General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



NGC-33-000 -1 88

ON THE GROUND STATE OF METALLIC HYDROGEN

Sudip Chakraverty and N.W. Asheroft
Laboratory of Atoemic and Solid State Physics

Cornell University, Ithaca, N.Y. 14883

(NASA-CR=-157162Y OW THE GROUND STATE CF H78-2049%1
METALLIC HYDHCGEW (Cornell Univ., Ithaca, N.
Ya) 29 p HC AG3/4F RO1T CsSCL 201

Unclas

G3y76 20840

ABSTRACT

A proposed liquid ground state of metallic hydrogen at zero temperature
is explored and a variational upper bound to the ground state energy is
calculated. It 1s shown thet the possibility that the metallic hydrogen
is 4 t'quid around the metastable point (rB = 1.64) cannot be ruled out.
This conclusion crucially hinges on the contribution to the energy arising

2rom the third order in the slectron-proton interaction which is shown here

to be more significant in the liquid phase than in crystalq.ngﬁ-ﬁ—
{iw\‘i}Jaﬁfia

2
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1. INTRODUCTION

An intoresting possiblliity of a zero temperature liquld ground stoate of
metallle hydrogen has been recently explored in a cnlculationl which mokes
ugse of g Jastrow=-8loter mony particle variationel wavefunctiona’a to cnleculnte
the ground stote energies of both solid and liquid pheses. The symmetric
part of the wovelunction 1ls treated by the Monte=Corle tochnique; exchange
is neglected in the solid and approximated in the ligquid by the Wu-Feenberg

expansion?ta It is found that the differsnees in the energies of the liquid

and the selid phases varles from 0.1% at T, = 1.6 to about 3% at r = 0.8,
(here 4n/3(rsn°)3 = 1/u and n ig proton or electron density). The solid

pheose seems to be energetically more fuvorable throughout the entire range

of densities considered. However, the cecalculation is based on o model of
pair-interactions betwoeen protons and therefore contains only terms genercted
to gecond order in the electron-proton interaction. The contribution coming
from the third order in the elsctron-proton interaction is known to be signi-
ficant in the calculation of the band-structure energy4'5 in the solid. 1In
view of the small energy differsnce between the solid and the liquid phases

it is therefore necessary to estimete the third order term for the liquid as
well, Fuethermore, since in the liquid certain confipgurations will permit
three protons to come closer together than they would 1n a solid, we might also
expect that the contribution from the term third order in the electron -
proton interaction may bhe relatively more important in the liguid phase.

In this paper we shall #irst show that a simple one-parameter variational
wavefunction when combined with the Hypernetted Chain (HNC) integral equation2
can reproduce the energies calculated in lief. 1 with a 6-parameter variational
wavefunction and the Monte-Carlo technique to within 0.025 - 4,.2% and therefore

provides a very reasonable upperbound. However, precise agreement is not

necessary in order to provide variational answers to the following questions
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(a) How much does the third order term contribute
to the ground state energy of the liguid? (b)) what are the corrections in the
1iquid stote attributable te long wavelength phonons? (e) Is it nossible
to lower the energy of the liquid by permitting poartial alignment of the
spins of the protons?

The calculation described below 18 a judicicus cembination of varintional
gnd perturbative methods and ig intended to sugpest that for coertain densities
the possibility of o liquid metallic phase of hydrogen at zero temperature
cannot be ruled out. The conclusion hinges on the fact that the third order
term 1s signifieant and is perhaps more so in the liquid.

2. TORMULATION

In o sense hydrogen is the simplest metnl; its Hamiltonian 1s known

exnotly: For N protons, N electrons and volume {3 we write

H= He + Hb + H

ep
2 N 2 2 N 2
(--—E—sz +Z-—-—e---)+--é§- EV%'-I-Z __.e_,P
1=1 1 1<) lr p i=1 "1 i<j |R,-R
T3 17
2
- = (2.1)
i,d |ri-RJl

Here we have denoted the proton coordinates DLy [ﬁ;} and the electron coordinates
by {;;]. A major simplification takes place6 when we realize that there ars

two widely different time scales involved in the problem, allowing us to remove
glectronic degrees of freedom by assuming thot at any ingtant we can consdider
the electrons to bhe in the ground state corresponding to the instantaneous
proton configuration. This EBorn-Oppenheimer adiasbatic approximation reformu-
lates the problem in terms of an effective Hamiltonlan of protons. The price

we pay is that the indirect interaction between the protons, now mediated by

the electrons, is no longer a simple Coulombic pair interaction but contains
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many body forces7. with electron coordinates now integrated out the total

Homiltonian for the protons became§3

- {2),¢ (3) 2
Hy = By + Ty + Vo B, ({ng} + By ‘{“z]’ 4 eee (2.2)

where Eeg’ which is the expct ground stat~ energy of the interacting electrons

in o uniform positive background appears as o constant energy, and simply

drups out of the ealculation. In Eq. (2.2) Tp and v#p are the parts ol the
originol Humiltonian of the protons and Egn)(fﬁh]) whicih are functions of the
proton coordinntes are the electron mediated internctions beiwsen protons

which are generated by adiabatiec perturbation theory. Provided Eq. {2.2)

converges, the procedure is exact within the adiabatic epproximation. Most
importantly, note that te this point we have not made any assumptions regarding
the positions of the ilons; the discussion holds for liquids and cerystals

(n)

whether static or dynamic. The precise form of Eb ([Rz}) can easily be

yritten down?

(2) - AT v (1
g, drD = 40 £V VR X dey) (2.3)
1
(3) = ' (2) =~
g (r,]) = 0 5 . V(k WYV X ey K,k & o= = o (2.0
e,k 1 7273
1 273
and similarly for the nth order term. Here,
—l‘-a 2
ik«R, 4ne (2.4)

v ¢ - fet o4 T,
£ k

and

Y (® = (41192 )E:%—k) - 1] (2.5)
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is the exact first order static response of the interacting eleetron gus to.

{n) =

an external potontial., Similarly ¥y (kl’kz""k is the exaet nth order

+1)
responge., In otherwords 1f we know the nt% order response function of the interacting
electron gos exactly, wo would also know exuctly these extra many body interactions

between protons, and we can proceed to diagonnlize the proton Hamiltonian,

The interesting podnt to note is that the rewriting of the originoni
Homiltonian in the form given in Eq. (2.2) splits off a lorge volume dependent
term (order 1 Ry) which does not depend on whether the proteong form a
liquid or a solid and therefore simply drops out of the difference in energles
between the liquid and the solid phases which is the interesting quantity
in examining the phese transitions between the two. The uncertainties in

the electron gus response functions x( n)

(kl,kg,...k ) will surely affeet

each of the terms Eé“)({nz]) but, once again, they will mot in¥luence too

greatly the difference in energies. Thus this particular reformulation, Eq. (2.2),
should be a reliacble starting point to calculate the energy difference between
liguid and solid phases.

For x(l)(k) we shall choose the Hubbard-Geldart~-Vosko g(HGV) form for the
dielectric function e(k) which is known to be of reasoenzble accuracy at least for
g < 2. For XQ(F;'Eé’ES) we shall make use of the'fgzg used by Brovman, Kagan
and Holas 5 in which the one body interactions are screened by the HGV dielec-
trie functien. This approximation for x( )(k ,k } has
Leen used extensively and 1is believed to be reasonably aceurate. The

Hamiltonian can now explicitly be written down'lf we neglect Eén)([ﬁﬂ}) for

n > 4:
2 N
h 2 (2) (3)
H=E,=-5—~ £ V2 +2 R I+ 7R (2.8)
Q"m0 R T 197 7 sen 13" Ryre Bay

where,



y i 417e 1
E = E - g — —— dk —————— ——— - 1 (2 . 7)
A7 Teg IR T Lemdan® K (e‘k’ )

is @ large volume dependent term, which i1s convenilent to separate out. In
(2.7) n is the numbor density (N/1) and £ i1s the compresaibility of the
uniform interccting electron gas neutralized by o uniform positive baekground at

(2)

the same denslty. Note that the terms Eb ([ﬁz}) and Vﬁp have been combined

to give

¢¢® (n

) @ 5 [af EEE- lk) ot (R =Ry) (2.8)

13 (zm3

an effective linear-response pair potential. FPFinally the third order tarmll

is given by,

ik R +E, R -1(k1+k2)'Rz

(3)
8" (R, 4Ry Ry ) = = (2n) 5 Jak, [ai,e™ M2y (2.9)
Ry ks, ol =key )
Here A is:
2)s
~ . mh e (4-”@ —}
A( k,,k,) = NOR A(k 1k K ) ’ (2.10)
s KPIe el ) €(16,) €I, vk
2
2k _+k
—p -l o - F i
AGEE, By = 4)(k1k2k3)[121 cos@fhlzk = T T
- {18 ek )} in 135 ] (2.11)

where €(x) = 1 for x 2'0 and zero for ¥ < 0, The remaining parameters are

given below,

-1

: g J . (2.12)

2
klkzks [1 ) k1+k +k3

(2kF)3 (ZkF)




2 2 3
kp=dp
U

k1k2k3

2[’ “k 2’2]ﬂ

cosb -——- , (2.14)

’

' (2.13)

(2.18)

and

cosea T - m— (2.16)

If we take e(k) to be the RPA dielectric function then A would pregisely be
the RPA approximation for the three tailed diagram.
As mentioned sarlier the dieleetrie function e€(k) is taken to be of the HGV

form and 1s explieitly given as,

2
e(m) =1 + ar(m/m - (2.17)
1 -ar(m/2En +e)
where
' = (1~n ) ling
Fm) =1+ on 2= (2.18)
a = (rs/zrr) (4/917)1/3 s (2.19)
1
& = . 173 T, (2.20)
(1 + 0.031 c-ﬁ) T)
and N = k/2kF.
Finally, we obtain
o (2) (3)
H= E,+H + 1o} (iJ Jl’Rik) (2.21)

i<i<k
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where EQ is o constant volume dependent term and we have split off the 6(3)

term from 3(2) given by
2 N
N R (2.22)
p i=1 i<)

in Ref. 1, H wos approzimated by EQ + H(z). Wo proceed from this point and

shall first atiempt to diagonalize H(z) as well as possible with s one parameter varia-
tional functlion which,as we shall see,will give an error of no meore than 4% when
compared tu the caleulation of Ref. 1 employing 6 variationnl parameters. An

optimum wavefunction obtained in this way will be used te calculate the varia-

tionel bound for the contribution from 6(3).

3. CALCULATIONAL TECHNIQUE

In this section we shall outline the method used in caleulating the ground
gtate energy of the Fermi liquld eorredponding to the Hamiltonlan given in
Eq. (2.6).A Jastrow-Slater varlational wavefunction2’3

Fa,z..0=0% (3.1

will be used to caleculate an upperbound to the ground state sunergy. In Ea. (3.1)

D is a Slater determinant made ocut of plane waves and Eg is & symmetric correlating
factor designed to teke core of the strong inter-particle interactions. It is
responsible for ¢ large part of the energy. A subsequent Wu-Feenberg expansion2’3

then uses an exact transformation to recast the problem into the calculation of

two distinet parts: Thus we shall set
= : .2
B EB + Dax (3.2)
wvhere Eex is the exchange contribution and EB is the eigenvalue of a symmetric

ground state corresponding to the Hamiltonlan. Then

iR, D B = 5 i (3.3)
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where Yo in Eq. (3.1) is chosen to be the eigenfunction of (3.3). The calcula-
tion of EB thorefore does not involve the antisymmetric factor and results in
¢ considerably simplified problem. A knowledge of this ﬂg is then utilized

to caleulate,

2
2 8 MBv,p"y,Dar....ar. ORIGINAL PAGE IS
.ehp =t T TAUN OF POOR QUALITY 3.0
ox 2m 4=1

BZ—! -t
jﬂo drl...drN

which may be caleulated by o statisticel cluster expansion of the itype

E,= B + Ep + Ep + ... (3.5)

where E;On) invelves n-particle exchange. These terms are easily caleulated
(at leastup to the 3rd order) as we shall see below. The entire procedure
is meanipgiul when EB is much greater than Eex and the series in Eex converges
rapldly. We shall see later that the first condition 1s very well satisfiled,
EB being several orders of magnitude larger than Eex' However, the second is
only moderately well satisfied, each term dropping by a factor of 1/3 te 1/5
of the previous teim,

S50 fer we have implicltly assumed a paramegnetic ground stote, each level
being doubly ocecupiled in the Slater determinant. However, it 1s easy to extend

2,3,12

the result to a departure from double occupancy The resulting form for

%) is then
Eex( ) &
o1 02 03
Eex(x) = EF (%) « E(X) + B {X) 4 ... (3.6)
where x is the spln imbalance order parameter defiined by,
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Hoere 3+(N;) ere the numbers of up (down) spins and N is the total number of
spins. A non zero value of £ will signify o magnetically ordered phase
Clearly x = ) will represent aferromagnetically ordered phase. Nouvice that
EE does not depend on x. We shall try to determine whether Eex(x) nOgse8Ees a
minimum Eﬂx(xm) ot a non-zereo value of x, It will turn out that the energy
difference AB(X) = Eex(x=0) - Eﬂx(xm) per particle is small, ohly ~ 2 x 10'5ny.
{1t is worth noting that this is not smell on the scale of a superconducting
pairing energy.)

4, VARIATIONAL METHOD

From the vaorintional polnt of view EB in Eq. (3.2) is conveniently split

inteo three paris

E, = né (3) Angh (4.1)

The f£irst term, Eéa), is caleulnted by variationally optimizing the Hamlltonian

H(z)({REJ) with the many-body Jastrow wavefunction glven by,

]B o e-%u(rid) | (.2)
i<
where,
.3 =(x/b)°
u(r) = (;0 e (4.3)

This wave function . is a simplified one-parsmeter form for thet used in Ref. 1.
The energy functlonal is minimized with respect to the parameter b at every value
of rs, the resulilng wavefunction i1s then used to calculate the expectation

(3)

value of 6(3)({32}). The Ey ° obtained in this first order perturbation is also

a variationgl bound. The w(r) expressed in Eq. (4.3) is short ranged and does
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not inelude the contribution dae to the long wavelength phonons., This is
done perturbatively with tho help of Chestor-Reatto wnvefuuctionls. The

relevaent formulae are summarized below:

o 2/3 @ b_3 3 6 3
50« N 2 a3 o @) 42 3
[
o cm—— (3n2) (gn)I/S i;-f dx xavo(x)gg(x) . (4.4)
8 0

(2) (2)
g /N 4 Py /N

where all distances are scaled with respeet to the inverse Fermi wavevector,
1/RF, including the variatlional parameter b (b = bF/kF). In Eq. (4.4), r

denotes the average interparticle distance scaled by the Bohr radius and gg(x) =

2,3
gg(r), (r = x/kFJ is the pair correlation funcotion defined as: '

N(N=1) IW ’ dr N
12) = 5 . (4.9)

n fw dr ...d;k

o
gB(r

Note that ﬂg is defined in Eqs.(4.2)and(4,.3). The corresponding static structure

factor Sg(k) is defined by the Fourier transi’orm:a'3
o - g iﬁ;; 5] _
85(k) = 1 + nfdr e [En(r) = 11 (4.6)

Finelly with the distance and the wavevector s« iled,

sinxy 1 T (2)
v (x) = j‘dy =l 8 <’ (x) (4.7)
¥

ig the screened interaction and e{r) 1s the HGV dielectrie function, Onee

again all wavevectors are scaled by RF(lkl = ku). For gg(r) we shall use the
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2,3
Hypernetted Chain Approximation '“which is known to bp satisfaetory for Boso
2,3
£laids and has bLeen tested for o variety of interaction potentials,
In thls approximntiengg(r)ia the solution of the non-lineor integral equation

rolating the direct correlation function o(r) to gg(r);
Bp(r) - 1 = o(r) + nfarre(|r-r' ) fgp(r")-11, (4.8)
o o
e(r) = go(r) ~ 1 - log gu(=) + ulr) (4.9)

The proecedure is to solve Eqs.(4.8)and(4.9)for a given value of the variational
parameter b by a standard numerical procedure ond to use the reasulting g;(r)
in Eq. (4.4) to calculate the energy. This process is repeated for a number
of different values of b to find the optimum gg(r), ulr) and the minimum in

energy at a given density or rB. We thon procoed to caleulate the contribu-

tion due to 5(3)({52}). Thus

3) S Ha‘{fgff|3i§

nB n‘B
(o liey
QB -y - 1 1 1 G, = - -k o
= - Iz [dk[dg — 3 ———5——— Sy(k,q,~k-q)Alk,1,-k=q) (4.10)
n q e(q) ke(k) (q+k) =(q+k)
where,
B B
R {5 1T - Woed L
§2(K,q, k1) = —2--fdch-a L (4.11)
¥ 1¥,
and
N -
- = v o X'Ty  Fio. (4.12)
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A distinct fouturatl of the rosponse function of Ml?,é?,-%?-a') i its singular

beﬁuvior when § + ; o 0: t.0.,
ACE, =, 0) ~ én h{; - k2/4] . (4.13)

This singularity is stronger hoere than in the second order response where only
the derivative has o logorithmic singularity. This amplification is due to

the conflucnee of the usual second order Kohn anomaly which is always present
in the third order reaponse and the intrinsic singularity of the third order
response, It is olear that the integral in Bq. (4.10) can only be defined if
this e’ »uinrity is cancelled by other terwus present in the integrand. To

thi. efiect we prove rigorously in the Appendix the following result:

Un, _8:(K,Z,-E- D~ ak 1 1m _S,(k) = ak. Similar results hold when I ~ 0 and
lE+EI « 0,

Thus it 18 necessary that 8(k) vanish at least linearly with k in the limit
of small k., Furthermore, any approximaticn for the three particle structure
factor must be such as to preserve this property. One such approximation is
the convolutian approximntionz's for the three particle structure factor, an
approximation that has been extensively tested for soft core potentialsl4 and

in many other situationa.baThus we set
Sy(k,q,-k-q) ~ SB(k)SB(q) 8y (k+q) (4.14)

which clearly has the required property that it vanishes when any of the three

arguments vanaishes. As 1s made clear in the appendix this is simply because

of the faet that the convolution approximation satisfles all the normalization

conditions to be required of the probability distribution functionsg. However,
'

3
as is well known 3, the short range wavefunction written down in Eq. (4.3)

dors not lead to a SB(R) which vanishes as k =~ 0. This needs to be corrected
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for the prosence, expected physieally, of long range phonons before we ean
cvalutate the third order encrgy given by Eq. (4.10) and (4.14)., The procedure
is almost stnndnrdls. The Chester and Reatto wovefunetion is long ranged and
hes the form

. npe 1
-%U (" - ﬁ
Ly (xz*xz )

e = o () (4.15)

where we have scoled the distance by RF l.e. 1 - x/kF and x, i8 o variational cutoftf

parameter. Here ¢ is the veloelty of sound in this hypothetieal Boson system and
2)

can be obtained frem the energy, Eé /N
o 1/3,r 2 dzEéz) dEéB) )
B /3 8 Qﬂ 2 8 drS (4.16)
YF , mo
where, cBS = 73 (E; 3:111:1 Vo = (m:P/me). The choice of such a long runge wave-

funetion leads to a sequencé of changes glven next. The structure factor
s;(k) celrulated with the short ranged wovefunction gets modified to SB(k)
given by

o

Sp (k)

SB(k) = p (4.17)
1 +1rSB(k) ULR(k)

and the corresponding correction in the pair correlation function is

=T ()

8e(®) = gp(v) (o -1, (4.18)

where

gB(r) = gg(r) + 8g(r), (4.19)

and U (k) is the Pourier transform of U

LR( r). Finally,
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0 2
== B (k) U (R) -
T(r) = =2y [ 2 e dE (4.20)
(2m) 1+ PUL(I‘:) BB(R)
The correction to the energy is then

&5 nE oo 2 n o= 2
-~ = Idr gB(r) v Uin(r)+ T Idr&g(r) g [U(r)+ULR(r)]

+ 30fv(r) bglr)dr (4.21)

Finally, Eq. (4,10) can be rewritten to obtain the third order contributien

to the energy,

(3) 6o §

(k) @« B8 (q) T
89 B B 1 1 - - -y wod - -y
= 8 = == {dk === ldq ——— |8in6d6—>= —— 8. (k+q) A(k,q,-k-q)
N b "‘E e(k) ‘£ e(q) £ (q+k)2 e(k+q) B !

- - (4.22)
where § 1s the angle between the vectors k and ¢, 'Thus Elga)/N can now he

calculated numerically if SB(q) is known,
8., EXCHANGE CONTRIBUTIONS

As mentiored earlier the Wu-Feenberg expansion is used to obtain the exchange

contributions to the energy. The total energy per particle is
E(x)/N = EB/N + Eex/N
_ (2 (3) Ang - N
= (EB + Eg h)/N & Bex (x)/ (5.1)

where, Eex(x)/N is the exchange energy of the Fermions (protons in this case).

In Eg. (5.1) the energy up to third order in exchange is given by:
¥
Eex/N = Egltn-,x)/N + Egzcn (X)W 4 Eos(n JXY/N o+ e (5.2)

whers

s s A i e g mrairm o

e A e b e



and

ib

Egl(n,x)/n @ -1% eF[ (14x) 534 (1) %/ 3] (5.3)
8/3%, 4 3 6 .7 .
Egz(n,x)/n = IEeF{(1+x) {(y -3 y & *y ){S(ﬂkFy)-lldy
1
e e e R Y (5.4)

Q

3 11/3
EP (n,%)/N & = = (Bn ) {(1 x) / I ylzs(kFylz)[S(kryza) 1][S(kFy13) ljdyldyzdya

¥,< <l
11/3
. qemt 'y A28 ) [80K5y0) L1180y, )-1167, 7,5,
1
2,2 (5.5)
By s 1/3

Wote that ep = -EﬁE ' kﬁ = kF(l + X) and x = (N*—N_)/N. As mentioned

earlier our intention is to compute the ground state encrgy as o function of

®. The term Er is ealculated by moking the quadratic approximation described in Refs.

2 ond 12,
6., RESULTS

In Fig. 1 we show the dimonsionless potential function vo(x). Eq. (4.7},

for some typilcal values of rs' In Flg. 2 we show the correspending pair corre-

lation functions gB(r}. The actual Fermion pair correlation function can be

obtained from these by the Wu=Feenberg expansionz's, Fermion corrections being

amall in this case, 'The reasson why we have not displayed them is because they

are not explicitly required in the method of caleculating the Wu-Fesnberg series

used here. The structure factor S_ik) corresponding to gB(r) is shown in Fig. 3

B

for few typical values of Ty It is clear from these plots that there is a

considerable amount of short range order in ligquid metallie hydrogen as compared

to say liquid helium. One should also note that the interaetion potential

exhiblts a gtrong density dependence.

Table 1 compares our results for EB

(2) . (4.4), with the calculation

in Ref, 1. It is clear that our one parameter variational wavefunction gives
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a reasonably goed upperbound. Also shown in the table 15 the

dotalled decomposition of Egg)

into kinetic ond potentianl

cnorglos. We should emphagize that preeise agreement hoetween our l-parametoer
variationol rosults with the G-parameter Monte Carlo results, Ref. 1 .,is not
nocessary since wo are sioply iaterosted in an upperbound for the contribution
ariging from tho three body forces. These are given in Table 1 along with the
volume dopendent terms . In calculating EQ and Eeg woe have made use of

the Nozieres and Pilneos interpolationlﬁ formula for thoe correlation energy of
electron gas whieh is congiatent with our choice of HGV dieloctric function,
From Tableo 1 one can also see that amgh/N. Bq. (4.21), makes a nogligible
contribution to the total energy. The maln effect of the long range plionons
is to produce an SB(k) which vanishes in the limit of amnll k whieh, in turn,
allows us to galculote E(g)/N. By. 4.22. As noted above the integral is ill
conditioned if SB(R) approaches a hoh zero value as k goes to zero.

In Table 2 we have shown the exchange corrvections. [t 13 seen that a
partially spin aligned state of protons is in foect favored throughout the
entire range of densities considered. As mentioned earliser we should be
cautious about this conclusion gince EF3 has been calculated with the help

0
2,102
quadratic approximation, and thus may be quite

of the conventional
innecurate especially for larger values of the order parameter x. In view
of the fact that this term is congiderably smaller than the rest and that one

negds a complicanted mumeriecal procedure to calculate accurately we have not

examined it using a more slaborate computational method. We do not believe

that the results will * change qualitatively, 3ince the quadratic approximation
is good in the neighborhood of x = o, the fact that the energy is lowered for
non zero values of X can be established although the exact value of X may be
inageurate. It is also worth romembering that the convergence of Wu-Feenberg
series is not rigorously established.

The totnl energy for the liguid is compared, Table 3, with the static energiles

-
the solid phase obtained by Hammerberg and Asheroft . Note that the static
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hydrogen  could eaglly be of the order of 0.0lRy. The contribution of the

third order term in the liquid is more significant than in the selld, For
example at rB = 1,6, the third order cenergy in the liquid is -0.0372Ry as
opposed to =0,0322 caleulated by Hammerberg and Asherofit. The corresponding
comparisen ot r, = 1.36, yields =0.0326Ry for liquid as opposed to -0.0281
for the solid17. Finally, the liquid state energles caleulated in this paper
are o variational upperbound and the exact energy is expected to be lower.
Thus one cannot in principle exclude the existence of a liquid ground state
of metallic hydrogen though it is certainly not established as o preferred
ground stonte.
7. CONCLUSION

We have investigoated the possibility for a liquid ground state of metallic
hydrogen at zero temperature. We conclude that the possibility of a liquid
phase near the metastable zZero pressure point cannot be ruled out. We have
found out that the third order terms in the llquid are significantly lower
than the corresponding ones in the solid and a enreful estimnte of these terms
in the solid phase which also incorporates the dynamies of the protons is
essentinl to determine the liquid-solid transition (if any). We have also found
that the contribution to the ground state energy due to the long range phonons
is negligible though their presence is necessary. An interesting part of our
calculation 1s the faet that the energy of this proton-electron liquid can be
lowered by a partial spin alignment of the protons,

We would like to thank Dr. P. Bhattacharya and Professor G.V. Chester for

interesting discussions. This work was supported by NASA, NGR 33-010-188.



Appoendix

We shell prove that the limiting volue of SB(E;E;-ELEB a8 any one of the
wave vector approaches zero frem above vanishes provided the stntie structure
factor SB(k) vanishes in the same limit., Strietly speaking this result should
be considercd as o limiting value, defining the funetion by continuity at
the origin and true in the thermodynomie limit.

Firat note thutz,

o aa (legene g oled

Sytk,q,~k-q) = _ck-d —0

NCEo 18

P - - - -h
- - 1 p dker +iger,-i(k+q)er, . _,
= 2+S(k)+S(q)+S(|h+q‘)+ N IG 1 2 3P(r ,rz,ré)

Ll - -
drldrzdra (AL}

where the three particle distribution function Pf;l ,;2 ,;3 ) is,

Bz -t -y
— - - — - ; jr' LN ] .dr
Plr., Tosln) = N(N-1) (N-2) -r 2 N . (A2)
1'"2'"3 n3 BZ o -
W) M
j‘ url . .drN

Since SB(E,E,-E—E) is invariant with respect to the interchange of its argu-
mentsit is sufficlent to prove the result when any one of the waveveetors tend
to zero, say k ~ 0+. The feollowing cluster decomposition2 of P(;i,;z,?s) is

exact as long as one does not specily 6P(;lﬁ;é,;$):

P(F) Ty Ty) = B [LHh(2) g ¥R, ) +h(ryn) +h(ry B (Typ)+hry ni(r

31)
#1(rg Y hlrg,)] + 69&’1,?2,?3) (A3)

where, h(r) = gB(r) - 1.
Then one can easily prove from the normalization of the probability distribu-

tion funcetions that2



[oocE, 7, BTy = -nfn(e, Ih(nyg) dF, (A9)

Now one can easily evrluate the right hand side of Eg. (Al) for k = 0" and

obtaln the stated result.
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Figureo 1
Figure 2

Flguce 3

Table 1

Table 3

Table 3

FIGURE CAPTIONS

vocr) for some tymical valuers of v,
gB(r) for gome typical values of rg

SB(R) for some typicnl values of r,

TABLE CAPTIONS
Boson part, EB’ of the ground state ehorgy. Egg) (MC) 18
the Monte-Carle results of Ref. 1. All cnergles are expres.ed
in units of Rydbergs.
Exehange eontribution teo the ground stiate energy. All energles
are expregssed in units of Rydbergs.
Comparisons of the ground state energies of the liquid (E(x)/N)
and thoe solid phases (ES(HA)/Nz Hommerberg and Asheroft, Rof. 4).
All enerples are expressed in units of Rydbergs. SC: Sinple

cubicy BCC: Boedy centered cubie; FCC: Face centered cublce.
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TABLE &

y X E (x)/N
0,50 0.580 0.00263
0.80 0.579 0.00102
1.20 0.582 0.000456
1.30 0.5856 0.00039
1.36 0.587 0.00036
1.40 0.588 0.00033
1.45 0.591 0.00031
1,50 0,583 0.00029
1.56 0.598 0.,00027
1.80 0.598 0.,00026
1.70 0.603 0.00023
1.80 0.607 0,00021



.80
0.80
1.00
1.20
1,25
1.30
1,36
1.580
1.60
1.66
1.70

1.80

TABLE 2

BY () /N
s¢ Fee BCC
-0.71188 -0,71929 -0,71819
-0.93796 ~0.94018 «0.93002
-0.96842 -0.96961 -0.96843
-0.99217 -0.99242 -0.959122
«1.04104 ~1.03818 -1.03693
-1.04750 ~1.04345 -1.04222
~1.04803 -1.04338 -1.04200

E(x)/N

3.36G30Y

=0,08811

-0.91901

»1.001569

-1,03388

=1,04322

-1.04509

=1.04178
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