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ABSTRACT

The fracture problem of laminated plates which consist
of bonded orthotropic layers is studied. It is assumed
that the medium contains periodic cracks normal to the bi-
material interfaces and the external loads are applied away
from the crack region. The fields equations for an elastic
orthotropic body are transformed to give the displacement
and stress expressions for each layer or strip. The un-
known functions in these expressions are found by satisfy-
ing tne remaining boundary and continuity conditions. A
system of singular integral equations is obtained from the

mixed boundary conditions. Three cases are considered:

a) The case of internal cracks
b) The case of broken laminates

¢) The case of a crack crossing the interface.

The singular behavior around the crack tip and at the bi-
material interface is studied. It is shown that the crack
surface displacement derivative has a power singularity for
practical orthotropic materials when the crack touches the
interface, i.e., for case (b). In studying the singular
behavior at the bimaterial interfaces in case (c), it is
found tﬁat for some orthotropic material combinations there
is no singularity in the crack surface displacement deriva-

tives and the stresses. In each case the stress intensity
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factors are computed for various material combinations
and various crack geometries. The results for orthotropic

materials are discussed and are compared with those for

isotropic materials.



1. INTRODUCTION

In structural design one of the most important consid-
erations is the fracture of individual components. Al-
though, fracture may not always mean total failure, it is
considered in modern engineering as an important problem
for safe and economic design of structures. It would be
very attractive to develop special types of designs for
which the structural resistance to fatigue crack propaga-
tion is improved. In the aerospace industry, the use of
composite sheet materials with buffer strips parallel to
the main load-carrying laminates seems to be such a design
practice. The process of manufacturing composites gives
the opportunity to improve the structural resistance to
~fatigue crack propagation by strengthening the material in
certain directions. The increasing use of composites in
structures generates new problems for the structural de-
signer. Among these problems, we are mainly interested in

the fracture of layered composite materials.

There are two main problems in studying the fracture
of composités: the development of an appropriate failure
criterion and a mathematical model for the calculation of
the related 1oad factor. The failure criterién affects
the course of the ana]ytiéa] work in the sense that it is
the failure criterion which generally determines the phys-
ical quantities that one should compUte (such as the stress

-3-



intensity factor, the strain energy release rate, COD,
etc.). There are many failure criteria or theories which
are used to predict failure of structures. In Elastic
Fracture Mechanics where only small scale yief&ing is al-
lowed, K < Ky. is such a criterion. In this case failure
occurs when the calculated value of the stress intensity
factor reaches a critical value, KIC’ which can be deter-
mined experimentally as a material property. There are
also other one-parameter failure criteria (such as critical

plastic stress intensity factor K and J integral) which

pc
have been recent]y'proposed to predict failure from elas-
tic to fully plastic range. K is a very highly effective
correlation parameter in studying the fatigue crack prop-
agation phenomena. In aerospace structures the basic
problem is the nucleation and propagation of fatigue crack
which may eventually reach a critical size causing cata-
strophic failure. That is why, in this study we focus our
intekest to the computation of the stress intensity factors

and in the investigation of the singular behavior of the

stress state around the crack tips.

In studying the fracture problem of composites, a
mathematical model, which will reflect the geometrical and
physical properties of the medium and the real mechanism
of fracture, is needed. Because of mathematical diffi-

culties and the lengthy computation that the analysis
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requires, in the recent studies the geometry and the ma-
terial properties have been considerably simplified. The
problem of a multi-layered isotropic medium, whi;h cor~ists
of many layers and where a crack normal to the interface
can appear, has been treated by Hilton and Sih [1]. 1In
this problem the geometry is simplified to a single layer
between two dissimilar half-planes where the elastic prop-
erties are averaged. The same problem has been considered
by Bogy [2]. The problem of a broken laminate between two
half planes has been investigated by Ashbaugh [3] and Gupta
[4]. The extension of the problem treated by Hilton and
Sih to orthotropic media has been solved by Arin [5]. The
fracture problem of a composite plate which consists of
parallel load-carrying laminates and buffer strips has re-
cently been solved by Erdogan and Bakioglu [6]. In this
work the load carrying laminates and buffers are consid-
ered to be isotropic an” Tinearly elastic. The orthotropic
case of the problem treated in [3] and [4] has also been
solved by Arin [7].

The objebtive of this work is to investigate the
fracture pfob]em of composite plates containing periodic
 buffér’strips. ‘The laminates and buffer strips are assumed
to be linearly elastic and orthotropic. In general, this
is the case in the actual plate and shell structures such

as those, for example, which consist of boron-epoxy

-5-



composites. It is also assumed that the fatigue cracks
may appear and propagate in main laminates, in buffer
strips or in both normal to the interfaces. The external
load is applied to the plate parallel to the strips and
away from the crack region. Three different problems are
studied: the internal crack problem, the case of broken
laminates and the case of a crack crossing the interface.
A general formulation of the problem is given for plane
strain and genera]ized plane stress cases by the use of
Fourier Integral Transform Technique. The singular be-
havior around ends and at the bimaterial interfaces is
studied. The resulting singular integral equations are
spnlved numerically and the stress intensity factors are
calculated for various crack geometries and various ma-

terial combinations.



2. ELASTICITY OF AN ANISOTROPIC ELASTIC BODY

——— S—— Poeiieiat e

For an anisotropic elastic body, in the absence of
body forces, the equations which relate the field quanti-

ties can be written as follows:

2.1 The Equilibrium Equations

aox . 3Tx1>+ 3sz o
X 3y 9z
91T 90 9T
ZXY o4 Yy X2 =0
aX oy 9z
oT ©9T Yo
X2 Yz . z .
s T T3y 57 0 (2.1)

2.2 Strain-Displacement Relations

- U = v = oW
€. " 3x * Ey T3y * ‘2 z
Yyz T3z t oy Yxz x "3z Yxy y * 9x
’ (2.2)
2.3 Stress-Strain Re1atiohs
P PO
c’x_1 Ex
Oy | Ey i,j = 1,6
o . £ :
Tz - [ay YZ .
yz yzi - AL, = A,
Txz Yxz 1 I
T 2\
Lx{ LX{ (2.3)
()
o W
26
Y KR
Cﬁxacjﬁ&gp -7-




2.4 The Field Equations for an Orthotropic Body

For an orthotropic solid the matrix [Aij] is:

Ali A Ay 000
Aig App Ry 0O 0 0
[5 ] _ M3 Rz Ry 000
ij
0 0 0 A44 0 0
0 0 0 0 A55 0
Defining the inverse of [Aij] by
-1
[aj5] = [A43]
for orthotropic materials we have:
B 1 Vyx Vzx
£ _7%7 - 0 0 0
Vv Vv
Xy 1 -2
“E, E T, o 0 0
Vv v
e L 14 éL- o 0 0
X y pa
{}ii] - ]
: 0 0 0 T 0 0
yz
1
0 0 0 0 A 0
.ze
0 0 0 0 0
L Xy_u
Exvyx B Eyvxy > Ey\)zy =.Ezvyz ? Ez\’x_z = Ex\’zx



Substituting (2.2) into (2.3) and using (2.1) and (2.4),

the stresses and the equilibrium equations can be expressed

in terms of the displacements as follows:

o = A1y Bx * Mg Byt Ay
oy = Ay 5% * Aap 3y * Ay
9, 7 A3 oy * Aaz By + Agg
Tyz B A44(%% ¥ %¥) |
Txz © AE‘)S(Q"')%+ %%)
Txy = A66(%§ * %%)
My o Ace %;g Ass 57z + (Ayo*Age) 5133
Ag 3t * Azé %;¥'+ Aag 577 * (Aypthge) giay
Ags Bt + Mgy %;¥'+ Ayg Bt + (A gthgs) et
2.4.1 Case of Plane Strain
For the plane strain case we have:
U= oulx,y) .oV =IV(ny)' .
and from (2.2),
-9-
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[o%
z

Q
N

+ (M3*hss) 330z

+ (A

23*P44)

+ (Ay3thgs) 5752

(2.8)
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Q
=
Q’
<
Q
[ =
[+3
<

e, =0 R =0 = 0 (2.9)

Thus, th2 stress-displacement relations and the equilib-

rium equations become:

o = M1 ax t Az By

o, = Ay 3% * Aap 5y

o, = M3 3% * A By

Txy N A66 (E% * %¥)

Tyz = T, = 0 (2.10)
Ay 3t + Age %;% t (Mg + Agg) §¥%§ = 0
Moo B * Agg %§¥ t (Mg + Agg) §¥%§ =.0 (2.11)
2.4.2 C(Case of Generalized Plane Stress
In this case since o_ = = T =0 from (2.3), for

z Txz yz
the average stresses and strains we can write:

- -1 — -
8X o'X
€y = [a] oy
Yxy Txy
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- where

— "*\ =i "1
1 Vyx 1 Vyx
T - 0 : . 0
. Ey Ey 5 E B
- v ] v | Vx ]
[a}= |- =L + o | , [A)= |24 — 0| .
3 E, ] E 8 EB
0 0 0 0 G
} Bry. } x|
_
and A = E—;—.—E—y- (] - \)xy\)yx). (2.12)

The equilibrium equations reduce to:

A 22w, R Uy (R, + A,.) =0
11 3x 33 3y 12 337 3xay

A, 8V 4 R, Z¥ 4 (Ry, * Agg) By
33 9x 22 2y 12 337 3x9y

i
o

(2.13)

Considering the structure of equations (2.11) and (2.13),
the equilibrium equations can be written for plane strain

and generalized plane stress cases in the following form:

32y , d%u 3%v .
ﬁqmmgﬁ 5%z * ay2 * B3 ayax - O
QUR

CQF ® 8%y 3%v 3%u _
537 * B2 3yF * Baaxay C 0 (2.14)
where
A A A »
11 22 12 .
By = » By = , By =1+ for plane strain
1 Rge 2~ Reg 37 7 Res
and .
By = ;ll~ By = ;Z: By = 1 + élg for plane stress
1 A3z 2 A33 3 A3z

(2.15)
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3. DISPLACEMENT AND STRESS FIELDS FOR STRIPS

The two-dimensional composite medium is formed of two
sets of periodically arranged strips having widths 2hy and
2h2 as shown in Figure 1. They are perfectly bonded along
their straight boundaries, and contain symmetrically lo-
cated cracks normal to the interfaces, of length 2a and 2b
respectively. The load is applied away from the crack

region, such that the crack plane is a plane of symmetry.

Using the usual superposition technique, the solution
of the actual traction-free crack problem may be obtained
by’superposing the homogeneous uncracked strip solution to
the solution of a cracked strip loaded with self-equilibra-
ting crack surface tractions (see Figure 2). Since we are
interested only in the computation of stress intensity
factors and the singular behavior of the stresses around
crack ends, we will consider only the singular part of the
solution, where the se]f;equilibrating crack tractions are

the only external forces.

First we will find solutions to (2.14) satisfying
certain boundary conditions of the strips. The combination
of these solutions will be forced to satisfy the remaining

boundary and continuity conditions.

-12-



3.1 Solutions u(a)(x,xli,v(a)(x,y)

Assume:
u(a)(x,y) = % I: f(a,x)cos ay da
v(a)(x,y) = % f: g(a,x)sin ay do {3.1)

Substituting (3.1) into (2.14) we obtain:
2
8 x5 - @'f+Bya g = 0
d? 2 : df _
3 - B, a’g-83a g = 0 (3.2)

The solution of (3.2) can be written as:

fla,x) = A(a)e® % +B(a)e™ 1 + ¢(a)e®2%* + D(a)e™ 2%

g(a,x) 67[A(a)e51ax - B(a)e-SIGX] + Bs[c(a)eszax
- D(a)e-Szax] .(3.3)

where s; and s, are the roots of

st + Bys? + By = 0 (3.4)
and
8% - BB, - 1 8
_ "3 " M2 T - .2 = /BT CARC
84 - B] [y .Bs B] s 86 84 ’ 85 ’
By Ba5y » Bg B35,

-13-



From (3.4) we can write

/(= B, ¥ B)72

s1 = W, + iw2 =
52 = w3 + 1.W4 = fF 54 - BG)/Z
S35 7851 s 5S4 7 "8

$1 and s, are both real or complex conjugates.

3.2 Solutions u(b)(!,y), V(b)(X,xl

Assume:
u(b)(x,y) = % J h(a,y)sin ax da
0
v(b)(x.y) = % [0 2(o,y)cos ax do

Substituting (3.6) into (2.14) we have:

d%h de _
dyz"Baaa':y—"B]azh"o
2
B, %Y% + By a %% - a%2 =0

Solving (3.7) we obtain:

h(a,y) E(a)eslaY//E; + F(u}gslay//gg

+ 6(a)eS2®Y/VBS 4 yy(q)e S20Y/VBs

and

2(a,y) = Bg E(a)e @Y/ VBs F(a)e'sxay//ﬁg}

-14-
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+ B]O[G(a)e52“Y//§; - H(a)e-szaylfgg}

where
1 B1VBs Sy
B = 7 - + s
9 83[ 5y By
| BB, B2
B0 B, [- S, * /B, (3.8)

A superscript * will be used for the material constants and
unknown functions when the above expressions are used for

the second strip.

If one examines the roots of equation (3.4), he will
realize that there are two types of orthotropic materials.
We will denote the material as type I when 3 and s, are
real, and as type II when they are complex conjugates. We
will assume, in our analysis, that the materials of both
strips are of type I. Similar analysis can be done for

the remaining combinations.

3.3 The Displacements

For each strip, we can write:

u(x,y) .u(a?(x,y) + u(b)(x.y)

v(x,y) = vy + v(®)(x,y)
Noting that;
u(x,y) = - u(—x;y) and vi(x,y) = - vi(x,-y)

-15-



we will obtain:

B{a) = -A(a), D(a) -C(a), F(a) = -E(a), H(a) =-6G(a).

For material type I;
S1 = Wy s S, = ¥q and 36,87,88,89,610 are real.

Using the information given above, and keeping in mind that
u and v vanish when y goes to infinity, for y>0, the dis-

placement expressions can be written as follows:

o]

u(x,y) = %-f [A(a)sinh(w]ax) + C(a)sinh(w3cxx)]cos ay do
0

¥ %_Jm[%(a)e-]wllay//ﬁg + G(a);lwalQY//E%] sin ox do
0

vix,y) = %-[0[87A(a)cosh(w]ax) + BgCla)cosh(wyox)]sin ay do

wl
- %‘[O[fign(w])BgE(a)e“lwleYAﬁgg + sign(w3)G(Q)B]d;lwalay//E%]

*cos ax do (3.9)

3.4 The stresses

For generalized plane stress case:

x = Piex T hypey

Q .
|

A
I
>

xy = "33Vxy - NS (3.10)

-16-



Differentiating (3.9) and using (2.12) and (3.10),

the stress expressions can be written as:

(1-v_. v .) @
jl_jﬁgﬁLJQ&_o (x,y) = I Y]E(a)e'|W1|GY//§; + v,6(a)
X X of -

e’lwa‘aY/Jﬁé]acos ox do + £F273A(a)cosh(w]ax) + 2y,C(a)

-cosh(w3ax)]acos ay da

m(1-v_ v ) of” -
———2%-5—1’-(-— oy(x.y) = L [YSE(a)e lwilay//Bs Yﬁﬁ(a)

-e""‘sl"y/"gs']acos oax do f[2y7A(a)cosh(w]ax) + 2y5C(a)
(0]

. cosh(w3ax)]acos ay da

Eny Txy(x,y) = IO[ZYQA(a)sinh(w]ax) + ZY]OC(a)

. sinh(w3a‘x)]a51'n oy do + Jokng(a)e'lwliw//ﬁ

+ Y126(a)e"w3'ay/J§%iusin ax do (3.11)

These expressions are valid also for the plane strain case

with the following substitutions:
Vyx T Malhiy o Vyy T RiafRyp o (Eyt) = 1Ry
(EX’A) = ]/Azz

The elastic material constants Yj are defined in Appendix A.
S g .
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4. FORMULATION OF THE PROBLEM

The solution of the problem may be obtained by de-

termining the unknown functions which appear in the dis-

placement and stress expressions, under the following

boundary and continuity conditions:

u](h]sy) = uz('hZ’y) ’

vilhysy) = vy(-hyuy) (0 <y <) (4.7a,b)
°1x(h1’y) = °2x('h2’y) .

Trxy(hys¥) = 1oy (=hpuy) (0 <y <) (4.2a,b)
u{0,y) = 0, 79,,(0,y) =0 (0 < y<w»)(4.3a,b)
up(0,y) = 0 4 15, (0.y) = 0 (0 < y<=)(4.4a,b)
T]xy(x1,0)= o , |x]]<h] ,

TZXy(xz,O) =0 , |x2|<h2 (4.5a,b)
01y (x750) = =py(xg) » xgl<a

v](x],o) =0 , a<|x‘|<h1 (4.6a,b)
0ay(xp50) =-py(x,) Ixy[<b .,

vz(xz,o) =0 , b<|x21<h2 (4.7a,b)

The conditions (4.3a,b) and (4.4a,b) are satisfied iden-

tically.
-18-



Using (4.5a,b) we obtain:

<
- %

6(a) = - AL E(a) , 6%(a) = - T E*(q)
Y, Y12

The mixed condition (4.6) gives:

lim f E(a) Yse-lwllay/JEE__YG Y11 o=|Wslay//Bs) s axy do
y+0+ 0 Y12

+ [w[277A(a)cosh(w]ax]) + ZYSC(a)cosh(wsax])]acos ay da
0

m(1-v_.v..)
y
and
(4.8b)
Define,

av](x],o)
BX]

= ¢(x7) such that ¢(x;) = 0 for |x;[>a.

(4.9)

Differentiating (4.8b) with respect to X, and taking the
inverse transform, we obtain:

a
Y]SQE(a) =,Io¢(x])sin ax, dx] . (4.10)

If we now substitute (4.10) into (4.8a) and evaluate
some of the integrals in closed form (sée Appendix C) we

will end up with the following singular integral equation:

-19-



Y14 J %gﬁl-dt + Jm[277A(a)cosh(w]ax])4-2y8C(a)cosh(w3ax])]ada

-a
m(1-v, v _.) '
= - ZEz YX p1(x]) -a<x;<a (4.11)
where because of symmetry o¢(t) = - ¢(-t).

Similarly defining,

A (X ’0)
._%Izz____=.;(x2) such that<§(x2) = 0 for |x,[>b

(4.12)
and using the mixed condition (4.7) by the same procedure

we obtain:

* * * * * % *
Y14 j %}%ﬁl dt + [:[277A (u)cosh(wlaxz) + 2yqC (a)cosh(w3ax2):]ada
-b

w(1-vF v* )
= - -_.XLXL pz(xz) -b<x2<b ) (4.]3)

*
ZEy |
The next step is to determine the unknown functions A(a),
C(a), A*(a), C*(a). This can be done by using the contin-
uity conditions (4.1a,b) and (4.2a,b) and taking the in-
verse transforms. Then we obtain the following system of

linear eqqations:
2A(a)sinh(w]ah]) + 2C(a)sinh(w3ah])
¢ 28" (@) stnh(uloh,) + 207 (@) sinh(wiah,) = R](a)
2B7A(a)cosh(w1ah1) + ZBBC(a)cosh(w3ah])

- 28] A*(a)cosh(wTahz) - ZB;C*(a)cosh(wguhz) = R, ()
-20- |



2y3A(a)cosh(w]ah]) + 274C(a)cosh(w3uh])
*
- ZX]Y;A*(a)cosh(w;ahz) - ZA]YZC*(a)cosh(w3ah2) = R3(a)
ZygA(a)sinh(WIah]) + ZY]OC(a)sinh(WBah])

* * * * * ] *
+ ZYQAZA (u)sinh(w]ahz) + ZY]OAZC (a)s1nh(w3ah2) =R4(a)
(4.14)

Ri(a) and Aj are defined in Appendices B and A respectively.

Solving (4.14) we obtain:

1 . R, (a) (G)
Ala) = Zcosh{w,ahy] f(a) gpla) + fl ) hy ()
~ Ra(a) R (G)
*FaT M) Fray nale)
1 R}(a) . (a)
Cla) = Zcosh(wyahy) | Fa) gy (a) + fZaS h1(a)
R3(G) R4(a)
+ _f—(&_)_ m](a) + —_F—(E)— n](a)
‘ R (a) (o)
* | 2
A = ( ) + '—("")" h ((1)
(o) 2cosh(w;ah2), fTa) 901° f
R (a) R (G)
f o mo(a) f o. no(a)
| Ry () |
* 1 1
C = 'TT h(a)
(o) 2cosh(w;ah2) fla) 9(a) E
( ) Ry ()
+ fB(:) m{a) + 74('57‘ n(a)} (4.15)

-21-
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The functions f(a), g(a) etc., used above are given in

Appendix B.

Substituting (4.15) into (4.11) and (4.13) we obtain

the following system of singular integral equations:

a a
¥ e Iakn(x].t)ﬂt)dt

-a
b *, (1-vx,v,x)4
+ f k(0800 (£)dt = - e by ()
1 y ;
- a<x <a
S i
1 (t) . |
i3 [ %-_i—— dt + f kz](xzst)¢(t)dt
-b 2 -a
(] * * )
b SV
+ [Tgplagst)e™ (1)t = - — LI b (x))
A
-b 147y
- b<xy<b | (4.16a,b)
where
o (x ., ~(hy-t)ovBs/|w1]
k-”(X-lat) = ﬂY]q_ I [ ()(.I ’a)e 1 [ 1

Ji ]
R kz(x],a)e(hl't)a/§;y|w3{} da

klz(xl’t) R Io[%é(x]’é‘e (hs- t)a/E;7|w1|

™14

+ kg (xys0)e” (hg=t /gy |y {} da
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o ¢}

1
Koy (%0, t) = j
21 *
2 ™4 Yo

E(s(xz.a)e"(hl't)“/@”‘"x |

]

(s}

o
kpa(%pt) = Jo
14

+ k8(x2,a)e'(h2't)a@/lw:[] do. (4.17)

*
[%7(x2,a)e'(“2't)“’5§7waI

The expressions kj(j = 1,8) are given in Appendix B.

By letting h23+w (or h]-+w) one can recover the spec-
jal case studied in [5]. For a <h; and b <h2. the in-
tegrards of kernels kij(i,j = 1,2) vanish when a+~ and are

bounded for all values of o, except when a = 0.

Around a = 0 the asymptotic behavior of the inte-

grands Iij of the kernels kij is of the following form:
C..
Lije) = 2L+ 0(1) (4,3 = 1,2) (4.18)

where the cij‘s are known constants.  In order to obtain

a solution, one should show that the singularity due to

1/a is removable. Consider the following integral:

fos}

'fa o(t)dt f I,4(x ,t,a)>doc = r ,é(.t)dt FI’ (x ta)da
_ o 117 o 1111 |

~a B -a

a 7 ] In‘"vt’“)d"]
e qpaurd |

o OOB'Q , -23-

of ¥



where € is a positive small number. Using (4.18) for the

first part of the integral, we obtain:

a a
[ txqstetiae = [otorae|[ 3L do
-a -a

s

€
+ f 0(1)da + [ 111(x],t,a)du
0 €

Making use of the singTe—va]uedness condition
£

a o
J ¢(t)dt = 0, the unbounded integral I —%l da drops out,

‘ )

leaving only bounded integrals which can be evaluated numer-
b,.

ically. Using J $?t)dt = 0 for the second crack, similarly

one can show that the singularity due to 1/a cancels in

all the integrands Iij'
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5. CASE OF BROKEN LAMINATES

This is the case when one of the cracks touches the
interfaces (i.e., a =h], or b= hz). The integral equa-
tions (4.16a,b) are still valid but some of the kernels

K are no longer bounded. For example for a =h] k]2,

iJ
k2], k22 are bounded but k1] becomes unbounded as X1 and
t approach the ends f!ﬁ simultaneously. In this case

the integrand I]] of k]] diverges as a -+ o,

In order to obtain the proper singularity at the
crack tips and to éompute kH numerically, the singular
part, kl]s’ should be evaluated in closed form. In this

case, the kernel k]] can be written as:
kg (xqst) = kg (xgut) + kyqpelxgst)

where k”S is the singular part and k”f is the bounded

part of k]].

Following the procedure described in [4] k]]S(x],t)

is obtained as follows:

, { (hy~t)VB/ Wi ] + lwa|hy
35

wk”s(xl,t) = [(h1‘t)’/g;/lw‘] + |w,]h1]2-(w]x])z

. (g =t)VB/ Wi + [walhy
86 | [(ny-t)/Bs/ Wil + [ws|hy 13- (wzx,)?
+ ) (hl-t)/§§7[w3|‘+|w1|h]
871 [(hy-t)vBs/ [ws| + [wilhy12-(wyx)?
-25-




. 2 (h]-t)/ﬁ/lwal‘”walh]
BB L(hy-t)VBS/ s + [walhy 1% - (wyx)?

"H < Xt % h] (5.1)

The governing singular integral equations become:

1 (M| \ hy
= Jh = + 1y (Xpt) <p(.t)dt+fh Kyp(xpst) = kyp4 (%) fo(t)dt
-hy - - ]

BVRY x)

b * (1
= X |

b ,* h b *
H ¢ (t) g j Ty (xp0 ) (£)dE + j k(X5 t)8" (£)dt =
..b 2 -h" ’ -b
* *
(1-v,,V0y) .
S (x)  -bexed  (5.2a,b)
2Y]4Ey

Since in the integral equation (5.2b) the only singular
term is TE%E’ the power of singularity at the end of the
internal crack in the second layer is still 1/2. But in
(5.2a) we have further singular contribution from the ker-

nel k resulting in a power different than 1/2. To find

11s
this singularity power Yy, we will again use the procedure
described in reference [14]. Throwing all the bounded

terms to the right hand side, the singular integral equa-

tion (5.2a) can be written as follows:

.- ,

1M _ , ..

T fh %Ti]‘* ”“ns(xrt)}‘b(t)dt = Plx) -h<xgshy (5.3)
hy |
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where P(x]) is a bounded function for all values of Xy -

The unknown function ¢(t) can be written as (see [14]):

o(t) = —FLt) , ‘5.4)
(hi-t*)Y
where F(t) is bounded and Holder-continuous in the inter-

val [t{<hy, and 0<Re(y) <1.

Define the sectionally holomorphic function:

h h iy
IP(Z) = %I 1 9{(';21 dt = Jq? [ 1 FLt)e ! dt
=h, \ hy (t—h])Y(t+h])Y(t-z)
Then,
F(-hy)e'™ Fhy)
oz) = — L. ‘ L+ ¢ (2)
(2hy)Ysinmy  (z+h)Y  (2h))Vsinmy (z-hy)"
(5.5)
where
C
v (z)|< ———— . v, <Rely)
| ° | !zth1|Y0 °

C and Y, are real constants.

Using (5.5), equation (5.3) takes the form:

F(-h])cotny o F(h])cotwy . Ags lw]l F(h])

. Y, Y (oh A\ (h v )Y 2 /Bs Y
(2hy) (hy*xq) (Zh]) (hy-%,) 5 (2h{)stnwyfiLi
5
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/Bs )
lws| F(h N
kgg -~ ' ]'w? Y ] vt : vl = P(x)
Bs on eyt (M7 (o)
/Bs
(5.6)
where because of symmetry F(hl) = - F(-h]).

Multiplying both sides of (5.6) by (h]+x])Y and let-

ting Xy = "H we obtain the following characteristic
equation:
) + A iwll 1 + IWII 1
- e CosﬂY 85 Vs [Wi|Y A6 T [TTWSTY
; W 1 [W, ] 1
+ gy 1l Y+ gy T roryy = 0 (5.7)
VBs | Wy [¥s VBs Wi )
VBs VBs

where Aj's are elastic constants defined in Appendix A.
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This is the same equation found in [7]. Choosing-the or-
thotropic elastic constants close to isotropic constants
numerically we find the same singularity power computed‘in
[6] and [9]. The characteristic equation (5.7) can be
solved numerically to find y. For practical orthotropic
materials equation (5.7) has only one root between 0 and 1.
To establish the dependence of y on the material constants
more accurately, a separate study of equation (5.7) is

needed.
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6. CASE OF A CRACK CROSSING THE INTERFACE

To formulate this problem we will start by using the
crack configuration shown in Figure 3. 1In this case we
have again an internal crack in the first layer, but two
symmetrically located cracks in the second layer. Using

the symmetry property of ¢*(t), we can write:

b . b .
. kaiz(xi,t)¢ (008t = [ Dgplxgst) = kypligoet) 1o (0188 = 1,2)

and
b s* (1) [ 1. 1 T
I t-x dt = j t-Xx + tT+x ¢ (t)dt (6.1)
-b 2 0 2 2

Therefore we can write the governing singular integral
equations, by simply changing the limits of the integrals
from (0,b) to (c,d) in equations (4.16a,b). Thus,we

obtain:

a o (t) a
?]r'Ja t-tx] dt + Jak”(x],tw(t)dt
g ( *
' fc[kn("vt) - kyo(xp,-t) 1o (t)dt

(1-v_.v..)

= XYy YyX

= - p,(xq) =-a<x,<a
2Y14Ey | 1

a7 ] |
f t * TFx, ¢ (t)dt + f k2](32,t)¢(t)dt

|-

-d
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d . (1-v* v* )
+ [ [kzz(xzot) - kzz(xzrt)]¢ (t)dt = - —-"—éx“z'—' pz(xz)
c 27'{ 4E_y

c<xy<d (6.2a,b)

By letting a = h] and d = h2 we obtain the case of a crack
crossing the interface. As in %he prev1ous case for a = h1
and d = h2 all the kernels kiJ L=‘ome unbounded when x],t
approach the ends + h; and x,,t approach the end h, simul-
taneously. Therefore to study the singular behavior ;t the
interface and to make the kernels numerically integrable,

the singular parts - of the kernels kij must be separated.

The kernels can be written as:
kij(xi’t) = ]JS(X st) + 1jf(xi’t)

where k135(xi’t) is the singular and kijf(xi,t) is the
bounded part. Following the same procedure used in the
previous section the expressions of kijs are found as

follows:
(h] /§§/|w1|+-|wllh]
15 (Xy2t) = Mg ATR=ETvRer Twa T 7 Twi Thy T = Ty )
(h-l t)/B—s-/IVhl + [w;lhl
86 [(h‘l t)JB—s/le ["‘lWalh]] - (W3x")2

(h]'t)/B_s/|W3| + jwy |h1
+~A87[(

h-l t)fB_;/IVhl + 'W;Ih]] - (w] 1
\ (hy-t)VBs/ |ws| + [wslh,
88 Leiy-60857 s + |w3|h]]2 (Wyp)?

+

I
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(h-t)/gE/ (Wi + w1 |y

mkygg (X0t} = A93{

[(hp-t) /gg/ 13|+ [ [y 3% - (g )2
(hy=t)/gE/ Wi | + lws|hy

Agq {

[(hz-t)f—/lw:|+|W3‘h]] -(w3 ])
np-t) g8/ W1+ lwa Iy

* k95{

(
[(hz-t)n/é?/lwal + w12 = (wyy)?
(hz—t)v/—/l\Na‘ + |W3‘h]

+ A%{

s_q—’\_-f—/\—-r—’ e’

[(hy-t) g%/ W3 | + [ws|hy1% - (wgx N?

(hy-)/Be/ lwa | + Wil hy

215("2’” = 10\{

\—f—d

[(ny-0)/B/ [wal + [wEIny1% - (5x,)?
(g -t 5/ |+ |wilh,

+

[ t)/B-S/!wll""Walhz] "(W3 2)2
(hy- -t)VBs/ |ws| + lwl|h?_

i
|

103

-+

Moa

Jv—‘

[(h'l t)/ﬁ_;”Wal + lwl‘hz] - (W] 2)
(h-| t)/B—s-/\Wﬂ + lwa‘hz
L(h t)»’s‘s/lwslﬂws\hzl - (W3x,)?

(hyp- t)/—/lw:l + Iw’;‘lh2

w/vv—-’

L hz t)fs‘;/lwl‘ + lwllhz] - (W]xz)

10

mkyog(Xpot) = 109{

(h,- t)/é_; /lwi| + h“alhz
gt G5/ 1+ g - ()

AR

|
ol

(hy- -t)V/g*/ | W3|+|w1|h2
[(h,- t)/—/\wal + |W1‘h2] - (w]xz)z}
(ho- t)/‘*/lwal + \w31h2
[(h t)ﬁ/|W3| + |W3lh2] - (W3X2)2§
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- h]< x]< h]

Separa
form:
1M, . )
T Xy mkyyg(x7st)[o(L)dE
-h] -
hy
+ Ih [k'”(x]st) - k]]s(x-]’tnd’(t)dt
hy & * g
+ jc K g (xpst)0” (t)dt
hz * * ’ * d
¢ 2050000 - Kgslr 010 (004
(l-vx v x)
= - ————111— py(xy)
2x14 y 171
and

h .
1 21_1 1 * *
F I {}-xz Yk, T "k225(x2’t)]¢ (t)dt

ting the singular parts, equations (6.2a,b) take the

h
* J 1[k21(x2’t) - k21S(X2,t)]¢(t)dt

-hy
h] :
+ J kZ]S(Xzat)¢(t)dt
N
h
2 . .
+ ]chZZ(Xzat) - k;ZS(XZ’t)]J(t)
v
(1- xy'yx).p (x.)
o r gF 272
Y14Fy

-33-
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where
%*
ki?.(xi’t) = kiZ(xi’t) - ‘k‘iz(xi’-t) (i=192) .

To find the proper singularity power B at the inter-
face, we will first throw all the bounded terms to the
right hand sides of the equations as it has been done in
the previous case. Then, we'dbtain the following system

of equations:

LMo + ok (x1,t)6(t)dt
Tl toxy T stxe e
“h, ‘

h
o+ ICZkTZS(x],t)¢*(t)dt = Qy(xq)

- hy<xy<hy

h N
1 2 R 1 * *
™ Ic [;'XZ ' tx, i “kZZS(Xz’t{]¢ (t)dt

h
b [ Mgy ga)ettiat = ay(xy)
.h.I
c< x2< h2 (6.4a,b)
where Q](x]) and Qz(xz) are bounded functions of Xy and X
Considering the behavior of ¢(t) and'¢*(t) at the end

points, we can write:

() L LN 6.53.b
R r SRR L Rl rverey rrovr S

Define the following sectionally hd1omorphic functions:
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h . h, .*
) [T e, V@ -1 [P e (6.6a0)

From [14] and using (6.5a,b) and (6.6a,b) we have:
; ing

= . - +
11)(2) (Zh])BSIn"B (Z*h])s (Zh])Bsm'nB (Z-hl )B wO(Z)
* ind F* h ) .
W*(Z) _ _F (c%e' 1 : - (62~ 1 np_— (2)
(hy-c)"sinmg (z-¢)”  (h,-c)"sinmg (Z'hz)
(6.7a,b)

where wo(z) and w;(z) are bounded functions which around

ends behave as follows:

C
|wo(z)|5,___°____ ’ BO<R9(B)
szh]]Bo
and
( D >
5“*0—-5{; s 80<Re(8)
IZ-h2| (¢}
V2 (2)] <and
E
\5————-——| °|60 . 8,< Re(8)
z-C
Co’ Do; Eo’ Bo> B;, 8, are real constants.

- Using (6.7a,b) and fo110wiﬁg the procedure used in

section 5, equations (6.4a,b) reduce to:

cotns = 0 (6.8)
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and

F(hy) . W
; - 2cosTB + Age 1l L 5+ x86|w11 1 =
2(2h]) sinmg Bs (%1 V§§'|W1|‘w3l
Bs vBs .
wel 1 wy| 3
+ A 3 + Agq —-
87 VBs lwlllwal B 88 VBs |Ws_ B
VBs VBs
{
* *
L, Fny) UL . B Wil _
2(hy-c)Psinmg | 93 v (Ll WP O o w1y 1
| /5
5 s
\
F(hy) lw, | 1 lw | 1
8 Mol = Ti 5t N — T B
2(2hy s inmg (O ILHILN A TATEN]
, /s A
* Moz | 75 * Mg v, ERLE
/By (1wl iw,l] Y vEs Iwaliwgl
Bs VBs
) J
* @ *
F (hy) [w}] |w, |
2 1o , 1
+ . - 2cosmR + A —— =+ A
2o sinms 109 e T8 10 o TIEIATP
) z
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* *
Wl 1 wWsl 1 -
**nqu IMHM|Bf*nzﬁF Rl
5 /_T 5 /_*_
\ B5 J L 65
(6.9a,b)

Equation (6.8) gives the expected § = 1/2 singularity power

at the crack tip.

(6.9a,b) is a system of homogeneous linear equations
for F(hy) and F (h,). Since F(hy) # 0, F*(h,) # 0,
B # 0,1 to solve the system one should equate the determ-

inant of coefficients to zero. Thus,

Whl Wil
A(R) = 4cos?mR - 2cosmB {)\]09 —1—"—*'—3* )‘HO .
| /B_':- (‘”n) '/E:
o Wyl 14 W3l 3
N BT 2 )P
féf (r‘] 3) ',B-f (?‘33)
+ A ]wll ]
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1 1

I W S VR e
M3 T8 s Y
(ryyryq) (r3713)

1
1 1
+ A —_— + A —
15 " X 16 (7 )P
11733 13" 11
.
4 Ayqg ———— t A + A —_—
117 * B 118 8 M9 * B
(ry3ry3) (ry3ra3) (raryy)
+ Moo ————-———-]* 5 "12i -—-———-———l 5 = 0 (6.10)
(ry3rys) (rgaras)
where
2 2
S S L (L1 L
LI 3y 13 VBs 3 /8
* 2 2
. W, Lot - ENIEM R S ﬁ}_
5 5 5

From the characteristic equation (6.10) we can determine
the singularity power B. Choosing the orthotropic elastic
constants close to isotropic elastic constants, we recover
the singularity power found in [8] and [9]. Equation
(6.10) does not always have a root between 0 and 1. For
some orthotropic material combinations, there is no power
singularity at the interface. In this case one should in-
vestigate the possibility of pure imaginary or complex
roots. Numerical bomputation shows that there are no pure

imaginary roots or complex roots for which the real part
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is between 0 and 1. On the other hand F(h]) and F*(hz)
are related through (6.9a) or (6.9b). This is a condition
to be used while obtaining the solution. The absence of
power singularity for some orthotropic material combina-
tions may be very important from the view point of design
applications. Therefore we will study in some detail the
behavior of the crack surface displacement derivatives and
the stresses at the interface.

Let's first investigate the possibility of.a weaker
i.e., logarithmic singularity in the crack surféce dis-
placement derivatives at the interface. Suppose that the
power singularity B at the interface is zero. Define:

Wz) = 1 J $t) g, y*(2) = fcz 9—1~l dt
~hy
The behévior'of y(z) around z = + h], and of w*(z) around

z = h2 can be expressed as:

h )
w*(z) = ¢(ﬂ1) Tog(z-hy) + ¢o](z) near z = hy
¢(-h])
w‘(z) = - ——;~——-1og(z+h]) + ¢02(z) near z = -h
*
ho)
w*(z) = ?_SFQ_ 1og(z-h2) + ¢o3(z) near z = + h2

(6.11a,b,c)
where %ﬂ(z), ¢02(z), ¢o3(z) are bounded functions.
-39-
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Using (6.11a,b,c), near Xy =hy and x, = h, equations
(6.4a,b) take the following form:

tog(h -, i‘iﬁ‘ﬂlt tgs L ngg Ly L0y w]

-A

*
)| Wl W W
- 93" T Mgp - T Mos - Aggl = Frix)
T 2/F ww M ow 2/ 7%
B B Bs Bs
[ othy) [ Iw | | W | W |
Tog(h,-x) m—e A A s = Aqam—— A
2"zv T 2/e V01 g e 1102 T 5 03T, Mo
* * *
R $*(h,) 1 lw | N |w | w_| , lw | - F(x)
5 5 S
(6.12a,b)

where F](x]) and Fz(xz) are bounded functions.

In order that equations (6.12a,b) be bounded for Xq =

h2, the coefficients of the Togarithmic terms must be zero.

Thus:

#(hy) w | W | W | W |
— {1-12 L - A~ - A, —— 3
" SRV Ry Y R PV
*
$*(hp) 1w | L lw’jl W lwsl L

and
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o) T wl ol il Wl
m ZJE— 10] 2/§" 102 2/*— 103 2/—- 104

, S lhp) | ] R B (A .
n 109 110 111 M2
2/g% ,-— 2/g% z.fgf
(6.13a,b)

(6.13a,b) is a system of linear equations for ¢(hy) and
¢*(h2). Since ¢(h]) and ¢*(h2) are different than zero,

in order to have a solution the determinant of coefficients,
A, must be zero. Numerical computation shows that A = 0

and either from equation (6.13a) or (6.13b) we have:

¢(h1).
* = -
¢ (h,)
and using the symmetry condition ¢*(h2) = ¢*(-h2), we
obtain:
¢(hy)
S (6.14)
¢ ('hz)

Relation (6.14) shows that the surface displacement deriv-
ative is continuous at the interface. This is an important
“result which makes the solution of the singular integral

equations easier.

To study the behavior df the stresses, let's first

write their expressions at the.interfacé. By making use of
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(3.11) and (4.15) we obtain:

h h .
oty) = L o () = [ Ty tnanatien + [ Bgnane®men

X 1

- ™ M2 (e (Y
y) = sl TxylM¥) = J K3(n,y)¢(n)dn + Ic Kq(n,y)¢ (n)dn
zgxy -h,
(6.15a,b)

where Kj(n,y) (j = 1,4) are given in Appendix B.

The kernels Kj become unbounded as y-*O+ and n~++hy
or n+h, respectively. When equation (6.10) has a root,
i.e. when the funcfions o(t) and ¢*(t) are singular, the
stresses have the same singularity power as we will see in
the derivation of the stress intensity factors. But it is
necessary to kno& whether the stresses have a logarithmic
singularity when the crack surface displacement derivatives

are bounded. To do that let's first separéte the singular

parts of kernels Kj., Following the usual procedure, we

obtain:
1 Y](hﬁn) (h]'n)
K (H,Y) = - Y
1s 4Y13 w"l’yz 1 Wf)’z 2
85 + (h'|+ ) BS + (h‘l'n)

L LR 4 § IS

2 YWy 2" 2 Y15 wly
%;‘F (h]+n) BS + (h]'n)

ORIGINAL BAGE O



] ( by ) (h]‘n)"e—_/lw ‘
Yoty
2Y13A8 381 4782 [(h]-n)/§§7|W1|] '*yz

(yoho b ) (h'l"n)JB—S-/Iw i
Y YA
fw 383 [ (hy-n) B/ |wal 12+ y?

: ) (hy=n)Vgx /lw}|
Y Yar
37891990 (o) gE/ W 17y

K, (ns.Y) =
2S
2*13 80

1 e (hy=n) /g% W, |
Y Y %
2iatg S 0 ¢ 02 [(hyn) Y/ w17 4y

Y]] |WII.Y/V35 + lel.Y/'Bs
4y - Z
13 w1y ,y
ot (It ) 2s -n)

|wsly/VBs |W3|Y//§—
IV T Wive

wly 2 W y

Kag(my) =

1 Y
+ (Yora1tY1ara0)
2yzhg0 - 08V OB () /B i | 1P 4y

13780

(Ygrg3tYy0tgs) Y '
* g Te'as ol [(hy-n)vBs/|Wa| 2 +y°

1380

y
|w1|] vy

K (n,y)- """—"— (Yg 89+Y]0 90)
T2y ]3180 [(hy n)v’_/

1
2*13 80

(87 A +Y102q2) Y

(6.16a,b,c,d)
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Keeping only the singular terms, equations (6.15a,b) can

be written as follows:

h] 'hz *
oly) = [ Thyglny)e(nddn + | ZKyg(n.y)e" (n)an + Aly)
°C

-
h], rhz *
t(y) = [ Kyg(nydot)dn + [ ZKyg(n.y)e"(n)an + By) (6.17a,b)
“h ‘c
1

where A(y) and B(y) are bounded functions.

Define:

*

h h
w(z) = f 1 %é%}-dt and  v'(z) = f 29 (t) 44
C

t-z
-h]

Considering their behavior around ends, we can write:
w(z) = ¢(hy)log(z-hy) - ¢(-hy)log(z+hy) + ¥, (z)
and
w*(z) = ¢*(h2)1o§(z-h2) + wz(z) (6.18a,b)

where wo(z) and wg(z) are bounded functions. Making use

of (6.18a,b) and (6.14), equations (6.17a,b) become:

m 1 [Wi]

1 _
a(y) = log y ¢(hy) |50— (vy-¥ ) - . (Yarq1+Yareo)
. *
1 Iwal 1 ‘Wll :
- (YarqatYgr ) + —= - (’YB)\89+Y4>\90)
Maeo ey 83 VI o g TR
x
1wl
+ — (Yarg1*Yargo)| + C(¥)
” 3°917Y4"%92
2Y 380 B |
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and
(y) = D(y) , (6.19a,b)

where C(y) and D(y) are bounded functions. Equation
(6.19b) indicates that the shear stress at the interface

is bounded. Since C(y) is bounded and ¢(h]) £ 0, if o(y)
is bounded the coefficient of 1logy in equation (6.19a)
should be zero. Numerical computation shows that the

above mentioned coefficient is identically zero. Therefore
the normal stress o, at the interface is also bounded.
These are important results for orthotropic materials and
may have practical implications in designing with composite

materials.
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7. THE SOLUTION AND THE RESULTS

Since we have mainly three different problems, the

solution will be discussed in three sections.

7.1 Case of Internal Cracks

In this case we have to solve the system of singular

equations (4.16a,b). Defining Xy = aKk;, t = art for

- a< x1, t <a and Xp = 8Ky, t = br for - b« Xos t<b after

normalization, equatiqhs (4.16a,b) take the form:

i | 1 *
dt + a J]k?](K1,T)¢O(T)dT +b []k?z(xl,r)¢o(r)dr
(]-vx v x) 0
= “‘2\r14|z"‘¥y — Pylky) - Tyl

1 j] ¢’O(T)
™

1 T

J_. 1 ¢;(T)

™ -_' T'Kz

1
1
dt + a J kgl(KZ’T)¢o(T)dT + bI kgz(n2,1)¢:(1)dr

*x *
(1-v_ . v..)
= _.___JQLJZL.pg(KZ) - 1<k,< T (7.1a,b)

L

2Y]4Ey

where the index "o" denotes the normalized quantities. To
get the complete solution we need also the single-valued-

ness conditions:

1 1
I ¢°(T)dT = 0 and []¢:(T)dT = 0 (7.2a,b)
=1

Since ¢°(r) and ¢;(r) have a power singularity -1/2 at

-46-



the ends, the solution will be sought in the forre:

F Fr
ol e o (x) = Lol
-T v -T

$o(1) =

*
where FO(T) and Fo(r) are Holder continuous in the interval

-1 <1 < 1.

Using the method described in [11] we obtain:
N , ' N
1 0 o *
jZ] FO(Tj)[.?E:-K—; + a‘"k]] (K.i,'rj;] +j§]b'ﬂk]2(|< i ,Tj)Fo(Tj)
=-N —7:¥39L101—— pO(ks) i =1,...N
Y]4Ey 1V i

Z ank21(K ,Tj)Fo(Tj) f F (s )[- e bﬂkzz(K ST {}

341
(1 v v )
= - N3 p0(ey) =1,
2Y14Ey
N - N
LU - T % -
321 § Folty) =0 and jzl N Folty) = 0 (7.3a,b,¢,d)
where
ﬁﬂhl* 9&93%2 T
%ﬁf%oo QﬂAll Ty T COS 7y (24-1) § =1,...N
Ky = cos %} i=1,...N-1

The 2N unknowns Fo(rj) and_F:(Tj) can be found by solving
eduations (7.3a,b,c,d). ih‘this problem we are mostly in-

terested in the compdtation of the stress intensity factors.
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The stress intensity factors may be expressed in terms of

the density functions Fd(T) and F*(t) as follows:

For a< h]: k Tim /2( —a} o]y(x],o)

a X1-+a
‘and for b<h,: k, = 11m /2( -b) g (x ,0) (7.4a,b)

Making use of equations (4.16a,b) and definitions (7.4a,b),
after lengthy algebra (see Appendix D) we obtain:

2y E/—
ka N - (- 14 ) Fo(])
xyyx
and
ZY E* /B
ky = - — -t Fo(1) (7.5a,b)
(1- ny yx)

The computation is done for generalized plane stress case
only. Results can easily be obtained for plane strain case
by redefining the elastic material constants. In the per-
turbation problem considered P and P, are constant. As-
suming that there is no constraint in x- direction, Py and

Po satisfy the following condition:

il Ey
P2 E;

. . , | .
where EyAand Ey are the Young's moduli in y direction.

Two material combinations are formed among the follow-

ing three materials.

-48-




1. E, = 5.62 109 N/l E, = 17.37 x 109 N/mé

0.492 x 102 N/m , v.. = 0.036

ny. Xy

(€, = 8 x 10% psi) , (E, = 24.75 X 100 psi)

(6. = 0.7 x 108 psi) ,

Xy = 0.036)

Vyy

2. E =13.71 x 10 N/l E, = 3.16 x 107 N/mé

. 9 ., 2 _
6,y = 246 x 10° N/nl v, = 0.650
(E, = 19.5 x 108 psi) , (E, = 4.5 X 10% psi)
_ 6 . ) .
(ny = 3.5 x 10° psi) (vxy = 0.650)
3. E, =15.76 x 109 Ny, E, = 15.78 109 N/mé

_ 9 2 -
B,y = 6:09 x 10° N/n® , v, = 0.300

(E, = 22.447 x 10° psi) , (E, = 22.6 x 108 psi)

(G = 8.655 x 10% psi) , (v

Xy = 0.300)

Xy
As it is seen from the values given above the first two
materials are orthotropic, while the third is isotropic.

The following pairs of materials are used:

Combination I: The first layer is of material 1,
the second of material 2.
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Combination II: The first layer is of material
3, the second of material 2.

Choosing the same materials and letting a, b, h.l or h2 go

to proper limits we recover all the special cases done in

[5]’ [6]9 and []0]-

Figures 4-12 show some of the calculated results. In
Figures 4 and 5 the stress intensity factors ka are plotted
versus h2/h] for b=0 (there is no crack in the second ma-
terial) and for the two material combinations. For h2= 0,
we recover the solution of colinear cracks imbedded in a
homogeneous material (see [10]). It is importdﬁt to note
that in the colinear crack problem the material doesn't
have to be isotropic. As h2-+m, ka reaches an asymptotic
value which can be found in [5]. For a fixed hzlh] ratio,

ka increases as a/h1 becomes larger.

Figures 6 and 7 show the stress intensity factbrs kb
for the case a=0. In this case also, for h1= 0, we ob-
tain the solution of colinear cracks. There is a critical
value of (h]/hé)‘for which the stress intensity factor
starts to decréﬁse as the ratio b/h, increases. For the
éxamples done this critical ratio i§ betwéen 0 and 0.5,

For h]—Ho the stress 1ntens1ty factor kb reaches an asymp-

totic value which also can be found in [5].
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The stress intensity factors ka and kb when both
layers contain cracks, are given in Figures 8-11. kb-+0
_as (b/h2) +1, since fhe power singularity y is less than
0.5 when the crack in the second materia1 touches the in-
terface. Another interesting result is obtained from the
comparison of isotropic and orthotropic materials. As it
is seen in Figure 12, for the same Ey and E; the stress in-
tensity factor ka for orthotropic materials can be larger
or smaller than the stress intensity factor ka for iso-
tropic materials depending on the other elastic constants.
One‘can significani]y reduce ka by a convenient choice of
the‘elastic'constants. The materials used in the compari-
son are given in Table 1. The'dependence of ka on the
materials constants is given in*Tab1e 2. ny and G:y are

the most important constants, while keeping E_ and E; con-

. y
stant. To reduce the stress intensity factor ka’ it is
* * *
sufficient to increase Ex’ ny, ny or decrease Ex’ ny,
ny'

_ORIGINAL PAGE I3
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7.2 Case of Broken Laminates

The solution will be obtained by solving equations

(5.2a,b), with the single-valuedness conditions,

hy b,
j s(t)dt = 0 and f s*(t)dt = 0 (7.6a,b)
-h -b

1
Defining again,
and

t = sz s Xp = sz for -b< xz,t<:b

the normalized form of equations (5.2a,b) and(7.6a,b) can

be written as follows:

1 ]
1 1 0 0
T f][;1-xl * "h1k11s(K1’T1{]¢o(f1)dT1+ "1J]k11f(K1’T1)¢o(T1)dT1

+b I:k12( I ANCALLAEE E%??f%gxéz'pg(Kl) -T<ky <l
y
%‘J ?r(rz) dt, + h f:kg1(“z'T1)¢o(T1’dT1 + bf:kgz(Kz’T2)¢;(T2)dT2=
) _I * *
- E—:XéXX¥5l-pg(K2) s ~1<K2<1
2Y]4Ey
1 o .
| J]¢G§?])drl =0 and f]¢o(12)drz =0 (7.7a,b,c,d)
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To obtain the solution, we will use the numerical me:nod

described in [11]. Hence, we obtain:

o |t

X :
, 1 0
_521“j(T1j)[f,j-K]i * "hlkils(Kli’le{]Fo(le)

+ h

e 2

0
1L Wiltydkypelkgmyy)Folyy)

N
n 0 *
tby j21k12(K11’T25)F0(T2j)

J

(1-v_.v_.)

X x’ o .
2 - p(K .) s ’I=],...N']
2Y14Fy 111
! % — 1+ bk (KnssThs) F*(T .)
N )
+ jZ] wj('l'-lj)k21(K'z.i,T-Ij)Fo(’l']j)
* *
(1-v, . v,.) _
= - :y.¥x pg(KZi) s 1= 1,...N-]
2Y14Ey
N _ T - -
(7.Sa,b9C”d)
where
. ) . *
o (r) = 1)y o Delt2)
o 1T (1)) R

(-vs-v) - . L
S (ty5) =0, 3 T
P I Y =0, i = 1N
-53-
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L

sz = COS 2N (2\]'1) ’ j = 1’ooo-N
) = Tfi i = -
Kz_i - COS _N"' ’ 1 1,-.-.N ]

and wj(r]j) are the weights of PN( -Y'—Y)(T]j).

Solving the 2N x 2N system of linear equations one

] * (3 .
can find the 2N unknowns Fo(r]j) and Fo(sz). But again
we are interested in the stress intensity factors, which

oo *
can be calcul~ted in terms of FO(T]j) and Fo(rzj).

Define:

>
i

; Y Y
xggjhz 27 (xp+hy) o, (x510)

and

]

After some calculation shown in Appendix D, we have:

_ (h])YYME Foll) W, WEs i WBs
a MO1 I*H l Y+M02 *|| IY
(1- \’xy yx)smww WyllwW, [wallw, |
VBs VBs
L / .y J
\ lWa|//ﬁ N 'Wal//gs—
103 1w, | |wh]|Y

Bs

and
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ZY* E*/E
14 F*(l)
(l-v* * 0 (7.9a,b)

kb=' N
Xy yXx

The results for the case of broken laminates are shown in
Figures 13-16. Again the same material combinations are
used. In Figure 13 thestress intensity factor ka is
plotted versus the ratio hz/h] for b = 0. When h2+°° ka
has an asymptotic value which can be recovered in [7].
Figure 14 shows the variation of kb with h]/hz, for the
case a = 0. For b # 0, the variation of k, and Kp with

b/h2 are given in Figures 15 and 16.

7.3 Case of a Crack Crossing the Interface

In this case the governing singular integral equa-
tions are (6.3a,b). As it was pointed out in Section 6,
the characteristic equation (6.10) does not always give a
singularity power at the bimaterial interface. Therefore,
the numerical solution needs care, and we should solve
equations (6.3a,b) considering the singular and non-

singular cases at the bimaterial interfaces.

7.3.1 Singular Behavior_g;uthe Interface

For the material combinatioh I1 (isotropic—orthb— o
tropic) equation (6.10) has a root between 0 and 1. Using

Newton-Raphson method to solve equation (6.10), we have:

B =.0.04248 .
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We will make use of the following definitions to normalize

equations (6.3a,b), the single-valuedness condition, and

the relation (6.9a):

t

t

h,-c 2
= 5 Tt 5 x2 = =5 Ky + —5— for c<t, x2<h2.

= h111 s Xy = hlm] for ah1<t, x]<h1

Then, we obtain:

1

m

I1¢°(T])

-1

1
]

h,-c 1 1
2 *0 * 2 *0 *
L [Kralog(Taldry + =5 I] 126(K75T2)90(T2)dr

1

1

1 1
0 0 .
T M J k115(K7oTy )00 (Ty)dTy + 1y I]"nf("v'ﬁ)%(“’ﬂ-dT

h,=-¢

)2

(1-vx Vv x)

0
= . p (K ) ~1<k, <1
§Y14Ey 1™ 1

1 1 *
+ ¢ (1,)dt
Th-Kn AN, *C o‘'2'""2

2 (4 12+K2+ &-FZ:E).

] 1
0 0
th I]k21s(K2’11)¢o(T1)dT1 * “1I1k21f(K2’T1)¢o(T1)dT1

h2"'c h -C

L Lk ) T %o *
t =5 L"zés("z“z)%(‘z)d'fz,+ i []kZZf(KZ’T2)¢ (tp)dry

B I ]
(1-vx ) x)
* %

= - XY YX pg('(z) _]<K2<‘]
v 2Y14Ey ,

1 * _ h] B a3
-]

(7.103,b,Csd)
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where

= - 2cosnf + A \w | 1 + A lw | L
% 85 o= Twi P 86 B (lw,l[ws])P
/Bs B,
|w, | 1 RSN L1 I
- /B VB
. . *
N A LN 1
*
By /g%
w3 | ] |wil ]
* Mg ~ gt 26 = * 18
A ERILNILN! Y85 Iwgll_wal
Bs 'fé':

Using the numerical method given in [11] equations (7.10

a,b,c,d) further reduce to:

Nt~12Z

1
T wj(T]j)

j=1

N *
1 owglngy)
j=1

1N
C)RTUINAL PAGE
OF POO UAI'IN

-

' 0 0
ey + ahy k(e oty ) + KT elk ) Foltys)
L
hz-c *o | h2-C *0 *

—S— kyas(KyioTa3) + T2 Ky26(K150T23) | FolT23)
(1-v,.V,,)
= - __._.._LL——X X 0 i = -
,2Y14Ey p](K]‘i) i 1,...N-1
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N
h ~C
X W] (T ] + 1 2 *0
P 2.) T93-Koj 2(h2+f-) 2 k?ZS(Ki’TZJ)

Toj*oit e

h,-c
2
+
Loy o k22f(K21'T23) F (ng) + 2 W; (TlJ)[h1k?25(K2i’T1j)

* %
0 (1-v )
+ h-lkz-lf(Kz_i,T-'j)]Fo(T-‘j) = o -wa_ p2(K21) 'i = ]’...N_]

Y14Ey

N
h] jzl wJ.(T]J.)Fo(TU) = 0

and
18
* _h.]__ -a-l-F (1) .
) = -2 R ar Fo (7.11a,b,c,d)
where
( F,
¢° (T) . 0 ) ’ * _ O(T)
(1-12)8 * 0 (1-1)B(141)*
P ('B;‘B)(le) = Q j=1, N
PN_](]—B’]-B)(K]i) =0 i= 1,...N-1
PN("BQ"%)(sz) = 0 . J= ],.,,N
PN-T(]-B’%)(KZi) =0 i=1,...N-1

*
uj(r]j) and wj(rzj) are the corresponding;weights of
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nB o8 (e ) and py (8079 (e, .

Solving the 2N x 2N system of linear equations, we

*
obtain the 2N unknowns FO(T]j) and Fo(rzj).
tensity factors can be defined as follows:

kb = x]ip /Zlc-xzi ozy(xz,o)
g *:C
and at the bimaterial interfaces

k = 11m o] h,,

XX y +0* y ‘lx( 1 y)
k = 11m B T hy,
Xy y+0 y lxy( 1 y)

By making use of definitions (7.12a,b,c) and

calculation shown in Appendix D we obtain:
B**

2 Y
k -———Ji‘—l/ﬁ—"-cr(l)

b
(v, %

The stress in-

(7.12a,b,c)

after lengthy

1

B
., Ex 1 MM Sy
S vxyvyx) 2P sin %? "3 lle_B 2 Yy2
/Bs

7/

|w, | (73}‘81+Y4)‘82) lw, | “3"83**4"84)—]

_ F (-1)
"Bs lwy |8 A "B_s Iwgl \ J 0
.“_“,,g; 80 - '_,,’gs‘ 80

(hz-C) lw | (Y3A89+Y4 90) IW l (Y3 9'|+Y4 92)_1

27 300| L] |? ‘/Ef L ®
8 /8

W, |
/Bs

/

1)

0(



: B
G h Y Y
K = Xy { | n_ ., 11

xy 28+1c°s %?_ Y13 {l" I]B [Iwal'ﬁ

By /Bs

o

Urghgitrighey) |w | (Yg2g3*q02gs) IW,I‘l

W 1l® /e Wy |® /B?_I
*ao{,/ﬁ 80| 5=

5 )

Fo(-1)

/

B *
(hp-c) [_(79%9”10*90) Wil , (erartmiohed) |ui|

+ * K *
V2 3)\801' [M]B /8% {M] ° /8%
/g¥ Vs

Fa(1)

(7.13a,b,c)

Extrapolating the results found from equations (7.11a,b,c,

Xx? kxy can be com-

puted in a straight-forward manner. The results are shown

d) the stress intensity factors Ky s k

in Figures 17-19. Figure 17 shows the variation of kb
with c/h,, for different values of (h]/hz) ratio. ky in-
creases as (h]/hz) increases. Figures 18 and 19 show the

variation of kxx and kx with respect to c/hz.

y

7.3.2 Non-Singular Behavior at the Interface

In this case, the characteristic equation (6.10) has
no root and therefore the surface displacement derivatives
are bounded. Since, as it was shown in Section 6, the dis-
placement derivatives are continuous at the bimaterial in-
terfaces, using the single-valuedness condition to write
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the integrals from 0 to &, equations (6.2a,b) take the form
(see [12]):

1 L 4
;.[o s * we]6(r)dr + Jok(r,s)G(r)dr = p(s) 0O<s<s (7.10)

where

¢(t) (0<t<hy, O<r<h,)
G(r) = .
¢ (t) (-hy<t < -c, hy<r<e)

)
. Xy yX
5 ' ZY] 4E p‘l (x'l ) (0<X1 <h] ’ 0<S<h] )
- XY YX - _
(

*

_k11(x],t) (0<x], t<h] , O<r, s<h])

¢ 3

{

kir,s)

[}

\

,

0<x,<h,, 0<s<h
* ] 1 1 i D 1
klz(xl’t) - E'[t-x] * t+x1}

"h2<t<‘C,. h-' <r<2;

|

1 { 1 ] ] ~hy<xa<-c,hy<s<d

*
oy (xyst) = & |cdos Lo
21772770 Wty 0<t<hy, O<r<h,
\ J

* ‘ .
Wi ’i«i h

* . . -
kij(xi’t) = kij<xi’t) - kij(xi"t) (1sJ = 1,2)
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Now we have the governing equations for a crack imbedded
1n‘é non-homogeneous material, obviously with power singu-
larity -% at the crack tip. Normalizing equation (7.10)

by means of:
r = At and s = 2k

we obtain:

1M, ! '
T I —— + ——|G_(T)dt + QJ ko(Tak)G (t)dt = p (k) O0<k<1 (7.17)

- +
O'FK TrK| 0 0

Equation (7.11) reduces ‘'to a set of linear equations

by using the method of collocations (see [11]):

N T
1 ] - ] =
z] [;'_K. Yot ﬂzko(Tj,Ki{]Ho(Tj) = ZNPO(Ki) i=1,...N

j= i J i
(7.12)
where
T, = cosE%}iL% j =1 N
J N b b}

Ki=cosl'_-2%1r:l s 1 =1, N

- H (1)

6,(1) = 22—

/T2

The N unknowns Ho(rj) can be found from equation (7.12) in

a straight-forward manner.

Defining.the stress intensity factor at the crack
| tip as:
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Q )

&=

we obtain:
* K .
AV % )
ky = - —L— H (1) (7.13)
. (]'vxyvyx)

Using the same material for both strips, we recover again
the results of colinear cracks in homogeneous medium. Fig-
ure 20 shows the variation of kb with c/hz. kb increases

as h]/h2 increases.

5
?" .
o S

oo
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8. CONCLUSIONS

The fracture problem of layered orthotropic composite
Plates has been studied. The following results have been

obtained:

1) Depending on the elastic constants, orthotropic
materials can be classified in two groups: materials of

type I and materials of type II. (A different formulation
is needed for each combination.)
2) The colinear crack solution is the same for homo-

geneous isotropic and orthotropic materials.

3) In the case of an internal crack in the first
layer, the stress intensity factor ka can be reduced sig-

nificantly by a proper selection of the elastic constants.

4) For the case of broken laminates there is a sing-
ularity power which can be found from equation (5.7). The
singularity power y varies between 0 and 1 for different

material combinations.

5) For a erack crossing the interface, the singular
behavior at the interface disappears for some material com-
binatiqns. In this case the crack surface displacement
derivatives are bounded and continuous, and all stresses

are bounded at the bimaterial interfaces.
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9. RECOMMENDATIONS

In the present work, a general formulation of the
fracture problem.of layered orthotropic composites with
periodic cracks is given. The formulation is done only
for the case where both materials are of type I. Follow-
ing the same procedure, the problem can also be studied
for orthotropic materials of type II, or for the combina-
tion of typé I and type II. The dependence of the singular
behavior at the interface on the elastic constants can also

be investigated.

In our formulation the thickness of‘the adhesivé
bonding the layers has been neglected. The study of the

effect of the adhesive also can be recommended.

A more realistic approach also would be to study the
problem of finite number of strips. But this problem re-

quires lengthy algebra.

There are many other problems to be studied in the
fracture of composites. We hope that our work will have

a small contribution in the study of these problems.

‘ I
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Table 1.

The elastic constants
and material
combinations -

. -Lg-

Mat. No. Ey Ey Gy Vxy
5.62 x 109 N/m? | 17.37 x 10° N/m? | 0.492 x 10° a/m® | 0.036
Vol (8 x108 psi) | (24.75 x 10° psi)| (0.7 x 10° psi) | (0.036)
. 13.71 x 107 n/m2| 3.16 x 10° n/m? | 2.46 x 10° N/m? 0.650
2 | (19.5 x 105 psi)| (4.5 x 105 psi) | (3.5 x 10° psi) | (0.650)
;| 1576 x 102 N/m2 | 15.78 x 10% N/m? | 6.09 x 107 N/m? 0.300
(22.447 x 10 psi)| (22.6 x 100 psi) | (8.655x10° psi) | (0.300)
| 73 10% N/m2 | 17.37 x 102 w/m? | 6.36 x 107 N/m? 0.300
(24.3 x 108 psi)| (24.75 x 10° psi)| (9.05 x 10% psi) | (0.300)
o | 1-025 x 10% o/m? | 3.16 x 107 /m? | 0.901 x 108 n/m | 0.036
(1.46 x 108 psi)| (4.5 x 108 psi} | (0.128 x 10°® psi) | (0.036)
| 309 10% o/m? | 3:16 x 107 w/mé | 1.108 x 10° N/m® | 0.400
(4.4 x 105 psi) | (4.5 x 108 psi) | (1.57 x 10° psi) (0400) |
Comb. Material of Material of the | '
No. the first strip second strip
I 1 2
I 3 2
111 4 2
Iy 4 6
v 4 5




Material k
constant a
Ex increases increases
EX increases decreases
Gy increases increases
* .
Gyy . increases decreases
Vxy increases increases
AV .
Xy increases decreases
Ey and E; are kept counstant
Table 2. Dependence of kg on the
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Figure 4. The stress intensity factor ky for the h2/h1
: crack in the first strip (Combination 1I).
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Figure 5. The stress intensity factor kyz for the
crack in the first strip (Combination II).
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Figure 6. The stress intensity factor ky for the
crack in buffer strip (Combination I).
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Figure 7. The stress intensity factor ky for the crack
in buffer strip (Combination II).
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Figure 8. The stress intensity factor ka for the
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(Combination 1), . :
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Figure 9. The stress intensity factor kyp for the case
in which both strips contain cracks
(Combination I).
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Figure 10. The stress intensity factor k for the case

in which both strips contain cracks
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Figure 11. The stress intensity factor kp for the
case in which both strips contain cracks
(Combination II).
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Figure 13. The stress intensity factor kz when the first
laminate is broken (Comb1nat1on I and II).
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Figure 14. The stress intensity factor kp when the second
laminate is broken (Combination I and II).
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Figure 15. The stress intensity factor kg when the first
laminate is broken and the second contains a
crack (Combination I and II).
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Figure 16. The stress intensity factor kp when the first
' laminate is broken and the second contains a
crack (Combination I and II).
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APPENDIX A

Definitions of the material constants:

A superscript * will be used for the material in the second

strip.

are given by equations (2.15), (3.5), and (3.8).

1

The constants Bi’ (i =1,..,10) and W5 (j = 1,..,48)

Vv

I i

/Bs

=1+ vxxw3810

/Bs

=W * Vyx87

1]

Yy

w3 * vyxBB

BaW
v+ 9M
X JRs

B W

+ 0103
VBs
VXyW1 + 87

vxyWB * B8

|w, |

- 1L+ sign(w])Bg

/Bs

-92-

Y12

w .
+ sign(wg)Byg

VBs
= ¢ -.Y.l.l i
vy3 = sign(wy)Bg - 2 sign(wz)eyg
1+Ys Yo Yu
Y4 = 7 L7 - ]
14 E_ Yl3 Y13 Y12
) Exl - vx\)x
M 'f“;"‘?x¥
i - nyvyx
Sy
A = G
Xy
A3 = BgY3-Byy
* *
Ay = MY3B7 - ByY3
Ag = MvgBy - BgYs
A6 = Y9 = Mo
x
A7 % Yg = Yghp
*
Ag = Yg = Y1pt2

URIGINAL PAGE Is
OE POOR QUALITY



= A8y

*
= X3B7 + 1458
- A4B7

= A38g * AgBg

AgBy

= A3 " Yafg

= v3f7

= By8g
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A4 = MoMe - Mot
A5 = Moty

A6 = M2M6 “MoMis

227 = Aot20 - A3Ms

A28 = MM

}29 = M2Mo M3tz

30 *M3tig “Mate = O

A31 = M1t - AoMe
A2 = Mty

A33 = MeM2 - Miis
Aa = 2922 = MaMs
A35 = Aghoy

L v Aa1Me2
A37 = MaMg = Agphy2 = O

2
A3g = MsMe - Brlg



39

40

4

42

43

44

45

46

47

48

49

50

51

52

53

]

"

il

A A
923

MMz - M2tes
BrMz = Mshig = O
‘M6

A3 M7

MMs

MoMe - Mits
Mir2o - Mi3Me

" Mt

MaMe Motz
M3tz - Matao T
= Mot2

MaMog +*13*21v
MoB7 - M5M6

2
Msrog = M3By = 0

0
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55

56

59

60

61

62

63

64

65

66

67

68

= Mot23

= M3r23 MsMg

57 -

58

- A3zr20

A3Mg

- x4x,6 (Xa - Yg)

- Xghp (vg = A7)
Yo (Aghg = Aghi7)

- A

o
Y357 (A0 = A9)

A - BA
Ay (Aghpg = Bolyg)

A (BaMg - Mges)
- MMs

A A
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69

70

A

72

73

74

75

76

77

78

79

80

81

MMz - Mg

*
X3[87(A]0_A1]) + 6814(A8‘Y9)]

. A
A30Bg(A1-2g) + Bghg(vg -2y)]

* *
B7(0 1257230 3) + Bgl(Rghyo-dyydy)

Py
*

Motz = Moty * By(A 40
Agre - A (A
A93(2y02g)
. ,
87000871 523)
*
BglAy 523 ByAg)

* *
A3(3Bg-2587)

An, + A

24 * M5t Mg * Moy

N 0wr.3)

4*3)

- Ann + A

28 29

" Mo " A1 = Mg+ sian(w)Bg(hgg + Az + dgg)

By
F Tl Ot Mgt e -
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g2 = = Agg = Agg = Agg + sign(wy)Bg(Agy + Agp + Agq)

+ YBs1 Yu/B:
*Tw T Pea* Xestes) - N (Mg7*26g+Ag9)

Y, Y.
=_-_.L_ -
Y3 =y (Mro*hnthze) - 5 sian(wgdeygUggtiggiazg)

Y., Y, /E“
-/Bs T“;T‘(*76+*77+*7s) + ‘r“;r“ (A43-257%27g)

Y Y
- 11 R ‘
Y = 7 (egsg*he0) yf‘“5‘9"("3)310(*51+162+*53)

12

- 65 Y T—&T (164+x65+A66) + -T-T- 67 +x69)

N Y781
85 Y13Y14g0
L. Ye'e
86 Y13Y14%g0
N s
87 Y13Y14%80
. Yetes
88 Yy3714%80

*. %
= - - - - 1 )\ >\
Mg = = Ay0 = Mgy - Pap - stan(wy)Bg(Ryg + Ay ¥ A)

Yy qu
- A Vg* T;;T (A76tA77%09g) - Ay W (Aq37257279)
1 !
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A0 = = Asg = A5g ~ Agg - sion(uy)Be(Agy *+ Agy * Ag3)
* * Vax
Y Y,,’B
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APPENDIX B

Expressions of the functions used in equations (4.14} and

(4.15):

e

. ] a
R (a) = - [
L 2130 ), M2
b B y
1 o~ (ha-n)avBE/ [wi|_ T11 - (hp-n)avpE

27;3a b 12

e

-a

a
Rz(a) = '2‘,?;:—3'3 I [S'lgn(w] )39e"(h]-ﬂ)av’8_s/lw1[

Y ~(hy-
- Y% sign(w3)Biee (hy ”)“J‘B—s/‘"aqﬂn)drw

b *
- — I sign(wq)sze'(hz‘“)“@/lwll
Y]3a b
* x
9‘% ston(u3)Bioe (hz’")aq”"aqﬁn)m
/Bs 1 g-(M-n)avBs/ W |
Ryla) = WJ[ v

Yl2 wa

TS e'(hl'”)“”gg/lwsl] ¢(n)dn

*
e

*
- — = e-(hz-n)aJEfYIWIi
2"(]3(1 -b ‘Wl‘

_v*:,v RO 4] B
, 1wl
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-(h1-n)af§'s'/lwll n -(hl-n)a/B_s/IWs.‘,
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/1wsz *(n)dn
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R4(a) =

fla) =

Yii By Ia 1 -(h]-n)GV85/|W1‘
e
2Y13 ]w I

1

" e-(h"n)afgg/‘"sg]¢(n)dn

*
Yll‘,éf 2 '{b
2Y*|3 -b
e ~(h2mn)ovgt/ |31 | o*(

IE'L o~ (h2-n)a/gas W} |

W, |

* n)dn
¥l
Maafy(e) + Apgfpla) + Apgfala) + 2pyfyla)
tanh(w;ahz)tanh(w;ahz)

tanh(wgahz)tanh(w]ah])

*
= tanh(w3ah2)tanh(w3ah])

tanh(w ]ahz)tanh(w3 hy)
tanh(w;ahz)tanh(w]ah])
tanh(wlah1)tanh(w3ah])
A31tanh(w:uh2) + A32tanh(w1uh1) + A33tanh(w3ah])
= Mgg Fala) + Aggfg(a) + Aggfgla)
Magfala) + Agefgla) + Agofgla)

*
- A42tanh(w]ah2)>- A43tanh(w1ah]) + 144tanh(w3ah1)
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go(a) = Aastanh(w;ahz) + Aastan‘h(w3ah]) + Aytanh(wyah,)
ho(a) = Aggfala) + AgsF,(a) + g Fela)
my(@) = Agofala) + Ag,f,(a) + 155f6(a)
n (a) ; A42tanh(w;ah2) + Asstanh(wBGh]) + As7tanh(w]ah])
g1(a) N xsstanh(w;ahz) + Asgtanh(w;ahz) + )\Gotanh(w]ahl)
h](u) = Aslf](a) + A62f2(a) + Asafs(a)
m](a) = A64f1(a) +‘A65f2(a) + Assfs(a)
n](a) = A67tanh(w§ah2<) + A68tanh(w;ah'é) + Aegtanh(w]ah])
9,(a) = Ajgtanh(wgahy) + Ay tanh(wjahy). + Ay tanh(wych, )
hz(a) = A73f1(u) + A74f3(a) + A75f4(a)
mz((x) = A76f1(a) + A77f3(a) + A78f4(a)
nz(a) = A43‘canh(w;uh2) - 157tanh(w’{ah2) + A79tanh(w3ah1)

Expressions of the functions kj(j=1,8) used in Egs. (4.]7)§

1 ]’Eosh(w]ax]) _
ky(xpsa) = 2y, 57 (o) | cosh(w,ahy] Y7 ~gp(a) + sign(w; )Bghy (o)
y”y’g—' cosh{wgax,) [

B
5 .
3 VBs |wll| my(a) - [w | "2(9‘)' * coshleaﬁ]S g

-9 (a)

— 0w - P
+ sign(w)) Bghy(a) + VBs Ty T ™M = TTw T ™M
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Y,
gz(a v - g sign(wg)yghy (a)
12 12

: ' ] [Eosh(w]ax])
k?_(x1 ,a) = ZY] 3f(0t) LCOSh(W OLh'Y Y7

/§~ cosh(wzax, ) Y.,
i "B?““LT"T () + "r‘aT“ np(a )] cosh(wyah,) Y8|y -9 (a)

Y40 Gign(wg)y oy (a) - VB 2 @ + 1% )
- 1L - m(a a
Y., 3’7101 Y l | 1 lwal nI

] [;osh(w]ax])
k3(xp,0) = 74 cosh(w]ah) Y7|-8(a) - sign(w;)eghy(a)

cosh(w ax])

- Mer BY W 1' "‘2(“) o) TT‘ 1 cosh (w3'a"h]) Yg

- ¥ vt VBt
|-9;(a) - sign(w; )Bghy (@) - Alvgf'T;%T-m](a) - 2 —TizT*-n]( o)
L 1
. [;osh(w]ax]) LG

ky(xq,0) = ¥y [9pla) =+ 4 sign(wy)8y ah, (a)
4\ 2Y33f(a) cosh(w ah Yy 17172 | le Y:z 3 10 2

y* o oy* /B cosh(waax,)

1l 2 o 11 2’ Ps 31
+ /E:'A] = iw:l mz,a) + ~T;;Tﬂ—~ nz(a) —agﬁIwgaﬁTT Yg -

12 3

Y* x . * *

2

Y . *  k , '

YRLR

12 3

* VR

'Y
lw
‘ cosh(w;axz) * .
5 {xpee) = 2Y13f(d) cosh(W?uhz) "7 ‘go(“) + sign(y )Bghy (o)

/__ ) Y, /"— " (@) cosh(wgaxz) * (@)
+ m (a) - 0y -g
( ! I I o aA cosh(w;ahz) 8 ¥

1
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‘s A "%
S1QH(W])th(G) + /EE'F;—T m(a) - -T;TT——'"(a)

* ¢
[;osh(w]axz) . Y, Y,
13 cosh(w ahz)

k6(x2.a) = Y, 51gn(w3)810h (a)

—

\

cosh(waax,) Y
/Bs _JJ.1.JLr m () + n RO o3t ox

- g(a)
y BT,

*
cosh(w3ah2

T . S5
Y, s1gn(w3)B]0h(a) - Y T——T m(a) + —T—:T-n(a)

- *
[cosh(w 0X,) . x
! 12 Yy [—go(a) - sign(w])tho(a)

k,(x,,a) = *
7"72 23 5 (a) cosh(w]ahz)

* * Vgx h ¥
_ )‘] /E; Y l m (a) - }\2 ll Bs n ( )] COS_M)_ l-g(a)

Y8
s W, I 1| cosh(w3ah2)

* :
Y v ‘
- sign(w;)B;h(a) - A]/EI-—~1—-m(a)'- A —~LL-J§§ n(a)]

* ] 2wl
[éosh(w*axz) x v*
kg(xp:a) = - 2 \Jlgy(a)
2y" f(a) cosh(w1ah2) Y12
13 :
*
Y. x  *. ' Y* Y*
11 ¢ : 112
+ Y:z s1gn(w3)£3]0 h (o) + /"f N ey mo(a)
12
* A cosh(w 0Xo ) Y Y*
4+ 11 : B; no(a) + 372 y; - g(a) + 2+ S19n(w3)
|W3| | cosh(w3ah,) 12 Y,
Yo Y* A /g¥
Byghla) + A, ,/'B?___._.__ mla) + 25 n(a)
1 Ty

The kernels Kj(j =1,4) used in Eqs. (6.15a,b):

AL PAY
O C00r AUAL g5



K](n..Y) = ~—1—- r[ -lelay/lﬁ's' ~ Yo 1“ —!wslay/ s]cosah sinanda
1 12

+ _2_%_3__ JO e'(hl"‘n)a/B_S—/lwl l l- Y3gz(a) +Y4g] (a)] + sign(w] )Bg {Y3h2(0‘)

.

| %0 | nglo) + g ()
+Y4h](a) +/B?W Y3m2(a)+y4m](a) - ™ Y3no(a) +v40y

/

J

Y Y1 s
+ o7 (Mi-n)ovBs/ws] {-i—’— Y99, (a) +Y49](0L)] -y, stonlugliyg ¥3ha(e)

le
Y v, | Y. VB
+ Yahy (@)} - my (o) +ygm (@) | + >
Y4M T‘T Y3z &) T ¥gMh Tw,l
\

—1

[Y3"2(0l)+ Y4n](u)] COS do

Ky(nay) = 1 r (hz -n a/é?‘/lw | ~(hz+n) aﬁ/lml
0

-[Y392(a) +Y49](d)] - sign(w:)B;{Y;;hz(a) +'Y4h1(rx)]
;

W, |

Y* VEFA (el "
W,

oA |
- BT e [Yamp(e)

[

, )
. o~ (hatn)avgE/ W, l} {le [Y392( ) +v49y (o)

v
+ 3t s19n(w3)61o Y3h, (o)
Y12
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* * g
1 Yll YZAI Y*l@;)\
* gy (e} + VBT Vamae) +ygm ()| + =5 Yanple)
12 |¥s W,y
J

K3(n.y) = 72—1—— jo "1 [e'lwllay/‘/s_".- e'lwalay//s—f‘-\sinahﬁinanda

+ ’2%; JO‘}'(hl'n)“/é_;/lwl‘ [—{Y;tanh(w1“h1)92(a) '

+ Y]Otanh(w3ah])g](a)‘

+ sign(w1 )69 lYgta“h(‘”]“h] )hz(a.) + Ymtanh(w3ah] )h] (a)‘

y
+ /é;—ﬁ"—‘ &ygtanh(wwh])mz(a) +ymtanh(w3ah])m](a)‘
1

B,
\(gt:anh(w.|cxh1 )nz(a)

<

11
Wy

+ ywtanh(w:;ah})n‘gq)‘ +e-(h"n)a'/s?/‘w3‘{;ﬁ{ygtanh(w]aﬁ])gz(a)

12

12

Y
+ Y]Otanh(w3ah1)g](a)\- 7‘—’- sign(wa)Bm{ygtanh(w]ah])hz(a)
+ ymtanh(w3ah])‘,-

o (@)= vas i T2 by tann( oy (@) + - tanh(uah Jm (@)
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Y, .
iivB sina
+ —r—[éwa [ygtanh(wluh])nz(a)+ymtanh(w3ah])n](a)]] ) do

Kg(nsy) = 2]* J:[{e'(hz"“)“@/lwfl_ e—(h2+n)u/§§/|w’;|}

Y13

{- lygtanh(w]ah] )gz(a) +Y 0tanh(w301h1 )g1 (a)] - sign(w:)ﬁs

Y A
{Ygtanh(w]ah])hz(a)+y10tanh(w3ah1)h](a)1 - /g% |:v*; {ygtanh(w1ah])

1

Ytl/—f >\2 '
mz(d)+Y]Otanh(w3ah])m](a) - ——-l—w—f-l-—— LY(_;‘canh(w]onh])n2(0t)
*
+ Y10tanh(w3ah])n1 (a)W} + {e—(hZ-n)a/&/tWSl

[ *

. e-(hz+n)d/§‘§/‘wgl} ;{J— [ygtanh(wlahﬂgz(d)

'\ 12

<+

Y Otanh(w3ah] )g] (u)]

*

Y |
;{—,’;‘— sign(w;) B‘;O[ygtanh(w]am Yh, (@) + vy gtanh(wyahy )y (G)]

12

-+

Y* *)\ . 3
+ v’g -\7}-‘— I{i;‘—{ygtanh(wlah] )m, (@) + Ymtanh(w?’ozh1 )my (a)
12 3 J

=

RO \| 5ino,
+ —-‘—I;;‘i—i [ygtanh(w1ah])n2(a) Y Otanh(w3uh1)n1(a)}} 'F(E)l do.
3

-108-



APPENDIX C

Evaluation of some Integrals

-

® -at_, b
Ioe S'Inbtdt-;z;B'z'., a>0

8

o © cosbtdt-gz-;sz sy a>0

8

f —-z]—-rcos ax dx-—%e
0

8

X _m
I Wsmaxdx—ze

o

8

«[O Wsin ax dx =2—g‘2'(] - e'aB)
IO %cosh ay do =—a-T}—yT s, a>0
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APPENDIX D

Derivation of the Stress Intensity Factors

D.1 Case of Integral Cracks:

The stress intensity factors are defined as:

k, = Tim V?lx]—ai o]y(x1.0)

X7+ a
kb = x;ifk /?(xz-bf dzy(xz,o) (D.1a,b)

From Eq. (4.16a) we can write:

2y a
- 14 o(t) 0
oly(x],o) = “(1'vxyvyx) [a tx, dt + c1y(x],0) (D.2)

where o?y(x],o).is a bounded function.

mi/2

t) = F(t) _ _F(t)e
#e) aZ-t? (t-a)%(t+a)%

Define th: sectionally holomorphic function,

a
1 t
Vo= L
vz} = - [a ot dt

From [14] we obtain:

- F(-a)e"‘i/2 } F(a)
Mo aysm)s ~ (a)%(eca)

» + wo(z) (D.3)

Using (D.3) to evaluate (D.2) and with the definitions

given in (D.la,b) we have:
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2y, ,E . 2y
- 14 1 - . 14
ka (1 “nyyx)JE F(a) ll-vxyvyx) va Fo(])
and similarly
' ZY* * * %
Y *
ko= - —14y 1 % — 1Y 50
b (1-v* v* )y Vb (b) (1-v" v* ) /B Fo(1)
Y ¥X Xy yx
D.2 Case of Broken Laminates
= 1i Y Y
Ka leThz 2Y(xy + hy) " 0y, (x5,0) (D.4)
From Eq. (5.2b)
* *
2vigky M 0
y (1-v. v ) ihy 'S y
Xy yx 1

where cgy(xz,O) is a bounded function.

o(ty = E(1)_ . _Fe)e™
(h3-t3)Y  (t-h))Y(t+h,)Y
Define:
) |
1 (M
oz = 5 [ 4 e
-h1
then:
F(-hy)e'™ C F(hy) |
wz) = 1z 1 L L4 v,(z) (D.6)

(2h))Ysinmy (z+h))Y  (2h)Ysinmy (z-hy)"

Using (D.4), (D.5) and (D.6) we obtain:

(h)) Yy 4EyFo (1) VB Y
e e L, Sy
: (]'nyv_yx)smw 101 IWﬂIW1FY 102 ‘wisr“\”dy
Bs /Bs
J
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I"d//EI C |/ vBy

+2 -
103 |"3‘|“1L ]04 |W3||W:|HY
. "Bs | /Bs

J

kb has the same expression as the one we derived in the

previous case.

D.3 Case of a Crack Crossing the Interface

D.3.a Singular Behavior at the Interface:

In this case the definitions of the stress intensity

factors are:

k., = hmyo (h »Y)
y+0* 1

XX
and
ky = MR L IWLIRS))
From Eq. (6.2b) we can write:
* _%k
- 2v4,4E
0o, (%,,0) = 1441* j Q*(t) dt + o2 (x,,0)
xy yx

where ogy(xz,O) is a bounded function.

* ey = Fr(t)
P (t-c)%(h,-t)?

-112-

(D.7a,b,c)

(D.8)



h * * i"/z
=1 (28 () .. . Fc)e 1
¥(z) = o dt =

m IC t-z (hz-c)Bsinw/Z (2-¢)*

F*(hy) 1
(hy-c)3sinmg (z-h,)B

+ 4 (2)

Using (D.9) and (D.8), Eq. (D.7a) yields to:

* *
- 2 4E, F*(c)v/2

(l-v:yv;x) (h?_-c)B

or
1-8 * _*
B_YMEy(hz-C);’ *
*  x Fo('])
(1-v_ v )
Xy yX

2

(D.9)

Separating the singular parts of Eqs. (6.15a,b) we have:

m(1-v,_. v ) h
X X = 1
____Eif_l__ 0y, (hysy )= fh Kig(nsy)é(n)dn

M
h2 * 0
*LKBMJM<M®+°uU)

h
T 1

FA— T (h.y)=I Ky (nsy)e(n)dn
%, Tixy'Pr Ly, "3s

h
. fc2K4s<n,y>¢*(n)dn + 18, ()

(D.10a,b)
where o?x(y) and r?xy(y) aré bounded.
‘Let: ¢(t) = (hgf:Z)B = (ti£:;§::?h])3
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then i
™8

Mzh%! t-z B B B B
~Hi1 (2hy)Psinmg (z+h;)®  (2hy)"sinmB(z-h,)

+9,(2)

(D.11)

Using (D.11), (D.9), (D.10a,b) and the definitions (D.7b,c)

after lengthy algebra we obtain:

B
W o= tx 1 {“1 1A V. | N
XX (]'vxyvyx) 2P sinnes2 \ 13 W] B2 W, 11®
/5 /&

_ 1) elertateg) v (Y3*83*Y4*84;]
/Bs [ W] BA vBs |Ws ] BA —l
80 80
"Bs /B

Fo(-1)

, (hpecf W8] OsPegt1aa0) . ML o *Yarep) e
* x|
¥} g0 [igf 1) G LA i
/8% /g%
and
6 h? Y Y
K = Xy 1 1. ., 11
Xy 26+]cos %F_ Y]s‘ {lﬂ_LB W] B
VBs | /Bs
_ Odarmote) wy)  Orotestioted) pwi)l oy,
0

\ l"l B /Be AB l!lLB /Be
80\/z5 - 0\ /a5
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B
(hp=c)” |{¥glao*ighan) wh| . (Ygrgytighgy) i)

%*
F (1)
* W B * B 0
"Z Y13%g0 LS /g% LA 4
/83 | /8%

D.3.b Non-Singqular Behavior at the Interface

ky = x;w V2(X5-2] 0y (X9:0)

The derivation is similar to the one done for the case of

internal cracks. Thus, we have:

2y EVE
2y
Ky = = — -5 H (1)

(l-vxyvyx)

p):)
oS
o b

o0
@‘@?
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