Load Data (18F4.2) (One for each loaded element)

Columns Variable Entry

4-7 QX(I1) Applied x-direction stress at I1

5-8 QY(I1) Applied y-direction stress at I1

9-12 QX(J1) Applied x-direction stress at J1
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Columns Variable Entry

13-16 QY(J2) Applied y-direction stress at J2

u21

17-20 QX(K1) Applied x-direction stress at K1

-24 QY(K1) Applied y-direction stress at KI

25-28 QX(I2) Applied x-direction stress at 12

29-32 QY(I2) Applied y-direction stress at I2

u33-36 QX(J2) Applied x-direction stress at J2

37-40 QY(J2) Applied y-direction stress at J2

41-44 QX(K2) Applied x-direction stress at K2

45-48 QY(K2) Applied y-direction stress at K2

49-52 QZ(I1) Sun of applied z-direction stresses at

nodes I1 and I2

53-56 FZ(Ia) Sum of applied z-directions concentrated

forces at nodes I1 and I2

57-60 QZ(J1) Sum of applied z-direction stresses at

nodes J1 and J2

61-64 FZ(J1) Sum of applied z-directions concentrated

forces at nodes J1 and J2

65-68 QZ(K1) Sum of applied z-direction stresses at

nodes Kl and K2

t _ 69-72 FZ(K1) Sum of applied z-direction concentrated

forces and K1 and K2

Lj

I

t	 f
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XI, Load Point (13) (One for each loaded point in every load case

could be in anv direction)w
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IV. FINITE ELEMENT ANALYSIS OF SPECIFIC PROBLEMS

A number of problems have been investigated, some to assess the

accuracy and convergence properties of the finite element analysis

derived and others to explore the usefulness of the analysis for prob-

lems difficult to solve by other methods. A description of the various

problems and the results obtained are as follows:

4.1 Cylindrical Bending of a Wide Simply Supported Laminated Plate

Subjected to Sinusoidal Surface Pressure

Pagano in Ref. 13 has given an exact plane strain elai ticity

solution for the problem of cylindrical bending of a layered plate sub-

jected to norinal pressure. (Fig. 4-1) . The material of each layer is orthotro-

pic and identical. The directions of the axes of orthotropy of alternating

layers vary by 90°, however. The boundary conditions are those of

vanishing edge normal displacement and stress. For a surface loading

which varies sinusoidally, then, the displacements and stresses have

sinusoidal variations as well.

To obtain an exact solution of the problem within the framework of

the present theory the transverse displacement is taken in the form

w - W sin 
L	 (4.1a)

while the longitudinal displacements are taken in the form

u  - U  cos 
L	

(4.1b)
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Then Eq. (2.12c) yields> !	 {]	

-U i 7T s in "x
x T	 L

}	 \|	 <	 ^
0^ \ i ^

\	 ^\ q

0

.	 ^	 ^	 .	

0

i+1

	

\\	
-U	 7rei	 x T Sin	 (4.2)

L

0
.	

^!	
^

^^	 \^	 ^	 ^

0

0
.	 .	

^	

.

	

7+ 1
h	 x

(ui+l Ui j cos L

^ ^ \ ^

	

	

x
i

0

^	 ^ ^

	

.	 .

The use of Eqs. (2.12), (2.14) and Eq. (3.2) results in the follow-

ing expression for the potential energy per unit width of the layered

plate

L N	 L

{ ^ U E -S i dx	 qwdx

	

}\	
.

^	 .;	 .

fo i-I	 fo

N
2L	 1 7T	 i	

(Ui) 2 + UU,+, + (U 1+1 2
\,^ \ 2!	 -]

—	 — — hE
4	 3 2 i I1	 x	 x x	 xi-I	 L

\ \	 .	 W + -L(Ui+, U W Ln+ G h.	 -	 (4.3)



where q  is the amplitude of the normal loading. The minimization of

the potential energy with respect to the displacement coefficients U 

and W then yields the following set of linear equations

2-	 Gi-1
	 2

(
I n i-1	 44	 i-1	 1 a i

\b Z E11 hi-I h	
Ux 

+ 3 2 (E11 hi + Ellhi)

	

L	 i-1	 L

G
i-1 

Gi	
2	

G 

	

^-	 + 44 + 44 Ui + 1 n E
i h

i-1	 i
h	 h	 x C6 2 11 i h) x

	

1 	 i

	

+ L CG 44I - G4
4  `W - 0	 (4.4a)

1-2,3,. ..N

1	 1

^ 1 Z2 1	 G44 1	 1 n? I	 _ G44 2	 1 1

t 3 2 E11 + h ) Ux + C6 2 ^'11h1 h	 Ux - G44 L W 0
	 (4.4b)

	

L	 i	 L	 1

N	 N
^1 n2 EN + G44 . UN+1 + 1 n 2 EN	 _ G44 UN + GN	 L 0h _	 y	

(4.4c)
l3 2 11	 h - ) x	 ^6 2- 11 :N hN x.	 44 L

	

L	 N	 L

	

N	 N

E G44hi W + EG4 (UX+1- UX)-	 q0 - 0	 (4.4d)

	

1-1	 i=1

For a symmetric three-layer plate with

	

h 	
h3

1 a 3
E11	 E11

G44 = G44

the solution of Eqs. (4.4) maybe written as

(L 3	 Zh2
^r

U	 - U	 1 
go\tr	 G1 G2 _	 1 E 1 (G1 _ 2 G2 ) h	 (4.4b)

2	 3	 2A1	 44 44	 2L2	 11 44 3 44	 2
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a

0
U
u

u
F1

i^

q CL> 
3	

tr2h h2 	Ir2h2h
U1 

M - U4 	 2A1	 G44G44(2h1+h2) + 
6L2 2 E

11G44 + 2L2 
2

(G44 	 3 G44) E11	
(4.5b)

4

_ -qo\^^	 1 2	 72h2 1	 1 2	 1	 'r^l 2 1
W	

01	 G44G44 + 2L2 (E 1 	 + 6 E 1 2) G44 + 3L2 G44E11

4
+ hlh2 ;,1 (E 1 h +-Z E2 h)	 (4.5c)

24L4	
11 11 1	 3 11 2

A	 G1 G2 ^-! E1 	 + h(h +h ) + 1 E2h3+1	 44 44 2 11 
[lh3

3 1	 1 1 2]	 12 11 2	 2
24L

E11 (E 11h 1 + 3 E11 2)(2G44h1 + G44h2j	 (4.5d)

Direct stresses may be obtained from Eqs. (2.3) and (3.5) as

/dui 	du i+
CrX(^) ' E11 il- 

h ) dxx + h	
(4.6)

i	 i 
dx

Transverse shear stresses may be obtained from the solution of the

equilibrium equation

3aiW 
9T  

W

8x + aY	
0	 (4.7a)

yielding

	

1d2ui	 d2ui+1

Ti (^) = Ti (0) -
 E11^ Cl 2 h I	 2 + 2h	 2	

(4.7b)	 s, j

i dx	 i d.Y
i

together with the boundary conditions of'zero shear stress at one of the

surfaces. The remaining zero shear stress conditon is then automati -

cally satisfied. For the case of three symmetric layers
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nJ P^-

i
xi = 

-Qx3 - 

L E11 CU1 + (U1 
-Uh1J 

sin L	 (4.8a)

k

w	 2^

F	 E£E^	 ox2 = L E11 
U2	 h - 1 sin 

LX	

(4.8b)

2s, >

2	 1

T 1 = T 3= 
r 

^2E11 U1 2 
(U2

-U1) h cos 
nL	

(4.8c)
i^''	 L	 1

2
?xy2 = 2L2

C E1 1h1 (U2+U 1) + 2E1 1 U2 
;2 

1- 2 cos ^L	 (4.8d)J

2

Calculated values are given in graphical form in Ref. 13 for the
k:	 1

following beam properties:

r	 A

E1125x106psi
,n,

F_	
E11	 1 x 106 psi

G44 = 0.5 x 10 6 psi

t,
f	 G2 	 0.2 x 106 psi

44
r

h = h21	 = 3
F[	 y

L	 4,10	 j t
h 

A comparison of the results of Ref. 13 and those given by the present

analysis are shown in Figs. 4-2 to 4-5. It will be.seen from these . figures
i

that despite the grossness of the approximations the midsurface dis-

placements and stresses are in quite good agreement. The accuracy could

be improved even further by considering each layer to be divided into a

number of sublayers, each of which is analyzed on the basis of the

	

47	

3



[ 	 a. '.. _	
{"^"

I—^

}	
Tom.--T^T.w^^;	

C

4

theory.present

F
The finite element method using the triangular element outlined in

section 2.7 was also used to solve the problem. 	 A half-strip of the

plate was divided into right triangular layer elements as shown in Fig.

476 where the numbering of nodes and layer elements is shown. 	 Two

numbers shown in a triangle indicates that the interface belongs to the

two adjacent layer elements that are numbered. 	 Only half of the plate

strip need be used since the plate center is an axis of symmetry with

u 	 - 0.	 A state of plane strain was .imposed by requiring that dis-

placements ux and w	 at corresponding points on both long edges of the F	 4

strip be identical whicle the displacements u 	 were taken equal to zero
y

U
at all points.	 The displacements w at the top and bottom of each layer,

fi

while numbered differently in the layer element are made to be equal by
'4,

assigning each the same number in the overall numbering system.

The width of the strip was taken as 1 inch and the thickness of

each layer was taken as 2 inches.	 The plate length was defined to be

} 24 inches and 60 inches corresponding to length-total thickness ratios;`

j
of 4 and 10, respectively.	 The material constants in reference 13 are

given as

E 1 = 25 x 106 psi

E2 = 1 x 106 psi

G12 = 0.5 x 106 psi

G23 	 0.2 x 10 6 psi

V12
	 v 23	 0.25

t

f a

48



Since

v12 E2 - v21 E1

the Poisson ' s ratio v21 is equal to

v 21 ' 0.25 x 1 x 1066.
 

0.01
25 x 10

so that for layers I and 3

E	
E 1	 5 x 0 	

25.06 x 10 6 psi
11	 1-v 

12 
v 21	 1-0625x 5 1 0 601  

E
	

E2 	1x106 	
1.00 x 10 

6 psi22	 1-v 
12 

v 
21	 1-0.25 x 0.01

E 12 - v 
12 E 22 ' v 

21 
E 
11 = 

0.25 x 10 6 psi

E33 ' 0.5 x 106 psi

G44 ' 0.5 x 106
 psi

G 
55 ' 

0.2 x 10 
6 psi

x. A

IM

f ^^

while for layer 2

E11 , 1.0 x 106 psi

E22 ' 25.06 x 106
 psi

E 12 - 0.25 x 106 psi

E33 = 0.50 x 10 6 psi
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G44 = 0.2 x 10 6 psi
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G55 = 0.5 x 106 psi

The actual half sine wave load distribution was used in determining the

work expression. For a state of plane strain with w in each element

given by

	

x2-x	 x-xl
V W 

wl(x -x ) + W2(x -x
2 1	 2 1 )

the work expression for each triangle is then

^x2x1
`	 me	 sin —	 x +x

W	 -

	

L	 1	 L 2	 X 2 1
i	 2 qo Tr w cos L	

Tr x2-x1	
cos L
	 3

L 2
rx2-x1

sin L 2	
7r x

2+x 1 	7rx2
+ w2
	 x -x	 cos L 2 - cos L	 (4.9)

r 2 1
L 2

where b is the width of the plate strip.

Some results obtained by solvl::, ,g the finite element equations with

the aid of ' the developed computer grogram are shown in Figs. 4-2 to 4-5

where they are compared to the exact solution of the equations of the

present theory. It will be seen that the finite element model used is

capable of yielding accurate results provided a sufficiently large num-

ber of elements is used.

Also shown in the figures are the results obtained by Spilker, et

al. (ref. 19), using a similar hybrid -stress finite element model which

has the same displacement distribution but which utilizes an assumed

stress variation in the derivation of the element stiffness matrix as
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well. It will be seen that the present element model yields results

that are about as accurate as the somewhat more complex hybrid-stress

element.

4.2 Two-Layer Angle-Ply Square Plate Under Uniform Load

As a check on the accuracy of the present finite element model

when applied to laminated plates, the problem of a uniformly loaded

square plate with two angle-ply layers was investigated. The fiber

orientL-ions of the layers are +0 for one and -0 for the other. The

layers are of equal thickness, h/2. The plate is supported on all four

edges, so that transverse displacements are not permitted to occur.

Interlayer displacements normal to the edge are not permitted, but

displacements parallel to the edge are unrestrained. Normal and parallel

edge displacements of the top and bottom surfaces of the plate are free

to occur. Material properties, dimensions and geometry are shown in

Fig. 4-7. Whitney (ref. 34) has solved a similar problem with classical

lamination theory in which shear deformations are neglected. Spilker,

et al. (ref. 17), have solved the same problem using a simplified

hybrid-stress element and have obtained good agreement with a corrected

version of Whitney's results.

Due to coupling of bending and extension in the cross-ply laminated

plate, there are no symmetry conditions that can be applied. Thus the

entire plate must be modeled. An isotropic single layer square plate

under uniform pressure was investigated first. In this case symmetry

conditions permit the modeling to be limited to only one eighth of the

plate. For a plate with a length-thickness ratio of 10, the finite

element results converge to a value about 6% greater than the value

51
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given in ref. 31 (Fig. 4-8) when each half-length was divided into

20 equal parts, i.e. 100 elements were used for 1/8 the plate. The

larger value to which the finite element solution converges is due to

shear deformations which are not included in ref. 31.

For the cross-ply laminated square plate, the above results indi-

cate that each side of the plate should be divided into 40 equal parts

to achieve satisfactory convergence. Thus 3200 layer elements would be

needed to model the entire plate. Results that were obtained with the

side divided into 6, 8 and 10 spaces respectively (Fig. 4-9) are in

accord with this conclusion. The hybrid-stress element developed by

Spilker, et al. (ref. 17), provided convergent results for the angle-

ply laminated plate with the side divided into 10 spaces. It is

apparent, then, that a plate finite element model based upon the prin-

cipal of minimum potential energy has very much poorer convergence

properties.
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4.3 Perforated Square Plate Under Uniform Inplane All -Round Tension

The effect of circular holes on the stress distribution in

stretched plates has been the subject of many investigations. Accurate

solutions are availabe for a circular holt- in an infinite plate

(refs. 34-37) and in an infinite strip (refs. 38-39). The effect of

circular holes in a square plate has been studied less rigorously by

Hengst (ref. 40) who assumed an expression for the invariant trace of

the stress tensor of the form

4

_	
Gkr2k cos W

k=4

and obtained expressions for the coefficients by minimizing the error of

the expression. The investigation yields an approximate formula for

the circumferential stress around the hole. For uniform tension in

both directions (Fig. 4-10) the circumferential stress for various

size holes is given in Table 4-1.

For the finite element solution of a plate with ro/a - 0.5 the

plate was modeled as shown in Fig. 4-11. The symmetry of the problem

requires that only one-eighth of the plate be modeled. The displace-

ment symmetry conditions for the problem are those of identical dis-

placements in the x- and y-directions along the diagonal a-b and van-

ishing y-direction displacements along the line c-d. Along the side

b-c and the circle a-d the stresses are prescribed. The symmetry con-

dition of identical displacements is achieved by assigning the same

variable number to U  and U  at a nodal point on the diagonal. The

problem is one of generalized plane-stress with stress boundary condi-

tions so that the results are independent of material properties and of
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accuracy of the model since the prescribed and calculated stress values

need not be identical. The circumferential stress values along the

centerline are interesting in that they decrease at first but then

increase somewhat toward the loaded edge.

4.4 Perforated Square Plate Under Uniform Nodal Pressure

The square isotropic plate with a circular hole which is subjected

to uniform load has been investigated by E1-Hashimy in reference 4L

A deflection function is assumed of the form

pa4 4w	 D X64
gr  + C1 + C2p2 + C3p3Yn -P— + C41ni	 i

+ (Alp 4 + Blp 2 + A 
2 
p 4 + B 

2 
p 6 ) cos 46

+ (A3p 8 + B 3 6 + A 4 p 8 + B4 p10) cos 861

where p is the non-dimensional radius ratio r/a. The hole radius is

pia. Here a is the side length of the plate. The 12 coefficients are

determined by the satisfaction of the conditions of vanishing moment

and effective shear force at the hole, which yields 6 equations, and

by the satisfaction of conditions of simply supported or clamped edges

at 3 points as indicated in Fig. 4-15. The periodicity of the solution

requires that only an eighth of the plate be considered.

The finite element method of the present paper was used to analyze

the plate as well. The hole size and the grid used are identical with

those of the previous section. The boundary conditions are those of

zero. force at points on the hole,. equal values of U  and U  and zero

effective transverse shear force along the diagonal, zero values of U 
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a,	 and effective transverse shear force along the centerline, and zero

transverse displacement and either zero inplane stresses displacements

along the edge, corresponding to simply supported and clamped edges

respectively. The number of degrees of freedom are then 648 for the

simply supported plate and 576 for the clamped plate.

A comparison of the transverse displacements calculated using E1-

Hashimy 's equations and those obtained from the finite element anlaysis

is shown in Table 4-2. It will be seen that the finite element values
2

are considerably less than those of ref. 4 1 although the shapes of the

deflection patterns are similar. This result is attributed to the sat-

isfaction of boundary conditions at only 3 points on the edge in E1-

Hashimy's solution which yields a much more flexible structure than is

actually the case.
i

The deflections and stresses obtained from the finite element

method are shown in Figures 4-16 to 4-17.
i

4.5 Axisymmetric Bending of a Cylindrical Shell by End Load

Having ascertained by the investigation of the previous problems

that the results for flat plates obtained by means of the present

finite element model are adequate, the accuracy of the theory for

cylindrical shells was studied next. The first problem investigated

was that of axisymmetric bending of an isotropic cylindrical shell by

end load, with transverse shear deformations included. The general

equations of the theory for a shell having orthotropic layers with

the material axes coincident with the lines of curvature axes are given

in Appendix C together with the solution of these equations for a
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single layer shell loaded equally at both ends by (Fig. 4-18) radial

shear forces.

Since the deformations are independent of position around the

cylinder, elements of any width may be used in a finite element solu-

tion. The central symmetry of the problem allows the modeling to be

limited to half of the shell to be modeled. Thus a portion of the

shells of length equal to one-half the total length and a width of 1

inch was divided into finite elements as shown in Fig. 4-191. To study

the convergence of the procedure the number and size of the elements

was varied. In some cases the size of the elements was equal. In

other cases a portion of the shell nearer the load was divided into

P smaller elements while the remaining portion near the center was

divided into m larger elements. The maximum number of equations to be

solved was limited to about 500 in the present calculations. The mate-

rial of the shell was taken to be transversely isotropic with Young's

modulus E equal to 1000 ksi and Poisson's ratio equal to 0.3. The

transverse shear modulus was taken as 100 ksi. The thickness of the

shell was assumed to be .l inches. The inner radius was varied from

5 inches to 100 inches. The shell length varied with the shell thick-
L

ness so as to maintain the value of 4 3(^ , at about 6.5. In

the calculations axisymmetry was imposed by requiring that the dis-

placement u0 be equal to zero everywhere and that u  and w be indepen-

dent of circumferential position. The boundary condition of symmetry

about the center of the cylinder was imposed by making, the displacement

4  and the transverse shear force equal to zero. At the loaded edge

the axial stress was put equal to zero while the radial shear force
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was kept constant for all shells. The results of the calculations for

the end deflection are given in Table 4-3 together with the values

calculated for the exact theory of Appendix C.

The rate of convergence of the finite element results is shown in

Fig. 4-19 where the ratio of the finite element and anlaytic maximum

displacements is plotted as a function of the number of elements i7h the

half-length of the shell. It should be noted that the number of ele-

ments shown is that of the triangular elements which is thus twice the

number of linear axisymmetric cylinder elements. The results indicate

that the thicker shells require less elements to achieve accurate dis-

placements but that sufficient accuracy can be obtained within the

equation limitations set.

The displacements and direct stresses obtained with the finite

element analysis using the largest number elements are compared with

analytic results for a long cylinder in Figures 4-21 to 4 -26. The

stresses were obtained by calculating the derivative of longitudinal

displacements as for the beam element and combining this with the aver-

age radial displacement within the element. The very good agreement

between finite element and analytic results indicates that a relatively

unsophisticated element model will yield satisfactory results.

4.5 Cylindrically Curved Square Plate With a Circular Hole Under

Uniform Transverse Pressure

A final problem to be treated is the effect of curvature on the

deflections and stresses of a single layer square plate with a central

circular hole. The developed geometry and material properties of the
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curved plate are similar to those of the flat plate of Section 4.4

1

	

j	 except that the plate has a cylindrical radius of 1000 inches. Since
F	

the geometry parameter z- (412	 b2/Rt) .is small, the results should

be similar to those for the flat plate.

P

One quarter of the curved plate was modeled as shown in Fig. 4-27

since the diagonal is no longer an axis of symmetry. A comparison of

the radial deflections for the curved plate and those for the flat

plate is given in Table 4- 4. The deflections are comparable but even

La
a slight amount of curvature is sufficient to change the deflected

shape significantly and to reduce the maximum deflection by 137.

The distribution of stresses at the inner and outer surfaces of
}

the curved plate are shown in Figs. 4-28 to 4-29.
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CHAPTER V
`r

CONCLUSIONS AND RECOMMENDATIONS FOR

^ FUTURE INVESTIGATION

tJ
The results of the present investigation have indicated that the

` addition of shear deformations to the theory of laminated plates and

shells permits the use of a simple linear displacement variation finite
{

element model for calculations. 	 Provided enough	 elements are used,

f{^ accurate displacements and direct and shear stresses parallel to the

layer surfaces can be obtained. 	 Where conditions of symmetry permit

I
1

the analysis to be limited to that of a small region of the structure,

the elements can be made small enough while the total number of equa-

tions is kept reasonably small. 	 However, for larger structures, the

`i
use of such a simple model in conjunction with the principle of minimum

potential energy sacrifices rapidity of convergence for simplicity of

{	 'r calculations as compared to a similar hybrid-stress finite element

model due to Mau, Tong and Pian.	 A linear displacement minimum poten-

tial energy element yields strains and stresses which are constant in

fE	
t

each element and "hence it does not permit the direct calculation of

transverse shear and normal stresses which depend on the derivatives of

the direct and shear stresses parallel to the layer surfaces. 	 The

hybrid-stress element, on the other hand, does permit the direct calcu-

lation of traasverse shear stresses.
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One would be tempted to abandon the potential energy approach were

f
it not for the ease with wich the approach is extended to shell analy-

sis. The extension of the hybrid-stress model is difficult, requiring

E	 the definition of a stress sate within the shell wall which satisfies

f	 the equation of equilibrium and interlayer continuity conditions.

1.	
Such equilibrium stress state distributions would vary with the shell

G,

geometry and would be difficult to define. Other disadvantages of the
k.l

hybrid-stress model are the large amount of computer storage required
^j

to define the stress-state for each element as well as the numerous

matrix inversion calculations required to obtain the combined stiffness

matrix for a stack of layer elements extending through the wall thick-

{ ness.	 These calculations increase with the number of layers. 	 A topic

for future investigation that should be pursued, therefore, is the

effect of more complicated displacement variations on the accuracy and

rapidity of convergence of potential energy finite element models.
t.

The right triangle element chosen in the present investigation for

ease of derivation and calculation is useful for regular structures.

It is inconvenient for irregular structures, however, since it does

^W not permit complete flexibility in the use of small triangles in a

region of rapid stress variation and larger triangles in regions of slow

variation.	 With the right triangle, the small triangle dimensions

affect the size of the larger triangles.	 Thus the analysis should be

extended to triangles of arbitrary shape.

In the absence of these extensions, the analysis technique de-
t

veloped in the present paper is useful but may require the solution of
J

C	 3

an extremely large number of simultaneous equations for accurate
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x
t

ro/a /q

1/81/8 2.028498 - 0.000707 cos 46 - 0.000000 cos 86

1/4 2.119101 - 0.011014 cos 46 - 0.000010 cos 86

3/8 2.289766 - 0.053591 cos 46 - 0.000237 cos 86

1/2 2.582663 - 0.164303 cos 48 - 0.002353 cos 88

Table 4-1 Variation with Hole Size of the Circumferential
Stress for a Perforated Square Plate Under Uniform
Tension
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Finite
Ref. 41 Element

14.377 5.569

10.692 3.293

3.679 1.247

0.000 0.000
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Finite
Ref. 41 Element
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Tr / 4
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Table 4-2 Comparison of the Transverse Displacements of a Perforated Square Plate Underw	 Uniform Transverse Pressure (ro /a - 0.5)
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0 7r/6 n/4

Finite Finite FiniteP
Ref. 41 Element Ref. 41 Element Ref. 41 Element

0.5 14.377 5.569 15.171 5.735 15.438 6.227

0.6 10.692 3.293 11.889 4.015 12.299 5.200

0.8 3.679 1.247 5.769 1.867 6.567 2.635

1.0 0.000 0.000 1.264 0.309 2.256 0.867

2F3/-3 - - 0.000 0.000 0.450 0.363

- - - - 0.168 0.000

0.5 85.498 38.693 87.242 39.483 87.825 39.873

0.6 69.414 31.169 72.581 33.265 73.644 33.990

0.8 33.876 16.011 44.113 17.952 46.650 21.831

1.0 0.000 0.000 17.518 6.300 23.918 11.156

2.3 3 - - 0.046 0.000 9.934 6.877
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Number of Number of L- 12.0",	 R-5.0" L- 16.0",	 R- 10.0" L-22 . 0", R-20 . 0" L-16.(1 ",	 R-50.0" L-50.0", R-1000.0"

Divisions Dlvlslonu W
1E/W flu ECM W ^WW

f
t 

n W
E

t
P

t
n

W
E

!
P

t
n

W
f

l
p

t
n f; x

2 - 3.00 - 0.5780 67.0 4.00 - 0.7654 67.5 5.50 - 0.9856 64.0 9.00 - .12622 53.4 12.5( 1.4565 4 1.9

5 - 1.20 - 0.7851 91.0 1.:0 - 1.0263 90.5 2.20 - 1.3556 88.1 3.60 - 1.9040 80.5 5.00 - 2.4431 13.7

10 - 0.61) - 0.8399 97.3 0.80 - 1.1021 97.2 1.10 - 1.4819 96.3 1.80 - 2,1861 92.9 2.50 - 2.9508 89.0

15 - 0.40 - 0.8514 98.7 0.53 - 1.1185 98.7 0.73 - 1.5115 98.2 1.20 - 2.2815 96.5 1.67 - 3.1225 94.3

10 20 0.15 0.225 0.8592 99.6 0.15 0.32 1.1292 99.6 0.20 0.45 1.5302 99.5 0.25).775 2.3332 98.7 0.40 1.05 3.245797.

20 40 0.10 .101 0.8604 99.7 0.100.15 1.1316 99.8 0.101.22 I.S3S 1 99.8 0.15J.375 2.3555 99.6 0.20 25 3.2949 99.

40 80 0.050.051 0.8608 99.8 O.OT.071 1.1321 99.9 0.0 1.11" 1.536 99.9 0.08).185 2.3604 99.8 0.10 Q 26 3.307 99.

W (with shear) 0.8629 1.1337 1.5385 2.3641 3.3141
e
r

We (without •hear) 0.7697 1.0640 1.4880 2.3314 3.2911

W /W Y 112.1 106.6 103.4 101.4 '100.7
e	 e

i

Table 4-3 Comparison of Finite Element and Analytic Values of End Deflection of a Cylindrical
Shell under Axisymmetric End Load
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Comparison of Curved and Flat Plate Normal Deflections

0 d' 3d° 45° 6(f 9(p

P C.P. F.P. C.P. F.P. C.P. F.P. C.P. F.Y. C.P. F.Y.

0.5

0.6

4.610 5.569

3.981

5.145

4.015

5.735 5.401

4.498

6.227

5.200

5.3731

3.925

15.735

4.525

5.092

3.661

5.569

3.9813.293 4.525

0.8 1.044 1.247 1.594 1.867 2.278 2.635 1.651 1.867 2.070 1.247

1.0 0.000 0.000 0.270 0.309 0.160 0.867 0.275 0.309 0.000 0.000

2/3-/33 --- ---

--

0.000 0.000 0.322 0.363 0.000 ---

---

---

-

---

32 -- --- --- 0.000 -- --- ---

C.P. - curved plate
F.P. - flat plate

Table 4-4 Comparison of Radial Deflections for Perforated Flat and Curved Plates thider Uniform
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Figure 2-6 Modeling, of Regiomwith lxregular Boundary
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GEOMETRIC PROPERTIES: a=b-10"

MATERIAL PROPERTIES: E11=40x106psi 	 E22=1 x 106psi

G12-G23=0.5 x 106psi

V 12"23-0.25
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FINITE ELEMENT MESH: MxM square elements in entire plate

Figure 4-7 Laminated Plate Under Uniform Transverse Pressure
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Figure D- la Shell Element Loaded by Shear, Normal Stresses and Force, Moment Stress Resultants
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