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ABSTRACT	 OF POOR QUALFi'YI

This paper presents thermionic-conversion data obtained from a variable-
gap cesium diminiode with a hot-pressed, sintered lanthanum-htexaboride emit-
ter and an arc-melted lanthanum-hexabo ride collector. Performance curves
cover a range of temperatures; emitter 1500 to 1700 K, collector 750 to 1000 K,
and cesium reservoir 370 to 510 K. Calculated values of i .nitter and collector
work functions and barrier index are also given.

INTRODUCTION

TEC with metal-hexaboride electrodes (ref. 1) was part of a diode-screening
project, at the Lewis Research Center (LeRC) in 1970. The work depended on
economical "mass production" of the diminiode, shown in figure 1 (refs. 2 to 5).
This cesium diode had been designed with guarded electrodes small enough to
accommodate obtainable 0.04-cm-diameter single crystals of refractory mate-

rials like tungsten, rhenium, iridium (ref. 0), and metal hexaborides. In fact

procurement initiated in February 1971 for 0.8-cm-diameter LaB O single crys-
tals to be made by R. W. Johnson (ref. 7). But the in-core nuclear thermionic
program incorporated the dininiode capability for a statistical. study of reactor-
compatible electrode materials (refs. 8 to 10). During the 1973 termination of
space nuclear activities (including TEC) an attempt to evaluate a diminiode with
LaB 6 electrodes fell shot.. Subsequently presentation at the 1974 IEEE Inter-
national Conference on Plasma Science reviewed TEC electrodes of LaB S and
other metallides (ref. 1) in conjunction with the diminiode (ref. 11). Then the
current work began with LeRC I s technical and fiscal management of NASA' s
applied research-and-technology (ART) program for TEC in July 1975 (refs.
12 to 17).

NASA, s TEC-ART Program prompted important new information on metal
hexaborides and LaBS in particular (refs. 18 to 25). Additional emphasis came
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with the July 11.177 revelation of 1.7-V barrier indices for cesium diodes with

LaB O collectors at the Sukhumi Institute of Physics and Technology (ref. 27).

Shortly thereafter programmatic retrenchment terminated TEC-ART activities

at LeRC. And NASA transferred fiscal and technical management of its TEC-

ART program to the Jet Propulsion Laboratory (JPL), where NEP-prototype

emphasis (refs. 28 to 34) has led to indicated discontinuations of research on

metal hexaborides,
In the interim LeRC overcame impurity and attaclunent problems for LaB0

electrodes In a diminiode with a hot-press-sintered emitter and an arc-mC.lted

collector. And after a long source search 0.8-cm-diameter single crystals are

on order for LaB O and are available for the even more promising cerium hexa-

boride (CeB O ). Diminiode evaluations of the better-performing metal-hexaboride

crystal faces would allow optimum-surface selections. Then parametrically

en:.trolled vapor deposition should enable an approach to such desirable IfEC-

electrode surfaces in practical cylindric configurations. But diminiode person-

nel and facilities will be dispersed before the mono crystalline metal hexaborides

arrive.
Fortunately some preliminary results for the diminiode with 9 9. 8 percent-

pure LaB O electrodes are now available. These data represent ? 1500 to 1700 K

sintered LaBO emitter, a 750 to 1000 K arc-melted LaB O collector, a 370 to

510 K cesiwn reservoir, and 0.25 mm.intereleetrode spacing. The present

paper discusses performance values obtained from this thermionic energy con-

verter with emitter and collector surfaces of LaBO,
W. E. Trey and R. D. Schaal developed and performed special procedures

and conducted research tests necessary to fabricate this diminiode. References

4, 5, and 10 provide detailed descriptions of all equipment and procedures used

in the experiments treated in this paper.

ELECTRODE MATERIAL PROCESSING

Many types of lanthanum hexaboride (LaB 6 ) were purchased or formed in-

house in an attempt to fabricate thermionic d'ode electrodes. These forms of

LaB O powder were tried: cold-pressed; hot-pressed; electron-beam melted;

arc-melted; and hot-pressed, sintered as wall as single crystal, Some of the

problems encountered were high impurity levels, low material strengths, high
porosities, voids, cracks, small sample sizes, various reactivities, and ther-

mal expansion mismatches. The best form for a diminiode would be of course

a 0.7-cm-diameter, high-purity, oriented, uniform, single crystal of LaBO.

Since this form was not available the following polycrystalline LaB 6 material

was used.

.x..	 ,.,.	
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The collector electrode started with hot tressed 85 percent dense and 99.8 i
percent pure LaB W This hot-pressed material was arc molted into a high-
density button.	 The button was shaped by an electrical-discharge machine (PDM)
into a 0,780-cm-diameter by 0,185-cm-thick disk for the collector. 	 A Zr, 22,8
w/o-Ru braze (1523 K melt point) was used to attach the collector to a dhniniode
niobium, alumina-cermet sub-assembly.	 The final preparation of the collector
face and guard ring separation was done by EDMing. A heat-cycle test was per- !{
formed on this collector sub-assembly in an RP vacuum. furnace, 	 The sub- t
assembly was heated 10 thnes from room temperature to 1073 K at <10

-0
 torr,

The biggest problem with the LaB 6 emitter electrode was finding a method
to attach it to the dimhniodo tantalum-top-hat structure. 	 Many brazing or ad- tt .
hesive materials were tried to adhere LaB O to Ta for high-temperature emitter I;

applications.	 References 1 and 39 mention most of the materials tried.	 Failure r
was more common than not for several. reasons. The major cause of failure was
a high reactivity of LaB O at temperatures above 1500 K with practically all mate-
rials tried. Another reason was the brittleness of LaB O which caused cracking j
under the stress, generally as a result of thermal cycling and thermal expansion
mismatch.	 Additionally, some materials, such as Pt and MoSi 2 , wicked into
the porous LaB B and contaminated the electrode surface.

Special low vapor pressure (<10 -10 torr at 1500 K) braze alloys were pre-
pared and used with LaB O (ref. 40). The alloy Zr, 22.8 w/o-Ru which melts at
about 1523 K was a fair braze but applicable only for the low temperature col-
lector electrode.	 A Zr, 31.1 w/o-Mo braze was fair as an emitter braze but
limited to about 1700 K maximum due to reactions and remelting problems. p

Attempts wore made to melt LaB O on W, Ta, and Me pedestals. Generally,
a reaction occurs well before the melting of LaB O , thereby raising doubts as to
the chemical integrity of an electrode joined by this method.	 Further proof of
chemical diffusion was the depression of the LaB O melting point by 200 to
400 K below literature values.

Clean metal-to-met;..t diffusion bonding also had the problem of LaB S reac-
tions.	 As a result, TaC Boated Ta was tried as the base pedestal. 	 Limited
success occurred in that reactions were prevented.	 The bonding, in general,
did not hold up after thermal cycling to about 1700 K. 	 Subsequently, private
communications with E. K. Storms (LASL) indicated 150 cycles to over 1772 K
without failure for a TaCo 2 braze of LaBS.

n

At• this point it was concluded that a more readily attainable method to hold
the LaB O would be mostly mechanical. A tantalum carbide coating was used to
prevent LaB O from reacting with a tantalum cup into which it was hot-press

I 'I
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sintered. Several different configurations were tried. The one that worked
best is described below.

A carbonized tantalum cup as shown in figure 2 was machined. The car-
bonizing was accomplieihed by packing carbon powder into the tantalum cup and
Rr heating in a vacuum for 1 hour at 2100 K. The excess carbon powder was
removed from the cup and 320-mesh, high-purity LaBO powder was cold
pressed into the cup. The tantalum cup and LaB O were RP heated to 2100 K
for 2 hours in a vacuum with a tantalum rod pushing on tha LaB O with a con-
stant 210 N/em2 (305 psi) pressure to sinter the LaB6'

Since the LaB O was below the tantalum cup surface, the excess tantalum
was removed using high speed tools. No EDMhng was done oil this electrode
because of past experience which showed a loosening of the sintered LaB 6 mate-
rial in the tantalum cup after EDMing. The surface of the LaB 6 emitter was
prepared using fine emery paper. A Zr, 18 w/o-Re braze alloy (melting point
1870 K) was used to bond the Ta, LaB O cup to the tantalum top hat of the dimin-
iode, This sub-assembly was heated at <10 -6 Corr for 10 cycles from room
temperature to 1700 K. The bond between the LaD 6 and tantalum remained
good as was observed from the constant temperature difference at a given tem-
perature between the LaB O and tantalmn.

One additional property measured on the sintered LaB 6 was its thermal
expansion. As can be seen in figure 3, the thermal expansion of sintered LaB6
matches that of annealed niobium (ref. 30). This maans that the diminiode col-
lector sub-assembly has a good thermal expansion match. The emitter oub-
assembly has the LaB 6 in compression which should make a good mechanical
bond.

After any parts of the diminiode were subjected to cutting fluids or con-
tamination of any kind, they were ultrasonically cleaned Ili triclnloroethaue
(NA 500) before vacuum bakeout• , welding, brazing, or assembly.

At this point the two basic electrode sub-assemblies were ready for filial
assembly. For a detailed description of the diminiode assembly, see r-,.Ier-
ence 11 (note that the cesium fill procedure, given below, has been modified
so that capsules are no longer used).

Ah

DIMINIODE PROCESSING

-vA new processing chamber was used for the LaBO diminiode. This chamber
shown in figure 4 allows diminiode bake-out, emitter-top-hat-temperature cali-
brat-ion, electrode-spacing calibrations, cesium filling and a copper-braze
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closure, Both turbomolocular and vac-lon pumping are used on this water

Jacketed chamber to maintain 10-8 torr (diminiode cold) and 10-7 torr (diminiodo

hot).

In this case the LaB diminiode was electron-bombardment (ED) heated to

1073 K emitter and a 033 K collector temperature for bakeout. A temperature

calibration of the black-body hole in the Lain0 (sighting down the open cosiuni-

reservoir tube) versus the black-body hole in the too hat was done, As indicated

In references 37 and 38, this calibration is acceptable because the diminiode

holds at zero current before and after the data-falcing cycle. These low-

transport conditions and thermal inertia assure good sensing of the emitter

temperature. The electrode gap was also checked at this time with the dimin-

iode hot,

Cesinn is introduced into the chamber from a high-purity cesium bottle

through a heated stainless-steel tube as shown in figure 5. The flow is con-

trolled with a metal seal stainless-steel valve. The cesium is dropped from

the and of the tube onto a small, heated stainless steel tray. After visually ob-

serving the cesium, the tray can be tipped to allow the cesium to run into the
diminiode or Into a catch can. Following cosium addition a tantahmi ball is

then dropped into the end of the cesiuun. reservoir and copper brazed inn place

to seal the diminiode.

The diminiode is now ready for performance testing after it is removed

from the processing chamber and ;mounted into the test station.

DIMINIODE RESULTS

Figure 0 shows the current-density, voltage (1, V) envelopes for constant

emitter temperatures of 1500, 1550, 1000, 1050, and 1700 K with the collector

varied from 750 to 1000 K and the cosfum reservoir varied over a temperature

range of 510 to 370 X. The power density (P, V) envelopes calculated from the

I, V vesults are shown in figure 7. These two figures are summarized in the

following table to show where maximum power occurred.
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Emitter Approximate Approximate Maximum Voltage
temperature, collector cesium power at

TE , temperature, temperature, output, maximum
K Tc, Pmax, power,

K W/cm2 V

1500 850 440 1.86 0.22

1550 850 440 2.50 .28

1600 850 440 3.50 .38

1650 850 450 4.20 .40

1700 900 460 5.29 .45

As can be seen from the table, the cesium reservoir temperatures

are much lower than the expected 550 K. Cesium reservoir thermocouples

and readout ins+: umentation were checked with no apparent discrepancies

found. A procedure check revealed that more cesium was added to this
_'..de thw. was :s:_al. Steps ta:_.; •. tc; asccitai : pcssi,:le _, esium tcir.p.:r-

atv.re protlems are descr^;:.ec, _clew.

The diminiode was carefully removed and X-rays were taken to see if

any cesium extended beyond the cesium-temperature control zone. The reser-

voir tube axis is in a 30 below horizontal position during operation. No appar-

ent cesium extension could be seen.

The diminiode was then positioned with the cesium-reservoir pointing

down. The reservoir was cooled and the rest of the diminiode heated with 1.n

air heat gun to make sure all the cesium was in the reservoir. Another set of

X-rays was taken. No cesium could be seen above the cesium-reservoir-

temperature control zone.

The diminiode was then placed in its normal operating position. Hot

water was used to heat the cesium reservoir with the rest of the diminiode at

room temperature. After heating in this manner for 5 to 10 minutes the reser-

voir was cooled and another series of X-rays taken. This time the X-rays re-

vealed cesium in the unheated portion of the cesium reservoir tube. At this

point the decision was made to remount the diminiode in its test station with the

cesium reservoir pointing down to prevent any possible cesium extension be-

yond the control zone.

When trying to test the diminiode in this new position it was discovered

that the collector was no longer operative. Apparently a large segment of the

collector had dislodged locally, but not enough to short out another element.

Arc-melted samples had demonstrated this separating tendency. A series of

ORIGINAL PAGE Ib
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runs was made using the guard ring as the collector to sea if there were any

changes in the cosium reservoir temperature for maxhnun power. Maxinvam

power occurred at a cosiwn reservoir temperature of 450 to 400 K at 1500 K

emitter and 850 K collector temperatures. Thus tlno dlininiodo apparently did

operate at the eosiu m-resorvoir temperatures indicated with a possVile error
of :125°.

A comparison of the I, V and P, V envelopes of the LaB 6 dhnuhniode with a

TECO W, 0, Cs diode, and a Re, Nb diode all with 1700 K emitters is shown
in figure S. As call 	 seen in this figure the LaB6 dhniniode produces a maxi-

muun power that is almost equal to the best diode (Re, Nb) but at almost twice
the voltage, 0.45 volt versus 0.23 volt.

Indeed the most efficient operation of the LaB 6 diiiihiiodo occurs at 0.75
volt and 5 A/cm2 (3.8 W/cm2). There the work function of the 1700 K omitter

is less than 2.04 eV, the barrier index is about 1.9 volts, and the calculated

efficiency for optimum leads is approximately L^ percent. Unfortunately ba,ak

emission data to enable determination of the work function for the 853 K rol-

leetor was Unavailable.

In fact because of the complete lack of experience with cesiumn diodes

having LaB O emitters and collectors, those Initial tests were made based on

accwnulatod results for refractory-nnetal electrodes. As such those findings

are very nonopthmun. And a search of the data collection revealed no suitable

back-emission nuembers. Correcting this deficiency was a goal of the next set

of tests before changing the hnterelectrode spacing. But the collector malfunc-
tion Intervened.

Additional I, V curves did reveal barrier indices less than 1.95 volts for

both 1053 and 1500 IS emitters: 1053 K emitter, 801 IS collector, 0.02 V,

4.8 A/cm2 , 3.0 W/cm2, <2.57 eV emitter work function, —1.95 V barrier
Index and 1590 K emitter, 853 K collector, 5.3 A/cm 2 , 0.51 V, 2.7 W/cm2,

<2.40 emitter work function, 1.95 V barrier index.

COIN'CLUDING REMARKS

As call 	 seen in the diminiode results, the performance of the LaB 6 is

equal to some of the hest electrode connbinatios at this time. It is felt that

the LaB S material and electrode spacing used In this test are far from the

Optimum. Work functions for single crystal LaBS are p̂LaB O (100) = 2.52 eV,

ftaB O(110) = 2.00 eV, and VLaBO(340) = 2.41 eV.

n
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j Field emission work by L. Swanson indicates even lower work functions
are available, Swanson also obtained nonopthnized eosiated LaB O(100) work
functions of 1, 3 eV (refs. 17 to21) witho„t oxygenation., With collector work
functions approaching this low value and interelectrode losses diminished by

`	 reduced cesium pressures perhaps coupled with some enhancement, barrier
indices significantly lower thaa the measured 1,9 eV value seem quite probable,
Furthermore the work function for CeB O(100) is less than LaB O(100), which is
oven more promising.

Incidentally reference 41 .indicates vaporization rates between 440 3

(LaB0.014) and 440-4 (LaBO 111) cm/yr (2 to 0, 2 mils/yr) for congruently
vaporizing LaB O at 1700 K, So TEC with 1700 K congruently vaporizing LnB0
emitter surfaces and congruently depositing LaB 6 collector surfaces appear

1

	

	
practical both in performance and lifetime. The interelectrode gain would
merely shift between 0, 04 and 0, 004 cm (10 and 2 mils) in 10 years of ser-
vice.

Work with promising metallides like LaB O and CeD, for TEC electrodes
should include tests of selected faces (refs, 17 to 21) of high-purity single

1	 crystals of specified stoichiometrfes (refs. 17 to 23). If such systematic

i	 research is neglected, a far more complex situation could result than occurred
I

	

	 for refractory-metal TEC electrodes in the early 1900 1 s. Understanding tend
control of TEC variables had eluded researchers for many years, Finally
investigations of pure, oriented mono crystalline electrodes in exceedingly

r

	

	 clean converters lifted tine veil to. reveal a systematic technology where
confusion formerly prevailed, having defined and described the datum base
for refractory-metal electrodes, TEC research workers could then invoke

°'	 {	 crystal-face and additive effects predictably - rather than haphazardly,
+	 Metallide TEC electrodes begin with more chemical complexity, hence

	

# i	 greater permutability than the relatively simple single elements of their
. {	 refractory-metal counterparts, Thus systematic research to point the way

to controlled, productive development is even snore important for success with
m:tallide TEC electrodes than it ultimately proved to be for the refractory

4	 1 metal predecessors.
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Figure 5. - Processing chamber schematic.
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