General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

- PT-U79-0330

EVALUATION OF OUT-0F-CORE
COMPUTER PROGRAMS FOR THE SOLUTION OF
SYMMETRIC BANDED LINEAR EQUATIONS

by

Robert S. Dunham

Prepared for

George C. Marshall Space Flight Center
National Aeronautics and Space Administration

(NAS k-CR-150708) EVALUATICN OF CUT-CF-CORE N78-248"
COMPOTER FROGEAMS FOR THE SOLUTICN OF sasaz
SYMMETRIC BANDED LINEAR EQUATIONS (Facifica

Technology, Del NMar, Calif.) /69§ FE HC A08/mF Unclas
201 CSCL 09E G361 21900

December 1976

ABSTRACT

This report evaluates fortran coded out-of-core equation solvers
th.t solve using direct methods symmetric banded systems of simultaneous
algebraic equations. The types of solvers studied were banded, frontal
and column(skyline) solvers. Also considered were solvers that could
"partition" the working area and thus could fit into any available core.
Comparison timings are presented for several typical two-dimensional and
three-dimensional continuum type grids of elements with and without mid-
side nodes. Extensive conclusions are also given.

ACKNOWLEDGEMENTS

This report presents research primarily carried out at the University
of Texas at Austin under contract to NASA-MSFC. The author gratefully
acknowledges the cooperation and support of their computer center and the
faculty and staff. Professors C. P. Johnson and E. B. Becker contributed
substantially to both the work and understanding. The numerical experi-.
ments were performed by Chih-Shun Kenneth Wang as part of his M. S. Thesis
work. Ricardo Nicolau is gratefully recognized for his assistance here
also. Professor E. L. Wilson of the University of California at Berkeley
is deserving of thanks for having willingly cooperated with the author in
providing several of the codes used.

The author's present employer, Pacifica Technology, is also recog-
nized for having supported the preparation of this report. Finally,
John Key from MSFC should be recognized for having sponsored the effort.

ii

TABLE OF CONTENTS

ABSTRACT e e e e e e e e e e o s b s s » i
ACKNOWLEDGEMENTS e e e e e e e e e e e e ii
TABLE OF CONTENTS S e v s s e e e e s o iii
CHAPTER 1 INTRODUCTION . . . e e e e e e e e e e e e e . 1
CHAPTER 2 SOLUTION OF SIMULTANEOUS EQUATIONS BY ELIMINATION . . 4
~ 2.1 Background/In-Core Solvers 8

2.2 Qut-of-Core Solvers . o o & % e e . e o e .. 8

2.2.1 Bandsolvers I 8

2.2.2 Frontal Solvers . . o s e e e e e s 12

2.2.3 Column or Skyline Solvers . s 0w s e o 16
CHAPTER 3 CHARACTERISTICS OF SPECIFIC SOLVERS EVALUATED 25

3.0 General Remarks . . . 5 000 6o s B e s« .. 25
3.1 Bandsolvers T T 25
3.1.1 BANSOL « e .. 25
L2 ousoL ... 27
3.2 Frontal Solvers 28
3.2V ZIPP .. L 28
3.2.2 pUZZLE - |
3.3 Column Solvers 29
3.3.1 SKysoL . ., c s e e e e e .. 29
3.3.2 GASP , (1)

3.3.3 cosoL] |

CHAPTER 4 COMPARISONS BETWEEN THE VARIOUS SOLVERS 32
4.1 Basis of Comparison . . L 4
4.2 Comparison Problems S 1
4.3 Results s s s e v 38
4.4 Further Results for Frontal Solvers 45

4.4.0 General Comments ., , . . o 5w e e s 45
4.4.1 1ZIPP Prefront , . . . * e s s e e e ... 46
4.4.2 ZIPP Front s % e % e 49
4.4.3 ZIPP Backsubstitution e s s s e s e ... 50
4.4.4 Further PUZZLE Results e s e e s e ... 50

iii

4.5 Qualitative Evaluation of Column Solvers 59

Chapter 5 CONCLUDING REMARKS v v v v v v v ... 6l

REFERENCES . . . & & v v v ¢ o o o ® o 0 9 85 ¢ 0556 s e 05
APPENDICES (FORTRAN LISTINGS) . . v « v v v v . . s 5 e . = 0 67
A. Bandsolvers o e s = s 0 07

A.l BANSOL S S 69

A2 UsOL % s e B s E S S . 75

B. Frontal Solvers v v v oo 85

Bel ZIPP w i « 5 5 5 4 4 » 0 = o o 5w b 87

B Ll 2 PUZZLE . L] L] L] - . Ll L] L] L] L - e ¢ o * e 99

C. Column or Skyline Solvers129

C.l SKYSOL v v it e e e e e e e e, 131

c L] z MSP ® & & o * e e e » L] L] - . * o o s e+ o] 39

C.3 COLSOLo v v v v vt v s v v u..159

iv

CHAPTER 1__ INTRODUCTION

The purpose of this report is to evaluate fortran coded out-of-core
equation solvers that solve using direct methods symmetric banded systems
of simultaneous equations such as the equilibrium equations generated by
static finite element or finite difference discretizations of two- and
three-dimensional stress analysis problems. This research was carried out
under contract to the N.A.S.A. Marshall Space Flight Center for the purpose
of improving the operaticnal efficiency of the TEXGAP computer program [1].
This report is directed to those individuals who develop, modify or rou-
tinely use finite element computer codes. No attempt is made herein to
review finite element methodology and the reader is assumed to be familiar
with fortran programming techniques and the techniques for solving systems
of simultaneous equations on large digital computers.

There are 3 methods commonly used for solving systems of simultaneous
equations on digital computers; direct methods, iterative methods and
hybrid methods. Direct methods involve the reduction of the equations to
an upper triangular form (this step is called forward substitution, reduc-
tion or triangularization) from which solution is effected by simple back-
substitution. Iterative methods require an approximate starting solution
from which successively better approximations are obtained from algebraic
equations using one of many procedures such as Gauss-Seidel [2] or Succes-
sive Over-Relaxation [3]. Hybrid methods involve the combined use of direct
and iterative methods.

The earliest finite element programs developed in the late 50's and
early 60's used the Gauss-Seidel iteration method to solve for the nodal
point displacements [4]. Iteration methods were probably selected by these
early developers because they were structural analysts familiar with a
similar iteration technique called "Moment Distribution". These early
iteration schemes quickly gave way to the direct method of Gaussian elimin-
ation. Direct methods proved to be just as convenient to program and they
were easier to use and gave accurate and reliable results for a large class
of two-dimensional(2D) static linear elastic stress analysis problems.

At first, the direct equation solvers were programmed so that all the |
coefficients fit within the available core storage. Earlier research also
funded by NASA studied these solvers [5]. At the time of this earlier
research (the mid 60's), the available central memory core storage was
generally either 32,000 or 65,000 words. Thus only 2-3,000 unknowns or
degrees-of-freedom(DOF) could be handled using even the most efficient banded,
symmetric solvers. As finite element methodology advanced, elements with
more nodes and more DOF and three-dimensional(3D) applications were developed
that required millions of words of storage, much more core than is available
on any computer system. This lead to the development of solvers that parti-
tioned the equations into smaller pieces that would fit into central memory
core storage while the eliminations were ueing performed, and then these
smaller pieces were written onto low speed tape, disk or drum storage to
make room for the next set of coefficients.

While the techniques for programming Gaussian elimination in-core
are straightforward and fairly well standardized, those used for out-of-core
solvers are highly variable. Another complicating factor is that virtually
every computer installation has a different method of charging for the trans-
fer of data from central memory to low speed storage. Some make no charge
and others may charge more for these input/output(I/0) transfers than for
the actual central processor(CP) calculation time. For example, the Uni-
versity of Texas charges $0.004 per each 64 words (called a Physical Record
Unit) but converts this charge to equivalent CDC 6600 time at the rate of
$230 per hour. Thus, the charge rate amounts to 0.98 x lO'3 CP sec per
word transferred. The importance of this charge can be seen in the following
example. A system of n=104 equations at a bandwidth of b=103 requires
approximately nb2/2 =5x 109 operations, i.e., the total number of
multiplications and additions to triangularize the system. This will require
approximately 2 x 104 CP seconds on a CDC 6600 assuming the average rate
of computations is about .25 x 106 operations per CP second. Provided
that the entire bandwidth block fits in-core, there will be 2nb = 20 x 106
I1/0 transfers (1 write and 1 read of each coefficient) or an equivalent

charge of 2 x 10% CP seconds. Thus, the total charge will be 4 x 10°

seconds, fully one-half being charged for I/0 transfers.

The net effect of this is to make meaningful evaluation of or*-of-
core solvers very difficult because the concept of operational efy iency
means performing a given set of computations for the minimum computational
expense (i.e., the actual charge) and not the minimum central processor
time. Further complications which are not considered herein also arise when
consideration must be given to obtaining reasonable priority to achieve good
turn-around.

In the next chapter is given background information on fortran coding
techniques to solve systems of banded symmetric positive definite equations
and specific attention is given to out-of-core band2d, frontal and column
solvers. Chapter 3 briefly describes some important characterics of the
particular solvers used in the present study. Chapter 4 describes and
presents the results of the various numerical experiments carried out to
evaluate these solvers. Chapter 5 gives rather extensive conclusions and
recommendations for future research.

CHAPTER 2 SOLUTION OF SIMULTANEQUS EQUATIONS BY ELIMINATION

2.1 Background/In-Core Solvers

A brief review of the basic techniques used in Programming equation
solvers will now be made to establish the terminology used in this report.
In this section only in-core solvers are considered.

Let the simultaneous equations be representated as
n
L a;sx; =b. fori=1,2,...n (2.1)

where aij are the stiffness coefficients, bi the nodal point forces

and X5 the unknowns(DOF), and n is the total number of DOF. The standard
elimination procedure is to solve for X1 in terms of x,,, X3eeees Xn

from the first equation. It ijs important to use the first equation to
eliminate the first unknown because no reordering (pivoting) is necessary*,
Solving the first equation for X1 Jives

] (n)
Xy = — (b, - I a,.x. (2.2)
1 a5\ j=2 1375,

This equation is now substituted into equations 2 thru n

a‘-] n n b
— - X.] + .. = i
a (b‘ J‘fz a’JxJ) sz-a”xj i &

and collecting

n d.,dy . a.
jfz(a”)% h o e
for i =2,3,........n

*In spite of some controversy on this point, there is no recognized body of
evidence that indicates reordering improves accuracy or reduces roundoff
error with systems of linear equations derived from either displacement or
mixed finite element models,

Thus, the order of the system of equations is reduced from size n to n-1.
After n-1 such eliminations (x2 from the second equation, etc.), the
equations are reduced to an upper triangular form that pemits solution for
the unknowns by backsubstitution. This direct Gaussian elimination is
straight forward to code in the Fortran language as is shown in Table 2.1
below.

DO 300 K=1,N-1
DO 200 I=K+1,N
B(I)=B(I)-B(K)*A(I,K)/A(K,K)
DO 100 J=K+1,N
100 A(I,J)=A(I,J)-A(I,K)*A(K,J)/A(K,K)
200 CONTINUE
300 CONTINUE
C
c BACKSUBSTITUTION

X(N)=B(N)/A(N,N)
I=N

400 1-:1-1
SUM=0.0
DO 500 J=I+1,N

500 SUM=SUM-A(I,J)*X(J)
X(I)=(B(I)-SUM)/A(I,1)
IF (I.GT.1) GO TO 400

Table 2.1 Symbolic Fortran Routine for Direct Gaussian Elimination

The coding in Table 2.1 does not take advantage of either the symmetry
or the banded nature of the equilibrium equations generated by finite element
methods. As illustrated in Figure 2.1 only those coefficients above the main
diagonal and within the band need be stored because the Fortran coding given
in Table 2.1 will not cause any nonzero terms to appear outside the band

symmetric — \

Figure 2.1 Symmetric Banded Equations

during the elimination process*. Thus, it is necessary to store only n*b
(b=bandwidth) coefficients instead of the n2 required for a general system.
To take advantage of this storage reduction, it is necessary to store the
equations in a tri-diagonal form in which column 1 of the tri-diagonal matrix
gives the main diagonal of the actual system of equatic ... column 2 the first
off-diagonal term and column b the edge of the band in any row. The Fortran
coding to effect reduction of the equations in tri-diagonal form is given in
Table 2.2. The coding in Table 2.2 is essentially the same as that in

Table 2.1, however, advantage is taken of the banding and symmetry to reduce
the number of passes through the innermost Toop (300) from n3/3 in the gen-
eral case to nb2/2.

DO 300 K=1,N-1
LIM=MIN(K+MBAND,N)
DO 200 I=K+1,LIM
B(I)=B(I)-A(K,I-K)*B(K)/A(K,1)
DO 100 J=I,LIM
100 A(I,J-I+])=A(I.J-I+])-A(K,I-K)*A(K,J-K)/A(K,l)
200 CONTINUE
300 CONTINUE

Table 2.2 Symbolic Fortran Routine for Tri-diagonalized Equations

There are many obvious Fortran improvements that can be made to the
coding in Tables 2.1 and 2.2**, but these are not particularly relevant to
the present study since the limiting feature of this coding is that it
requires all coefficients to reside in-core during the solution. If we
assume that the largest an array can be dimensioned is 4 x 104 decimal
locations, this limits the size of the problem that can be solved to say

*Reordering might cause the band to increase.

**For example, the "DO" ioops should be replaced ty variable counters
(I=1+1, etc.), the variable subscripting should be with single subscripts
and the innermost sum accomplished with temporaries.

|

n=800 and b=50. This method of solution is then capable of handling one-
dimensional(1D) continuum problems, 2D and some 3D truss and frame struc-
tures and some small 2D continuum problems (a plare strain grid with 400
nodes and a maximum bandwidth of 25 nodes). Clearly, in-core solvers
have a very limited spectrum of applications.

2.2 OQut-of-Core Solvers

It is very difficult to characterize out-of-core solvers since a
very important feature is how the coeffic.ents are stored and how many
I/0 transfers are required. Herein is briefly described three important
types of out-of-core solvers; band, frontal and column solvers. For band
and frontal solvers there is an important dichotomy between those that have
sufficient storage available to handle the maximum band or front and those
that lack sufficient storage and thus must subdivide the band or front. The
subdivision of the band or front will be called "partitioning". This is not
an entirely satisfactory name since partitioning is common used in matrix
algebra to denote symbalic groupings, but it accurately conveys the intended
meaning in the present study. Out-of-core column solvers are intrinsicly
partitioned by the manner in which “blocking" is done. These factors will
be discussed more fully in the next 3 sections.

2.2.1 Bandsolvers

A1l out-of-core bandsolvers use logic essentially the same as that
given in Table 2.2 for effecting the elimination process, but they differ
significantly in how they perform the 1/0. Figures 2.2 and 2.3 illustrate
the two extremes in terms of required core storage for bandsolvers that do
not partition the band.

The sliding block scheme illustrated in Figure 2.2 requires storage
for b2/2 coefficients and as a row is eliminated it is written to low
speed storage and the equatfons are shifted up one position [6]. There are
several drawbacks to this method:

= ——‘“

Hper
- .

Figure 2.2 Sliding Triangular Block Band Solver

—b—#

(AN

111

Ne——

Figure 2.3 Bandwidth Block Band Solver

AN

— IV

A

(1) 1/0 is required row-wise and therefore transfers small records,

(2) shifting takes place after each elimination which is a very
wasteful procedure,

(3) the procedure for assembly and also that for bringing new
columns into core are very complicated, and

(4) assembly and elimination cannot be performed simultaneously.

The bandwidth block scheme illustrated in Figure 2.3 avoids all of
the above inefficiencies and complexities at the expense of storage. A
total of 2b2 words are necessary because the first "b" unknowns are elim-
inated before any 1/0 is done. This requires that the triangular portion
in block IT be present during elimination of block I. Actually, only 1/2
of block II is needed but it is not generally convenient to take advantage
of this space* so b2/2 of storage is wasted. A significant advantage to
the bandwidth block procedure is that it permits (in fact encourages) the
combiration of the assembly of the global stiffness from the element stiff-
ness and the forward elimination process. This is significant because
it eliminates wasted I/0 and 1imits the total transfers to n*b words (1 word
for each coefficient).

There are of course many other methods, but their differences are
minor for purposes of the present study.

Without partitioning it is necessary to fit some multiple (2) of

into central memory, thus if only 32,000 words are available then

b< }Z%QQ =126. However, on CDC 7600s and many other large computers there

is often 250,000 words available. In this case b<353, a very considerable
number.

b2

For large bandwidths it is necessary to partition the band as illu-
strated in Figure 2.4 for 3 partitions of the b% block I, I, I, & I,
respectively. This procedure implies core residence of 2 of the b2/3
bIdcks at any time. Blocks I] & I2 initially are brought into core and

*Simply because the.coding becomes too complicated.

10

|

o
>r

Figure 2.4 Typical Partitioning of the Band

N

- P ST |y prraga——T

I] is reduced through the end of 12, then partially reduced block 12 is
written out and 13 is brought in and the elimination of I] is made on it.
I3 is written and II] is treated the same as 13. I] is now complete

and written and partially reduced 12 and 13 are brought back in and so on.
Table 2.2 gives the total number of reads and writes (1 for each) for only
the reduction.

block total number of reads & writes
I] 3
I3 7
II] 9
II2 9
II3 9
III]]
III2 7
58

Table 2.3 Block I/0s in Reduction

Thus for this simnle example, it is found that 58 I/0s of block size b2/3
were required. Without partitioning there would have been 3 outputs of

size bz. The partioning scheme thus required 58b2/3 + 3b2 = 58/9 T 6 times
as many I/0 word transfers and 58/3 = 19 times as many I/0 accesses. Note
that block I must be written during the assembly process and then read and
written once during the reduction process. Assembly and reduction cannot be
combined in a bandsolver that requires partitioning. Obviously, partitioning
should be avoided whenever possible.

2.2.2 Frontal Solvers

Frontal solvers are fundamentally quite different than either band
or column solvers (which are similar) in that the nodes or DOF are assigned
lTocation numbers in the active front based on their appearance in the element

being assembled. Thus, the ordering of the element stiffness matrices passed .
to a frontal solver determines the size of the front. The nodal numbers are
used only as reference numbers or labels with which to compare with other
labels (e.g., Al, B10, etc. are just as useful as 1, 210, etc.).

To illustrate how a frontal procedure works consider the grid shown
in Figure 2.5. As element 1 is assembled, nodes 1,2,3,8,9,12,13 & 14 are
given (column or front) locations 1,2,3,4,5,6,7 & 8, respectively in the
"active" area of the bard which is called the front. Since nodes 1,2 & 8
are connected only to element 1 they are now eliminated from the active area
in the usual manner and the reduced coefficients passed to an internal buffer
area that is dumped to low speed storage when full. This leaves the active
area with a substructure stiffness consisting of the Tine of nodes 12-13-
14-9-3. Next element 2 is assembled with new nodes 4,5,10,15 & 16, The
new nodes are assembled into the first available positions in the front;
1,2,4,9 & 10, respectively. Nodes 3,9 & 14 are currently Tocated in the
front at locations 3,5 & 8, respectively. Since nodes 3,4 & 9 are complete
they are now eliminated leaving the active front the nodal line 12-13-14-
15-16-10-5. Table 2.4 summarizes the frontal locations and maximum front
widths for all 6 elements. Zeroes (0) indicate that the node has not yet
appeared, -1 indicates it has been previously eliminated, and 4* means
that the node is in position 4 and will be eliminated because the current
element is the last appearance of that node. WNote that after an initial
transient the front remains steady for regular grids. Note also that the
frontal method inherently combines assembly and reduction.

Frontal solvers are typically organized into 3 main sections;
prefront, front and backsubstitution. The prefront constructs the table
of first, intermediate and last appearances illustrated in Table 2.4. The
front performs the assembly and reduction, and the backsubstitution the
usual solution computation. A1l 3 sections are generally coded with 2 main
nested Toops. The outer loop on the elements and the inner loop on the
number of DOF for that element. Of course other Toops nust be nested inside
these two main loops to perform the reduction and backsubstitution. It is

2% 2& 2% 22 2; 28F :2$
I ONEL SO NEL SO IR &
12 13 14 15 16 17 18

* -+ - ——— + -8— —%
st O %4 @ M © T

& —— L —o e - '

1 2 3 4 5 6 7

Figure 2.5 Example Grid of Q8 Elements

Current Element

Node 1 2 3 4 5 6
1 1* A - 4 - A
2 2% g 4 ‘

3 3 o]

4 0 *

5 0 2 2%

6 0 0 1*

7 0 0 3*

8 4> A -

9 5 5% .
10 0 4 4* ,
" 0 0 5 -]
12 6 6 6 6* 1
13 7 7 #* o
14 8 8 8 g* |
15 0 9 9 9 o -
16 0 10 10 10 10 10*
17 b 0 N " M N+
18 bowe o2 2
19 0 w1 4
20 2 2*
21 0 1 1%
22 0 0 2%
23 *] A
2 s a1
25 5 5)
26 0 * 1
27 0 4 4*
28 | | 0 0 5%
25 0 0 0 0 0 6*

max front 8 10 12 12 12(10) 12(8)

Table 2.4 Progressive Frontal Locations for Grid 2.5

15

possible to code pre-prefronts that order the elements in an optional or .
sub-optional manner so as to minimize the front. This is similar to band
minimizers and was not considered in the present study. Front and band
minimizers are not useful for regular grids.

The frontal method is especially efficient in handling grids with
midside nodes as shown in Figure 2.5 and Table 2.4 where the maximum front
is 12 nodes. The maximum bandwidth would be 14 nodes. In general if there
are N elements across the width of a uniform grid of Q8 elements with 2 DOF
per node, the front f=2(2N+6) but the band b=2(3N+5). Thus,in the limit
as N~ f/b>2/3. The frontal method is also much more efficient in
storage and computations. The frontal method requires storage for Kf=f2/2
coefficients whereas the band method needs Kb=2b2, thus in the limit as
Nooo Kf/Kb*1/9, almost an order of magnitude. The number of computations
is proportional to fz and bz. respectively, thus the ratio of front to
band approaches 4/9 as Now,

The frontal method loses its computational advantage for grids
without midside nodes since f=b. However, it still retains a significant
storage advantage of 1/4.

2.2.3 Column or Skyline Solvers

Column solvers are currently very popular among the coterie of
developers of general purpose finite element codes (e.g., SAP [7,8) and
ADINA [9]) and there have been many recent papers in the literature
describing them [10,11,12,13]). Column solvers are based on the skyline
storage scheme illustrated in Figures 2.6-2.8 in which a nonuniform
skyline is drawn covering the minimum number of nonzero coefficients
that can be identified in each column. Emphasis is supplied on the
word identified because the user generally must perform the identifying
and numbering shown in Figures 2,7-2.8 and this may not be a trivial task.
Another possibly troublesome feature of these solvers is that they usually
do not assemble the element stiffness coefficients, again this nontrivial
task is left to the user.

Figure 2.6 Typical Skyline

17

iy ¥

1 2 43
8 44

6 9 45

7 10 12 24 46

11 13 15 25 47

14 16

[135711]417192123313335404258]

Pointer Array of Location of Diagonal Terms

Figure 2.7 Storage Scheme for Column Solver

BLOCK NUMBERS

L #1 #2 g #3 4 #44

r pp——— T T
1 1 2 1
2 a | |8 2
3 5 6 9 3
4 7 10 12 5 4
5 11 13 15 6 5
6 14 16 7 6
7 8 7
8 9 8
9 3 10 9
10 11 1 10
1R 13 2 11
12 15| 3 12
13 4 13
14 5 7114
15 15
16 I 16

Figure 2.8 Example of Skyline Stored in 4 Blocks

For entirely in-core column solvers the tasks of reduction and back-
substitution are straightforward and essentially the same as for band ard
frontal solvers. However, when the equations are too large to fit into
core they must be blocked as illustrated in Figure 2.8. The reduction and
backsubstitution phases here are considerably more complicated and unfor-
tunately can require substantial I1/0. In the simple illustrated example,
the reduction of block 2 requires that only block 1 be available. Similarly,
the reduction of block 3 requires that only block 2 be available. But
block 4 needs blocks 1, 2 and 3! The minimum working storage for our
example would be 2 blocks (about 40 words), and if this was the maximum
available core, it would be necessary to wnite and read blocks 1 and 2
twice. Thus, more than 1 word of I/0 is required for each coefficient
(e.g., as required in frontal schemes).

Another obvious I/0 inefficiency with column solvers is that the
assembly and reduction phases are separated, thus requiring at least twice
the 1/0 of frontal solvers. However, there are significant advantages to
column solvers. For example, in the equations illustrated in Figures 2.6-
2.7 only 58 words are necessary to store the active coefficients. Since
the last column is full, frontal and band solvers would need to store the
entire upper triangular region of 136 words. The column storage scheme
would also require fewer computations for the same reason. This advantage
is not effective in the regularly number cartesian grids generally used in
2D or 3D continuum problems and for this reason column solvers may be more
effective for special applications with sparse matrices or very general
purpose computer codes like SAP [7] and ADINA [9].

To illustrate the comparison between column and frontal solvers
consider the grid of Q8 elements shown in Figure 2.9a & b. Both grids
have 4 elements across the minimum connectivity direction. The column
numberings in Figure 2.9a are like a band solver would number, and Figure
2.9b gives numberings similar to a frontal scheme. Figure 2.10 shows the
skyline for the band numbering. In comparing storage in Figure 2.10 to
the frontal scheme which would have a virtually constant front f=14, it is

20

seen that the number of terms in ‘he skyline is virtually the same as the

r number within the superimposed front. In Figure 2.11 a similar skyline is
shown for the frontal numbering scheme of Figure 2.9b. Here there are about

10% fewer terms in the skyline than the front. This potentially could lead

to a 20% reduction in computations, but recall that at least twice as much

1/0 must be done by the column solver.

21

29 30

31 32 33 34 35 36 37

F— ——- —8- - e —— - ——p
244 25 ¢ 26 ¢ 27 ¢ ¢28
5 ‘
1 | Alé; 17$F7 18 194} Zg 21 32 <723
104 Ny 12 7 134 ¢4

1 2 3 4 5 6 7 8 9

Figure 2.9a Band Oriented Numbering

31# 341 371 a0d #42 '
o S G T S WS
177 20 ¢ 2% 269 28
80 16 18] o2 2 o 25 427
3¢ 64 9¢ 12¢ 714
&- —— --— = J - i ~-@ 4
1 2 4 5 7 8 10 n 13
Figure 2.9b Frontal Oriented Numbering

123456789

xx\xoooooxxooooxx
XXX\XXOOOOXXXOOXXX
xx\rooooooxxoooxx
>

OO0 X X000 %
X X000 % x

/ X X X 0o
xxx\OOOXXOOOOO
XX%OOOXXOOOOOO
xxx‘bxooxxxooooxxx
xx‘»ooooxooooooxx

OXXOOOOXXX
OXXo0o00o0 % x
XX X00xX x x
xX x

xX x

(=1~}

© o

o x

xX X

x

Figure 2.10 Skyline for Band Numbering

23

123456789

Wxxm\xxxoxoooooxxxx
i =< =< x
XXXXO0OX000O00O0O0 O X X
X\xxxoxoooooooox
il % x x x x
_HXXW\XOOOOOOOOOXXXX
P ‘_XXXXXX
XX'XXX0000000O0O0 X x
_xxwa\xxxxooooooxxxx
7 % x x x x x
XXX XO0X000O0O0O0OO X x
_xxxvm\xxxoxoooooxxxx
i % x x x x x

XXXXOX00000O0O0O X X
xxxx\ﬁxxoxoooooxxxx

/ > x x
XXX XO0OX0000O0O0O O X X
wA\PXXOXOOOOOOOOX

Figure 2.11 Skyline for Frbntal Numbering

24

CHAPTER 3 CHARACTERISTICS OF SPECIFIC SOLVERS EVALUATED .

3.0 General Remarks

Due to the scope and funding of the present study, it was not pos-
sible to obtain optimally coded solvers of all types. Since virtually all
computer systems are unique and require specialized coding to operate at
peak efficiency, this means that those imported solvers will be at a
disadvantage to those that were coded on site. While it was not possible
to extensively recode the imported routines, we did attempt to use these
solvers fairly in our study. This does not mean that our final evaluations
will be fair or impartial. In fortran programming there is always the
not-invented-here syndrome to be contended with.

Also, there was no attempt to make an exhaustive search to locate
new and innovative routines. Rather, the author chose to use routines
that were gene: ., 1y available and known to him a priori. Clearly, many of
the better solvers may be not generally available because they are pro-
prietary or because the developer does not code an easily tiansferrable
modular routine [14].

The following is a brief description of the actual band, frontal and
column solvers that were used in the present study.

3.1 Bandsolvers

3.1.1 BANSOL

BANSOL is « general purpose out-of-core equation solver that stores
and operates on the coefficients in bandwidth blocks as illustrated in
Figure 3.1. BANSOL is a very general standard utility routine that was
originally coded by E. L. Wilson and subsequertly modified by the author
when used in the early finite element codes PALOS [15] and NAOS [16]. It
is an out-of-core solver in that the reduction takes place block by block
with at most two blocks in core at a time. When the reduction of a block is
complete, it is written onto low speed storage and the next blocl is formed

25

73

64

55

46

37

28

19

10

o —

9
Block II
Block III \\\\\\
i
Figure 3.1 Typical BANSOL Storage Scheme
81
N N+1
—— 72
Ny
63
54
45
36
27
18

Figure 3.2 Typical Q4 BANSOL Grid

26

s S —

and reduced. The minimum storage required for Bansol is 2b2. If more
sturage is available the number of DOF that can be stored per block is
increased according to the formula N, = NDIM/b - b where NDIM is the avail-
able core storage and b is the bandwidth,

For the grid shown in Figure 3.2, after element N is assembled, the
equations up to point n, are complete. The coefficients that have been
assembled up to element N are stored as shown in Figure 2.1 in two-
dimensional array form using singlely subscripted arithmetic. Forward
elimination for equations 1 to Ny is done and then the revised coefficients
from equations 1 to n, are written onto low speed disk storage and the
remaining triangular portion is shifted upward so that equation nb+1 in
block 1 becomes equation 1 in block 2. The process is then continued as
before assembling the stiffness matrix from the N+1 element. Note that
BANSOL combines assembly and elimination and consequently avoids the
extra 1/0 charges for the additional write and read required when these
phases are done separately.

BANSOL uses an efficient high speed binary I/0 routine and does not
use standard fortran I/0. However, since the usual block size is 104 words
or larger, this is not an important factor.

BANSOL is generally useful for solving small to intermediate sized
systems of equations associated with 2D elements without midside nodes
(b<150). When 2b2 exceeds the available core requirement, other solvers
must be used.

BANSOL was used in the study as a base line comparison for the inter-
mediate sized grids and of course is not effective for large 2D or 3D problems
with la-ger bandwidths.

3.1.2 uUsoL

USOL is an out-of-core band solver that has the capability of parti-
tioning the band when the bandwidth blocks exceed the available core capacity.
USOL was developed by E. L. Wilson and was the original solver used in the

27

SAP codes [7]. USOL performs the eliminations in essentially the same manner
as BANSOL, however, the pfocess 6f assembly and reduction are separate. No
special coding was done on USOL to optimize its logic or 10 efficiency,

since it was anticipated at the outset of this research that bandsolvers that
partitioned the band would not be competitive. Also, it is generally known
that USOL is not an efficient solver for grids with midside nodes or for

large bands. It was used in SAP because of its ability to use available core.

3.2 Frontal Solvers

3.2.1 zIpP

ZIPP is the very general frontal solver developed by Irons [17] and
used extensively in the TEXGAP computer programs [1]. In this report there
are 3 versions of ZIPP that are used. The first is the original deck as
coded by Irons and listed in his paper [17]. The original version used Fortran
I/0 and was written to include many options for multiple load vectors and
resolutions for nonlinear problems. The first modification converted alj 1/0
and removed some burdensome logic related to the multiple load vectors and
resolutions. This version is called HSZIPP1 for High Speed binary 1/0.

Since ZIPP uses its own dimensioned buffer [17] there is greater control
possible over when the internal buffer is released to the I/0 buffer (or
transferred directly to disk). Irons' original version released the dimen-
sioned buffer after each element had been processed, thus the typical number
of words transferred was 500-2000. A simple modification was made so that
the internal dimensioned buffer was dumped only when it was full, thus

5000 words are usually transferred. This second version is called HSZIPP2,

As described in Section 2.2.2, ZIPP permits a very general node
labeling scheme to be used because it has an extensive prefront routine
that stores all DOF labels and then tests all other labels to determine
the necessary information about the first, intermediate and last appearances
of a label. This is a computationally expensive Procedure that increases
as N2 where N equals the number of degrees-of-freedom per element times

28

the number of elements (Nz4n for 2D problems). This particular prefront
feature is not common to all frontal solyers, for examole, PUZZLE does not
perform this extensive search.

3.2.2 PUZILE

PUZZILE is a frontal solver developed by C.P. Johnson which can parti-
tion the front when the front size f2/2 exceeds the available core [18].
Another important feature of this code is its extensive substructuring capa-
bility. The frontal method intrinsicly generates substructure stiffnesses
as the front progress, and the coding in PUZZLE fully exploits this useful
feature. PUZZLE operates in a similar manner to ZIPP although the coding is
quite different. The PUZZLE prefront is less general than ZIPP and is consi-
derably more efficient. For typical continuum problems this loss in generality
is minor.

Like the ZIPP versions, PUZZLE handles all 1/0 using the high speed
IOP routine and operates at near peak 1/0 efficiency on the Texas system.
A very significant portion of this I/0 efficiency occurs with large fronts
that require partitioning of the front. Say for example that the front is
almost constant and core memory is available only for about 1/2 of the needed
space. Thus, 2 partitions are necessary for all frontal blocks. With USOL,
COLSOL and most other band partitioning or column solvers this would at least
twice as much 1/0 on the coefficient scratch file. However, PUZZLE is coded
in such a way that needless repetition of 1/0 is minimized and frequently
reduces the I/0 burden to 1.3-1.5 times that required if all coefficients
fit in-core. For problems that require 3-i0 frontal partitions, this savings
could be 1-2 orders of magnitude.

3.3 Column Solvers

3.3.1 SKYSOL

SKYSOL is an in-core skyline or column solver developed by C. A.
Felippa [12]. Since SKYSOL is in-core, the maximum capacity is limited

to problems with 400 to 1000 DOF. In situations where there are only a .
few long columns, it is especially efficient in reducing storage as illu-
strated in Figure 2.6. SKYSOL is useful for one-dimensional and some

small two-dimensional problems. It is used in this research to provide
"base-1ine" comparisons, since it is anticipated that all out-of-core

solvers will be less efficient.

The method used for storing the coefficients is the compacted column
storage scheme discussed in Section 2.3.2. A1l the elements above the
main diagonal are stored in sequence by columns. Al1 coefficients above
the first nonzero coefficient in each column are omitted and all coeffi-
cients between that point and the main diagonal are stored whether or not
they are zeros. To use the compacted storage scheme, a locator array is
needed to locate the position of the diagonal coefficients in the one-
dimensional array. The locator array gives the necessary information to
assemble the total stiffness and determines how many elements need to be
revised during the elimination proccdure of a given coefficient.

3.3.2 GASP

GASP is an active column or skyline solver coded by C. P. Johnson
at the University of Texas at Austin primarily for the analysis of thin shell
structures (which usually have 5 or 6 DOF per node). Since GASP was not
intended for use in a general purpose code, the column heights are restricted
. to be such that they do not extend past the previous block. For example,
in Figure 2.8 the column heights in block #3 extend only part way into
block #2 but block #4 extneds back to block #1. In GASP, block #4 would be
restricted to a height of 8. This restriction is important in limiting
I/0 since multiple passes through the stiffness coefficient scratch file
are eliminated.

GASP was coded using the high speed binary I/0 routines available at
Texas, thus further enhancing its I/0 efficiency. As with all column solvers,
GASP must separate the assembly and reduction phases and make multiple passes

30

through the element stiffness file. However, cumulative lower and upper ’
limits on these passes are computed to reduce needless 1/0. GASP requires

the nodal connectivity array to be stored in-core and requires that the

array contain DOF numbers for purposes of storage (gaps are permitted).

3.3.3 COLSOL

COLSOL is an active column solver coded by Wilson and Dovey at the Uni-
versity of California to replace USOL in the SAP codes [8]. Like USOL, COLSOL
can handle virtually uniiwited bandwidths or column heights or conversely
can fit into very small core when necessary. Thus, COLSOL must handle column
heights that extend past the previous block, e.g., block #4 in Figure 2.8.

A11 I/0 in COLSOL is unformatted fortran 1/0 and because COLSOL was obtained
late in this study it was not possible to improve it. For this reason,
timings on COLSOL are likely to be slower than for more optimized coding.

3

CHAPTER 4 COMPARISONS BETWEEN THE VARIOUS SOLVERS

4.1 Basis of‘CdmpariSon

The main thrust of this research is to compare the computational
efficiency of the various methods of solving systems of equations by per-
forming controlled numerical experiments on the solvers described in
Chapter 3. The basis of comparison will be the "computer time" required
by each solver to effect the solution of a set of model problems.

It is extremely important in evaluating this particular research
to at all times remember the nature of the reported computer timings. All
results presented herein were obtained on the University of Texas 6600/6400
operating system. This system permits two types of timing; a "central
processor(CP) clock" and a charge time (TM). TM time equals CP time
(sec) + 0.004 PRUs where 1 PRU = 64 (60 bits) words read or written. Al
times are in seconds. Every possible effort was made to run the model
problems on the 6600 because the 6400 gives "equivalent 6600" time. In
practice, it is found that runs on the 6400 were generally 10-50% longer
than on the 6600. In spite of our efforts to eliminate this variable, it
is possible that some of the times reported are from 6400 runs. In any
event, CDC 6600s are well known for their poor "clocks" and variations of
+15% are possible depending on how many "rollouts" of the Job are made.
Generally, jobs are run during peak demand periods give longer times than
those run at Tow demand periods. In spite of all these difficulties, it
was still possible to adequately interpret and compare results and fre-
quently duplicate runs gave variations as 1w as +1%.

When comparing equation solvers it is important to establish a
common basis of comparison, or the results of the experiments could be
meaningless. To this end, all equation solvers were required to read a
sequential file of element stiffness coefficients (including the right
hand side), assemble the coefficients, reduce the coefficients (forward
elimination) and backsubstitute to compute and print the solution. The
actual element stiffness coefficients used were:

32

Aii= 1.0, is1,2,....N

Ay 10720, i75=1,2,....N

B.= 1.0, 1i=1,2,....N

This permitted a check on the solution since xj=] to machine accuracy

(14 figures) and avoided the special case of Aij=° for i#j which could

lead to erroneous comparisons since some solvers skip on zeros. The sequen-
tial file of stiffness coefficients was generally written and read using
standard FORTRAN unformatted I/0 so that a minimum charge of 512 words

(8 PRUs) was incurred for each read or write. Some of the runs (especially
the ZIPP runs) were made using the high speed binary I/0 reutine IOP and
this reduced these I1/0 changes by up to a factor of 0. However, since
most of the problems required only one pass through the element tape this
effect was negligible since most of ine I/0 takes place when the assembled
coefficients are read and written.

Equation solvers also need information on the connectivity of the ele-
ments and in general this information was also passed to the solver by means
of a sequential file. However, it was not possible to demand a 1ike effort
from each solver because of the particular coding in the solvers that were
available. For example, ZIPP reads such a file and takes the information
in the file as labels from which a frontal storage position is computed.
PUZZLE performs a similar function but requires the labels to be integer
numbers from 1 to N. Gaps are permitted, but storage is allocated for N
numbers; a much more restrictive form than ZIPP which creates the numbering.
USOL and COLSOL both require degree-of-freedom numbering a priori so that
no bookkeeping need be done in the solver. Clearly, no meaningful compar-
jsons can be established for the connectivity-bookkeeping phase. However,
this is not a troublesome point since in all solvers except ZIPP this time
is small. ZIPP does require a substantial amount of time in its prefront
and for that reason it is reported separately.

33

Whenever possible, all identifiable times haye been reported; these
include:

(1) prefront and/or bookkeeping
(2) assembly

(3) forward elimination

(4) backsubstitution

(5) total time in solver

Because of their intrinsic nature, it is not possible to provide separate
timings on each phase for each solver. For example, ZIPP and BANSOL com-
bine assembly and forward elimination, but USOL and COLSOL separate them
at the expense of an extra write and read of the entire system of equations.

In spite of the aforementioned difficulties, it is still possible
to make meaningful comparisons between the solvers by simply monitoring
the total CP and TM time required for each solver.

4.2 Comparison Problems

The most important item in the comparison basis is of course the set
of sample problems. This research was directed at large out-of-core solvers
and for that reason intermediate and large two-dimensional (2 DOF per node)
and small three-dimensional (3 DOF per node) problems were chosen. It was
not necessary to select intermediate or large 3D problems as the results
will show,

At the present time the majority of finiic element production prob-
Tems still seem to be solved with first order or linear elements, that is,
elements with only corner nodes, although use of the quadratic elements
(elements with 1 midside node per edge) is increasing. For that reason,
and because this research was partially aimed at the TEXGAP computer codes,
the following element types were used:

Q4-4 node quadrilaterals (8 DOF)

34

L. - % ; Q o i - - T S TEr e e e ey ppme pos ——t - oo 3z amm s o f

Q8-8 node quadrilaterals (16 DOF)
B8-8 node bricks (24 DOF)

B20-20 node bricks (60 DOF)

A1l of the model problems were uniform rectangular grids in 2D and
cubic grids in 3D. These are highly specialized grids but they are probably
representative of the majority of production problems. In any case, it is
doubtful that grid regularity affected the results appreciably. Unless
there is some Particular feature of the equations (e.g., extremely sparse
fronts or bands) that can be readily identified and taken advantage of in
the solver, the results for irregular grids will be similar. Of particular
importance in the choice of model problems is the presence or absence of
midside nodes. If there are only corner nodes in the grid (Q4 or B8 ele-
ments) then the front and band are equal. However, if midside nodes are
present the front is always less than the band and frequently significantly
less. Midside nodes are very troublesome to bandsolvers and run the band
up considerably, thereby increasing storage and solution time by approx-
imately the square of the band. Midside nodes cause no difficulty with
frontal or column solvers both of which appear to treat these nodes effi-
ciently with frontal solvers perhaps having a small edge. Frontal solvers
generally perform less efficiently on grids using only corner nodes since
only a few DOF per element are eliminated. 1In general, band, frontal and
column solvers do about the same computations for grids with no midside
nodes so the solvers with the least bookkeeping will always perform best.

Bookkeeping is generally smallest in bandsolvers and highest in frontal
solvers,

The first model experiments were rup on the grids shown in Figures
4.1 and 4.2. 1In Figure 4.1 is shown a grid of 10 x 24 = 240 Q4 elements
and 11 x 25 = 275 nodes with 2 DOF per node for a total of n=550 DOF,
Test Problem #1 was run on this grid with the numbering across the 10
element direction so that the band(b) and front(f) widths were equal,

35

Band

Front
for
Prob #2
b=f=54

'

549,550
)

4‘? S
240
—— 1 528
230
506
220
484
S < - - < T T e T e
132
50
110
40
88
30
¢ + J WL- et -+ g— B ¢ T 66 .
20
— /’;p47 Alpvf e & 4- v . L —L 44
/) 2 3 4 5 6 7 8 9 10
i ¢ —4- —5- - JF . 4 L &
1,2 3,4 56 7,8 9,10 11,12 13,14 15,16 17,18 19,20 21,22
- Band & Front for Prob #1 b=f=26 ——>

Figure 4.1 Test Problems #1 & 2 for the Q4

429,430

T 60
55
Band
&
Front S S < <> < <
for 4. . _
Prob #4 | |27[28 29 30 31[BD) £
b=82 ——o— I
£=60 |
| 23424 zstd 15
| 423,24 56 7.8 91011:12m1415=16171811§%£2
1 ® []0 #
336373839b A - X J]
2 25 26 27428 3 29#0 4 31§32 5 33}34
* i — - *———— J
2 3,4 5,6

1, 7,8 9,10 11,12 13,14 15,16 17,18 19, 20 21,22
—-—— Band & Front for Prob #3, b=40, f=32 —_—

Figure 4.2 Test Problems #3 & 4 for the Q8

T ~ et teirw cemmem . e ——— =S RSMA St ca e et S winit - e et)

b=f=26. Test Problem #2 was run on the same grid but numbering across x
the 24 element direction so that b=f=54. In Figure 4.2 is shown a grid

of 5 x 12 = 60 Q8 elements and 11 x 25 - 60 = 215 nodes and 430 DOF. Test
Problem #3 was run on this grid with the numbering across the 5 element
direction so that b=40 and f=32. Test Problem #4 numbers across the 12
element direction so that b=82 and f=60.

These four problems are not large but neither are they small in size
and they were selected because the general resolution between the Q4 and
Q8 grids will be comparable. Thus, for a given modeling the four problems
give a range of bands and fronts while retaining approximately the same
number of DOF. The missing 60 nodes in problems 3 & 4 could be handled by
a frontal or column solver with 1ittle additional computational effort.

4.3 Results

The timings for problems 1-4 are given in Tables 4.1-4. Similar
results are also given in Tables 4.5-6 for a 36 x 10 grid of Q4, and an
18 x 5 grid of Q8s. This had the effect of increasing the band and front;
n=814, b=f=78 for Test Problem #5 and n=634, b=118, f=84 for Test Problem #6.

The results reveal that as expected the in-core SKYSOL is the most
efficient in both total CP & TM time for the solution. When considering
T™M time, BANSOL was always the next most efficient and usually was close on
CP times. Note that BANSOL & USOL were faster for CP times than the frontal
and column solver for problems 1, 2 & 5, the Q4 problems, but were slower
for problems 3, 4 & 6, the Q8 problems. This is caused by the midside
nodes running the bandwidth up and demonstrates the general superiority
of frontal and column solvers for grids with midside nodes.

The CP times reported for USOL are generally comparable but the TM
times are very poor. This is caused by high 1/0 changes from unnecessary
1/0 such as forming the equation separately before beginning the reduction
process. This doubles the I/0 changes because if sufficient core is avail-
able to store the full band, front or active columns and no secondary parti-
tioning is necessary, then each stiffness coefficient must be written and

38

6€

A T 4 T T - e TTOTRY

SKYSOL BANSOL usoL ZIPP HSZIPP1 HSZIPP2 PUZZLE GASP coLsoL

TM(sec) 3.26 6.94 25.27 61.08 40.98 25,56 26,91
CP(sec) 2,22 3.05 4.73 7.26 5.70 5.08 6.09

Working Array
Storage 13,441 12,000 12,000 12,000 12,000 12,000 12,000

1/0 PRU's
TM(sec) 3.54 6.83 29.34 78.20 38.54 23.72 35.38
@.004 sec/PRU

Table 4.1 Test Problem #1 10x24 Grid of Q4's
n=550 b=f=26

ot

TM(sec)
CP(sec)

Working Array
Storage

I/0 PRU's
TM(sec)
@.004 sec/PRU

SKYSOL

5.56
4.53

26,881

5.29

BANSOL

15.17
6.62

12,000

10.48

usoL

37.77
4.36

12,000

42.19

ZIPP HSZIPP1

64.79 . 46.52
11.00 10.25

12,000 12,000

78.20 39.50

HSZIPP2

29.60
8.01

12,000

24,84

PUZZLE GASP coLsoL '

33.01
10.50

12,000

28.16

Table 4.2 Test Problem #2 24x10 Grid of Q4's

n=550 b=f=54

e

\
g e n e o

v

TM(sec)
CP(sec)

Working Array
Storage

I1/0 PRU's
TM(sec)
@.004 sec/PRU

SKYSOL

3.28
2.22

13,329

3.66

BANSOL usoL ZIPP HSZIPP1 HSZIPP2

7.29 13.81 17.75 12.98 9.46
3.70 3.95 4.21 3.26 3.13

12,000 12,000 12,000 12,000 12,000

6.46 12.88 20.57 11.77 8.35

Table 4.3 Test Problem #3 5x12 Grid of Q8's
n=430 b=40 =32

PUZZLE

9.97
3.08

12,000

13.53

GASP

COLSOL

et

SKYSOL UsoL ZIPP HSZIPP1 HSZIPP2 PUZZLE GASP coLsoL

TM(sec) 5.66 34.00 20.37 17.37 12.43 13.01
CP(sec) 4.63 8.18 6.54 6.97 5.04 5.45

Working Array
Storage 25,929 12,000 12,000 12,000 12,000 12,000

1/0 PRU's
TM(sec) 5.52 28.83 20.86 12.40 9.44 12.03
@.004 sec/PRU

Table 4.4 Test Problem #4 12x5 Grid of Q8's
n=430 b=82 =60

%4

usoL ZIPP HSZIPP1

TM(sec) 97.9 103.4 75.9
CP(sec) 14.8 22.8 19.8

Working Array
Storage 12,000 12,000 12,000

1/0 PRU's
TM(sec) 95.7 116.6 60.5
©@.004 sec/PRU

HSZIPP2 PUZZLE GASP

54.4 60.4
18.1 24.4

12,000 12,000

40.7 44.8

Table 4.5 Test Problem #5 36x10 Grid of Q4's
n=814

b=f=78

coLsoL

usoL ZIPP HSZIPP1 HSZIPP2 PUZZLE GASP COLSOL

TM(sec) 83.97 36.06 28.92 25.47 24,99
CP(sec) 20.41 14.02 12.45 11.92 12.41

124

Working Array
Storage 12,000 12,000 12,000 12,000 12,000

I/0 PRU's
TM(sec) 67.53 31.99 19.02 18.51 18.40
@.004 sec/PRU

Table 4.6 Test Problem #6 18x5 Grid of Q8's
n=634 b=118 f=84

e T RN T e T .y

read only once. For this reason, no further studies on USOL were made since
it is clearly inefficient.

There are 3 columns of results given for the ZIPP solvers that reflect
only improvements in the 1/0 handling and no computationa)l changes. Note
that reductions of up to 60% were made in the TM time and that this also
resulted in CP reductions of up to 30%. Inefficient I/0 is clearly to be
avoided both to reduce wasted (I/0) charges and to increase CP efficiency.
The results from HSZIPP2 and PUZZLE are seen to be similar as would be
expected since both are frontal solvers and both use efficient high speed
binary 1/0.

Another important variable reported in Tables 4.1-6 is the storage
required for the solver with a nominal lower level cutoff of 12,000 words
being taken. For Problem #1, SKYSOL needed only 13,441 words to store all
coefficients entirely in core, but BANSOL or USOL would need n*b=14,300 and
since only 12,000 were made available they needed at least 2 blocks of equa-
tions to effect the solution. In Problem #2 almost twice the amount of core
was needed by SKYSOL. BANSOL and USOL needed over 5,000 words just for their
sz blocks. ZIPP and PUZZLE actually needed only f2/2:1300 for their active
storage. In Problem #4 SKYSOL needed 26,000 words; BANSOL and USOL needed
2b2=15500 Jjust for the blocks, but ZIPP, PUZZLE and COLSOL could get by with
only 33900 words. Problem #6 gets quite large and would have required
2b2=28,000 words for 2 full blocks and thus with only 12,000 available USOL
had to effect a secondary partition - doubling its PRUs. Note that for
Problem #6 USOL require over 3 times the TM time and 70% more CP time than
ZIPP, ZIPP's storage requirements were still under 4,000 words, a factor of
4 less than needed by USOL to stay in-core.

4.4 Further Results for Frontal Solvers

4.4.0 General Remarks

The conclusion that can be drawn from the results given in Tables
4,1-6 is that HSZIPP2 and PUZZLE consistently give faster CP and TM timings.
For problems which do not require subdivision of the front there is Tittle
difference between HSZIPP2 and PUZZLE except for the more extensive prefront

45

A}

used in the ZIPP codes. Because the frontal codes were found to be the
more efficient, it was decided to study HSZIPP2 in more detail. Frontal
solvers consist of 3 major parts; prefront, front and backsubstitution. In
the remainder of this chapter a study will be made of these parts.

4.4.1 ZIPP Prefront

The frontal technique in the ZIPP codes must perform extensive pre-
front sorting on the connectivity to obtain equation numbers in the front.
In so doing, it is necessary to sort through the connectivities element by
element as shown by the symbolic Fortran coding in Table 4.7. For this
reason, the CP times in the prefront should be uniquely determined by NIZZ.
NIZZ = (No. DOF/element)*(No. of element).

NLAST=0

DO 300 NEL=1,NUMEL

DO 200 KL=1,KUREL

NLAST=NLAST+1

DO 100 N=NLAST+1,NIZZ

IF (NIZ(NLAST).NE.NIX(N)) GO TO 100
100 CONTINUE
200 CONTINUE

300 CONTINUE
Table 4.7 Symbolic Fortran in ZIPP Prefront

Since the sort is triangular the dependence should be proportional to NIZZZ.
This is verified by the prefront timings shown in Figure 4.3 for the Q8
elements. Although the logic given in Table 4.7 has some nominal dependence
on KUREL and NELEM, the number of degrees-of-freedom per element and the
total number of elements, respectively, the strong dependence is on NIZZ,
the sum of all degrees-of-freedom in all elements. Thus, the CP times shown

46

L)

100

60

CP(sec)
in

Prefront ///
40
20 //,/’///
0 2 4 6 8 10 12 18x103
NIZZ(No. DOF/elm * No. elm)

NN

cP=7.8x10"4(Niz22)2

Figure 4.3 ZIPP Prefront Times for Q8

47

- TSRS Ta el Geee

100

] I |} 1
L2
—e L2 208’
Q12
or @m / 7
60 /
Cszec) / / /2.04.820
Prefront / / /
/
40
Ya%
. é /
/
% 2 4 6 8 10 12 1ex10°

NIZZ(No. DOF/elm * No. elm)

Figure 4.4 ZIPP Prefront Times for Various Elements

- Rt mo— -

in Figure 4.4 for the Q4, Q12, B20 and L2 element types were not expected. x
Table 4.8 gives the relevant statistics for these element types (the "L"

type is one-dimensional, "Q" types are two-dimensional and the "B" type is
three-dimensional).

Total No. of DOF
Element No. of Nodes No. of DOF per element

per node KUREL
L2 2 1 2
Q4 2 8
Q8 8 2 16
Q12 12 2 24
B20 20 3 60

Table 4.8 Prefront Test Element Types

As shown in Figure 4.4, for a fixed valuz of NIZZ, the L2 requires the
most time, the Q8 and Q12 less time and the Q4 and B20 the least time. These
differences are substantial even for NIZZ as low as 4,000. There is no obvious
explanation for these unusual groupings or the strong time differentials.

The prefront times in ZIPP can be significant, but as discussed earlier,
this procedure is very general and may not be necessary for many problems.
For example, for the B20 element with 3 degrees-of-freedom per node, it is
necessary to do the sorting only on the 20 nodes rather than the 60 total
degrees-of-freedom in the element. The node scheme will typically be 9 times
more efficient.

4.4.2 ZIPP Front

Naturally, the majority of execution is spent in the “front" portion
of frontal solvers which consists of both the assembly and reduction phases.
Front times have been measured for the Q4, Q8, Q12 and B20 elements.

In Figure 4.5 is plotted CP time for the front portion vs. the total
number of equations(n) for various front widths (f=60, 84,112 & 152) using

the Q8 element type. As would be expected, the time varies linearly with n
for fixed f. Figure 4.6 is a similar plot for the Q4 element type and reveals
similar results. In Figure 4.7 is given a master plot of CP time per 1,000
equations(n) vs. the front width(f) for fronts from 25 to 200 for the Q4,

Q8, Q12 and B20 element types. Over this range in front widths, the curve is
seen to mildly quadratic, but obviously for front widths between 50 and 200 the
curve is nearly linear. This is further illustrated in Figure 4.8 where CP
time vs. n is plotted. This indicates that ZIPP handles large fronts effi-
ciently, perhaps improving in efficiency as the front grows (of course, the
front must remain in core). It would be interesting to test further in the
range of fronts from 200 to 500 (125,000 words of storage) to determine if
this weak curvature continues.

4.4.3 ZIPP Backsubstitution

In frontal codes backsubstitution occurs element by element, and as
in the prefront, backsubstitution times should be uniquely determined by
NIZZ, with the variation nearly linearly. This is verified in Figure 4.9
for all element types. Note that the vertical scale in Figure 4.9 reaches
only 12 CP sec for NIZZz14,000. This is substantially less than prefront
times and can clearly be neglected.

4.4.4 Further PUZZLE Results

The results reported for PUZZLE show that it operates at an efficiency
comparable to ZIPP for all of the test problems. Because PUZZILE is the only
known frontal code to partition the front, further numerical studies were
performed on a larger class test problem. A sequence of tests using the
4x4x2 and 4x4x3 grids of 20 node brick elements (B20, with 3 DOF per node)
shown in Figure 4.10 were performed. The reason that 4x4x2 and 4x4x3
grids were run was to determine the incremental time to solve a layer of
4x4 B20 elements. The front for these problems when numbering across the
4x4 plane s 86 nodes or 258 DOF, thus the storage required for the entire
front is 33411 words. The results for these runs are given in Table 4.9.

200

I:::} f=152
L

150

CP(sec)
in
Front

100 //7 ///////jjllzlll
=84
50 A P”':::::::::::

]
/ / F60
0 3
0] 2 3 4x10

n(number DOF)

Figure 4.5 CP(sec) in ZIPP Front vs n for Q8

51

200

150
<P(sec)
“in
Front =146
100 /
/ 4
50 v"”/,—affazrzf
% 5
/ £=26
0 3
0] 2 3 4x10

n(number DOF)

Figure 4.6 CP(sec) in ZIPP Front vs n for Q4

52

75

60 /]
45 /

CP(SeC) / B20
per
1000n / Q12

30 Q8

/ i
15 //
0
0 20 40 60 8 100 120 140 160 180 200

f(front width)

Figure 4.7 ZIPP Front CP Times per 1000 equations

53

s ..-> R
. . el s 4’_‘ v a e A i S ek’ e il e e

- I B el —

S e e S s s e e i bt s b ki b

DA

250

200

150

CP(sec)

100

50

2cp=2.78x10% (£*n)

20 40 60 80x10
f*n(front * Wo. DOF)

Figure 4.8 ZIPP Front Times vs f*n

54

14

10 /
B20 /
Qi2

/
8 Q8
CP(sec) Q4
6
4

1V
b

0 2 a 6 8 10 12 14x10

NIZZ(No. DOF/elm * No. elm)

Figure 4.9 ZIPP Backsubstitution T* es

55

TM Time (sec)

max/min max words
no. partitions per partition 4x4x3 4x4x2 A
11 33411 130.8 78.4 52.4
2N 33153 187.1 78.1 109.0
4/3 14535 289.1 146.3 142.8
16/6 8911 314.3 161.9 152.4

Table 4.9 Total TM Time in PUZZLE for B20 Problems

The first line in Table 4.9 gives the TM times when sufficient core
for the entire front is available and gives an incremental time per layer of
4x4 B20's as 52.4 sec. The second line of the table gives the data for a
similar run with virtually the same core, but slightly less than needed to
fit the front entirely in-core. The column giving the maximum/minimum number
of partitions reflects the differences in the number of DOF per element that
are eliminated. As more DOF are eliminated, more partitions are needed.

In general, the minimum number of partitions reflects the typical situation.
The 4x4x2 grid with 2 partitions ran in essentially the same time as 1 par-
tition because with only 2 layers the maximum front is not achieved. How-
ever, the 4x4x3 required about 56 sec more TM time. Thus, the increase in

A TM time was about 100%. The 3 partitions were run with about 15,000 words
of core and the increase in A time over] partition was about 200%. However,
the 6 partition run with less than 9000 words of core was almost the same as
the 3 partition run. Clearly, PUZZLE is very efficient at handling the extra
I/0 needed when partitioning the front.

The typical prefront times for all runs (i.e., the rows in Table 4.9)
was 10.2 sec for the 4x4x3, 6.5 sec for the 4x4x2 and 3.7 sec for the A.
The typical backsubstitution time was 16.9 sec for the 4x4x3, 10.7 sec for
the 4x4x2 and 6.2 sec for the A.

A sequence of calculations were also run on Q8 grids with a variable
number of elements across the front(nf). These results are given in
Figure 4.11 where the ratio of PP/CP and TM time per element are plotted
versus the total number of elements across the front. The front width is

56

Figure 4.10 4x4x3 Grid of 20-Node Bricks

57

£

2.5

2.0

0.5

\ & pp/CP
‘/’/’/’!//
‘//”’//’/’f]
j\\\\\]
\\\\\\\\‘~\, ”’,//’IIA:;-TM(sec) per Element
><\\
/ \\
//

Number of Elements Across Front (nf,f=2nf+l4)

Figure 4.11 PUZZLE Summary Curves for Q8 Element

g e S MY e e e g

RAshad oo oL g

2.5

2.0

1.5

T(sec)

1.0

0.5

B T Ty G D S R T DL\ T TR ST o T T SO PR SR e o e) B e v - R o

easily computed from this by the formula .

f = an+14

Thus, Figure 4.11 gives results for fronts up to f=174. This requires only
about 15,000 words of storage and consequently all runs were made without
secondary partitioning of the front.

PP stands for the standard CDC "peripheral processing" time. Note TM
time equals CP time + a multiple of PP time. In PUZZLE the PP burden is quite
lTow varying in an inverse fashion from 1.5 for nf=10 to about 0.25 for
nf=80. TM time is seen to increase in a weak quadratic fashion with n
varying from 0.20 sec/elm for nf=10 to 2.0 sec/elm for nf=80. This is
very similar to the behavior reported for ZIPP and again it would be very
interesting to see if the weak quadratic behavior continues for larger
fronts.

f’

4.5 Qualitative Evaluation of Column Solvers

While the numerical experiments reported herein for the out-of-core
column solver COLSOL were done as fairly as possible, these results are
undoubtedly less than optimal since no effort was spent enhancing the I1/0
efficiency of COLSOL. For a more accurate comparison this must be accom-
plished. However, there are some general qualitative conclusions that
can be drawn,

Column solvers generally require the assembly and reduction phases
to be separated and this means that a minimum of 4 1/0 transfers (2 reads
and writes) must be performed. Thus, these column solvers start at a
distinct disadvantage to frontal solvers Tike ZIPP or PUZZLE. Recall that
for large fronts or bands the main consideration is 1/0 efficiency. Also,
it is doubtful that central processor variations of more than +10% will be
observed between efficiently coded solvers of either type. Another dis-
tinct disadvantage of column solvers is that for regular grids with large
fronts or bands, the connectivity between column blocks will always be more

!

59

extensive than for frontal blocks because one frontal block will only con-
nect within itself when partitioned, but column connectivities may easily
extend across one or more major column blocks.

For these reasons it is doubtful that even the most 1/0 efficient
column solver will ever achieve the low I/0 changes reported herein for
PUZZLE. This is not to say that column solvers are not useful for many
applications where the band is highly variable, but the preliminary eval-
uation is that for regular 2D and 3D grids (especially with midside nodes),
frontal solvers will give lower charges. Notwithstanding, further study of
column solvers is clearly indicated.

60

CHAPTER 5 CONCLUDING REMARKS)

The results of this research are probably of questionable value
because of the excessive 1/0 charges on the Texas computer and also because
better control over the solvers is undoubtedly necessary. In the present
study little attempt was made to recode any of the solvers (other than
ZIPP) and the particular patches made to run solvers coded by outside
sources are probably not optimal for purposes of careful and accurate com-
parison. For this reason, the reader is cautioned to make similar studies
on the particular compute system being used. However, it is the author's
opinion that a great deal of useful qualitative information was learned in
the present study (certainly by the author).

Of relevant interest to those who solve large scale 2D and 3D
continuum problems on a routine basis are out-of-core frontal and column
(skyline) solvers. Clearly in-core and bandsolvers are useful only
for testing or research purposes and have no place in large scale general
purposes computer programs. There are two subclasses of these solvers of
interest, namely, those solvers that partition the front or active column
area and those that don't (many column solvers automatically do this).
Partitioning is required only when the front becomes too large to fit into
available memory. For example, if 4 x 104 words can be dimensioned in
central memory then a maximum front of 300 can be handled without parti-
tioning. This would be sufficient for almost all 2D problems and some small
3D problems. However, if for example large memory is used on a CDC 7600,
up te 2.5 x 105 can be dimensioned permitting fronts of 700 to be processed.
This would be sufficient for all but the largest 3D problems. Thus, users
at installations with large systems would typically use ZIPP which does not
partition, but on smaller computer systems (e.g., Univ. of Texas, mini or
micro-computers) PUZZLE or COLSOL would be necessary for large problems.

The choice between frontal and column solvers has probably not been
sufficiently resolved by the present study although the author has some
preliminary evaluations. Selection between the two methods should currently
be made on the basis of availability, specific adaptation to an individual

61

— " < - .

system (expecially the I/0), the nature of the code in which the solver is
to be used and the particular bias of the user. The frontal method probably
offers more flexibility to the programmer doing code development and in
particular, ZIPP is quite easy to communicate with. Both frontal and column
solvers offer strong potential for substructing and of course substructing
invariably lowers computational costs and storage requirements when it can
be used. PUZILE appears to be a very strong competitor in the substructing
area. At present the author's choice is the frontal solver, expecially for
grids with midside nodes.

The bottom line in evaluation of out-of-core frontal and column
solvers appears to be quite simple. If partitioning is not done by *he
solver, then the 1/0 charges are fixed. There is no variation between good
solvers of either type because the write and read the file of element stiff-
ness coefficients and the file of assembled coefficients exactly once. A
solver of this class that does more I/0 is unnecessarily inefficient. There-
fore, I/0 efficiency is not a factor beyond the above point and efficiency
can be measured solely on a CP basis. For solvers that partition the front
or active column area almost the reverse is true because multiple passes
through the element file and the scratch file for the reduced coefficients
is required. Since this will typically increase 1/0 charges by a factor of
2-10, I/0 will almost always dominate the charge algorithm. CP efficiency
cannot be ignored but variations of 25% would be in the noise level compared
to 1/0 variations. PUZZLE appears to be an extremely strong competitor in
the area of 1/0 efficiency for partitioning solvers. Unlike other schemes,
PUZZLE does not require a integer multiple of passes through the scratch file
and runs with multiples as low as 1.3 have been observed.

The reader will have undoubtedly detected 2 bias towards CDC equip-
ment and the author readily admits to such. The 60 bit word effectively
eliminates concern over roundoff error for most problems. IBM equipment
(32 bits) of course requires full double precision for all computations and
Univac equipment (36 bits) likewise requires double precision for almost

all large systems of equations.* Double precision arithmatic is obviously
more expensive and for that reason will alter any conclusions about CP
efficiency.

While CDC's word size is commendable, its I1/0 handling is certainly
not. There are no standard 1/0 packages available on CDC equipment and
it is this author's experience that each CDC installation has either no
such package or four of them; none adequately documented and generally total
unknown quantities to the system programmers there. This is an unacceptable
situation and at present effectively prohibits the transfer of 1/0 efficient
codes. There are several important factors to consider when improving 1/0
efficiency. Most I/0 routines do some form of buffering that may or may not
be useful. Buffering is hardly ever useful and the author recommends direct
transfer from central memory to disk without buffering. This is especially
important when performing syncronous 1/0 to random storage (syncronous 1/0
waits until the transfer is complete before continuing execution). Random
storage is generally desirable because the equatioi solver scratch file
must be read in reverse order and because the block size does not need to
vary, thus making direct addressing straightforward. Asyncronous 1/0
(execution continues while I/0 is being done) appears attractive due to the
obvious CP efficiency. However, in practice to effectively utilize this
feature requires a fairly sophisticate coding effort and a tradeoff with
the more straightforward syncronous transfer of single large blocks directly
(without buffering) to disk may not give a clear advantage to asyncronous
schemes. This entire process is future complicated by the CP interruptions
on multi-processing computers.

In closing it appears to the author that the question of out-of-core
solvers is not a closed one. For static problems the choice seems clearly
to go with a frontal or column solver. For implicit dynamic codes this
choice is not obvious but the "tilt" would seem to go to iterative or hybrid
methods, especially SOR and conjugate gradient techniques. Thus, there
appears to be a need for further research. It would seem appropriate to

*The smallest recommended word size for our tasks is 48 bits.

63

—

continue the study of direct codes but develop frontal and column solver
codes from scratch as opposed to using existing subroutines as was done in
the present study. The author's choice would be to develop solvers like
PUZZLE that partition when necessary but at no loss «f efficiency when parti-
tioning is not required. A parallel effort on iterative methods also seems
desirable at this time for several reasons. The next generation of computers
will permit regular solution of 3D nonlinear dynamic problems. They will
also be more prone to I/0 binding than present computers simply because the
CP will be faster. This will tilt the balance towards number crunching and
away from 1/0 thus making iterative methods more attractive than at present.
This latter task is clearly more difficult and the benefits may be slow in
being realized.

64

\

10.

11.

12.

13.

REFERENCES

Dunham, R. S. and Beckar, E. B., "TEXGAP-The Texas Grain Analysis
Program," TICOM Report 73-1, Univ. of Texas, August 1973.

Lehman, F. G., "Simultaneous Equations Solved by Jver-Relaxation,"
Proc_2nd ASCE Conf. Elec. Comp., Pittsburg, September 1960.

Young, D. M., "Iterative Solution of Linear and Nonlinear Systems
Derived from Elliptic P.D.E.," Lecture Notes in Math., 461,
Int. Conf. on Comp. Methods in Nonlinear Mech., September 1974,

pp. 265-296.

Wilson, E. L., "Finite Element Analysis of Two Dimensiona] Structures,"
Ph.D. Dissertation and UC SESM Report 63-2, Univ. of Calif., Berkeley,
June 1963.

Sequi, W. T., "Computer Programs for the Solution of Systems of
inear Algebraic Equations," NASA CR-2173, MSFC, Ala., January 1973,

Schkade, A. F., "Soluticn Techniques for Large Systems of Stiffness
Equations," M.S. Thesis, Univ. of Texas, January 1969,

Wilson, E. L., "SOLID SAP A static Analysis Program for Three Dimen-
sional Solid Structures," UC SESM Report 71-19, Septemver 1971,
revised March 1972,

Wilson, E. L. and Dovey, H. H., "Solution or Reduction of Equilibrium
Equations for Large Complex Structural Systems," to appear (Computers
and Structures).

Bathe, K. J., "ADINA a Finite Element Program for Automatic Dynamic
Incremental Nonlinear Analysis," MIT Acoustics & Vibration Lab Report
82448-1, September 1975.

Wilson, E. L., Bathe, K-J and Doherty, W. P., "Direct Solution of
Large Systems of Linear Equations," Computers and Structures, V4,
1974, pp. 363-372.

Mondkar, D. P. 1nd Powell, G. H., "Large Capacity Equation Solver for
Structural Analysis," Computers and Structures, V4, 1974, Pp. 699-728.

Felippa, C. A., "Solution of Linear Equations with Skyline-Stored
Symmetric Matrix," Computers and Structures, V5, 1975, pp. 13-29,

Mondkar, D. P. and Powell, G. H., "Toward Optimal in-Core Equation
Solving," Computers and Structures, v4, 1974, pp. 531-548.

65

14.

15.

16.

17.

18.

Whetstone, W. D., "Computer Analysis of Large Linear Frames," ASCE .
Jour. Str. Div., V95, ST11, November 1969, pp. 2401-2417.

Goudreau, G. L., Nickell, R. E. and Dunham, R. S., "Plane and Axisymmetric
Finite tlement Analysis of Locally Orthotropic Elastic Solids and
Orthotropic Shells," UC SESM Report 65-15, Univ. of Calif., Berkeley,
August 1967.

Dunham, R. S. and Nickell, R. E., "Finite Element Analysis of Axisym-
metric Solids with Arbitrary Loadings," UC SESM Report 67-6, Univ.
of Calif., Berkeley, June 1967.

Irons, B. M., "A Frontal Solution Program for Finite Element Analysis,"
Int. Jour. of Num. Methods Engin., V2, 1970, pp. 5-32.

Johnson, C. P., "PUZZLE," Private Communication, Univ. of Texas, 1976.

66

APPENDIX A

FORTRAN LISTINGS FOR

BANDSOLVERS

67

APPENDIX A.1
BANSOL BANDED EQUATION SOLVER

et b menmioNmy Bk

69

PROGRAM BANTESTC(INPUT,QUTPUT,TAPE2,TAPE3)
DIMENSION IY(B),S(256)+F(16)

DATA IDNF/2/,MDIM/120@0/,|.0IM/864/

COMMON

1 MBAND, NNP, ND, MMAX, NUMRLK, B(864), A(12000)

READ S,NI,NJ,NP
S FORMAT(315) '
MBAND=(32N1+5)*IDGF
NUMEL=NI#NJ
NNP=(MDIM/MBAND=MI3AND) /2
NUMNPI(2eNT+1)%(NJ+1)+(NI&1)*NJ
IF (NNP,GT NUMNP) NNP=NUMNP
NPD=IDOF#NP
ND=IDOF #MNNP
IF(ND,LT MBAND) STOP
NMAXSND*MBAND
NDIM3LDIM#NMAX+MBANDXMBAND
PRINT 92,ND,NPD,NUMNP,NNP,NUME| ,MBAND
92 FORMAT(% 92 ND NPD MUMNP NNP NUMEL MBAND®,/,6112)
DO S0 N=1,NUMEL
IF(N,EQ.1) GO TO 3
DO 9@ K={,NP
TisN=]
I2=1§/N1
IF(I2*NI,EQG,T1) GO TO 3t
IK=2
IF(KeEQa4,0RK,EQ,8) IK={
GC TO 39
31 IK=NI+4
IF(KeEQad o CR.KGEQLB) IK=2a(NI+1)]
39 IY(K)=IY(K)+IK
990 CONTINUE
GO TO 91
3 READ 29, (IY(I),I=3,NP)
20 FORMAT(81S)
91 K=0
00 10 I=1,NPD
00 19 J=1,MPD
KsK+1
S(K)=1,VE=B
IF(I.EQ,J) S(K)=1,0
12 F(1)=1,0
NPS=NPDANPD
NCOUNT=NP$NPS+NPD
CALL IOP(2HWB,2,IY,NCOUNT)
IF(N,GT,2) GO TO 539
S02 CONTINUE
CALL SECONDC(TY)
CALL JOBINFO(8,J1)
CALL BLOCK(NUMEL.NDIH,NCOUNYpIDOF;NPpNUHNP)
CALL JORINFO(3,J2)
CALL SECONN(T2)
CP3FLOAT(J2eJ1)/1020,
DT3T2=T}
PRINT 541,0T1,Cwr
501 FORMAT(* TOTAL TM TIME IN BANSOL = %,F10Q,5/
o * TOTAL CP TIME IN BANSOL = %,F10,5)
END
SUBROUTINE BLOCK(NUMEL,NDIM,NCOUNT,IDOF,NP,NUMNP)

DIMENSION UR(1680@) P
71 PRGE_ /(' _ INTENTIONASLY BLANK

R I T

COMMON
1 MBAND, NNP, ND, NMAX, NUMBLK, B(864), A(12000)
DIMENSION LM(8),IY(B),S(256),F(16)

c
Commun FORM STIFFNESS MATRIX IN BLOCKS
c
(o
NUMBLK=4 .
00 S@ N=1,NDIM
50 B(N)=0,0
1Ty=}
NEL =P
60 NUMBLK3NUMBLK+1
NMaNNPANUMBLK
NL=NMwNNP41
KSHIFT=IDOF*»(NL=1)
. IF (NM,GE NUMNP) ITY=2
Crumnn SELECT ELEMENT IN BLOCK
c
CALL IOP(3HREW,2)
00 219 N=31,NUMEL
CALL IOP(2HRB,2,1Y,NCOUNT)
IF(N,LE.NEL) GO TO 210
DO 80 I=1,NP
IF CIY(I),LT,NL) GO TD 8@
IF CIY(I),LE,NM) GO TO 9@
80 CONTINUE
GO To 2i0
c
Cxanxan ADD STIFFNESS AND FORCE VECTOR
o

99 DO 140 I=1,NP
140 LM(I)=24(1Y(1)el)
NEL=N
KK=9
LL=V
00 248 I=§,NP
II=SLM(I)=KSHIFT
IJaMBAND#(I1=1)
NNaIJw M(I)e+1
DO 200 K=1,2
KK2KK+1
Ilall+t
IF(N,GT,5) Gn To 181
181 BCII)=B(II)+F(KK)
IJsIJ+MBAND
NN=NN+MBAND =1
DO 209 J=1,NP
JJSNN+LM(])
D0 2¥06 L =t,2
LL=LL+!
JJsJdJ+t
IF (JJL.LE,1J) GO TO 209
191 ACGJIIBACII) ¢S CLL)
203 CONTINUE
210 CONTINUE
NTSIDOF*NUMNP
CALL BAHSOLCUR,ITY)
390 IF (ITY,NE,2) GO TO 6@
CALL BANSOL(UR,3)
PRINT 391,(URCI),I=1,NT)

72

391 FORMAT (% 391 UR(I)*./(lﬂElZ.S)?

RETURN
END
SUBROUTINF HANSOLCU,ITY)
c
Coaman 1=D BANDED EGQUATION SOLVER, REDUCER AND BACKSUBSTITUTER
c
COMMON
1 MBAND, NNP, ND, NMAX, NUMBLK, B(864), A(12000) :

DIMENSION UC1), I0TA(32), 10TB(39)
PRINT 111,ND,NUMBLK,ITY
111 FORMAT(» 311 { NO NUMBLK ITYx/,3110)
IF CITY,EQ,3) GO TO 300
C

Crnann REDUCE EQUATIONS AND LOAD VECTOR
c

N3 1=MBAND
M350

110 N=N+MBAND
MaMe
IF (NyGT.NMAX) GO TO 290
=A(N)
IF (D.,EQ,0,8) GO TO 110
I=N
IJ=N
MJ=M
D=1,70
F=B(M)=%D
B(M)=F
DO 139 L=2,MBAND
I=1+1
IJ=1J+MBAND
MisMJ+i
C=A(I)
IF (C,EQ,0,0) GO TO 13¢
B(MI)=B(MJ)mCxF
C=C»D
NK=1
NJ=1J
00 1206 K=L,MBAND
A(NJ)=A(NJ)=ChA(NK)
NJ=NJ+1

120 NK=aNK+q
ACI)=C

130 CONTINUE
GO YO 1192

2ed IF (ITy,EQ,2) RETURN

Crmanw WRITE REDUCED BLOCK OF EQUATIONS
C
IO=109(2HWB,3,B,~D)
10=IOP(2HNR,3,A,NMAX)
I10=I0P(2HWR,3)

Coannnn SHIFT EQUATIONS FOR NEXT 8LOCK
c

N=@
I=ND
NJ=9
IJ=NMAX
210 NaNel
I=lef 73

B(N)=B(1)
B(I)39,0
00 220 (=1,MBAND
NJaNJ+1
IJ=1J+1t
ACNJI=ACID)
220 A(lJ)=0,d
IF (N,LT MBAND) GO TO el
N=N+{
DO 230 I=N,ND
B(I)=9,0
D0 238 | =1,MBAND
NJ=NJ+{
239 A(nNJ)=4,2
RETURN
c
Crnaun BACKSUBSTITUTE FOR UNKNOWNS
c
300 NK=NDANUMBLK+1
NWORDS=3ND+NMAX
NSB=NWOROS/644+]
NS=NSB# (NI/MBLK=])
310 N=ND+d
IJ=NMAX
320 N=Nei
NKaNK={
I=N
1J3IJeMBAND
NJ=1J
F=B(N)
00 338 K=2,MBAND
121+
NJSNJ+1
339 FsFwA(NJ)*B(])
B(N)sF
U(NK)=F
IF (N,GT,1) GO TO 322
NUMBLK:NUMBLknl
IF (NUMBLK,LE,3) RETURN
c
Caksaw SHIFT LAST UNKNOWNS AND READ MEXT BLOCK
c
I=ND
Ns@
D0 350 L =1,MBAND
Islet
N=Ne |
350 B(1)=B(N)
NS=NS=NSH
I0=10P(2HSP,3,NS)
IO:IOP(ZHRB,3.B.ND)
IOIIOP(ZHRBosa"NM‘X)
IF(I0,EQ,9Q) GO TO 310
PRINT 351
351 FORMAT(x ERROR ENCOUNTERED®)
STopP
END

74

APPENDIX A.2

USOL BANDED EQUATION SOLVER

OO0

(s Nalg)

oo 0

s Nalg]

o000

L 2]

A

PROGRAM SAPZ(INPUT=22200UTPUT=2220TAPE!SlBﬂUoTAPEESlQOB'TAPE33100H

. oTAPE“=1Q09,TAPE7=l“ﬂUaTAPE8=IOGB.TKPLOTalGﬂU.TAPES:INPUT.
o TAPEG20UTPUT)
I I LR L I T I R L T S T I T T T T T
SAP2 A STATIC ANALYSIS PROGRAM FOR THREE=DIMENSIONAL STRUCTURES
REVISED MARCH 1972
Rk Wk R AN AR AR AR kR AR KR AR Rk AR AN AR *x
COMMON A(12000)
COMMON /KKW/ BB(2000)
DIMENSION T(7),F(16),LCONECC16),5(16,16),LM(16)
DATA LL/1/,3DOF/2/
DATA F/16%1,0/

PROGRAM CAPACITY CONTROLLED BY THE FOLLOWING TWO STATEMENTS ,,,

READ S ,NI,NJ,NP

FORMAT(3I5)

MTOT=12800

IFL=LOCF(A)
NUMNPS(2ANI+1)x(NJ+1)+(NI+1) &Ny
NUMELaNIxNJ

NP2=2%NP

MBANO=IDOF*(3aNI+S)
NEQISNUMNP&IDOF

INPUT JOINT DATA=eID ARRAY ON TAPE 8

Ni=1

N2=N1+6*NUMNP
N3ISN2+NUMNP

N4aNI+NUMNP

NSIN4+NUMNP

NESNS+NUMNP

CALL PPCY4LRFLP,IFL*MTOT)

FORM ELEMENT STIFFNESSES==STIFF, ON TAPE 2 «STRESS MATRIX ON TAPEY

REWIND 1
REWIND 2
REWIND 4

INPUT NODAL LOADS AND JOINT MASSES wew WRITE ON TAPE 3

NEQBS (MTOTedxn| L)/ (MBANDSLL1)/2
NBLOCK=(NEQ=1)/NEQB +1}

IF (NEQB,GT,NEQ) NEQRB=NEQ
N3I=N2+NERB®|L

N4=N3I+6 L

WRITE (6,201) NEQ,MBAND,NEQS,NBLOCK

FORM BB(K) MATRIX, FORM ELEMENT STIFFNESS=w=eON TAPE 2

ND=2%NP

LROZI+NDO*(ND+1)

DO 100 NsSi,NUMEL
IF(N,EQ,1) GO 7O 91

DO 90 K=1,NP

I13N=}

I2=I1/N1

IF(I2#NI,EQ,I1) GO TO 3t

Ix=2 1 ! INTENTIORALLY BLANR

7

31

39
Q0

91

29
92

94

95

{00

(2 X Xg)

a0

30

o e I I R ORI R,

IF(K.EqOQQOROKIEala) IK=1l

GO YO 3y

Ik=NI+d

1F (KoEQeU UR K,EQ,8) TKZ24(NI+1)¢1
LCONEC(K)=LCONEC(K)+IK

CONTINUE

GO TO 92

READ 29, CLCONEC(CI),I=1,NP)

FORMAT (815))
00 94 K=1,NP

K132* CONEC(K) =1

K232*| CONEC(K)

KR122%K=]

KR2=22%K

LM(KRL)=K1

LM(KR2)=3K?

BRB(K1)3BB(K1)+F(KR1)
HB(K2)=8B(K2)+F(KR2)

CONTINUE

DO 95 I=1,NP2

DO 95 J=I,NP2

S(1,J)=1,0E=8

IF(IEQ,.J) S(I,J)=1,0

CONTINUE

WRITE(2) LRD,ND, (LM(I),I=1,ND),((S(I,J),J=1,ND),I%],ND)
CONTINUE

FORM TOTAL STIFFNESS MATRIX ==ON TAPE 4

NE2B=2«NEGR
N2=Ni{+NEQB*MBAND
N3=N2+NEQBwLL
NU=N3+4nl L
NN2=N1+NE2B*MBAND
NN3=NN2+NE2B>LL
NNUINN3+4nLL

CALL SECOND(T(1))
CALL JOBRINFO(B,J1)
CALL ADDSTF(ACNT),ACNN2) ,NUMEL ,NBLOCK ,NE28,LL,MBAND,NI,NJ,NP)
CALL JOBINFOC(AR,J2)
CALL SECOND(T(2))

SOLVE FOR DISPLACEMENT UNKNOWNS

NSBS(MBAND#LL)#NEQGD
NSRBSNEQBaLL*(2+(MBANDe1)/NEQB)
IF(NSBB,LT,NSB) NSBB=NSB

NU=N3+NSBB

CALL SECTIND(T(3))

CALL JU3INFO(B,J3)

CALL USOLCACN1),ACN3),A(CNU),NEGB,MBAND,LL,NBLOCK,NSB,4,3,7,2,2)
CALL JOBINFO(8,J4)

CALL SECOND(T(4))

CSTFaFLOAT(J2=J1)/1090,
CUSOL=FLOAT(J4eJ3) /1003,

TSTFaT(2)=T(1)

TUSOLST(4)wT(3)

CPTOLSCSTF+CUSOL

TMTOLSTSTF+TUSOL

PRINT 30,CSTF,CUSOL,TSTF,TUSOL

FORMAT(* 32 CSTF CUSOL TSTF TUSOL #,4F10,6)
PRINT 35,CPTOL,TMTOL

o000

35 FORMAT(» YOTAL CP TIME IN ySOL = *)Fl1O,6/
o * TOTAL T¥ TIME IN USOL = »,F1d,6)

221 FORMAT(34H2 TOTAL NUMBER OF EQUATIONS 2,15,
1 /34H RANDWIOTH 2,15,
2 /34H NUMBER OF EQUATIONS IN A BLOCK 2,15,
3 /34H NUMBER OF BLOCKS £,15)
END

SUBROUTINE MOVEB CICALL,NEQB,M,NBLOCK,LL,NE2B,U)
COMMON /KKW/ BB(2000)
DIMENSION UCNE2H8,LL)
NN2ICALL*NEGB
00 1 I={,NEQB
00 1 L=1,LL
NP=SNN+I
UCI,L)3BB(NP)

1 CONTINUE
IF(M,EQ,NBLOCK) RETURN
00 2 I=1,NENB
00 2 L=t1,LL
NQ=NP+I

e U(NEGB+I,L)=8B(NQ)
RETURN
END
SUBRQUTINE ADDSTF (ApB.NUMELpNBLOCKoNEEB.LLo"BlNDoNIuNJoNP)
FORMS GLOUBAL EQUILISRIUM EQUATIONS IN BLOCKS
DIMENSION A(NER2B,MBAND),SS(1)
COMMON /EM/ LRD,ND,LM(2592)
DIMENSION B(NE2B,LL)
EQUIVALENCE (5S,ND)
NEQB=NE2B/
KENEQB+1
X3INBLOCK
MBSSQRT(X)
MBsMB/2+1
NEBB=MB*NE28B
MMy

NSHIFT=u
REWIMD 4

FORM EQUATIONS IN RLOCKS (2 BLOCKS AT A TIME)

ICALL=D
DO 1402 M=1,NBLOCK ,2
00 100 I=1,NE2B
00 149 J=1,MBAND
109 A(1,J)=32,
CALL MOVEB(ICALL,NEQB,M,NBLOCK,L!. ,NE28,8B)
IF (M,EQ,NBLOCK) GO TO 200
ICALL=3ICALL+2
209 CONTINUE

REWIND 7

REWIND 2

NA=7

NUMEBNUM7?

NDsS2#NP

IF(MM,NE,1) GO TO 75
NA=2

NUME =NUMEL

NUMT =4

79

c m~ -

75 00 794 N=1,NUME

READ(NA) LRD,(SS(I),1=1,LRD)
D0 604 I=1,ND
LMNz e M(])
II=LM(I)=NSHIFT
IF (II.LE.B.DR.II.GT.NEZB’ GO TO 692
DO Sv¥ J=y1,ND
JJSLHM(J) +LMN .
IF(JJ) 509,500,390

397 KKs1+NDaJ

400 A(IT,JI)=ACII,JJ)+SS(KK+])

S@@ CONTINUE

609 CONTINUE

DETERMINE IF STIFFNESS IS TO 8E PLACED ON TAPE 7

o0

IF(MM,GT,1) GO TO 7¢0@
D0 659 1s31,ND
II=LM(I)=NSHIFT
IF(I!.GT.NEZB.AND.II.LE.NEBB) GO TO 662
650 CONTINUE
GO TQ 7904
663 WRITE(?) LRD, (SS(IY,I31,LRD)
NUM7=NUMT ¢

708 CONTINUE
WRITE(4) ((A(IoJ)'131.“5°8).J=1,"8AND),((B(I'L)plaleEQB),L:l,LL)

IF(M,EQ,NBLOCK) GO TO 100D
WRITE(4) t(A(I,J).I=K.NEZBJ.J=I.MBAND).((B(I,L).!:K.NEZS).L=1.LL)
IF(MM,EQ,MB) MM=D
MM=MMe }

1000 NSHIFTENSHIFTeNE2R

c

RETURN

1002 FORMAT (4F10,0)

2080 FORMAT(19H2STRUCTURE 12X 2SHELEMENT LJAD MULTIPLIERS /
o 10H LOAD CASE 9X 1HA 9X {HR 9X 1HC 9X 1HD/)

2022 FORMAT (I1607X,4F§2,3)
END
SUBROUTINE usoL (AoEoMAXB,NEOB.HBoLL.NBLOCK,NSB.NORG.NBKS.NTI.
° NT2,NRST)
DIMENSION A(NSB),B(NSB),MAXB(NEOB)

c.-----....--..-...--......--..---..-ﬂ--..-...-..-...-..-.--.‘-...--..

NCaMBeLL
NBRa (MBel)/NZQB ¢}
INCENEQH=]
NMBENEQB~MB
N2aNT?2
Ni=NTY
REWNIND NORG
REWIND NBKS

C'.-. REDUCE EOU‘YIUNS BLOCK'B'.BLOCK ...--.--..-.--..----..---..--..

Do 909 NS§{ ,NBLOCK
IF (N,GT,1 ,AND ,NBR,ER,1) GO 10 {19
IF (NBR,EQ,1) GO TO 1@S
REWIND N1
REWIND N2
189S NI=Nj
IF(N,EQ,1) NISNORG

READ (NI) A
1190 00 309 I=1{,NEQRK

0=AC(I)

IF(D) 115,300,120
{15 MaNEQBx(N=i)+]

WRITE (6,116) M,D
116 FORMAT (33IHUSET OF EGUATIONS MAY BE SINGULAR /

e @26H DIAGUNAL TERM OF EQUATION 18, B4 EQUALS 1PE12,4)

129 1=}
00U 12% J=2,NC
II=I1+NEWR
125 A(II)=A(CIl)/D

DO 139 J=1,NMB,NEGS
IF (ACJ)(NE,0Q,) MAXB(I)=J
139 CONTINUE

JLsI+t

IF (JL,GT,NEGB) GO TO 302
1I=1

DO 200 J=JL,NEQGB
II=I1+MEQH

IF(II,GT,NMB) GO TO 204
Caa(ll)

IF (CL,EQR,0,0) GO TQO 29
C=CwA(I)

KKzJ=11
MAX=MAXB(I)
DO 154 JJ3IT,MAX,NERR
150 A(JI+KK)IIA(JIeKK)=CHACI])

KK=J +NMB
JJ=1+NMB
00 175 L=y,LL
A(KK)=Aa(KK)=mCoA(JT)
KK=KK+NEQR

175 JJ=JJ+NEDS

204 CONTINUE

309 CONTINUE
WRITE (NRKS) A,MAXB

C'." SUBSYITUYE INrO REﬂ‘INING EQU‘TIONS -.-.I-.--.------..-.-----..-

DO 80804 NN=|,NBR
TIF(NeNN,GT ,NHLOCK) GO TO 809
NI=N|

IF(NJERL1) NIZNORG
IF(NN,EQ,HBR) NI=NORG

READ (NI) @
IL=1¢NN2NEQBRANEQR

DO 709 1=1,NEBS

II=sIL

DO 6990 K=1,NENB

IF (I1,GT.,MM8) Gn TO 69¢
C=a(11)

1F (CEQ,U,2) GD TO 690
C=CwA(K)

MAXEMAXR(K)

) KKsl=[T1

DO 649 JISIT,MAX,NEQR
640 8(JJ+KK)=B(JJ+KK)-C*A(JJ)

KKzI+nNMB
JJ=K+NMB
DO 659 L=i,LL
B(KK):B(KK)-CtA(JJ)
KKSKK$NEQR
6508 JJ=JJeNEQH b

690 II=IIe=INC
708 IL=IL+NEQR

IF(NBR,NE,i) Go TO 750
DO 74¢ [=1,NSB

749 A(1)=8(])
GO TO 8yy

75@ WRITE (N2) g

882 CONTINUE

c
M=N{
Ni=N2
908 N2=M
C
Crmmn BACKSUBSTITUTIQN = RESULTS ON TAPE NRST -w-----------.---....--
o
LS=LLxNEQB
NEB:NEQB*(NBR#I)
NUMaNBRaNEQR
MAXZNEQw| |

D0 905 1=1,MAX
905 8(1)=0,
REWIND NRST
c-U.-.-.--' ..-..-.--..ﬂ-..---ﬁ-......--..-...-.-.-.--..--.-..----..-.
D0 1240 N=1,NBLOCK
BACKSPACE NBK S
READ (NHKS) a,MAXR
BACKSPACE NBKS
DO 914 (=1,LL
KaLxNEB
00 919 J=y,NumM
I=K=NEQB
B(K)=8(1I)
910 K=Kmw)

SNMB
DO 920 L=t,LL
Ka(L=1)naNER
DO 924 J2y{,NEQB
I3I+}
K=K+
929 B(K)=A(D)

00 955 I=t,NEQR
JENEGB+ w]

MAX=MAXB(J)

IF (A(J).EQ,N,) GO TO 9SS
DO 959 Lst,LL
KKSJO(L-l)tNEB

JI3KK+1

IL=J+NEGR

C=R(KK)

DO 949 II=IL,MAX,NEQS
C=C=A(IIN+RC(JID)

4O JJI=JJ+d

954 H(KK)=C

955 CONTINUE

I=a
DO 968 L=1,LL
KS(Lel)aNER
DO 969 J=1{,NEQRR
K=K+
IsT+1

964 A(I)=8(K)

WRITE (NRST) (A(I),I=1,LS)
PRINT 970, (a(I),I=1,LS)
973 FORMAT(» q97n ACIV*/,(10E12,3))
1003 CUNTINUE

83

APPENDIX B

FORTRAN LISTINGS OF

FRONTAL SOLVERS

APPENDIX B.1

LIPP FRONTAL EQUATION SOLVER

£ [ANTENTIONALLY -RLANK
87 ot S/.L...

T R P Tpeo g -
3 - : o g — . i " — " e S~

PROGRAM HSMAIN ¢ INPUT,OUTPUT,TAPE13,TAPE14,TAPE1S,TAPEL16,TAPELSY,
, TAPES=INPUT,TAPE6SOUTPUT)

COMMON /FORTER/ NUMEL

COMMON /TAPES/ NIN,NOUT,NTAPE1,NTAPE2,NTAPE3,NTAPEW,NTAPES,

. NTAPE6,NTAPE?,NTAPE8,NTAPEY

COMMON/2IP/LVABL (28),KUREL ,LPREG,LZ,LDEST(28),DUM(S),MVABL(160)
COMMON EL(251@0)

COMMON /TQINFO/ JPRINT

DIMENSION LCONEC(28)

c x#x NFUNC(I,J) DEFINED wax
NFUNC(I,J)=I+(Jx(J=1))/2

1 FORMAT(IHL/// s moocemee=sw NEW PROBLEM emesccwcent)
10 FORMAT (215,110)
1S FORMAT(/IISX,ﬁNUMELat,IS,SX.*NENRHS=*,Is,sx,tnﬁLPAzat,xxa)
20 FORMAT (15,/,(1015))
51 FORMAT(®» 51 CONECTIVITYx,(8I5))
30 FORMAT (15,/,75F10,2))
JPRINT = 6
NTAPE3 =13
NTAPE4 =14
NTAPES =15
NTAPE6 =16
NTAPE9 =19
NIN= §
NOUT = 6
1208 CONTINUE
IO=HSIO(NTAPESo10;LVABLan.B)
10=HSIO(NTAPEY, IG.ELPA.G.OI
PRINT 1
READ 1A,NI,NP
READ 18, NUMEL, NEWRHS ,NELPAZ
PRINT 15, NUMEL, NEWRHS ,NELPAZ
IF (NUMEL ,LE, @) STOP
READ 22,KUREL,(LCONECCI),I=1,NP)
NP2=2aNP
LZ=KUREL*(KUREL+3)/2
D0 102 N = 1, NUMEL
IF(N,EQ,1) GO TO 91
00 92 K={,NP
I11=N=]
12311/N1
IF(T24NI,EQ,I1) GO TO 31
IK=2
IF(K,EQ,4,0R ,K,EQ,8) IK=}
G0 YO 39
34 IK=NI+d
IF (K EQ.8,0R K EQ,B) IKS2#(NI+1)+1
39 LCONER(K)=LCONEC(K)+IK
90 CONTINUE
IF(N,GT.12) GO TO 91
PRINT 51, (LCONEC(K),K=i,NP)
91 DO 95 J31,NP
Jis2nJmy
Jazewn]
LVABL(J1)=2#LCONEC(J) =}
LVABL(J2)=2# CONEC(J)

95 CONTINUE v
190 TOSHSICINTAPEU,1,LVABL,29,0) m&ﬁ.mr&mnmmm-swn

. _ o .

Man it amismes o PRI R

ELCI)=1,0E=8
121 CONTINUE
D0 162 I=1,NP2
NF=SNFUNC(I,]1)
EL(NF)=1,@
182 CONTINUE
LZK= Z=KUREL g
D0 1A3 I=L2K,L2
EL(I)=1,0
183 CONTINUE
D0 200 N=1,NUMEL
200 I0=HSIO(NTAPE3,1,EL,LZ,1)
I0O=HSIO(CNTAPE3,19,LVABL,0,0)
I0O=HMSIO(NTAPEW,19,EL,0,0)
CALL SECOND(TK)
CALL JOBINFO(B8,J1)
CALL ZIPP(NELPAZ)
CALL JOBINFO(8,J2)
CALL SECOND (Tw)
CP=FLOAT(J2=J1)/10820,
DIKW=TWeTK
PRINT 201,0TKW,CP
201 FORMAT(» 221 TM IN Z2IPP = *,F10,6/5X,*CP IN ZIPP = *Fid,6)
GO TO 10@@9
END
SUBROUTINE ZIPP(NELPAZ)
c
Convne FRONTAL SOLUTION METHOD BY BRUCE IRONS
C
COMMON /FORIER/ NUMEL
COMMON /TAPES/ NIN,NOUT,NTAPEY ,NTAPER2,NTAPE3,NTAPEU,NTAPES,
v NTAPEG6,NTAPET,NTAPEB,NTAPEY
COMMON/ZIP/ILVABL(28) ,KUREL,LPREQ,L2Z,LDEST(28),DUM/5),MVABL(1604)
COMMON /IOINFQ/ JPRINT
COMMON ELPAC(Y)
DIMENSION NIX(1)
EQUIVALENCE (NIX,ELPA)

MFUNCC(I,J)=1+(Jn(J=1)) /2
CALL SECOND(TQ)
CALL JOBINFO(8,J0)
NBIG=1009
NELZ=462
NIZZ =0
MAXPA=0Q
NVARZ=@
LCUREG=0
NIXEND=NELPAZ
LVEND=28
MVEND=1602
DO 232 I=1,MVEND

232 MVABL(I)=9
I0=HSIO(NTAPEG,10,FLPA,3,0)
J0=HSIO(NTAPEY,10,ELLPA,R,Q)
T0=HSIO(NTAPES,10,ELPA,Q,8)

PUT ALL ELEMENT NICKNAMES IN LONG VECTOR, NIX

s Eale]

JWHERE=S

0O 10 NELEM = 1, NUMEL
I0=HSTOC(NYAPE4,2,LVABL,29,1)
IF(NIZZ*KLREL#NELEM.G?.NIXEQRI GO TO 130

2 ' ,

DO 8 I=1,KUREL
NIZZ=N122Z+!}
B NIX(NIZZ)=w| VABL(I)
NIXC(NIXEND+1wNELEM)=N1Z2
1@ CONTINUE
Nisi
00 26 NELEM=1,NUMEL N
LPREQ=LCUREQ
LCUREQ=NVAB2
NZSNIXCNIXEND+1=NELEM)
KUREL=NZ=N{+1
LZ=NFUNC (2*KUREL , KUREL)

FIND NEW NICKNAMES AND USE EXISTING DESTINATIONS,

o000

DO 22 NEW=N{1,N2
NICSNIX(NENW)
LDES=NIC
IFINIC,GT.®) GO TO 2@
DO 14 LDES=1,MVEND
IF(MVABL(LDES),EQ,®) GO TO 16
14 CONTINUE
JWHERE=7
GO TO 139
16 MVABL(LDES)=NIC
IF(LDES,GT,MAXPA) MAXPA=LDES
KOUNT=1

RECORD FIR3T, LAST AND INTERMEDIATE APPEARANCES,

OO0

Chumnn THE NEXT FIVE(S5) STYATEMENTS SHOULD BE REPLACED WHEN
Crammn CONVERTING THE COMPASS ROUTINE FIRLAS TO FORTRAN
c

NNDSNIZZeNEWe|

NICDaNIC

LODESD=LOES

CALL FIRLAS{NND,NICD,NIX(NEW),LDESD,LAST,KOUNT)

LAST= AST+NEW=]

KOUNT=KOUNT#NBIG
NIX(LAST)=LDES ¢ NBIG
LDES=| DES+KOUNT
NIX(NEW)aLDES
2@ LDEST(NEWeN]+1)=|DES
22 CONTINUE
NI=NZ+t

RECONSTRUCT ELEMENT NICKNAMES AND COUPLE WITH DESTINAYfON VECTORS,
AND INITIAL ELEMENT STIFFNESS AND LOAD DATA,

o000

DO 24 KL=1,KUREL
CALL CODEST(LDES,LDEST(KL),NSTRES,NBIG)
LVABL(KL)=eMVABL (LDES)
IF(NSTRES,NE,2,AND NSTRES,NE,1) GO TO 24
MVABL (LDES) =0
NVABZ=NVABZ+{

24 CONTINUE

*%% REWRITE ALL ELEMENT INFORMATION ON TAPE

o000

IO‘HSIO(NTAPES,IaLVABL,bd,ﬂgl

SO o Vo Y D e e e

B T S U

26 CONTINUE
I0=HSIO(NTAPES,9)
CALL JOBINFO(8,J1)
CALL SECOND(TY)
CP3FLOAT(J1=J@)/100Q0,
DT=Ti=TO
KRITE(NOUY,87@) DT,CP,NIZZ,NVABZ,MAXPA
879 FORMAT(#ATIME IN PREFRAONT = #F8,3//
* CP IN PREFRONT = »F8,3//
® NIZZ = *IS5//
* NVABZ = »]IS//
® MAXPA = #IS5)
JIO=HSIO(NTAPES,10,ELPA,0,Q)
I0=HSIO(NTAPE3,10,ELPA,Q0,0)

PRE~PROGRAM ENDED AND ELEMENT TAPE WRITTEN,

o000

ESTABLISH STORAGE REQUIREMENTS AND AREA BOUNDARIES,

NPAR=NFUNC(Q,MAXPA+1)+NELZ
NPAZ=NPAR$MAXPA
NBAXO=NPAZ+1
NBUFFASNELPAZ=NBAXD
JWHERE=9
IF(NBUFFA,LT,MAXPA+d4) GO TO 130
NRUNO=NPAZ=MAXPA
IBA=NBAXD
DO 38 I=1,NELPAZ
ELPA(I)=0,0

38 CONTINUE
KURPA=D

c SEEK AND ASSEMBLE NEW ELEMENT,

1P0S=@
NWORDS=0
00 92 NELEM=1{,NUMEL
I0O=HSIO(NTAPES,2,LVABL,64,1)
JOSHSIO(NTAPES,2,ELPA,LZ,1)
L=¢
DO 4@ KL=1,KUREL
CALL CODEST(LDES,LDEST(KL),NSTRES,NBIG)
MVABL(LDES)sLVABL (KL)
LVaABL (KL)=LDES)
IF(LDES +GTKURPA) KURPA=|DES
4” CONTINUE
DO 64 LHSRHS31,2
LHS=2«LHSRHS
IRMS=1w| HS
MNMzLHS*KUREL+IRHS
DO 64 KL=1,MNM
GO TO (42,44),LHSRHS
42 KG=L VABL (KL)

MGO=NFUNC(@,KG) +NELZ ORIGINAL PAGE IS

GO TO 46
44 MGO=(KL=1)*MAXPA+NPAR OF POOR QUALITY

46 MMNI| MS*KL+IRHS*KUREL
CO 64 1L=t,MMN
IC=SLVABL (IL)

L=L+y
CESELPA(L)
MG3IMGO+IG

= o

IF(LHSRHS.EQ.l.ANO.KG.LT.IG) MG=NFUNC (KXG,IG) +NELZ
ELPACMG)=ELPA(MG) ¢ CE
64 CONTINUE

C ELIMINATE VARIABLE IN POSITION LDES, AND WRITE EQUATION FOR TAPE

D0 9@ KL=1,KUREL N
CALL CODES?(LDES.LDEST(KL).NSTRESoNBIGJ
IF (NSTRES (NE,@,AND,NSTRES,NE, 1) GO TO 9@
NDEQN=IBA+KURPA+$4
IF (NDEGN,LE,NELPAZ) GO TO 79
ELPACIBA+1)=NWORDS
NWORDS=IBA=NBAXQ+2
NS=NWORDS/64
IF (64=NS ,NE,NWORDS) NS=NSe+i
IPOS=IPOS+NS
IF(JPRINT,GE,6) WRITE(NOUT,3002) NELEH.NHORDS.IPOS.NBAXO,IBA.TEMP
3302 FORMAT(» INTERMEDIATE TAPEG6 WRITE *yS5I10,E15,4) '
IO=HSIO(NIAPEbploELPAtNBAXOJ'batNSo1)
IBA=NBAXD
NDEQON=IBA+KURPA+Y
70 1BOIAGSIBA+LDES
NDIAGENFUNC(@,LDES+1) *NELZ
PIVOT=ELPA(NDIAG)
ELPACNOIAG)=Rn,0
JWHERE=13
NIC=MVABL (LDES)
IFCPIVOT,EG,2,) GO TO 130
MGZ=NELZ
JGZ=KURPA
180=18A
DO 84 LHSRH8=3y,2
IF(LHSRHS ,EQ,2) JGZ=1
00 84 JG=1,JG2
IBASIBASY
GO T0 (72,76),LHSRHS
72 MGO=MG2
MGZSMGO+JG
IF(LOES,GT,JG) GO YO 74
MG=MGN+LDES
GO TO 78
74 MG=NFUNC(JG,LDES)+NELZ
GO To 78
76 MGOz3(JG=1)*MAXPASNPAR
MG=MGO+|DES
MGZsMGO+KURPA
78 NOELT=IBO~MGO
CONST=ELPA(MG)
ELPACIBA)Y=CONST
IF(CONST.EO.@) GO TO 84
CONST=CONST/PIVOT
ELPA(MG)=D,0
IF (LHSRHS,NE,1) GO TO 89

SIMULTANEOUSLY, CREATE A SIMPLE ROUND OFF CRITERION,

(s Nals]

8@ NNLEMGOe¢!
c
Caramnn THE CALL INNER SHOULD BE REPLACED WHEN
Crannn CONVERTING FROM COMPASS TO FORTRAN
c
CALL INNER(MGD,MGZ;CONSToEQg;(NNL)pNDEL?)

a . () DO TeP P N DT P P TR T O N S T pe— s
T A

o

Chkwnn
Chhnndk

c

84

a8

90
92

871

100

fe2

CONTINUE

ELPACIBDIAG)=PIVOT

IBA=NDEQN

ELPACIBA)=KURPA

ELPACIBA=1)=LDES

ELPACIBA=2)=MVABL(LDES)

MVABL (LDES)=0

IF(MVABL (KURPA) NE.@) GO YO 90

KURPA=KURPA=1{

IF(KURPA,NE,B) GO TO 88

CONTINUE

CONTINUE

JO=HSIO(NTAPEG,9)

J10=HSIO(NTAPES,10)

CALL JOBINFO(8,J2)

CALL SECOND(T2)

CP=FLOAT(J2=J1)/1000,

DT=2T2=T1{

WRITE(NOUT,871) DT,CP,IPCS,NPA2

FORMAT(*ATIME IN FRONT = 2F8,3//
w CP IN FRONT = »nF8,3//
% NUMBER OF SECTORS = »1IS//
NPAZ = »I5)

BACK»SUBSTITUTE INTO EQGUATIONS, TAKEN IN REVERSE ORDER,

NBZ=IBA

NEG=NVABZ

LPREG=LCUREQR

NELEMINUMEL
I0=HSIO(NTAPEY9,10)
IF(IBANE,NBAXO) GO TO 102
NS=NWORDS/64
IFC6UnNS NE ,NWORDS) NSaNS+i
IP0S=1P0SaNS
NBZ2=NWORDS+NBAXO=2
I0=HSIOCNTAPES,6,ELPA,IPOS,Q)
JOSHSIO(NTAPES,2,ELPA(NBAXO) 64%N3,1)
NWORDS=ELPA(NBZ+1)

IBA=NBZ

KURPASELPA(IBA)
LOES=ELPA(IBA=Y)
NICSELPA(IBA=2)

IBAR=IBA=y

IBASIBAR=KURPA
IBDIAG=1BA+LDES
PIVOT=ELPA(IBDIAG)
ELPA(IBDIAG)=0,0

MGO=SNRUNO

MGZaMGO+KURPA
CONST=ELPA(IBAR+L)
NDELT=1BA=MGO

NNLEMGO+1

THE CALL BSUB SHOULD RE REPLACED WHEN
CONVERTING FROM COMPASS TO FORTRAN

CALL BSUBCNNL,MG2Z,CONST,ELPA(NNL),NDELT)
PLACE ANSWERS AND PREPARE FOR NEW ITERATIVE LOOP,
ELPA(MGO+LDES)=CONST/PIVOT

Y | SRy vewe 7

ELPACIBOIAG)=PIVOT
NEQ=NEQw]

108 IF(NEQ.NE,LPRER) GO TO 100
!0=HSIO(NTAPES.b.LVAHL.NELEH-l.a)
10=HSIU(NTAPESa?oLVABLpbao1)

00 112 KL=1,KUREL

CALL CODEST(LDES.LDEST(KL)oNSTRES.NBXG))
NRUN=NRIND+LDES

ELPACKL)=ELPA(NRUN)

112 CONTINUE
ELPAC64)=KUREL
108HSIO(NTAPE9.l.ELPA(l).baol)

NELEMSNE| EM=1
IF(NELEM,NE,B®) GO TO 108
T0=HSIC(NTAPES9,9)
CALL JOBINFO(8,J3)
CALL SECOND(T3)
CP=FLOAT(J3-J2)/1099.
CP3=FLOAT(J3=JR) /1000,
DT2T3aT2
T3=2T73=TQ
WRITE(NOUT,872) DT,CP,T3,CP3
872 FORMAT(#@TIME IN BSUB = *F8,3//
* CP IN BSUB = »F8,3//
* TOTAL TIME IN 21IPP = *F8,3//
» * TOTAL CP IN ZIPP = *F8,3)
RETURN
130 CONTINUE
WRITECNOUT,834) JNHEREnNICoPIVUToLDESoLZlNELZpNELE"o
1 NBUFFA,NIZZ,NELPAZ,MAXPA,NPAZ
CALL ERROR(JNHEREp0.0.laHZIPPJWHERE)
85@ FORMAT(19H@AMAX FRONT WIDTH = 01%,22H MAX ACTIVE STORAGE = v 15,
1 19H MAX NIX STORAGE = ,15)
834 FORMAT(9HRJIWHERE =,13,5X,5HNIC =,18,5%,
| THPIVOT S)E12,4,3XpSHLDES=,15,3X,4ML2 =)15,11X,6HNELZ =,15/
2 8H NELEM =,14,5X,B8HNBUFFA =,16,4X,
3 6HNIZZ =,15,9X%,8HNELPAZ =,15,4X,
4 9H MAXPA = ,14,10H NPAZ = ,1I7)
END
SUBROUTINE CODEST(LDES,LDEST,NSTRES,NBIG)
NS=LDEST/NBIG
LDES=LDEST=NSaNBIG
NSTRES=NS=1{
RETURN
END
FUNCTION HSTOCNTAPE,NOP,A,NWORDS,NWAIT)

C

Coronse COC 6600/640@ HIGH SPEED BINARY 1/0 FORTRAN INTERFACE ROUTINE

C..},, NWAIT OPTION NOT OPERATIONAL ON COC, BUT IT IS USEFUL ON

Covvep UNIVAC 1108 SERIES WITH THEIR NTRAN ROUTINE,

Coonne NWAIT=8 FOR NO WAIT ¢ NWAIT=Q FOR WAIT TO COMPLETE I/0

o

COMMON/TAPES/NIN,NOUT

INTEGER HS10

IF(NOP=2) 1,2,3
c
Coenss WRITE NWORDS STARTING AT ADDRESS A
c

1 HSIO=IOP(2HWB,NTAPE,A,NWORDS)
GO 10 990
C
Coonne READ NWORDS STARTING FROM ADDRESS A

c
2 HSIO=10P(2HRB,NTAPE,A,NWORDS)
IF(HSIO,EQ,2) GO TO 9@
c
Condee ERROR DIAGONSTIC FOR INCOMPLETE 1/0 TRANSFER
c

WRITE(NOUT,3000) NYAPE.NOP.NNOPDS,NHAIT;HSIO
SHOB‘FORNAT('OHSIO READ ERROR / NTAPE NOP NWORDS NWAIT HSIOw//
e 2615)
CALL ERROR(2,@,0,4HHSI0)
3 IF(NOP=9) 6,9,10

C
Cevnne SEY POSITION TO SECTOR NUMBER NWORDS = USED FOR BACKSPACE
c

6 HSIO=I0P(2HSP,NTAPE,NWORDS)
GO Yo 9@

c
Conaes WRITE ENDmOFeFILE MARK
c

9 HSIO=IOP(2HWF,NTAPE)
GO TQ 99

Casnos REWIND
c

19 HSIO=SIOP(3IHREW,NTAPE)

99 RETURN
END
IDENT INNER (MGO,MGZ,CONST,ELPA,NDELT,)
ENTRY INNER
INNER BSSZ 1

*
. COMPASS VERSION OF THE FULLOWING LOOP
®
* D0 82 I=NNL,MGZ
* ELPACI)SELPACI) = CONST#ELPA(I#NDELT)
* 82 CONTINUE
»*
* INITIALIZE
*
$87 1 STORE { INTO 87
$43 83 CONST TG X3
SA{ 81 MGO TO X1
SB1 X1487 MGO TO B
8A2 B2 MGZ TO X2
Sp3 X2 MGZ TO B3
SA4 84 ELPA(MGO+1) TO X4
84S BS NDELT TO XS
$85 XS NDELT TO BS
SAS AG+8S ELPACI#NDELT) TO XS
RX7 X3 xS FIRST MULT, CONST#ELPA(CI4NELT)
Bx@ X4 COPY X4 INTO X©
GE B1,B3,EXIT SKIP LOOP IF MGO+13MG2Z

»

® INNER LOOP
*

LooP FXxé X0mX7 ELPA~CONSTELPACI#NDELT)
NXé& Xé NORMALIZE RESULT IN X6
SAb Ad STORE RESULY IN ELPA(I)
SA4 A4+B7 NEXT ELPACI) TO X4
8AS AS+87 NEXT ELPACI+NDELT) TO XS
RX7 X3xXS CONST# ELPA(CI+NDELTY)
8xe X4 96€LPA(I) T0 x4

B e i e S

RN SRS

SB1 Bl+R7 ADD 1 TO INCR COUNTER
LT B1,83,L00P TEST FOR END OF LOOP

» LAST SUBSTRACTION

EXIY FXé6 XAmX7
NX6 Xé6 NORMALIZE Xxé& *
SAs A4 STORE LAST RESULT IN ELPACI)
EQ B0, B0, INNER RETURN TO PROG,
END
IDENT 8suB (NNL,MGZ,CONST,ELPA(NNL) NDELT)
ENTRY BSUB
BSUB B8SSZ 1
]
* COMPASS VERSION OF THE FOLLOWING LOOP
*
» DO 104 I=aNNL,HGZ
’ CONSTZCONST = ELPA(I)#ELPACI4NDELT)
» 104 CONTINUE
®
* INITIALIZE
®
$87 { STORE 1 INTO B7
SA3 B3 CONST T X3
SA1 81 NNL TO X1
S8 X1 NNL TO B1
$A2 B2 MGZ TO x2
882 X2 MGZ TO B2
SAu B4 ELPACI) TO X4
$45 BS NDELT To XS
585 X5 NDELT To B5
SAS AU+BS ELPACI+NDELT) TO XS
RX7 X% X5 FIRST MULTIPLY
BX0 X3 COY CONST TO xe
GE B1,82,EXIT SKIP LOOP IF NNL =MGZ
*
* INNER LoOoOP
*
LOOP Fx6 X0ex7 CONSTaELPA (1) #ELPACI4NDELT)
NX6 X6 NORMALIZE RESULT IN X6
8.4 Ad+B? NEW ELPA TO X4
SAS AS+R7 NEW ELPACI4NDELT) TO XS
RX7 X4wX5 ELPACI)#ELPA(T+NDEL)
BX0 X6 CONST TO X0 xo
$B1 81487 ADDS ONE TO COUNTER
LT B1,82,L00P TEST FOR END OF LOOP
* LAST SUBSTRACTION
EXIT FX6 XBaX7 LAST SUBXTRACTION
NX6 X6 NORMALIZE RESULT IN Xé
SAb A3 STORE RESULTY IN CONST
€0 B2, R0, BSUB RETURN
END
IDENT FIRLAS (NND,NICD,NIX(NEW) ,LDES,LAST,KOUNT
ENTRY FIRLAS
*
' COMPASS VERSION OF THE FOL, LOOP
* .-
. KOUNT=1 OF ponL PAGE Is
w DO 18 LAS=SNEW,NI122 ‘ ALITY
, TF(NIXCLAS),NE,NIC) GO TO 18 |
. NIX(LAS)sLDES
* LASTELAS

97

18

"IRLAS

» MR %% %0

Loop

INCR

KOUNTEKOUNT + 1

CONTINUE
INITIALYZATION
88s2 i

SA1l 81

§81 X1

s$a7)

SA2 8e

SA3 83

SA4 B4

BXxé X4

§82 1

$84 B2

X7 X3=x2
N2 X7, INCR
SA6 A3

SB2 87

S84 BlUsy
SB7 B7+1
SA3 A3+t

LE B7,81,L00pP
SXé B2

SAS 8BS

SX7 B4

SA7 Bé6

EQ BA,B88,FIRLAS
END

NND TO X1

NND TO 81

{ 70 87

NIC TO X2
NIX(1) TO X3
LOES TO X4

COPY LDES IN Yo
SET B2=3|
KOUNTa}

NIX(LAS)=NIC TO X7
IF NIX(LAS) NE,NIC JUMP

LAST=LAS

INCREMENT LOOP COUNT BY 1
NEXT NIX (LAS)
IF(LAS,LE,NND) LOOP

BS T0 X6

LAST Y0 8BS
KQUNT TO 86

RETURN

SUBROUTINE ERROR(NERR,1,J,W0RD)
COMMON /TAPES/ NIN,NOUT
IF(I,NE,Q) GO TO S
WRITE(NOUT,1@) NERR,WORD
STOP
S WRITE(NOUT,10) NERR,WORD,I,J
10 FORMAT(» ERROR NUMBER = w,16,2%X,A18,216)
STOP 1§

END

98

APPENDIX B.2
PUZZLE FRONTAL EQUATION SOLVER

PROGRAM PUZZLE (INPUT,0UTPUT,TAPE1,TAPE2,TAPE3,TAPEY, TAPES, TAPES)
COMMON NDOF (2500) . 1Q(208) ,ME,PE(60),ST(60,00)

COMMON / SUBT / NOEL,NOPT,ISAV,NSTR,MSUB,NUEL,NSUB,ISUB(63)
COMMON / P00R / MAXF,MAXB,MAXW,IPRNT

COMMON / TRAC / NWS,NWR,NBS,NUP

CALL SECOND ¢ Ti)
CALL JOBINFO(8,J1)
CALL SETDATA

CALL JOBINFO(8,J2)
CALL SECOND ¢ T2)

CALL FRONTIQ

CALL JOBINFO(8,J3)
CALL SECOND € T3)

CALL FRONTST

CALL JOBINFO(8,J4)
CALL SECOND ¢ T4)

CALL BACKSUB
CALL JOBINFO(S8,J5)
CALL SECOND € TS5)

70 = T2 = T4
CPsFLOAT(J2=J1)/1000,
PRINT 120,70,CP

T6 = T3 = T2
CP=FLOAT(J3=J2)/1000,
PRINT 208,TQ,CP

7@ 2 T4 = T3
CPs3FLOAT(JU=J3)/1000,
PRINT 3090,7Q,CP

6 = 7S = T4

CP=FLOAT(JS=J4) /1000,
PRINT 4@9,T0,CP

10 = 75 = T4
CP=FLOAT(JS=J1)/1009,
PRINT 500,7Q,CP

PRINT 600,NWS,NWR
PRINT 70@,NBS,NUP

180 FORMAT (#i# SX #TIME FOR SETDATA% F{3,3 /
. 6X * CP FOR SETDATA# F13,3)
200 FORMAT (6X #TIME FOP FRONTIGH F13,3 /
. 6X % CP FOR FRONTIO® F13,3)
300 FORMAT (6X #*TIME FOR FRONTST# F13,3 / '
. 6x » CP FOR FRONTST# F13,3)
482 FORMAT (6X *TIME FOR BACKPAS® F13,3 /
. 6X * CP FOR BACKPAS® F13,3)
500 FORMAT (6X «TINE FOR PUZZLE # F13,3 / patd)0 0 iMiE}Hiacty -Risalg

101

P P

]
600 FORMAT ¢ 6x
700 FORMAT (

100
200
201
e
ean
900
9014
902

END

6X

* CP FOR PUZ2ZLE » F13,3)
ANNS % I1@ / 6X aNWR =« It@)

6X #NBS * I10 / &X ~NUP w 110)

SUBROUTINE SETDATA

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
LP

NWS
NWR
NBS
NUP

00O 1 I
CALL W

READ
PRINT
PRINT
PRINT
READ
PRINT
READ

IF
IF
IF
IF
IF

1
!
1
1
1

NN~

2000
SuaT
PRNT
MESH
SCR1
TRAC

NNNNNN
NNNNNN

21,6
IND € X))

808,MAXF,
900, MAXF
9921 ,MAXB
902,MAXW
199,160,!
180,160,1
102,NOPT,

G0,EQ,1)
G0,EQ,2)
GO0,EQ,3)
GO,EQ,4)
G0,EQ,5)

NDOF(?S@O)'IQ(ZQ)p"EvPE(be)rST(borbﬂl

MAXF ,MAXB,MAXW, IPRNY

NOEL yNOPT,ISAV,NSTR,MSUB,NUEL ,NSUB,ISUB(63)
IPO,IPL{,IP2,1IPA,1IPB,NUML,NUM2,IPS
IGO,NDFRE,NODES,NDIVY,NDIVX,NDIVZ
IR,LP,I1,12,NR,MD,NW,S(2B4Y)
NWS,NWR,NBS,NUP

MAXB,MAXW

PO,IP1,IP2,IPA,IPB,NUML,NUM2,IPS
P@,IP1,IP2,IP2,IPB,NUML,NUM2,IPS
NOEL NDFRE,MODES,NDIVY,NDIVX,NDIVZ, IPRNT

CALL SETUY
CALL SETuL2
CALL SETU3
CALL SETU4
CALL SETUS

PRINT 2@@,NOPT ,NOEL ,NDFRE
PRINT EGI,NODES,NDIVYaNDIV!
PRINT 202,NDIVZ,IPRNT,LP

*NOPT # IS / 6X #NOEL * IS / 6X #NDFRE* IS5)
*NODES# IS5 / 6X wNDIVY® IS5 / 6X =NDIVXn IS)
#NOIVZ% IS / 6X *IPRNT# IS / 6X #*IPOS = IS5)
)

aMAXF SET AT+ I8)

*MAX8 SET AT+ 18)

*MAXW SETY AT+ I8)

NDOF (2500) , IQ(20) yME,PE(60Q),8T(60,632)
MAXF yMAXB,MAXW, IPRNT
NOEL yNOPT,ISAV,NSTR,MSUB,NUEL,NSUB, ISUB(63)

CALL WIND ¢ 1)
CALL WIND € 2)
FORMAT (2014)
FORMAT (%{» 5%
FORMAT (6x
FORMAT (6X
FORMAT (418
FORMAT (¢ #{w» 5%
FORMAT (6x
FORMAT ¢ 6X
RETURN

END

SUBROUTINE SETUHY
COMMON

COMMON / 2900 /
COMMON / SUBT /
COMMON / MESH /

I160,NDFRE,NODES,NDIVY,NDIVX,NDIVZ
READ IBU.(Nbasz),III,NOPT)

109
300
sen

100

IFCIPRNT,GE,2) PRINT 10Q, (NDOF(I),1=1,NOPT)

DO 1 I=1,NOEL
READ 14d,NODES,ME,(I10CL),L=1,NODES)
IFCIPRNT ,GE,2) PRINT 300,NODES,ME, (IQCL),L=1,NODES)

CALL UNITY! (1,1,NODES,I1Q)
CONTINUE

DO 4 L2 = 1,NOEL

READ 1{00,ME
IFC(IPRNT,GE,2) PRINT 100,ME

READ 508,(PE (M),M=1,ME)
IFCIPRNT,GE,2) PRINT 52@,(PE (M),M=1,ME)
00 2 1 = {,ME

READ SQGQ(ST(IpJ)pJ=1a"E)
IF(IPRNY ,GE,2) PRINT 508,(ST(I,J),J=1,ME)

CALL UNIT2 (ME,PE,ST)
CONTINUE

FORMAT (2@14)

FORMAT (6X,*J0%,915)

FORMAT (20F6,@)

RETURN

END

SUBROUTINE SETU2

COMMON NDOF (2508),1Q(2@) ,ME,PE(60),ST(60,60)
COMMON / SUBT / NOEL,NOPT,ISAV,NSTR,MSUB,NUEL,NSUB,ISUB(63)
COMMON / MESHM / 1GO,NDFRE,NODES,NDIVY,NDIVX,NDIVZ

DO 1 I = {,NOPT
NDOF (1) = NDFRE

00 2 Kk=1,NOEL

READ 122,N0DES,ME, (IQCL),L=1,NODES)
CALL READY

CALL UNIT2 (ME,PE,ST)

CONTINUE

FORMAY (1014)

RETURN

END

SUBROUTINE SETU3

COMMON NDOF (2500) ,IQ(208) ,ME,PE(60),8T(60,60)
COMMON / SUBT / NOEL,NCPT,ISAV,NSTR,MSUB,NUEL,NSUB,ISUB(63)
COMMON / MESH / 1GO,NDFRE,NODES,NDIVY,NDIVX,NDIVZ

DIMENSION JR(4)

NOEL = NDIVY * NDIVX
NOPT = (NDIVY+1)#(NDIVX#+l)

DO 3 I = 1,NOPY ORIGINAL
NDOF (1) = NDFRE OF Boog ¢, \GE Is

ME = NDFRE * NODES
NPi = NDIVY ¢+ |
DO 3 IX = §,NDIVX
JA(I) = (IX=1) » NPi{ 4 1

04 Jao i
Jo(d) = (1) 303

e . — La

Ja(a) = Jacy) + NPi
JG(3) = JA(4) + NP1
DO 3 IY = {,NDIVY
PO 21 2 1,4
e IQCI) = JA(I) ¢ IY = |
CALL READY
CALL UNIT2 (ME,PE,ST)
3 CONTINUE
RETURN
END
SUBROUTINE SETU4
COMMON NDOF €25¢0),10(20) ,ME,PE(60),ST(60,60)
COMMON / SUBT / NOEL,NOPT,ISAV,NSTR,MSUB,NUEL,NSUB,ISUB(63)
COMMON / MESH / 1GO,NOFRE,NODES,NDIVY,NDIVX,NDIVZ
OIMENSION JQ (8)

NOEL = NDIVY » NDIVX
NOPT 3 3#NDIVY*NDIVX ¢ 2#(NDIVY+NDIVX) ¢ 1|

5011 = {,NOPT

1 NDOF(I) = NDFRE
ME = NDFRE » NODES
NP B NDIVY ¢ |
INC =2 3 & NDIVY ¢ 2
Ja(1) = 1
Jo(8) = 2
JG(4) s 3
Ja(s) g2 2 % NP}
JAQc7) = 2 % NPy ¢
Jac2) 2 3 % NPt
Jo(6) s Jac2) + 1
Jecel) 8 JQ(2) + 2
DO 5 IX = {,NDIVX
L1 =@
L2 = v
00 3 IY = §,NDIVY
DO 2 1 = 1,4
2 IRCIY = JO(CI) + L2
10(5) = JO(S) + L1}
I0¢6) = Jac¢e) + L2
10€7) = JOCT) + L}
10¢8) = J@(¢8) ¢+ Le
LY = L1t + 1
Le = (2 ¢ 2
CALL READY
CALL UNIT2 ¢ ME,PE,ST)
‘3 CONTINUE
00 4 % s {,NODES
4 Jacl) 8 JO(1) ¢ INC
5 CONTINUE
RETURN
END
SUBROUTINE SETUS
COMMON NDOF (250@),1Q(20) ,ME,PE(60),87(60,60)

COMMON / SUBT / NOEL,NOPT,ISAV,NSTR,MSUB,NUEL,NSUB,ISUB(63)
COMMON / MESH / IGO,NDFRE,NODES,NDIVY,NDIVX,NDIVZ

TAa

N S T T P O R R U ey

OIMENSION JQ(20)
NDEL = NDIVX » NDIVY » NDIV2
Ny = (2«NDIVY+1)n(NDIVXe1) ¢ (NDIVY®$)aNDIVX
N2 2 ¢ NDIVY#1)w(NDLlVXel)
NIN2 = NI + N2
NAPT 3 Ni ¢ NIN2 » NDIVZ
0O § I = {,NOPT

1 NDOF(I) = NDFRE
ME 2 NDFRE » NODES
00 23 =1,3
2 Je(I) = I

L =2 + 3aNDIVY
O 31=1,3
3 JA(I+3) =1 + L
PO 41 s 1,6
4 JO(I+6) = JOCI) + NINZ
JO(13) 2aNDIVY ¢+ 2
Jac14) Ja(13) 1
Jac1s) Jacid) NiN2
Ja(ie) Jacs)
Jac17) N1
Jacie) N1
JA(19) Ja(18)
Jacz29) Jo(19)

UoLuwnnuw
L2 2B R 2 2 2F 3
-

00 11 12 1,NDIVZ
)
e
Q
1 ,NDIVX
1oNDIVY
I =3 1,12
IQ(1) = JO(CI) ¢ L1
00 I = 13,16
I0CI) = JO(CI) + L2
Do I1 317,20
7 IRCI) = Ja(CI) + L3
Ll =2 L1 ¢+ 2
Le = L2 +
L3 = L3 + |
CALL READY
CALL UNIT2 (ME,PE,ST)
8 CONTINUE
Lt = (3«NDIVY®2) # IX
Le s L1}
L3 = L3 ¢
9 CONTINUE

00
Do
0o

P
(]
K uUunnuno

~ o Ni® o

PO 12 I = 1,20
10 JOCI) 3 JO(I) + NiIN2

11 CONTINUE
RETURN
END
SUBROUTINE READY
COMMON NDOF (2500),1Q(2@) ,ME,PE(6P),8T(60,60)
COMMON / MESH / IGO,NDFRE,NODES,NDIVY,NDIVX,NDIVZ
COMMON /7 0000 / MAXF,MAXB,MAXW,IPRNT

IFCIPRNT,GE,2) PRINT 1@0,NODES,ME
IFCIPRNT,GE,2) PRINT 200,(10Q(L),L=1,NODES)

105

ri A - e 5 D TSI e L Gaioal o o

CALL UNITY (1,1,NODES,I0Q)

m

T -
"B XTNDUuS
m
. 82
-e
* + W
-4 o
W
’
—

PO 2 Kk = I,K2
e PE(K) = IQ(L)

00 3 1 = {,ME
00 3 J = {,ME
3 ST(1,J)= {,0E=20

DO 4 T = {,MF
4 ST(I,XI)= PEC(I)

102 FORMAT (6X 215)
200 FORMAT (6X 1215)
RETURN
END
SUBROUTINE UNIT2 (ME,PE,ST)
DIMENSION PE(60),ST(60,60)
COMMON / SCRYy / IR,LP,I1,12,NR,MD,NW,S(2041)
COMNON / @000 / MAXF,MAXB,MAXW, IPRNT
COMMON / TRAC / NWS,NWR,NBS,NUP

MD = ME
NW = (MD*(MD+1))/2 ¢ MD ¢ 7
IF (Nw,GT ,MAXB) GaTo
It = 1
12 = mMp
GOTO 6
1 12 = 4
IT 2 MD 4
2 Il = 12 + 1
12 = I
NW = 7
DO 3 I = 11, MD
NW = NW ¢ IT
IF (NW,GT MAXR) GOTO 4
12 = 12 ¢+ 1
3 IT = 1T « |
GOTO0 §
4 NW 2 NW e IT
S I2 = 12 =1
[NR =2 12 « 11 ¢ 1
L =2
bo7r =11, 12
L =L ¢+ 1
7 S(L) = PE(I)
DO 8 I =11, 12
bo8yg = I, MD
L =L + 1
8 SCL) = ST (I,0)

IR S NW / 64
18 3 IR » 64

IFC ISeNENWw) JR 3 IR ¢ |
1nR

A R R T

NW 2 IR #64 = 7
LP = IR ¢ LP

CALL IOP (2HWB,2, IR, 7)
CALL I0P (2HwB,2, Sy NW)
NWS = NWS 4 NW ¢ 7

IF € 12,LT,MD) GOTo 2
RETURN
END
SUBROUTINE FRONTIOQ
COMMQON NDOFCZSGO)oIB(ZSBO).IC(ZSOB):LG(!SB);LOC(150)
COMMON NODE1,I08€150),M1,K1,N1,NQ1,NOC1(150)
COMMON NODE2,IQ2(158),M2,K2,N2,NG2,M0C2(158)

COMMON / FRNT / LD,NO'KO.NQL.NQ'NQRpNDlpLQT(’SU)

COMMON / SUBT / NOELoNOPToIS‘VONSTRO”SUBoNUEL;NSUB.ISUB(63)
COMMON 7 @0Q0 / MAXF yMAXB,MAXW, IPRNT

DATA L1&,LS 71,5/ :

READ S,MSuUB
PRINTY 10,M8UB
IM2 =3 MSUB + 1

CALL SECOND (¢ T1)

ISAV = NOEL
NSTR = @
DO 1 IM = 1,IM2
NT = 0
CALL SUBIQS ¢ NT,IM)

DO 2 IM 3 {,6
CALL WIND (IM)

FORMAT (14)
FORMAT (#1» SX aNUMBER 0OF SUBSTRUCTURES IS+ 15)

RETURN

END

SUBROUTINE SUBIGS ¢ NT,IM)

COMMON NDOF(ZSOG)p18(2500).IC(ZSﬂG).LG(!SG)pLOC(lSG)
COMMON NODE1, IG1(150),M1,K1,N1,NOL,MOCE (150)

COMMON NODE2,102(150),M2,K2,N2,NG2,M0C2(150)

COMMON / SUBT / NOEL,NOPT;ISAV,NSTR,"SUB,NUELpNSUBoISUB(63)
COMMON / 200 / MAXF,MAXB,MAXW,IPRNT
DATA L1,LS 71,5/

IF (IM.LE,MSUB) GOTO |
CALL LOCATE ¢ NOEL , IM,NT,L1,LE)
GOTO §

READ 1@, NSUB, (ISUB(I),I=1,NSUB)
IF(IPRNT,GC,2) PRINT 24, IM)NSUB, (ISUR(I),I=1,NSUB)

CALL WRIT3 (1)

NUEL = @
DO 4 IT s {,NSUB
READ 1@,NODE2,(IG2(L),L=1,MNODED)
IFCIPRNT,GE,2) PRINT 30,NOPE2, (102(L.),L=1,NODED)

02 I = i,NODE2
' 107

A i s ok L
shliiamann e e b o n o e

. ‘ | _ ‘ [

10
20
30

.
-

L = IQacr)
NDOF (L) ==NDOF(L)

LSUB = TtSuB (1T)

CALL WIND ¢ 6)

CALL LOCATE ¢ LSUBpI"'NTpL‘ob)
NUEL = NUEL ¢ LSUB'

00 3 I = 1,NOPTY
NDOF (1) = IABS(NDOF(1))

CALL UNITL € LS,1,N2,MOC2)
CALL MERGEIQ (L1,LS,NODE2,1G2)

FORMAT (¢ 2914)
FORMAT (#0% SX «IM « 14 / 6X #NSUB® 14 / 6X *ISUB~ 2014)
FORMAT ¢ 6XxMQ ®2214)

RETURN

END

SUBROUTINE MERGEIQ ¢ L1,.LS,NODES,IQ)

DIMENSION JQ(1)

COMMON / SuUBT NOELoNOPTpISAV.NSTR.MSUB.NUELaNSUBcISUB(bS)

NOEL = NOEL = NUEL
IF (NOEL,EQ,2) GOT0 2

PO 1 I = 1,NOEL

CALL UNITY ¢ L1,2,NODES, 10)

CONTINUE

NOEL = NOEL ¢+ NSUB

NSTR = NSTR + NSUR

CALL WIND ¢ Lt)

CALL WIND ¢ LS)

LY = Ly

L1 = LS

LS = 7

RETURN

END
SUBROUTINE LOCATE ¢ LSUB,I".NY;L"LT)
COMMON NDOF(ESOD)'IB(ZSDU)'IC(BSUB’cLO(lSﬂ)oLOC(lSB)
COMMON NODElolﬂl(l5ﬂ)o"loKlo~lo~010H0C1(353)
COMMON NODEZpIQZ(159)0"21“20"20N02;HOC2(!50)
COMMON / SUBT / NOELoNOPYoISAVoNSYR'HSUBpNUELoNSUBo1308(63)

NQL = o
0o { 1 = | ,NOPT ORIGINAL p

I8(1) = o OF prAn nﬂ?o!q-'\s.

00 4 LZ = 1,LSUB

CALL UNITY ¢ L1,2,NODE2,102)
IF (IM,GT,MSUB) GoTo 2

CALL UNITY € LY,1,NODE2,102)
20031 = 1,NODE2

K z 102(1) f'
3 IB(K) = IBCK) ¢ 1 |
4 CONTINUE |

00 S I =],NQPT
5 ICCI) = IA(D)

CALL WIND ¢ LT)

L8 = LSUB = |
CALL FRONT (NT,LT,2, @)
IF € LB4ED,Q) GoTe 7

DO 6 LZ = §,L8
KZ 3 LB » L2
CALL UPDATE

CALL FRONT (NT,LT,@,KZ)
6 CALL EXPAND (¢ L2)]
7 CALL UPDATE
CALL FRONT (NT,LT,1, 2)
CALL EXPAND (¢ LSUB)
RETURN
END
SUBROUTINE FRONT (NT,LT,NG,KZ)
COMMON NDOF(ZS@O).IB(ZSG@).IC(ZSQO).LQ(IS%)oLOC(lSO)
COMMON NCDE1,IQ1(€150),M1,K),N1,NQ1,M0C1(150)
COMMON NODE2,I02(15Q),M2,K2,N2,NQ2,M0C2(150)

COMMON / SUBT / NOELpNOPT,ISAVpNSTRp"SUB,NUEL'NSUB.1808(63)

IF (NG,GT,?) GOTo 2
CALL UNIT1 € LT,2,NDDE2,102)

DO 1 1 = {,NODE2
K = IR2¢(1)
IF (NDOF(K),GT,@) IC(K) = IC(K) = 1§
IF € NDOF(K)oLT,¥) IC(K) = IC(K) ¢ |
| CONTINUE

2 N2= @
0O 31 = {,NOPT
IF ¢ I8(1),ER,IC(CI)) GOT0 3
IF (I1C(1),EQ,®) Iu(l)=e
N2 3 N2 ¢+ |
LOC(N2) = |
3 CONTINUE

IF (N2,EQ,®) GOTD 6

v2 = 0
DO 4 I = (,N2
MOC2(1)=0
J = LOC(CI)
IF (ICC(J) NE, Q@) GuTo 4
LoC(1)=n
M2 B M2 ¢ |
»0C2(M2) =
4 CONTINUE

.I - .AII-I ‘n T B Saasca s 0 i aay . di

K2 = M2 ¢

CALL GAPS (NT,kZ)

6 RETURN
END
SURROUTINE GAPS (NT,KZ)
COMMON NDOF (2508),18(2508),IC(25@P),LA(15A),L0C(150)
COMMON NCDE1,IG1(1508),M1,K1,N1,NQL,M0C1(150)
COMMON NODE2,102(150),M2,K2,N2,NQ2,M0C2(150)
COMMON / 0B8R0 / MAXF,MAXB,MAXW,IPRNT
IF (x2 ,EQ,0@) G070 8
IF ¢ NQ1,GT,MAXF) GOTO 8
IF ¢ NQ2,GT,MAXF) GOTO 8
1 11 = MAXO (Ki,x2)
I2 = MIND (Ni,N2)
IF (11,67, 12) GOTO @
0o 4 I=11,12
K=MOC1(I)
00 2 J={,N2
IF ¢ LOC(J),.EQ,K) GOTO 3
2 CONTINUE
w070 4
3 MOC2(I)=K
LoccJ) =0
4 CONTINUE
DO 7 Is31,N2
IF ¢ LOC(I),EQ,@) Govo 7
CO S J=K2,N2
IF ¢ MOC2(J),EQ,0Q) GOTO 6
S CONTINUE
6 MOC2(J) = LOC(I)
LOC (I)=0
7 CONTINUE
GOYTO 10
8 JaK2
DO 9 I®i,N2
IF C LOC(I),EG,0Q) GOTO 9
MOc2(¢J)=L0C(])
LoC(1)=a
JzJ e
9 CONTINYE
ie NQ2 = NUM (N2,MOC2,NDOF)
NT = MAXO (NT,NG2)
RETURN
END
SUBROUTINE UPDATE
COMMON NDOF (2500) ,1B(250@),1C(2500),L0¢150),L0CC150)
COMMON NOOE1,101(150),M1,K1,N1,NOL,NOCE(150)
COMMON NODEZ2,102(1508),M2,K2,N2,NQ2,M0C2(150)
0O 1§ I = {,NODER
| 101 (I) = 102 (I)

110

00 3

I = {,N2
MOCI(T) MOC2(1)

NODE 1 = NODEZ2

M1
K1
Ni

M2
K2
N2

NG 2 NR2

PETURN

END

SUBROUTINE EXPAND (LZ)

COMMON

COMMON NODE1,1Q1(¢158),M1,K1,N1,NQY,MOCE(150)
COMMON NODE2,IQ2(150),M2,K2,N2,NB2,M0C2(150)
COMMON / FRNT / LD,MA,KQ,NGL,NQR,NGR,MD},LOT(950)

00 1t
00 1

00 2

0o 2

00 S
00 3

V& w

00 6

9 00 7

00 7

I 2 loNDOEl
J 3 {,N}
IF (IQICDY,EQ,MOCLCJ)) LAQ(CI) = J

LD
I

LP
J2

"}

1 ,NODE1

IRL (1)

NUM (LQ(I),MOCE,NDOF)
Ji J2 = IABS(NDOF(L.P)) + 1§
J Ji,J2

LD 3 LD ¢ 1

LRATCLD) =Y

MDY NUM (NODE1,IQ1,NDOF)
M@ = NUM (M1,MOC1,NDOF)
KQ s MOe{

NQ = NOY

IF ¢ K1,GT (N1) GOTO 8

I = KY,N¢

J s 1, N2

IF ¢ MOC1CI) ,EQ,MOC2(J)) GOYO0 4
CONTINUE '
Ltoc ¢ 1) s J

CONTINUE

IF (MQ,EQ,Q) GOTO0 9

1 3 1,M0
LD = LD ¢ ¢
LATCLD) = ¢

I3Ki,Nt

LP = MOCY ¢ I)

J2 s NUM (LOC(I),MDC2,NDOF)
J! 3 J2 « JABS(NDOF(LP)) ¢ |
JaJi,J2

LO=LD+1

LAT(LD)=J

NBR = NO2

ilﬁt::______;___jh-n--A-i-n--l---iu-n-h-:;:__________nm

NDOF (25C0),1B(2500),1C(2500),L0¢15@),L0C(150)

CALL WRITI (2)
NQL = N@

CALL PRNT® (¢ LZ)
CALL PRNTH
CALL P.NT2 € L2)

RETURN

END

FUNCTION NUM (IPOS,MOC,NDOF)
DIMENSION MOC(1),NDOF (1)

NUM = 0
IF ¢ IPOS,EQ,2) GOTO 2

PO 1 I = 1,1P08
K 3 MOC € I)
1 NUM = NUM & IABS (NDGF (K))

2 RETURN
END
SUBROUTINE FRONTST
COMMON BC72¢),A(13¢00)
COMMON / FRNT / LD,M0,K0,NQL,NB,NGR,HDY,LOT (95@)
COMMON / SUBT / NOEL,NGPT,ISAV,NSTR,MSUB,NUEL,NSUB, ISUB(63)
COMMON / @ngo / MAXF.HAXB,HAXH,IPRNT
COMMON / WRIT / LPU4,NBAC,NW1,NW2,NC6G,NOLD

IM2 3 MSUB + |

NOEL = 1SAvV
NO 3 IM = {,IM2
3 CALL SUBSTR (NT,IM)
DO 4 IM 5 1,6
4 IF (IM,NE, 4) CALL WIND ¢ IN)
RETURN
END
SUBROUTINE SURSTR (NT,IM)
COMMON BC7@A) ,AC13009)

COMMON / FRNT / LD,M0Q,KQ,NOL,NQ,NGR, D{,LOT(958)

COMMON / suBT 4 NOEL.NOPToISAV'NSTRpNSUB.NUELoN3U801309(63)
COMMON / 00@@ / MAXF,MAXB,MAXW, IPRNT

DATA Li,L2/1,2/

IPOS = 0
PO 1 I =141, 700
| B(l) = o
00 21 3 {,13000
4 A(l) = @
IF ¢ IM,LE,MSUB) GOTO 3
CALL SCANIQ ¢ NOEL.L1,L2,IP0S)

3 CALL WIND (L1)

60T0 S

ne

D S

CALL READ3 (1)

NUEL = o
00O 4 IT = 1,NSUB
LSUR = ISuB ¢ IT)
CALL SCANIG@ ¢ LSUB,L1,L2,1P08)
NUEL = NUEL + LSuB
IF ¢ NQ,LE,MAXF) CALL SETDISK ¢ Li,1P0S)
4 CONTINUE

CALL WRITY (1,NE)
CALL MERGEST ¢ L1,L2,1P08)
5 IF(IPRNT,GE,2) PRINT 20,1P0S
20 FORMAT (6X #IPOS IS » 14)
RETURN
END
SUBROUTINE MERGEST (Li.L2,1P0OS)
COMMON / suyBT ¢ NOEL,~0PT,ISAV.NSTR,MSUB.NUEL,Nsua.ISUB(&:)
COMMON / SCRY 2 IR,LP,I1,12,NR,MD,NW,S(2041)

NOEL = NOEL = NUEL
IF ¢ NOEL,.,EQ,@) GOTO 3

DO 2 I = 1,NOEL

1 CALL SEMB1 ¢ L2,2,1P0S)

CALL SEMB1 ¢ L1,1,IPOS)

IF ¢ 12,LT,MD) GOTI 1§
e CONTINUE
3 NOEL = NOEL + NSUB

CALL WIND ¢ L1)
CALL WIND ¢ L2)

LT = 11
L1 = L2
L2 = 7
RETURN
END
SUBROUTINE SCaNIg ¢ LSUB,Lt,L2,1P0S)
COMMON B(720),A(13000)

COMMON / FRNT / LD'HQ,KQ'NQL'NQ'NQR,"D].LQT(QSQ)
COMMON / 1111 R‘cRZoR“oN"oHloﬂanEONC

COMMON / aeap / MAXF.HAXBp"AXW'IPRNT

INTEGER R‘DRE,RM,WN,H‘,HE

COMMON / 2222 / LDO,LOLD(70@)

LOGICAL TESTLF,TESTRF;DISKLT;DISKEQ;SGTCOR
DATA LS , L6 / 5 v &6 /

LDO =0

002 L2 = §,LSuB
CALL READ3 (2)
CALL FORMNO ¢ NG)

TESTLF = (NQL.GT.MAXF]igR. NG ,GT,MAXF) oAND, LZ,67,1

I : , NS e v

N N e

1

e
3

TESTRF = (NQ GT MAXF sORy NUR,GT MAXF)
CISKLY = TESTRF ,AND, LZ ,LT, LSUB
DISKEQ = TESTRF ,AND, LZ ,EQ, LSUB
SETCOR = ,NGT, TESTRF ,AND, LZ ,LT, LSUB
JPOS =0
NB 29

NB = NB ¢
CALL ROWS

1
¢ NB)

CALL PRNTS(1,LZ,NB,NOTH,NOTH,LP)

IF (TESTLF)

IF ¢ NB,EQ,1)
IF ¢ MB,6T,0)

IF ¢ NB,EQ.,!)
IF ¢ DISKLT)
IF ¢ DISKEQ)

IF € R2,LT,NQ)

IF (SETCOR)
IF (TESTRF)
CONTINUE

RETURN
END

CALL SEMBLE1

(NByL2)

CALL SEMBLE2 (NB,LS)

CALL PRNTA
R{ = 2

CALL REDUCE

R = KO
CALL SETDISK
CALL SETDISK

CALL WRITY
CALL ZEROA

CALL SETCORE
CALL PRNTS

(A,B,R2,N0Q)
NB,MQ,NG)

. L6,JPOS)
¢ L1,IPOS)

GOTO 1

(2,NE)
(NE,LS5,L6,TESTLF,TESTRF)

(NQ,NGR)

¢ 2)LZ)NOTH,JPOS,NOTH,LP)

SUBROUTINE ZEROA (NE,LS,L6,TESTLF,TESTRF)

COMMON

COMMON / FRNT /
COMMON / 2222 /
LOGICAL TESTYLF,TESTRF

IF (MQ,EQ,Q)

DOt I = {,M0
B(I) = @

DO 2 I = 1,NE
ACl) = 2

LPO =9
IF (,NOT,TESTRF)

L3a@
D0 4 I = KO'NG

LEL + 1

LOLD (L) = LQT ¢

LDOD s |

B(700),A(13001)
LD, MQ,KQ,NOL,NQ,NUR,MD1,LAT(950)
LoO,LOLD(T02)

I+MDI)

GOTOo 3

GoYo S

LS = Le
L6 = LY
IF ¢ TESTLF,OR,TESTRF) CALL WIND € LS)
IF ¢ TESTLF,OR,TESTRF) CALL WIND € L6)
RETURN
END
SUBROUTINE ROWS (NB)
COMMON 7/ NOOO 7/ NO(790)
COMMON / FRNT / LO,MQ,KQ,NQL,NQ,NQR,ND1,LOT(957)
COMMON / @0@Q / MAXF ,MAXB,MAXW,IPRNT
COMMON / 1111 / R1,R2,RM,WM,H]1,N2,NE,NC
INTEGER RY,R2,RM,WM,H],H2
COMMON / 2222 / LDO,LOLD(700)
IF (NBoGT,1) GoTn
Rl = 1
R2 = MDD + 1§
RM = @
WM = 0
NE = 0
IF € NOCNR) GT,MAXW) GOTO 2
R2 = NQ
NC = NO(NQ) = NE
GOTO o
Rf = R2 ¢ |
R2 = R}
NC = NE
IT = NQ = MQ = RM
Il = R2
00O 3 I = Ii,NQ
NC = NC ¢ IT
IF ¢ NC.,GT MAXW) GOTO 4
R2 = R2 &+ 1
IT =2 IT =
GOTO0 S
NC = NC = IT
R2 = R2 = |
NC = NC = NE
HY = 0
He = @
PO 8 I = RY,R2
o0 7 J = 1,Mny
IF € LQT (J).NE,I) GoYo 7
Hi = Hf ¢ |
GOT0 8
CONTINUE
CONTINUE
IF (LDO,EG,®) ORIGINAL PAGE IS GOTO {1
DO 12 I = Ri,R2 OF POOR QUALITY
DO & J = 1,00
IF ¢ LOLD(JI,NE,I) GOTO o
H2 = H2 ¢ |
GOTO 10
CONTINUE
CONTINUE

_115

s

11 RETURN

END
SUBROUTINE SEMBLE1 (NB,L2)
COMMON B(7A0),A(13000)

COMMON / NOOO
COMMON / FRNT
COMMON / SCR1
COMMON /7 1111

NO(708)
LD,MQ,KQ,NGL,NO,NGR,MD1,LQT(950)
IR,LP,I1,J2,NR,MD,NW,S(204})
Ri1,R2,RM, WM, H1 ,H2,NE,NC

NN

INTEGER R1,R2,)RM, WM, H]| K2R pBACK,FINTI
IF (Wl LEG,Q) GOoT0 S
IF (NB LEQ,1) LOGO = A
LOGR = @
BACK = @
FINI = @
INDEC = @

{ IF (LOGO,NE,1) CALL SEMB1 (L2,2,NQOTH)
LOGO = @

CALL PRNTS(3,NOTH,NOTH,NOTH,IDEC,LP)

¢

NR

11,12

R ¢ 1

LGT (M)

LAT(M) = RM

(1,6T,R2) FINI

(T,LT,RY) GOTO

(1,6T,R2) GOTO
Hi He
B(K) B8(K)

00 3

mmTm
(1] 1]
[
 }
-
NN

]
+

S(CR)

2 00 3 M, MD

MIN@CLAT(M),LAT(N))

MAXRCLOTC(M) ,LGT(N))

NO(I) @« 1 ¢ J = WM

L+

F ¢ I,LT,R1) GOTo

F (1,6T,R2) GOTO
a(K) A(K) S(L)

a
-
W

3 CONTINUE

IF (BACK+FINI,EQ,0) GOYO0 4
LOGR LOGR
RACK BACK

|]
+ &>
e
P]

4 IF ¢ Hl ,GT,0) GoTo 1

CALL PRNTS(U,NOTH,NOTH,NOTH,NOTH,LP)

LOGO = LOGR
IF (LOGO,GT,1) CALL SEMB1 (L2,3,BACK)
5 RETURN
END

SUBROUTINE SEMBLEZ2 (NB,LS)
COMMON 5(7ﬂﬂ)ol(l?ﬂ?0)

COMMON / NOOO 7/ NO(70Q)
COMMON / 2222 7/ LDO,LOLD(7020Q)
COMMON / SCR2 / IRWLP,I1,I2,NR,MD,NW,S(204})
COMMON / 1111 / R1,R2,RM, WM, H],H2,NE,NC
INTEGER R‘;R?pRH'NH'H1'HZDR »BACK,FINT
IF (H2 LEQ,0) GOTO
IF (NB LEQ,1) LOGO = ¢
LOGR = @
BACK = 0
FINI = 9
IDEC = @

! IF (LOGO,NE,1) CALL SEMB2 (LS5,2,NOTH)
LOGO = o

CALL PRNTS(3,NOTH,NOTH,NOTH,IDEC,LP)

2

NR

I1,12

R + 1

LOLD(M)

LOLD(M) = RM

F (1,6T,R2) FINI = 1§

F C I.LT,R1) GOTOo

F € 1,6T,R2) GOTO
H2
B8(K)

bo 3

R
L
M
R
I
K
I
I
I

H2
8(K)

]
-

u
-+

S(R)

2 pC 3 M, MD

MINGCLOLD(M),LOLD(N))

MAXACLOLDCM)Y,LOLDPCN)Y)

NOCI) = I ¢ J = WM

L + 1

F O I,LT,RL) GoTo

F ¢ I1,GT,R2) GOTO
ACK) = A(K) S(L)

et T X Core 2

+

3 CONTINUE

IF (BACK+FINI,EQ,8) GOTOo
LOGR = LOGR + 1
BACK = BACK

+
—
T

4 IF (H2 GT,0) GOTO
CALL PRNTS(4,NOTH,NOTH,NOTH,NOTH,LP)

LOGO = LOGR
IF (LOGO,GY,1) CALL SEMB2 (L5,3,BACK)

S RETURN
END
SUBROUTINE REDUCE ¢ NB,MG,NQ)
COMMODN B(7A3),A(1300¢)
COMMON / NOOO / NO(CT749)
COMMON / 1111 / R1,R2,RM,WM,H{,H2,NE,NC
INTEGER R1,R2,RM, WM, H] K2

5

!]

DO 1 I = RiI,R2

L = I = RM
I0 =2 NO(CI) = I = WM
J2 s - q

IF ¢ I,6GT,MQ) J2 = MO
POt J =1,J2

JO =2 NO(CJ) » J

C =wmA(JO+I)/ACI04))

B(L) = B(L) » B(J) » C

DO § K = I,NQ

! A(IO#K) =2 ACIO®K) ¢ ACJO+K)C
RETURN
END
SUBROUTINE SETDISK ¢ L6,LPOS)
COMMON B(702),A(13000)
COMMON / NODO /7 NO(790)
COMMON / FRNT / LD,MQ,K0,NQL,NQ,NGR,MD],LGT(95Q)
COMMON / STOR / IR,LP,J1,J2,NR,MD,NW
COMMON 7/ 1111 7 RE)R2,RM, WM, Hi,H2,NE,NC
COMMON / @0Q9 / MAXF yMAXB,MAXW, IPRNT
INTEGER RI,R2,RM, WM, H],H2

MD = NQ =« MQ

12 2 Rt = |
IT =2 NQ »« MO » RM ¢ |
| 11 = 12 +
12 = 11
Nw =2 7
o0 2 I = 1I1, R2
NWw = NW 4 IT
IF (NW,GT ,MAXB) GoTO0 3
I2 s 12 ¢
2 IT =2 IT «
GoT0 4
3 NW B8 NW =» IY
(] I2 =2 I2 » |
NR 2 12 = If ¢ |
Ji = It = MQ
J2 3 I2 = MQ
Ky = 11 w» RM
Ke =2 12 = RM
Lt 3 NOCIt) w WM
Le 2 NO(CI2) ¢+ NO e I2 = WM

CALL STORE ¢ L6,LPOS,KL,L1,B,A)

00 5 I =2 K§{,K2
5 8(I)=0

00 6 I = 1,2
6 A(I)=o

CALL PRNTS(S,NOTH,NOTH,NOTH,NOTH,LP)
N8

IF (12,LT.R2) GOTO 1

RM = RM ¢ R2 = R} ¢ 1|
WM = WM & NC

RETURN
END
SUBROUTINE SETCORE (NG,NR)
COMMON B8(700),AC13000)
COMMON / NDOO / NO(730)
IF ¢ NR,EQ,Q) GOYO0 7
IF (NR = NG) 1,6,3
1 CALL SCRMBLE (NQ)
L = NR
D02 I = 2)NR
N = NO(I) =1
DO 2 J = I,NR
L = L + 1
ACL) = A(N+J)
2 A(NeJ) = 0

CALL FORMNO (NR,NO)
GOT0 7
3 IN = NR = NQ
L2 = (NRa(NR+#§))/2 = (INw(IN¢1))/2 ¢ |

0o

n
-
-

= 1,NQ
= NO = 11 + 1
2 IN ¢
L1 = NOCI) ¢ II
= L2 =« IN ¢ I1
= 1,11

P = A (Li=L)

A (Li=L) = @

4 A (L2=L) = TEMP
S L2 = L2 = 1

DO 4 L
TEM

CALL FORMNO (NR,NO)
6 CALL SCRMBLE (NR)
7 RETURN
END
SUBROUTINE SCRMBLE (NT)
COMMON / FRNTY / LD,MQ.KQ,NOL,NQ,NGR,HD%pLOT(OSO)
KKOUNT = @
IF (NQ ,GE, NT) GOYO 2
J = NO ¢
DO 1 1 = J,NT
i LOT (IeMD1) = @
2 00 4 M = KQ,NB
3 N B8 LQT(MeMD])

IF (N ,EQ, M ,0R, N ,EQ, Q) GOYO 4
11n

I I R T I I T IR

LAT(MeMDL) = LAT(NeMDY)

LAGT(NeMDY) = N
I 3 MINB(M,N)
J 3 MAXA(M,N)

CALL SWITCH (I,J,NT)

KKOUNT = KKOUNT + 1}
IF (KKOUNT ,GT, NT) STOP
GOT0 3
4 CONTINUE

RETURN

END

SUBROUTINE SWITCH (MyN,NT)
COMMON B(798),A(13v00)
COMMON / NOQO /7 NO(7v0)

C SB(M)
B(M)=B(N)
B(N)=C

MS=NO (M) wM
NSENQ(N) =N

Cc SA(MSeM)
A(MS+¢M)ZA(NS+N)
A(NS+N)=C

IF ¢ M,EQ,!) GOYO 2
]2=Mat
DO 1 I= 1,12
I1SaNO(l) =]
c SA(IS+M)
ACISeM)SACISHN)
1 ACISeN)sC

2 JisMet
IF (J1,EQ.N) GOTO0 4
JZBN.‘

D0 3 J=Ji,J2

JSENO(J)w)
c sA(MS+J)
A(MSeJ)=A(JSeN)

3 A(JSeN)=C

u IF (N,EQNT) 6OTO 6
J1eNe s
DO 5 Jedi,NT
c BA(MS+J)
A(MS+J)aA (NS+J) ARIGINAL PAGE B3
5 A(NSeJ)=C S manpl f

6 RETURN

END

SUBROUTINE BACKSUB

COMMON B(7PB),A(13000)

COMMON / SUBT / NOEL,NOPT,ISAV,NSTR,MSUB,NUEL,NSUB,ISUB(63)
DATA LS , L6 /7 S5 , 6 /

CALL READ4 (3)
IF ¢ MSUB,GT,@) GOTO0 1
CALL SOLVE ¢ 1, 1,NOEL,LE)
GOTO 4
1 LEFT = NOEL = 1
CALL SOLVE ¢ 1, 1,LEFT,L6)
CALL SOLVE ¢ 1, 2 1,L6)

DO 3 IM = 1,M8UB

CALL WIND ¢ LS)
CALL WIND (€ L6)

LT = LS
LS = Lé
L6 = LT

CALL READY (1)

DO 2 IT = 1,NSUB
LY 2 NSUR =» IT ¢
LSUB = ISuUB8 (LT)
CALL UNITED (LS,2,MD,B)
CALL PRNTB (B,MD)

e CALL SOLVE (IM,MSUB,LSUB,Lé)
3 CONTINUE
4 RETURN
END
SUBROUTINE SOLVE (IM,JM,LSUB,L6)
COMMON B(702),A(13020)

COMMON / FRNT / LD,MR,KG,NQL,NQ,NGR,MD},LOT(950)

COMMON / SCRY /7 IR,LP,I1,12,NR,MD,NW,S5(2041)

COMMON / SURT / NOEL,NOPT,ISAV,NSTR,MSUB,NUEL,NSUB,ISUB(63)
IF (LSUB.ER,Q) GOTO0 8

00O 7 LZ = {,L8UA

CALL READ4 (2)
CALL PRNTZ2 (LZ)

CALL FORMNO (NQ)
IF (KQ,GT,NQ) G0Y0 2
00 1 8 KQ,NO

20031 = 1,NQ

CALL PRNTR (B,NQ)

CALL PRNTA (A,B,MQ,NQ)

IF ¢ MO,GT, @) CALL BPASS (MO,kQ,NQ)
121

CALL PRNTB (B,NR)

400S1T1 = 1,MDH
L 3 LOY ¢ 1!
s $ (1) = B (L

IF (IMNEJM)

)
)

CALL PRNTED (2,18AV,M01,S8)

CALL UNITED (1, 1,MD1,8)
6 CALL PRNTED ¢ 1)NSTR,MD1,S)
CALL UNITED (L6, t,MD1,8)
7 CONTINUE
8 RETURN
END

SUBROUTINE BPASS (MQ,KQ,NQ)
COMMON B(708),A(13000)

COMMON / NOCL /7 NOC(T790
IF { MQ ,EQ, NG
001 I = 1,MQ

K 3 NO(I)el
0O 1 J = KO,NQ

)

1 B(I) = BCId=A(J+K)%B(J)
e M 3 MQel
1 = NO(MQ)

B(MQ) = B(MO)/A(])
IF (MOLEQ,t)
00 4 L = E'MQ
1 = Mwl
Ji = Tef
K & NO(CI)e]

00 3 J 3 J1,M0

3 B(I) 3 B(IDuA(JoK)RR(Y)

K 3 NOCI)
4 B(I) = B(I)/A(K)

S RETURN
END
SUBROUTINE FORMND (NT
COMMON / NOOO /7 NOC(70¢0

NO(1) =
L 3 NT42
DO 1 I = 2,NTY

)
)

NOCI) = NO(I=i)eL = |

RETURN
END
SUBROUTINE UNITY (NTAP
DIMENSION IRCY1)

E,IGO,NODES,I0)
12

GOTO0 6

GOT0 7

G070 2

GOTO 5

ana L

B Secie oo et R

COMMON / TRAC / NWS,NWR,NBS,NUP
GOTO (1,2) IGO
CALL IOP (2HWB,NTAPE,NODES, 1)
CALL INP (2HWR,NTAPE,1Q +NODES)
NWS = NWS ¢+ NODES ¢ 1
GoT0 3
CALL IOP (2HRB,NTAPE,NODES, 1)
CALL JOP (2HRB,NTAPE,1Q +NODES)
NWR = NWR ¢ NODES + |

RETURN
END
SUBROUTINE WRIT3 (1GO) ;
COMHON / TRAC / NHS,NNR,NBS.NUP
COMMON 7/ SURT / NOEL,NOPT,ISAV,NSTR,MSUB,NUEL,NSUB,ISUB(63)
COMMON / FRNT 7/ LD,MQ,XQ,NQL,NQ,NQR,MD1,LQT(950)
DIMENSION IDUM(956)
EQUIVALENCE (MQ,IDUM) '
GOTO ¢ {,2) IGO
CALL IOP (2HwBR,3,NSUB,64)
NWS = NWS ¢ 64
GOTC 3

LD = LD + 6
CALL IOP (2KWR,3,LD , §°
CALL IOP (2HWB,3,IDUM,LD)
NWS = NWwS 4 LD + 1|
NUP = NUP ¢ (MQ#x(MO*MQ+3xNQx*NQe3I*#MQA*NQe1)) /b

RETURN
END
SURROUTINE READ3 (IGO)
COMMON / TRAC / NWS,NwR,NBS,NUP
COMMUN / SUBT / NQCEL,NOPT,ISAV,NSTR,MSUB,NUEL,NSUB,ISUB(63)
COMMON / FRNT /7 LD,MQ,KG,NQL,N3,NQR,MD1,LOT(950)
DIMENSTON IDUM(956)
EQUIVALENCE (MG,IDUM)
GOT0 ¢ 1,2) IGO
CALL I0OP (2HRA,3,NSUB,b4)
NWR 3 NWR ¢ b4
GoYo 3
CALL IOP (2HRR,3,L0 , 1)
CALL JOP (2KHRR,3,1DUM,LD)
NWR = NWR + LD + 1

RETURN

END

SUBROUTINE WRIT4 (IGO,NE)
COMMON B(7A0),a(13025)

COMMON / TRAC / NWS,NwWR,NRS,NUP
COMMON / FRNT / LD,MG,KQ,NOL,NQ,NGR,MD1,LAT(950)
COMMON / SUBT /7 NOEL,NOPT,ISAV,NSTR,MSUB,NUEL,NSUB,ISUB(63)
COMMON / WRIT / LPU4,NBAC,NA1,NW2,NC6U,NOLD
DIMENSION IDUM(956)
EQUIVALENCE (MQ,IDUM)
G0Y0 (1,2) IGO
IR =1
LPU4SIR+LPUML
NBACsIR¢NOLD
CALL IOP(2KHWB,4,LPU4, 2)
CALL IOP(2HWB,4,NSUB, 62)
NWS = NWS ¢+ 64

@ NW = DeMQeNE+U

IR =NWw / 64
IT =IR » &4
IFC ITANE,NW) IR =IR ¢ 1
NW =IR » ¢4
NW§ =L0
IFC MQ,EQ, @) NW] =NW = 4
NW22NWeNW{eMQuwy
LPULSIR+LPUY
NBAC=IReNOLD

IF(NWaNW]oNW2nMQwy «NEo @) PRINT 100

107 FORMAT(6X %ERROR IN UNIT4w)

IFC MQ,GT, @)
IFC MQ,6T, @)

CALL IOP(ZHNE.Q.LPUA, 4)
CALL IOP(2HWB,4,IDUM, Nw{)
CALL I0P(2HWB,4,B v MQ)
CALL IOP(?HHS,«.A p NW2)
MWS = NWS ¢ NW

3 NC64=]IR
NOLD=1FR
RETURN
END
SUBROUTINE READY (IGO)
COMMON B(744},A(13000)
COMMON / TRAC / NWS,NWR,NBS,NUP
COMMON / SCRY / IR.LP.Ilan.NﬂpNOpNH,S(ZGQl)
COMMON / FRNT ¢/ LD.MO,KQ.NQL,ND,NOR,HDI.LQT(QSO)
COMMON / SUBT / NOEL.NOPT'ISAV.NSTR,HSUB,NUEL,NSUB,ISUB(OS)
COMMON / WRIT / LPUO.NBAC,Nwl,NNE,NC&A,NOLD
DIMENSION IDUM(956)
EQUIVALENCE ¢ M@, IDUM)
GOTO ¢ §,2,4) 160
i CALL 10P (2HRB,4,LPUY, 2)
CALL IOP(?HRB.“;NSUBo 62)
NWR 3 NWR ¢ 64
GO0TO 3
2 CALL IOP(?HRB,«,LPU&, 4)
CALL IOP(2HRB.0.IOUM, NW1)
IFC mp,G6T7, @) CALL IOP(2KRB,4,S e MQ)
IFC Me.GT, @) CALL I0P(2HRB,4,A s NW2)
NW 3 NwieNnw2eMO+d
NWR 3 NWR ¢ NW
3 CALL IOP(ZHSP.G.LPUO-NBAC)
NBS = NBS ¢ NBAC
GOTO §
4 CALL IOP(ZHSPpaoLPUA-NC60)
NBS = NBS ¢ NCoU
S RETURN

END

SUBROUTINE STORE ¢ NT‘PEOL9050K11L109")
DIMENSION B(1),A(1)

COMMON / 8TOR /
COMMON / TRAC /

IFC IT,NENW)

IR,LP,J1,J2,NR,MD,NW

NwS,NNR,NBS,NUP
IR 2 NW / 64
IT 2 IR » 64
IR IR ¢

NW S IR #64 » 7
NA 8 NW « NR

LPDS 3 IR ¢ LPOS

LP] LPOS
124

CALL IOP(2HWR,NTAPE,IR,7)
CALL IOP(2WHWB,NTAPE,R(K1),NR)
CALL IOP(2HWB,NTAPE,ACL1),NA)
NWS 3 NWS ¢ NW ¢ 7

RETURN
END

SUBROUTINE SEMB1 (NTAPE,IGO,LPOS)

COMMON / TRAC / NWS,NWR,NBS,NUP

COMMON 7 SCRY 7/ IR'LPoI!olZ.NR,"O.NN.S(ZQ“])

GOTO (1,2,3) 160
i LPOS = IR « LPOS
LP s LPOS

CALL IOP(2HWB,NTAPE,IR , 7)
CALL IOP(2HWR,NTAPE,S , NW)
NWS = NWS ¢ NW ¢ 7

GO0T0 4
e CALL IOP(2MRB,NTAPE,IR , 7)
CALL IOP(2HRB,NTAPE,S , NW)
NWR = NWR ¢ NW ¢ 7
: GOTO &
3 CALL JOP(2HSP,NTAPE,LP=LPOS)
NBS = NBS ¢+ LPOS
4 RETURN
END

SUBROUTINE SEMR2 (NTAPE,IGO,LPOS)
COMMON / TRAC / NWS,NWR,NBS,NUP
COMMON / SCR2 / IR,LP,I1,12,NR,MD,Nw,S(2241)

GOT0 ¢ 1,2,3) 160
1 CALL IOP(2HMWB,NTAPE,IR , 7)

CALL IOP(2HWB,NTAPE,S , NW)
NWS = NWS ¢ NW ¢ 7

GOT0 &
2 CALL INP(2HRB,NTAPE,IR e
CALL IOP(?HRB,NTAPS.s o NW)
NWR = NWR ¢ NW ¢ 7
GOYT0 4
3 CALL IOP(2HSP,NTAPE,LP=LPOS)
NBS = NBS ¢ LPOS
& RETURN
END

SURROUTINE UNITED (NTAPE, IGO,MD,B8)
DIMENSION B(1)
COMMON / TRAC / NWS,NWR,NBS,NUP
GOT0 (1,2) IGO

1 CALL IOP (2HWB,NTAPE,MD, 1)
CALL TOP (2HWB,NTAPE,B ,MD)
NWS = NWS ¢ MD ¢ 1
GOT0 3
2 CALL I0P (2HRB,NTAPE,MS, 1)
CALL IoOP (2HRB,NTAPE,B ,MS)
NWR 3 NWR 4 M§ o+ |

3 RETURN
125

) .
—_ S A Bhaaia = e e o
- . —_ D T R ——— o)

100
20e
300

10
20
30
99

10
20
)
5A
6n
99

— - o -
o =
I R T R I R R I I T IO,

END

SUBROUTINE WIND ¢ NTAPE)

CALL IOP (3HREW,NTAPE)

RETURN
END

SUBROUTINE PRNTED ¢ JGO,NUMB,MD1,ED)

COMMON 7/ poQR /

MAXF,MAXB,MAXW,IPRNT

DIMENSION EDC(1)

IF (IPRNT,EQ,Q)

IF ¢ JGO,EQ,!

IF ¢ JGO,E0,2)

GOY0 §
) PRINT 100@,NUMB
PRINT 208,NuMB

PRINT 300, (ED (1),I=1,MD1)

NUMB 3 NUMB »

1

FORMAT (6X %SUBSTR » 15)

FORMAT ¢ 6X *ELEMENT» I5)

FORMAT ¢ 18X 12FS,1)

RETURN

END

SUBROUTINE PRNTO (LZ)

COMMON NDOF(?SWG)a15(2509)0IC(ZSOB),LQ(ISB)'LOC(ISG)
COMMON NODE1,IN1(150),M1,K1,N1,NRL1,MOC1(150)

COMMON NODEZo102(150),HZ.KZ.NZ:NGEoNOCE(lSO)

COMMON / FRNT
COMMON / PRNT
NUMI = NUMI

IF (NUM1,LE,NUM2)

/ LD.“Q.KOpNQL'NQ'NQRpMDloLOT(QSO)
/ IP”'IP"IPEOIP"IPB'NUM"NU"ZOrPs
1

GOTNn 99

IF (1P@ ,EQ, @) GOTO 99
PRINT $@,LZ,NODE1,MD]
PRINT 20,M1,Ki,Nt

PRINT 30,M0,K0,NQ

FORMAT (#1a)

FORMAT (/7 6% #|L2 3% J4,6X #NODEL=w 14,6X #*MDy =w I4)
FORMAT ¢(6X #M{ B¢ J4,6X =xK{ e J4,6X *N{ s+ 14)
FORMAY (6X *MQ as Jd4d,6X *KQ 3+ J4,6X =NQ s* 14)
RETURN

END

SUBROUTINE PRNTH

COMMON NDOF(ZSOG).18(2590).IC(2599)pLO(lSG).LOC(!SG)
COMMON NoDEl,IOI(lSﬂ).Ni,Kt,Nl,NOIoNOCl(150)

COMMON NODE2,102(15@),M2,K2,N2,NQ2,M0C2(150)

COMMON / FRNT
COMMON 7/ PRNT

IF (NUM1i,LE,NUM2)

/ LD,MQ,KQ,NQL,NG,NGR,MD§,L0T(950)
/ 1PB,IP1,1IP2,IPA,1PB,NUMI,NUM2,IPS
GOTO 99

IF (1P§ ,EQ, @) GOTO 99

PRINT 10,(10%
PRINT 20,(L0

PRINT 4@, ¢M0CI(CI),In8,N]
PRINT S0, (MOC2(1),131,N2

PRINT 60, cLOC

FORMAT (// eX
FORMAT (6X
FORMAT ¢ 6X%
FORMAT ¢(6X
FORMAT (6Xx
RETURN

END

(1),131,NODEY)
(1),I=1,NODE1)

(I),Is§,N}

“IQ » 2014
*LQ » 2014
*MOCi» 2014
*MOC2» 2014
«L0OC « 20754

P Pt "l P "t "t s
O
8
@

126

TSN T———wmm— Ay E—

! SUBROUTINE PRNTZ2 (LZ)
COMMON / FRNT / LD,MG,KQ,NQL,NG,NCR,MD1,LQT(950)
COMMON / PRNT / IPQ@,IP1,IP2,IPA,IPB,NUMI,NUM2,IPS
IF ¢ NUM1,LE,NUM2) GOTO 99
IF (IP2 ,EQ, Q) GOTO 99
PRINT 1,L2
. PRINT 1@, ¢LAT CI),I=1,MD1)
11 = MDYy ¢ 1
I =2 MD1 ¢ NG
PRINT 11,(LOTCI),I=1I1,12)
1 FORMAT ¢ 66X #LZ » I4)
1@ FORMAY (6X *LAT « 2214)
' 11 FORMAT ¢ 6X ALOCT+ 2Q14)
99 RETURN
END
SUBROUTINE PRNTA (A,B8,NQ,NT)
COMMON / NOOD / NOC(45@)
COMMON 7/ PRNY / 1PQ,IPL,IP2,1PA,1IPB,HUML,NUM2,IPS
DIMENSION A(1),B(1),Q(108)
IF CIPA ,EQ, @)} GOTO 99
PRINT 20
DO {1 IsSi,NT
1 QCI)=0
PRINT 1@,(CA(C1),I=1,NT),B(1)
IF (NQ,EQ,1) GOTO 99
DO 2 K=2,NQ
IlSKn]
12=N0(K)
I3212¢NT=K
2 PRINT 1@,(Q(1),I=1,I1),CACI),I=12,13),B(K)
12 FORMAT (6X A * 17F6,0)
2@ FORMAY ¢ 7)
99 RETURN
END
SUBROUTINE PRNTB (B,NQ)
DIMENSION B(1)
COMMNON 7 PRNT , IP3,IP1,1IP2,1PA,IPB,NUM1I,NUN2,IPS
IF (IPR,EQ,Q) GOTO 99
PRINTY 10@,(B(1),I=1,NQ)
100 FORMATY ¢ 7 6X =B =® {0F6,1)
99 RETURN
_ END
SUBROUTINE PRNTS(NGO,L2,NB,JP0S,10EC,LP)
COMMON / PRNTY / 1IPO,IP{,IP2,IPA,IPB,NUML,NUM2,IPS
COMMON / FRNT /7 LD,MQ3,KQ,NQL,NQ,NGR,MD{,LQAT(950)
" COMMON /7 STOR / IR,ILN,J1,J2,NR,MDoNW
COMMON /7 1111 /7 R1,R2,RM,WM,H],H2,NE,NC

INTEGER R1,R2,RH, WM, H1,H2
IF (IPS,EQ,R) GOYO 6
GOTO0 ¢ 1,2,3,4,5) NGO
f IF ¢ NB,EQ,1) PRINT 10,LZ,MQ,NQ,NE
PRINT {S,NB,R{,R2,NC
GOTO 6
2 PRINT 30,LZ,JP0S
GOTO 6
3 IDEC = IDEC + 1
IF (IDFCL,EQ,1) PRINT 1020,LP
GOTO 6
(4 PRINT 200,LP
GOTO 6

S Il =J1 ¢+ MO

127

12 = J2 + Mg
PRINT 3@“0!10!201R1LN

1@ FORMAT
1S FORMAT
3@ FORMATY
100 FORMAT
200 FORMAT
300 FORMAT

6 RETURN
END

€ 7 12X *2% 14,3x «MQw I4,3X aNG* 14,3X «NEwx To)
(12X aNB» I4,3X #Ria 14,3X »R2» I4,3x aNCx 16)

(6X
€ 12x
¢ 12x
 12x

*Z #I3 , 3x #JPOSe I3)
*BEGINNING POSITION IS® 16)
*TERMINAL POSITION IS« Ie)
*Il*lao3!*12*!0:SX*IR*IUpSX'LPiIG)

FORTRAN

SKYLINE

APPENDIX

EQUATION

129

C

LISTINGS OF

SOLVERS

APPENDIX (.1

SKYSOL SKYLINE EQUATION SOLVER

rm13 Ry

I g
-

131

SUBROUTINE SKYFAC (A,NBEG,NEND,N,LD,V,SINGAB,
« PDCHEK,ICOND, IAFILE,ACOND,DETCF,IDETEX,NEGEIG,IFAIL)

TYPE AND DIMENSION STATEMENTS

o000

REAL ACY), V(YD)

REAL AIJ2,D,DETCF,DOTPRD,EPSMAC
INTEGER LD(1)

LOGICAL PDCHEK,SINGAB
EQUIVALENCE (AIJ2,D,DMAX)

DATA EPSMAC/7,11E=1S/

c INITIALTIZATION
IFATL=0
IDETEX=0
NEGEIG=@

SAVE ORIGINAL MATRIX IF IAFILE NE @ AND NBEG=@

OO0

NWAZTABS(LD(N+1))
IFC(IAFILE,EQ,2) GO TO 20@
IF(NBEG,NE,@2) GO TO 2¢e@
REWIND TAFILE

WRITECIAFILE) (ACJ),J=1,NWA)

C COMPUTE SRUARED LENGTHS OF UNCONSTRAINED ROWS NBEG+1 THRU N

200 NBEGP{=NBEG+1
DO 1042 I=NBEGP{,N
IT=LD(I+1)
IF(I1) 14Q0,1000,000
492 V(I)=A(II)xxp
M=]I=]
K3MAXO(NREGP1,TABS(LD(I))=Me1)
L=MINO(NEND,I)=]
IF(K=L) 500,500,1000
588 DO 800 J=K,L
IFCLD(J+1)) 80P,800,600
602 AlJ2=A(MeJ)xn?
V(I)=V(1)+A1J2
V(JI=V(J)ea1yg2
800 CONTINUE
1002 CONTINUE

FACTORIZATION SECTION
DO 4@@Q J=NBEGP1,NEND

COMPUTE KU SUPERDIAGONAL ENTRIES OF J=TH COLUMN OF (U)
IF UNCONSTRAINED

s NeXe Nel aoOnNn

JJISLD(J+Y)
IF(JJ) 4neo,urpn, 1200
1200 D=ACJJ))

JMI=IABS(LD(S))

JK3JJ=JM)

KlisJKet{

IF(KULEQ,¥) GO TO 220n¥ 39 _

po 2096 K;I,KU m_LZ_..__“"MYm

[2J=JK+K

——————

OO0 oo

1800

2009

aNeNe] a0

2200

250e@

3nen
32009

3400

o0

3592

uepe

(e Xg Nl

s N Ne)

ViK)=0,Q
II=LDC(I¢t)

IFCIT) 200n,2000,18¢0
MEMINDC(TI=TABS(LD(I)),K)m}

T1JsJIMJ¢K
V(K)=A(IJ)-DOTPRD(AIII-M).V(K-H),N)
ACIJISV(KIRACTIT)
CONTINUE

COMPUTE DIAGONAL ELEMENT D(J)
D=D=DOTPROD(ACIMI+1),V,KU)
SINGULARITY TEST

TOLROW=8 ,*EPSMAC*SQRT(V(J))
IF(ABS(D),GT,TOLROW) GO TO 25Q@
IF(SINGAB) GO TO &0@0

D=TOLROW

A(JI)=1,n/0

UPDATE DETERMINANT IF LZTCF IS NONZERO

IF(OETCF.EG.@.O) GO T0 3500
DETCFsDETCF#D
IF(ABS(DETCF).LT.!.B) GO YO 3uun
DETCF=DETCF«,0625

IDETEX=IDETEX+4

GO YO 3240

IF(ABS(DETCF).GT..%bZS) GO YO 3504
DETCF=DETCF+16,

ICETEX=IDETEX=U

GO 7O 3upo

POSITIVE DEFINITNESS CHECK (IF PDCHEK=,TRUE,)

IF(D-GT.Q.G) GO TO 494Ny
NEGEIG=NEGEIG+1
IF(PDCHEK) GO TO 6591
CONTINUE

SAVE FACTORIZATION IF IAFILE NE O AND N=NEND

IF(IAFILE,EQ,0) GO TO Su0@
IF(NEND ,NE,N) GO TO 50p¢
WRITECIAFILE) (A(J),J=1,NKA)
IF(ICONDLEQ,A) GO TO SPae

MATRIX CONPITION ESTIMATION ORIGINA, FAGE Ig
K=e OF POOR QuaTy
DMAX=0,0

DO 420@ I=1,TCOND
SET UP RANDOM RMS VECTOR IN V
CALL SKYRDM(V,NWA,Q,0,K)

SOLVE FCR V AND DO ONE CYCLE OF ITERATIVE REFINEMENT TO
OBYAIN 2%NORM RELATIVE SOLUTION ERROR IN DELTA

2

CALL SKYSOL (‘,N'LDUDOTPRD%%2-1'V'V(N‘l’01!I‘F1LE'

s NeNal

aNaNel

4200

150
200

300

° V(2eN+1),DELTA)
OMANSAMAXI (DELTA,DMAX)
CONTINUE

NOW ESTIMATE C(A) FROM LARGEST DELTA AND MACHINE PRECISION

ACOND=DMAX/((1,a4DMAX) *EPSMAC)
RETURN

ERROR EXITS
SINGULAR MATRIX(SINGAB=,TRUE,)
IFAIL=J
DETCF=0,0
GO TO S9ng
INDEFINITE MATRIX (PDCHEK=,TRUE,)
IFAIL=wy
GO TO S@¢e
END
SUBROUTINE SKYSOL(A,N,LD,DOTPRD,IQP,IBX,B,X,
o« IREF,IAFILE,V,DELTA)

TUYPE AND DIMENSION STATEMENTS

INTEGER LD(1)

REAL A(1),B(1),BI,BXFAC,DELTA
REAL RNORM,V(1),X(1),XI,XNCRM
EQUIVALENCE (BI,XI,XNORM)

INITIALIZATION

ASSIGN 31@2@ YO NEXT
KREF=0

BXFAC=0,0

IFC(I8X,EQ,2) GO TO 200
BXFAC=1,0

00 152 I=y,N

X(I)=B(1)

IF(INP,GY,2) GO TO 18a@
IF(IBX.,EQ,®) GO TO 1100

RHS MODIFICATION

DO 1A@R T=q,N
II=LD(l+})

IFCI1) 300,1000,1000

8r=g(1)

IF(BI,EQ,N,8) GO TO 1¢va
I1I==11

KSI=II+1ABSCLO(CI)) ¢t

DO 928 J=K,N

JJsLD(J+1)

IFC(JJ) 900,900,400

MzJet

IF(M) 5Q0,600,600
X(JISX(J)mA(TJ+MIRBT

GO TOo 99a@

1J=JJ=M

IFC(IJ=TARS(LDC(J))) 9Ma,928,609
X(J)aX(J)=A(CTJ)*RT

CONTINUE

CONTINUE

1100

1200
1300

1500

s Nalg)

1800
2000

s NaNel

22an

cuen

2500
2800
Inoe

aNeXg]

3100

OO0

3200

[NaNeNa)

3500

FORWARD SUBSTITUTION PaSS

00 1509 I=t,N

II=LD(I+1)

IF(II) 1200,1200,1300

X(l)=n,0

GO YO {500

IMISTIABS(LDC(I))

MESll=IMl=}
th)=xtr)-DOTPRD(A(Iﬂlol).X(I-H).N)
CONTINUE

IF(IOP,NE,B) GO TO Sudg

SCALING PASS

D0 2200 I=1,N
II=21ABS(LD(I+1))
XCI)=ACII)wX(CI)

BACKSUBSTITUTION PASS

=N

DO 3000 K:le

II=SLD(I+1)

IFCI1) 220m0,2200,2400
X(I)=BXFAC%R(1)

GO T0 2800
MIII=14BS(LD(CI))=}
IF(M,EQ,2) GO TO 2800

D0 2502 J=1,M
X(IeJ)=X(IwJ)mA(ITwd)nX(])
CONTINUE

I2lwt

CONTINUE
IF(IBX*IAFILE'EQ.") GO TO unne
GO TO NEXT, (3102,35¢@)

ITERATIVE REFINEMENT SECTION

KREFSKREF¢1
IF(KREF=IREF) 3200,3208¢,4000

CALCULATE RESIDUAL VECTOR (R)@=(B)=[A) [X) USING SKYMUL,
fR] RETURNS IN X, AND QLD (X} INV

REWIND IAFILE

NWA=TABSCLD(N+1))

READCIAFILE) (ACJ),J=1,NWA)
CALL SKkyMmuL (AyN,LD,X,V,=1,B,V)

SOLVE FOR CORRECTION (DX) (WHICH APPEARS IN X), CORRECT
OLD SOLUTION AND EVALUATE 2=NORM RELATIVE ERROR DELTA

READCIAFILE) (ACJ),J=1,NKA)
BFAC=2,0

ASSIGN 3500 TO NEXY

GO T0 1190

XNORM=G,0

RNORM=2,0

00 3800 I={,N
RNORMSRNORMeX(I)aX (1)

1?R

SR aaud A

' XCI)=v(IYeX(I)
XNORM=XNORM+X (T)wX (1)
3RAUY CONYINUE
DELTA=g,Q
IF (XNORM,NE,0,0) DELTA=SGRT (RNORM/XNORM)
IF(XREF=4) 3100,3103,4000

CONSTRAINED RMS RECOVERY

s NeNel

4oge IFC(IBX,LE,2) GO TO SQ¥9e
DO 48PC I=91,N
II=LDCI+)
IFeIr) 4200,4200,u890

4200 IMI=IARS(LD(I))
MzellwIMI=]
BCI)=DOTPRD(ACTIMI#1),X(TaM),M)
00 4600 Jsi,N
TJ=TABS(LDC(J+1)) 4=
IF(IJ-ABS(LD(J))) 4602,4600,u84p00

44en R(IN=R(I)+ACIJ)=X(J)

4697 CONTINUE

4R22 CONTINUE

S5P@¢ RETURN
END
SUBROUTINE SKkymyL (A'NnLDoxl‘chOPrB'R)
OOUBLE PRECISION AX(1),A1J,AX]
INTEGER LD(1)
REAL AC1),B(1),X(1),R(1)
DO 2028 I=1,N
II=TARS(LD(I+1))
AX(I)=DBLE(A(II))tDBLE(X(I))
M=IIw=TABS(LDCI))m]
IF(M,EQ,?) GO TO 20ve
DO 15¢0 K=1,M
RERE
ATJ=A(Il=K)
AX(I):AX(I)*AIJ*OBLE(X(J))
AXCJ)=AX(J)+ATJI*DBLE(X(I))

1502 CONTINUE

2792 CONTINUE
IF(IopP) 2500,5090, 3500

250@ DO 2829 I=1,N
AXI=AX(I)
R(I)=Xx(I)
X(IY=SPDBLECR(I))wAX]
IF(LDCTI+1) ,LE,2) X(I)=@,

2B@A CONTINUE
GO Y0 Snng

35e9 DO 38pe I=1,N
R(I)=DBLE(R(I))=AXC(])
IFCLD(I+1),LE,@) R(I)=0,

380@ CONTINUE

SAB? RETURN
END
SUBROUTINE SKYROM (VoN,VMEAN, IRDM)
REAL V(N)
C=VMEAN=Q,500
IF(IRDM,NE,B) GO TO k1]
IX=26903

3 IRDMs]
i 300 DO S5¢¥@ I={,N

lx=M00(2718!tIX+l3089.65536%37

R T

XsIX

V(I)=,15258789E=unX+C
S0@ CONTINUE

RETURN

END

GASP

APPENDIX C.2

COLUMN

EQUATION

SOLVER

PROGRAM MAINI ¢ INPUT,CUTPUT, TAPEYL, TAPE2, TAPE3, TAPEY
. o TAPES, TAPEG, TAPET,TAPES)

COMMON NDOF (1441)
COMMON / A / 10(4),NODES,JR(4),S(8,8)
COMMON 7/ SUPORT ¢ 1BD(4)

00 ‘9 I=1,8
19 CALL IOBIN ¢ 6HREWIND,I)

READ 100.NDFRE.NODES.NDIVZ¢NOIVY;NDIVX,lOoNOSP
NOELENDIVY#ANDIVX
NOPTa(NDIVY+1)#(NDIVX+1)
PRINT ZﬂﬂpNOPT.NDFREoNOELoNODES.NDIVZ,NDIVYoNDIVXoIO:NOSP

CALL IOBIN(SHWRITE,6,NOPT, 1)
CALL IORIN(SHWRITE,»6,NOEL,1)
CALL IOBIN(SHWRITE,6,NOSP,1)

1 NOUOF (I)=NDFRE

CALL IOBIN(SHWRITE,6,NDOF,NOPT)

READ 1@¥,J0
PRINT 3040,J0
NPIBNDIVYe+l
DO 3 Ixsi,NOIVX
JAC1)3(IX=1)*NPL4+]
JO(4)=IR(1)+1
Je2)=J0(1)+NPY
JQ(}):JQ(“)&NPI
D0 3 1Y=1,NpIVY
Do 2 1=1,4
e IO(IN=JR(I)eTYm]
CALL IOBIN(SHWRITE,S,1Q,4)
3 CONTINUE

M 3 NODES#NDFRE

00 S I=1,M
00 § JUsy,mM _
S S(I1,J)=!,0Ew20

00 6 I=q,mM
6 8(1,1)=1,0

00 7 LZ=1,NOEL
7 CALL IOBIN (SHWRITE,s6,S5,64)
DO 8 1=1,NOS3P
READ f0@, IBD
8 CALL I0BIN (SHWRITE,6,I80,4)

CALL SECOND ¢ T)
CALL JORINFO(8,J1)

CALL GASPY (10)
CALL JORINFO(B,J2)

CPIFLOAT(J2eJ1) /1000, pet |4 0 INTENmONRLLY DLAME
—) 141 S
e ——— e . R B R R T,

CALL TIMEX (©,0,7)
PRINT 4RQ,T,CP
420 FORMAT(oX #TIME FOR GASP & Fb6,2/7X » CP FOR GASP » F6,2)

100 FORMAT (1213)

200 FORMAT (»ilx Sx #NOUPT » IS/
6X =NDFREw ISy
6X #NOEL = 1S/
&Y =NODES» IS/
6X aNDIVZe IS5/
6X aNDIVY® 1S/
6X aNDIVXe IS/
6X »]I0 * IS/
6X aNQSP » 1%)

300 FORMAT (/// &x »JQ * 815)

END

SUBROUTINE GET (01,02,043,ud,L8,L0,L1,NUM)
DIMENSION LO(5004),L0D(5060)

COMMON / G / 1GET(26)

INTEGER ©1,02,03,04

CALL IOBIN (4HREAD,4,IGET,26)
Qi13IGET(1)
G23IGET(2)
Q33IGET(3)
QUsIGET(4)

Ll = NUM+t
NUMBNUM + Q3

11=4
12311403

D0 1 L=1L1,NUM

1131141
I12sl2+t

LOC(L)SIGET(IY)
1 LO(L)SIGET(12)

RETURN
ENOD
SUBROUTINE TIMEX (YI[,NUM,T1)

IF (NUM,EQ,@) NUM = |
CALL SECOND (T2)

Ty 3 T2 » 14
IF (11,ER.9) GOTO 10

FAC 3 NUM
FAC 2 C 71 / FAC) » {,UE6

PRINT 1@03,1I,NUM,T1,FAC

* 100 FORMAY (- 6X #I1 » IS ,

o X aNUM o IS ’
. 2X *T1MEs F9,2,
. eX #FAC #» F1S5,2)
10 RETURN
END
SUBROUTINE GASP1 ¢ In)
COMMON IB(l“Ol)oJBtlaﬂl)'NOOF(lﬂﬂl)oIBPT(l““l)oR(QBZS)
COMMON 7/ A / IG(G).NLOES;JO(G).S(B,B)
IF ¢ 1I0,67,0) PRINT {1’

CALL WIND ¢ 5)
CALL WIND (6)

CALL loBIN ¢ UHREAD,6,NOPT,1)

CALL IOBIN ¢ 4HREAD,)6,NOEL,1)

CALL IO0BIN ¢ 4HREAD,6,N0SP,1)

IF (10,6T,2) PRINT 210,NOPT,NDEL ,NOSP
CALL lOBIN ¢ 4HREAD, 6, NDOF ,NOPT)

IF (10,6T,0) PRINT 200

IF (10,6T,8) PRINT 220, (NDOF(I),1=1,NOPT)
NOEQ = o

00 2 t=1,NOPTY

e NOEQ = NOEQ + NDOF (¢ I)

IF (10,6T,@) PRINT 232,NOEQ
IF ¢ 10.6T.0) PRINT 2ue

00 4 Lzs1,NDEL

CALL IOBIN (4HREAD,S,10,4)
IF (10,67,@) PRINT Z“U'LZoﬂooiso(IQ(I)rI'laNOOES)

00 3 JJ={,NODES

J s IR ¢ Jg)
I8 (J) = I8 (J) ¢ 1

DO 3 It=1,NODES

I = 10 ¢ 11)

IF € 1.,LT,J) GoTn 3

L3 (=) et

IF (L,GT,IBPT(J)) I3PT (J) = L

3 CONTINUE
4 CONTINUE
Jl =

00 6 I=t{,NOPT

IIi-.i5gﬁn.ll------:________:______1--lsa;_————;—————;————;——» Y P S T .

Je =)t NOOF (¢ () et
X =18 (1)

+

00 S JaJg,J2
RCJ) =x

J1 2 J2 ¢ 1

CALL I0BIN (SHMWRITE,2,R,NOEQ)

IF (10,6T,0) PRINT 240

IF ¢ 10,6T,0) PRINT 250, (IB (I),1=1,NOPT)
IF ¢ 10,67,0) PRINT 220

IF ¢ 10,6T7,0) PRINT 269, (IBPY(1),I=1,NOPT)
IF ¢ I0.67,0) PRINT 2020

CALL WIND (5)
CALL WIND ¢ 2)

CALL DECOM ¢ NOPT,IT,I10)
iF (10,67,0) PRINT 278,17

CALL SECOMD ¢ T1)
CALL JOBINFO(B,J1)
CALL SEARCH (MOEL,NOPT,$1,10)
CALL JOBINFO(8,J2)
scPH=FLOATtJ2-J1)/10a9.

CALL TIMEX BoA, T)

CALL 3ECOND € T2)
CALL JOBINFOC(S,J1)
CALL FORMQD ¢ NOEL,NOPT, 10)
CALL JOBINFO(8,J2)
FCPDSFLQAT(JZ-JI)IIGHB.

CALL TIMEX ¢ 2,2,72)

CALL SECOND ¢ T3)
CALL JOBINFO(S,J1)
CALL FORMDS ¢ NOSP, IT,10)
CALL JOBINF., 8,J2)
FCPS2FLOAT(J2-J1)/1000,

CALL TIMEX ¢ @,0,T3)

CALL SECOND ¢ T4)
CALL JOBINFO(B,J1)
CALL REDUCE ¢ NOPT,MOEQ,IT,I0)
CALL JOBINFOC(8,J2)
RCPE=FLOAY (J2=J1) /1000,
CALL TIMEX (¢ @,0,T¢)

CALL SECOND (TS5)
CALL JOBINFO(CS,J1)
CALL SOLVE ¢ NOPT,MOEQ, 10)
CALL JOBINFO(B,J2)
SCPEIFLOAttaa-Jl)Ile@n.

CALL TiMex (2,@,75) ORIGINAL ag¢ s
OF POOR QuaLTY

PRINT 300,T1,SCPH

R)

PRINT 44@,T2,FCPD
PRINT S00Q,T73,FCPS
PRINT 600,Tu,RCPE
PRINT 800,75,SCPE

309 FORMAT (6X *TIME FOR SEARCH® Fb6,2 /
‘ a 6X » CP FOR SEARCH® F6,2)
P‘ 480 FORMAT (6X *TIME FOR FORMQD* Fb,2
‘ . 6X » CP FOR FORMUD* F6,2
500 FORMAT (6X *TIME FOR FORMDS* Fé,2

. 6X % CP FOR FORMDS* F6,2
680 FORMAT (6X «TIME FOR REDUCE® Fb6,2

. 6X %« CP FOR REDUCE* Fb,2
802 FORMAT (6X *TINE FOR SOLVE * F6,2

. 6X » CP FOR SOLVE » F6,2)

NP N N N

200 FORMAT (#iw 10X %,40040GASPY,,0q0e®)

212 FORMAT (6X aNOPTw 157
6X XNQELW 157

. 6X *NOSP* IS5)
220 FORMAT (6X *NDOF* 30I3)
230 FORMAT (6X =NQEQw 15)
24w FORMAT (oX #L.Zn I5,5X *NODES* IS,5X »IOw 2013,5X)
250 FORMAT (6X «I8 « 3213)
26@ FORMAT (6X »IBPT» 3213)
278 FORMAT (6X »IT» 15)

RETURN

END

SUBROUTINE DECOM (NGPT, IT,70)
COMMON 18(1441),J8(1441),NDOF(1441),IBPT(14a1)
COMMON /7 R / T1,12,K1,K2,M0
DIMENSION IC(5)
EQUIVALENCE (It1,IC)
Ip 1
I7 1
I1 = 1§
I2 = IBPT C 1)
L L=1IP + IBPT (1P) =»
IF ¢ LolLToNOPT) CALL UPOOF (L,IP,K1,K2,M0)

CALL IOBIN (SHWRITE,3,IC,S)

IF € 10,67,8) PRINT 19,11,12,K8,K2,M0
IF (LoGE,NOPT) GOTO 4

ICHEK = JBPT (IP)

2 IU & IBPT(IP+1)=TCHEK
IF ¢ IU,GE.,®) GOTO 3

ICHEK = ICHMEK = 1

IP =2 IP ¢ 1
12 = 12 = |
GOTO 2
3 Il = 12
I2 3 12 ¢+ U

wm_«wﬂ_-...4.-_.“..“.‘.._.‘“,::"-_‘;:5..»;%.,&:-.;.‘___ﬂ

IP = Ip
17T = ITv

+ <+
gt

GoTo 1

10 FORMAT (6X *Ilx 16,

. eX =I2» 16,

. 2X »Ki® 16,

» ax xK2w 16’

. 2X *MOw 16)
4 RETURN

END

SUBRQUTINE UPOOF (L.IP,K1,K2,M0)
COMMON 1B(1441),JB(1441),NDNF(1044UY),IBPT(1441)

ICHEK = IBPT (IP)
ID = 1P
X1 = NDOF C ID) + 1
K2 = @
MO = |
bo § J=10,L
1 K2 = K2 + NDOF ¢ J)

2 Iu = IBPT (ID+1) = ICHEK
IF ¢ IU.GE.@) GOTO 3

ICHEK = ICHEX = |
ID = ID ¢+ 1
K1 = K1 » NDOF (¢ ID)
MO = MO + |
GOTO 2
3 RETURN

END

SUBROUTINE SEARCH (NDEL,NOPT,I3ANDP,IO)

COMMON I3C1441),J8(1441),NDIF(1441),LAC11,51),LD(41)
COMMON /sAy 1Q(4),NODES,J0(4),S(8,8)

DO { J=1,NOPT

1 Ja(J) = 18(J)
IF (10,G7,1) PRINT 224
209 FORMAT (§iH1 SX »SEARCH=)

0O 13 I=1,IBANDP
Lo (1) =2
00 13 J=t,51
13 Lac1,J3=n
IK = 1

0O 11 LZ31,NOEL
CALL I0BIN (4HREAD,S,10,4)
DO 3 II=1,NODES
I =1G(11)
I8(I) = IBCI) = 1
DO 3 JJ=1,NODES
J = I0¢JJ) » 1K 4 1
IF € 16CJJ),GT,I) GOTy 3
DO 2 LL=1,IBANOP |
IF € LACLL,J)oEQ,Q) LACLL,J)st
IF ¢ LGCLL,J)4EQ,1) GOTO 3
2 CONTINUE

3 CONTINUE

IF ¢ IBCIK)L,EQ,Q) CALL ORDER ¢ IK, IBANDP,I0,NOPT)

PRINT 379,L2
379 FORMAT(SX,»| 2%,16)
11 CONTINUE

CALL
CaLL

WIND (4)
WIND € S)

RETURN

END

SUBRGUTINE ORDER (IK,IBANDP,10,NOPT)
COMMON IB(1441),7B(1441),NDIF(1441),L0€11,51),L0C11)
COMMON / G / IGEY(26)

4 Do S5

S I7
6 DO

®oun

po 7

I=1,IBANDP
IF C LR(1,1),.,EQ,@) GOTO o
1

I=21,I7

MIN = LOCI,1)

Loc =1

JI,IT)

IF € LBCJ,1),GT,MIN) GOTO 7
MIN = LG(J,Y)

LOC 5 J

7 CONTINUE

LacLoCc,1)
Lac 1,1)

LacI,1)
MIN

8 CONTINUE

DO 9

LO(1) = {
IF € 1T,E@,1) GOTO 14
L=2,1IT
= LQlL=1,1)
LDCL) = LD(L=1) + NDOF(I)aNDOF(IK)
I = LocIT, 1)
MO= LDCIT) ¢ NDOFCI)DANDOF(IK) = |
IF (10,6741) PRINT 1300,IT,MD
IF (10,6T,1) PRINT 1202, (LA(I,1),1=1,IT)
IF C I0.GT41) PRINT 1258, (LDCT), I=1,IT)

IGET(1)=JB(IK)
IGET(2)=NDOFCIK)
IGET(3)=1IT
IGET(4)=Mp

I1=d
12sIi+IT

DO 90 1=4,IT

90

IGET(I+11)=L0(I,1)
IGET(I+I2)=LD(I)
CALL IO0BIN (SHWRITE,d4,IGET,26)

IF ¢ IK,EQ,NOPT) GCTO 12

DO §0 J=1,50
DO 40 I=1,IBANOP

10

LACT,J) = LOCI,J¢1)
IK =2 IK ¢ 1
IF (1BCIX),EQG,®) GOTO &

13692 FORMAT (SX «MQw 15 /

SX #MDw IS)

1200
1250

FORMAT (5X »LQG» 1615)
FORMAT (SX »LD+ 16I5)

12 RETURN

END

SUBRQUTINE FORMQD (NOEL,NOPT,I10)
COMMON IB (335),NOOF(335),MQ(335),MD(335),LQ(5080),L0(5024),
o« DC37000)
COMMON /A/ IQ(4),NODES,JQ(4),5(8,8)
INTEGER OUM
IF ¢ 10,G7,0) PRINT 200

200 FORMAT (1H) SX *FORMGD#*)

DO

0o

IF

Do

oo

Do

IK = @
NUM = @
DUM 3 ¢
JOUY =
L2=1,NDEL

CALL IOBIN (4HREAD,S,I10,4)

CALL IOBIN (4HREAD,6,S 164)
J = IQ(1) =« IK

JJa1,NODES

K310 (JJ) = IK

IF (K4GTo,J) J =K

CONTINUE

IF (J,GE,JOUT) CALL EXPAND (IK,J,JCUT,NUM,DUM)

10,6T7,0) PRINT 1149,LZ,NUM,DUM

JJ=1,NODES
K310 ¢CJJ) = IK
J@ (JJ) = NDOF ¢ K)

II=1,NODES

I 3 10C(I1) ~ IK

I8CI) = IB(I) = |
JJ=21,NODES

J = IQ(JI) = IK

IF (J,GT,1) GOTO 1

CALL FIND1(I,J,LOG,LOD)
CALL ADDS (II,JJ,LOD)

1 CONTINUE

2 IF € 18(1),6T.2 +OR, IK,EQ,NOPY)

LT = Mmp € 1)
CALL IOBIN (SHWRITE,7,D,LT)

CALL SHRINK ¢ IK,1,JOUT,NUM,DUM)

GoTo 2

4 CONTINUE
CALL WIND (3)
CALL WIND (4)
CALL WIND (7)

o

148

1149 FORMAY (¢ SX =2 * 1S,
SX «NyM =« IS,
° 5X xDUM » 15)
RETURN
END

SUBROUTINE EXPAND (IK, J,JOUT,NUM,0UM)

COMAON IB(335),NDOF(335),MG(335),MD(335),1.0(5080),LD(S030),
s D(37020)

INTEGER DUM

00 3 N=JOUT,J

CALL GEY ¢ IBCN),NDOF(N),MQ(N),MD(N),LQ,LD,L1,NUM)

DO § LsLi,NumM
i LadL) = Lo(y) = IK
LY = DUM +
DUM = pUM ¢+ MD(N)
DO 2 L=L1,DuM

e o(L) =0,0

3 CONTINYE
JOUT = J ¢
RETURN
END

SUBROUTINE FINDIC I,J,L00,L0D)
COMMON IB(335),NOOF(335),M0(335),MD(335),LQ0(5002),1.D(5000),
o D(37000)

LOG

9
LoD a
0

L
IF (J,EQ,1) GOTO 2
M2 = J=i
DO l M=1'H2
L s L + MQ(M)
1 LOD = LOD + MD(M)
2 L1 =L ¢+ 1
L2 = L + MQ(J)
DO 3 Li=Li,L2 ,
IF C LACLL) EQ,I) LOO = LL
3 CONTINUE
LOD = LNDCLOG) + LON
IF € LNQ.E0,Y) PRINT 9¢,1,J,L0Q,L0D
90 FORMAT ¢ 5Xx »ERROR IN FIND* / SX,415/5X,215)
RETURN
END

SUBROUTINE ADDS (¢ II,JJ,L00)
COMMON 18(335),NDOF(335),M3(335),MD(335),L.0(5008),LD(5200),
. D(37008)
COMMON /A/ 1QC4),NODES,JRC4),S(8,8)
Ml =3
IF (I11,EQ,1) GOTO 2
31 bl
0 =1,]
1 M1 = My + Jacl) ORIGINA. . .3E (s
2 M2 =2 Ml ¢ JO(II) =« 1 OF POOR 0'1a1 ~
Nif B
1IF (JJ,EQ,1) GOTO 4
J2 = JJ = o
DO 3 J’loJZ
3 Nt = N§ ¢ JR(J)

149

4 N2 =3 N1 ¢ JOCJJ) = |
00 S M3My ,M2
00 5 N=N1,N2
D(LOD) = DCLOD) ¢ S(M,N)
5 Loo 2 LOD ¢+ 1
RETURN
END

SUBROUTINE SHRINK (IK,M0, JOUT,NUN,DUM)

COMMON IB(S3S).NDOF(335).N0(335)'MD(335)pLQ(SGGO)pLD(SOBB).
o D(37000)

INTEGER OUM

IT = MO ¢ 1
LT = Mp ¢ 1§
K =9

J1 3 MO ¢+ 1§
J2 s Jour - |

00 2 JsJ1,J2
K=K ¢ 1
I8(K) = 18(CJ)
NDOF(K) = NDOF ¢J)
MA(K) = MQ(J)
2 MD(K) = MD(J)
K =20
00 3 J= IT,NUM
K = K¢ |
LA(K) = La(y) = MO
3 LO(K) = LD
K =0
00 4 J=LT,0uM
K=K+ 1
4 0(K) = D(J)
JOUT = JOUT » MO
NUM = NUM = IT +1
DUM = DUM = LT ¢ 1
IK 2 1K ¢+ MO
RETURN
END
SUBROUTINE FORMDS (NOSP,IT,I10)
COMMON NDOF(3SS),M0(SSS).ND(SSS).LG(SWOG),LD(SGOB),D(37OBG).
s DS(100)
COMMON /R/ I11,12,K1,K2,M0
COMMON /SUPORT/ IBD(4)
DIMENSTION Ic(5)
EQUIVALENCE ¢ I1,IC)
INTEGER DUM,ROW,RUN

) +
) + 1

IF (10.6T,0) PRINT 2000

Ik = 0
NUM = 9
DUM = 0o
ROW = 9
CALL IOBIN ¢ UHREAD,6,18D,4)
RUN = |
DO § IRsy,IT

CALL TOBIN (4HREAD ,3,IC,5)

L1, W—

IF

CALL I0BIN ¢ SHWRITEoioIC05)

CALL EXPLOD C(IK,NUM,DUM)
IF ¢ 10,6T,9) PRINT 3000,IR,NUM,DUNM
CALL STORE (NOSP,RUN,RQOW)

IR(ERLIT) GoOTO 1
CALL COMPACY (NUM,DUM)

1 CONTINUE

LIRS

WIND ¢ 1)

2809 FORMAT (¢ »| FORMDS »)
3000 FORMAT (SX #lR# I6,2X =NUMx I6,2X *DUM* 16)

RETURN

END

SUBROUTINE EXPLOD (IK,NUM,DUM)

COMMON NDOF(335),HQ(335).H0(335)pLO(SOQG)pLD(S@UU)'D(379Q0)'
o DS(1292)

COMMON /Ry It,12,K1,K2 ,M0

INTEGER QUM

0o 3

00 1

N=11,12
CALL GET ¢ IBONDOF(N)QMQ(N)IMD(N)ULQOLDOLIONUH)

L!Ll, NU"

LOCL) = LeeL) = 1k
Le = DuM + |

DUM = DUM + MND(N)

LIM=DUM=L 241
CALL T0BIN ¢ 4HREAD,7,D(L2),LIM)

CONTINUE

IK = IK + Mo
RETURN

END

SURROUTINE STORE (NOSP,RUN,ROW)
COMMON uporcsss).Mocsss).Mu(335).Ln(seue),Locsaoo),o¢37eaey,
DS(109)
"COMMON 7 SUPORT / 18D(4)
COAMON /R/ 11,12,K1,K2,M0
INTEGER ROW,RUN

00 9
Do §
D0 2

I=11,12

MBAND = ¢

Jei,1

MBAND = MBAND ¢ NDOF (J)
J=1,1

Ji =

CALL FIND2(I,J,L00,L0D)
IF (L0OG,67,80) GOTO 3
MBAND = MBAND = NDOF (J)
NWORDS = MBAND®NDOF ()
K31 ,NWORDS

DS(x) = ¢,0

151

-y
Seveercammmanas gL Ao

Ml 3 |

00 6 J= J1,1
CALL FIND2C I,J,L0Q,L00)
IF (LOG,EQ,@) GOTO &
M2 = M1 + NWORDS « MBAND
NJ = NDOF(J) = |

00 S M=Mi,M2,MBAND
N2 = M ¢ NJ

DO S5 N=M,N2
DS (N)=DS (N) +D (LGD)
S LOD 3 LOD + |
6 M1 = M1 ¢ NDOF ¢ J)

ROW = ROW ¢ {
IF (ROW,NE,IBD(§1)) GOTO 8

M1 = MBAND =« NDOF(I)
M2 = NWORDS = NDOF(I)
LOC = |

00 7 M = M1,M2,MBAND
IF ¢ IBDCLOC+1),GT,2) DS(M+LOC) = 1,659
7 LOC = LOC + |

IF € RUNLT,NOSP) CALL TUBIN (UHREAD,6,18B0,4)
RUN = RUN ¢ 1

8 CALL I0BIN ¢ SHWRITE,1,NDOF(I),1)
CALL IOBIN (SHWRITE,1,NWORDS 1)
CALL IOBIN (SHWRITE,{,DS o+ NWCRDS)

9 CONTINUE
RETURN
END

SUBROUTINE FIND2(I,J,L00,L0D)
COMMON NOOF(335)0M0(335)0"0(335)0LQ(5999)pL°(5390)00(373ﬂ0)'
o DS(10C)

L0Q = @
LoD = o
L =20
IF (J,EQ,1) GoTOo 2
M2 3 Jei
DO { M=y,M2
L B L + MQ(M)
1 LOD = LOD + MD(M)
e L1 2L + 1
L2 s L + MOCJ)
00 3 LLsLt,L2
IF (LOCLL)EQG.I) LOO = |L
3 CONTINUE -
LOD = LD(LOQ) ¢ LOD
RETURN
END
SUBROUTINE COMPACT (NUM,DUM)
con?o: NDOF(SBS),MQ(335).MD(SSS).LO(SOOG).LD(SQOBJ.0(379031,
o DS(100)
COMMON /R/ I1,12,K1,K2,M0
INTEGER DyM
IT = |
LT =

k) 7 _ 152
iE:;;;:-n--ﬁ.-a-hn-H—-un-N----ﬁIu.-ﬁ-lilﬂiiiunmunﬁﬁ_-—u

00 § J=1,M0
IT2 1T + MQ(CJ)
1 LT=s LT ¢ MDCJ)
K =20
J1 = MO ¢+ 1
Je = 1o

A 00 2 J=J1,J2
K =K ¢ 1
NDQF (K) = NDOF (J)
M@(K) = MQ(!3
2 MD(K) = wuD(J)
K =g
3 J3 IT,NUM
K = K¢
LA(K) = LaCy) « MO
3 LOCK) = LDy
K =3 0@
00 4 JsLT,DUM
K 2K ¢« 1
q D(K) = D(J)
NUM = NUM = IT 1
DUM = DUM = LT ¢
RETURN
END
SURRQUTINE REDUCE (NOPT,NOEQ,IT,10)
COMMON 0(33000)pJD(30U)aKD(SbO)."B(S@“)oNU"
COMMON /R / 11,12,K1,K2,M0
COMMON / TRANS / DS(139)0N00F0”05LoIB.LCPJ(IQ“!)
DIMENSION IC(S)
EQUIVALENCE ¢ I11,1C)

(4]
[}
W

LoC = o

Mt = 1§
LY =)

DO 4 IR=y,1T
NCAL=0
CALL SECOND (¢ 01)
CALL IOBIN ¢ 4HREAD,1,1C,5)

c IF ¢ 10.67,2) PRINT 24V, IR, 11,12

0o 3 II=It,12
CALL INITAL (NloLlpMO,NZpLD.LBpNDOF'NOELaIBJ
L 2 IB « NOOF & 2
IS a3 Kp(MD)
ILS = Jp(MD)
ILT = JD(MQ)
IE = «JD(IS+1) = IS + KD(CIS+1)

IF (I8 ¢ NDOF eNEo 3) GOTO 10
D CILS)=0DCILS) /D ¢ ILS=t)
D (ILS+1) = SORY (D C ILS ¢+ 1) =« 0 ¢ ILS)#n2)
NUM =

Goro 2

| 153 | _ 1
NP ot

10 NUM = 0
IF (18,GT,NDOF) GOTO 1

NUM = @

DCILS) = SGRT ¢ D(ILS))
IF (NDOF,ER, 1) GOTo 2

I =2 ILS ¢ NDOF

D(I) = D(CI) 7 N(ILS)

D(I+1) 3 SGRT (D(T¢1) = D(I)awx2)
ILS = ILS ¢+ 2#NDOF

L=L ¢2

NUM = NUM ¢ |

IF (NDOF,EQ,2) GOTH 2
1 CALL SECOND (T1)
CALL CHOLG ¢ L,IS,ILS,ILT,18,1E)
c CALL TIMEX € II,NUM,Tt)

2 NCAL = NCAL + NuUM

LOC = LOC + 1}
L =@

00 20 N=Lh,L2
L=L «1
20 DS (L Y=0DC(CN)

CALL IOBIN (6MWRITER,8,0S,123,LCFJ ¢ LOC))

3 CONTINUE
IF € J0,67,0) PRINT 300,L2

IF € TRGLTGIT) CALL UPDATE (Ki,K2,Mt,L1)
CALL TIMEX (IR,NCAL,n1)

4 CONTINUE
CALL WIND ¢ 8)

1900 FORMAT (wia 5X «REDUCEw)
208 FORMAT («iw S5X aIR» 15,4X *Iix IS,4X =72« 15,7)
300 FORMAT (/ Sx #STORAGE FOR D+ 17 7))

RETURN

END

SUBROUTINE INITAL (Hl,L1,MD,M2,L0,L2,NDOF,NOEL,18)
CAMMON D(S3ﬂ00);d0(3¢0).lo(3ﬂﬂ).HB(SBB)

c THIS SUBROUTINE ESTABLISHESS De=l{,L2,AND JINIKD,MBeeM] N2
Mo = My
Lh = |t

CALL T0RIN ¢ UHREAD,1,NDOF,t)
CALL TOBIN (W4WHREAD,1,NOEL,1)
I8 = NOEL /NDOF

. 154 .
R e R e e

Ll ¢ NOEL = |

LIMS| 2l 14
CALL IOBIN (UHREAD,1,DC(L1),LIM)

Me = M] ¢ NOOF = |

L1 = L1 = I8

0Ot M=Mt,M2
L1 =Ly + IB
JO(M) = 1
KD(M) = 42 « IR

1 MB(M) = IR

ML = M2 ¢ 1

Ll = Ly « I8

RETURN

END

SUBROUTINE CHOL4 € L,IS,ILS,ILT,MBAND,IC)
COMMON D(330029),JD(30Q),KD(3¥8),MB(30€) ,NUM

00 4

Do 2

bo 1

co 3

I=1LS,ILT,MBAND

L
v

1D
J1
Ja

DI

L+ 1
IS+ 1
1 ¢« lE
I ¢+ ¢
1 + L

NCL) 7 D(1=1D)

J=J1,J2

M

IC
10

LK
IS« KD(M)
I = JO(M)=IC

K1
IF (IC.LT,0) Ki
Ke

Ki=IC
J =9

8UM = 9,0

K3K1,kK2

NIIM 8 NUM ¢ |

SUM =2 SUM ¢ D(K) » D(K=ID)
D(J) = (DCJI=SUM) 7 D(J=ID)
SUM = @,0

K3l,J2

NUM 3 NUM ¢ |

SUM 3 SUM ¢ D(R)aD(K)

D(J2+1) = SQRT (D(J2+¢1)=SUM)

RETURN

END

SUBROUTINE UPDATE (I1,I2,M1,L1)
COMMON D(33000),.10(322),K0(320),H4B(321)

I3 3 It »
NUM = 9

2

100
260
3a0
409

00 2 IsIy,12

IC = KD(I) = I3
Ji 2 Jo(1
IF ¢ ICLTe?) J1 = Jt « IC
J2 = ID(1) + MB(T) = 1

00 1 J=Jy,J2
NUM = NUM ¢ |
D(NUM) = D(J)

Ls1a]13
JOCL) 3 NUM ¢ J1 = J2
FOCL) = KD(I) = 13
IF (¢ IC,LT,0) KD(L) = ©
MB(L) = MB(I])
IF € IC,LT,®) MB(L) = MB(L) = I3

CONTINUE

Ml B3 M) = I3
LY =2 NUM ¢

RETURN

END

SUBROUTINE SOLVE (NOPT,NUER,I0)
COMMON R(4323)

CALL IOHIN ¢ 4HREAD,2,R,NOEQ)

IF ¢ 10,67,0) PRINT 100

IF (10,67,8) PRINT 200,(R(I),121,NOER)
CALL SECOND (T1)

CALL FPASS (NOPT,JE)

CALL TINMEX (©,0,T1)
CALL SECOND ¢ T2)

CALL BPASS (¢ NOPT,JE)
CALL TIMEX ¢ @,0,7T2)

IF ¢ 10,6T7,80) PRINT {00
IF (10,67,0) PRINT 2P0, (R(I),I=1,NOEDR)

PRINT 390,11
PRINT 400,72

FORMAT (#1e SX #SOLVE#*)

FORMAT (SX #R w 20Fd,1) qMQqu

FORMAT (%fe Sx #TIME FOR FPASS# F6,2) q"hq. ‘hqt
FORNAT (6X «TIME FOR BPASS® Fo,2) %“’h’:’
RETURN

END

SUBROUTINE FPASS (NOPT,JE)

COMMON R(4323)

COMMON / TRANS / D(loa).NOF“E.NHORDS.HBANDpLCPJ(ladl)
JE = ¢

156

DO 3 NODE=1,NQPT
CALL IOBIN (7HREADSKP,8,D,1A3,LCPJ(NONE))

PRINT 200,NDFRE,NWORDS, MRAND
2AY FORMAT (315)

JE = JE ¢ NDFRE

JS = JE = MBAND ¢ |

I2 = (NDFRE = 1) * MBAND ¢ |
M 2 MRAND « NDFRE « 2

00 3 Is1,12,MBAND

M8 Met
J22 I ¢ M
103 JS « 1
SUM = 9,0

IF ¢ I1,67,J2) GOTO 2
00 {1 J=1,J2
1 SUM = SUM ¢ D(J) » R(J+IDY

2 J = J2 ¢+ 1
R(J#ID) = (RCJeIDI=SUM) / D(J)

3 COMTINUE

RETURN

END

SURROUTINE BPASS (NORPT,JE)

COMMON R(4323)

COMMUN / TRANS / 0(120)pNDFRE,NHORDS;NBAND.LCPJ(laal)

DO 4 NODE=1,NOPY

LOC = NOPTwNODE+1

CALL IUBIN (THREADSKP,8,D,193,LCPJ ¢ Loc))
JT = JE

JS B JTeMRAND¢}

00 2 I=1,NDFRE
Ji = (NOFRE « J) = MBAND ¢ 1
J2 8 J| ¢ MBAND o | = |

R(IT) = R(JIT) 7/ D(J2¢1)
I0 3 Js = Jy

IF (Jl.GT.JZ)_GOTO 3

D0 1 JsJi, 2

W~

RCEJ+ID) = R(J4ID) = OCJ) * RCIT)

JT =2 JT =
JE = JE = NDFRE
CONTINUE
RETURN

END

SUBROUTINE WIND (¢ NTAPE)

CALL IOBIN (6HWRITER,NTAPE)
IF (IOBIN(QHTEST.NTAPE)) 2e3,3
CALL IDRIN (6HREWIND,NTAPE)
RETURN

END

coLsoL

APPENDIX C.3

COLUMN

EQUATION

SOLVER

PROGRAM TEST (INPUT.OUTPUT.TAPES=INPUT.TAPE6=OUTPUT.TAPElniAPEZ:
1 TAPE},TAPE“'TADE7pTAPEB)
COMMON S(?(o‘,Zﬁ)oR(Ew.S).A(Sd)oMA(Zké),KA(H).B(S@),MB(ZW).KBU!).
1 X(Z?.S).MX(ZQ).KX(U),KHteﬂ).NB(ZO).NEB(!B),NEGL(!“),
2 D2, NT(s)
MAXT=SY
MAXC=24
DO S N=1,d
5 NT(N)=N
NT(S)=7
NT(6)=8
19 CONTINUE
READ (5,140n) NEQ,LEQ,NBLK,NBLL,NLD
IF (NEN,EQ,H) STOP
WRITE(b,10Un) NEQ,LEQ,NBLK,NBLL,NLD
c READ S UPPER TRIAANG FULL
DO 104 I=1,NEQ
READ (S,200@) (S(J,1),J=1,1)
00 109 J=1,1
10¢ S(1,J)=S8CJ,1)
CALL PRMAT (S,NEQ,NEQR,20,1HS)
DO 128 I=1,NLD
120 READ (5,2000) (R(J,1),J=1,NER)
CALL PRMAY (R,NEQ,NLD,23,1HR)
c PROFILE S
DU 299 I=1,NEQ
KH(T)=]
IMs]=}
DO 189 J=1,1IM
IF (S(1,J)) 209,176,209
170 KH(l)=1eJ
184 CONTINUE
202 CONTINUE
WRITE (6,1883) (xkH(I),I=1,NEQ)
READ (5,1@20) (NES(I),I=1,NBLK)
WRTITE(6,1929) (NER(1),1=1,NBLK)
NLs@
G 593 N={,NBLK
NF=NL+1
NLESNF4NER(N) =}
KA(1)=N
KA(3)=NF
KAC4)=NL
KA (2)=N
L=9
D0 399 I=NF,NL
NB(I)=N OR
JF=lekKN(I)+1 L
KHISNEQaJF +1 OF Poog QP;GE Is
00 250 1=zJF,1 ALty
LaL+l
259 A(L)=S(J,1)
MA(I=NFe¢1)3
C FIND LONEST PREV, BLOCK TO OPERAPE
IF (N,EQ.1) GO To 390
KA(2)=MINU (KA(2) ,NBINER=KHI+1))
300 CONTIMNUE
CALL TAPES (MNT(1),N)A,MAXT,MA,MAXC,KA,2)
WRLITE (6,3909) N,kA
WRITE (5,9900) (MA(I=NF4+1),I=NF,NL)
9UUU FORMAT (dM MA ,1615)

b

6 PGE /(O INTENHONAL BLANK

PSR- O R o e o A o o

R e e S

Sea

S4d

C 550

¢

c

o000

550

680

9991

610
620

630
650

9992

CALL PRAR (A'BOKA'KB'HA"“B)

CONTINUE

READ (5,1009) (NEBL(I),I=1,NBLL)
WRITE(6,100Q) (NEBL(T),T=1,NBLL)

NL=0

DO 6UY nN=1,MNHLL

NFSNL+}

NLESNF+NEBL (N) =1

KAC1)=N

KA(2)=9

KA(3)=nNF

KAC4)=N|

L=2

vl 550 I=NF,NL

D0 S4v J=1,NER

L=L+}

ACL)=R(J, 1)

MA(CIeNF+1)=L

MA(I-NF+1)=0

CALL TAPES (NT(3).N,A,MAXT.MA,MAXC,KA,Q)
WRITE (6,4080) N,KA

CALL PRR (A,MA,KA,NEQ)

CONTINUE

IF C(LEQ,EQ,NFA) GO TO 6S@
SET SOLN LER+1 TO NEQ ON TAPE NT(S)
WRITE (6,9991)

FORMAT (30H SOLVE SUBSTRUCT DISPLACEMENTS)
KKK=1

CALL SORE(A,B,D,HA,MB,NEQ,NEO.NBLK.NBLL.HANT.MAXC,NY.KKK)
SET SUBSTR DISPLS ON TAPE NT(S)

D0 6308 N=i,NBLL ‘

CALL TAPES (NT(4),NyA,MAXT,MA,MAXC,KA,])
NTASKA(d)mKA(3) +1

LEQG=LEQ+}

IC=po

L=3

DU 628 I=1,NTA

00 610 K=LEQA,NEQ

L=+l

S8(LY=A(K+IC)

IC=IC+NEN

CALL TAPES (NT(S),N,R,L,MB,MAXC,KA,2)
CONTINUE

CUNTINUE

WRITE (6,9992)

FORMAT (13M SOLVE SYSTEM)

KKK={

NTS=4

KKK=3

KKK=4

KKK=S

NTS=3

KKK=2

CALL SORE(A,B,O,HApMB.NEO.LEOoNBLK'NBLL.MAXT.MAXC.NT.KKK)
KKK=S

NTS=3

IF (LEQL,GE.,NEG) GO TO 85¢

IF (KKK NE,5) GO TO 85S¢

SET SURSTR DISPLACEMENTS IN RED LOAD BLOCKS ON TAPE NT(4)

DO 83A N=1,NBLL

162

Rhkk ok k A

C READ RED LOADS
CALL TAPES (NT(4),N,A,MAXT,MA,MAXC,KA,])
NTASKA(U4)=KA(3)¢+1
LL=NTAX(NEQ=LEN)
CALL TAPES (NT(5),N,B,LL,MR,MAXC,KBM])
1C=0
JC=0
LEQQ=LEQ+!
D0 829 I=1,NTA
00 819 J=LEQAQ,NEQ
819 A(IC+J1=B(JC+J=LEN)
IC=IC+NEQ
82¢ JC=JC+NEQ=LEG
CALL TAPES (NT(6)yNpA,MAXT,MA,MAXC,KA,2)
830 CONTINUE
NT(4)=NT(S)
858 CONTINUE
CALL SORE(A,B,DsMA,MB,NEQ,LEQ,NELK,NBLL,MAXT,MAXC,NT,KKK)
DO 804 N=1,NBLL
CALL TAPES (NTS,N,A,MAXT,MA,MAXC,KA,1)
WRITE (6,6000) N
CALL PRR (A,MA,KA,NER)
C FORM S«DISP
ML=KA(4d)=KA(3) ¢l
DO 754 L=1,NL
D0 744 I=1,NEC
§§=0,9
LC=(L=1)%NEQ
00 738 J=1,NEQ
734 S5S=SS+S(I,J)*A(J+LC)
748 X(I,L)=S8S
759 CONTINUE
WRITE (6,7089) N
CALL PRMATY (x.NEQ,NLoEO,lHX)
802 CONTINUE
GO TO 10
1200 FORMAT (1615)
24N0 FORMAT (16F5,0)
302 FORMAT (/6KH BLOCK e IB/70H KA L,415)
4000 FORMAT (/11H LOAD RLOCK L,IS/4H KA ,415)
6409 FORMAT (/1SH SOLUTION BLOCK ,15)
TUAA FORMAT (/12H K%X,,.BLOCK ,15)
END
SURROUTINE PRMAT (A,NR,NC,MM,H)
DIMENSION A(MM,1)
WRITE (6,2090) H
2Ry FORMAT (/9M MATRIX »AS)
D0 274 N=1{,NC,8
NL=N+7
IF (NL,GT,NC) NL=NC
DO 2¢4W I=1,KNR
22 ARTTE (b,1000) I,CACI,J),J=N,NL)
RETURN
1000 FORMAT (IS,8F14,6)
END
SURRODUTINE PRR (R,MR,KR,NEQ)
DIMENSION R(1),MR(1),KR(U)
NLSKR(4)wKR(3) 41
11=0
DO 1¢¥u N={i,NL
WRITE (6,1¢83) NL(R(T+II),I=t,NED)
100 II=II+NER

163

RETURN
1900 FORMAT (3H R ,14,14F9,2)
END
SURRQUTINE SORE (AsB,D,MA,MB,NEQ,LEQ,NBLK,NBLL ,MAXT,MAXC,NT,KKK)
Cenae=S50L0TION OR REDUCTIUN OF LINEAR EQUATIONS STORED OUT OF CORE IN
c COMPACTED ACTIVE COULUMM BLOCKS OF APPROXIMATELY MAXT LOCATIONS,
c PROGRAMMED BY E WILSON AND H DOVEY JAN 1976
DIMENSION A(MAXT) B(MAXT),D(NEQ),MA(MAXC),MB(MAXC),NT(Q)
DIMENSION Ka(4),KB(4)
ARRAYS A AND B ARE WORKING STORAGE AREAS FOR BLOCKS OF COLUMNS
OF THE COEFFICIENT MATRIX OR LOAD VECTORS, WHERE MAXC IS THE
MAXIMUM NUMBER OF COLUMNS OR VECTORS IN A BLOCK, MA AND MB ARE
INTEGER ARRAYS OF LOCATION OF DIAGONAL TERMS IN THE A OR B ARRAYS,
THE D ARRAY STORES DIAGONAL TERMS OF REDUCED MATRIX ,
KA(1),kB(1)= BLOCK NUMBER OF A OR B BLOCK
KA(2),K(,2)= NUMBER OF LOWEST BLOCK TO OPERATE ON THIS BLOCK,
KA(3),KB(3)» NUMBER QOF FIRST COLUMN IN BLOCK
KA(4),KB(4)= NUMBER OF LAST COLUMN IN BLOCK
NBLK NUMBER OF BLOCKS OF COEFFICIENT MATRIX TERMS
NBLL NUMBER OF BILOCKS OF LODAD VECTORS
NEQ NUMBER OF EQUATIONS IN COEFFICIENT MATRIX
LEQ NUMBER OF LAST EQUATION TO BE REDUCED IN COEFFICIENT MATRIX
NT(1) TAPE NUMBER FOR STORAGE OF BLOCKS OF THE COEFFICIENT MATRIX
NT(3) TAPE NUMBER FOR STORAGE OF BLOCKS OF THE LOAD VECTORS
NT(4) TAPE NUMBER FOR STORAGE OF BLOCKS OF THE DISPLACEMENT OR
REDUCED LOAD VECTORS
KKX=1 COMPLETE SOLUTION = REQUIRES LEOG=NEQ
KKK=2 FORWARD REDUCTION OF COEFFICIENT MATRIX AND LOAD VEC: 753
KKK=3 FORWARD REDUCTION OF COEFFICIENT MATRIX ONLY
KKK=4 FORAARD REDUCTION OF LOAD VECTORS ONLY
KKK=5 BACKSURSTITUTION ONLY, IF LEQ IS LESS YHAN NEQ SUBSTRUCTURE
DISPLACEMENT MUST BE PREVIOUSLY CALCULATED
GO TO (102,1P0,124,3793,32N) KKK
Cm=wn=l3LO0CK=RY=BLUCK TRIANGULARIZATION OF MATRIX
103 DU 2V@ N=1,NBLK
c i1, MOVE PREVIOUSLY REDUCED BLOCK TO B
IF (N,EQ,1) GO TO 140
CALL BLKOP (A,B,D,MA,M3,KA,KB,NEQ,LEG,MAXT,MAXC,1)
c 2, READ NEW RLOCK FRCM TAPE NT(1)
119 CALL TAPES (NTC1),N,A,MAXT,MA,MAXC,KA,1)
c 3, OPERATE NN BLOCK N WITH BLOCK M
M = KA(2)
IF (M,EQ,N) GO TO 60
NM=Nw}
IF (M,EQ,NM) GO TO 148
c READ BLOCK M FROM TAPE NT(2)
120 CALL TAPES (NT(2),M)8,MAXT,MB,MAXC,KB,1)
140 CALL BLKOP (A,R,D,MA,MB,KA,KB,NEQ,LEG,MAXT,MAXC,2)

OO0 0

M = Mél
IF (MLT,N) GO TO 129
c 4, SELF=REDUCTION OF BLOCK N
160 CALL BLKOP (A,A,D,MA,MA,KA,KA,NEQ,LER,MAXT,MAXC,3)
c 5¢ WRITE REDUCED BLOCK N ON TAPE NT(2)

CALL TAPES (MT(2)¢NpA,MAXT,MA,MAXC,KA,2)
209¥ CONTINUE
IF (XKKK,EQ,3) RETURN
C=ewe=REOUCTION OF LOAD BLOCKS
339 NTA = NT(3)
NTB = NT(4)
IF (KKK,NE,5) GO TO 3tu
NTA =2 NT(4)
NTB 8 NT(3)

310 DO 4ua M1, NBLL

c 1, READ LOAD BLOCK M FROM TAPE NTA
CALL TAPES (NTA,M,A,MAXT,MA,MAXC,KA,1)
C 2. FORWARD REDUCTION OF LGAD BLOCK ™

IF (KKK,EQ,S) GO 10 335
00 324 N=t,NBLK
CaLL TAPES(NT(R2) ,NyB, MAXT ,MB,MAXT KB, 1)
CALL BLkOP (ApRyD,MA, MK, KA, KE,NEJ,LEQ,NAXT) MAXC,4)
320 CONTINUE
C 3, BACKWARD REDUCTION OF LOAD HRLOCK M
330 IF (KKK,EQ,4) GO TO 39¢
IF (KKK,EQ,2) GO T(392
3135 N=NALK
340 CcALL TAPES(MT(2),N,B,MAXT ,MB,MAXC,KB,1)
CALL BLKaOP (A,B,D,MA)MB,KA,KB,NEQ,LEQ,MAXT ,MAXC,5)

NSNe|
IF (N,GT,9) GU TO 34¢
¢ 4, WRITE RESULTS ON TAPE NTB

390 CALL TAPES(NTB,M,A,MAXT,MA,MAXC,KA,2)
490 CONTINUE
RETURN
END
SUBROUTINE TAPES (NT,NR,X,MAXT,MC,MAXC,KF,KK)
COMMON/TAPES/NTAPE(10)
OIMENSION X(MAXT),MC(MAXC),KF (4)

c SUBROUTINE TO READ DR WRITE RLOCK OF INFORMATION (X,MC,XF)

o WHICH IS RECORD NUMBER MR OM TAPE NT,

C LOR,LRK SHQULD BE SET PROPORTIONAL TO THE COST OF ONE

c DUMMY TAPE READ NR ONE TAPE BACKSPACE RESPECTIVELY

c NTAPE(I) CONTAINS THE CURRENT RECORD POSITION OF TAPE 1

c NTAPE(I) NEED NOT BE INITIALIZED IF THE TAPE WAS WRITTEN

c Y S/R TAPES OR IF THE FIRST RFECORD TO BE READ IS RECORD
LDR=1
LRK=1

IF (NR,NEL1) GO 10 9@

Sb REWIND NT
NTAPE(NT) = 1

9% LR=NR*LDR
LEKS(NTAPE (NT) wiNR) 2L RK
IF (LR.LTLLK) GO TD S0

100 IF (NTAPE(NT)=AKR) 237,439,309

2PB READ (NT)
NTAPE(NT) = NTAPE(NT)+1}
GO TO tda

3P0 AACKSPACE NT
NTAPE(NT) =NTAPE(NT) =1
GU T0 104

400 IF (KK,EQ,1) READ (NT)Y X,MC,KF
IF (KK4EN42) WRITE (NT) X,MC,KF
MTAPEC(NT)=NTAPE(NT) +1
RETURN
END
SUAROUTINE HLKOP (A,HeDpMA,MB, KA, KB, NEQ,LEQ,MAXT,MAXE ,KK)
DIMENSION AC1),B(L),MACT), MB(L1),KACL), kBB (4),D(1)
Go T (19’“'3@0'3&‘9' S‘I:G'SM“’ ,KK

C
c 1, MOVE A ARRAY TN H
c

1¥9¢ DO 114 Is1,4

114 KB(I)=Ka(I)

DO 124 I=q,mMaXC
120 MB(I)=Ma(])

: _ 165 D
R T

00 139 I=),MAXT
130 B(I)=A(D)
RETURN

2, REDUCE BLGCK A BY BLOCK B

OO0

3ne NTASKA{d4)wKA(3) 41
NTHSKB(4)=XB(3) e}
KJ=0
0C 3949 J=1,NTA
IF (KK,EN,4) MA(J)=JI*NEG
JI=KA(3)+Jed
IF (KK ERL4) JJU=NEQ
KHJ=MA(J) =K]
ILaNTH
IF (KK EQe3) JL=2J
KI=9
DO 380 I=1,1IL
IT2KB(3)+1I~]
KHI=MB(I)=KT
KHEMINS (RHI,KHJ=JJ+II)
KFSMB(I)wkiHet
KLSMB(I)eMAXD (1,I0l=LEQ)
$S=p,0
IJ=MA(J)=JJ+It
IF (KK NE,3) GO TO 3@
IF (I,EQ4J) GO TO 355
312 IF (KF,GT.KL) GO TO 389
IC=IJ=MB(1)
NO 320 K=KF,KL
320 SS=S5+8(K)®A(Kk+1C)
ACIJ)=A(1J)=SS
GO TO 38¢
355 KD=JJmKHJ 41 =KF
IF (KFoGT,KL) GO YO 380
(o REDUCE COLUMN BY ITSELF
00 370 K=KF,KL
AD=D(KD4+K)
IF (aD) 369,370,340
36¥ T=A(K)/ZAD
SS=SS+TxA(K)
A(K)=T
379 CONTINUE
ACIJ)=A(IJ) =SS
381 KI=MB(I)
IF (KK,EQ,8) D(IT)=R(KI)
KJ=MA(J)
IF (KK,EQ,4) GO TU 399
D(JJ)=A(KY)
399 CONTINUE
IF (KK.EG.Q.AND.KB(“).EO.NEQ) GO TO 490
RETURN
C DIVIDE LOADS A8Y DIAGONALS
430 xJ=v
D0 4SO Jsti,NTA
MA(J)SJ#NEQ
KHJ=SMA (J)=K]
[FSNEQ=KHJ ¢1
IF (IF,GT,LEQ) GO Tn 4SSy
D0 440 TI=IF,LEQ
IF (OCII)) 434,449,430
430 ACTI¢KJIISA(ITeKJI/ZD(LIT)

166

o0

444
450

S5¢9

52¢

549
55¢
569

329

359

4009

1499
20099

CONTINUE
kKJ=MA(J)
RETURN

3, RACK=SUHSTITUTION

II=KkB(4)
NTASKA(4)=KA(3) ¢}
ISIT=KB(3)+}

IF (I.LE.“) RETURN

KF=1

IF (I4,GT41) KF=MHE(I=1)+]
KL=MB(I)=MAXA(1,]I=LEQ)
IF (KF4GT4KL) GN T0 Sa@
KHISMB(I)»KF+}

KJ=@

00 S50 J=1,NTA
JC2KJ+(IloKHI)mKF+1
ATJ=A(KJI+II)

00 S48 K=KkF,kL
A(K+1C)I=Aa(K$IC)=B(KIXATY
KJ=J*NEQ

I1=11=1

GO TN 529

END

SUBROUTINE PRAB (A,R,KA,KB,MA,MR)

DIMENSION AC1),HC1),MACL) ,MR(1),RA(L),KR(UL)
OIMENSION RR(14)

NTASKA(G)wKAC(3) #

KF=1

N0 4929 I=3,NTA
NASKA(3)+]=1
KL=MA(CD)

DO 320 J=1,NA
KR(J)=,0d
KH=K|L =XF
LENA=KH

N0 358 K=KF,KL
KKSKeKF
RR(KK+L)=A(K)
WRITE (&,2909) XI,(RR(J),J={,Na)
KFa=KL+1

RETURN

FORMAT (2H R,I3,14F9,2)
FORMAT (2H A,13,14F9,2)
END

	0008A02.JPG
	0008A03.JPG
	0008A04.JPG
	0008A05.JPG
	0008A06.JPG
	0008A07.JPG
	0008A08.JPG
	0008A09.JPG
	0008A10.JPG
	0008A11.JPG
	0008A12.JPG
	0008A13.JPG
	0008A14.JPG
	0008B01.JPG
	0008B02.JPG
	0008B03.JPG
	0008B04.JPG
	0008B05.JPG
	0008B06.JPG
	0008B07.JPG
	0008B08.JPG
	0008B09.JPG
	0008B10.JPG
	0008B11.JPG
	0008B12.JPG
	0008B13.JPG
	0008B14.JPG
	0008C01.JPG
	0008C02.JPG
	0008C03.JPG
	0008C04.JPG
	0008C05.JPG
	0008C06.JPG
	0008C07.JPG
	0008C08.JPG
	0008C09.JPG
	0008C10.JPG
	0008C11.JPG
	0008C12.JPG
	0008C13.JPG
	0008C14.JPG
	0008D01.JPG
	0008D02.JPG
	0008D03.JPG
	0008D04.JPG
	0008D05.JPG
	0008D06.JPG
	0008D07.JPG
	0008D08.JPG
	0008D09.JPG
	0008D10.JPG
	0008D11.JPG
	0008D12.JPG
	0008D13.JPG
	0008D14.JPG
	0008E01.JPG
	0008E02.JPG
	0008E03.JPG
	0008E04.JPG
	0008E05.JPG
	0008E06.JPG
	0008E07.JPG
	0008E08.JPG
	0008E09.JPG
	0008E10.JPG
	0008E11.JPG
	0008E12.JPG
	0008E13.JPG
	0008E14.JPG
	0008F01.JPG
	0008F02.JPG
	0008F03.JPG
	0008F04.JPG
	0008F05.JPG
	0008F06.JPG
	0008F07.JPG
	0008F08.JPG
	0008F09.JPG
	0008F10.JPG
	0008F11.JPG
	0008F12.JPG
	0008F13.JPG
	0008F14.JPG
	0008G01.JPG
	0008G02.JPG
	0008G03.JPG
	0008G04.JPG
	0008G05.JPG
	0008G06.JPG
	0008G07.JPG
	0008G08.JPG
	0008G09.JPG
	0008G10.JPG
	0008G11.JPG
	0008G12.JPG
	0008G13.JPG
	0008G14.JPG
	0009A02.JPG
	0009A03.JPG
	0009A04.JPG
	0009A05.JPG
	0009A06.JPG
	0009A07.JPG
	0009A08.JPG
	0009A09.JPG
	0009A10.JPG
	0009A11.JPG
	0009A12.JPG
	0009A13.JPG
	0009A14.JPG
	0009B01.JPG
	0009B02.JPG
	0009B03.JPG
	0009B04.JPG
	0009B05.JPG
	0009B06.JPG
	0009B07.JPG
	0009B08.JPG
	0009B09.JPG
	0009B10.JPG
	0009B11.JPG
	0009B12.JPG
	0009B13.JPG
	0009B14.JPG
	0009C01.JPG
	0009C02.JPG
	0009C03.JPG
	0009C04.JPG
	0009C05.JPG
	0009C06.JPG
	0009C07.JPG
	0009C08.JPG
	0009C09.JPG
	0009C10.JPG
	0009C11.JPG
	0009C12.JPG
	0009C13.JPG
	0009C14.JPG
	0009D01.JPG
	0009D02.JPG
	0009D03.JPG
	0009D04.JPG
	0009D05.JPG
	0009D06.JPG
	0009D07.JPG
	0009D08.JPG
	0009D09.JPG
	0009D10.JPG
	0009D11.JPG
	0009D12.JPG
	0009D13.JPG
	0009D14.JPG
	0009E01.JPG
	0009E02.JPG
	0009E03.JPG
	0009E04.JPG
	0009E05.JPG
	0009E06.JPG
	0009E07.JPG
	0009E08.JPG
	0009E09.JPG

