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SUMMARY

Two studies were conducted to determine the performance requirements
for projected state-of-the-art SEP spacecrafts boosted by the Shuttle/IUS

to perform a rendezvous with the comet Halley and a rendezvous with the
comet Encke during its 1987 apparition. The spacecraft model of the
standard HILTOP computer program was assumed. Numerical and graphical
results summarizing the studies are presented.

A new, more reaiistic propulsion system model has been implemented
in the HILTOP computer program, in which various thrust subsystem
efficiencies and specific impulse are modeled as variable functions of
power available to the propulsion system. The number of operating
thrusters are staged, and the beam voltage is selected from a set of
five (or less) constant voltages, based upon the application of
variational calculus. The constant beam voltages may be optimized
individually or collectively. A companion document contains the new
analysis describing these features, a complete description of program
input quantities, and sample cases of computer output illustrating the
ne\! program capabilities.
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I.  INTRODUCTION

This document is the final report for Contract NAS 3-20950 and
describes work performed for the NASA Lewis Researc:h Center in the field
of solar electric propu’sion mission analysis.

The report is segmented into two self-contained parts:

(1) Numerical and graphical results summarizing two comet
rendezvous studies made with the standard HILTOP computer
program [ﬁ] and assuming solar electric propulsion
combined with the Shuttle/IUS launch vehicle.

(2) An overview of the improvements made to the HILTOP
computer program.
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II. SOLAR ELECTRIC PROPULSION COMET RENDEZVOUS STUDIES

This section consists of two self-contained parts, each describing
the basic assumptions and results of a task to generate performance
data for a comet rendezvous mission using solar electric propulsion.

A. Comet Halley. This subsection documents the results of a task
to generate performance data for the Halley Comet rendezvous mission
giving tradeoffs in delivered mass as a function of variations in
launch date, power input to the power processing units and total pro-
pulsion system efficiency.

The guidelines of the performance study were as follows:

(1) Neglect throttling effects on thruster performance;

(2) Assume a constant specific impulse of 4770 seconds;

(3) Assume a rendezvous date of December 21, 1985 (50 days
before perihelion);

(4) Consider flight times of 1270, 1300, and 1330 days
(corresponding to launch dates of June 30, May 31,
and May 1, 1982, respectively);

(5) Consider total propulsion system efficiencies of 0.68,
0.70, and 0.72;

(6) Consider thruster subsystems comprised of 6, 7, and 8
operating thrusters of 6.5 kilowatts maximum power each;

(7) Assume a launch vehicle performance corresponding to the
Shuttle/IUS; and

(8) Assume a 70 kilowatt array with solar collectors yielding
a 3:1 power ratio.

The performance of the Shuttle/IUS is expressed in the form of
seven tabular values of launch vehicle payload as a function of hyper-
bolic excess speed over the range of 3 to 7 kilometers per second. The

values of payload provided represented the launch vehicle payload after
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subtracting out the IUS adaptor and the SEPS adaptor and therefore may

be considered to be the initial spacecraft mass. The SEPS adaptor
weight subtracted is variable as it is dependent upon the mass of the
spacecraft that it supports. The tabular values were input to a computer
program which computes three coefficients - b] ’ b2 and b3 - used in the
equation for initial spacecraft mass

-v_/b

= c 2-
me b]e b3
such that the sum-square deviations in computed initial mass from the
tabular values is minimized. The characteristic speed Y, is a function

of the hyperbolic excess speed v_ ; i.e.;

where Ve is escape speed frc i a low altitude circular earth orbit. A
value of 11021 m /sec was assumed for v The resulting values of

the coefficients are as follows:

e e

b] = 209698.42 kg
b2 = 3661.63 m/sec
b3 = 3757.8797 kg

The following table presents the tabular values and the corresponding
computed values using the above coefficients, both as a function of
hyperbolic excess speed.



v m,(tabular) m, (computed)

(km/sec) (kg) (kg)
3.0 - 5428 5507
3.5 5163 5157
4.0 4832 4773
4.5 4413 4364
5.0 3949 3937
6.0 3001 3054
7.0 2184 2172

The computed initial spacecraft mass is presented graphically as a
function of hyperbolic excess speed in Figure 1.

Tabular values of the 3:1 array power function y , equal to the ratio
of power delivered by the array at a distance r to the power delivered at
1 AU from the sun assuming the array is oriented normal to the sun,
represent the best performance estimates currently available. The
data exhibit a peak in the power profile at a solar distance of about
1.15 AU, apparently due to temperature effects introduced by the concen-
trators. Overall, the tabular data indicate substantially higher
performance than previously expected from analytical predictions. The
14 tabular values provided were processed using a least square curve
fit algorithm to obtain the five coefficients in the equation

The coefficients thus obtained are as follows
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a; = -31.45129
a, = 198.79617
a; = -404,72935

a = 351.66829
= -113.28382

A comparison of the tabulated and computed values of y as a function of
solar distance r is represented in the following table.

(AE) y(tabular) y(computed) 1
] 1.0 1.0 *
1.3 1.0554 1.0644
1.4 1.0083 1.0039
1.5 0.9543 0.9427
1.6 0.8878 0.8847 5
1.7 0.8261 0.8308
1.8 0.7742 0.7809
1.9 0.7299 0.7346 ,
2.0 0.6953 0.6917 i
2.5 0.5166 0.5163
3.0 0.3906 0.3895 ‘
3.5 0.2992 0.2965
4.0 0.2271 0.2277 ]
4.5 0.1745 0.1762

The computed power function y is displayed as a function of solar distance
in Figure 2. Superimposed on the graph arz three dashed lines representing
the maximum values of y to be employed for 6, 7 and 8 operational thrusters.
These maximum values of y result from the assumptions that the maximum power
input to each PPU is 6.5 kilowatts and the maximum array output power at

1 AU is 70 kilowatts. That is, the maximum value of y permitted for Nth
thrusters is :
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ma
The desired performance data were obtained by generating fully
optimired trajectories for the 27 cases comprised of the combination of
the three specified values of each of the %!ree variables - f.ight time,
number of operating thrusters, and propulsion system efficiency. Each
trajectory was optimized with respect to the thrust direction at each
point in time and with respect to the magnitude and direction of the
hyperbolic launch excess speed. The optimization objective was to maximize
total delivered mass. All cases resulted in continuous burn solutions
and with hyperbolic asymptote declinations less than 15 degrees. A
somewhat surprising result achieved was that the delivered mass increased
with decreasing flight time for a given number of thrusters and propulsion
system efficiency, although the peaks appeared to occur in the vicinity
of the shortest flight time considered. To more precisely identify these
peaks, three additional cases were run for 6, 7 and 8 operating thrusters,
all at a propulsion system efficiency of 0.70, in which the launch date
was also optimized. The results for the 30 cases are summarized in tabular
form on the preceding page. Included in this table are the resultant
values of the launch hyperbolic excess speed, v_ , the initial mass m s
the propellant mass, mp » and the delivered mass, my » @s a function of
the flight time, tf » the number of operating thrusters, Nep and the
total propulsion system efficiency, n . The optimal launch date cases
are presented as Case Numbers 28-30. The range of delivered masses obtained
over the 30 cases is about 1900-2200 kilograms. The three mass parameters
are also presented graphically in Figures 3-5 as a function of flight time
for constant values of efficiency and number of operating thrusters.

B. Comet Encke (1987 Apparition). This subsection describes a study
conducted to determine the performance requirements for a projected state-
of-the-art solar electric propulsion spacecraft boostec by the Shuttle/IUS
to perform a rendezvous with the comet Encke during its 1987 apparition.
The spacecraft model of the standard HILTOP computer 2i-ogram was assumed.

12




A total of seventeen optimal trajectory solutions to comet Encke
were generated, having the following basic assumptions:

°  Mission ~lass - Direct (travel angle <360°),

” Launch vehicle - Shuttle/IUS,

" SEP specific impulse - 2800 seconds, a constant,

Performance index - maximum delivered mass; initial spacecraft
mass equal to sum of net mass and propellant mass,

Solar power law corresponds to default power curve in HILTOP
(MODE=5, GAMMAX=1.D0),

Reference power - a multiple of 3 kw,

Efficiency n - constant with tim.,

Maximum parking orbit inclination - 32.5 degrees.

The nominal trajectory solution assumed a reference power of 24 kw, an
efficiency of n = .58, a flight time of 860 days, and rendezvous at 30
days before perihelion. This flight time and arrival time corresponds to
a launch date of February 7, 1985.

Variations from the nominal solution consisted of

. Rendezvousing at 50 days before perihelion with the same
February 7, 1985 launch date (i.e., a flight time of 840 days),

. Efficiency n = .60,

° Reference powers of 21, 18, 15, and 12 kw.

Parameters defining the nominal trajectory solution are listed (in addition
to the basic assumptions given above):

b Net mass - 1916.8 kg

’ Initial mass - 2946.4 kg.

° Propellant mass - 1029,6 kg.

¢ Departure v_ - 6066 m/s(c3 = 36.8 ka/SZ)

» Departure asymptote declination - -33.8 degrees

. Parking orbit inclination - 32.5 degrees (at limit)
b Maximum thrust - 1.0139 newtons

13




R TR RNy pa e ST

iravel angle (ecliptic) - 276.9 degrees

i Maximum solar distance - 2.988 AU

° Minimum solar distance -~ 0.952 AU

» Communication distance (arrival) - 1.73 AU
N Communication angle (arrival) 14.0 degrees
(Sun-Earth-Encke)

Solar array degradation time - 264.8 days

A common characteristic of all seventeen optimal trajectory solutions
generated is that there are no coast phases; all trajectories assume thrust-
ing operation throughout.

Another common characteristic of all solutions is a launch parking
orbit inclination of 32.5 degrees (the maximum assumed allowable). A
variation of the nominal solution was generated in which the maximum allowable
parking orbit inclination was 48.5 degrees; the resulting optimal solution
has a parking orbit inclination of 39.3 degrees, a departure asymptote
declination of -39.8 degrees, a departure v_ of 6006 m/s, and a net mass
of 1921.4 kg, which implies that the net mass penalty associated with
the 32.5 degree parking orbit inclination constraint is about one-fourth
of one percent, a value which is not significant and which contributes
slightly to the conservativism of the study results.

The study results are summarized by Table I, in which three masses
are displayed (in kilograms) for each of the seventeen generated solutions;
the three masses listed for each solution are, respectively, net spacecraft
mass, initial spacecraft mass, and propellant mass.

The trajectory profile for the nominal mission is shown in Figure 6.
The trajectory profiles for all seventeen cases generated in this study
are very similar to the one displayed in this figure. Tic marks (Fig. 6)
denote the direction of the thrust vector. The maximum solar distance for
the nominal case is 2.99 AU, and the largest maximum solar distance of all
cases in the study is 3.06 AU. In the rendezvous sequence, the spacecraft

14




approaches the comet nearly head-on from the sunlit side; the comet rushes
to attempt to overtake the spacecraft, but the spacecraft thrusts in the
direction of the comet's motion to effect rendezvous.

Figure 7 shows the communication angle history and communication
distance history for the nominal case; all other cases are very similar in
communication history to the nominal case, and, of course, identical in
the post-rendezvous phase. The communication angle is defined as the
angle subtended at the Earth by the line segment between the sun and the
spacecraft.

Figure 8 displays the power profiles for the nominal case (24 kw) and
for the variation cases of 18 kw and 12 kw reference power. Due to the
high similarity of the trajectory profiles, these power curves are essen-

tially scaled versions of each other. The power curves are used to determine

thruster staging times (e.g., assuming each thruster operates at a maximum
of three kilowatts), the total number of "thruster-hours", and finally

the number of operational hours per thruster assuming all available
thrusters (excluding spares) operate for the same amount of time. The
power curve analysis is summarized by the following table:

Reference Total Operational
Power Thruster Hours per
(kw) Hours Thruster

12 38,232 9,558
18 59,304 9,884
24 71,472 8,934

Each trajectory in the study moves closer to the sun during the first
month after launch; the minimum solar distances are displayed in Figure 9.
The missions having shorter flight times (toward the "end" of the launch
window) do not dip toward the sun just after launch as much as those
having longer flight times; this alleviates the initial thermal load,
although of course the spacecraft may be thermally designed to withstand
temperatures at Encke's perihelion (.337 AU).

15
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Figure 10 shows initial mass capabilities for the 1987 Encke
rendezvous mission generated by HILTOP using the Launch Vehicle Independent
mode of operation. The performance curve for the Shuttle/IUS is super-
imposed. The intersection of a launch vehicle performance curve with a
curve of constant reference power determines the initial spacecraft mass
and departure hyperbolic excess speed associated with that launch
vehicle/refzvence power combination for the mission.
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ITI. IMPROVED SPACECRAFT MODEL IMPLEMENTATION IN HILTOP

A companion document [2] is the first supplement to the currently
existing primary HILTOP prcgram document (published in December 1974;
see reference [1]) and describes the modifications and improvements made
to the HILTOP electric propulsion trajectory optimization computer program
up through February 1978.

A new, more realistic propulsion system model involving the actual
ion beam current and voltage has been implemented in the program. The povier
processor efficiency, ion thruster efficiency, and thruster specific
impulse are modeled as variable functions of the (solar array, nuclear,
or other) power available to the propulsion system. The number of operating
thrusters are staged, and the beai. voltage is selected from a set of five
(or less) constant voltages, based upon the application of variational
calculus. The minimum and maximum number of operating thrusters, the
minimum throttling ratio, and the maximum input power to an individual
thruster are specified as input data. The constant beam voltages may be
optimized individually or collectively.

The new propulsion system logic is activated by a single program input
key; program modifications have been designed to retain the "old" HILTOP
program within the framework of the new logic, so that old input data files
(with no modifications required) will run the new program version and
produce identical results as before.

The capability of simulating solar array degradation with the new
spacecraft model is not included in this program version; also not in-
cluded is the capability of simulating the new spacecraft model under
the Launch Vehicle Independent (LVI) mode. The simulation of array
degradation and the LVI mode remain available with the old spacecraft
model,
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The execution step requirements of the new program version are a
little less than 390K. This compares to 350K for the old version.

The companion report [2] contains the new analysis describing these
features, a complete description of program input quantities, and sample
cases of computer output illustrating the new program capabilities.

A more detailed understanding of optimal electric propulsion engine-control
switching time-histories will become available as the new program
capabilities are exercised in future studies.
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[2]
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