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ABSTRACT

f

A proposed liquid ground state of metallic hydrogen at zero temperature

is explored and a variational upper bound to the ground state energy is

calculated. It is shown that the possibility that the metallic hydrogen

is :a 'quid around the metastable point (rs = 1.64) cannot be ruled out.

This conclusion crucially hinges oa> the contribution to the energy arising

from the third order in the electron - proton interaction which is shown here

to be more significant in the liquid phase than in crystals. -
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An interesting possibility of a zero temperature liquid ground state of

metallic hydrogen has been recently explored in a calculation s which makes

use of a Jastrow-Slater many particle variational wavefunction z ' 3 to calculate

the ground state energies of both solid and liquid phases. The symmetric

part of the wavefunction is treated by the Monte-Carlo technique; exchange

is neglected in the solid and approximated in the liquid by the Wu-Feenberg

expansion2 .3 It is found that the differences in the energies of the liquid

and the solid phases varies from 0.1% at r  = 1.6 to about 3%a at r  = 0.8

(here 4LP/3(rsa0) 3 = 1/n and n is proton or electron density). The solid

phase seems to be energetically more favorable throughout the entire range

of densities considered. However, the calculation is based on a model of

pair-interactions between protons and therefore contains only terms generated

to second order in the electron-proton interaction. The contribution coming

from the third order in the electron-proton interaction is known to be signi-

ficant in the calculation of the band-structure energy 4,5 in the solid. In

view of the small energy difference between the solid and the liquid phases

it is therefore necessary to estimate the third order term for the liquid as

well. Furthermore, since in the liquid certain configurations will permit

three protons to come closer together than they would in a solid, we might also

expect that the contribution from the term third order in the electron -

proton interaction may be relatively more important in the liquid phase.

In this paper we shall first show that a simple one-parameter variational

wavefunction when combined with the Hypernetted Chain (HNC) integral equation 2

can reproduce the energies calculated in fief. 1 with a 6-parameter variational

wavefunction and the Monte-Carlo technique to within 0.025 - 4.2% and therefore

provides a very reasonable upperbound. However, precise agreement is not

necessary in order to provide variational answers to the following questions
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(a) How much does the third order term contribute

to the ground state energy of the liquid? (b) what are the corrections in the

liquid state attributable to	 long wavelength phonons? (a) Is it possible

to lower the energy of the liquid by permitting partial alignment of the

spins of the protons?

The calculation described below is a judicious combination of variational

and perturbative methods and is intended to suggest that for certain densities

the possibility of a liquid metallic phase of hydrogen at zero temperature

cannot be ruled out. The conclusion hinges on the fact that the third order

term is significant and is perhaps more so in the liquid.

2. FOIi11MATION

In a sense hydrogen is the simplest metal; its Hamiltonian is known

exactly; For N protons, N electrons and volume 0 we write

H = H + H + He	 p	 ep

	

h2 N 2	 e	 h2 N 2	 e2

2m  1=1 r  i<,j Iri-ri l	 2m  i=l R 	 i< TRi-Rj

2
e	 (2.1)

Here we have denoted thei}proton coordinates by tRi} and the electron coordinates 	 ^ +

by {ri}. A major simplification takes place 6 when Ave realize that there are

two widely different time scales involved in the problem, allowing us to remove 	 t

electronic degrees of freedom by assuming that at any instant we can consider

the electrons to be in the ground state corresponding to the instantaneous

proton configuration. This Horn-Oppenheimer adiabatic approximation reformu-

lates the problem in terms of an effective Hamiltonian of protons. The price 	 }

we pay is that the indirect interaction between the protons, now mediated by 	 1':

the electrons, is no longer a simple Coulombic pair interaction but contains
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many body forces. With electron coordinates now integrated out the total

Hamiltonian for the protons beoomeee

Hp = Eeg + Tp + Vpp + E(2) ( {R°^} + P(3) ({RIt}) + ...	 (2.2)

where Beg , which is the exact ground stat o energy of the interacting electrons

in a uniform positive background appears as a constant energy, and simply

drops out of the calculation. In Eq. (2.2) T  and Vpp are the parts of the

original Hamiltonian of the protons and E(bn)({R^'}) which are functions of the

proton coordinates are the electron mediated interactions between protons

which are generated by adiabatic perturbation theory. Provided Eq. (2.2)

converges, the procedure is exact within the adiabatic approximation. Most

importantly, note that to this point we have not made any assumptions regarding

the positions of the ions; the discussion holds for liquids and crystals

,

whether static or dynamic. The precise form of E (n) ({ Rf}) can easily be

written down

E42! (Lap. = '}(1 Fg' V(kl) V(-kl) ^(1) tkl) r
kl

(2.3)

3) ({R^}) = C1 

9 l'
'	 , V(kI)V(k2)V(k3) X(2)(kl,k2,k3) bk +k +k ,o, (2.4)
kk2'k3	

1 2 3

and similarly for the nth order term. Here,

V(Ir)	 _ eS. 	 4re2	 (2,4)

(	 k

and

2
X(1)(k)
	
\4re2 / e(k) - 1	

(2.5)

.a	 ., ..wiSp k -°.e a-..r Few	 h.T (,-°4 ^'?'. ^	 u:F'.-^'S . ^..,..^i1'.riV2uJfnP wYe.^v	 tf3N ^_^-. xP Mr> ^n ..^l. + ^r-^..4ert .vim x , v^t .,ii'^
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is the exact first order static response of the interacting electron Sue to.

an external potential. Similarly )((n)(kl,k2,...ku+1) is the exact nth order

response. In otherwords if we know the nt% order response function of the interacting

electron gas exactly, we would also know exactly these extra many body interactions

between protons, and we can proceed to diagonalize the proton Hamiltonian.

The interesting point to note is that the rewriting of the original

Hamiltonian in the form given in Eq. (2.2) splits off a large volume dependent

term (order 1 1q) which does not depend on whether the protons form a

liquid or a solid and therefore simply drops out of the difference in energies

between the liquid and the solid phases which is the interesting quantity

In examining the phase transitions between the two. The uncertainties in

the electron gas response functions x(n)(kl,k2,"'kn+l) will surely affect

each of the terms (n) 
((Rbut, once again, they will not influence too

greatly the difference in energies. Thus this particular reformulation, Eq. (2.2),

should be a reliable starting point to calculate the energy difference between

liquid and solid phases.

For )((1) (k) we shall choose the Hubbard-Geldart-Vosko S (HGV) form for the

dielectric function e(k) which is known to be of reasonable accuracy at least for

r  < 2. For ) 2 (A1 ,k2 ,k3) we shall make use of the form used by Brovman, Kagan
5

and Bolas in which the one body interactions are screened by the HGV dielec-

trio function. This approximation for )((2) (kl,k2 , k3) has

keen used extensively and is believed to be reasonably accurate. The

Hamiltonian can now explicitly be written downl if we neglectE (n) ((R,)) for

n>4:

h2 N 2
H = E^ - 2m V̀ dR + E f1( 2) (Ri^) + E	 H(2)

(Rij' Rjlt'Rilt^	 (2.6)
p 1=1 1 i<j	 i<,j<k

where,



'	 6

N_ R 	 4re2 1	 1	 (2.7)8^ o 
R og - 2a +	 k	

1

	

2(2R) 3 (nilks)	
g2 \E(k) - /

is a large volume dependent term, which is convenient to separate out. In

(2.7) n is the numbQr density WO) and K is the compressibility of the

uniform interacting elee2ron gas neutralized by a uniform positive background at

the same density. Note that the terms 
(2

([R R}) and Pp have been combined

to give

(2)	 1	 Otto 1	 (2.8)1k• ( R -IZ )
(Ri,) 0	 3 fdk 2 E(k) a	 i)

(2oT)	 k

an effective linear-response pair potential. Finally the third order term 11

is given by,

0(3)(RijoR^f'Rif) _ - 1 6 jdklfdk2eik;Ri+k 2•RJ-i (kI+k2) • RR	 (2.9)
MT)

l^(k1, k2 +-kl -k2 )

Here W is:

3

,k2 , k3)	 2 2 2 
(4rre2)	 A(k1,k2,k3) r (2.10)A(k]

klk2k3 a ( kl) a ( Is2) a (lc3)

2	 k2 rI 3	 2k +k2m
AM ,k ,k ) = (	 \( R ^L g cos® Zn^ 

F i ^ - 2®(k -k ) tan 1^A1 2 3	 3,72,14 \klk2k3 i=l	 1 2kr ki	 F R

- {1-e (kr kR)j Pat 1'-'^ 	 (2.11)

where ®(x) = 1 for x > 0 and zero for x < 0. The remaining parameters are

given below,

k !t k	 k2+ls2+k2 -1
A= 1 2 

9 Cl -	 1 
2 

23 ]	
(2.12)

(2k F)L	 (2kF)
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R°
2^kik2-(kl•k2)2]

W N
k

casel ° k !t3
2 3

-. W

k3•kIcase  ° - k 3 k1
and

M ti

case3 = - kk • lk
2 1

(2.13)

(2.14)

(2.18)

(2.10)

If we take e(k) to be the RPA dielectric function then A would precisely be

the RPA approximation for the three tailed diagram.

As mentioned earlier the dielectric function e(k) is taken to be of the HGV

form and is explicitly given as,

+	 aF(11)/T12	 (2.17)

where
2

F(Tl) ° 1 + (12 ) 
on ^1*n^ 	 (2.18)

a	 n (rs/2rr)(4/97) 1/3 	,	 (2.19)

g	
=	 1

	
1/3 rrr	

(2.20)

(1 + 0.031 (#)28)
and n = k/2111,.

Finally, we obtain

H = EC2 + H(2) + r	 0(3)(Ri,)' Rik , Rik)	 (2.21)
iejek
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where En is a constant volume dependent term and we have split off the 0(3)

term from H(2) given by

I

i

	

2	 N
H(2) 	 2m	E ®1 + E 0(2)(Hi,)

P	 i=1	 it,)
(2.22)

In Hot. 1,H was approximated by En + H(2) . we proceed from this point and

shall first attempt to diagonalize H (2) as well as possible with o one parameter varia-

tional function which,as we shall see,will give an error of no more than d% when

compared to the calculation of Hof. 1 employing 6 variational parameters. An

optimum wavefunction obtained in this way will be used to calculate the varia-

tional bound for the contribution from 0(3).

3. CALCULATIONAL TECHNIQUE

In this section we shall outline the method used in calculating the ground

state energy of the Fermi liquid corresponding to the Hamiltonian given in

Eq. (2.6) .A Jastrow-Slater variational wavefunction2,3

(1,2....N) = D LVO
	 (3.1)

will be used to calculate an upperbound to the ground state energy. In Eq. (3.1)

D is n Slater determinant made out of piano waves and 
*o is a symmetric correlating

factor designed to take care of the strong inter-particle interactions. It is

responsible for a large part of the energy. A subsequent Wu-Feenberg expansion 2,3

then uses an exact transformation to recast the problem into the calculation of

two distinct parts: Thus we shall set

E - EE + Eex	 (3.2)

where Eex is the exchange contribution and EB is the eigenvalue of a symmetric

ground state corresponding to the Hamiltonian. Then

H((HL1) 2V = EB	 (3.3)
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7`'"^^	 where 1-0 in Eq. (3.1) is chosen to be the eigenfunetion of (3.3). The calcula-

tion of % therefore does not involve the antisymmetric factor and results in

a considerably simplified problem. A knowledge of this 
Z is then utilized

to calculate,

2 N	
q D 

2
170 @ Ve D dr1 	

N
.. dr ORIGINAL PAGE IS

Eex = z Z	
-0 
2 	 Or POOR QUALITY	 (3.4)

1=1	
.Y 3p 

dr1 ... drN

which may be calculated by a statistical cluster expansion of the type

01 	 02
 + EF + EF3 + ...	 (3.5)

where 1n) involves n-particle exchange. These terms are easily calculated

(at least up to the 3rd order) as we shall see below. The entire procedure

is meaningful when E$ is much greater than Eex and the series in 
Eex 

converges

rapidly. We shall see later that the first condition is very well satisfied,

% being several orders of magnitude larger than % X . However, the second is

only moderately well satisfied, each term dropping by a factor of 1/3 to 1/5

of the previous term.

So far we have implicitly assumed a paramagnetic ground state, each level

being doubly occupied in the Suter determinant. However, it is easy to extend

the result to a departure from double occupancy
2 ' 3 '12

. The resulting form for

EeX (x) is then

++ E(x) = EF 1(x)
	 02	 03

 E 3Eex	 (x) + ...	 (3.6)

where x is the spin imbalance order parameter defined by,

N - N_

x = + N	 (3.7)

E®x o
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Here N* (N_) are the numbers of up (down) spins and N is the total number of

spins. A non zero value of a will signify a magnetically ordered phase

Clearly x = 1 will represent a f erromugnotically ordered phase. Notice that

Eo does not depend on x. we shall try to determine whether E e.W possesses a

minimum Ec.(xm) at a non-zero value of x. It will turn out that the energy

difference AE(x) = EeX	 ...(x=0) - 0 (xm) per particle is small, only 2 x 10-5 Ry.

(It is worth noting that this is not small on the scale of a superconducting

pairing energy.)

4. VARIATIONAL METHOD

From the variational point of view % in Eq. (3.2) is conveniently split

into three parts

r_ %2) + r(3) + 6h
	

(4.1)

The first term , E (2) , is calculated by variationally optimizing the Hamiltonian

H(2) (( RR}) with the many-body Jastrow wavefunction given by,

to = 47 e-ju(r11	 •°°-^	 (4.2)

i<j

where,

u(r) _ (b)3 0 (r/b)3	 (4.3)

This wave function is a simplified one-parameter form for that used in Ref. ?.

The energy functional is minimized with respect to the parameter b at every value

of rs , the resulting wavefunction is then used to calculate the expectation

value of 0 (3)((Rf}). The Fj obtained in this first order perturbation is also

a variational bound. The w (r) expressed in Eq. ( 4.3) is short ranged and does
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not include the contribution dae to the long wavelength phonons. This is

done perturbatively with the help of Chester-Reatto wavefunction 13. The

relevant formulae are summarized below:

F`2)	 !msx/202 12 J	 S \ xn3 -(x/h )21 \b ^g \b )	 1dxg (x)	 e	 F 3(a + 2 ^— + 2
p	 r  o	 F	 F

+

(3"
2) (x`1/3 s dx x2v0(x) gn(x)	 (4.4)

o T; IN + V13

where all distances are scaled with respect to the inverse Fermi wavevector,

IN, including the variational parameter b (b - bF/kr). In Eq. (4.4), re

denotes the average interparticle distance scaled by the Bohr radius and g0(x)

o	 n Wk ) is the	
2,3

gB(r), (r	 F	
pair correlation function defined as:

(r ) = N(N-1)
B 12	 n2

S(^B)2dr3 ... e,;x

^Va2drl...drN

(4.5)

Note that 4 
is defined in Egs.(4.2)and(4.3)• The corresponding static structure

factor s® (k) is defined by the Fourier transform: 2,3

°B(k) = 1 + nSdr 
eilr r 

[g°s	 B(r) - 13	 (4.8)

Finally with the distance and the wavevector staled,

6
vo(x) 

= Jdy sixyy e(Y) = 2 — 0
(2) (x)	 (4.7)

0	 20 kv

is the screened interaction and e ( ,') is the BGV dielectric function. Once

again all wavevectors are scaled by It(jkl = ykl ). For g0 (r) we shall use the
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IIypornotted Chain Approximatio
2,3

 which is known to be satisfactory for Bose

fluids and has been tested	 for a variety of interaction potentials. 2.3

In this approximation g°B(r) is the solution of the non-linear integral equation

relating the direct correlation function c(r) to g 0(r):
B

90(r) - 1 e c(r) + nfdr'c(Ir r'I) [g8(r')-1I,	 (4.8)

c(r) o 90(r) - 1 - logga(:) + u(r)	 (4.9)

The procedure is to solve Bgs.(4.8)and(4.9 ) for a given value of the variational

parameter b by a standard numerical procedure and to use the resulting g 0(r)

in Eq. (4.4) to calculate the energy. This process is repeated for a number

of different values of b to find the optimum g 0(r), u(r) and the minimum in

energy at a given density or rs . We then proceed to calculate the contribu-

tion due to 0(2 ((;.e3). Thus

(3)	 `Vol B3 ((It E ) ^)

	

fdVdq 1	 1	 1 	 8°°( k,a.-k°q)A liti .a, -k q ) (4.10)
tP3	

v	
g2E(q) k2E(k) (q+k)2C(q+k)	 B

where,

o ., b r	 C' I PkPq-I,-G IVo)
S (1;,q,-k-q) _( 4.11)

B	
I ^o

and

N	 -'
Pk = E o	

i
	 k 0	 (4.12)

1=1
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a, o, of W
A distinct feature" of the response function of A(k,q,-k-q) is its singular

b b
behavior when k + q o 0: i.e.,

i .	 Z,

I.:	 1 4

A(k,-k,0) ro£x pô k2 /41
	

(9.13)

This singularity is stronger here than in the second order response where only

the derivative has a logarithmic singularity. This amplification is due to

the confluence of the usual second order Kohn anomaly which is always present

in the third order response and the intrinsic singularity of the third order

response. It is clear that the integral in Eq. ( 4 .10) can only be defined if

this A' -ularity is cancelled by other terms present In the integrand. To

thl. efxect we prove rigorously in the Appendix the following result:

lim
k-O

SB(k, E, 	 if lim
k-0

SB(k)	 CLk. Similar results hold when & 4 0 and

pk+e0 w 0.

Thus it is necessary that S(k) vanish at least linearly with k in the limit

of small k. Furthermore, any approximation for the three particle structure

factor must be such as to preserve this property. one such approximation 1s

the convolution approximation 3 ' 3 for the three particle structure factor, an

approximation that has been extensively tested for soft core potentials 14 and

in many other situations.
14
 Thus we set

SB(k,q,-k-q)	 SBM SB(q) SB(, )
	

(4.14)

which clearly has the required property that it vanishes when any of the three

arguments vanishes. As is made clear in the appendix this is simply because

of the fact that the convolution approximation satisfies all the normalization

conditions to be required of the probability distribution functions. However,

2
as is well known ' , the short range wavefunction written down in Bq. (4.3)

dons not lead to a SB(k) which vanishes as k 0. This needs to be corrected

0 u
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for the presence, expected physically, oP long range phonons before we can

evaluate the third order energy given by Eq. (4.10) and (4.14). The procedure

Is almost standardlb . The Chester and Reatto wavofunction is long ranged and

has the form

a ^i

-au (r)	 - n	
1

e Lr
	 = e j"cF (x2+x2 )

(4.15)

where we have scaled the distance by k V i.e. r - x/kF and xo is a variational cutoff

parameter. Here a is the velocity of sound in this hypothetical Boson system and

can be obtained from the energy, (2)/N:

	

c1/3rr 2 d21 (2)	 d,gB3)1
BS	 4

(rs) - 13 ^re \Jts/ \ 2 ddrr2	 r  drs
s

where, c B5 = T (	 and vF = (his./me) . The choice of such a long range wave-
` P

function leads to a sequence of changes given next. 	 The structure factor

SB(k) ca.l^ulated with the short ranged wavofunction gets modified to SB(k)

given by

S°(k)
3 (k) =	 B	 (4.17)B	 1 + n•8°B (k) ULR(k)

and the corresponding correction in the pair correlation function is

6g(r) =gO(r) (o 
r(r)- 

1) ,	 (4.15)

where

9B (r)= g,
( r) + 8g(r),	 (4.19)

and ULR (k) is the Fourier transform of ULR(r). Finally,
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- ^°' SG (k)2 U (R)	 br(r) a 1 3 ro k r	 B	 o	 dk	 (4.20)
(2R) y	 1 + PUL (k) 8B(k)

The correction to the energy is then

pph

NB ° 6mp Sdr g°B(r) 7 ULR ( r)+ Smp J drbg ( r) ®2[U(r) +ULR(r))

+ )3pSv(r) 8g(r)d5	 (4.21)

Finally, Eq. (4.10) can be rewritten to obtain the third order contribution

to the energy,

R(d) _ 
80 wSB(k) (o'	 SB (q) TT	 1^

N =
	

Idk E(k) odq 6(q) Josined®(q+k)2

where 0 is the angle between the vectors k and q.

calculated numerically if S B(q) is known.

5. EXCRANGE CONTRIBUTIONS

_. ^ S (k+q)A(k,q,-1{-q)
E(k+q) B

Thus EB3) /N can now be 
(4.22)

As mentioned earlier the Wu-Feenberg expansion is used to obtain the exchange

contributions to the energy. The total energy per particle is

E(x)/N = EB/N + EeX/N

( E (2) 	 4-h)+ E(3) + n /N + Eox (x)/N
	

(5.1)

where, EeX (x)/N is the exchange energy of the Fermions (protons in this case).

In Eq. (5.1) the energy up to third order in exchange is given by:

Eex
/N y 01(n,x)/N + E02 (n ,x) /N + E03 (n,x) /N + ...	 (5.2)

where



15

0
1 (a,x)ON = 10 el (i+x)5/3+(1-x)5/3"
	

(5.3)

1

F- (n,x) /N a 12ei{ ( l+x) 8/3^
( y4° 2 Y5+ 7eV7) CS(2gy) -Ildy

0

1r 
4

3+ (1-x) s/3 9 (Y-	 y5+ )dy7)(S(2k-y)°Ildy 	 (5.4)
0	 2

and

eF ( 3 3	 11/3r
	

+	 +	 +
03(n'x)/N ® 2 ^89	

2
T ^(l+x)	 1 Y12S (kFY12) (s(kry23) °17[S(kFy13) -lldyldy2dy3

i

+ (1-x)il/
3y^G1Y12S

(kFY12 ) CS(k;y=) °Il[s(uFY13) -IldyldY2d'

^2k2	 (5.5)

Note that eI	 2mp , g kF (1 + x)1/3 and x a (N+-N- ) /N. As mentioned

earlier our intention is to compute the ground state energy as a function of

x. The term 
OS 

is calculated by making the quadratic approximation described in Refs.

2 and 12.

6. RESULTS

In Fig. 1 we show the dimensionless potential function v o(x), F.q. (4.71,

for some typical values of r s . In Fig. 2 we show the corresponding pair corre-

lation functions gB(r). The actual Fermion pair correlation function car. be

obtained from these by the Wu-Feenberg expansion2 ' 3 , Fermion corrections being

small in this case. The reason why we have not displayed them is because they

are not explicitly required in the method of calculating the Wu-Feenberg series

used here. The structure factor S B(k) corresponding to gB (r) is shown in Fig. 3

for few typical values of r e . It is clear from these plots that there is a

considerable amount of short range order in liquid metallic hydrogen as compared

to say liquid helium. One should also note that the interaction potential

exhibits a strong density dependence.

Table 1 compares our results for % , Eq. (4.4), with the calculation
in Ref. 1. It is clear that our one parameter variational wavefunction gives

e+

^f .nA S"s	 sz v.? '4`" 3..}^. YT .. J4S4,^ °. v^`.M°nF:(i+n. VW ,A-ad21^^ 3MMrv: +f.,M'e^II^'R 0.ud?!M6'S^m.A-0^bR^ ?k.MnYwArcN^Nnvn	 r.	 ........ v.	 ........
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a reasonably good upperbound. Also shown in the table is the

detailed decomposition of E M into kinetic and potential

energies. We should emphasize that precise agreement between our l-parameter

variational results with the 6-parameter Monte Carlo results, Ref. l,is not

necessary since wo are simply interested in an upperbound for the contribution

arising from the three body forces. These are given in 'Pablo 1 along with the

volume dependent terms. In calculating E 0 and 
Eeg 

we have made use of

the Nozieros and mines interpolation 
16 

formula for the correlation energy of

electron gas which is consistent with our choice of 1IGV dielectric function.

From Table 1 one can also see that ^1t1N, Eq. (4.21), makes a negligible

contribution to the total energy. The main effect of the long range phonons

is to produce an SH (k) which vanishes in the limit of small k which, in turn,

allows us to calculate E (p) {N, Eq. 4.22. As noted above the integral is ill

conditioned if S$(k) approaches a non zero value as h goes to zero.

In Table 2 we have shown the exchange corrections. It is seen that a

partially spin aligned state of protons is in fact favored throughout the

entire range of densities considered. As mentioned ear119r we should be

cautious about this conclusion since EQ3 has been calculated with the help

of the conventional 
2,10,12 

quadratic approximation, and thus may be quite

inaccurate especially for larger values of the order parameter x. In view

of the fact that this term is considerably smaller than the rest and that one

needs a complicated numerical procedure to ealculato accurately we have not

examined it using a more elaborate computational method. we do not believe

that the results will	 . change qualitatively. Since the quadratic approximation

is good in the neighborhood of x = o, the fact that the energy is lowered for

non zero values of x can be established although the exact value of x may be

inaccurate. It is also worth remembering that the convergence of Wu—Feenberg

series is not rigorously established.

The total energy for the liquid is compared, Table 3, with the static energies for

the solid phase obtained by Haminerberg kind Ashcrott l . Note that the Static



17

hydrogen 
l6 

could easily be of the order of O.O1Ry. The contribution of the

third order term in the liquid is more significant than in the solid. For

example at r  = 1.6, the third order energy in the liquid is -0.0372Ry as

opposed to -0.0322 calculated by IIammorberg and Ashcroft. The corresponding

comparison at r  = 1.36, yields -0.032GRy for liquid as opposed to -0.0251

for the solid 17. Finally, the liquid state energies calculated in this paper

are a variational upporbound and the exact energy is expected to be lower.

Thus one cannot in principle exclude the existence of a liquid ground state

of metallic hydrogen though it is certainly not established as a preferred

ground state.

7. CONCLUSION

We have investigated the possibility for a liquid ground state of metallic

hydrogen at zero temperature. We conclude that the possibility of a liquid

phase near the metastable zero pressure point cannot be ruled out. We have

found out that the third order terms in the liquid are significantly lower

than the corresponding ones in the solid and a careful estimate of these terms

in the solid phase which also incorporates the dynamics of the protons is

essential to determine the liquid-solid transition (if any). We have also found

that the contribution to the ground state energy due to the long range phonons

is negligible though their presence is necessary. An interesting part of our

calculation is the fact that the energy of this proton-electron liquid can be

lowered by a partial spin alignment of the protons.

We would like to thank Dr. P. Bhattacharya and Professor G.V. Chester for

interesting discussions. This work was supported by NASA, NGR 33-010-155.



Appendix

We shall prove that the limiting value of SD(k,q,-k-q) as any one of the

wave vector approaches zero from above vanishes provided the static structure

factor SD(k) vanishes in the same limit. Strictly speaking this result should

be considered as a limiting value, defining the function by continuity at

the origin and true in the thermodynamic limit.

First note that 2,

a	 ^1 P1'tPQ -k-q 
l-)

sB(k,q,-k-q) _	 D D
NC 0 0)

_ -2+S(k)+S(q)+S(Ik+ql)+ N Soik•rI+iqe r2-i(k+q)'r3P(r ,r ,r )
1 2 3

dr1dr2dr3 	(Al)

ti ^ ti

where the three particle distribution function P(r l ,r , r3 ) is,

P2 M

N(N-1)(N-2)	
'o 9r . "drNP(rl,r2,r3) 3 -	 2	 (A2)

n	
14 Crl.,..drN

Since SD(k,q,-k-q) is invariant with respect to the interchange of its argu-

mentsit issufficient to prove the result when any one of the waveveetors tend

to zero, say k 0+ . The following cluster decomposition2 of P(rl ,r2 ,r3) is

exact as long as one does not specify 6P(rltr21r3):

P(rl,r2,r3) = n3[l+h(r12)+h(r13)+h(r23)+h(r12)h(r23)+h(r2^ h(r31)

+h(r31)h(r32)I + 6P(rl ,r2' r3 )	 (0)

where, h(r) = gD (r) - 1.

Then one can easily prove from the normalization of the probability distribu-

tion functions that 



'J -,-^-"711 ^Jj

S6P('r 
I , 
;2 , 'r 

3 
)d' 

3 
0 -OSII(rl,)h(r 23 ) 

dr 
3
	 (AQ

Now one can easily eve.luate the right hand side of 311. (Al) for It - e and

obtain the stated result.
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FIGURE CAPTIONS

Figure 1	 vo(r) for some typical values of r 

Figure 2	 gB(r) for some typical values of rs

Figure 3	 SBW for some typical values of r 

TABLE CAPTIONS

Table 1	 Boson part, g_ of the,	
n (

B	
ground state energy. EM hIC) is

the Monte-Carlo results of Hof. 1. All energies are exprossed

in units of Rydborgs.

Table 2	 Exchange contribution to the ground state energy. All energies

are expressed in units of Hydbergs.

Table 3	 Comparisons of the ground state energies of the liquid (E(x)/N)

and the solid phases (E a (HA)/N: Hammerberg and Ashcroft, Hof. 4).

All energies are expressed in units of Rydbergs. SC: Simple

cubic; BCC: Body centered cubic; FCC: Face centered cubic.
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0.50 0.580 0.00263

0.80 0.570 0.00102

1.20 0.582 0.00045

1.30 0.585 0.00030

1.36 0.587 0.00035

1.40 0.588 0.00033

1.45 0.501 0.00031

1.50 0.503 0.00020

1.55 0.505 0.00027

1.60 0.508 0.00026

1.70 0.603 0.0003
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SC	 FCC	 BCC

0.50

0.80

1.00

1.20

1.25

1.30

1.30

1.50
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1.85

1.70

1.80

-0.71188 -0.71020 -0.71810
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