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FOREWORD

This final report was prepared by General Dynamics Convair Division for
NASA/JSC in accordance with Contract NAS9-15310, DRL No. T-1340, DRD
No. MA-554T, Line Item No. 3. It consists of three volumes: (I) A brief
Executive Summary; (H) a comprehensive set of Study Results; and (III) a com-
pilation of Requirements suitable for use as a preliminary system specification
for subsequent Phase B studies.

The principal study results were developed from April 1977 through January
1978, followed by a beam fabrication task and final documentation. Reviews
were presented at JSC on 19 July 1977, 1 September 1977, 9 November 1977,
and 3 February 1978 and at NASA Headquarters on 10 rebrua, y 1978.

Due to the broad scope of this study, many individuals were involved in providing
technical assistance. General Dynamics Convair personnel who significantly
contributed to the study include:

Study Manager -	 Lee Browning
Mechanical Design -	 John Bodle, Des Kozmary,

Bob Trussell, Maurice Butler,
A. D. McFarlan

Avionics & Controls	 - Jack Fisher, Dave Sears,
Ron Newby

Requirements &	 - Charlie Hyde, Jim Peterson,
Operations John Maloney, Tad Winiecki

EVA/IVA	 - Kent Geyer, Mike Byrd
Structural Design -	 Lee Browning, Des Vaughan
Structural Analysis -	 Denny Laue, Jack Dyer
Structural Dynamics -	 Des Pengelley, Mike Shafir,

Jack Weber
Stability & Control -	 Bill Stubblefield
Thermodynamics -	 Bruce Kaser
Mass Properties -	 Dave Johnston, John Kessler,

Mary French, Julie Richardson
Materials & Processes -	 Jules Hertz, Chuck May,

Herb Urbach, Joe Villa,
Carlos Portugal

Manufacturing R&D -	 Jerry Peddie
.Economic Analysis -	 Bob Bradley
Test Integration -	 Phil Gardner

The study was conducted in Convair's Advanced Space Programs department,
directed by J. B. (Jack) Hurt. The NASA-JSC COR is Lyle Jenkins of the
Spacecraft Design Division, under Allen J. Louviere, Chief.
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INTRODUCTION

	

1.1	 SCOPE

This Executive Summary is the first of three volumes comprising the SCAFED Study Final
Report. Other volumes provide the detailed results of all study tasks and a comprehensive
Requirements Document.

1.2 STUDY OVERVIEW

The top - level objectives of this definition study are:

a. Define the techniques, processes, and equipment required for automatic fabrica-
tion ? rl assembly of structural elements in space using Shuttle as a launch vehicle
and construction base.

b. Identify and define additional construction /systems/operational tech:iques, pro-
cesses, and equipment which can be developed/demonstrated in the same program
to provide further risk reduction benefits to future large space systems.

The corresponding objectives for downstream program phases consist of the development
and flight demonstration of the above.

Study activities were divided into two parts, depicted in Figures 1-1 and 1-2. Convair
proposal concepts for the platform structure and beam builder served as reference con-
figurations for the Part I design trade tasks.

1.3 SCAFE SYSTEM CONCEPT

The SCAFE system concept is shown in Figure 1-3. Following boost to orbit and system
deployment from the stowed position, a beam-builder, moving to successive positions along
a Shuttle-attached assembly jig, automatically fabricates four triangular beams, each 200
meters long. Retention of the completed beams is provided by the assembly jig.

The beam-builder then moves to the position shown and fabricates the first of nine ohorter,
but otherwise identical, cross-beams. After cross-beam attachment, the partially ^om-
pleted assembly is automatically transported across the face of the assembly jig to the
next cross -beam location, where another cross-•beam is fabricated and installed. This
process repeats until the "ladder" platform assembly is complete. During this process
an opportunity to develop/evaluate EVA is provided by the difficult-to-automate task of
sensor/equipment attachment, as shown.
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Figure 1-3. Baseline systern concept.

Table 1-1. Study guidelines.

Upon platform assembly completion, both
structural and thermal response tests are
conducted and RMS/platform release/
recapture techniques are developed. The
seven-day mission cycle concludes Mth
EVA demonstration of unscheduled main-
tenance and repair activities followed by
platform separation and Shuttle return.

NASA-provided guidelines used in develop-
ing the SCAFE system are summarized
in Table 1-1.

• FLIGHT MISSION
28 5", 556 kin circular orbit
Mid 1982 ETR launch
Single flight, seven day duration to:

Fabricate, assemble structural plat,orm
Install instrumentation, scientific equipment
Conduct dynamic, thermal response tests
Separate platform
Perform reference scientific experiments

(geodynanucs, atmospheric composition)

PLATFORM SPACECRAFT
NASA baseline configuration: 4 at 200m r- 9 Lt 10.8m
Beams: triangular; -1m deep; continuous caps
Mdterial graphitehhermoplasuc; ground pre consolidated

• FABRICATION SYSTEM
STS compatible: wt!cg; loads; power. heat rejection;

1 OMS kit
Automatic in-situ beam fabrication
Compact raw material packaging
Rolltrusion lorn+ing process
Concept compa t ible with beam site scale up

1-3
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S'T'UDY RESULTS

Study results in the areas of Structure/Materials, Nabrication Systems (Beam Builder,
Assembly Jig, and Avionics/Controls), h0t4Fion Integration, and 1'.,)grammatics are
summarised in the following subsections.

2.1	 STRUCTURE/MATER1A IS

2.1.1	 PLATFORM STRUCTURE

e
	 Characteristics of the "ladder" Platform, its component beams, and individual beam ele-

ments are shown in Figure 2-1. Each longitudinal beam comprises 139 identical bays
plus an allowance at each end for cutoff by the beam builder. Each cross-beam comprises
7 bays plus end cutoff allowances. Bay spacing, beam sire, and element details are identi-
cal for both longitudinal and cross Ix-ams. Each beam assembly consists of three contin-
uous cap members, equally- spaced flared-channel cross-members, and continuous diagonal
cord cross-bracing. This structural concept, and its associated beam builder concept
(Section 2. 2.1) were selected in a combined machine/structure trade study which consider-
ed the four options illustrated in figure 2-2.

• PLATFORM ASSEMBLY
• 4 LONGITUDINAL BEAMS

199 93m 17871 2 IN.)
• 9 CROSS BEAMS

1064m(4109IN)

• NET P LAN AREA
2001. 	 m 2 (21,54' FT2)

• MASS	 /b^4
998 Ky (2 198 LBr„)

CUTOFF

121
y^ 7 BAYS

1 CUTOFF
(2)

1 BAY
191

• TYPICAL BEAM

TYPICAL BAY:
• 1 594 kg

CUTOFF	 •1434m
• 0 433 ky
*030

Figure 2-1. Platform characteristics.
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CONCEPT 1 : Precut side panels
	

CONCEPT 2: Zig-tag cord diagonals

_	 1

CONCEPT 3: Spiral wound diagonals 	 CONCEPT 4: Rigid bracing

Figure 2-2. Machine/structure trade study options.

Specific beam dimensions were developed by considering assembly jig/Orbiter bay com-
patibility, beam cutoff, assembly jig retention/translation of longitudinal beams, and
element clearances at beam-to-beam assembly joints.

The basic beam uses ground preconsolidated laminated composite strip material for both
caps and cross-members. The cord diagonals are resin-impregnated to assure preload
retention as well as providing improveu packaging efficiency, and reduced bears weight
and beam-builder power requirements. D.agonals are preloaded to prevent less of shear
stiffness due to differential cap-diagonal thermal deflection during sun/shadow transit.
Beam element and platform assembl y joints employ an ultrasonic spotweld technique
which precludes use of secondary Adhesives and produces no debris.

Integrated Mass Properties/Stability .end Control/Structural Dynamics/Thermodynamics/
Stress analyses were conducted to evaluate structure loads and distortion. Calculated
disturbance torques due to gravitational, gyroscopic, drag;, solar, and magnetic forces
were applied to the orbiting system during successive phases of fabrication. Casing cur-
rent Orbiter VRCS firing logic, impulse time histories were computed for two values
of maximum error in all three axes. Figure 2-:3 illustrates the roll axis/platform com-
plete case, showing that thruster firing frequencies are very low and widely adjustable
by attitude error selection. Transient analyses were then conducted to determine the
beam tip elastic responses due to firing of the VRCS thrusters. Resulting maximum

beam bending, moments were half as large as originally assumed and small clearance loss
occurred between tips of adjacent beams. Thermal analyses Indicated little cap-to-cap
temperature variation with time (Figure 2-4), small distortion, and negligible loads.

2-2	
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( F igure 2-3. Orbiter VRCS duty cycles.	 Figure 2-4. Beam cap temperatures
vs. time.

Adequate beam tip clearance remains after Conservatively superimposing m.iximum thermal
and d .vnamic displacements, as shown in Figure 2-5.

Resulting beam internal loads are also low, pe-c Figure 2-6. Consequently, the open section
cap exhibits substantial margin against instability failure, as seen in Figure 2-7, by com-
paring the SCAFE limit load (316 N) with the pre-failure 6583 N load at which the analysis
was terminated.

—200m	
70007,000 r

LOSSES	 7I---	 •120/IW 704(3!120 LAMINATE
4:;1 nI THERMAL	 I	 6583
.350171 DYNAMIC	 MAX LOAD

6000	 REACHED

.781 m

l i Si3_l —Ao	 } } 1 1 l r^ ^. .^	 000

CLEARANCE:—^

0.744 m MIN 4000
1.525mNOM	 I	 /	 ----BIFURCATION

P i c IN)	 -N N.
FiFigure 2- 5. 	

NONLINEARg	 R c^ ;tm tip clearance.	 COLLAPSE
3.000 4-

A	 2540,A-

2.000-
-E

/

	

1,000	 !

	

!	 334
n,

316 (MAX SCAFE LOAD)

	

^	 I	 1	 1—	 I	 1	 1

	

0	 002	 0.0,	 0.08
END SHORTENINt., Imml

Figure 2-7. Open cap stability.
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2.1.2	 11IATF.It[A I 

A comprehensive materials evaluation process was used to select beam cap and cross-
-nember laminates. Starting with the baseline advanced composite thermoplastic con-
cept, glans -end graphite fibers in various forms were selected for lamina properties
determination. Polysulfone was selected from the candidate thermoplastic resins, for
all lamina, based on its thermal characteristics, wide use, and best characterizuLicn.
The various glass and graphite lamina were then combined into over sixty different
laminate configurations designed to cr iphasixe either high stiffness, high strength or
low CTE. Laminate forms consider(d were (1) conventional multi-ply graphite, (2)
sandwiched Oo graphite, and (3) single-ply woven fabric. For each candidate, mechanical
and physical properties were computed and these were compared, in .addition to cost,
availability, and fabricatio,, energy requirements, to guide selection of a preferred
laminate.

For near term development, the wort flexible, least cost, and least risk approach is
the system shown in Figure 2-8. In this hybrid laminate, eanventional style 120 glass
00th sandwiches essentially unidirectional pitch (VSB 32':') graphite fabric, which pro-
vides the desired longitudinal strength and stiffness. The counteractilig ind_viduul CTE'R
of glass (^) and graphite (-) also result in low ne'. CTE.

Figure 2-9 shows a further significant advantage of the hybrid material. The tempera-
ture distribution across the total strip width is illustrated for two laminates after each
has been locally heated iii the three bend areas to ;I sufL'ciect temperature to permit
forming. The deeper valleys exhibited by the hybrid material indicate a lower trans-
verse energy leakage from the heated regions. This is a direct consequence of its

500
SOFTENINGTEMP

1Z
	 TEMP

Z_ COATING M
PIGMENTED

EMP.TEMP.

K

GLASS 400
FABRIC (2)

\GRAPHITE/
GLASS
FABRIC (3)

STRUCTL'RA'_
USE TEMP

300

GRAPHITE!GLASS HYBRID
.........	 ALL GRAPHITE (0! • 60)5

5	 10	 15

DISTANCE, CM

Figure 2-8. Selected hybrid laminate.	 Figure 2-9. Laminate thermal characteristics.
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KEVLAR 29 1 S-GLASS

• A S GRAPHITE
0 011 0.025 • KEVLAR 49

0E GLASS
0.044 0.044 • QUARTZ

> OK

? OK

greatly reduced transverse thermal conductivity, when compared with the aF -graphite
pseudo-tsotopic laminate, and results in a 53(7 lower power requirement to heat the
hybrid laminate to thv desired forming temperature.

Application of a thermal control coating on the otherwise dark surface of a graphite/
thermoplastic laminate reduces both m;Lxinwm temperature anti the temperature range
experienced in : ► typical orbital cycle. if used, a coating must be compatible with both
the processing and service environments. As shown in Figure 2-10, the baseline ti-
tanium dioxide coating satisfies these requirements but exhibits optical property degra-
dation with time. This degradation arises from an increase in absorpt:u ► ce, a , with
continued exl)wyure to t'V, electron, and proton radiation. Limited test data is available
for long-term optical property degradation, but the trend can be seen in the curve shown.
Values of Er at t) months (SCAF'F: mission duration) and 4 years are shown and their cor-
responding maximum ternperatures found to be well within the nutximum use temperature
for the polysulfone resin system.

Cord material selection was based on satisfying the desired ch. -acteristies indicated in
Figure 2-10. Among available candidates, Kevlar 29 provides the best mechanical/physical
properties but is subject to degradation by LTV radiation and possibly by heat generated
during joining. Since analyses show that preload requirements are quite low, either of
the glass candidates provides good ultimate strain with little increase in preload due to
higher Ea. Of the two, impregnated/cured 20-end S-glass roving provides approximately
the desired breaking; strength, and has been selected.

• COATING CONCEPT .- WHITE PIGMENT DISPERSED IN POLYSULFONERESIN

• BASELINE PIGMENT: T10 2	• RADIATION EXPOSURE DEGRADES
0,33: e 092	 0	 OPTICAL PROPERTIES

MAX USE TEMP

• PROVIDES TEMPERATURE CONTROL
DIMENSIONAL STABILITY
LIMITS RESIN MAX TEMPERATURE 	 TMAX K 300

*COMPATIBLE WITH PROCESSING
READILY APPLIED

SPRAY ON
LAMINATED FILM	 200

FLEXIBLE
.JOINABLE

• DIAGONAL CORD POLYSULFONE IMPREGNATED S-GLASS ROVING

DESIRED CHARACTERISTICS

SUSTAIN LOADS: APPLIED
PRELOAD PTU 574 N'
THERMAL

LOW PRELOAD REQUIRE) -a. LOW E ox (MN,m' - °K)

COMPACT STORAGE 0 HIGH tTU (mire)
PRELOAD RETENTION ► RESIN IMPREGNATE, CURE
COMPATIBLE WITH WELDING J► THERMOPLASTIC RESIN

----* WITHSTAND TEMPERATURE

COMPATIBLE WITH ENVIRONMENT-0 , RADIATION RESISTANT

'SCAFE PLATFORM: F.S. (L .T)	 2.0

TIME (VR)
4

0 05

05	 1.0
u if

Fig-ure 2-10. Coating & diagonal cord ir-terials.
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2.2	 FAB11TCA'110N SYSTFMS

2.2.1	 BF'ANI BUILDER

Automatfd fabrication of the baseline beam is feasible using state-of-the-art electro-
mechanical devices integrated into the beam builder concept of Figure 2-11. Its
major features and subsystems are summarized in Table 2-1.

CAP MATERIAL STORAGE CANISTER

X	 ,CAP FORMING 6 DRIVE SECTION

CROSS MEMBER POSITIONER

y
	 CORD STORAGE SPOOL

BEAM CUTOFF SHEARS

ULTRASONIC WELD HEAD

DIAGONAL CORD'
Figure 2-11. Beam builder concept.

Table 2-1. Beam builder character! sties.

• Operating Mode - cyclic feed.
• Storage - Caps: continuous pre-consolidated flat strip, coiled in rolls

Cord: continuous pre-cured, wound on spools
Crossmembers: preformed, pre-cut, in clip feed mechanism

• Heating - Electrical resistance wire plus linear parabolic reflectors.
• Forming - Rolltrusion.
• Cooling - Fluid cooled platens
• Heat Rejection - Integral radiator.
• Drive - Friction rollers.
• Crossmember Positioner - Translating swfi --arm, single drive.
• Cord Positioning - Counter-reciprocating cord plyers on reversing screws.
• Cord Preloading - Constant-force tensioning mechanisms.
• Joining - Ultrasonic spot weld heads.
• Cutoff - Shears
• Structure - Welded aluminum.	 UItIGINAI. PAGE M

OF POOR QUALITM
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FINALL MECHANISMS FIXED POSITION
POSITIONERDIAGONAL FEEDATTACHMENT UNITS

The cyclic feed operating mode is functionally compared with the alternative eonstnnt
run movie in Figurc 2-12. The cyclic feed beam-builder rolltrudes cap section mater-
ial at 2.2 meters per minute while simultmicously playing out diagonal cord material.
:After 1.434 meter beam extension (1 beam bay), a pause of 40 seconds is made for
cross-member and diagonal cord t- ttachment. During the pause period the cross-
members are grasped by the positioner, extracted from the clip ;tnd placed against the
caps. The diagonal cords are aligned between the • cap and cross-member by the cord
feed mechanisms wid the cord and cross-membc w r are ultrasonically welded to the cap.
The beam-builder then repeats the operating cycle. i3enefits of the cyclic feed
operating mode are summarized in Table 2-2.

• Cyclic feed fabricator	 • Constant Run fabricator

-CARRIAGE MOUNTED 	 RECIPROCATE
Figure 2-12. nl g rating mode functional comparison.

Rolltrusion forming was adopted at the start, by NASA guideline, but mechanisms for
all other machine functions were selected through detailed trade studies of competitive
process and technique options as illustrated in Figure 2-13.

Where possible, functions were integrated into subsystems as in the cap forming
machine assembly of Fifnlre 2-14.

This machine contains all elements necessary to continuously process the flat strip
composite material into) the baseline cap configuration. 	 Approximately 918 m of
material is coiled in a roll x0ilch is retained in the storage canister. 	 The roll turns
freely on bearing mounted rollers and mix%inds uniformly as material is used. 	 The

canister is halved, with the outer half
'cable 2-2.	 Cyclic feed bctiefits.

hinged to permit the material roll in-
• Cyclic feed is compatible with SCAFE section.	 When the canister is closed and

Fabricatioo rate same as constant run latched, an access panel in the hinged half
Dynamic impulse effects similar to constant run

is opened to allow the material to be rout-
• Cyclic feed fabricator oas more advantages ed over the heating section Erode rollers

Less complexity into the forming section.	 The heating
Reduced size & weight

ansection is a continuous assembly with a
Lower cost
Better in-process quality control internal passageway for the flat strip cap

material.	 Continuous heating elements,
• Cyclic feed permits use of platen cooling each consisting of continuous A%Irc helical-

Most efficient cooling
ly wound on a concentric dielectric badePrecludes use of cyrogenic hox for radiation

cooling of material located at the foci of parabolic reflectors,
are positioned on the three centerlines

• Further study required to identify scale up about which the cap radii are subsequently
constraints for cyclic feed

formed.
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Figure 2-13. Beam builder processes & techniques.

The heating section is partially built into the storage canister with heaters and reflectors
mounted on the access panel and extends from the access panel to the forming section
entrance. The heated material then passes into the rolltrusion forming section, which
is also equipped with strip heaters to preheat initially cool material curing machine
start-up.

--	 4.Om
ACCESS PANEL (OPEN)

>< HEATING SECTION

COOLANT LINES

Figure 2-14. Cap forming machine assembly.
ORIGINAL PAGH 13
OF PWR QUAIXM
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After forming, l}>IC material passes into the cooling section where it is contact-cooled
}n, aluminum platens which cool one complete bay length of cap section during the 40
second pause period.

The drive section has four friction rollers which provide the necessary force on the cap to
hill the material from the storage roll through the heat/form/cool sections. Together, the
three cap drive sections also provide the force to advance the beam out of the beam-builder.

The independent cooling system interfaces with the cap forming machine and provides a
low energy, low weight alternative to using the Orbiter heat rejection system by elimina-
ting long runs of flex line and the associated handling and reliability problems. It supplies
coolant to the inside cooling platens and the reflector bodies and rejects the accumulated
waste heat from a radiator mounted on one cross-member feed clip.

Fach storage clip, Figure 2-15, supports a stack of 650 cross-members which it feeds to
the beam assembly process on four serrated timing belts. Cross-member sides are flared
(ref. Figure 2-1) to improve feed and packing density and reduce clip length and weight.
With the handler in position to receive the next cross-member, Figure 2-16, retainers on
each end of the next crnss-membe, are retracted and the clip Rive stepper motors are
activated, advancing the stack until a sensor in the handler is triggered. The motors
then stop, fingers on the handler close and grasp the cross-member, and the retainers
re-engage to index the next cross-member. The cross-member positioner arm then
rotates and translates to remove the cross-member from the clip and lay it in proper
position for welding to the cap members.

260cm	 —

FEED BELT	 -	 241 7c_—	 CLIP CENTER

4 PLACES-_^_	
FULL STACK HEIGHT 

^

^CLIP STACK/'+ SUPPORT (2)

1} iHllHRill[ilil$EIlli 1̂1111H1k(It}ff11111ilFlIl11H1H!l.•Ikil:illl 111 l1ilil^I#TfNlilfllj{ii1H1111111111)	 21.0Cm
t 7 ? .

Figure 2-15. Cross member clip - feed mechanism.

GUIDE BEAMS

STORAGE CLIP

CLIP -

PLANE OF
BEAM SIDE -	 -

CROSS MEMBER
POSITIONER

MECNlSTRUC INTERFACE

CROSS MEMBER	 FINGER POSITION SENSOR
INSTL STATION	 CROSS MEMBER
\	 j	 POSITION SENSOR

CORD
PLVER ASSV	 \'	 r^	 FINGER

CORD PLYER	 j J	 ACTUATOR i21
LEAD SCREW

I -FC

Figure 2-16. Cross member positioner.
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During; cross-member positioning the cord plyers are positioned it their extreme travel
stops to provide clearance. Figure 2-17 illustrates the cord plyer mc6i,anism which con-
sists of six reciprocating cord plyer subassemblies, driven along; a guide beans by a motor
driven ball reverser lead screw. Cord is supplied to each plyer from a storage spool over
a series of pulleys. Using dual (forward and aft) cord plyers permits the two cords on
each side of the beam to be applied without interference between the moving; plyers. The
aft cord plyers, being further from the attachment station, require a longer stroke to
achieve the required cord/cap angle,

A cord tension force of 10 ± 2 lb, measured by a force transducer attached to a guide
pulley, is applied to each cord during assembly. This preloads the cords sufficiently to
preclude any slackening or over tensioning; due to thermal and deflection effects. The
liberal ± 2 lb variation allows a twist and tip deflection of less than 1.20 and 0.5 cm,
respectively, over the 200 m beam length.

With cord plyers and cross-members positioned as shown, the ultrasonic welding heads
are advanced and activated momentarily to allow a pin on each weld head to pierce the
cross-member and cap just below each cord. When piercing is completed, the cord ply-
ers then move to the ready to weld position while cord tension is maintained by the cord
tensioning mechanism.

FROM CORD TENSIONER

FROM CORD TENSIONER

Figure 2-17. Cord plyer mechanism.
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The beam-builder welding mechanism has six ultrasonic weld head assemblies, arranged
in pairs at each cap as shown in Figure 2-18. Three weld head positions are required:
(1) fully retracted (to allow cross-member positioning); (2) pierce (see above); and (3)
weld (where the weld horn is engrged and pro- ,,,DUAL  MOTOR

 AU DRIVENE
perly loaded for welding). F.ach horn per-	 POWER a	

WELD
LDHE SPLINE

forms two circular spot welds and one 'special CONTROL CABLE .	 DRIVE SHAFT

cord capturing weld simultaneously. The	 .S
lv)rns act against internal anvils which are ex-
tended against the inside surface of the caps
by a centrally located drive mechanism.
The ultrasonic spotweld technique was adopt-
ed for beam element joining; for the reasons
given in table 2-3.

i
The beam cutoff me chanism is a device	

BEAM SUPPORT
ROLLER

	
WELD HORN

which shears each cap and cord member to
separate a completed beam from the beam	 WELD ANVIL	 PIERCING PIN
Wilder. The cutoff device is normally re-
tracted to allow the cross-members to travel
past the outer clamps. In preparation for	 ANVIL DRIVE
I^	 P•^•	 p p	 MECHANISM

beam cutoff, a 60 cm cutoff bay is manu-	 Figure 2-18. Beam welding; subsystem.
factured by the beam builder (ref. Figure
2-1). The cords are laid along; the caps
within this short bay rather than crossing 	 Table 2-3. Ultrasonic weld benefits.

. RAPID, LOW ENERGY(as they do in normal bay construction) to 	 *NO ADHESIVES!VOLATILES

permit cutting by the cap cutoff mechanism. 	 • NO LOOSE PARTS, No DEBRIS
-COMPACT EQUIPMENT
• AUTOMATED GA
-SPOT VARIETY

2.2.2	 ASSEMBLY JIG

The function of the assembly jig is to automatically assemble the beams produced by the
beam builder to form the baseline platform (ref. Figure 2-1). To accomplish this, it
must perform the functions illustrates'. in Figure 2-19, in the following sequence:

1. Position and support the beam builder for fabrication of each of four longi-
tudinal beams. This requires a carriage and a roll and turn mechanism,
as well as a latching; mechanism to secure the beam builder to the jig.

2. Grasp and retain each longitudinal beam in position after it is completed and
cut off from the beam builder. This requires retractable reteniion and guide
mechanisms at three locations for each beam.

3. Position and support the beam builder for fabrication of cross beams. This
is accomplished with the carriage and roll/turn mechanism.

4. Advance all four longitudinal beams into proper position for joining to each
cross beam. This is accomplished with a drive mechanism provided for
each beam.

ORIGINAL PAc1F% lb
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61 Grasp and place each cross beam into proper position after it is completed
and cut off from the bearn builder. This requires a cross beam positioner
mechanism.

6. Join the cross beam to the four longitudinal beams using automatic welding
mechanisms.

7. Permit EVA personnel to traverse the platform and perform equipment
installation tasks. An EVA bridge and personnel carriage is required for
this purpose.

8. Allow the platform to be quickly released for deployment to space. This is
another function of the beam retention and guide mechanisms.

.;

EVA CARRIAGE

I CROSS'BEAM'^
POSITIONER	 Il

F -TLI	 LATCH	 l –

i

Figure 2-19.

RETENTION
A GUIDE r 	DRIVE	 r
MECHANISM

::	 Ca

RETENTION 1	 ljr& GUIDE	 DRIVE	
JJJ^MECHANISM	 (-	 I•

1	 -/ JOINING
MECHANISM

E JA
BRIDGE
MECHANISM

BEAM
BUILDER

ROLL & TURN
MECHANISM

CARRIAGE
MECHANISM

Assembly jig functional diagram.

As for the beam builder, mechanisms for each assembly function were selected through
individual trades of applicable process/technique options. Selected options were inte-
grated into four assembly jig candidates which were evaluated in terms of mechanical and
control/software complexity, risk, weight, and operational compatibility. The concept
shown in Figure 2-20 was selected. Its primary advantage lies in the capability to retract
the platform after all cross-beams have been attached. This is accomplished by orienting
the longitudinal beams with their apexes towards the jig. This permits all assembly mech-
anisms to have a fixer position on the jig. Three rows of Retention and Guide Mechanisms
(RGM) provide the cap.tbility to retract the platform. The cross-beams step through the
RGMs as described beiow:

1.	 As a cross beam approaches the first row of 11GMs, the entire row retracts
to clear the cross beam leaving the platform supported by the second and
third row of RGM s .

2-12



Zc 1051.56 cm
MENTACTUATOR Zc 2457.20 :m

J 

RETENTION & GUIDE MECHANISM (RGM)
i

WELD MECHANISM

Figure 2-20. Assembly jig design concept.

2. The cross beam advances to the next row of RGMs and the platform pauses.

3. The first row of RGMs is engaged and the second row retracts leaving the
platform supported by the first and third row. The platform is advanced.

4. As the cross beam approaches the third row of RGMs the platform pauses.
The second row is engaged and the third row retracted leaving the platform
supported by the first and second row. The platform is advanced.

5. The third row of RGMs engages after the cross beam passes and the platform
continues to retract until the next cross beam is encountered, at which time
the step through process is repeated.

2.2.3	 AVIONICS

Similar control system concepts were developed for both the beam-builder and assembly
jig. As an example, the baseline beam builder system is shown in Figure 2-21. It con-
sists of four major subsystem categories: the Beam Control Unit (BCU); cap subsystems
(3); cross-member subsystems (3); and assembly subsystem. The BCU performs over-
all control and monitoring of beam fabrication operations and contains a microprocessor
with interval timer, approximately 4K of memory and the input/output interfaces shown.

The cap subsystem control concept of Figure 2-22 illustrates the next level of detail,
identifying the sensors and control devices associated with the electromechanical functions
discussed in Section 2.2-1. In the baseline concept, the drive system also performs the
beam alignment (i. e. a^curacy) control function.

2-13	 AIa PAGE I5dgIGIN
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Figure 2-21. Ream builder control system.
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Figure 2-22, Cap member subsystem control diagram.
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-,in , ll differences in the 3 cap lengths can result in large manufacturing-induced beam tip
displacement. IR wever, correction of manufacturing errors in real-time by observation
of the "as-built" bear, is complicated by continuously variable environmentally induced
distortions which tend to mask the small manufacturing errors being monitored for cor-
rection purposes. Consequently un in-process bay "square-up" approach employing
differential cap drive, schematically illustrated in Figure 2-2.3, was selected. In opera-
tion, a travel sensor system with a resolu- 	 SAL	 , SAY

tion of 0.1 mm provides length data for each	 5546 IN

can to the BCU for comparison. Differential
motor spe(_xI commands are generated to	 ^-
correct potential misalignment. Final post-	

I	
T45,241N

tioning is accomplished during the last 3 X\
seconds of the cap drive cycle while cap	 A_

speed is progressively reduced as the
d	 Figure 3. 23. Differential cap drive.desired position (length) is reached. 
The baseline sensor/feedback system uses a magnetically enccxied strip applied to the
beam cap material. Assuming standard computer magnetic tape character densities
(800 characters/inch), length resolution to 0. 032 mm (. 00126 inch) is achievable. This
technique also allows three strips of magnetic material to be vendor-applied to the com-
posite cap material and coded simultaneously prior to slitting; (into three cap tapes) to
eliminate or average out errors in coding.

The BCU software control and monitor functions were identified and sized to determine
capabilities required for the beam builder function. For the baseline, 2651 software
instructions (approximately 3200 bytes of memory) and a speed capacity of 52 KOPS
(thousands of operations per second) will be required. 'These results, shown in Table
2- 4 , indicate that beam-builder processor requirements fall well within the capability
spectrum of current commercial microprocessors and microcomputers.

Table 2- 4 . 13CU Software Sizing

	

Program Sire	 Program Speed
Bean Control Unit Software	 l (Instructions)	 (KOPS)

E , cecutive Software
Process Control 800 22.1
Peripheral Control 490 3.4

Software Task Modules
Cap Sub.ystem Control 759 7.1
Cross-Member Control 282 1.1
Assembly Control 320 18.4

Totals	 2651	 52.1

Memory: (1.2 x Instructions)
	

(:3181 Bytes)

The total estimated power requirement for heating/forming decreased significantly with
system design maturity, as shown in Table 2- 5 . The most dramatic effects resulted
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I	 I
2554	 255.41 204.3 1 3'0.9

491.6	 49 1. 5 401.5 1491,5
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— — 1,903	 1,577j_1,3119 11,206

1,903	 1,577 1 1.316 1 1, 206

IV

'Cable 2-5. Beating^rming power requirement history.

VARIABLE
MILESTONE

—	 "
PROPOSAL PART I — MID T PART 1 — FINAL	 NOW

LEGEND:	 CHANGE -- SELECTED BASELINE

from:	 (1) selection of the glass-graphite material (Section 2.1.2) instead of the all-
graphite pseudo-isotropic material initially baselined; and (2) ground prefabrication
and clip storage/feed (Section 2.2.1) of the Table 2-0.	 Beam builder power
cross-members.	 In addition, the material g energy requirements.
initial temperature can be maintained at the — T- -- -r- --
selected 294.3°K (70F) level with minim al PROCESS /BAY	 ENERGY

PEAK
AVE PWR POWER j ENERGY

storage canister insulation and no make-up _ IKr /BAY) W W

heat source.	 Total beam by -ilder power and^

_ _-

TINO/F011-
cEA __
NEA	 MIN0 .1064 1i1@ +215

206 N%

energy requirements include the needs of 1410-

several functions in addition to heating /
COOLING -- 4.6 st s^ %-

forming as summarized in Table 2-6.	 The wE LOINO 21.E 270 1100 17%

resultin	 2008 W aver	 a	 wer rec ire-g	 ag po
SUBSYSTEM
ASSEMBLY 6	 289 362 861 1#%

ment represents only 28% of the Shuttle' s CONTROL

7 kw capabili ty . —Y
1E0.6 _2001 3239 100%

2.3 MISSION INTEGRATION

All flight mission objectives can be met, within the guidelines of Table 1-1, on the single
7-day mission whose profile is shown in Figure 2_24.

The SCAFE equipment will be installed with the Orbiter in the horizontal position it the
Processing Facility within the 14. 5 hour on Ine integration period, it will not require
special environmenta" .monitoring or control during any ground operations phase or time
critical prelaunch access at the pad. Payload handling in the vertical position is not
planned, but is not precluded by the design.

'
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Figure 2-24. Flight profile.

During ascent/descent the SCAFE equipment is inactive - requiring only mechanical and
caution/warning; support from the orbiter. The orbiter crew initiates each operational
or test phase and controls orbiter maneuvers and RMS operations as well as performing;
supporting; H.V. activities. Ream fabrication and platform assembly are fully automated.
The sequence of on-orbit illustrations shows the major activities by mission day.

When the first beam is finished a dynamic response test will be conducted to determine
beam characteristics, with data fed back to the ground to compare with predicted behavior
to help predict the characteristics and behavi of the completed platform. The remainder
of the platform will be completed by the middle of the third day. During; this time the crew
will monitor the operation at the aft flight deck and observe directly and with TV. During;
the afternoon of the third day, EVA is performed to install the test instrumentation, sub-
systems, and free flight experiment equipment. On the fourth day dynamic response and
thermal deflection experiments will be performed. The morning of the fifth day the seprra-
tion and recapture demonstration experiment will be conducted, with dynamic response
and thermal deflection tests resuming; that afternoon.

On the sixth day another EVA operation will be performed to demonstrate possible :!n-
scheduled maintenance and repair a( `Jvities. The seventh day inciudes platform release,
closeout activity and re-entry. Executive control and monitor of the beam fabrication
on-orbit operation is provided via the orbiter RF command link ground controllers at the
Payload Operations Control Center (POCC), co-located with Mission Control Center-
Houston (MCC-H). MCC-H provides orbiter and overall mission control.

ORIGINAL !^ AG N: l5
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'i'o select system on-orbit orientation, earth - fixed, inertially fixed, and time-varying
options were considered. A constant earth fixed orientation, shown with its summary
evaluation in Figure 2-25, was selected.

• MASS PROPERTIES/STABILITY & CONTROL

• Platform built in stable release attitude

t	 • No attitude control maneuvers required
LONGITUDINAL	 • VRCS rate mode operation in yaw, roll
BEAM FAB	 • System oscillates within! 10° limits

• Low propellant consumption (11010)
- Low VRCS impulse frequencies ( .0008 Hz)

C	 - • COMMUNICATIONSl -No specific communication requirements

• 342° coverage via TURSS

COMPLETE -	 -WiNG/ILLUMINATION
PLATFORM r"unimizes sunward/earthward viewing

component through aft cabin windows

+lu 'fHERMAL•

^-------	 ORBITAL • Platform insensitive: Distortion/loadw
RATE negligible

. No orbiter constraint for i <55'
LOCAL
VERTICAL

Figm re 2- 25.	 Fabrication orientation.

Figure 2 -26 shows the general at rangement of platform -mounted equipment. Where pos-
sible, subsystems will be composed of standard spacecraft parts to minimize cost.

830 RETROREFLECTGRS
(FIPST BEAM POSTS)

THERMAL SHADE

MOVABLE REFLECTOR (2)
(ATMO COMP)

TEMPERATURE SENSORS
(51 UNITS)	 \

FIXED REFLECTOR
(ATMO COMP)

ACCELEROMETERS

VIBRATORS —
S-BAND TRANSPONDER

(GEODYNAMICS)

EARTh

RE ACTION CON  ROL
SYSTEM

LASER BEACON &
DETECTOR ARRAY

SPECTROMETER
(ATMO COMP)

VIBRAI ORS

ACCELEROMETER
TRANSCEIVER
BATTERY PACKAGE
170 RETHOREFLECT
SOLAR ARRAY
SUBSYSTEM
PACKAGE
• COMM/DATA
• FLECT PWR

^.	 !	 I	 S BAND TRANSPONDER

1
	 IGEODYNAMICS'

CENTER OF GRAVITY
c; It APPLE FIXTURE

MAGNETIC DAMPERS

LASER REFLECTOR
(TYP 10 PLACES) 	 ORBIT PATH

POWER & DATA WIRING
LENGTH OF PLATFORM

Figure 2-- 26. Platform equipment arrangement.
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I'he l() n1 2 solar array is placed on tit( , end of the platform for m:rxinurn ► exposure to the
sun. The platform avionics equipment as well is batteries and other elect rical power
^Nstenl components are contained within the subsystem equipment package. The baseline
avio ►liCH Concept is to use the multin ► ission spacec • t • att c •on ► ll ► unic: ► tion and dat: ► handling

module, which includes the transponders, data processor acid data bus systcr ►► for distri-
bution of command and acquisition of data. Although its capabilit y exceeds the current
requirements it is a logical choice since it: (::' is standard NASA equipment, (b) can ac-
c• onul ► odnte additional platform and experiment `unctions, and (c• ) will be developed, tested
and tit production during experiment time frame.

The cold gas reaction control system is placed In the end of one of the longitudinal be:uns
and is used to spin up the platformn near the end of its mission life for the atmospheric: com-
position experiment.

The thermal shade is required by the thermal response experiment to cause :.n unsrnlinetri-
cal temperature (listribetion to the platform to permit temperature pattern and platform dis-

tort i on inva surenlent. The laser beacon and detector array are used, in conjunction with
the retroreflectors, to provide real-time structural distortion characteristics during the
structural and thermal response tests. The grapple fixture is placed near the center of
nl;rss to enhance slabilit 'v during RATS handling- operations, accompanied by magnetic
dan ► per•s which reduce oscillation; due to both separation front the , orbiter ; ► nd cyclic
environmental torques.

Equipment installation will be accomplished oil the third day by FVA using the work sta-
tion shown in Figure 2-27. Installation is accomplished by translating the platform to
preselected positions under the asll •on:uil (MS), who will be restrained in the EVA work
station carringe. The carriage is equipped with -.I local control panel to permit the astro-
naut ton ► amrallyc ontrol his position wr it)] respect to the platform. Safety position linlit
sensors prevent inadvertent collision with the platform.

All aspects of the experiment are compatible with the Shuttle. The stowed system lies
wholly within the cargo bay envelope, with allowance for ; ► n ()MS kit, and support reactions
are low.	 System weight :end eg arc well REAM BUILDER
within required Ilr ►ost and entry limits and

VIWS	 through-:ter compatible with	 control

IVA BRIDGE

^-	 \
out the on-orbit srclttcnce in spite of signi-
ficant inertia variation.	 HCS propellant
consumption is low sines the constant cartlr-
fixed orientation precludes attitude changes,
mitt the VI RS operates in a rate clamping I	 ^ _,	 - ^_	 •^
mode in two ;Lxvs during the majority of the

E,
CROSS SEAM

mission.	 In additio n, iI potenti al intcrfaee /	 EXPERIMENT	 LONGITUDINAL RE AM

iwith the Orbiter heat rejection system was INSTRUMENTATION
ASSEMBLY JIG

eliminated by adopting the self-contained Fignire 2-27.	 Assembly jig F.VA
bellin Ixlilder cooling system. work station.
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2.4 PliMRAMAIATICS

Early in the study a preliminary SCAFE Requirements Document was prepared as illus-
trated in Figure 2-28 to define qualitative and quantitative performance, design, and
verification requirements for the SCAFE system :uid its elements. It was updated at
study conclusion and now containi derived requirements based on study generated system
performance characteristics as well as imposed requi- •ements based on STS interface
and safety considerations. A specification type format was selected to insure that its
scope was adequate to capture requirements as they developed and, when completed, to
Nerve as a preliminary Phase I1 system specification. The source of well requirement
is als , ) identified to provide traembility. The current version has been published as
Volume III of the final Report.

CONVAIR
DERIVED

SPECIFICATIONS	 1	 '
SECTION	 CONTENTS	 SOURCE

SPACELAR 
ACCOMMODA (IONS	 3A	 SCAFE PROGRAM DEFINITION

SPS	 3.2	 CHARACTE91STICS PERFORMANCE.
JSC 11568	 RELIABILITY, SAFETY. ETC.

STS USERS	 3.3	 DESIGN & CONSTRUCTION
HANDBOOK	 34	 LOGISTICS

JSC 07700	 15	 PERSONNEL & TRAINING
16	 STS INTERFACES FUNCTIONAL, PHYS,

RFF'	 ENVIRONMENTAL, OPNS
3.7	 REQUIREMENTS OF PROGRAM

ELEMENTS FLIGHT HARDWARE, ASE.
PLATFORMI	 TRACKS	 4.0	 VkRIFICATION

SPECIFICATION l
FORMAT

Figure 2-28. Requirements document.

A master schedule, summarized in F ignire 2- 29 for both the total program and the beam
builder, was generated assuming the guideline mid-1982 launch date. The program can
be accomplished with a minimum of risk to meet the scheduled launch date, and is driven
mainly by the Phase C/D Engineering Development and Qualification 'Pest activity.

The overall schedule and detail task durations were based on several guidelines and assump-
tions:

•	 SCAFE contract follow-on ends 1 Oct 1978.

•	 The Phase R contractor is assumed to be selected to conduct Phase C/D
without a further competitive bid.

•	 The follow-on contract produces, as a minimum:

• Updated SCAFE conceptual design
• Preliminary specification for beam builder and assembly

jig subsystems
•	 Plans and costs for Phase B
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^AFE PROGRAM

	 77	 78	 79	 so	 e11	 82	 83

Definition phase
RfP

Phase B
ATP

Phase C/D
1ST FLIGHT
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BEAM BUILDER
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Ground test unit develop.

Flight unit develop.

Production 1st fit art 	 C

Figure 2-29. Preliminary program development schedule.

•	 The Phase B study produces, as a minimum:

•	 Requirements in the form of specifications
•	 Definition o!' flight experiments
• A selected system p redesign
• Plans and costs for development

•	 Phase B includes a prototype development program to be carried out before
the start of C/D on the key beam builder and assembly jig subsystems.

•	 Phase C/D system engineering and integration includes definition of the
integrated payload system and compatibilities with the STS, mission and
flight operations, verification, softv ,:=re integration, reliaoility and safety
analyses, and configuration management.

0	 Phase C/D design and analysis task reflects maximum utilization of existing
equipment listed in the NASA Low Cost Program Office CASH catalog, as
well as multi-use mission spacecraft equipment.

•	 Phase C/D prototype development equipment will be as near to final design
as practical including drives, controls, and sensors.

A cost analysis of the SCAFF, Program was conducted and detailed data collected per a
WBS containing all of the hardware and tasks associated with program development and
test, the fabrication of the flight hardware, and the operations activities incurred during
the first flight.

Summary data is shown in Figure 2-30, for both the total program and the beam builder
element, and separately identifies pre-phase C/D prototype development effort in addition
to Phase C/D costs and Shuttle user charges. It was assumed that the Shuttle user charge
includes all Shuttle related activities such as on-line payload installation (OPF), MOC acti-
vities, flight crew costs and other common ground operations/mission operations and
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COST SUMMARY (SM) SCAFE ANNUAL FUNDING

SCAFE B 6. 35 336
PROG ONLY

PREPHASE C/D	 230 1 50 PREPHASE CID
30PHASE CAD PHASE C'D	 -^NONRECURRING	 3339 1594

RECURRING SHUTTLE USER D
PRODUCTION	 471 2.13 26 CHARGE
OPERATIONS	 1 50 —

SCAFE PAYLOAD	 41.00 19.57

USER CHARGES 20
SHUTTLE	 1889 — 77M5
TRACKING S DATA	 (TBDI —

TOTAL	 61.79 1967. 1S 268 14 2
12 7

1^ 4 0
91

(ASSAM
ILDER 7.75

PLA F 1 3	 1 0 5.1

0
SY 1979	 1980 1981 1982

LE FY

Figure 2-30. Program funding requirements.

activities. Other Shuttle related services such :is OM S kits, RMS, and other optional
services are added to the Shuttle user charge for the basic transportation. Potential user
charges for tracking and data acquisition (TDRSS, etc. ) are carried as separate program
level items.

Phase C/D cost totals are presented for the nonrecurring (development), the recurring
production (flight hardware), and recurring operations phases of the program. All costs
are estimated in current constam FY 1977 dollars and prime contractor fee is not included.
The estimate includes all payload incurred costs through the first launch (1982) of the fabri-
cation experiment including three months of experiment orbital monitoring and data acqui-
sition.

The nonrecurring development (DDT&F.) phase includes all of the one-time tasks and hard-
ware to design and test the SCAFE experiment. The production phase (unit cost estimate)
includes all tasks and hardware necessary to fabricate one complete set of flight hardware
equipment. The opera ions phase includes all preparation launch and on-orbit operations
associated with the SCAFE, experinent.

The annual funding requirements for the SCAFE program are also shown. This distribu-
tion was established by spreading individual cost elements in accordance with the program
schedule shown previously. Shuttle funding was spread in accordance with the Space Trans-
portation System User Handbook, dated June 1977.
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CONCLUSIONS & RECOMMENDATIONS

3.1	 CONCLUSIONS

Principal study conclusions are grouped by major category in Table 3--1.

Table 3-1• Study Conclusions

• SYSTEM DESIGN & ANALYSIS
• Fabrication equipment

• Automated fabrication & assembly feasible
• Electromechanical devices state-of-the-art but continued
development needed in selected areas

•Control functions within memory & speed capability of current
microcomputer systems

-Power requirements well within orbiter capability

-Control & monitor concepts compatible with orbiter
crew & equipment

-Orbiter software support functions generally acceptable

• Platform
• Dynamic response & resulting structural loads low

-Peak temperatures low & orbital variation small

-Thermal distortions & loads low

-Open section cap easy to form, exhibits large margin of safety

• Hybrid laminate material minimizes forming energy; has high E;
low CTE; uses low-cost pitch fiber

• FLIGHT MISSION INTEGRATION
• All objectives accomplished in single seven-day mission

Fabrication & assembly fully automated; EVA capability dev)ted to
equipment installation & checkout maintenance demo

• System orbiter compatible; weight & cg; support reactions; VRCS
control; low propella,it consumption; low power demand; no radiator
interface

Constant earth fixed orientation preferred: platform in release
position; rate mode control in yew & roll

• PROGRAMMATICS
• Mid-1982 flight date achievable if:

• Prototype fabrication equipment development parallels prase 8

Phases C/D not re-competed

-Total SCAFE payload cost $41.91VI; beam builder cost $19.6M

• Single mission accomplishment saves $19.91VI Flight 2 user charge

r

•
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3.2	 RECOMMI'NDATIONS

From effort to date, several areas of further nctivity were identified. The most
significant of these are collected, by major category, in Table 3-2.

Table 3-2. Recommendations.

• DEFINE GROUND-BASED BEAM BUILDER DEVELOPMENT ARTICLE
- Prepare detailed concept design
-Define a development test plan

• MANUFACTURE & TEST
- Develop & fabricate beam builder equipment prototypes; conduct

sequenced tests with prototype controller
-Continue materials characterization
- Conduct component & assembled beam tests

• FURTHER DEFINE SCAFE SYSTEM CONCEPTS
-Conduct selected analysis, design & Orbiter interface trades
-Identify & define fab equipment cost reduction approaches
-Update beam builder & assembly jig concept designs

Identify fab equipment elements suitable for individual
"suitcase" experimentation; define experiments

UPDATE PROGRAM DEFINITION
— Define & integrate latest requirements
— Conduct schedule & cost trades
— Prepare development plan; conduct cost analysis
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