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ABSTRACT

An analysis was made of cost trade-offs for shaping modified

	

j	
a:

square wafers from cylindrical crystals. For reasonably expect--

	

t	 able silicon and sheet costs, the optimum shape will be nearer

a circle than a square. This will result in significant incre--
mental costs arising from a combination of the shaping costs and 	 j

module cost of non-productive areas.

Tests were conducted of the effectiveness of texture etching

for removal of surface damage on sawed wafers. A single step

texturing etch appears adequate for removal of surface damage on

wafers cut with multiple blade reciprocating slurry saws.

Four glass systems have survived preliminary screening tests for

use as edge masking dielectrics. These include beta--spodumen,
MgO-Al 203 borosil.icate, baria and titania glasses. Two poly-

meric phosphorus diffusion sources are being investigated, at

least one of which appears suitable_ Cof iring of the aluminum

back during diffusion has been found to be incompatible and will

require a separate firing step.

Aluminum contact metallization does not appear promising, and

six silver screen printing inks have been selected for detailed

investigation.

Screening tests are underway for the selection of adhesive and

coating materials for the superstrate fabrication. Three
r

adhesive candidate materials have been identified for detailed

investigation.
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1.0 SUMMARY

An analysis was made of cost trade-offs for shaping modified

square wafers from cylindrical crystals. For reasonably expect-

able silicon and sheet costs, the optimum shape will be nearer

a circle than a square. This will result in significant incre-

mental costs arising from a combination of the shaping costs and

module cost of non--productive areas.

Tests were conducted of the effectiveness of texture etching

for removal of surface damage on sawed wafers. A single step

texturing etch appears adequate for removal of surface damage on

wafers cut with multiple blade reciprocating slurry saws.

Four glass systems have survived preliminary screening tests for

use as edge masking dielectrics. These include beta-spodumen,

MgO-Al 2O3 borosilicater baria and titania glasses. Two poly-

meric phosphorus diffusion sources are being investigated at

least one of which appears suitable. Cof icing of the aluminum

back during diffusion has been found to be incompatible and will

require a separate firing step.

Aluminum contact metallization does not appear promising, and

six silver screen printing inks have been selected for detailed

investigation.

Screening tests are underway for the selection of adhesive and

coating materials for the superstrate fabrication. Three

adhesive candidate materials have been identified for detailed

investigation.

i
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2.0 INTRODUCTION

h

This is tle first quarterly report for an investigation of tech-

nology readiness of a selected process sequence for the low cost

fabrication of photovoltaic modules as a part of Phase 2 of the

Array Automated Assembly Task, Low Cost Silicon Solar Array

Project. It covers the Quarter ending December 31, 1977.

2.1	 TECHNICAL OVERVIEW OF CELL DESIGN AND PROCESS
SEQUENCE

The cell design and selected process sequence are outlined in

Table 2--1. Discussion of the module design and process sequence

is presented in a subsequent section. In order to make clear

what is being proposed, operations which would be performed on

one piece of automated equipment and regarded as one process

have been subdivided. Thus printing a pattern and firing it

have been indicated as separate steps_

The design includes shaped cells in order to achieve the goal

of 12--13% module efficiency. Spectrolab's plan includes the

use of texturized surfaces, conforming with the conclusions

of the Phase 1 studies that this is advantageous. Texturizing

is already well developed for (100) oriented single crystal

material. Sheet or ribbon input materials may have a different

orientation, however, and for these it will be necessary to

develop a suitable texturizing process.

The cell design includes a p+ back field obtained from a printed

aluminum source. The n+ diffusion will be obtained from a phos-

phorus doped polymer: source. An innovative approach to the

junction formation process has been included: namely, the use

of a prefired masking dielectric on the edge of the cell. This

T
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Table 2-1

M

CELL DESIGN AND PROCESS SEQUENCE

1. Design:

Shaped, size 25--100 cm  (4-16 in 2)

Texturized surface

n+ junction diffusion

p+ back surface field
Printed contact metallization

Wraparound contacts

n c = 15% (28 0C, 100 mW/cm2)

2. Process Sequence:

1) Texture Etch

2) Print edge masking dielectric

3) Fire edge masking dielectric

4) Print back aluminum

5) Apply front polymer dopant

6) Fire junction and back surface field sources

7) Print back isolation dielectric

8) Fire back isolation dielectric

9) Print contact pads

10) Print front grid pattern and wraparound conductors

11) Fire contact pads, grid pattern and wraparound

conductors
12) Test cells

-3-
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is intended to permit the codiffusion of the n+ and p+ regions

without the need for an edge etch. As a further innovation,

the diffusion oxide will not be removed, but will be retained

to serve as an antireflection coating. The process sequence

proposed here thus is intended to eliminate the following

process operations: Separate p and n diffusions, edge and/or

back etching, diffusion oxide removal and a separate AR coat-

ing step_

A further use for the edge masking dielectric will be as an

insulation layer for wraparound contacts. At this point an

additional printing and.firing . operation is introduced to

locate dielectric pads for the wraparound contacts on the back

aluminum. The solderable contacting pads on the aluminum back

will be printed next. The front metallization grids and wrap--

around conductors are then printed. For this we propose using

thick film paste which has. been formulated for adherence and

contact through the diffusion oxide, Attention will be given

to minimizing the junction depth, and line width, and optimi-

zing collector grid spacings. Finally, the front contact grids

and solderable contacts on the back side will be cofi.red to

complete the cell fabrication.

2.2	 TECHNICAL OVERVIEW OF MODULE DESIGN AND PROCESS
SEQUENCE.

The module design and selected process sequence are shown in

Table 2-2. The module design is comprised of a 24 by 48 inch

(60 x 120 cm) tempered glass superstrate_ Square shaped cells

will be used in order to achieve the 12% module efficiency goal_

The module structure uses a thin bond line adhesive to attach

the solar calls to the glass superstrate. Since silicone adhe-

sives are known to be technically feasible, and the thin bond

.i

-4--

i



t 1Sil..r."!:-^.-.^ ^__^1 '	 '+	 L!a=;.'...:.1..	 ^ .f w	 w ..	 .,1^^.^....,_^	 - i -	 ^	 ^ ._	 -	 -1.._it •	 t __._._.,.. r '--''---- L^^_._ -.. ^..-. _ _.-.__ ._1 _- _ ' ^^

Table 2-2

MODULE DESIGN AND PROCESS SEQUENCE

1. Design
E

Size GO x 120 cm (2 x 4 ft)
Tempered glass superstrate

Cells attached by polymeric adhesive

Preformed circuit interconnects

3 mil polymeric conformal coating

i
Aluminum extrusion frame

rim -= 13%

2. Process Sequence*

13. AR Treat Superstrate Glass
i

14. Mount Cells on Superstrate

15. Cure Adhesive

1G_ Apply Interconnects

17. Apply Conformal Coat

18. Cure Conformal Coat

?	 19. Mount in Frame

20, Test Module

*Process sequence numbers continue from
the cell area (Table 2--1)

-5-
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line minimizes costs, they have been included in tho preliminary
design, However, alternative adhesives will be evaluated in a
search for greater cost effectiveness. Interconnect conductors
will be in the form of thin copper foil or ribbons. A simple
automatic refl,ow solder ing operation is permitted by the wrap--
around techniques used to position both contacts on the back

sides of the cells. A conformal coating will be used as the
encapsulant and rear surface. The module assembly will be com-

pleted by mounting the superstrate in an aluminum extrusion

frame.

t

L
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3 .0 TECHNICAL DISCUSS ION

3.1

	

	 OPTI' IUM SQUARE WAFER SHAPING FROM CYLINDRICAL
CRYSTALS

An analysis has been made of the optimum shaping of squared wafers
from cylindrical Czachralski crystals as a function of the relative

costs of silicon material and photovoltaic module and system related

costs_ For the purposes of this analysis it was assumed that the

shaping would be accomplished by slabbing off four sides of the

crystal to form a square section with truncated corners. This

procedure eliminates the cell processing costs which would be

associated with the discarded silicon if the cells were shaped

after processing. It also provides the maximum salvage value for

the discarded silicon.

The module geometry associated with one cell is shown in Figure 1.

The circular segments, A s , outside of the square correspond to

the areas of discarded silicon. The corners of the square, AV

which are truncated by the circle, correspond to interstitial

areas which incur module and system related costs, but which do

not generate any power.

The total cost per watt will be

o	 o	 o
CW — C 0 = sty AS, + M' A^

where C. = Cost per watt assuming perfect nesting without
shaping

SW = Cost per watt of silicon

A$ = Fractional area of silicon discarded

M^oj = Module and system associated cost per watt

A	 Fractional area of module not occupied

-7-
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and where the superscript o indicates costs assuming perEect
nesting without shaping.

It can he shown that

At	 i (O - SinOCosO)
"T

7r

(Cos 0	 SinOCosO - T + 0)
and A

C08.0

iffiere 0 is def ined in Figure 1.

The ink:remontal costs associated with shapinc.1 will lie

A,' + ^31 A'	 (4)
S
W

Where ti' = ^L t^ _j , 0	
(5)q̂ SW

Substitution of equations . (Z) and (3) into (4) gives

4
+ +

4
Cos

Shapinit- will bej favored if the silicon cost is wiall compared to

the module associated costs	 (i.e., large i^).	 However cost pro

jections suq gest that it is unlikely	 will ever be larqer then 1.
For examp, I e one estimate of the cost allocation required to meet
the 1986 goal of $50,AINI allots $25 to silicon sheet and $10 to
mQdule assembly and encapsulation (1)
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For interpretive pi?rposes.it is convenient to use a ratio of the
size of the circle to that of the square rather than the angle 9:

R	 1a = —
YO CCSe

The incremental cost normalized to silicon costs (equation 4) is

plotted against the ratio a in Figure 2 for a = 0.5 and	 1.0.

The minimum in incremental cost will occur when

d CW	 dA5	 dA,

ae ( So) = de + de	 °
W

dA'

or	 _ _ de
dA^

de

From equations (2) and (3) it can be shown teat

dA^ 
8 Sin 2ede f

and	 dA^	 2(1 - e) Sine

de	
-	

Cos 3e

from which it follows that the condition for the minimum is

4SineCos3e
s=7T

"-e

(7)

I

1 Y

i

(8)

(9)

(10)

(11)
4

-10-



O r
Q ^u ^

U

1

1.0	 .L-

a - R/Y0

Figure 2. INCREMENTAL COSTS ASSOCIATED WITH SHAPING
MnnTPTVn cnTTnurc r• prw rTRCTTT.AR rRV.grPA,T..q



The relation between C^ and the corresponding size ratio, cc, for

the cost minimum is shown in Figure 3 as derived from equations

(11) and (7) . The region of most probable interest is defined
by the box.

From Figures 2 and 3 it will be seen that the optimum shape will

be nearer to a circle than a square. This implies that there

will be significant incremental costs. Incremental costs for a
number of assumptions regarding interim silicon and module costs

are summarized in Table 3-, 1. Similar results have been obtained
for shaping modified hexagons from circular discs_

3.2	 SURFACE PREPARATION

silicon wafers, which had been sliced using slurry-fed gang cut-

ting methods, were etched in sodium hydroxide for varying times

to determine the minimum quantity of material removal necessary

for damage elimination. The 1-0-0 orientation, one ohm-cm mater-

ial used in this study was then diffused and fabricated into

solar cells using standard controlled aerospace processes. 2 cm

by 2 cm cells were cut from the processed round wafers and tested

without AR coating. Since a distorted layer of silicon has a

low minority carrier diffusion length, the output of a cell is

adversely affected by any residual cutting damage. in addition

the high leakage current manifested by abraded silicon cells

also results in curve shape degradation, Curr^:nt at the 500 my

load point was used as a measure of residual surface damage.

Tour surface preparation procedures were examined-.

-12-
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1.

1.
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J
z^

1.

1.0

0	 ]	 2	 3	 4	 1	 6

Mw/Sw

Figure 3. a LOCATION OF THE MINIMUM INCREMENTAL COST FOR
SHAPING MODIFIED SQUARES FROM CIRCULAR CRYSTALS
AS A FUNCTION OF THE RATIO OF MODULE TO SILICON
COSTS.



Table 3-1

INCREMENTAL COSTS ASSOCIATED WITH SHI
MODIFIED SQUARES FROM CIRCULAR CRY:

Cost Ratio Size Ratio

Silicon Cosa: ^ = Mo/So at Cost Min.
Minimum

$/Matt w w o Incremental Cost

2.00 0.5 1.0287 $0.200

2.00 1.0 1.0851 0.351

2.00 2.0 1.1966 0.515

1.00 0.5 1.0287 $0.100

1.00 1.0 1.0851 0.176

1.00 2.0 1.1966 0.257

0.20 0.5 1.0287 $0.020

0.20 1.0 1.0851 0.035

0.20 2.0 1.1966 0.051

-14-
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Texturizing
Pre-Etch Etch Material
Boiling 800C Removed

Group 30% NaOH 2% NaOH* per Side Sample

1 0 55 Min. 0.0009 inch 29 cells

2 90 Sec. 55 Min. 0.002..inch 26 cells

3 180 Sec. 55 Min. 0.003 inch 30 cells

4 270 Sec. 55 Min. 0.004 inch 28 cells

*20% by volume Isopropyl alcohol.

E	 Open circuit voltage, short circuit current and current at 500 my

#	 were measured under AMl Xenon source illumination. The datai
i

obtained are reported in Table 3-2, together with calculated val-

ues of the mean and standard deviation and coefficients of kurtosis

and skewness.

These data (Table 3-2) suggest that the power at load is as

large with a one--step texture etch as it is with a multi-stage

etching process (groups 2, 3, 4). Moreover, there appears to

be the advantage of a narrower distribution of output power and

possibly fewer units lost in the form of outliers. The latter

would undoubtedly be rejects in a manufacturing operation.

f We tentatively attribute the larger variance of 1500 for the more
r heavily etched samples to an increased probability of surface

damage occurring between the junction diffusion and front collector

metallization steps.	 visual observation of the textured surface

reveals that the parts treated by the one--step process have a

i somewhat coarser and more irregular structure. 	 The greater num--
5

bar of smaller and more uniformly sized tetrahedral peaks formed

in a multi-stage sequence will be more susceptible to damage in

subsequent processing. 	 Such damage would result in varying

degrees of junction shunting, depending on the nature of the

damage and its location.	 Such shunting would also have adverse

effects on open circuit voltage and could account for the greater
V

E.'

bariance of that parameter for Groups 2, 3 and 4.

-15-
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Table 3 -2

ETCH TEST DATA

Group 1. (No Pre-Etch)

Vac mV
Tsc MA 1500 MA

612 140 135
609 139 134
612 139 134
606 139 134
605 139 133
607 138 133
610 137 133
612 138 133
610 137 132
608 138 132
603 139 132
612 135 131
610 136 131
608 136 131
608 140 131
G09 137 131
610 137 131
608 135 130
604 136 130
607 139 130
608 138 129
604 138 129
604 139 128
607 139 127
604 133 126
605 132 126
G04 140 125
587 140 99*
540 139 35*

x	 607.6 137.5 130.8

a	 2.78 2.01 2.60

Kurtosis	 1.85 3.64 1.28
Skewness	 0.02 -1.06 ---0.58

I
r

*Cells treated as outliers, data not
included in calculated statistical
parameters.

-16-



Table 3--2 (cont.)

ETCH TEST DATA

Group 2 (90 Sec. Pre-Etch)

yoc my 1sc MA T500 MA

611 146 139
611 144 139
612 145 139
611 145 138
611 144 138'
609 143 136
607 144 135
603 143 134
611 141 134
607 139 133
606 143 132
608 146 132
600 145 128
611 144 128
606 137 127
605 145 124
602 145 124
604 141 122
603 143 122
601 145 119
602 146 117
604 13.8 115
593 142 109
596 144 108
597 137 107
541 144 37*

x	 605.2 143 127.2

c	 5.12 2.67 9.93

Kurtosis	 2.59 3.04 2.26

Skewness	 -0.58 -1.06 -0.62

*Cells treated as outliers, data not
included in calculated statistical
parameters.

9RIGIN,AL PAGE IS
OP POOR. QUALITY

-17—
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Table 3-2 (cont.)

ETCH TEST DATA

I^
F

j'a^

f

Group 3 (180 Sec. Pre-Etch)

V00 my Isc MA 1500 MW

612 143 136
606 141 131
609 140 131
609 135 128
607 142 128
605 141 127
601 139 126
605 139 126
610 133 125
608 139 125
607 133 124
609 140 124
603 136 123
604 141 122
603 142 122
601 141 120
602 140 118
605 139 117
603 139 113
600 140 113
595 141 109
597 140 107
596 139 105
592 141 97.3
588 136 92.7
573 141 71.7*
551 141 38.2*
486 140 2*
419 143 2*
324 140 2*

xx 603.1 139.2 119.6
a 5.76 2.59 10.45

Kurtosis 3.21 3.43 3.30

Skewness --0.84 --1.10 --0.96

*Cells treated as outliers, data not
included in calculated statistical
parameters.

i

-18



Table 3-2 (cont.)	 ORiG1NA.L PAGE IS
ETCH TEST DATA	 of POOR QUALITY

Group 4 (270 Sec. Pre--Etch)

..a

vcc my 1sc MA 1500 MA

613 145 140
614 143 138
610 145 138
613 142 138
607 143 137
604 144 136
612 140 136
604 146 135
610 139 134
605 145 134
611 142 134
605 141 132
612 139 132
606 143 131
608 142 130
603 144 127
604 142 127
605 143 124
598 144 119
605 139 116
599 144 114
602 144 114
605 129 123*
584 146 82.4*
571 142 71.2*
574 144 67.3*
550 144 46.8*
530 143 25.9*

x 606.6 142.7 130.3
a 4.54 2.01 7.91

Kurtosis 1.98 2.33 2.6,1
Skewness -0.01 -0.50 -0.92

*Cells treated as outliers, data not
included in calculated statistical
parameters.

-19-
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Another effect of pre-etching is the development of a rocky or

pillowed structure, with local square shaped areas which are in

some cases recessed and in others standing in relief. This

structuring is barely noticeable for Group 2 in contrast to

Groups 3 and 4, where it is quite pronounced. It may be that

the elevated blocks are susceptible to more severe damage
during subsequent processing, which could account for the increased

incidence of outliers in Groups 3 and 4.

The more perfectly texturized surfaces of Groups 2, 3 and 4

would be expected to trap incident radiation more efficiently

and hence to have higher short circuit current than Group 1.

There is some evidence of this, but it is not sufficient to

offset a degradation in curve shape for the pre-etched cells.

This tendency toward curve shape degradation is probably

attributable to the damage effects which have been discussed

in the previous paragraphs_

3.3	 JUNCTION FORMATION

3.3.1	 Edge Masking Dielectric

Work is underway on the formulation of the dielectric paste to

be used on the cell edge as a diffusion mask and subsequently

as the isolation dielectric for the wraparound contact_ The

following criteria have been selected for guiding this phase of

the development effort:

1. Maturation (firing) temperature ^' 9000G.

2. Barrier to phosphorus migration.

3. Thermal, coefficient of linear expansion,

3.5 to 4.5 x 10 -6 per °C_

4. Good melting properties.

5. Stability with respect to water.

S

ii
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G. Stability with respect to silicon at the

maturation temperature.

7. Structural and chemical stability with

respect to thermal cycling in subsequent

processing.

The low expansion coefficient of silicon (3.9 to 4.6 x 10-6 /0C)

dictates the use of glasses whose compositions can be modified
to obtain expansion values below 4 x 10

-6
/0C. The glasses must

mature within the selected temperature ranges and exhibit the

required physical characteristics when applied to silicon. In

general, the expansion coefficients of glasses are inversely
proportional to the maturation temperature. Low expansion

glasses usually have high maturation temperatures.

The glass systems to be investigated were selected on the follow-

ing considerations:

1. Those with low expansion coefficients which
would mature within th.- required temperature

limits; and

? Coating systems with acceptable maturation

temperatures and composition which can be

altered to reduce the expansion coefficient

and not affect the :firing characterists.

Four glass systems have been selected for evaluation as Edge

Dielectric Materials:

Series 1 Beta-^-Spodumene Systems

The glasses have very loco expansion character-

istics and have the general.. (molar equivalent)

formulation

-21-



0.811 Li2O	 0.282 Al2O3

• •	 3.023 SiO2i

These glasses devitrify when fired at low tempera-

tures (900 to- 1000 0C) to form precipitated refrac-

tory second phase.

Series 2 - MgO-Al2O 3 Borosilicate Glasses

These glasses have calculated expansion .coefficients
approximating that of silicon.. The general formu-
lation as shown below has a maturation temperature

of 10500C.

0.125 CaO	 0.330 Al 0
2 3

to	 •	 2.334 SiO2

.

0.875 MgO	 1.382 8203

Series 3 - Baria Glasses

This family of glasses has a calculated lower expan-
sion coefficient than silicon and maturation

temperatures between 9.50 and 1000 . C. The general

f	 compositions are::
l	 ^:
1

0.133 SaO

0.041 Zna	 a	 0.175 B 20	 •	 0.016 5iO2

0.043 CaO	 i
0.783 Mga

Series 4 Titania Glasses

These glasses precipitate dissolved titania at about

6500  during a slow cooling process. Maturation

-22--
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,-,	 temperatures are about 8150 C. Expansion coefficient

are between 9.0 and 9.9 x 10foC... General compo-

sitxo:

0.5 0 5
`	 0.211

0.080

0 .14 9
0.0 55

rns are as follows

Nal. 0
K2o	

_

Ca0	 •	 0.644 B203	 1.178 TiO1)

2.669 SiO2
U20

zno

E

The Mayer and Havas (3) factors shown in Table 3--3 were used as

the basis for estimating the expansion coefficients of the

selected ^:;.*positions. Materials which contribute to low expan-
sion are SiO^, MgO and B.03 , whereas the high expansion materials

are Na2.0 and. -K20. Since BP  is a glass former, with low fusion

temperatures it is an excellent addition to reduce both expansion

and maturation temperature. However, excessive additions of B203,

contribute towards high water solubility. Expansion characteris-

tics can be reduced by additions of MgO and Si0 2 . However, these

materials.contribute towards.increasing viscosity and tend to

increase maturation temperature. Silica is an excellent addition

to increase resistance to grater solubility. Additions of K.0 and

Na20 will reduce the maturation temperature, but will also increase

expansion' coefficients,

The following experiments have been carried out;

Series 1 Beta^Spodumane Glasses

This series of glasses was originally compounded.for

application to slip-cast-fused silica, which has an

expansion coefficient of 0.3 x 10-6/0C. Maturation
temperature is about 11500.0 These glasses, upon

maturation devitrify to form keatite (Li 2O-Al203.5SiO2)

and spodumene (Li 20•Al203*4SiO2).
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-24-

n



_ 

1ff
	 1 

..SI	
T	 _	 ^	 1	 ^.	 x-I	 ^	 J	 t 	 ^	

t

1,	 _	 _	 -	 f _	 l 	 !	

}	

I 	 1 ;

F

The original formulation M (Table 3-4) was modified

to increase expansion, promote devitrification and

reduce maturation temperature. Composition lE6 did

not form a melt after smelting at 1.360 °C for 30
minutes. Compositions IE-7 formed a melt at 1360°C,

but was highly viscous. A low viscosity melt was

obtained with Composition 1E8.

The latter composition was overf fired at 900°C when

fired an silicon for either 7 minutes or one minute.

Maturation (firing) temperature was reduced until

a vitrified surface was obtained at 700°C. This

glass at 700°C exhibits a possible two phase sys-

tem. However, surface tension is high and the

glass tends to form beads.

Series 2 - MgO-Al2O3 Borosilicate Glasses

The composition of this series was based on a Ferro

Corporation glaze which had a calculated coefficient

of expansion of 3.9 x 10 -6/°C Ml, Table 3-5) . The
glass did not form a melt at a smelting temperature

of 1400°C. Subsequent additions of B 2O3 (2E2), and

decrease of MgO (2E3) to reduce the maturation

temperature resulted in a low viscosity melt. The
E
	

Series 2E3 exhibited a partially vitrified surface

•	 when fired on silicon at 900°C for 7 minutes.

Series 3 -- Baria Glasses

The composition of these glasses is based on a eutectic

at 850°C of BaO-3.58SiO 2 ' Compositions were modified

to increase expansion and increase fluidity as shown

in Table 3-6. At 900 °C the glasses exhibit a low

amount of vitrification when applied to silicon.
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Table 3--4

COMPOSITION (mol %) OF BETA-SPODUMENE GLASSES

Series Number

Oxide lEl 1E6 1E7 1E8

Li 20 17.46 15.29 24.25 19.22

MgO 4.07 3.56 5.64 4.47

Na20 -- 4.71 7.47 5.92

Al 203 6.07 5.33 8.45 6.69

P 205 7.32 13.20 20.93 37.32

Si02 65.08 56.97 31.76 25.18

SnO2 -- 0.94 1.49 1.18

Table 3-5

COMPOSITIONS (Mal %) OF MgO-Al 203 BOROSILICATE GLASSES

Series Number

Oxide 2E-1 2E-2 2E-3

CaO 2.48 2.07 2.25

MgO 17.34 14.47 7.18

Al203 6.54 5.46 5.93

B203 27.39 39.40 42.73

Si02 46.25 38.60 41.90

I^

4

a
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Table 3--6

COMPOSITIONS (mol %) OF BARIA GLASSES

Basic

Oxide 3E--1 3E-2 3E-3

BaO 3.52 4.44 6.33

ZnO 1.09 1.38 1.66

CaO 1.14 1.44 0.94

MgO 20.79 --- --

B 20 3 46.51 58.71 70.39

Si0 2 26.96 34.03 21.68
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Series 4 - Titania Glasses

These compositions are based on titania enamels which

devitrify when air quenched through the temperature

range of 650 and 7000C. The expansion coefficient

of the original formulation. (5E-1, Table 3--7) is
about 9.9 x 10 -6 / C whereas the compositon repre-

sented by 5E--3 is approximately 7.0 x 10-6/0C.

Composition 5E3 formed a low viscosity clear melt

at a smelting temperature of 13600C. Maturation

on silicon with precipitation of titania was

obtained at 600 0C through 9000C_

The commercial inks shown in Table 3-8 have been screened on

silicon and general observations made after firing at 500 and 8800C

for 7 minutes,

Based on the work conducted thus far in the program, the most

viable glasses for the edge dielectric material system are the

titanic and beta--spodumene systems. These glasses form a

secondary refractory phase during firing, and thus should be

able to withstand repeated processing at lower temperatures

without deterioration.

3.3.2	 N+ Diffusion

Preliminary tests have been made with two phosphorus sources 	 A

as alternatives to gaseous sources. Emulsitone Emitter Source

N-250 (Emulsitone Co., Whippany, New Jersey) yielded cells with

properties similar to those obtained with our aerospace process

gaseous PH3 source. The second alternative source was a Transene

1020N Phosphorus Diffusaot Preform (Transene Co., Inc. Rowley, 	 17

Massachusetts) which gave results somewhat inferior to those

obtained with the spin-on and gaseous sources.

--28-	 {'
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Table 3--7

COMPOSITIONS (mol %) OF TITANIA GLASSES

Series Number

5E-1 5E-2 5E-3

9.20 5.87 6.23

3.84 1.95 2.07

1.46 1.57 1.66

2.71 1.95 2.07

1.00 1.08 1.15

11.73 19.59 20.79

21.45 15.68 10.56

48.61 52.29 55.47

Oxide

Na2O

K2O

CaO

Li2O

ZnO

B2O3

TiO2

SiO2

Ink

Table 3-8

COMMERCIAL DIELECTRIC INKS

(Firing Time - 7 Min.)

Temp
°C	 Observations

Plessey I-90255 880 Matte Surface

Owens Illinois H110 880 Matte Surface

ESL 4608 880 Matte Surface

EMCA 2828B 880 Matte Surface

ESL 4901 880 Matte Surface

Transene 57724 880 Clear, Some Cracks

Owens Illinois 61229 880 Opaque, Bubbles

Transene 780 880 Overfired

Transene 980 880 Overfired

DuPont 9137 880 Overfired

ESL 4771B 880 Overfired
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The Emulsitone N-250 source was applied to texturized round

(2 inch) and square (2 cm) wafers at a spin rate of 3000 RPM.

The wafers were cut from 2-3 ohm-cm boron doped crystals. The

coated wafers were baked for 10 minutes at 125 0C and then dif-

fused for 30 minutes at 850 aC in a flowing Nitrogen-oxygen gas

mixture (500 cc/min N 2 , 20 cc/min 02 ). The other cell proces-

sing steps consisted of standard controlled aerospace solar

cell processing methods, without AR coating. Measurements of

open circuit voltage, short circuit current and current at 300 my

were made using AM1 Xenon illumination. Results obtained with

the square cells are reported in Table 3-9.

The Transene 1020N Phosphorus Diffusant Preform is comprised of

a thin (2.5 mils) disc impregnated with a phosphorus compound.
is	A sample of cells was prepared with these preforms using the

same diffusion conditions, cell processing and measurement tech-

niques as were used with the Emulsitone source. Results are

reported in Table 3-10.

A small control sample was prepared using the PH 3 source used

in our normal aerospace cell processing. In this case the

diffusion cycle consists of 5 minutes pre-heat, 20 minutes

deposition and 10 minutes of further drive-in all at 8500C.

Gas flow conditions are the same as in the experimental runs,

as are the other cell processing and measurement techniques.

Results are reported in Table 3-11 where the standard deviation

is replaced by its unbiased estimate, S.

'f	 Examination of cells processed with the Transene 1020N source

showed that the tetrahedral peaks and edges had been rounded

by a corrosive or dissolution process and that residual stains,

which could not be removed with hydrofluoric acid, appeared

erratically on the cell surfaces. Both of these processes

would have a negative impact on short circuit and load point

current.
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Table 3-9

DIFFUSION DATA

Emulsitone N-250 Spin-On Source

2 cm Square Wafer

Voc my	 Isc mA	 1300

580	 137	 136
581	 138	 136
584	 137	 136
584	 136	 136
587	 136	 135
579	 236	 135
593	 136	 135
579	 136	 134
586	 134	 134
584	 134	 134
583	 135	 134
589	 135	 134
582	 135	 134
587	 134	 133
586	 134	 133
584	 134	 133
583	 134	 133
586	 132	 132
593	 132	 131
576	 132	 131
586	 132	 131
584	 134	 131
585	 128	 127
558	 137	 137'

	

x	 584.0	 134.4	 133.4

	

a	 3.91	 2.14	 2.12

	

Kurtosis	 3.65	 4.33	 4.31

	

Skewness	 0.53	 -0.94	 -1.06

*Cells treated as outliers, data not included
in calculated statistical parameters.
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Table 3-10

DIFFUSION DATA

Transene 1020N Phosphorus Diffusant Preform

2 cm Square Wafer

yoc 
mV

Isc 
MA	

1300
mA

588 140 140
590 140 140
589 138 138
590 137 136
585 137 136
586 134 134
590 133 133
589 133 132
584 134 132
586 133 131
585 131 130
586 129 129
584 129 128
587 129 128
587 126 122
582 121 121
589 121 120
578 119 119
587 117 117
583 116 116
585 116 116
590 112 ill
288 001 001*

x	 586.4 128.4 127.7

a	 2.98 8.40 8.39

Kurtosis	 3.62 1.91 1.93

Skewness -0.84 -0.42 -0.31

*Cells treated as outliers, data not
included in calcualted statistical
parameters.
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Table 3--11
^j

DIFFUSION DATA

Phosphine (Control Sample)
; I 3

2 cm Square Wafer	 Q!

Voc mV Isc mA
2300 MA

592 140 136
589 140 136
590 137 135
593 138 135
594 136 135
590 134 135
594 137 134
591 139 134

x	 591.6 138.2 135.0

Sx*	 1.92 1.49 0.76

*Unbiased estimate of standard deviation.

•a
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3.3.3	 P+ Back Contact Metallization

The back contact metallization utilizes a proprietary screen-

:{	 printed aluminum paste which is tolerant of a wide variety of

firing time periods (15 seconds to 3 minutes) and temperatures

(750oC to 900oC). Previous experience (4) has shown that this

treatment produces a back surface field which results in open

circuit voltages averaging 610 mV (at 20 00) for bulk resistiv--

ities between 2 and 800 ohm-cm and thicknesses greater than

0.0015 inch. The process also causes a short circuit current

{

	

	 enhancement for cells of five mil thickness or greater. The

magnitude of enhancement decreases as the thickness increases.

This current and voltage improvement caused by the paste back

surface field has been verified using Moth 1-0-0 and 1-1-1

materia.

_

	

	 In at'cempting to fire the aluminum during the diffusion cycle,

we have discovered that the longer time at 850°C causes excess

-M'
dissolution of silicon into the aluminum. This effect will

preclude firing the aluminum during the diffusion step as had

been originally planned. In order to retain a process sequence
i

.

	

	 which does not involve back etching we have investigated the

possibility of firing the aluminum on phosphorus diffused

surfaces. If the aluminum attacks the silicon sufficiently

f uniformly and penetrates beyond the junction, back-field contact

to the p-type region can be accomplished without back etching.

The requirement for an edge diffusion mask would be unchanged

from the requirement of the originally planned process sequence.

I

In order to test this possibility, aluminum paste was printed

and fired at 850°C for 30 seconds on one surface of a round,

2 ohm-cm wafer which had been diffused on both sides using a PH3

gaseous source. In order to provide an adequate test, the junc-

tion depth was 0.35 mm, well beyond the depth which will be

-34-
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encountered in actual solar cell fabrication. After dicing into

2 cm squares, cells were completed using standard controlled

aerospace cell fabrication processes. AR coating was omitted.

Measurements of Voc , Tsc and 1500 were made using AM1 xenon

illumination. The results are reported in Table 3-12.

The observed characteristics are substantially those one would

expect of a normal p+ back field cell on this type of material.,

indicating that the junction was eliminated over substantially

all of the back surface. This is particularly evident in the

open circuit voltage (x = 612 mW) which would be about 600 mV

for this material in the absence of a back field. There is no

evidence of a badly degraded curve shape; however, further

detailed comparison against a control standard is required to

be sure that the curve shape is completely unaffected.

3.4	 FRONT CONTACT METALLIZATION

The .firing of a fritted metallization contact paste on a silicon

solar cell surface is accompanied by a number of complex inter-

actions. As an example, the possibility of deleterious contami-

nation in the vicinity of the shallow junction is always a matter

of concern. The assessment of this possibility is complicated by

such considerations as whether paste borne contaminants are avail-

able, migrate into the silicon given the time and temperature

conditions available.

On the basis of our experience with fritted paste contact metal--

'	 lization we believe that while likely sources of problems such

as contamination and contact resistance may be significant, the

situation is usually dominated by oxidative attack of the silicon

by the frit. Contact adherence of a paste formulation is primarily

achieved by oxide formation and solution processes at the silicon

-35-



Table 3-12

PROPERTIES OF SOLAR CELLS WITH ALUMINUM PASTE BACK--FIELD
NO BACK ETCH

Voc mV Isc mA 1500 mA yoc mV Isc mA 1500 mA

616 142 137 618 140 127
609 .141 135 612 133 127
617 140 135 613 136 127
612 139 134 606 136 127
613 139 134 613 140 126
613 139 134 614 134 126
6.15 139 134 613 138 125
610 140 134 612 136 125
618 139 133 608 138 124
612 138 133 610 137 124
611 141 133 610 137 124
608 139 133 613 139 124
615 137 133 607 140 122
612 139 133 611 139 122

w	 615 139 132 609 138 114*1	
610 140 132 612 .136 113*
612 139 132 6.03 138 92.6*
615 138 132 610 142 92.4*
616 138 131 604 137 57.6*
616 137 131
612 139 131 612.6 138.1 129.8
612 137 131 a	 2.71 1.96 3.79612 141 131
612 137 131 Kurtosis	 2.82 2.89 2.10
613 138 130 Skewness	 -0.22 --0.47 --0.33613 13 5 130
613 137 129
614 135 129 *Cells treated as outliers, data not included
616 136 129 in calculated statistical parameters.
615 136 128
614 134 128
609 136 127

}
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surfaces. Thus the firing step is commonly carried out in an

oxidizing atmosphere. The Sio2 layer which acts as a rate limit-
ing membrane on the silicon surface is unable to perform this

function under the metallization.paste because it is disolved by

the fri.t. oxidation and solution can proceed rapidly, with shunt-
ing of the junction or even complete shorting, depending on the

depth of the junction and extent of the attack.

Preliminary screening tests have been run on a number of commer-
cially available silver metallization pastes (Table 3-13). These

tests consisted of fabricating solar cells using the firing time

and temperature matrix given in Table 3--14. A shallower than

normal junction depth (.18 - .2um) was used in order to increase

sensitivity of the test to the oxidation attack described above.

This also tended to make the results somewhat more erratic. Paste

firing was carried out in a flowing gas atmosphere consisting of

1500 cc/min. N2 and 1500 cc/min. 0 2 to further increase the sen-

sitivity.

Curves obtained on cells fabricated with two different pastes

with 6500firing temperatures are shown in Figures 4 and 5. Cell

output, insensitivity of curve shape to location in the matrix of

Table 3-14 and adhesion were used as criteria of merit. On this

basis the pastes listed in Table 3--15 were selected for further

evaluation. The observed current at 400 mV load point for these

pastes are reported in Tables 3-16 through 3--21.
A

Aluminum front contact metallization does not appear to be pro-

.	 miring. We have so far been unable to obtain contacts which do

not show very large shunting and series resistance.
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Table 3-1.3

COMMERCIAL SILVER PASTES
EVALUATED FOR USE AS COLLECTOR METALLIZATION

Cermalloy 4450

DuPont 7095

Electron-Science Laboratories 590

Englehard A2735

Englehard A2921 (Mod. 025)

Englehard A3233

Englehard E439A

Englehard E439B

Englehard E439C

Plessey L15--1260--T1
Thick Film Systems A-250

Thick Film Systems A-256

Thick Film Systems A-268

Thick Film Systems 3330

4

-38-



Uo1:a1J 1 tjl% rayal.0 L' V&l_UUt1-.L.LWM

6500C 7000C 7500C

15 Sec. void x x

30 Sec. x X x

45 Sec. X x x

60 Sec. x x x

75 Sec. void x x

90 Sec. x X x

120 Sec. x void void
180 Sec. X void void

Table 3-15

PASTE RETAINED FOR FURTHER EVALUATION

DuPont 7095

Electro-Science Laboratories 590

Englehard A2921 Mod. 025

Englehard E439B

Thick Film Systems A250

Thick Film Systems A256
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Table 3--16

EVALUATION MATRIX, FRONT CONTACT METALLIZATION

Paste: DuPont 7095

--42-

1400 - ma

6500C 70000 7500C

15 Sec.
i

662 447

30 Sec. 578 405 530

45 Sec. 630 380 447

60 Sec. 622 380 220

75 Sec. 390 295

90 Sec. 570 412 275

180 Sec. 340 ><
270 Sec. 455

Jim -1 -
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Table 3-17

EVALUATION MATRIX, FRONT CONTACT METALLIZATION
Paste: Electro-Science Laboratories 590

1 400 - ma

65000 	7000C

15 Sec.' 718 680

30 Sec. 700 714 636

45

60

Sec.

Sea.

693

660

684

660

550

415

75 Sec. 1>< 665 390

90 Sec. 700 590 310

180 Sec. 670

270 Sec. 655

. a
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1400 - ma

650°C 7000C 750 °C

15 Sec. 660 628 710 610
673 440 590 540

30 Sec. 593 480 710 592 694 584
650 550 619 530 303

45 Sec. 650 503 684 550 609 448
670 465 554 440 538 125

597 228 624 500 538 430
60 Sec. 645 504 487 403 0

475 368 485 420
75 Sec. 380 378 0

465 348 500 355 468 448
90 Sec. 613 542 470 382 325 0

390 381
180 Sec. 391 580 ><><

270 274
270 Sec. 252 >-̂-<

Table 3-18

1 
40 EVALUATION MATRIX, FRONT CONTACT METALLIZATION

Paste: Englehard A2921 (Modification 025)

I,- A%
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Table 3-19

1 
40 EVALUATION MATRIX, FRONT CONTACT METALLIZATION

Paste: Th:'-..k Film Systems A250

1 400 - ma

650°C 700°C 750°C

15 Sec. 395 544 530 665

30 Sec. 330 690 468 648 530 375

45 Sec. 425 685 485 700 520 678

60 Sec. 365 670 528 668 397 620

75 Sec. 485 705 568 571

90 Sec. 318 718 523 671 230 625

180 Sec. 348 583
><

270 Sec. 518 583
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Table 3- 20

1400 
EVALUATION MATRIX, FRONT CONTACT METALLIZATION

Paste: En.glehard E439B

1400 - ma

650°C 700°C 750°C

15 Sec. 738 687

30 Sec. 675 655 650

45 Sec. 647 690

4i

600

60 Sec. 706 695 562

75 Sec. 615 485

90 Sec. 684 520 338

180 Sec. 661

270 Sec. 541
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Table 3-21

1 
40 EVALUATION MATRIX, FRONT CONTACT METALLIZATION

Paste: Thick Film Systems A256

1400 - ma

650°C 700°C 7500C

15 Sec. 474 630

30 Sec. 692 670 584

45 Sec. 632 580 460

60 Sec. 692 610 310

75 Sec.

90 Sec. 634 --- -^

180 Sec. --

270 Sec. ---
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3.5	 SUPERSTRATE ASSEMBLY

A variety of coating--encapsulant and adhesive type materials has

been considered both for cell bonding and module backside pro-

tective coating applications. Products which were procured for

screening are listed in Table 3-22.

Table 3-22

COATING/ENCAPSULANT MATERIALS

1. RTV 615 Silicone Primers 4126
and 4155

2. Sylgard 184 Silicone

3. R-4-3117 Silicone Coating

4. 3140 RTV Silicone Coating

5. Q1-2577 Silicone Coating

6. Q1-2577 Impregnated Mica

7. Densil Double Backed Tape

8. Versilock 510 Acrylic Adhesive

9. Rexite IMR Acrylic Adhesive

10. EA9446 A/B Acrylic Adhesive

11. LO-524/525 Acrylic Adhesive

12. DA--560--4 U.V. Curable

13. Loctite 353 U.V. Curable

14. Acryloid B-7 Acrylic Adhesive

15. Epon 828/Versamid 125

16. QR-568/Desmodure N--75

G. E.

Dow Corning

Dow Corning

Dow Corning

Dow Corning

Dow Corning

Dennison

Hu.ghson Chemicals

Franklin Chamical

Hysol

Loctite Corporation

Ciba Geigy

Loctite Corporation

Rohm and Haas

Shell Chemical/
General Mills

Rohm and Haas/
Mobay Chemical

A part of the screening function involved consideration of the

various properties necessary and/or desirable in materials for

these applications. Tables 3-23 and 3-24 give criteria used for

adhesive materials and coating materials respectively. Many of

the same individual properties appear in both tables, but priori-

ties can differ significantly. The order of listing reflects
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tentative judgment of relative importance in the corresponding

applications. This is necessarily a rather approximate type of

ranking and cannot be considered firm in detail because of compli-	
5

cating factors such as interrelationships between different

properties and the range of impact of different properties on

system performance. In general, improvement of performance is

directly related to improvements in properties. However, some

properties have a threshold requirement equivalent to a "go no-go"

level, but might then provide little benefit from further involve-

ment. Properties in these tables judged to be in this category

are indicated by an asterisk.

Preliminary cell bonding experiments showed some problem areas in

this operation. These included relative displacement between cells

and superstrate because of sliding at the glue line before the

adhesive set, creeping of adhesive around the edge of cells onto

unbonded back surfaces, and bubble entrapment in the glue line.

The cell-glass displacement problem reflects the difficulty in

holding individual cells in place during assembly and cure opera-

tions. This is expected to be less of a problem in an automated

system which could be designed with individual cell holding

devices.

Adhesive creeping around onto cell back surfaces appeared to be	 E

mainly the result of capillary action. The use of a flat pressure

Plate to hold the cells down against the glass resulted in the two

surfaces, glass and pressure plate, so close together that any

adhesive squeezed from the glass-cell bond line filled the space

around the cell periphery and was drawn into the cell-pressure

plate interface by capillary action. Therefore, assembly pro-

cedures providing greater glass to pressure plate separation appear

desirable.
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Table 3--23

ADHESIVE CRITERIA

1. Cost/Watt

2. Light Transmission

*3. Ultraviolet Radiation Resistance

*4. Thermal and Thermal Cycling Resistance

*5. Low Elastic Modulus

*6. Thermal Expansion Compatibility

7. Viscosity, Compatibility with Assembly Process

8. Long Pot Life

9. Short Cure Time

*10. Environmental Stability

*11. Cost/Pound

*12. Bond Strength

*13. Uniform Bubble Free Bond Line

*Properties having a threshold requirement character.

Table 3-24

BACK COATING CRITERIA

1. Cost/Watt

2. Permeability, Liquids and Vapors

*3. Weatherability

*4. Thermal and Thermal Cycling Resistance

*5. Bond Strength

6. Uniform Void Free. Coating
7. Cost/Pound

*8. Low Elastic Modulus

*9. Mechanical Strength
*10.. Thermal Expansion Compatibility

11. Long Pot Life
12. Short Cure Time

*13. Ultra Violet Radiation Resistance

14. Viscosity, Compatibility with Application Method

.15. Light. Transmission

*Properties raving a threshold requirement character.
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The light transmission specimens consisted of a capillary film of

test material cured between glass microscope cover slips. Accept-

ance was based on specimen transmission as tested above 95%. Some

judgment considerations realtive to shape of spectral curve were

also involved.

	

v	 ,
R
k

The cell bonding experiments provided criteria for evaluation of

processability. "Spreading" or "Running" failure is indicative

of too.high and too low viscosities respectively. Bubbles are

mainly a processing variable but also can be related to materials

properties such as residual solvent or tackiness in film type

adhesives. Cure time acceptability was set at 15 minutes. Shorter

times would clearly be desirable, and this limit may be lowered if

feasible.

Table 3-26 shows results of bond strength tests. Bond strength

evaluation for screening purposes consisted of testing lap shear

specimens in which the te: • t material was used to bond cell front

.surfaces to glass. Specimens consisted of appropriate sized cell

fragments prebonded to 3 backing plate and then bonded with the

test material to a microscope slide. The microscope slide pro-

vides a convenient . l" wide glass member and the bond can be made

with a measured overlap in the configuration of a standard lap

shear specimen. Most materials also required a metal backing

bonded to the glass in order to provide strength enough to insure

fracture at the test joint. in fact the bending moment at the

joint was such that stronger adhesives caused the brittle glass

and cell material to crack in a fragmented pattern which tended

	

I _)	 to reduce apparent bond strength by reducing effective areas of

bond._
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The bubble problem apparently resulted primarily from air entrap-

ment when two precoated surfaces were joined. Therefore, testing

was directed toward development of an assembly procedure in which

precoating is not us?d, and the adhesive is applied so that it

spreads over the bonding surfaces as they are brought together.

This minimizes bubbles by driving air out ahead of the advancing
glue line.

in connect,on with these cell bonding experiments, attention was

also directed toward the need for methods which have potential for

development into automated procedures. The most promising to date

involves laying the cells out in the prescribed array then bonding

by placing the superstrate on top of this array.

This procedure uses a cell support fixture which consists of an

array of pedestals of a flexible material. These pedestals, about

1/8" smaller than the cells, are positioned on a flat surface in

a pattern corresponding to the module cell layout. The cells

positioned on these supports are then bonded by applying a measured

amount of adhesive to the face of each cell, positioning the glass

superstrate over the array and lowering it into place.

The individual flexible supports provide essentially equal pressure

^.'	 between each cell and the superstrate. The total pressure required

is a function of minimum adhesive viscosity during cure. The indi-

vidual supports also provide a friction holding force which tends

to prevent lateral cell displacement. Therefore, a single set of

stops to hold the superstrate is all that is needed to prevent

displacement during cure.

Results of adhesive materials screening tests which have eliminated

some of the candidate materals are shown in Table 3-25. Entries

in the first column, Light Transmission, were based on spectra--

photometric tests. The rest of the chart is based on cell bonding

experiments.

1^	 I
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Table 3--25

LIGHT TRANSMISSION AND CELL BONDING TESTS

q^,	 t

Light Cure
Trans Time Spreading Running Bubbles

Densil FAIL OR OR OR FAIL

RTV 615 OR OR OR OR OR

Q1-2577	 (B Stage) FAIL OR OR OK OR
Versilock 506 FAIL OR FAIL OR OR

DA-560-4 OR OR OR OR OR

Loctite 373 OR OR OK OR OK

Rexite OR OR FAIL OR OR

EA 9446 FAIL OR OR OR OR

Acryloid B-7 OR OR NA NA FAIL

Epon 828/Versamid OR OR OK OR OR

Table 3--26

LAP SHEAR TESTS

Primer Cure Bond Strength*

RTV 615 24 hrs R.T. 23 psi

RTV 615 4120 24 hrs R.T. 31

RTV 615 4155 24 hrs R.T. 30

RTV 615 72 hrs R.T. 36

RTV 615 4120 72 hrs R.T. 58

RTV 615 4155 72 hrs R.T. 53

RTV 615 1 hr 100 0C 108

RTV 615 4120 1 hr 100 0C 127

RTV 615 4155" 1 hr 100 0C 95

Q1-2577-Mica 1 hr 80 O 12 psi 100

Q1-2577-Mica 1204 1 hr 800C 12 psi 80

Versilock 72 hrs R.T. 375

Loctite • 353 72 hrs R.T. 355

DA-560--4 72 hrs R.T. 255

*Average of two measurements.
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Some of the candidate materials have been eliminated by these

screening tests. The Densi.l tape and Acryloid B-7 showed bubbles

or unbonded areas. The Versilock 506, Rexite IMR, EA9446 and

LO-524/525 showed relatively poor light transmission, and probably

will be eliminated. However the better of these materials may

still warrant some consideration because the bonding mechanism

could be very attractive for an automated system. This consists

of application of resin and accelerator to separate surface which

are then pressed together to bond. The cure is at room temper-

ature and requires only a few minutes.

The silicones as a group have poor bond strength, but it may be

adequate because initial system stresses are very low. Also,

silicones have been widely used because their low modulus is

desirable for resistance to thermal stresses.

Silicones, Locktite 353 and Epon 828/Versamid 125 have been selected

for more detailed investigation.

3.6	 AUTOMATION CONCEPTS

3.6.1	 Edge Masking Dielectric

^a
A design concept has been worked out for coating wafer edges with

masking dielectric by a roll transfer shown schematically in Figure 6.

Cells entering from the left are transferred by a walking beam

mechanism to pedestals on a moving belt which passes through the	 3
firing furnace. Before entering the furnace, the cells are picked

up by articulated arms and the edges applied to a roll which trans-

fers dielectric paste from a reservoir to the cell edges in a con-

trolled fashion. After coating, the cells are returned to their

pedestals and the beld advanced to position the next row of cells

for pick-up. We have estimated the throughput of such an equipment
[.. ^I

to be 8540 4" cells per hour (5 second cycle time). Twelve coating

i
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stations would be required for 500 megawatts per year production

capacity. We believe that equipment of this type will be suitable

for round or partially shaped cells but would encounter some dif-

ficulties with perfect squares and may not be adaptable to rectan-
gular shapes.

The projected cycle time results in a belt speed of 4 feet per

minute, suggesting furnace size problems for firing times which

might be as long as 15 minutes 60 feet of furnace.Y ^ 	 g	 g	 (	 profile) , plus

heating and cooling gradients.

3.6.2	 Superstrate Assembly

A design concept for the superstrate assembly is shown in Figure 7.

At the adhesive application station, the cells for an entire super-

strate are accurately located in a grid array. Cells are presented

face up for automatic application of adhesive by mechanized dispen-

sing heads. By applying a controlled amount of adhesive at the

centers of the cells, bubble free adhesive joints will be obtained

when the superstrate glass is lowered onto the adhesive mounds

which then spread due to the weight of the glass.

After adhesive application, the grad of cells is advanced to the

glassing station. At this station the superstrated glass is trans-

ferred by vacuum pick--up arms and accurately positioned on the cell

array. The assembly is then moved to another station where time is

provided for the adhesive to flow to the edges of the cell. After

inspection, the assembly advances into an oven where the adhesive

is cured.

The superstrate is then inverted to display the back sides of the

cells for interconnection. This is projected to be an automatic

reflow soldering process using copper braid interconnect conduc-

tors.

^4

F;
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A second inversion presents the interconnected solar Lcl1 circuit

on the lower side of the glass. In this position, the superstrate

moves continuously through a solvent spray flux removal tank and

through an overcoating station. This might be a wave coating

process as shown or alternatively could be a sp y ,, coating, curtain

coating or other suitable process.
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The following conclusions are drawn on the basis of the work

reported;

ti	 1. Use of sheet material from Czochralski crystals will encounter

significant incremental costs for nesting inefficiencies and

shaping.

2. A single step texture etching process is suitable for wafers

cut by multiple blade slurry saws. This is probably also true

for wafers shaped by other methods, but should be verified

before adopting.

3. Cofiring aluminum paste back contacts during the diffusion

process is not feasible, but the aluminum can be fired through

a diffused n type layer without back etching.
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5.0	 RECOMMENDATIONS

There are no recommendations.

6.0	 NEW TECHNOLOGY

There was no new technology reported during the quarter.

J

v
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