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NOMENCLATURE

Length and width of a square plate

Coefficients defined by Equation (2.4g)

Determinant defined by Equation (2.18c¢c), equal to twice the
triangular element area

Symmetric Matrix defined by Equation (2.12d)

Matrix of element vertex coordinates defined by Equation
(2.18b)

Distance from bottom reference surface to bottom of kth layer
Displacement Vector for the jth element in the ith layer
Young's Modulus of Elasticity for isotropic material, psi
Material modulus psi

Material modulus matrix

Matrix defined by Equation (2.19c)

Material transverse shear modulus

First fundamental quantities of shell reference surface for
lines of curvature coordinates

Thickness of single layer plate or shell

Integrals defined by Equations (2.13)

Element Stiffness matrix for jth element of ith layer defined
by Equation (2.20b)

Width of iaag layered plate

Layer bending moments per unit length of layer middle surface
Layer twisting moments per unit length of layer middle surface
Layer normal force moments per unit length of layer middle

surface
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Layer inplane shear force moments per unit length of
layer middle surface

Layer transverse shear force moments per unit length
of layer middle surface

Applied surface load

Radius of inner surface of a cylindrical shell
Cylindrical coordinates

Normal curvatures of the reference surface in the
direction of the line of curvature coordinate curves
Matrix defined by Equation (2.19¢)

Components of [R]

Strain energy of each layer per unit reference surface
area

Transformation matrices for stress and strain com-
ponents, respectively

Strain energy of the shell

Tangential displacements

Potential energy of layered shell

Normal displacement

Work of the conservative, extermal loadings
Cartesian Coordinates

Lines of curvature coordinates

Strains of line elements originally in a,8 direction
Transverse shearing strains

Normal and shear stresses parallel to the shell

Poisson's ratio for isotropic material
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ABSTRACT

The finite element method is used to investigate the static behav-
ior of laminated composite flat plates and cylindrical shells. The
structures are composed of an arbitrary number of layers with arbitrary
material properties and fiber direction within each layer. The analy-
sis incorporates the effects of traverse shear deformation in each
layer through the assumption that the normals to the undeformed layer
midsurface remain straight but need not be normal to the mid-surface
after deformation.

The present finite element formulation is based on assumed first
order polynomial displacement functions. The nodal displacements are
obtained by minimizing the corresponding potential energy to establish
approximate equilibrium equations. The solution of these simultaneous
equations is then the ultimate goal for the study. A digital computer
program which utilizes part of the avallable SAP V computer program was
developaed to perform the required computations. The program includes
a very efficient equation solution code which permits the analysis of
large size problems.

To assess the behavior of the developed finite element, solutions
were obtained for some laminated composite plate and cylindricsl shell
problems for which analytic solutions are available. The accuracy of
the stress and displacement results obtained by using the developed
finite element is determined for different plate and shell proportions.
The rate of convergence and limitstions on the use of the developed
element are also discussed. The method is finally applied to the prob-

lem of stretching and bending of a perforated curved plate.
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CHAPTER I

INTRODUCTION

Thin shells have become a popular subject in the field of struc-
tural mechanics in the past two decades. Numerous books and papers on
their analysis have been published because of their use in such struc-
tures as aerospace structures, pressure and underwater vessels, and
nuclear reactor structures subjected to both static and transient laods.
The advent of advanced fiber-reinforced composite materials which has
been called '"the biggest technical revolution since the jet engine" (1),
has led to increasing use of laminted shells.

In fiber-reinforced composites such as boron—epoxy and graphite-
epoxy combinations, the fibers provide the majority of the strength and
stiffness. The function of the matrix is to support and protect the
fibers as well as to distribute and transmit load between the fibers.
The latter function is especially important if a fiber breaks, for then
load from one side of the broken fiber is transferred to the matrix and
subsequently to the other side of the broken fiber and to the adjacent
fibers. The ma:ri# is of such low shearing stiffness compared to the
fibers, however, that shearing deformations become important in appli-~
cations involving loads normal to the structure.

In laminated structures the desirability of accounting for shear

deformations in each layer has made it necessary to extend the classical
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analyses based upon the Kirchhoff-lLove hypothesis which neglects the
effects of transverse shearing deformation entirely (references 3,4) or
upon the Timoshenko-Mindlin modification which deals with an average
shearing deformafion (references 5-11). The importance of a more rigor-
ous analysis is indicated by the work of references 12-i5 which investi-
gates particular elasticity problems of the layered plates by means of
exact analytic solutions.

For more general problems it is difficult to obtain an amalytic
solution, however, exact or approximate. Due to developments in compu-
ter science and digital computers, the finite element method offers the
possibility of yielding numerical results for problems unsolvable by
other methods. Some investigations utilizing the finite element method
for laminated plates including shear deformations are already available
in the literature. In refe;ences 16 and 17 the finite element model
includes only average shearing deformation effects. Mau, Tong, and
Pian (reference 18) provide for general laminate behavior by allowing
each layer to undergo independent rotations of the normal to its unde-
formed middle surface in a hybrid finite element model. A modified hy-
brid finite element has been developed by Spilker, Chow, and Orringer
(reference 19) who seek to obtain reasonable accuracy with a consider-
ably reduced number of nodal degrees of freedom.

Because the element used is generally a rectangular plate element
in these investigations, however, the solution of such problems as lami-
nated plates with perforations for the determination of stress concen-
tration effects around the hole cannot be readily studied. In the

present investigation the stiffness matrix for a triangular curved

(2]
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element which has better application to these and other problems is
derived and applied to various problems. The study is limited to a
cylindrical shell and flat plate element which consists of a right
triangle in the lines of curvature coordinate system and with the per-
pendicular gsides oriented in the directions of the lines of curvature
coordinate curves. For other shells and element shapes a numerical
integration technique (reference 20) is possible.

In the study a displacement finite element model rather than the
Similar hybrid stress model of previous investigations is used. The
motivation for this simplified model was a belief that much the same
accuracy as the hybrid stress model could be obtained, with a consider-
able simplification of the calculations involved. This belief is borne
out to some extent by a comparison of displacements and stresses for
several problems solved numerically by the two finite element models,

in that much the same results can be obtained, at the price, however, of

‘'a slower rate of convergence.

The finite element model is based upon a theory of layered plates
and shells which rétains the Love-Kirchhoff assumption of a normal
deformation which is not a function of position in the shell thickness
coordinate. The assumption that straight lines normal to the undeformed
éhell remain normal to the deformed shell is replaced by the assumption
that straight lines in each layer normal to .the unformed shell remain
straight but rotate with respect to the normal to the deformed shell by
an amount which varies from layer to layer. A similar assumption has
been utilized for beams by Swift and Heller (references 21-24) and by

Durocher and Solecki (references 25-26) for two and three layer plates.



i «..T.d

{—r e
Wmraras

v \
| IR

-

e
| SNE )

gy
i

.

U VS S S YU NN SO S WS SR . !

The limiting case of an infinite number of infinitesimally thin layers
has been shown to yield good agreement with the results of three
dimensional isotropic plate theory by Boal and Reissner (reference 27).
For a single layer plate the theory reduces to a form similar to that
of Libove and Batdorf (reference 28) for sandwich plates.

The derivations that lead to the finite element stiffness formula-
tion are discussed in Chapter II. A computer program based upon the
résults for circular cylindrical shells and flat plates is discussed in
Chapter III and listed in Appendices A and B. Finally the results for

several problems investigated with the present analysis are discussed

in Chapter IV.
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II. THEORETICAL BACKGROUND

2.1 Assumptiohs

The thin shell theory adopted here is assoclated with the following
set of assumptions:

1. The shell is composed of layers of orthotropic material, the
principal material directions of which do not necessarily coincide with

the coordinate directiomns. (Fig. 2-1).

2. There is a linear distribution of tangential displacements

. thkough the thickness of each layer. The linear distribution may vary

from layer to layer.(Fig. 2-2).

3. The normal displacement is constant through the entire thick-
ness of the shell at each point on the shell réference surface, provided
there are no portions of one or more interior layers missing.

The various elements of the theory are as follows.

2.2 Strain-Displacement Relations

The strain-displacement relations used are obtained from three=-
dimensional elasticity theory. A system of orthogonal curvilinear coor-
dinates for points within the shell wall is defined by the coordinates
a and B corresponding to the lines of curvature on the bottom surface
and distance % along the normal to the surface,(Fig. 2~3). Then, from

reference 29, the following equations can be established:

1 (sua(c> 1 Bga ga ]
g (3) = — + — == u,(T) + 5 w(Z) (2.1a)
a (14 _g_)ga]_ da gg 08 B R,
8

e

Bl S
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[Bu, () dg ]
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B (1+ _g_)ga _ oa 8 Ik a7
[o ]
. 1 Bga(C) ) l_.;fg .
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YQC(C) - E-)g o R u, (@) + Y3
a - -
1 [w@ 8 .0, 4@
Yor(G) = - = u,(g)| +
8z (- _gg)gs R I

(2.1b)

(2.1¢)

(2.1d)

(2.12)

(2.1£)

where uy and uB are tangential displacements, w is the normal displace-

ment, 8y, and gB are first fundamental quantities for the lines of curva-

ture coordinate curves on the reference surface and Ra and RB are normal

curvatures of the reference surface in the directions of the coordinate

curves.

The basic assumptions in this study are those of linear tangential

displacement and constant normal displacement distributions through the

layer thickness. For the ith layer, then,

TN DU SN2 U 4
UG(C) ua(l hi) +u hi

i+l g

1 1,. .
uB(C) = uB(l- hi) + uB hi

(2.2a)

(2.2b)
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where W: and ug are tangential displacements of the kth interface and

R P P S-S UO S

(2.

are functions of & and B only. The coordinate { is now measured in

each layer from the bottom of the layer so that 0 < T < h

then become

i (1 g i+1 ¢z 7 1
ey (8) = ey (I-32) + & ﬁ_ 1
- i 1< A
a
i PE! g A+l g ] 1
€ (B) = g, (l=—3) + &

8 N L T
8

- i i .

¥ Y
Yig® =| -+ | (- +
4,(@  Ag(©@) i

i .
eC(C) 0
Yi
Yh (@) =
A (Z)
Y:L
Ya (@) = S—
AL (T)
B
where
' k k
a g g g, dB
o B
k koo
B8 8g B8 8y °C B
k k
Ya 8y, aa 8g 3B

(%)
@)
Y§+1 Y§+1

+
i i
Aa(C) AB(C)

&

By

i

2c)

Eqs. (2.1)

2.3a)

(2.

(2.

(2.

(2.

(2.

(2.

3b)

.3c)

3d)

.3e)

3f)

4a)

4b)

4e)
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el B L[ (1o =)o (005 (2.4e)
a8y 3B hi a Ry
1 _1 3w 1 [H div )
Yoz " gg 98 ' by |:u5 (1 o ) (1 * )} (240
di +3
AS(D) = 14— (2.48)
Q
d, +
k-1
d, = > by 4y =0 (2.41)

j=1

2.3 Material Properties

The material of each layer is assumed to be anisotropic in surfaces
parallel to the reference surface of the shell. In accordance with the
usual assumptions of plate and shell theory, layer strains are assumed
independent of transverse stresses.

The stress-strain relations are then taken as

{o} = [E]{e} (2.5a)

where {0} and {€} are respectively the stress and strain matrices
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o} = ¢ Tog r (2.5b), € -1 Yaﬁr (2.5¢)
T Y
o174 : ag
\Tgr/ \gz)
and E is the symmetric material constant matrix
B E;; Epp By 0 0
Eap By Epy3 O 0
[E] = E31 E32 E33 0 0 (2.5d)
0 0 0 G44 645
. 0 0 0 G54 G

The material constants Ell’ ElZ"' to G55 are generalized Young's moduli,
Poisson's ratios, and shear moduli as discussed in detail in Ref. (2).
For an orthotropic material with the principal material directions coin-

ciding with the coordinate axes, Equations (2.5a) may be written as

{o} = [E"]1{e} (2.6a)
where
~ -
Ell E12 0 0 0
E21 E22 0 0 0
[E°] = 0 0 G33 0 0 (2.6b)
0 0 0 G44 0
i 0 0 0 0 GSS_

The principal material directions for an orthotropic material often do
not coincide with the coordinate directions, however, especially in a

laminated composite structure where the orientation of material can be
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varied from layer to layer.

Therefore it 1s convenient to effect a

transformation of the stress-strain relations from local material axes

to the overall coordinate axes.

Let the angle between the global and

local orthogonal layer material axes be denoted as § (Fig. 2-4). Then

where

[T, =

[r,] =

coszB
sin26
1
- —:,_-sinze
Q

0

c0526
sin™g

~-gin29

{07} = [TU]{U}

{€”} = [r_1{e}

sin%g sin26
c0526 ~sin26
Fein20  cos28

0- 0

0 0
sin®®  Zsin2g
c0520 -%sin28
sin26 cos28

0 0

0 0

cosf

-sinf

0

0

0
cosf

-sing

sind

cosf

0

0

0
sinf

cosf

(2.7a)

(2.7b)

(2.7¢)

(2.7d)

These transformations are derived in most texts on strength of materials

and theory of elastiicty, for example Ref.

Then

' -1 -1
{o} = [t ] {g7} = (r,] [E"]{e"}

= [T 1" [E7) [T ] {e}

10



and a comparison of Eqs. (2.5a) and (2.8) yields
T . ..
[E] = (T_]"[E"]IT,] L (2.9)
The individual elements of the transformed modulus matrix are as follows:
E,, = E7 cos46 + 2(E;, +2G5.) sinze cosze + E; sin46 (2.10a)
11 11 12 33 ' 22 * :
E,, = EJ sin46 + 2(E;, +2G..) sinze cosze + E; cos49 (2.10b)
22 11 12 33 22 ‘
" Enn = Go, +S(EZ, + ES, - 2E7, = 4G5.) sin’28 (2.10¢)
33 33 2711 22 12 33 '
E,, = E,. = E’ +l(E‘ + E;, - 4E7 - 2G1.) sin28 (2.104)
K 12 21 12 47711 22 12 33 ‘
- i E,,=E,, = l-(E' - E.,) sin26 +-l(E’ + E;, - 2E7, - 4GZ.) sin4®
. 13 31 4711 22 811 22 12 33
. (2.10e)
5 E,, = E =---]'-(E' - E,,) sin26 - l{E‘ + E;, - 2E7, - 4G;,) sin4®
23 32 4711 22 811 22 12 33
. (2.10£)
¥
| G,, =G, cos26 + GZ sinze (2.10g)
2 44 44 55 '
i Ge.r = G sinze + G_ cosze (2.10n)
i 55 44 55 :
-~ = l - - -
| G45 G54 2(G44 G55) sin 26 (2.104)
| 2.4 Principle of Minimum Potential Energy
- The theorem of virtual work states that if an elastic body is in
5 - equilibrium under the action of prescribed body and surface forces, the
; {1 work done by these forces in a small additional displacement is equal to
the change in internal strain energy. From the theory of elasticity the
L internal strain energy for a layered shell is given by
x
;J 11




N g=h
i
U ";'ff Z {ci(;)_}T{ei(c)}ga(c)gB(C) dZdadB (2-11a)
8 %o ™l

With the stress-strain relations given by Eqs. (2.5) the strain

energy may be written as

N c-hi
U=z f ) [ {si(t)}T[Eil{ei(c)}Ai('E)’Aé(';)dCds (2.11b)
s =ldag

where the surface integral is over the area of the reference surface and
ds = gugsdadB (2.11¢)

The components of the strain matrix for each layer are given by Egs.
(2.3) and [Ei] is the material modulus matrix for each layer of the form
of Eq. (2.5d). Multiplication of the matrices in the integral then

yields the following expression for the strain energy

N
oo [ 2 s, (22120
S i=1

where Si, the strain energy of each layer per unit reference surface

area is given by

5, = HE Y 18,105 (2.12b)

12
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If the applied forces (Fig. 2-5) are conservative the work done by

these forces is given by

- / K;N-u L aHL ML 5N+1w)(1 N dm+1) (1 N du+1>

a; « B B 4 R RB
S

-1 1 -1 1 -1
- (ta u + TBCUB +C w)]ds

Q
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where l/RS is the normal curvature of the reference in the direciion of

the boundary curve and lanS is the twist of the surface referred to

surface ccordinates normal and tangential to the boundary curve, while

Tg O

o’ ?nC are the applied stresses parallel, normal, and tranverse to

the boundary curve, respectively.

The principle of virtual work can now be stated as follows as the
principle of minimum potential energy:
Of all displacements satisfying the given boundary condition on dis-
placement, those which satisfy the equilibrium equations make the poten-
tial energy Hp = {J-W stationary. An expression such as Hp is called a
functional to imply that Hp is not simply a function of displacements

and displacement derivatives but depends on their integrated effect.

2.5 The Finite Element Method

The principle of minimum potential energy is the basis for some
procedures for obtaining approximate solutions for problems which cannot
be solved analytically. The older classical procedure known as the
Rayleigh-Ritz method (ref. 31) expresses the solution in terms of.series of
known trial functions which each satisfy geometric boundary conditions
vhich are continuous and have continuous derivatives over the entire

region of interest. The coefficients which multiply these functions in

16
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the series are determined by the condition that the potenitial energy be
a minimum, yielding the conditions that the derivatives of the functional
Hp with respect to each of the coefficients must vanish.

The finite-element method is a variation of this procedure which

seeks to define the solution in terms of different trial functionms,

usually polynomial expressions, for different discrete regions of the

structure. Only the trial functions and, in some cases, certain of
their derivatives are continuous at the common boundary of adjacent
regions. Such a series of functions is said to be a piecewise continuous
fit to the solution. The solution within each discrete region is ex-
pressed in terms of displacements and, if necessary, derivatives at
discrete points or nodes, usually on the boundary. Thus while the form
of the polynomial expression is the same for each region, the coeffi-
cients vary from region to region. The potential energy of the entire
structure is then obtained in terms of these nodal quantities which take
the place of the function coefficients in the classical Rayleigh-Ritz
procedure. Extremalization of the potentiai energy then yields equations
for determination of the nodal quantities.(for example refs. 32 and 33).
The advantage of the finite element method over the classical
Rayleigh-Ritz method is that the same discrete region functions are
valid for zny boundary conditions on the structure. Thus the algebraic
manipulations yielding the form of the potential energy expression need
be carried out only once, after which an algorithm to yield the results
for regions having the same general shape but different parameters may

be written for automated digital computer applications.
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2.6 Finite Element Formulation

The finite element model usually chosen to represent a plate or
shell structure is a series of triangles or rectangles since the analysis
of the structure is reduced to that of a two~dimensional continuum. For
the present problem the inclusion of shearing effects in each layer re-
quires the analysis of a number of interacting two-dimensional continua,
one for each layer interface. Thus an element consists not of a single
rectangle or triangle but a number of these, one above the other, for
corresponding regions on the layer interfaces. While a rectangular ele-
ment shape 1s adequate for a structure with regular boundaries, the
shape of the element is chosen to be a triangle in the a,B plane to be
better adaptable for the analysis of regiomns with irregular boundaries,
as shown in Fig. 2-1.

If the vertices of the triangle element are numbered as shown in

%1
of the jth»triangular element of the

Fig. 2-7a and the shape of the triangle is such that o‘%>org_ i and Bj>s:i

the corresponding strain energy U

ith layer is given by

ij

P sj-ej 5. B8
a3 Bl+ 5 (a - ) B + —— j j (G-G )
Uyy -f f 5,8 (2.15)
J_gd J_gd
B B 8 -B
J 3 h ] 3 ]
oy B + j j (a”-a ) ay B + j j (a az)
#37¢
If, however, the vertices of the triangle are numbered so that ag>a%>ag

but B%<B% (Fig. 2-7b), the limits of integration on 8 are reversed.
In evaluating the strain energy of a typical triangular layer ele-

ment the displacements in the jth element of interface i are assumed

18
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to vary linearly within each element as

1j
Yo

- ald 1j 1j
a1 o + b1 8 + c1

ij _ 13 ij ij
uB a2 o + b2 B + c2

1]

w

- o 1] ij ij
. a3 o + b3 B + c3

(2.16)

The coefficients may be obtained in terms of the cormer displace-

ment by means of the equat

ions

J Q3 13 _ij _i]]
al BT 1 a;” a," ag
J g3 w13 .13 1]

B> 1 by b2 b3

o gd 1| |13 L3 D

T 43 15  47]
Yal Yg1 "1

15 43 13
Uy2 Y52 ¥2

i 43 13

_3 73 ) Ul T2 73 L.u“3 U3 w3_
yielding
-1~ I
=R NCRRE
Wt ] EEREL L
where
oi-s] ol odei-aled
R
LB{-B% a { G:{B%-agsi
a{ 1
om(‘i)YNPngUAfI% IS{ A = det ol 1
OF 0% 1

(2.17)

(2.18a)

(2.18b)

(2.18¢c)
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i In addition the numbering system shown in Fig. 2-3 is introduced. Then

| a relationship between the element strain matrix {E%dand the displace-

ment matrix

~

2

E—
[——

IR
. '
| i
| .
4
o .
it
3; {d}i_‘] = J 3 (2.19a)
i
i

1 u
g? \ 184
i)
5? can be obtained as
), =[6l,{d .1
{ }ij [ ]ij{ }:tj (2.19b)

where

. o ety
Lo i ommd

CPTC RS - YEP e
e S

S——
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and the quantities Rk are the components of the matrix

[R]j =

14

(32 3 )a + (a )3 + aij ij (Bg Bj)a + (a )B + a38j-aij (Bj B )a + (a )8 + (116% gﬁj
ol o oo
aj-o] aj-a] aj-o] ]

(2.19¢)
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Note that only the last two rows of the matrix [G] change from layer to

layer. Then the layer element strain energy is given by

0, -.{d}g[K]ij {ah, (2.20a)
with
J_ad J_ad
B -B 3 B 3-8 .
ag Bj j j(a—a (a-ai)
(Kly; = : [F(a, B)ldudp + [F (o, 8) 1 dudB
Bj-Bj : BJ Bj i3
aj Bj+~ l(a-a Bj+ (a-a.
1 i 3 2
02-0.1 .
(2.20b)
and
T
[I"(oc,B)lij = [G]ij,[Bi] _[G]ijgmgB (2.20¢)

The element stiffness matrix [K]ij may be obtained in an integrated
form if the components of the first and second fundamental forms have a
simple vari;tion with the lines of curvature coordinates @ and B and if
one has the patience to carry out the matrix multiplications and the
integrations. An alternative approach is a computer program which will
carry out the matrix multiplications at selected points and perform the
required integrations numerically.

Similar operations will yield the work done by applied surface

loads. For example, work of normal surface loading on any element is

given by Bj-Bj BJ_Bj .
<a—aj) o3 2—L(aad)
a%—a{
c[j de j + jwjds b
/ ej-eJ f eg-sj( 3 )
a o a~0 (2.21a
1 2 a% - 2
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where
=N+1 dw. dw, _ =1
qy = 0 (F Ra)(1+ RB) 9, (2.21b)
and wj is given by
a
vy o= {wlj 2 Bj}[cj] ? (2.21¢)

If q i is assumed to vary linearly within the element as an approximation
to the actual distribution, q j is given by an expression similar to that

of Eq. (2.21c). Then

wl'j
Woo= {ayy a4 agyd (65T IT411C, 19wy, (2.22a) .
w3j
with 33
B -8y j
(a-al)
az al a
[I ]= af BZ B gaggdadB
; Bj'Bj a B 1
B + na-—a
J_gd
B —B
(a a{
az af o
+ a8 g% 8 g,8qdud8 (2.22b)
Bj Bj a B 1
aj (a—a
2 2
The potential energy is now given by
N M :
V= Z Z Z AW (2.22¢)-
i=1 j=1 j=1
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and is expressed in terms of the displacements at the nodal points of

the structure.

Minimization of the potential energy with respect to

each of these nodal point displacements then yields a set of linear

equations for their determination.

Convergence of the process to the

correct solution occurs as the size of the elements become smaller with

an increasing number of elements.

With the displacements known at the vertices of each triangular

prism layer element, the stress distribution within each element may

be obtained from the relatiomnship

1
oij(C)

Q

wd;j(C)
1j

TQB(C)

13
T (®)

)

LI

= [5]

1-z/h
Al

i

=)

z/h

i
AS(D)

.’;/hi

45(%)

l-z;/hi

i
AB(c)

z/h
0 0 - ! 0
AS(T)
z/h
0 0 0 n i
AB(c)
1-;/hi l-c/hi
i,.. i,.. o0 0
A A
0 0 0 0
0 0 0 0
q
o | tay tay,
0 ,
0
(2.23)
1
A;(C)
Mﬂﬁmﬁ 26
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A better approximation to the transverse shear stresses En)and T, _can

Be
be obtained by using the equations of equilibrium of stresses within

each layer as in reference 29.

2.7 Specific Results for a Right Triangle Element of a Circular

Cylindrical Shell and a Flat Plate

For a right triangle element of a cylindrical shell, with a taken

as the coordinate x along the generator and Sas the circumferential

2; angle © so that

I8

I ga = ]
| - gg =R

o .

! =

= R

- "8

&L the matrix [G]ij is given by

B

-
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(2.25b)

(2.25¢)

Ae’(x-x{)-nj(e-e}) (2.25q)
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In addition
1Hd,,,/R
i+l
Ilj(x’e) R 1In 1+di/R
d,+ %“1
Ilj(e,x) = hi 'I+T—
Rid \2 1+d, /R R+d
L. (x,0) = R|(14 —2) tn—2H___3_ 3
21 % h 1+, /R 2 h
i i i
d .+ 3h, \
1 i i
IZi(G,x) 3 hi (l+ R
R+d R+d 1+d,,,/R
-ndl i, i i+1
I,(x,0) = Riz+—— |1 <1+ = >ln TR
1 i 1
1 d,+ %hi
3@ =58y \F =%
o -5 -
.. 1 i i
1 d;+ %“1
1,4(8x) =3 hy \I+—f—
The stiffness matrix is given by
3. 863, 3
g (Ot Seen)
Ax” T
K =f . RG] [B] [G] dxdo
4 ‘_} :{ []ﬁ[ll.[]ij';\

while the work expression of Eq. (2.22b) is given

by

J VY (Y NI

(2.26a)

(2.26b)

(2.26¢)

(2.26d)

(2.26e)

2.26f)

(2.26g)

(2.26h)

(2.27)
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1/12 1/24 1/24 v,
3
L4
- Jad
{ Lj Wj {qu q2j q3j} 1/24 1/12 1/24 Ww2j> RAGY Ax (2.28)
- _1/24 1/24 1/12- stj.
|
E i The integrations of Eq. (2.27) have been carried out and have been
i -y incorportated in the computer program listed in Appendix A. 1In doing
-~ So care was taken to distinguish between the four differently oriented
{} right triangles shown in Fig. 2-9 for which variocus terms in the com-

ponents of the stiffness matrix change sign.

Similar results hold for a flat plate for which R is infinite

while R A@ = Ay . Then

-

{ I,,Gx,0) = I;,(0,%) = hy (2.29a)
r
] Ipy,0) = Ip(0,%) = I, (x,0) = I,,(8,x) = %hi (2.29b)
(N IBi(x,O) = I3i(e,x) = %hi (2.29¢)
i
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the matrix [G] becomes

—ijOijoooooooooo,ooooo-‘

1
(6l = +553
ijij

Q
85
F—i
g Q2
<2 o o o o o0 0 O ) o sy 0 00 0 0 o ©0 O
=2 ’
=
S -
Eg o o o o o 0 0 o A3 o0 M) o0 0 0 0 0 o O
o
& R -R R R R R
£ o -2 0 2 o o 22 o 220 R — 3ty Wyl o
i i i i i i
-R -R ~R R R R
—h—ll 0 —513 0 TQ 0 T\—ll 0 71—13 0 EH g 0 -—2ij —;’xj 0 —-—ij-%l\xj
B! 1 i i 1 i |
(2.30)
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with
e
SRR
Ry = by ()
R, = ij(x-x{)—éxj(y-Y{)
Rig = o ty-yd)

and the stiffness matrix is given by

3
A h|
f ngyjh okt
T
K], = [G] " [B] [G]dxdy

while the work expression is identical with Eq. (2.28) with RAGY

replaced by ij.

(2.3135
(2.31b)
(2.31¢)
(2.31d)

(2.31e)

(2.32)
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CHAPTER III

COMPUTER PROGRAM FOR THE ANALYSIS OF LAYERED PLATES AND SHELLS

The finite element theory of the preceeding chapter using the
particular right triangular element developed for flat plates and
cylindrical shells has been incorporated into the computer code listed
in Appendix A for which input and output data are given:in Appendix B. The
code utilizes a number of subroutines taken from the SAP IVand SAP V
codes (references 23-25) together with some additional subroutines de-
vised for the present program. The SA}P system codes are particularly
efficient subroutines for the processing of input data, the generation
of the system of equations to be solved, and the solution of an equa-
tion system of large size and bandwidth. The added subroutines deal
with the input and output peculiar to laminated plates and shells.

The subroutines and their functions are as follows:

1. HEDPRT - Reads the total number of nodal points,
elements, layers, and the type of anmalysis.

2. INPUTJ - Reads or generates the coordinates and the
restraint conditions of each nodal point, read’;
the material properties and thickness of each
layer, generates the variable number of each
degree of freedom.

3. LAYSHL, AYSHL - Reads or generates the layer element type
and the nodal points forming each element, cal-
culates the element stiffness matrix, calls ADDSTF

and CALBAN
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12.
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INL - Reads or generates nodal forces.

CHECK - Verifies sufficiency of input data. Prints an
error message if criteria not met.

ADDST F - Stores layer element stiffness matrix in proper
location in overall stiffness matrix, divides

the stiffness matrix and load vector into blocks

for storage.

CALBAN - Calculates bandwidth.of system of equationms.

SOLEQ - Controls input and output data from subroutine
SESOL. Calls PRIND, STRESS, STRSC.

SESOL -~ Solves positive definite symmetrical system
equations by Gaussian eliminationm.

ERROR - Prints error message if limit on storage require-
ments is exceeded.

STRESS, STRSC - Calculates stresses for each element.

PRIND - Prints out all required input and output.

The input data required for the static analysis of layered plate

and shell structures is given = detail below. The nodal points should

be numbered consecutively along straight, normal lines from the bottom

layer to the top layer before proceeding to another nodal point on the

bottom layer.

The elements should. also be numbered consecutively

through the thickness before proceeding to another element on the bot-

tom layer. The computations were carried out on the USC School of

Engineering DEC-10 System Computer.
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I. Heading Card (12A6)
Columns Variable Entry
1-72 HED(12) Enter the heading information to be

printed with the output

II. Master Control Card (4IS5, I4, Il, 4I5, 2x, 3I1, 3I5, 5X, F10.0)

Columns Variable Entry
1-5 NUMNP Total number of nodal points in the model
6-10 NELTYP 1
11-15 LL Number of Structure load cases
16-20 NF 0
21-24 KDYN 0
25 NDYN 0
26-30 MODEX Program execution mode

0 if problem solution wanted

1 if only data check wanted

31-35 NAD 0
36-40 KEQB 0
41-45 NIOSV 0
48 0
49 GENPRT 0 if printout of overall stiffness

matrix not wanted
1 if printout of overall stiffness

matrix wanted



i

L

Columns

50

51-55

56-60

61~-65
66-70

71-80

III. .Structural
Columns

1~5

6-10
11-15

16-20

Triable

ELPRT

IWIC

MINBND

IPLT
NRSC

GRAV

Data (415)
Variable

NELTYP

NUME
NUML

NUME'X

Entry

Q if printout of element stiffness
matrices not wanted

1 1f printoﬁt of element stiffness
matrices wanted

0

0 if bandwidth minimization not wanted

1 if bandwidth minimization wanted

0

0

0

Entry

13 if cylindrical shell element
14 if flat plate element

Total number of elements

Total number of layers

Total number of restrained nodal points

IVv. Material Froperties (F5.1, F3.1, 978.0) (One for each Layer)

Columns

1-5

!

variable

A

Entry

Angle of the layer material axes of
orthotropy to global crordinate
system (Equal to 0.0 if material

is generally anisotropic)
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L
L
{’ Columns Variable Entry
?4 } 6~-8 H Thickness of the layer
L 9~-16 Ell )
f 17-24 El2
- 25-32 El3
{ 33-40 E,,
| gM 41-45 E23 r Material elastic moduli (El3 = E23
% 5 49-56 E33 ' =G5 ™ 0.0 if material is ortho~
%' 57-?4 G44 tropic and properties are referred
| 65-72 G45 to axes of orthotropy).
i 73-80 G55
{‘ V. Nodal Point Data (I3, 3F7.4) (One for each nodal point)
T ‘ Column ariable Entry
i% 1-3 I Assigned number of the nodal point
‘! it numbered consecutively through
| the structure thickness before
Jz proceeding to next node in bot-
r: tom face
i 4-10 X(1) X -ordinate
T 11-17 (1) Y-ordiante
. 18-24 z(I) Z-ordinate
N ;
g :1
&
|
L
38
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R Columns
- 1-3
- 4

LA

2 5

V1II.

VIII.

- Colummns
R 1-10
g

11-20

21-30
{w 31-40

= analysis)

Variable
N

ID(N,1)

.ID(N,Z)

ID(N,3)

Variable

EM(1)
EM(2)
EM(3)
EM(4)

Entry

Number of

Restraint
1 1if
0 if
Restraint
1 if
0 if
Restraint
1 if

0 if

Element Load Multipliers (4F10.0)

Entry
0.0
0.0
0.0

0.0

restrained nodal points
condition in x-translation
point is restrained

point is not.restrained
condi;ion in y-translation
point 1is restrained

point is not restrained
condition in z-translation
point is restrained

point is not restrained

Radius For Shell Element (F13.3) (outfitted for flat plate

VI. Restrained Point Data (I3, 3I1) (One for each restrained nodal point)
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IX. Element Data (4I5,3Il1) (One for each element)

Columns
1-5
6-10

11-15

16-20
21
22

23

Notes: (1) Numbered consecutively through the structure thickness

(2) There are 4 different elements based on their orientation

Variable
M
Il
J1
K1
L
MCD

ML

before proceeding to next bottom layer element

Entry

Element Number

Vertex of the element
Vertex Bf the element

Vertex of the element

Layer number of the element

Element Code

0 without load on the element
1 with load on the element

as shown in Fig. 2-9. In all cases

I2 =11 +1

J2 = J1 + 1

K2 =Kl +1

Notes

(1)
(2)

(2)
(2)

(3)
(4)

(3) When there is no load acting on the element, input

(4) When there is any load acting on the element, input the

X. Load Data (18F4.2) (One for each loaded element)

Columms
4=7
5-8

9-12

the next element data

load data (next input) before the following element data

Variable
QX(Il)
QY(I1)
QX(J1)

Entry

Applied x-direction stress at Il

Applied y-direction stress at Il

Applied x~direction stress at Jl

10
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Columns Variable Entry

13-16 QX(JZ) Applied y-direction stress at J2

17-20 QX(KI) Applied x~direction stress at Kl

21-24 QY (K1) Applied y-direction stress at KI

25-28 QX(12) Applied x-direction stress at I2

29-32 QY(12) Applied y~direction stress at I2

33-36 QX(J2) Applied x-direction stress at J2

37=40 QY (J2) Applied y-direction stress at J2

41-44 QX (K2) Applied x-direction stress at K2

45-48 QY (K2) Applied y-direction stress at K2

49-52 QZ (1) Sum of applied z-direction stresses at
nodes Il and I2

53-56 FZ(Ia) Sum of applied z-directions concentrated
forces at nodes Il and I2

57-60 QZ(J1) Sum of applied z-direction stresses at
nodes Jl and J2

61-64 FZ(J1) Sum of applied z-directions concentrated

B forces at nodes Jl and J2

65-68 QZ(X1) Sum of applied z~direction stresses at
nodes Kl and K2

69-72 FZ(R1) Sum of applied z-direction concentrated

forces and Kl and K2
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XI.

Load Point (I3) (One for each loaded point in every load case

could be in any direction)
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IV. FINITE ELEMENT ANALYSIS OF SPECIFIC PROBLEMS

A number of problems have been investigated, some to assess the

accuracy and convergence properties of the finite element analysis

derived and others to explore the usefulness of the analysis for prob-

lems difficult to solve by other methods. A description of the various

problems and the results obtained are as follows:

4.1 Cylindrical Bending of a Wide Simply Supported iaminated Plate

Subjected to Sinusoidal Surface Pressure
Pagano in Ref. 13 has given an exact plane strain elzsticity

golution for the problem of cylindrical bending of a layered plate

sub-

jected to normal pressure. (Fig. 4-1). The material of each layer is orthotro-

pic and identical. The directions of the axes of orthotropy of alternmating

lafers vary by 90°, however. The boundary conditions are those of

vanishing edge normal displacement and stress. For a surface loading

which varies sinusoidally, then, the displacements and stresses have

. sinusoidal variations as well.

To obtain an exact solution of the problem within the framework of

the present theory the transverse displacement is taken in the form

w =W sin E%

while the longitudinal displacements are taken in the form

i i ™
u’ = U cos —
X X L

’

ok ot et p e < —— - )

(4.1a)

(4.1b)
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Then Eq. (2.12¢c) yields

(17 )
-ULsin

L)

X

i+l

hi x’ L

'z—*l:a'

W+ L (Uiﬂ‘ - Ui)-] cos =

(4.2)

The use of Eqs. (2.12), (2.14) and Eq. (3.2) results in the follow-

ing expression for the potential energy per unit width of the layered

plate
L N L
U = Z-Sidx-/‘ qwdx
0 i=] 0 -
L iAl 2 4 |,.12 i+ 141, 2
T
.Zitl _3-1.2 h:!.F"ll (Ux) +Uiux + (Ux )

(4.3)
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where q, is the amplitude of the normal loading. The minimization of

the potential energy with respect to the displacement coefficients Ui

and W then yields the following set of linear equations

2 ¢l 2
115 _1-1 C4s ) 1-1 |1 2%, 11
(6 21 -1 TR x [; AT B4y
i-1 i i
Gt G 2 G
+_éf=_+_‘£*] Uix+<.1.1§gih .._4_4)1,31

(5 o e Bttt o) -0

i=1

For a symmetric three-layer plate with

wzhz
U =-p. 130 o121l ol 245250y
2 3 24 4446 = 2 E116Ch =364 | ™

(4.4a)

(4.4b)

(4.4¢)

(4.4d)

(4.4Db)
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U, = -U --q°% el c? (2h+h)+fil‘-l-1-§-E2 h +"2h§h2
1 4 28, |Saaeet Y T B T
1 1.2, .1
4
W= -———-—-—.q"(%) el % + ———"th €ln +2E2n) 6, + -——Tr2h§ 6%, £l
2 wSha t 7 B Y E BN Gt T3 G
1 2L L
4
s h%:z 7, E]hy + 3 B2 n) ‘ (4.5¢)
24L
Cooal 2 1101 TL3 2_1_23"2h§hz
81 = 4 gz Bl [‘3‘*‘1 * h1<h1+h2):| RIS Y
1,1 2 2 1 2. .
By, (Bpphy +3 22 n) (26,0, + 65 hy) (4.5d)

Direct stresses may be obtained from Eqs. (2.3) and (3.5) as

sl T
i - i e \N_x X
o (&) = Epy < hi> = 7 R, ax (4.6)

Transverse shear stresses may be obtdined fvom the solution of the

equilibrium equation

305(2) AT (2)
ax T Y =0 (4.7a)
yielding
2 4 2 i+l
d"u d"u
i i i 1z x g X
. () =t (0) - EJ,Z (1-—--> + (4.7b)
Xy Xy 11 2 hi dx2 Zhi dxz

together with the boundary conditions of zero shear stress at one of the
surfaces. The remaining zero shear stress conditon is then automati-

cally satisfied. For the case of three symmetric layers
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Calculated values are given in graphical form in Ref.

following beam properties:

A comparison of the results of Ref.

analysis are shown in Figs. 4-2 to 4~5.

1 =25 x 10° psi

t=
]

=1
[

lx 106 psi

0.5 x 10° psi

(7]
]

= 0.2 x 106 psi

2= 4,10

1- L]cos -

R

oo " | !
B G e JE SR U QP R

(4.8a)

(4.8b)

(4.8¢c)

(4.8d)

13 for the

13 and those given by the present

It will be.seen from these figures

that despite the grossness of the approximations the midsurface dis-

placements and stresses are in quite good agreement.

The accuracy could

be improved even further by considering each layer to be divided into a

number of sublayers, each of which is analyzed on the basis of the
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present theory.

The finite element method using the triangular element outlined in
section 2.7 was also used to solve the problem. A half-strip of the
plate was divided into right triangular layer elements as shown in Fig.
4=6 where the numbering of nodes and layer elements is shown. Two
numbers shown in a triangle indicates that the interface belongs to the
two adjacent layer elements that are numbered. Only half of the plate
strip need be used since the plate center is an axis of symmetry with
u = 0. A state of plane strain was imposed by requiring that dis-
placements u and w at corresponding points on both long edges of the
strip be identical whicle the displacements uy were taken equal to zero
at all points. The displacements w at the top and bottom of each layer,
while numbered differently in the layer element are made to be equal by
assigning each the same number in the overall numbering system.

The width of the strip was taken as 1 inch and the thickness of
each layer was taken as 2 inches. The plate length was defined to be
24 inches and 60 inches corresponding to length-total thickness ratios
of 4 and 10, respectively. The material constants in reference 13 are
given as

El = 25 x 106 psi
6

Ez = 1 x 10" psi

6
G12 = 0.5 x 10 psi

6
Gyq = 0.2 x 10° psi

=y, .= 0,25

Vi2 ¥ Vo3
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. V12 Bp ™ Vg1 By
'y
the Poisson's ratio Yoy is equal to
h 6
vy, = 0.25 x 1210 - 2 g 01
- 25 x 10
:} so that for layers 1l and 3
E 6
] 1 25 x 10 6
k E,, = - = 25.06 x 10" psi
| 11 1—v12v21 1-0.25 x 0.01 .
il Ey 1 x 10° 6
E,, = = = 1,00 x 10" psi
» 22 l-vlzvzl 1-0.25 x 0.Q1
| :
s E = 0,25 x 10" psi

[N

i

12 = V12822 * VaiB1s

0.5 x 106 psi

=
]

33

6
4 = 0.5 x 10 psi

G 0.2 x 106 psi

55
while for layer 2

= 1.0 x 106 psi

25.06 x 106 psi

=1
|

t=1
]

0.25 x 106 psi

0.50 x 106 psi

=1
]

]

i
- ,(.,J-lrmat TSP U NI S SRSt
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G,, = 0.2 x 10 psi

44

G.. = 0.5 x 106 psi

55

The actual half sine wave load distribution was used in determining the
work expression. For a state of plane strain with w in each element

given by

(xz-x ) (x-xl )
w.w———-+w
1 xz-xl 2 xz—x1

the work expression for each triangle is then

T *27%
i 1 ' L . ™, _ sin T3 . 1x2+x1
1T 7% 7 |V1\®°s T X,=X °* 1T 73
m2 71
L 2
X,-X
T 271
+w il A cos T 2 - cos If& (4.9)
2 X,-X L 2 L :
m 21
L 2

where b is the width of the plate strip.

Some results obtained by solvi..g the finite element equations with
the aid of "the developed computer program are shown in Figs. 4-~2 to 4=5
where they are compared to the exact solution of the equations of the
present theory. It will be seen that the finite element model used is
capable of yielding accurate results provided a sufficiently large num-
ﬁer of elements is used.

Also shown in the figures are the results obtained by Spilker, et
al. (ref. 19), uéing a similar hybrid-stress finite element model which
has the same displacement distribution but which utilizes an assumed

stress variation in the derivation of the element stiffness matrix as
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well. It will be seen that the present element model yields results
that are about as accurate as the somewhat more complex hybrid-stress

element.

4.2 Two-Layer Angle-Ply Square Plate Under Uniform Load

As a check on the accuracy of the present finite element model
when applied to laminated plates, the problem of a uniformly loaded
square plate with two angle-ply layers was investigated. The fiber
orient:..ions of the layers are +0 for one and -0 for the other. The
layers are of equal thickness, h/2. The plate is supported on all four
edges, so that transverse displacements are not permitted to occur.
Interlayer displacements normal to the edge are not permitted, but
displacements parallel to the edge arehnrestrained. Normal and parallel
edge displacements of the top and bottom surfaces of the plate are free
to occur. Material properties, dimensions and geometry are shown in
Fig. 4-7. Whitney (ref. 34) has solved a similar problem with classical
lamination theory in which shear deformations are neglected. Spilker,
et al. (ref. 17), have solved the same problem using a simplified
hybrid-stress element ané have obtained good agreement with a corrected
version of Whitney's results.

Due to coupling of bending and extension iIn the cross-ply laminated
plate, there are no symmetry conditions that can be applied. Thus the
entire plate must be modeled. An isotropic single layer square plate
under uniform pressure was investigated first. In this case symmetry
conditions permit the modeling to be limited to only one eighth of the
plate. For a plate with a length-thickness ratio of 10, the finite

element results converge to a value about 67 greater than the value
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given in ref. 31 (Fig. 4-8) when each half-length was divided into
20 equal parts, i.e. 100 elements were used for 1/8 the plate. The
larger value to which the finite element solution converges is due to
shear deformations which are not included in ref. 3l.

For the cross-ply laminated square plate, the above results indi-

cate that each side of the plate should be divided into 40 equal parts

to achieve satisfactory convergence. Thus 3200 layer elements would be

needed to model the entire plate. Results that were obtained with the
side divided into 6, 8 and 10 spaces respectively (Fig. 4-9) are in
accord with this conclusion. The hybrid-stress element developed by
Spilker, et al. (ref. 17), provided convergent results for the angle-
ply laminated plate with the side divided into 10 spaces. It is
apparent, then, that a plate finite element model based upon the prin-
¢ipal of minimum potential energy has very much poorer convergence

properties.

52



7

-

S
[:»u;«u

[N

PN

et
s

ced o e et - ot ~ e A bt Wt 1 I i K

4.3 Perforated Square Plate Under Uniform Inplane All-Round Tension
The effect of circular holes on the stress distribution in

stretched plates has been the subject of many investigations. Accurate

solutions are availabe for a circular hole¢ in an infinite plate

(refs. 34-37) and in an infinite strip (refs. 38-39). The effect of

circular holes in a square plate has been studied less rigorously by

Hengst (ref. 40) who assumed an expression for the invariant trace of

the stress tensor of the form

&
¢ = Z_Cerk cos 2k6
k=4

and obtained expressions for the coefficients by minimizing the error of
the expression. The investigation yields an approximate formula for
the circumferential stress around the hole. For uniform tension in

both directions (Fig. 4-10) the circumferential stress for various

size holes is given in Table 4-1.

For the finite element solution of a plate with ro/a = 0.5 the
plate was modeled as shown in Fig. 4-11. The symmetry of the problem
requires that only one-eighth of the plate be modeled. The displace-
ment gymmetry conditions for the problem are those of identical dis-
placements in the x~ and y-directions along the diagonal a-b and van-
ishing y-direction displacements along the line c-d. Along the side
b-c and the circle a-d the stresses are prescribed. The symmetry con-
dition of identical displacements is achieved by assigning the same
variable number to Ux and Uy at a nodal point on the diagonal. The
problem is one of generalized plane-stress with stress boundary condi-

tions so that the results are independent of material properties and of
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accuracy of the model since the prescribed and calculated stress values
need not be identical. The circumferential stress values along the
centerline are interesting in that they decrease at first but then

increase somewhat toward the loaded edge.

4.4 Perforated Square Plate Under Uniform Nodal Pressure

The square isotropic plate with a circular hole which is subjected
to uniform load has been investigated by El-Hashimy in reference 41.'3
A deflection function is assumed of the form

4
= 22 (2 2 3, 8
w kg + €, +Cyp +c3plnp+c

L
1 4ln

i Py

=4 -2 4 6
+ (Alp + Blp + Azp + sz ) cos 48

-8 -6 8 10
+ (A3p + B3p + A4p + B4p ) cos 86]

where p is the non~dimensional radius ratio r/a. The hole radius is
pya- Here a is the side length of the plate. Thev12 coefficients are
determined by the satisfaction of the conditions of vanishing moment
and effective shear force at the hole, which yields 6 equations, and
by the satisfaction of conditions of simply supported or clamped edges
at 3 points as indicated in Fig. 4-15. The periodicity of the solution
requires that only an eighth of the plate be considered.

The finite element method of the present paper was used to analyze
the plate as well. The hole size and the grid used are identical with
those of the previous section. The boundary conditions are those of
zero force at points on the hole, equal values of Ux and Uy and zero

effective transverse shear force along the diagonal, zero values of Uy

54




i—:—a-w-d

Frmme——

|

LN

g

and effective transverse shear force along the centerline, and zero
transverse displacement and either zero inplane stresses displacements
along the edge, corresponding to simply supported and clamped edges
respectively. The number of degrees nof freedom are then 648 for the
simply supported plate and 576 for the clamped plate.

A comparison of the transverse displacements calculated using El-
Hashimy's equations and those obtained from the finite element anlaysis
is shown in Table 4-2. It will be seen that the finite element values
are considerably less than those of ref. 41 although the shapes of the
deflection patterns are similar. This result is attributed to the sat-
isfaction of boundary conditions at only 3 points on the edge in El-~
Hashimy's solution which yields a much more flexible structure than is
actually the case.

The deflections and stresses obtained from the finite element

method are shown in Figures 4-16 to 4-~17.

4.5 Axisymmetric Bending of a Cylindrical Shell by End Load

Having ascertained by the investigation of the previous problems
that the results for flat plates obtained by means of the present
finite element model are adequate, the accuracy.of the theory for
cylindrical shells was studied next. The first problem investigated
was that of axisymmetric bending of an isotropic cylindrical shell by
end load, with transverse shear deformations included. The genmeral
equations of the theory for a sheil having orthotropic layers with
the material axes coincident with the lines of.curvature axes are given

in Appendix C together with the solution of these equations for a
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single layer shell loaded equally at both ends by (Fig. 4-18) radial
shear forces.

Since the deformations are independent of position around the
cylinder, elements of any width may be used in a finite element solu-
tion. The central symmetry of the problem allows the modeling to be
limited to half of the shell to be modeled. Thus a portion of the
shells of length equal to one-half the total length and a width of 1
inch was divided into finite elements as shown in Fig. 4-19. To study
the convergence of the procedure the number and size of the elements
was varied. In some cases the size of the elements was equal. In
other cases a portion of the shell nearer the load was divided into
P smaller elements while the remaining portion near the center was
divided into m larger elements. The maximum number of equations to be
solved was limited to about 500 in the present calculations. The mate-
rial of the shell was taken to be transversely isotropic with Young's
modulus E equal to 1000 ksi and Poisson's ratio equal to 0.3. The
transverse shear modulus was taken as 100 ksi. The thickness of the
shell was assumed to be 1 inches. The inner radius was varied from
5 inches to 100 inches. The shell length varied with the shell thick-
ness so as to maintain the value of /;E;-_-'VF_ at about 6.5, 1In
the calculations axisymmetry was imposed by requiring that the dis-
placement ug be equal to zero everywhere and that u and w be indepen-
dent of circumferential positien. The boundary condition of symmetry
about the center of the cylinder was imposed by making the displacement
ﬁg and the transverse sﬁear force equal to zero. At the loaded edge

the axial stress was put equal to zero while the radial shear force
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| \ PR was kept constant for all shells. The results of the calculations for
‘: % the end deflection are given in Table 4~3 together with the values
t ‘ calculated for the exact theory of Appendix C.
}
i EJ The rate of convergence of the finite element results is shown in
i : Fig. 4~19 where the ratio of the finite element and anlaytic maximum
& - displacements is plotted as a function of the number of elements f%vthe
\ % half-length of the shell. It should be noted that the number of ele-
; i ments shown is that of the triangular elements which is thus twice the
i
‘ U number of linear axisymmetric cylinder elements. The results indicate
}
! i that the thicker shells require less elements to achieve accurate dis-
L
; placements but that sufficient accuracy can be obtained within the
o
f i i} equation limitations set.
| i L. ‘
E 1 41 The displacements and direct stresses obtained with the finite
1
E i L element analysis using the largest number elements are compared with
o
i i analytic results for a long cylinder in Figures 4-21 to 4-26. The
|
} H L

stresses were obtained by calculating the derivative of longitudinal
displacements as for the beam element and combining this with the aver-

age radial displacement within the element. The very good agreement

vty
e i

between finite element and analytic results indicates that a relatively

Ek unsophisticated element model will yield satisfactory results.

| -

{ 4.6 Cylindrically Curved Square Plate With a Circular Hole Under

Uniform Transverse Pressure

A final problem to be treated is the effect of curvature on the
Pl deflections and stresses of a single layer square plate with a central

circular hole. The developed geometry and material properties of the
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curved plate are similar to those of the flat plate of Section 4.4
except that the plate has a cylindrical radius of 1000 inches. Since
the geometry parameter z-(?izzz:cfg bZ/Rt).is small, the results should
be similar to those for the flat plate.

One quarter of the curved plate was modeled as shown in Fig. 4-27
since the diagonal is no longer an axis of symmetry. A cowmparison of
the raaial deflections for the curved plate and those for the flat
plate is given in Table 4~ 4. The deflections are comparable but even
a slight amount of curvature is sufficient to change the deflected
shape significantly and to reduce the maximum deflection by 13Z.

The distribution of stresses at the immer and outer surfaces of

the curved plate are shown in Figs. 4-28 to 4-29.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE INVESTIGATION

The results of the present investigation have indicated that the
addition of shear deformations to the theory of laminated plates and
shells permits‘the use of a simple linear displacement variation finite
eleﬁént model for calculations. Provided enough elements are used,
accurate displacements and direct and shear stresses parallel to the
layer surfaces can be obtained. Where conditions of symmetry permit
the analysis to be limited to that of a small region of the structure,
the elements can be made small enough while the total number of equa-
tions is kept reasonably small. However, for larger structures, the
use of such a simple model in conjunction with the principle of minimum
potential energy sacrifices rapidity of convergence for simplicity of
calculations as compared to a similar hybrid-stress finite element
model due to Mau, Tong and Pian. A linear displacement minimum poten-
tial energy element yields strains and stresses which are constant in
each element and hence it does not permit the direct calculation of
transverse shear and normal stresses which depend on the derivatives of
the direct and shear stresses parallel to the layer surfaces. The
hybrid-stress element, on the other hand, does permit the direct calcu-

lation of trnasverse shear stresses.

59




oo
i
[ SR

ww\
[P

Py

A

P

,.
[

s
t
etk

i bk

JP————

ermammasd

LR

g

One would be tempted to abandon the potential energy approach were
it not for the ease with wich the approach is extended to shell analy-
sis. The extension of the hybrid-stress model is difficult, requiring
the definition of a stress state within the shell wall which satisfies
tﬁe equation of equilibrium and interlayer continuity conditions.

Such equilibrium stress state distributions would vary with the shell
geometry and would be difficult to define. Other disadvantages of the
hybrid-stress model are the large amount of computer storage required
to define the stress-state for each element as well as the numerous
matrix inversion calculations required to obtain the combined stiffness
matrix for a stack of layer elements extending through the wall thick-
ness. These calculations increase with the number of layers. A topic
for future investigation that should bé pursued, therefore, is the
effect of more complicated displacement variations on the accuracy and
rapidity of convergence of potenti;l energy finite element models.

The right triangle element chosen in the present investigation for
ease of derivation and calculation is useful for regular structures.

It is inconvenient for irregular structures, however, since it does

not permit complete flexibility in the use of small triangles in a
region of rapid stress variation and larger triangles in regions of slow
variation. With the right triangle, the small triangle dimensions
affect the size of the larger triangles. Thus the analysis should be
extended to triangles of arbitrary shape.

In the absence of these extensions, the analysis technique de-
veloped in the present paper is useful but may require the solution of

an extremely large number of simultaneous equations for accurate
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rO/a ge/a

1/8 2.028498 - 0.000707 cos 48 - 0.000000 cos 86
1/4 2.119101 - 0.011014 cos 46 - 0.000010 cos 88
3/8 2.289766 - 0.053591 cos 40 - 0.000237 cos 86
1/2 2?582663 - 0.164303 cos 486 - 0.002353 cos 86

Table 4-1 Variation with Hole Size of the Circumferential

Stress for a Perforated Square Plate Under Uniform

Teusion
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Clamped Edges

Singly Supported Edges

-3
)
(-4
-
m

m—. m - m E

o n/6 w/4
P Finite Finite Finite
Ref. 41 Element Ref. 41 Element Ref. 41 Element
0.5 14.377 5.569 15.171 3.735 15.438 6.227
0.6 10.692 3.293 11.889 4,015 12.299 5.200
0.8 3.679 1.247 5.769 1.867 6.567 2.635
1.0 0.000 0.000 1.264 0.309 2.256 0.867
2/3/3 - - 0.000 0.000 0.450 0.363
2 - - - - 0.168 _0.000
0.5 85.498 38.693 87.242 39.483 87.825 39.873
0.6 69.414 31.169 72.581 33.265 73.644 33.990
0.8 33.876 16.011 44.113 17.952 46.650 21.831
1.0 0.000 0.000 17.518 6.300 23.918 11.156
2/3/3 - - 0.046 0.000 9.934 6.877
2 - - - - 0.000 0.000

4-2 Comparison of the Transverse Displacements of a Perforated Square Plate Under

Uniform Transverse Pressure (rgp/a = 0.5)
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9 0 /6 w/4
P Finite Finite Finite
Ref. 41 Element Ref. 41 Element Ref. 41 Element
0.5 14.377 | 5.569 15.171 5.735 15.438 6.227
7]
(V]
20 0.6 10.692 3.293 11.889 4.015 12.299 5.200
[¢3]
g 0.8 3.679 1.247 5.769 1.867 6.567 2.635
Q.
,g 1.0 0.000 0.000 1.264 0.309 2.256 0.867
2/3/3 - - 0.000 0.000 0.450 0.363
2 - - - - 0.168 0.000
0.5 85.498 38.693 87.242 39.483 87.825 39.873
0.6 69.414 31.169 72.581 33.265 73.644 33.990
a 0.8 33.876 16.011 44.113 17.952 46.650 21.831
o
: 1.0 0.000 0.000 17.518 6.300 23.918 11.156
1]
§ 243/3 - - 0.046 0.000 9.934 6.877
[«
g V2 - - - - 0.000 0.000
wn
"
-
Y
-
(75}

Table 4-2 Comparison of the Transverse Displacements of a Perforated Square Plate Under
Uniform Transverse Pressure (rp/a = 0.5)
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t..., of | Number off  L=12.0%, B=s.0" 1=16.0", B=10.0" | 1=22.0", R=20.0" | L=36.0%, R=50.0" 1=50.0", R=1000.0"
") | T

ivisions|Divisions| $ 4 u‘ (x " | ,’ i H' £ g’ 8 H‘ m t' L H' r( l’ L
2 - |3.00] - lo.s780]67.0 |4.00] - Tx.uu?r.s 5.50] - |o.98s664.0]s.00] - |.12622[53.4 u# -
5 - li.20] - lo.78s51f91.0 |1.50] - |i.0263)00.5}2.20] - |1.3556[88.1]3.60] - |i.9040)80.5 |5.00] -
10 - o.60] - lo.8399]97.3|0.80] - |1.1021)97.2]1.10] - |1.480996.3{1.80] - [2,1867|92.9 2.50] -
15 - [o.40 - lo.es1a|98.7 Jo.53 - |1.11esf9s.7[0.73| - [1.s51sf9s.2[1.20 - [2.2815)96.5 1.6 -
10 | 20 [o.150.2250.8592|99.6 |0.15p.3291.1292]99.6[0.20}0.45] 1.530799. 5] 0.25p. 775]2.333298.7 Jo.40}1 .05
20 40  [o.10}0.101]0.8604|99.7 |0.100.15 |1.1316]99.8]0.10p. 229 1.535199.8] 0.15p. 375|2.3555]99.6 Jo. 5
40 80  [0.05}0.051]0.8608]99.8 [0.05h.0791.1321]99.9]0.03h.11{ 1.5364 99.9] 0.08p. 185]2. 3604]99.8 0. 10fa 26

W, (uith shear) 0.8629 1.1337 1.5385 2.3641 3.3141

W, (without shear) 0.7697 1.0640 1.4880 2.3314 3.2911
X . .

v /e 12.1 106.6 103.4 101.4 100.7

I

&~ 7y

) O . i
Table 4-3 Comparison of Finite Element and Analytic Values of End Deflection of a Cylindrical Q&U |
Shell under Axisymmetric End Load ' 5 2 I
. &= il
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Comparison of Curved and Flat Plate Normal Deflections

o S o3 0 1O -

0 o 30° 45° 60° 90°

A
-~
¥
é
iy

CQPI F.P. c.PO F.P. c.P. P.P. c.P. r'P. c.r. ,.P.

0.5 4.610)5.569 |5.145 | 5.735 |5.401 |6.227 | 5.373| 5.735 |5.092 |5.569

0.6 3.293(3.981 |4.015 | 4.525 [4.498 |5.200 | 3.925] 4.525 [ 3.661 [3.981

0.8 1.044 |1.247 |(1.594 |1.867 |2.278 |2.635 | 1.651 | 1.867 |2.070 |[1.247

k\‘
1.0 0.000 )0.000 10.270 | 0.309 |0.760 |0.867 | 0.275 ] 0.309 |0.000 |0.000 b
i
;
2/3/3 | =—- | -— [0.000 |0.000 |0.322 (0.363 | 0.000 -
t.
V2 —— —_— - - 10.000 | -~ - -— -— e g
p
C.P. - curved plate ,
F.P. - flat plate K
Table 4-4 Comparison of Radial Deflections for Perforated Flat and Curved Plates Under Uniform A
~
o Pressure
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Model for Curved Plate With a

Figure 4-27 Finite Element

Circular Hole
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Figure 4-28c Inner Stress TGB Distribution for Curwed Plate

o
with a Circular Hole
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Figure D-1b Shell Element Loaded by Shear, Normal Stresses and Force, Moment Stress Resultants






