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NOMENCLATURE

A material	 constants for orthotropic materials

E x ,EX -	 elasticity moduli	 in x direction a

Ey ,E * -	 elasticity moduli	 in y direction

E 
-	 elasticity modulus	 in	 z	 direction

G,G*
xy	 xY

-	 shear moduli	 in	 x-y 'plane

GX Z -	 shear modulus	 in	 x-z plane

Gyz -	 shear modulus	 in y-z plane

aiJ
- material	 constants for orthotropic materials

a -	 half,crack length	 for the	 crack	 in	 the
first	strip?

b -	 half crack length	 for the crack	 in	 the
second	 stripy

4;
c,d -	 crack	 tip coordinates	 in	 second	 strip

I	 hl -	 half width of the	 first	 strip

h2 -	 half width of the	 second strip.

Q -	 half crack length	 for the	 case when the y
crack crosses	 the	 interface

i

P1	 Pi =	 crack surface tractions

u i -	 displacements	 in	 x-	 direction
}

vi
-	 displacements	 in y-	 direction

w -	 displacements	 in	 z-	 direction

x,y,z - cartesian	 coordinate	 system

x 1 ,y - coordinates	 for	 the	 first	 strip

xZ,Y -	 coordinates	 for the 'second	 strip
n

si,s -
	 material	 constants	 defined	 by equations

a	 (3.5)	 _ r

— ix-
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e x ,ey ,e z ,	 - components of strain tensor

Yxy'Yyz'Yxz

Y.,Y*	 - material constants defined in Appendix A

a i	 material constants defined in Appendix A

Vxy ,VXy ,	 - material constants for orthotropic
materials

Vyx,Vyx

crack surface displacement derivatives

wi	 - material constants defined by equations
(3.5)

e ix'^^'^z'	 - components of stress tensor

T ixy' T k,z T ,y z
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ABSTRACT

The fracture problem of laminated plates which consist

of bonded orthotropic layers 	 is	 studied.	 It is assumed

that the medium contains periodic cracks normal 	 to the bi-

material	 interfaces and the external	 loads are applied away
6

from the crack region.	 The fields equations for an elastic

orthotropic body are transformed to give the displacement

and stress	 expressions	 for each layer or strip.	 The	 un-

known	 functions	 in these expressions 	 are	 found by satisfy-

ing	 the remaining.boundary and	 continuity conditions.	 A

system of singular integral 	 equations	 is obtained	 from the ?:a

mixed	 boundary conditions. 	 Three cases	 are considered:

a)	 The case of internal	 cracks

s

l

b)	 The case of broken	 laminates

c)	 The case of a crack crossing the	 interface.
1

{

The	 singular behavior around the	 crack	 tip	 and at the bi-

material	 interface	 is	 studied.	 It	 is	 shown	 that	 the	 crack
i

surface	 displacement	 derivative	 has	 a	 power singularity	 for

practical	 orthotropic materials when	 the crack touches	 the

j

interface,	 i.e.,	 for	 case	 (b).	 In	 studying	 the	 singular

behavior atthe	 bimaterial	 interfaces	 in	 case	 (c),	 it	 is

found that for some o `rthotropic material	 combinations there

is	 no	 singularity	 in	 the crack	 surface	 displacement	 deri_va-

fives and the stresses. 	 In each case	 the stress	 intensity

1-



factors are computed for various material combinations

and various crack geometries. The results for orthotropic

materials are discussed and are compared with those for

isotropic materials.

`	 s

1

9
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a
7

aa
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1.	 INTRODUCTION

In structural design one of the most important consid-

erations is the fracture of individual components. A1-

though, fracture may not always mean total failure, it is

considered in modern engineering as an important problem

for safe and economic design of structures. It would be

very attractive to develop special- types of designs for

which the structural resistance to fatigue crack propaga-

tion is improved. In the aerospace industry, the use of

composite sheet materials with buffer strips parallel to

the main load-carrying laminates seems to be such a design

practice. The process of manufacturing composites gives

the opportunity to improve the structural resistance to

i	 fatigue crack propagation by strengthening the material in

f
certain directions. The increasing use of composites in

structures generates new problems for the structural de-
i

signer. Among these problems, we are mainly interested in

the fracture of layer-ed composite materials.

There are two main problems in studying the fracture

of composites: the development of an appropriate failure

criterion and a mathematical model for the calculation of

the related load factor. The failure criterion affects

the course of the analytical work in the sense that it is

the failure criterion which generally determines the phys-

ical quantities that one should compute (such as the stress

-3- a
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intensity factor, the strain energy release rate, COD,

etc.). There are many failure criteria or theories which

are used to predict failure of structures. In Elastic

Fracture Mechanics where only small scale yielding is al-

lowed, K < KIC is such a criterion.	 In this case failure

occurs when the calculated value of the stress intensity

factor reaches a critical value, K IC , which can be deter-

mined experimentally as a material property. There are

also other one-parameter failure criteria (such as critical

i	
plastic stress intensity factor Kp c and J integral) which

i	 have been recently proposed to predict failure from elas-

tic to fully plastic range. K is a very highly effective

correlation parameter in studying the fatigue crack prop-

agation phenomena.	 In aerospace structures the basic

problem is the nucleation and propagation of fatigue crack
^'	 1

which may eventually reach a critical size causing cata-

strophic failure	 That is why, in this study we focus our

interest to the computation of the stress Intensi ty factors

and in the investigation of the singular behavior of the
la

stress state around the crack tips.

In studying the fracture problem of composites, a

mathematical model, which will reflect the geometrical and

physical properties of the medium and the real mechanism
I

of fracture, is needed. Because of mathematical diffi-

culties and the Vengthy,computation that the analysis

	

	 L

^ s

-4- {
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requires, in the recent studies the geometry and the ma-

terial properties have been considerably simplified. The

problem of a multi-layered isotropic medium, which cor=ists

of many layers and where a crack normal to the interface

can appear, has been treated by Hilton and Sih [1].	 In

this problem the geometry is simplified to a single layer

between two dissimilar half-planes where the elastic prop-

erties are averaged. The same problem has been considered

by Bogy [2]. The problem of a broken laminate between two

half planes has been investigated by Ashbaugh [3] and Gupta

[4]. The extension of the problem treated by Hilton and

Sih to orthotropic media has been solved by Arin [5]. The

fracture problem of a composite plate which consists of

parallel load-carrying laminates and buffer strips has re-

cently been solved by Erdogan and Bakioglu [6]. 	 In this

work the load carrying laminates and buffers are consid-

ered to be isotropic ar,-^ linearly elastic. The orthotropic

case of the problem treated in [3] and [4] has also been

solved by,Arin [7].

The objective of this work is to investigate the

fracture problem of composite plates containing.periodic

buffer strips. The laminates and buffer strips are assumed

to be linearly elastic and orthotropic.	 In general, this

is the case in the actual plate and shell structures such

as those, for example, which consist of boron-epoxy

-5-



composites. It is also assumed that the fatigue cracks

may appear and propagate in main laminates, in buffer

strips or in both normal to the interfaces. The external

load is applied to the plate parallel to the strips and

away from the crack region. Three different problems are

studied: the internal crack problem, the case of broken

laminates and the case of a crack crossing the interface.

A general formulation of the problem is given for plane

strain and generalized plane stress cases by the use of

Fourier Integral Transform Technique. The singular be-

havior around ends and at the bimaterial interfaces is

studied. The resulting singular integral equations are

solved numerically and the stress intensity factors are

calculated for various crack geometriesand various ma-

terial combinations.



2.	 ELASTICITY OF AN ANISOTROPIC ELASTIC BODY

	

For an anisotropic elastic body, in the absence of	 3

body
forces, the equations which relate the field quanti-

ties can be written as follows:

2.1 The Equilibr i um Equations

!'—'X + 	
aTXz _ o

ax  
a^ +

ay	 az

aT	 aQ	 aT
+ —Y+= o'

ax	 ay

aT	 aT	 ao	
(2.1)

ax	 ay	 3z

	2.2 Strain-Displacement Relations	 i

au a_v	 - aw
I	ex = ax	 Ey	 ay	 Ez	 a	

,

^	
au	 Dv

	

_ aw 8.0	 u +

	

Y z = ez + ay	 Yxz - 
ax + az	

Yxy 
ay ax

y	 (2.2)

2.3 Stress-Strain Relations

ei	 Qx	 x

	

cry	 Ey	 i,j _ 1,6'

	a 	 c

	

z	
z

	

_	 .Ty z 	 A i	 Yyz	
A	 = A.i

	

T	 YXZ	 i"J	 J
xz

T x y	 Yxy	 (2,3)

i.	 9

Y

GS V)

	

 7
I	

i

i

Of,
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2.4 The Field Equations for an Orthotropic Body

For an orthotropic solid the matrix [ A ij ] is

A11 Al2
A 13 0 0

0

Al2 A22
A 23 0 0 0

A13
A 23 A 33 0 0 0

[

A '3^ 0 0 o A
44

0 0

0 0 0 0 A 55 0

0 0 0 0 0 A66 (2.4)

Defining the	 inverse of [ A ij ]	 by

[ai]]	 _	 [A1J]	 1

for orthotropic materials we have:

- A-x-vzX
0 0 0" 	 Ez

v X y	 1	 - 
Vzy

- `	 Vy	 E z 0 0 0 i 
xz	 _z	 1— 0 0 0

a

_
Ex	 Ey	 E _

^J 0	 0	 0 ]
G y z 0' 0

0	 0	 0 0 0 1
xz

-0

0	 0	 0 0 0 1

xy

E x yx = E y"xy	 Eyvz y = Ez°1yz E xz	 ExVzx

(2.5)

y



Substituting (2.2) into (2.3) and using (2.1) and (2.4),

the stresses and the equilibrium equations can be expressed

in terms of the displacements as follows,

Q= A	 au + A	 a v + A	 aw
	x 	 11 ax	 12 ay	 13 az

	

ay 	 au +A 	av +A 	 aw

	

y	 12 ax	 22 ay 23 az

Q = A	 au +A 	 av +A 	aw
	z 	 13 ax	 23 ay	 33 az

	

av	 awTyz = A 44 ( az + ay)
s

_	 aw + au
	Txz - A55(ax	 az)

au
T xy = A 66

(
ay + ax)	

(2.6)

All ax + A66 as + A55 az + (Al2+A66 ) axay + (A13+A55 ) axaz 0

	

2	 2	 2	 2	 2

A66 x + A22 a^ + A44 az * (Al2+^ 66	 23 44) axay + (A+A } -Ay 	 0

A a--z + A a--z + A a--z +	
a2 u	 a z v

	

55 ax	 44 ay	 33 az	 (A13+A55 ) axaz + (A23+A44 ) ayaz 0



auav	 au	 av
E x ax	 Ey = ay	 Yxy = ay # ax

ez = 0
	 , Yyz = 0	 9 YXZ = 0	 (2.9)

Thus, the stress-displacement relations and the equilib-

rium equations become:

_ au	 av
°x A ll ax + Al2 ay

ay 	A	
au	 av

lt ax + A 22 ay

Aau+A	 av
z	 13 ax	 23 ay

a
au + av

It
	 A66 ( ay ax)

Tyz = TxZ = 0	 (2.10)

in
22	 2

A ll ^ + A66 as + (Al2 + A66) axay = 0

a2u
A	 a + A	 a T + (A l2 + A66 ) axa -	

(2.11)
66 ax	 22 ay	 y

2.4.2 Case of Generalized Plane Stress

In this case since oz = T XZ = Ty z	 0 - from (2.3), for

the average stresses and strains we canwrite:

£X Cy

Ey	

- 
[a^
	

6y

Y xy	 T Xy

_10_

R

x



where

x
_^	 1	 v x 

0rx
x 	E
	 'Q Ey'Ay 	 Y

v

E 0 	 EE Q ^Q 0
'x	

y	 x	 x

0	
0	 G	 0	 0	 G xY

xy

(2.12)

	

and A	
xE ^Ey	xY Yx

s

The equilibrium equations reduce to:

a2 v

A11
32	

33 + A33 ay + fA l2 + A 33) axay 
= 0

a2V 
= 0	 (2.13)

A 33 ax + A 22 T7 + (A l2 + A 33 ) axay

Considering the structure of equations (2.11) and (2.13),
.	 s

{	 the equilibrium equations can be written for plane strain

and generalized plane stress cases in the following form:

L

a 2 u	 a2
+	 u + S
	

92V	
Q

	

a	 1 x ay	 3 aya x

Q	 2
OF 	 a2v	 a2V +	 a u	 0	 (2.14)

ax + S 2 Ty--T S 3 axay

where

A11	
A22	

= 1 + Al2 for plane strain
S l  ^2
6	 66 3
	 66

and

R11	 __ ¢22	 - _	 A °	 1

	

Sl	
^2	

A	 R3	
1 + - ' for plane stress.

A33	 33

(2.1 5)

-11-
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3.	 DISPLACEMENT AND STRESS FIELDS FOR STRIPS

The two-dimensional composite medium is formed of two

sets of periodically arranged strips having widths 2h l and

2h 2 as shown in Figure 1. They a,re perfectly bonded along

their straight boundaries, and contain symmetrically lo-

cated cracks normal to the interfaces, of length 2a and 2b

respectively. The load is applied away from the crack

region, such that the crack plane is a plane of symmetry.

i

	

	 Using the usual superposition technique, the solution

of the actual traction-free crack problem may be obtained

by superposing the homogeneous uncracked strip solution to

3

the solution of a cracked strip loaded with self-equilibra-

ting crack surface tractions (see Figure 2). Since we are

E

interested only in the computation of stress intensity

factors and the singular behavior of the stresses around
I

crack ends, we will consider only the singular part of the

solution, where the serf-equilibrating crack tractions are

the only external forces.

First we will find solutions to (2.14) satisfying

certain boundary conditions of the strips. The combination	 a:

of these solutions will be forced to satisfy the remaining

boundary and continuity conditions.

i

i	 12



3.1	 Solutions u (a) (x,Y), v(a)(r

Assume:

COu(a)(x'Y) 	

fo

f(a,

v (a) (x,Y) = 2 j	 g(a,
ir 	 0CO

Substituting (3.1) into (2.14) a

d 2 f
	 do

^z-o2f+63a-a-)

dx	
62 a2d 2 _
	

9 63 0'

The solution of (3.2) can be written as:

l

f(a,x) _. A(a)e s l ax + : B(a)e -s ax + C(a)e
S2ax + D(a)e -s2ax

_
g(a,x)	 ¢ 7

(A(a)e
sax	

B(a)e
- slax

 ' + BB(C(a)e
srax

s2a-x
- D ( a )e	 ,	 (3.3)

a

where s 1 and s 2 are the roots of

	

s4 + 5 4 5 2 + S5 = 0	
(3,4)

and

g3	 662	 1	 S2
S4 =	 B	

,	 S5._	 S6 =
1	 1

B	 1	
S l sl	

1 __ 
Sl s2

B7	 a3s1	 8	 S3s2

-13-



From (3.4) we can write

s  = w l + iw 2	- 64 + s0/2

S
2 

= w 3 + iw 4 = 
Y'(- 

0406 /2

s 3 = - s l 	,	 s 4 = - s 2	(3.5)

s l and s 2 are both real or complex conjugates.

3.2	 Solutions u (b) (x,y), v(b)(x,y)

'	 Assume:

°°
u (b) (x,Y) _	 h(a,y)sin ax daf7T	 o ^y

jv(b)(x,Y)	 7To Z((x,Y)cos ax da	 (3.6)

i

Substituting (3.6) into (2.14) we have:

2
dy2 - 63 °r dy	 Sl 

a 2 h	 0

2
62	

d	
+ 63 a
	 - 01 2 k	 0	 ( 3.7 )

Solving (3.7) we obtain:

	

s1aY/'^5 	 )-s1ay//F5

+ G(a)esZay// + H((x) e
-Stay /IfF5

and

Q((X ,Y) _ ^q E(a)es'(xy/vT5 _ 
F ( a ) e -S' aY/	 1

1

-14
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+ 0101G(a)es2aY1VO5 	 H(a)e-s2aY/Yra5l

where

kC
59 1 	 a1 3 S s	 l

63 1

+ s2
10	

5.33
	 s2	

45-5
	(3.8)

A superscript * will be used for the material constants and

unknown functions when the above expressions are used for

the second strip.

If one examines the roots of equation (3.4), he will

realize that there are two types of orthotropic materials.
g

We will denote the material as type I when s l and s 2 are

real, and as type II when they are complex conjugates. We

will assume, in our analysis, that the materials of both

strips are of type I.	 Similar analysis can be done for

the remaining combinations.	 1

3.3 The Displacements

For each strip, we can write:

u(x,Y) = u (a) (x,Y) + u(b)(x,Y)

V( X ,Y)	 v(a
)
(x^Y) + v(b)(X,Y)

w	 Noting that;

u(x, y )	 u(- x,y) and v(x,,y) =	 v( x,-y)

15-



We will obtain:

B(a) = - A (a), D(a) = - C (a), f(a) = - E (a), H(a) = - G(a).

For material type I;

s  = w l 	5 s 2 = k 3 and 
569^71009'610 

are real.

Using the information given above, and keeping in mind that

u and v vanish when y goes to infinity, for y> 0, the dis-

placement expressions can be written as follows:

u(x,y) _ ^ j [A(a)sinh(w l ax) + C(a)sinh(w 3 ax)]cos ay da
0

+
 J

E(a)e	 + G(a)	 sin ax da
0

i
v(x,y)	 f01B7A(a)cosh(wlax) + s8C(a)cosh(w 3ax)]sin ay da

2 
^r	

-1w1 «yam	 -Lw3 ► ay/ 3a
sign(wl )S 9E(a)e	 1	 + sign(w3)G(a)OlC^	

5
0

-cos ax da	 (3.9)

3.4 The stresses

For generalized plane stress case:

Cy

	

x	 A 11 £ x `+ Al2y

	

oy	A l2
F_
x-+ 22 E:

	

T xy	 A 33 Yxy	 (3.10)

z <., -16-



Differentiating (3.9) and using (2.12) and (3.10),

the stress expressions can be written as:

IT 1EXYVyx) ax(x,Y) =	 Y^'E(a)e 1w'Iay/^ + Y2G(a)2
x	 fo"0 -

- Iw3laY/^ 	 °°
e	 s acos ax da + 2Y 3A(a)cosh(w,ax) + 2y4C(a)

• cosh(wex)]acos ay da

Tr(l-vxyvyx).Y) _
	 Y E(a)e I w '!°`Y/^ + 

Y6
	 .

2E	 5
Y	

a

Y
( x
.

	

fo	 6

w laY/^•e I 3 	 5 acos ax da + I[2y 7A(a)cosh(w l ax) + 2y8C(a).
0

• cosh(wpx)]acos ay da

1T	
00

i

r (x,Y)	
fo

[2y9A(a)sinh(wl ax) + 2ylOC(a)

• sinh(w3ax)]asin ay da + jo y 11 E(a)e
-Iwllay/

f

+Y12G(a)e Iw3 laY/VT5 asin ax da	 (3.11 )

These expressions are valid also for the plane strain case

with the following substitutions;

vyx	 12 11	 xyA /A	 v	 A
1222	 Y/A 	 (E ' A) = 1/All

(EX' A )	 l/A22

The elastic material constants yj are defined in Appendix A.

-17-
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4.	 FORMULATION OF THE PROBLEM

The solution of the problem may be obtained by de-

termining the unknown functions which appear in the dis-

placement and stress expressions, under the following

boundary and continuity conditions:

u l (h l ,Y) = u2(- h2,Y)

v l (.h 1 ,Y)	 v2(-h2,y)(O < Y <-)	 (4.1a,b)

a lx (h l ,Y)	 o2x(-h2,Y)

Tlxy(h1,Y) = T2xy(-h2,Y)(O < Y <-)	 (4.2a,b)

a

u l (O,Y) = O	 1	 T l xy(O.Y)	
0 (O < Y <-)(4.3a,b)

u 2 '( O ,Y)	 0	 ,	 T2 xy ( 0 ,Y) = 0 (0 < y <-) (4.4a,b)

i

Tlxy(x1,0) = 0	 Ixl f <h l	 3

T

	

	 (x,0	 = 0	 x l<h	 (4.5a,b)
Y2x	 2	 2	 2	 ^

CT 1 (xl O) _ _pl(xl)	 Ix11<aY

Vl (x l ,O)	 0	 1	 a<lx l 1<h l 	(4.6a,b)

o 2y(x 2 ,o) =-p 2 (x 2 )	 Ix21<b

v
2 ( 

x 2 ' 0)	 10	 b< x
2 1	 2

<h	 (4.7a,b)
i- 

The conditions (4.3a,b) and (4.4a,b) are satisfied iden-

tically.

-18-



*
6 ( a ) 	 y11 E( a )	 G

*(a)	 _ Y	 E*(a)

12

The mixed condition (4.6) gives:

lim f'E a	
-^wlfay/

	y Y"
e- ^w3layi^ acos6Y 12	 1ax da

	

+Jo OYSe	 -
y-►o

+ 
1

[2y
7
A((x)cosh(w,ax 1 ) + 2Y8C(a)cosh(w3ax l )1acos ay dot

0

- 7r(1-vxyvyx)
- -	 2E	 p1(x1)	 Ix1J <a 	 (4.8a)

y

and

	

v l( x 1, 0 )	 -	 Y 1 3j 0
 E(a)cos ax l dot	 0 a <Ixl I`hl

(4.8b)

Define,

av1(xi90)

	

ax	
^(xl) such that C x 1 ) = 0 for	 Ix,l>a.

(4.9)

Differentiating (4,8b) with respect to x
1 
and taking the

inverse transform, we obtain

a

	

Y13aE(a)	
f 0

^(x l )sin ax l dx 1	(4.10)

If we now substitute (4.10) into (4'.8a) and evaluate

some of the integrals in closed form (see Appendix C) we

will end up with the following singular integral equation:

19



ra

Y14 j "i dt + f[2Y
7
A(a)cosh(wl axl )+ 2^y8C(a)cosh(w3axl)]ada

-a 

Tr (1-vxyvyx )
- -	 2E Y

	

pl(xl)	
a<xl

<a 	(4,11)

where because of symmetry ^(t) = - ^(-t).

Similarly defining,

3Y2(x2,(1)
3x	

= ^(x 2 ) such that^(x 2 ) = 0 for Ix21 >b
2

(4.12)

and using the mixed condition (4-.7) by the same procedure

we obtain:
x

fb *t^

Y14	 t-x2	
o

dt + [2Y7A (a)cosh(wl ax2 ) + 2y$C (a)cosh(w3ax2)]ada

b	
1r(1-vX v

*x 
)`

	

_ 2E* ^! P2 ( x2 )	 'b<x2<b	 (4.13)	 j

Y;

The next step is to determine the unknown functions A(a),

C(a), A (a), C (a).	 This can be done by using the contin-

uity conditions (4.1a,b) and (4.2a,b) and taking the in-

verse transforms. Then we obtain the following system of

linear equations:

2A(a)sinh(w 1 ah l ) + 2C(a)sinh(w3ahl)

+ 2A* (a)sinh(w^ah2) + 2C * (a)sinh(w3ah 2 ) = Rl(a)

2^
7
:A(a)cosh(w l ah l ) + 208C(a)cosh(w3ahl)

2R
7
 A * (a)cosh(w*a h 2 )	 20 8 C*(a)cosh(w3ah 2 ) _ 'R2(a)

-20-
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2y3A(a)cosh(w l ah l ) + 2y4C(a)cosh(w3ahl)

2a^Y3A* (a)cosh(w^ah 2 ) - 2X,y* C* (a)cosh(w 3ah 2 ) = R3(a)

2y9A(a)sinh(wlahl) + 2ylOC(a;sinh(w3ahl)

+ 2y9a2A*(a)sinh(w*ah2) + 2Y10X2C*(a)sinh(w3ah2) = R4(a)

(4.14)

R i (a) and Xi are defined in Appendices -B and A respectively.

Solving (4.14) we obtain:

A(a)	
1	 Rl(a) 9 (
	 fa) + R2(a) h (a)cosh w l ah l	f a	 2	 a	 2

+ R3(a) m2	 + R4(a) n {a)

	

f a	
(a)	

f a	 2

	

1	
R1(a)	

R2(a)_
C(a)	

cosh w 3ah l	f a 91 (00 + —f COLT hl(a)

+ R3(a) m (a) + R4 (
a
) n (a)

	

f a	 1	 f ^^j 1

A*(a)	 1	
Rl(a) 

g ( a ) + R2(a) h OW
2cosh(w^ah 2 )_ f(a 

0	 f(a)

R3(a) m a + 
R4(a)

+	
n (

a
)

	

f a	 of )	 af	 o

3a
C*(a)	 l	 Rl(a) 9(a) + R2(a) h(a)

2cosh(wh2)	
f a	 f(a) a

}

+ +R3(a) m(a)	
R4(a)

#, a 	 n(a)	
(4.15)

f(a) 

-21
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The functions f(a), g(a) etc., used above are given in

Appendix B.

Substituting (4.15) into (4.11) and (4.13) we obtain

the following system of singular integral equations:

a
t) dt +	 kll(xl,t)^(t)dt

a

f t-^xl
-a	
a;

+
 f

bk (x ,t) *(t)dt = - (1-vxZyx, p (x )
12 1	 2Y14Ey	 1 1

_b	 ;.

- a<x1<a

	b *	 a

Tr J t^ X) dt + f k21 ( x
2 t)^(t)dt

_b	 2	 -a

b
+	 k22 (x2 ,t) * (t)dt _	 {l-*xy*yx ) p2(x2)

2y E
-b	 14 y

- b<x2<b	 (4._16a,b)
i+

where

k ( x ,t ) _ 1	 r (x ,a)e-{hl-t)a^/ ^wl

	

ll 1	 f-[k,Tr
Y14 o1L
k (x ,a)e-(h,-t)a^/jw3^ da

+ 2 1 ailt.

1	 (h2-t)a^ w.k12 (x ,t) '_	 f	 k3(xl,^a\,e .	 35/^ i[
^	 14 0

-(h -t)a^ ^w*^
+ k4 (x l ,a)e	 2	 ^5/ s	 da

-22-



k2l (x2 9t) = pry	
100 k 5(x2 ,a)e (h'-t)a	 /^wi^

14 0

+ k
6 ( 

x 2,a ) e -( h i-t)avro—, /JwsI da

k22(X2,t)	
1*

 
jcOk7(x2,a)e-(h2-t)a' 	 /jw*

14 
o

+ kg(x2,a)e-(h2-t)a/ ^w3 I da	 (4.17)

The expressions k^(j = 1,8) are given in Appendix B.

By letting h2+00 or h	 one can recover the spec-

ial case studied in [5]. 	 For a <h and b< h 2'  the in-

tegrarids of kernels k i j (i , j = 1,2) vanish when a -} ^ and are

bounded for all values of a, except when a = 0.

Around a	 0 the asymptotic behavior of the inte-

grands Iii of the kernels k ij is of the following form:

I i (a) = ca + 0(1)	 (i,j	 1,2)	 (4.18)	 A;
J

where the c ij 's are known constants. In order to obtain

a solution, one should show that the singularity due to 	 j

1/a is removable. Consider the following integral:

j

a	
[I11 Xi lt5loOda
	 a	 e

.^(t)dt 	 ia ^Mdt JoI11(xl ,t,a)da
_a 

E	 + f

	

6 I11(Xl,t,a)da	
A

V,
Q TOO	 -23'

k



where a is a positive small number. Using (4,18) for the

first part of the integral, we obtain:

rakll(xl,t)^(t)dt = faa f(t)dt foE cal da

a
J	 J 
_	 -

+
 f_e

O(1)da + f'111(xi,t,a)dao

Making use of the single-valuedness condition

f

a
^(t)dt = 0, the unbounded integral f

Ot

, cl 
da drops out,

a	 o
leaving only bounded integrals which can be evaluated numer

f%*(-t)
ically.	 Using	 dt = 0 for the second crack, similarly

-b
one can show that the singularity due to 1/a cancels in

all the integrands Iii.

Ii

-24-
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5.	 CASE OF BROKEN LAMINATES

This is the case when one of the cracks touches the

interfaces (i.e., a =h l , or b= h 2 ).	 The integral equa-

tions (4.16a,b) are still valid but some of the kernels

kii are no longer bounded. For example for a= h I  k12'

k21' k 22 are bounded but 
kll 

becomes unbounded as x  and

t approach the ends + h l simultaneously.	 In this case

the integrand 
Ill 

of k ll diverges as a ^^.

In order to obtain the proper singularity at the

crack tips and to compute 
kll 

numerically, the singular

part, 
klls' 

should be evaluated in closed form.	 In this

case, the kernel k 11 can be written as:

k11 (x i It)	 k 11s (x l It) + k llf (X i 't)

where k lls is the singular part and k lif is the bounded

part of kll.

Followi ng the procedure described in [41 klls(xl t)

is obtained as foll ows:

(hl- t ) Yra_5_11 w j) + jw,jhl
7Tklls(xl,0	 a85 [(h

i -t) 5/1w, I + 1w,Ih1]2-(w1x1)2
4

(h,-t), 5/ Iwi l + IW3Ihl

86f][(hl -t)	 /Iw,(+ Iwalh 1 2 -(w3x l )2	 #

+ a
(hi - t )Ts /Iw3I + Iwi lhl

87 [( hl- t )5/I
w 3I + Lw1lhl12-(wlxl)2

-25-
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(hl-t)^/Iw31 + Iw31hl

	

+	 J[ 	 + IW3 1h l ]' - (w3xl)2

- h l < x i ,t < h l 	(5.1 )

The governing singular integral equations become:

1 
h1

[j-2x- + A l l s (x l ,t) ^(t)dt + hl kll (xl' t) - kl l s(xl,t) ^(t)dt
l 1	 -

h l_h l 	_ 

b
+	 k (x ,	 = - (1-v

xvx^v^} p	
)	 -

Jb 12 1 
t)^*(t)dt	

2Y14Ey	 1 
(x 

1	
h 

1
< x 

1
< h l

f

b 
*;hb

 
^- dt + fh1k21(x2^t)^(t)dt + jk22(x2^t)^*(t)dt

_b 	2 '1	 * *	 'b

(1-vxyv x)2Y* E — p 2 (x2 )	 -b<x2<b	 (5.Za,b}

1	 14 y
y
I Since in the integral equation (5.2b) the only singular

term is t 1x2 , the power of singularity at the end of the

internal crack in the second layer is still 1/2. 	 But in

(5.2a) we have further singular contribution from the ker-

nel 
klls 

resulting in a power different than 1/2. 	 To find

this singularity power y, we will again use the procedure

described in reference [141. Throwing all the bounded

terms to the right hand side, the 'singular integral equa-

tion (5.2a) can be written as follows::

1 f hl	
— + irk	 {x ,t) (t)dt-= P(x )	 h < x < h	

r
lls

_hl

-26-



where P(x l ) is a bounded function for all values of xl.

The unknown function ^(t) can be written as (see [14]):

^(t)	 - F(t)	 ;5.4)

(h21 -t2)Y

where F(t) is bounded and Holder-continuous in the inter-

val	 t(<h l , and 0 < Re(Y) <1.

Define the sectionally holomorphic function:

l	 l rh1	 t	 1 Ihl	 F t ei^Y
^( )	 ^-	 _ ( )z	 dt

- ^ J
-hl	

1

t-z at -	 h	 (t-h

1 )

Y (t+h
1
 )Y(t-Z)

Then,

F(-hl)e iTFY

	

1	
F(hl)	

1
r	 ^ (Z)	 _	 +	 ° 'z)

(2h l ) Y sin^rY (z+h l ) Y	(2h 1 ) Y sinffy (z-hl)y

(5.5)

where

^o(z)^<

	

	
C	

Y° < Re(Y)
jz±hI IY °

C and Y° are real constants.

Using (5.5), equation (5.3) takes the form:

	

F(-hl )cot ,ffy	 F(hl)cot"	
X85 a wl`	 F(hl)

(2h )^((h +x ) Y	(2h )Y(h-x1 ) y + 2 3^s	 Y	 w2 ^'

1	 1	 1	 1	 1	 (2h1:) sfnrry	 i

27



I1	 X86 Iwi ^	 F(hl )
+

th l
+xl^Y	

(h l -x 1 
) Y

(2h1)YsinrrY 
Iw1II W3I

[

1	 +	 1

Th1+x1 
)Y	 (h1-xl)Y

+ X 87 I w 3 )	 F(h1)	 1	 +	 1

	

2 ^ (2h
1 )YsinrY 

IWIIIW3I Y [^h^x l ) y 	(h1-x1)Y

+ l88 IW3I	 F(hl)	 1	 +	 1P (x )

(2h I ) Ysinrry W3 Y	 (h 
+x 	 (hl 

-x1 ) Y	 1 1

_(5.6)

i
where because of symmetry F(hl) _ - F(-h1).

Multiplying both sides of (5.6) by (h l +x 1 ) Y and let-
I

ting x 1	 - h1 we obtain the following characteristic *	 j

equation:

I w1 IIW1I
-2cosTrY+X	 1	 +	 1

85	 wl Y	 X86	 I W, I IW31Y

5.

W 3	 W3	 1

+ a87	 W1 
wa 

Y +88	 w3 Y	
d	

(5.7)

where XD 's are elastic constants defined in Appendix A.
,i

-28-



This is the same equation found in [7]. Choosing the or-

thotropic elastic constants close to isotropic constants

numerically we find the same singularity power computed in

»	 [6] and [9]. The characteristic equation (5.7) can he

solved numerically to find ry. For practical orthotropic

materials equation (5.7) has only one root between 0 and 1.

To establish the dependence of y on the material constants

more accurately, a separate study of equation (5.7) is 	 j

needed.

q

i

I

3

j
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6.	 CASE OF A CRACK CROSSING THE INTERFACE

To formulate this problem we will start by using the

crack configuration shown in Figure 3. In this case we

have again an internal crack in the first layer, but two

symmetrically located cracks in the second layer. Using

the symmetry p roperty ofy	 y p p	 y	 ^ (t), we can write:

jb k 1 2( x i , t )O* ( t ) dt = fob
b 	

[ki2(xi't)- k i2 (xi' -t)]O(t)dt(i	 1,2)

and

fb
	

(t) 
dt = 	 1	 + +	 ^* (t)dt 	(6.1

-b t x2
	

jb

o t X2

Therefore we can write the governing singular integral

equations, by simply changing the limits of the integrals
i

from (O,b) to (c,d) in equations (4.16a,b).	 Thus,we

obtain:
Ay

a

J	
X dt +

f a
 k11(xl,t)^(t)dt

-a	 1	 -a

d

f[k
12 (x l ,t) - k12(x1,-t)]^*(t)dt

( 1 - vX v x
Y	

)
_ —	 E	 pl(xl) _ a<xl<a

_Y 14 y

d	 *	 a1 (	 +
1(t)dt +(k

7TJ ['4x
	 t+xJ	 21(x2't)^(t)dt

c2	 2 -a

t4 A	 -30-



•	 d*	 (1-v* v* )

	

+ 
If [k22 (x2 ,t) - k22 ( x2.-)]0 (t)dt = -
 2-y*

xE*yx	
P2(x2)

Y14 y

c<x2 <d
	

(6.2a,b)

By letting a = h1 and d = h2 we obtain the case of a crack

crossing the interface. As in I hP previous case for a = hl

and d = h 2 all the kernels k id L=:ome unbounded when xl,t

approach the ends + h l and x2 ,t approach the end h 2 simul-

taneously. Therefore to study the singular behavior at the

interface and to make the kernels numerically integrable,

the 'singular parts-of the kernels k id must be separated.

i

The kernels can be written as:

ki^(x;'t) = kl ^ s(xi't) + ki,f(xi't)

3

where k i ^ s (x i ,t) is the singular and k ijf (x i ,t) is the

bounded part.. Following the same procedure used in the

previous section the expressions of k ids are found as

follows:

(hl-t)V'F5-/IW1I + IwIIhl
Trklls (XI ,t)	 ^85h l -t -/ w l + w I h l - wlx1

(h l -t), 5/^ ^I	 1hlJ— w + w 3

+ X86 [(hl_ t

	

	 W 	 ws1hl]2 - (w3x1)2

(h^-t)^/)ws1 + 1wj1hl
+ a87 ((h 

1 -t as/Iw31 + 1 w ll h
1]

2 - (W1X1)2

^p13,IGI	
pAGE	 + 88t 	 -t)/^w 3 ^ + ^w 3 ^h^ ]2 - (w3x1)2

DS PWR QUALITY►
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/Iwi I + Iwllhl
irk12s 	 X93 V(h2-t)q5/Iw l + IwIIhl] 2  (WIXl)2

( h2 -t) 5/Iw1I + IW3Ih1

+ N94 [(h2- t)Y7e 1I + Iw 3 Ih 1 ] 2 - (W3x1)2

(h2_t)^/ IW3I + Iwi Ih1

+

	

95t 	 + I wl l h l ]2 - ^w1x1)2
(h2-t)	 / Iw31 + I w3 l h1

+a96 [(h2- t)	
/Iw3I + Iw3Ih1]2 _ (

WA)2

( h l -  , s/Iw1I + I w*t)	 2 x
iTk21S ( X2 0 = x'101 

[( h 1 -t)5/I w ll + ( wi l h 232 - (WI X2 2
J

(h1-t)^/Iw1I + Iw3lh2

+ x'102 [( hl-t )F^ 5- 	 2/IwII + I w3 I h ]2 - (w 3x2)2

( h l -t), 5/Iw3I + Iw*I h 2
X103 [(h 1 -t)VOS/IW31+ Iw*Ih 2 ] 2 - (wlx2)2

+ I W31

+  104 
C(h -t)/I w 3I + IW31h ] 2 - (w*x )2

1	 2	 32

( h 2 -t), s/Lwi1 + Iw*1h2
TTk

22s( x2' t)	 109 [(h2-t)^/lwil+ 1wiI h2 ] 2' (W 1 x2)2

(h 2 -0 5 / LwI I + Iw3I h2
+ 110	 -	 * w* + w3 h2 ]2 - (w*x ) 2

I- C(h2 t)/I 11	 l	 1	 3 2

(h 2-t) 3^5/ Iwi L+ Iwi 1 h2

+	 111
[(h2_t)
	 /Iw 3 1+ Iw1Ih 2 ]2- (w1x2)2

(h 2-t) 3 / IW3I + Iw3Ih2

+a112 [(h2-t)^^IW3I + (W3Ih2] 2 _ (W3x2)z

32
- ti11



Separating the singular parts, equations ( 6.2a,b) take the

form:

	

I h,
	 -lf'+7rklls

	hl	

(xl't) 0(t)dt
t x1

-

+ 

I h

 11IEk	 ( X1 ,.t) - klls(xl,tJ^(t)dt

hl

+ j h2k*2s(xl
,t)o*(t)dtc

+ 
j h2 [ k12(xl't)	 k12s(xl ,t)3^*(t)dt

c

(1-vx v x) F (x ) _ h < x < h^

2 Y14 y	
1	 1	 1	 l

and

1
 Ic

h2	 + 1 	+ 7rk * 	(x ^t) (t)dt
 [lF2x2
	 t + x2	 22s 2

+ 
j 

hl[ k 
21

(x 2 ,t) - k2ls(x2,t)3^(t)dt

_hl	 3

+ hi
k21j

-h1

J Ik22"2 1t) 	22s 2c

V v*
(l xy *

x) p (x )	 c <x 2 ` h7*	 2 2
2Y14Ey

(6.3a,b);

-33-



where

ki2(xi't) = k 12 (x i' t) -
	

k i2 (x i ,-t) (i =1,2) .

To find the proper singularity power S at the inter-

face, we will first throw all the bounded terms to the

right hand sides of the equations as it has been done in

the previous case. Then, we obtain the following system

of equations:

1 ( h ^
l 
l 

+ irk
11s (

x
1 
,t) 0(t)dt

1	 t-x
-hl

+
 fc

h2 k
12s (x l ,t)^ * ( t ) d t = Ql(xl)

_ h l < x1 < hl
i
I h _	 i

Tr 
rC2 [tj_

x 2 + t+x 2
+ ^k22s(x2t)*(t)dtJ,

-h

+

	

	 [k21s(X2't)(t)dt	 Q2(x2)
_h

1
c< x 2 < h 

2
	 (6.4a,b)

where Q1(x1) and Q 2 (x 2 ) are bounded functions of x 1 and x2.

Considering the behavior of 0(t) and 0 * (t) at the end

points, we can write:

*

(t) =	
2 t2 

S*(t) 	
-F (fit)	

S	
(6.5a,b)

(h 1 -t )	 (h2 t) (t c)

Define the following sectionally holomorphic functions:

-34



1

s

	

h	 *	 h

,P(z) _	 1	 dt	 (z) = n j 2 - z dt	 ( 6.6a,b)

	

h	 c

	

_ l 	,
,t

From [14] and using (6.5a,b) and (6.6a,b) we have:

	

-	 F(-hi)ei^g	
l	

F(hl)	
l

	

-	 _^(z)	
(2h 1 )^sinTro (z+h 1 ) D	 (2h

1 	 l
) Osinno	 (z

_ 
h ) s + 

°(z)

I
*	 iTrS	 F*(h)	 3

	

( z ) -	 F (c)e	 1	
-	

2	
1	 ^* ^

z )	(h2-c) osin7r6 (Z-c)`^	 (h2 -C)Ssin^rs (z-h2 ) S + ° 

	

(6.7a,b)	
3

where ip (z) and ^ * (z) are bounded functions which around

ends beh ave as follows;

,^ (z)I ^ 	 C0	 , So < Re(S)
o	 Iz+hl 00

i
and

D<	 ° ^*	 So < Re (0)
Iz-h2 f °

	

1^*(z) j	 and

E
<

	

	
o 

d	
60< Re(a)

Iz-c1 o

*
C o , D ° , 

'
Eo1 $0, s 0 , &0 

are real constants.

Using ( 6.7a,b) and following the procedure used in

section 5, equations (6.4a,b-) reduce to:

cot7r6 = 4	 (6.-8)

35
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and

F(hl)	
- 2cos7rR + a85 L w I I	 i	 + X	 I	 1

2(2h 1 ) RsiniTa	 w, R	 86	
I wIIIw3I R

+	 1w3 ^	 1+	 Iw3I	 1
87	

IW
IIIW3I R	 88 5	 w3 R

F+	 *(h2)	 (wLI	 1	 + a
	

w*I	
1

2(h
2 -
	 sin7rR	

93 ,
	 IwlII wi I	 94 ►^ I w3 wi 

R
2 - 	 R5	 RS

+ aIw3 I	 1 * -+x	 1 *	 =0
95	

Iw I w I S
	 96	

Iw3 l iw3i R

i

F(h,)	 Lw, I 	 +	 IwI I	 1

2(2h Ss i ^r	
X101 vr- -	 w* w	 R	 x`102 f---	w 	 w	 R

(_ 1 )	 n R	 Rs	 21^	 Rs	 L31 1 I 1

S

+ a	 'W31	 1	 + a	
Iw3I	 1

103	
IwiIW3I R	

104	 IW3,IW3I R

+	
F (h2)	

- 2cosiTa + a	 I w I I	 1	 -+ a	 1w, (	 1

2(h2-c)' sn^R	 109	 W^ R,
	 1i0	 Iw3^I--(W11 R

Y R^	 VR5
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+
I W 3 1	 1	 +X	 w	 1	 =0

111	 W	 w* S	 112	 W3	 s

5

Vats	 5V

(b.9a,b)

"

	

	 Equation (6.8) gives the expected 6 	 1/2 singularity power

at the crack tip.

3

(6.9a,b) is a system of homogeneous linear equations

for F(h l ) and F*(h 2 ).	 Since F(h l ) # 0, F * (h 2 ) # 01

3 # 0,1 to solve the system one should equate the determ-

inant of coefficients to zero. Thus,

A(a)	 4cos 27r3 - 2cosTr$ x109 
I

w* I 	
* s+ X110 (

w lI
(r11)

+	
Iw3I	 1	 +	 141	 1

ill	 * 6	 X112	 * S
(r13 )	 (r33)

	

wl	 l
a85	

S(rl l)

a
+	 Iw1I +	 IW3I

86--	 87	
(rl 

3) 0

	w 	 1

+ X88 ^
	

3

	

,r s (r33 )	 _

3

.	
GRZG	 I
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1	 1+^ — *

	

X113 (r11r11)S	
114 (riIrl3)5

11
	+ X115 ^ riir3 3)^ 	 116 (r13r11)5

1 1
	+ 117	 r*	 + x`118 ( r r* )^ + X119 (r r*1) s

	

(r13 13 )	13 33	
33 1

1	 n 
X121	 1	

^ = 0	 (6.10)

+ X120 
(r 33	 33

	

r13)'	 (rr33)

where
2

2	 ^WIIIW3	 _ w3

	

w,	 __
rl1
	 r13	 r33

*2

*	 w*2	 *	 _ 1W*11Iw3l	 r*	 W3

rll	 r13,	 33

S 5

From the characteristic equation (6.10) we can determine

the singularit y power B. Choosing the orthotropic elastic

constan tsis
close to isotropic elastic constants, we recover

the singulari ty Power found in [8] and 
[9]. Equation

(6.10) does not always have a root between 0 and 1. For

some orthotro p ic material combination
s , there is no power

singularit y at the interface.	
In this case oneshould in-

of pure imaginar y or complex
vestgate the possibili ty

	4

roots. Numerical computation shows that there are no pure

imaginary roots or complex roots for which the real part

38



is between 0 and 1. On.the other hand F(h l ) and F*(h2)

are related through (6.9a) or (6.9b). This is a condition

to be used while obtaining the solution'. The absence of

power singularity for some orthotropic material combina-

tions may be very important from the view point of design

applications. Therefore we will study in some detail the

behavior of the crack surface displacement derivatives and

the stresses at the interface.

Let's first investigate the possibility of a weaker

i.e., logarithmic singularity in the crack surface dis-

place_ment`derivatives at the interface. Suppose that the

power singularity 0 at the interface is zero. Define:

_ 1 hl L"^	 *	 __ 1 

f

h2	 (t)
dt1

' (Z)

	

	 Tr 	t-z dt
	 (z)	 7T c	 t-z

.h1

The behavior of ^(z) around z = ± h l , and of	 (z) around

z	 h2 can be expressed as

* (z ) - $(7T	
log (z-h l ) + ^

01
( z) near z = hl

^(-hl
(z)	

)
log(z+hl-) + Oo 2 (z) near z	 -hl

*

1*(z)	
(h2) 

lo 9(z- h ) + ^	 (z) near z	 + h7T2	 03	 2

(6.11a,b,c)

where 
$ol( z) - ^o2 (z)

' ^0( z) are bounded functions.

°
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Using (6.11a,b,c), near x 1 = h l and x 2 = h 2 equations

(6.4a,b) take the following form:

^(hl)	
1w^1	 w3 _	 wslog (hl -xi)	 1 -x85	 - x	

wl _

f36	 x87	 x882/V5 2^	 2^	 2

+ ^*(h2) .6 Iw1i 
x	

- 1w1 I 
x	

I w3 i 
a	

- 1W31 x
	 =

1T	 2 3 * 93 2 3 * 94 23^* 95 2,--*	 F96	 1(x 1)
^5	 ^5	 S5	 S5

l o9(h- ) 
^(hl )	 IwII 

x	 - 
Iw11 

a	 - 
1 w3 1 

x	 --
1w31	

x2 x2 	 2^ 1 01 2^ 102 2^ 103 2VF-s 104

*(h2)	 _ 1w11	 _ IW11	 - 1W3I	 _ IW3I 

x112	
F 
2(x2)1 2^ x109 2^ x110 2^ X111ll 2, 5 

(6.12a,b)

where F 1 ( x l ) and F 2 (x 2 ) are bounded functions.

In order that equations (6.12a,b) be bounded for x  =

h 2 , the coefficients of the logarithmic terms must be zero.

Thus

^(hl)	
1 - x	

1w11 - 
x	

1 w1 I

 - a	
1 w3 1

 - x	
Iw3I

8520	 862	 872	 882

+ *(h2)	
1 w* I	 Iw*I	 1w3I	 1 w31

X -	 x -	 x -	 x	 = 0It	 _2e 93 2 - 94 2^ 95 - 	96



4(hl)	
iW 11	 iW 11 IX 1W 3 1	 1W31

2VTs- 101 2/0-5 102 
2 . r0—, 

103- 
2 /a—s 

1 04

(h2 )	 1w*11	 1w*11	 Iw:I	 'W*31+ -- 
7r	

2	
X109 

2	
A110 -  2VO-T Ai l l - 2v—OV X 112 	 0

.5 5

(6. 1 3a , b)

(6.13a,b) is a system of linear equations for flh l ) and

* ( h 2 ).	 Since f(h l ) and ^* (h 2 ) are different than zero,

in order to have a solution the determinant of coefficients,

A, must be zero. Numerical computation shows that A	 0

and either from equation ( 6.13a) or ( 6.13b) we have:

(hl)

(h 2 )

and using the symmetry condition ^*(h 2)	 we

obtain:

	

^(hl)	
1	 (6.14)

(-h2)

Relation (6.14) shows that the surface displacement deriv-

ative is continuous at the interface. This is an important

result which makes the solution of the singular integral

equations easier.

To study the behavior of the stresses, let's first

write their expressions at the interface. By making use of

-41-



4

(3.11) and (4.15) we obtain:

^(1-v x- x̂) o (
h 1 ,Y) = hi K1 (n,M(n)dn + fch2K2(n+Y)O*(n)dnQ(Y) -	

xE	 1x	 fhl

_	 T	 (h lY) = hl K 	 ,Y)O(n)dn + h2 K (n,Y)O*(n)dnT(Y) 2,-- 1 xy 1	 3 (n	 jc 4
xy	 -hl

(6.15a,b)

where K
i
(n,y) (j = 1,4) are given in Appendix B.

The kernels K  become unbounded as y -; 0+ and n -r ± hl

or n } h 2 respectively. When equation (6.10) has a root,

i. e. when the functions	 (t) and ^ (t) are singular, the

stresses have the same singularity power as we will see in

the derivation of the stress intensity factors. 	 But _it is

necessary to know whether the stresses have a logarithmic

singulari ty when the crack surface displacement derivati ves

are bounded. To do that let's first separate the singular

pasts of kernels K j .	 Following the usual procedure, we

bto	 a4n.

1	 Yl(hl+n)	 (hl -n}

K1s (n ^ Y) 3 wiy2	 2	 Y1 w ly 2 	 2

Rs + (hl
+n)	

Bs + 
(hl-n)

	

_ Y Yl1	
hl +n	

+ Y 
Yl1	

hl -r)

2 Y12 ^Y + (h +n) 2	 2 Y12 w ay + (hl -TI) 2
05	 1	 Bs 

ORIGIAI' 
G	-42	 OF POOR QUALM

I

i



(h n) ►^/ Lw Il	 1-	 ^

+ 2Y 1 .3T80 ^Y3^$1+Y4^82) [(h -n)^/Iw^IJ2+ Y21

l (h l -n) 3as/Iw3I
+ Y^ (Y3X83+Y4a84) [(h 

-tl) -/ I w 3I 1 2 +y 21

1	 (h2"n)Y10*5/I w,
K2s (n,Y) _ *	 (Y 3 X89+Y4"90)	 * 2	 2

2Y13^80	 [(h2-n) / I w 1I J +Y

(h2 -n)/Iw3I
+ 2Y13X80 (Y3'91+Y4'92) [ (h2 -n) V 5/ Iwa I J

2 
+y2

Yll	 I w i I Y/T	 + Iwo IY/ 5
K3s(n'Y) °	 W-=----	

w^Y +
{	 ^s	

( hl n)	 S5	 (hl-n)

Iw3I y/ vlas 	 Iw 31Y /VW5
+

2	 w2y2	
2w2y

i
S + 

( h l+n) S + (hl-n)

+ Yom- NY 81 +Yl hd	 y2 + 2
13 80	 [(hl n)^/IwII]	 Y

1	 +	 y+ a	 a(Y	 Y	 )	983 1084	 h	 f— 
w 2 2+

K4s(n,Y)

	

	 *^	 (Y9a89+Y10'90)	
^Y * 2	 2

2y 13X80 [(hZ—n) 3W I woIJ + y

+	 *1	 '(Y9X91+Y10'92)* 2	 2

2Y13^`80	 [(h2 -n) F/Iw 3 LJ +Y

(6.16ab,c,d)=
-43-



Keeping only the singular terms, equations (6.15a,b) can

be written as follows:

o(Y) = jhl K l s(n,Y)O(n) dn + J

h

C
2K2s(n.Y)^*(n) dn + A(Y)

h 
-1

T(Y) = (hl K3s (n.y)^(n)dn + fh2 K2s(n.Y)^* (n) dn + B(Y) (6.17a,b)
-h1	

c

where A(y) and B(y) are bounded functions.

Define:

hl $
	 dt and **

(z) = h2 $ t) dtv^(Z) _ -	 t-z	 fc t-z
h -1

Considering their behavior around ends, we can write:

q,(z) = ^(h l )log(z-h l ) - ^(-hl)log(z+hl) + ^O(z)

and

(z) = ^* (h2 )log(z-h2) + ^Uo(z)	 (6.18a,b)

where ^ (z) and ^ *
(z) are bounded functions. Making use

of (6.18a,b) and (6.14), equations (6.17a,b) become:

CF ( y )	 log y ^(h) 2
1

	
(Y 1 - Y2 

Y11)	

2Y 1 \	 wi (Y3'81+Y4A82)1	
Y13	 Y12	 Y13 80

1	 1w
s

I	 1	 ^w*^	 + ^	 a

2y
l180 VV (Y3^83^4^84^ + * x ^--* (Y

3^89 Y4 90)
2Y 

i	 13 80 Bs	 `

*

+	 *1	 Iw3l (Y3X91+Y4X92) + C(Y)

2Y13^80
44



and

T(Y) ° D(Y)	 (6.19a,b)

where C(y) and D(y) are bounded functions. Equation

(6.19b) indicates that the shear stress at the interface

is bounded.	 Since C(y) is bounded and ^(h l ) # 0, if 6(y)

is bounded the coefficient of logy in equation (6.19a)

should be zero. Numerical computation 'shows that the

r	 above mentioned coefficient is identically zero. Therefore

j	 the normal stress a at the interface is also bounded.

These are important results for orthotropic materials and

may have practical implications in designing with composite

materials.

a
.	 j

i

Y

p AG I
^R Q^ 

AL
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7.	 THE SOLUTION AND THE'RESULTS

Since we have mainly three different problems, the

solution will be discussed in three sections.

7.1 Case of Internal Cracks

In this case we have to solve the system of singular

equations (4.16a,b).	 Defining x l 	aKP t	 aT for

a< x 1 , t <a and x2	 aK21 t = bT for - b< x 2 , t< b after

normalization, equations (4.16a,b) take the form:

1 1 ^0(T)	 1 0	 r1 0

R j T-K 
IT + 

a f 
klI (K.,,T) ^o (T)dT + b f 1 k12(KI,T)O0(T)dT

-1	 `1	 -1	 L

( 1 -V V
xy yx o

_ -

	

	 pl ( K 1 ) - 1 <K 1 < 1
Y14 y

^(	 1
! fl o T) dT + a 1 k0 K aT	 T dT + b k0 (K. ^T) (T)IT	

j

7	 T-K2	 21( 2 ,	 )	 j 22 2	 ^o
-1	 -1	 -1

(1-VxyVyx ) o	 a

* *	 p2 ( K 2 ) - 1 < K 2<1	 (7.1a,b)

2Y14Ey

f

where the index "o" denotes the normalized quantities_. To
3

get the complete solution we need also the single-valued-

ness conditions:

j

1	 1 *

^o (T)dT = o	 and	 ^l^o(
T )dT'= o'	 (7.2a,b)

-1

Since ^ O (T) and ^
*

(T) have a power singularity -1/2 at
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the ends, the solution will be sought in the fora:

F (T)	 *	 F*( T)

° (T) _	 °	 and	 ^o(T) =	 0

3T=om'	 3T=om

where F
0 (T)and F * (T) are Holder continuous in the interval

1 <T< 1.

Using the method described in [11] we obtain:

F (T •)	 1	 + aTr k° (K ' i , T •) + ^ birk° (K • . T •) F (T • )
j=1 o f Tj -K i	 11 1 J	 j=1	 12 1 J 0 J

_ - N (1 
vx v 

x)	 i

	

°(K)	 i = 1, ... N-1yl4Ey	 1p 

airk° (IC T•)F (T.) + F F (T•)	 + birk0 ( Ki ,T•)
j =1	 21 i J o J	 =1 0 J Tj K,	 22 

`	 - - N 
(1-vv*) 

p2(K i )	 i = 1,...N-1	 3xy

2Y14EY

7r 	 = 0	 and	
_J	

N Fo (T•) = 0 (7.3a,b.,c,d)
j = 1	 =1 

where	 3

i lrs	

-FU

	 T j = cos TT

K i	 cos N	 i= 1-, ... N-1 a

The 2N unknowns Fo (T j ) and Fo (T j ) can be found by solving

equations (7.3a,b,c,d). In this problem we are mostly in-

terested in the computation of the stress intensity factors.

-4Z-
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The stress intensity factors may be expressed in terms of

the density functions F
0 '
(T) and Fo(T) as follows:

For a< h l :	 ka	 lim	 xl-a) vly(xl,0)
xl -,.a

and for b <h 	 kb	
x i b 

37 xj 2-b7 o2y (x2,0)	 (7.4a,b)
2-►

Making use of equations (4.16a,b) and definitions (7.4a,b),

after lengthy algebra ( see Appendix D) we obtain:

r 2,14E

k a - _ vxyvy—
 

	F^(^)-

s
and

2y4Ey 361

kb
_

*	
F0 )	 (7.5a,b)

(1-vxyvyx)

I'	 The	 computation	 is done	 for	 generalized	 plane	 stress	 case

only.	 Results	 can easily be obtained	 for	 plane	 strain case

by redefining the elastic	 material	 constants.	 In the	 per-

turbation"problem considered	 p l	 and	 p 2	 are	 constant.	 As-

suming that there is	 no	 constraint	 in	 x-	 direction,	 pl	 and

P2 satisfy the	 following condition:
'd

p 1 _

P2	 Ey

where Ey and Ey are the	 Young's moduli	 in y	 direction.

Two material combinations are formed among the follow-

ing three materials.
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1.	 Ex = 5.62 x 109 N/m? Ey = 17.37 x 109 N/m2

w	 Gxy-= 0.492 x 109 N/m2 vxy = 0.036

( Ex = 8 x 106 psi) (Ey = 24.75 x 106 psi)

(G xy = 0.7 x 106 psi) v
( xy

= 0.036 )

2.	 Ex = 13.71	 x 109 N/m2 Ey = 3.16 x 109 N/m2

Gxy = 2.46 x 109 N/m2 vxy = 0.650

( Ex = 19.5 x 
106 

psi) (Ey = 4.5 x 106 psi)-,

( Gxy = 3.5 x 106 psi) (vxy = 0.650)

j	 3.	 Ex 15.76 x
i

109 N/m2 Ey = 15.78 x 109 N/m2

i

Gxy = 6.09 x 109 N/m2 vxy	 0.300

(Ex = 22.447 x 10 6 psi) ,	 (Ey	 22.6 x 106 psi)

( Gxy 8.655 x 106 psi) ,	 ( vxy =-,0.,300)

As	 it	 is	 seen from the	 values- given	 above the first two

materials are orthotropic while the	 third	 is	 isotropic.

The following pairs of materials are	 used:

Combination I:	 The first	 layer	 is of material	 1,

the second of material	 2.
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Combination II: The first layer is of material

3, the second of material 2.

Choosing the same materials and letting a, b, h l or h 2 go

to proper limits we recover all the special cases done in

[5], [6], and [10].

Figures 4-12 show some of the calculated results. In

Figures 4 and 5 the stress intensity factors k a are plotted

versus h 2 /h 1 for b= 0 (there is no crack in the second ma-

terial) and "for the two material combinations. For h2= 0,

we recover the solution of colinear cracks imbedded in a

homogeneous material (see [10])	 It is important to note

that in the colinear crack problem the material doesn't

have to be isotropic. As h 2 -* 00 , k  reaches an asymptotic

value which can be found in [5]. for a fixed h2 /h l ratio,

k  increases as a/h 1 becomes larger.

Figures 6 and 7 show the stress intensity factors kb

for the case a= 0.	 In this case also, for h1 = 0, we ob-

tain the solution of colinear cracks. 	 There is a critical	
3

value of ( h l / h 2 ) for which the stress intensity factor

starts to decrease as the ratio b/h 2 "incrleases'. for the

examplesdone this critical ratio is between 0 and 0.5.

For h I -- the stress intensity factor kb reaches an asymp-

totic value which also can be found in [5].
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The stress intensity factors k  and k b when both

layers contain cracks, are . g.iven in Figures 8-11. 	 kb->0

as (b/h 2 )-^1, since the power singularity y is less than

0.5 when the crack in the second material touches the in-

terface. Another interesting result is obtained from the

comparison of isotropic and orthotropic materials. As it'

is seen in Figure 12 for the same E  and E  the stress in -

tensity factor k  for orthotropic materials can be larger

or smaller than the stress intensity factor ka for iso-

tropic materials depending on the other elastic constants.

One can significantly reduce k  by a convenient choice of

the elastic constants. The materials used in the compari -

son are given in Table 1. The dependence of k  on the

materials constants is given in Table 2. 
Gxy 

and Gxy are

the most important constants, while keeping E y and Ey con

start. To reduce the stress intensity factor k a , it is

sufficient to increase Ex, Gxy, 
vxy 

or decrease E x' Gxy'

vxy'

`
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7.2 Case of Broken Laminates

The solution will be obtained by solving equations

(5.2a,b), with the single-valuedness conditions,

rh
1 l ^(t)dt = 0
h1

and	 j * (t)dt = 0

_b

(7.6a,b)

Defining again,

t = hiT1	 f	 x1. = h i K 	 for	 -hi _< Xi S t <. h l .

and

3

t = bT2	 x2	 bK2 for -b < x2,t < b

the normalized form of equations (5.2a,b) and(7.6a,b) can

be written as follows:

I	 l	 1
j [711K+ ir hl klls (Kl ,T 1 ) 0 (Tl)dTl + hlkllf(Kl'Tl)^°(Tl)dTl

	

 l	 _1

I-
 (1- V V ) 7

+ b (1k12(K 'T2)^o(T2)dT2	
2 xE Yx P1 ( K 1 ) 1<Kl<l

11	
1	 Y14 y	 a

1 ^	 1	 1
1	 0

(T 
2)
	

°	 °dT + h	 k (K ,T ) (T )dT + b k (K ,T )^ (T )dT =

	

IT
f T -K	 2	 if 21 2 1 0 1	 1	 j 22 2 2 0 2	 21 2 2	 -1	 -1

1-vXyvyx 0	
_ < <1

(	 )
-	

2Y
* E* 	 P2 2)1 K2

14 y1	 1*

I	 (-11)d	 and	 )dT2T^	 0	
j

0	 (7.7a,b,c,d)
J ^	 _ 

^o (T2
1	 l
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To obtain the solution, we will use the numerical m;"d

w	 described in [11]. Hence, we obtain:

N

11 w j (T l .) [T7K	 + 7rh l k lls (K li' T lj ) Fo(Tlj)J-1	 11i

N
+ hl j^l wj(Tlj)kIIf(K11,Tlj)Fo(T lj)

N

+ b 	 jl k12(K1 i' T 2j )Fo (T 2j )

(1-v vx 	 x)po
(K •)	 i = 1, ... N-1

	

2Y14Ey	 1	
li

N

f	 N
	 [T27 

K2i +^rbk22('2i'T2j Fo(T 2j
1 

N

+ .I	 wj(Tlj)k21(KZi'Tlj)Fo(Tlj)
J

2 2i
2Y14Ey

N	 N
w j ( T , j) F o( ,rl j ) = 0'	 and	 N	 Fo(T2j)	 0

j=1	 j 1

(7.8a,b,c,d)

where

	

Fo(T.1)	 *	 Fo(T2)

	

1 	 T 2

i

	

pN-Y"-Y)(T1
j )	 0	 j = 1,...N

pN(1_Y),1- Y)(K1i)
 _ _0	 ,	 i	 1,. .N-7

-53-

ORIGINAL PAGE Ib
OF POOR QUALM



T 2j = cos 
2N 

(2i-1)	 ,	 J = 1,.. .N

K2  = cos ^
	

i =	 ....N-1

and w
i

( ,r
li

) are the weights of P N ( Y.-Y)(Tlj).

Solving the 2N x 2N

can find the 2N unknowns

we are interested in the

can be calcul,ted in ter

Define.

system of linear equations one

F 0 (T l ^) and Fo(T
2j

).	 But again

stress intensity factors, which

ms of F
0

( T 1j ) and F o (T2
j

) .

k a = x^.^_	 2Y(x2+h2)Yo2y(x2'0)22

and

kb = xl	
x2-b a2y(x2,0)

2

After some calculation shown in Appendix D, we have:
a

j

k = (hl)YY14E*Fo(l ) a,	 IW1 ^' S + X
I w 1 K-s

a	
{1-vXyvyx)siniTy	

101	
I W*II w 1I Y	

102	 w*IIW I Y

	

I W 3 1 fF5	 IW30
a

+ '103 
Iw3 IIwiI 

Y + X104 
IW31IW3I Y

and

a
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2Y* E * 36
14 y

kb = - (1-v * v*
 ) Fo(1)	 (7.9a,b)

xy yx

The results for the case of broken laminates are shown in

Figures 13-16. Again the same material combinations are

used.	 In Figure 13 the stress intensity factor k a is

plotted versus the ratio h 2 /h, for b = 0.	 When h
2
 -1-co ka

has an asymptotic value which can be recovered in [7].

Figure 14 shows the variation of k b with h 1 /h 2 , for the

case a = 0. For b t 0, the variation of k a and k b with

b/h 2 are given in'Figures 15 and 16.

'	 7.3 Case of a Crack Crossing the Interface

In this case the governing singular integral equa-

tions are (6.3a,b).	 As it was pointed out in Section 6,

the characteristic equation (6.10) does not always give a

singularity power at the bimaterial interface. Therefore,

the numerical solution needs care, and we should solve

equations (6.3a,b) considering the singular and non-

singular cases at the bimaterial interfaces.

7.3.1	 Singular Behavior at the Interface

For the material combination II (isotropic-ortho

tropic) equation (6.10) has a root between 0 and 1. Using

Newton- Raphson method to solve equation (6.10), we haves

S =.0.04248
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We will make use of the following definitions to normalize

equations (6.3a,b), the single-valuedness condition, and

the relation (6.9a):

	

t = h1T1	 S x
1	hl K 1	for =h l <t, xl<hl

h -c	 h
2
	h -c	 h

2
t = 2 T2 + 2	 x2 = ^- K2 + ^ for c<t, x2<h2.

Then, we obtain:

1
1	 dT + fi 	 + hl 

	

1
Tf 

J100('rl)

 T - K 	1	 1 I'ko , S (K , ,T I ) 00 ('rl )dr 1	 j 1olf(KI,'rl)Oo(Tl).dT

1

h -c 1 *o	 *	 h2-c 1 *o

	

+ 2
	

k	 (K ,T )^ (T )dT +	 k	 (K ,T ) 00 (T  )dT
2	 12s 1	

f 1 2 	 2	 2
-1

_	 (1-vXyvyx)	

(K ) - 1<K <1

^Y14Ey	
1 1	 1

	

1 l	 1	 +	 1	
co 2	 2(T)dT

	

IT j T2-K2	 +K + 2 2
-c2

1	 1
	+ h ( k 	 (K ^T 1 )^ ( T )dT + h	 k° (K ^T )^ (T 

)dT`
1 1

	

	 2	 0 1	 1	 1 j i 21f 2 1 0 1	 121s 1	 -

h -c f'k*o s (K
	h -c1*o

2+2	 k	 (K ,T )^ ( T ) dT

	

+   	 )dT'2L 	 2"r2)4(_[2  	2 '	 2	 22f 2 2_	 2	 2

(1-v*yv*X) Po( K)
	

1 K <1

2Y E	 2 2	 -<2
14 y

1	 *	 hl ^ al
	h 	 (T )dT - 0 and F (1) =	 — F (1)

	

1 j o 1	 1	 o	 h2-c a2 0

-)
(7.10a,b,cd)
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where

^wl^	 1	 ^^	 1
al 	8_ - 2cos^rs + a5 	

w	
+ a 

^ W
86 X--	

w w5 1	 L1.LL^

Iw —31	 1	 +	 Iw 3 1	 1
`87 1 	 W I II 	

88 ,r	 W3 1
5

a = awe	 1 * + a. ( w^	 1
2	 9g	 w I w	 ^a	 w w

3a s

+	 ^ w3 ^	 1 * _+ a_6 1^1	 1

95	 w w S	
9 ERs	 w wLL

Using the numerical method given in [11] equations (7.10

a,b,c,d) further reduce to:

N w. ,r
	

1	 o	
+ iTh l kllf ( K	 ) F1i,Tlj	

(T )
^ ^	 l(	 )	 + ^rh l k^ s(K1i .T lJ )	 o lj

7r-1 J 1J Tlj -Kli

+ I w*(T .) h2-c k12s(Kli''T2j) + 
h
L*'f Kli ,

c
k( 	 T2j) Fo(T2j)

J-1 J 2	 2J

_ - (1-

vXyvyX) 
PO(K

l

 ) 
i = 1'...N-1

FA,GE	
2Y14Ey 1 

u Pofl Qum
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N
12"	 *oX WJ(T2j) 

T2j 1K2 +	 2(h +^) +n	 — 
k22s (K21 T2j )Vl	 T2J+K27+ 2_^_ 2__

h2-c *o	 *	 N

+	 —'2 k22f (K2i' T2j ) Fo (T2j ) +	 1 Wj(T1j)^h1k12s(K2i'Tlj)
J

p1-v* V* )

+ hl k2lf (K2i'Tlj )] Fo (T ') _ - (	 *y *x po ( K •)	 1,...N-1J	 1J	
2y 

E	 i
14 y

N
h 1 X wj (T1j )Fp (T1j ) = 0

j-1

and

S
h	 a

F
0

(1 	 v7 h2
-c	 2 F

0 (1)	 (7.11a,b,c,d)

where

Fp(T)	 *	 Fo(T)

(1-T2)$	 o	
(1-T)S(1+T)

N	 1j)	 J	 .N

PN-1	 (K Ii) 
= 0	 i = 1,...N-1	 3

*
Vj (T^ j ) andwj (T 2j ) are the corresponding weights of
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P N W
'
-R) ( T 1j ) and PN(-5,-11)(T2j).

Solving the 2N x 2N system of linear equations, we

obtain the 2N unknowns Fo (T l ^) and Fo(T
2j

). The stress in-

tensity factors can be defined as follows:

k b	 lim	 c-x2 02y(x2,0)
x 2 -► .c

and at the bimaterial interfaces

kxx = 1im y s a (h , y)Y -). 0+	 lx 1 

kxy =	
li + YD Tlxy(hl,y)	

(7.12a,b,c)
y ;0

By making use of definitions (7.12a,b,c) and after lengthy

calculation shown in Appendix D we obtain:

2 l-SY* E*

kb _
	 * l* 

y 3f 2-c F*(-1)
(l : 1jxyyx)

k	 Ex	 1	 hl	
Yl 	 Yll	 1

3Yxx	
vxy^yx 2

5+1
sin	 Y13 ^w^^ 

8	 2 Y12 I W 3) S

1w,1 (Y3A
81 +W82 ) _ Iw3I (Y3'83+Y4X84)

S	 Fo (_l)
3^S	 IW1 1 

S	

^.	
IW

A 	
y6 X 80

+ (h2-^)S^)S IwiI (Y3a89+Y4 X90 ) + ^1 (Y3"91+Y4X92) F (1)

wY* a	 i D	 S	
o

13 $0	 s	 s

R 5 S S J
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N'81 +Y10^'82 ) 1 w I	 (V83+Y10-'84) 'W31

X80 	 -	 X80 Lw ail 
I 

Vr5 	
o

+ (h2_0 a (Y9X89+Y10^'90 ) I w^1 + (Y9'91+Y10^'92)W31F*(1)

Y13^` 80	
w*	 3 	 w* 

S	 '^	
o

	

J--^1	
05

(7.13a,b,c)

Extrapolating the results found from equations (7.11a,b,c,

d') the stress intensity factors kb, k xx , k xy can be com-

puted in a straight-forward manner. The results are shown

in Figures 17-19. Figure 17 shows the variation of kb

with c/h
21
 for different values of (h l /h 2 ) ratio.	 kb in-

creases as (hl/h2) increases.	 Figures 18 and 19 show the

variation of 
kxx 

and k xy with respect to c/h2.

7.3.2 -Non-Sin4ular Behavior at the Interface

_In this case, the characteristic equation (6.10) has

no root and therefore the surface displacement derivatives

are bounded.	 Since, as it was shown in Section 6, the 'dis-

placement derivatives are continuous at the bimaterial in-

terfaces, using the single-valuedness condition to write
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the integrals from 0 to k, equations (6.2a,b) take the form

(see [121);

IT 	 r! s + r+s G(r)dw +	 k(r,$)G(r)dr = p(s) 0<s<^, 	 (7.10)
0	 0

where

W) (0<t<hl , 0<r<hl)

G(r)

* (t) (-h 2<t < -c, hl<r<k)

(1-vxyvyx)

	2Y E	 pl(xl) (0<x l <h l , 0<s<hl)14Y
p(s)

(1-vxyvyx)

	

2Y* E*	 P2 (x2 ) {-h2<x2<-c, hl<s<k)

14 y

kll (x l
,t) (0<x12 t<hl	, 0<r, s<hl)

1	 1	 1	 0<xl<hl' 0
<s

<hl

	

k 12 xl ,t)	 Tr t-x,	 t+x1	 _h 2 <t<-c,. h 1 <r<k

k(r,$)	 j

	

k* (x y ^	 1	 l	 + 1	 -h2<x2<-c,h1
<s<k

	

21 2 } - 1Tt=x	 t+x
2	 2	 0<t<h

l
, 
0<r<hl

k22 (x2 ,t) (-h2 <X21 t<-c,-hl<r, s <k)

with

*
	k

ii
(xi,t)	 kij (xi ,t) - ki (x i ,-t)	 (ij = 1,2)
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Now we have the governing equations for a crack imbedded

in a non-homogeneous material, obviously with power singu-

larity -; at the crack tip. Normalizing equation (7.10)

by means of:

r	 QT	 and	 s = QK

we obtain:

f
1	 1

T1K 
+ T+K Go (T)dT + Q ko (T,K)Go (T)dT = PO (K) O<K<l (7.11)J D 	JD

i

Equation (7.11) reduces-to a set of linear equations

by using the method of collocations (see [111):
I^	

N
N	 + 	 + 7TU (Tj ,Ki ) Ho (Tj ) = 2Npo (K i ) i	 1,...N
j=1 T

^KT^+K i 	 0
 

(7.12)

I.

where

T j	 =	 cos N' j	 =	 1,...N
^

K 
	 Cos

rC	 . 7T i	 =	 1,...N

H 0 
(T)

G
0 

(T)

2

The N	 unknowns H
0 
(Tcan be found from	 equation	 (7.12)	 in'

a	 straight-forward manner.i

Defining the stress intensity factor at the crack r

tip_as:
s

62

i

I



kb = x £	
-^,x2	 02y(x2,0)

2

we obtain:

2* E * J

xy yx

Using the same material for both strips, we recover again

the results of colinear cracks in homogeneous medium. Fig-

ure 20 shows the variation of k b with c/h 2 .	 kb increases

as hI /h_2 increases.



8.	 CONCLUSIONS

The fracture problem of layered orthotropic composite

plates has been studied. The following results have been

obtained:

1) Depending on the elastic constants, orthotropic

materials can be classified in two groups; materials of

type I and materials of type II. (A different formulation

is needed for each combination.)

2) The colinear crack solution is the same for homo-

geneous isotropic and orthotropic materials.

3) In the case of an internal crack in the first

layer, the stress intensity factor k  can be reduced sig-

nificantly by a proper selection of the elastic constants.

4) For the case of broken laminates there is a sing-

ularity power which can be found from equation (5.7). The

singularity power _y varies between 0 and -1 -for different

material combinations.

5) Fora eµack crossing the interface, the singular

behavior at the interface disappears for some material com-

binations.	 In this case the crack surface displacement

derivatives are bounded and continuous, and all stresses

are bounded at the bimaterial interfaces.
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9.	 RECOMMENDATIONS

In the present work, a general formulation of the

fracture problem . of layered orthotropic composites with

periodic cracks is given. The formulation is done only

for the case where both materials are of type I. Follow-

ing the same procedure, the problem can also be studied

for orthotropic!materials of type II, or for the combina-

tion of type 'I and type II. The dependence of the singular

behavior at the interface on the elastic constants can also

be investigated.

In our formulation the thickness of the adhesive

bonding the layers has been neglected. The study of the

effect of the adhesive also can be recommended.

' I	A more realistic approach also would be to study the

problem of finite number of strips. But this problem re-

quires lengthy algebra.

There are many other problems to be studied in the

fracture of composites. We hope that our work will have

a small contribution in the study of these problems.

.
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Mat No. Ex Ey Gx vxy
5.62 x 109 N /m2 17.37 x 109 N/m2 0.492 x 109 N/m2 0.036

1 (8 x 106 psi) (24.75 x 106 psi) (0.7 x 106 psi) .(0.036)

13.71 x 109 N/m2 3.16 x 109 N/m2 2.46 x 109 N/m2 0.650
2 (19.5 x 106 psi) (4.5 x 106 psi) (3.5 x 106 psi) (0.650)

15.76 x 109 N/m2 15.78 x 109 N/m2 6.09 x 109 N/m2 0.3003
(22.447 x106 psi) (22.6 x 106 psi) (8.655 x106 psi) (0.300)

17.34 x 109 N/m2 17.37 x 109 N /m2 6.36 x 109 N/m2 0.300
4 (24.3 x 106 psi) (24.75 x 106 psi) (9.05 x 106 psi) (0.300)

1.025 x 109 N/m2 3.16 x 109 N/m2 0.901 x 108 N/m2 0.036
5 (1.46 x 106 psi) (4.5 x 106 psi) (0.128 x 106 psi) (0.036)

3.09 x 109 N /m2 3:16 x109 N /m2 1.104 x 109 N/m2 0.400
6 (4.4 x 106 psi) (4.5 x 106 psi) (1.57 x 106 psi) (0.400)

Comb. Material of Material of the
No. the first strip second strip

I 1 2

II 3 2

III 4 2

IV 4 6

V 4 5



Material
constant ka

E x increases increases

Ex increases decreases

G xy increases increases

GXy, increases decreases

vxy increases increases

V
xy increases decreases

E y and Ey are kept constant

Table 2. _Dependence of ka on the
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Figure 1. Geometry of the composite plate.
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	Figure 4. The stress intensity factor ka for the 	 h2/h,crack in the first strip (Combination I).
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Figure 5. The stress intensity factor ka for the
crack in the first strip (Combination II)•
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Figure	 6. The	 st ress	 intensity factor	 k b 	for the

crack	 in	 buffer strip (Combination	 I)•
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0.6
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0. 0.2	 0.6 b/ h2 1.0

Figure 8. The stress intensity factor ka for the
case in which both strips contain cracks
(Combination I).
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5.	 W2hl; 2h2

P,

ca/hl=0.9
a.

3.

1

0.8

.	 O.7 a
0.6
O
0.3

1.
O 0.2	 0.6 b/h2 1.0

Figure 9. The stress intensity factor k b for the case
in which both strips contain cracks
(Combination I)
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0.e
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1.0 1 	 1

0.	 0.2	 0.6	 b/h2 1.0
Figure 10. The stress intensit y factor ka for the case

in which both strips contain cracks

(Combination II).
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Figure 11. The stress intensity factor kb for the

case in which both strips contain cracks
(Combination II).
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/Ey=555

r

v	 3	 5	 h2/ h,
Figure 12. Comparison of the stress intensity factor

ka for isotropic and orthotropic materials.
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ka/p h;

1.1 or I: X 0.55048
For 11: X =0.65699 1 2

0.9
2 hi 2 h2
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N II

03-

0.5

V h11	 3 5
Figure	 13.	 The stress	 intensity factor ka when the first

laminate	 is	 broken	 (Combination I	 and II).
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b P2 2

3.5	 For I Y =0.42258

For II: Y =0.36911

w 3.0
'	 (	 II

2.5
3	 5	 t^/h2 7

Figure 14. The stress intensity factor kb when the second
laminate is broken (Combination I and II).



k / h^a p 1 i
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For it : Y =0.65699

1
1.4 t-eq2

2 hi	2h2
1.2

it

1.0

Q	 O2	 0.6	 1.0 b/h2
Figure 15. The stress intensity factor ka when the first

laminate is broken and the second contains a
crack (Combination I and II).
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Jj—^L

CO

1

18	 i
Ln	

2 hi

14 it

10
0.	 0.2	 0.6	 b/h2 1.0

Figure 16. The stress intensity factor kb when the first
laminate is broken and the second contains a
crack (Combination I and Ii).



c/h2 O

12. kb IP2
2	 2,

l	 !	 = 0.0424 8

1-h-2h;
8.CO hi /h4.0^ 2-

6

h^ / =1.0

0.8 	 0.6 	 0.4	 0.2
Figure 17. The stress intensity factor k for a crack

crossing the interface (Singu y ar behavior at
the interface).
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0.6	 0.4	 0.2  c/h2

Figure 18. The stress intensity factor k XX for a crack

C ro	 crossing the interface.
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0.—,
1.0	 0.8	 0.6

Figure 19.	 The stress int
crossing the i

0.4	 0.2 c /h2 O
ensity factor kxy for a crack
nterface.
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Figure 20. The stress intensity factor k b for a crack

crossing the interface (Non-singular behavior
at the interface).
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APPENDIX A

Definitions of the material constants;

A superscript * will be used for the material in the second

strip.	 The constants S i , (i = 1,..,10) and w j (j	 1,..,4)

are given by equations (2.15), (3.5), and (3.8).

Y1 = 1 + v xy 1 9	 Y12 - ^ + sign(WP10

	

V w ^	 Y

Y2 =	
+ yx 3 10	 Y13 = sign(w,)a 9 - Y sign(w3)^l0

+
__ 

1w	 yX 7	 4 T
_ 1 Y5 _ Ye Y11

Y 3	 v Y1	
Y 13	 Y 13 Y 12

Y = w + v S= 
EX 

1 v*yv*x
4	 3	 yx8	 1	 E l -v v

*	 xy yx

Y _ v + 
s9w1	

a = G—5	 xy 2 Gxy

S 10 w3
Y6 = vxy +	 x3- S8Y 3 - ^7Y4

*

Y7 = vxywl	 ^7 	a41Y3^7 S7Y3

*
= v	 =w+	a Y	 - S YI

8	 xy3	 8	 5	 1 . 4.7	 83Y 

Y9	 -1 + ^7w1	 x6 = Y9 - Y10

	

y10 = - 1 + S8w3	 ^'7 = Y9 Y9^'2

w
Y11 = _	

11 + sign( wl )^q 	 x8 = Yg _ Y10^2
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X9 = x3x7	 x24 - x10x16 - x9x16

	

x'10 _ x3x8 	 x25	 x10`17

x11	 x3Y9	 x26 = x12x16 -x10x18

x12	 x6X4	
x27 = 

x9x20 x3x16

x13
= x 

5 
x 
6 x28 - x9x19

XI - x6Y3 x29 = X12 x19 -x13`17

x15 x667
x	 = x	 x	 - x	 x	 _ 0
30	 13 18	 12 20

x16
= x3s7

a31	
=x 11 x16 - x9 16

x17

^yy
= x3s7 + X08 x32 - x1117

I

x18 x467

1
a

x`33 - x16 x 12  - x11 x18

x
19_ =

x368 + x5 a8 x34	 x9x22 - x14x16

X20 x557 X35 	 9^`21

x21
x3	 Y308

x36
	 14 17 -	 21	 12

x22 - Y307 x37	 x1418 -	 22 120

A 23 = 673$

2

x38 _ x15'16 - S7x9
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"39=Y23

"40	 ^'15^'17	 12x23

,,41
41 - 0

2
7^'12 - '15X18 = 0

x`42 V3 l 6

'43 x3 x17

'44 = '318

x54 = -10"23

x55 X13 `23 -^W19

x56	 - X3'20

X57	 X3`19

X58 = - x4X16 N Y9)

x59	 X5XI6 (Y9 - X7)

{

^,	 =
45

k	 -
10 16

a	 a
11	 16 x`60 = Y9 ( ^4^19	 x5`17)

X46 11	 20 - 13 16

_

X61

6	
-X3 7	 (X 10	 9)

X47 x'11 X19 62 X8 (Y3 X l 7	 4 21

48 14 16 x1022 63
_ _ a	 (Y 6	 + x)

9	 3 8	 5

X49 X13X22 -
a14X20 0	 64 7	 10	 9

^50 = -	 10 21 X65
a8 

(X4 X23 	 7 17)

51 X14 7, 1 9 + X 13a21 X66

a,

7	 (S719	 x' 95 23)

X52 x1067 -
x
15 x16 x67 _ - x4x16

X 53 ^15^20

2

a13s7
0	 x68,=

.
^5 16

^.° -94-



X69 = a5X17 - X4a19

*

X70 ` XP7 ( X10-'11) + %'4('8-y9)1

X71 = XP8(>'11-a9) + 58 X5 ( Y9 -a7)]

X72	 07 ( "11'L 5 -Y13 ) + 08("3'12-x'11'4)

X73 = X21('10-X9)

X74	 x12^'3	 ^'10^4 + 67 ( '14X3- 'l J3)

X75 = x9 x5 - x13 x3 + 68(X9y3-X14X3)

X76 _ x23 (x lo- x9)

a77 67(a1061_'15Y

X78	 68 ( '15'3 679)

X79 - XP468-x5 7)

x80	 x24 + x25 +, x26 + x27	 x28 + x29

x81	 x`70	 x71	 x72 + sign(W1 )69 (X73 + '74 + X75)

^i
+ % 76+ x'77+ X78 ) - Y I w l	 43-X5779)

	

1	 ^
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X82	 X58 -X59 - A60 + 
sign(w 1 )09 (X61 + X62 + X63)

Y ^	 )
+ ~ w r (X64+ x`65+x'66 ) - lw 	 (^67+^68+x'69

1	 I..1I

X83 ^ (X70+ x`71 +X72)	
Y

3_ s 9n (w3 ) 010 ( 'L 73+x'74+X75 )Y 12	 'Y12

_	 Y11 w
2 (x`76+>, +X78) +	

5 (X 
_X +

^11	
43" 57

Y12 	3'	 3'^

Y

Y	

Y
X84	

11 

(X58+X59+X60)	 i1 sign (w3)S10(X61+X62+x'63)
12	 Y12

Y	 Y	 y	 j
-> s Y11	 64+X65+X66 + 11 5(X67+x,68+X69)

12 3	 TW 3
y

Y7a81

)`85	 Y13Y14X80

= Y8X82

86 Y13Y14^80

a	 Y7x83
87 Y 1 3Y14 x80

3

_ Y8'84

^88 Y13Y14'80

X
89	 ^70 - X71	 x72 - 

sign(w
l )S9 (X73 + X74 + x75)

*	 *
	Y 	 Y 6

^1?s IW ( 76 77
+X 	- X2 ,—W - (X43-x57+X79)

1	 1
*

X90	 X58	 x59	 x60 - sign (w l )69 (a61 +- X62 + '63)

	

*	 *

	

_	 s
al	

Y* (^64+^b5+^66) - ^2 Y11* 
s 

(X67+X68+a69)

	

I w 1	 +W1
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*	 *

	

X91 = Y	 (X70+X71+X72) + Y*
12

L si9n(w3)S1
12	

0(X73+X74+X75)

*	 *

	

+	 j, --	 w* (X76+X77+X78) + Ỳ
1

1
 2 s (X43_^57+X79)

	

5 1 Y12 ^3 1	 I 3^

Y11X92 Y12 (X58+X59+X60)

*

+ X a 'y1 ^^2
1 ^5 Y12 IW31

+ ^ sign(w3)S 1 0( X61 +X +X63)

12

Y* X
 2 vi s2 5

(X64+X65+x66 ) + ^w3^ (X67+X68+X69)

Y7X89
X93 

Y13Y^ 14X80

Y8X90

X
94 Y 3y14X80

X	 =	
Y-/X91

95Y
' 3YX14 80

X	 _ -._arY8X92
96	

Y:i3Y14X80

Xg1 = -X4 5	X46 - X47 + sign(wl)S9 
( X48 + X50 + X51)

V,05-
+ '	 ^ (X52+X54+^'55) - Y1	 (X42+X56+X57)

	

1	 1

X98 = - X31	 X
32 - X33 + sign(wl ) Y X34 + X35 + X36)

	

s l w 1	 38 39 ,40 	 1W1'	 42	 43	 44

X99	 Y11  (X45 + X46 + X47)	
-11 sign(w3 )S10 (X48 + X50 + X51

Y12	 X12

	Y 12	 52 54 55 - 42	 56 57 ))
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Y11 ) - ^ sign (w )0 (X +X +AXloo 
Y12 

(^31+X32+X33	
Y12	

3 10 34 35 36)

	

Y Y	 Y
5 Y -T (a +a

38 39 
+a 40) + -- - (- 7,42-a4 3+X44 )

 312	 3

X97Y7

X101 
Y13Y1 84 0

a98Y8

X102 
Y13Y
— 1

^99Y7
X103Y

13Y4x80

I 00Y8
X104	

Y13Y14 80.

* *X105 - _ X45	 X46	 7`47 - s i 9n (wl ) S* ( X48 + 7`50 + ^`51)

Xl	
Iwl

Y
*( 

(X52+X54+X55) - 
X2 Y1 ^

l w i 

* 1

s 

(X42+X56+X57)

X106 = - X
31 - 7`32 - X33-sign(wl)S* (X34+X35+X36)

	

i	 1

Xl	
lw
*1 (X38+X39+X40)

 - X 
^,*

2 
lW

(-42-X43+X44)

^	 1	 1

X107	 Y*(X45+X46+X47) +'Y
*1
 si9n(w3)O10(X48+X50+X51)

12	 12
*	 *	 *

X **
+	 X Y11 Y2	 X +X ^

X	 { 11 2 05 X +^ +-- (	 ^,--- (
0	 2

	

5 '1 
Y12 w	

5....54 55)
	

w	 42 56 57)

	

3 1 	 1	 3^
*	 *

X108 - y 	 + Y*1	
gn(w3)S10(X34+X35+X36)

12	 12

Y * X ^
+	 3 **1	 2 (X +X +X ) + Y11 *v^5 ( -X -X	 +X )

1 S5 Y12 1w*1	 38 30+'40)	 1w 
1	 42 43 44

	

3	
3

v
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105Y7
x'109 - Y*

13Y*14"80

A106Y8
X110 - Y13yw80

^1O7Y7
X111

Y13Y^'80

112
Y13Y14A80

a 
113

=	 w l	 w,	 a	 s	 -
85I09

w,	 w*	 a	 s 93 101.^

X114
_^^1 wl  

85x110 +
w l 	 w3

5x111

n y5

Y10-5
5

-	
W^	 w*	

x93 x102
w l	 w3	

,95x101

A _^^, a -^
115

w 3 	,a
 85 112 ^ /7595 102

x 116
=	 w1	 1- 1-L x	 +86 109 W3	 W1	 X	 x

—	 87 109^ ^ V

w3	 wi	 X
93 103

—	
w

1	
w*	

A
94 101

^ /05

X
117117
=^a a	 +^^a8a1

86 110 6	 11^

x87 x110
1131	 IW*3 

	X87x111+	 -V 7
s s

_
9310 

4 _ ^ ^l 
X94 X102.^

v5s-

'Roca ^ 95 103 96 101Or *

-99-



x118 -

W	 *
31 W 87x112 +

► --1^	 1"-3I
86x112

S5S5
^--
R5	

05

'95X104 r	 i	 ^ `96X102ŵ
vws	

JS5
V O5

xl19
I W 31 J!IL 

X68X109 -
IW31 	

wl	

X94x103

X1 2020
= Ld ini 

a88x11 o +
1 3	 W3	

x8 8 a i li^ p

`94X104
W	
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-  ,96^'104 
5

^5



APPENDIX B

Expressions of the functions used in equations (4.14 ), and

(4.15):

i

R (a)	
1 
	
e(hl-n)a^/jwjj_ y11e-(h1-n)a^/Iwr

1
	

ja

	

y3
a	 y12	 ^.^)do

a

_	 1	 f
b

e-(h2-n)aS /lwi _ Y	 e-(h2-^1)aw3}(T1)dn

2y13a -b	
y12

ja
R2 

	

si9n(wl)S9e-(hl n)a/Iwil .y13a 
a

1

Y1-1 sign(w3)0'oe-(h1-n)avlo-5/ ws^ ^(n)dn
12

b

*	
(h2-n)

*I

sign(wl )s9e- a/^w1
2y a fb

13
*

- y1 sign'(w3)S*oe-(h2-n)a/^w3(n)dn
y12	

j

3(a)	 yz 13a -a I ŵ 17
_ Y

12 y 2 e-(hl-n)a^/Iw31 ^(n)dn

y12

_, 
fb y1

*1 
e-( h2 -n)aT5/ lw1

	

2 a 	 wy
l3 -b	 1l

^.
_ y11 y 1 e-(h2-n)a^/Iw3I *(n)dn

Y 1 2 1w* 1

k
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R
a
 (a) _ Y i^ a 1 e-(hl'n)a, 5/Iwl)Y3a jT`,T

-a

1_r. e-(h 1 -n)ay55/ Iws ^(n)dTj

_
*i ax lb 1 e-(h2 -n)a^/ Iw o I

2Y13a 	-b ^w^^

_ * e -(h2-n)a^/lw l ^*(n)dn
lw3 i

Vol) = a24 f1 (a) + X25f2(a) + X26f3 (a) + a27f4(a)

- X28 f5 (a)' + X29f6(a)

f1(a)

f2(a)

f3(a)

f4(a)

f5(a)

f6(a)

9(a)

h(a)

M(a)

n(a)

tanh(w^ah2)tanh(w3ah2)

tanh(w3ah2)tanh(wlahl)

tanh(w3ah2)tanh(w3ahl)

tanh(w^ah2)tanh(w3ahl)

tanh(w^ah2)tanh(wlahl)

tanh(wlahI)tanh(w3ah1)

a 31 tanh(w*ah2 ) + a 32tanh(w l ah l ) + a33tanh(w3ah1)

x'34 f4 (a) + X 35f 5 (a) + ^ 36%(a)

38 4 (a) + X39 f5{a) + X40f6(a)

a tanh(w*ah)	 a tanh(w ah) + a tanh(w ah )42	 1 2 - 43	 1 1	 44	 3 1

102
p

i
a
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g(a) - a tanh(w*ah) + a tanh(w ah) + a tanh(w ah )o	 - 45	 3 2 - 46	 3 1	 47	 1 1

ho (a)	 X
48f3 (a) + X50f2((x) + X5lf6(a)

mo (a) = a52f3(a) + A54f2 (a) + X55f6((X)

no(a) = a42tanh(w3ah2 ) + a56
tanh(w3ah 1 ) + X57tanh(wlahl)

gl ( a )	 X58
tanh(w3ah 2 ) + a59tanh(w^ah2 ) + a60tanh(wlahl)

hl(a)

ml(a)

n, (a)

92(a)

h2(a)

X61 fl (a) + X62f2(a) + ^63f5(a)

X64fl(a) +. a65 f2 (a) + a66f5(a)

X tanh(w*ah) + a tanh(w*ah) + a tanh(w ah )
67	 3 2	 68	 1 2	 69	 1 1

A
70
tanh(w3ah2 ) + X71 tanh(w^ah2 )'+ X72tanh(w3ahl)

a73fl (a) + a74f3 (a) + X75f4(a)

m2(01) = a
76fl

((')
 + a77 f3 (a) + a78f4 (a)
	

i

n2(a) = a43 tanh(w*
3
 ah 2)	 a57 tanh(w*

1
ah

2
) + a 

79 
tanh(w

3
 ah

1 )` 

Expressions of the functions k.(j = 1,8) used in Eqs. (4.17):
J a

3

1	
cosh(w,ax1)

k l (X1' a)	 2Y13f a cosh w1ah1T Y7 -92 ( a ) + sign(wl)39h2(a)

Y1m (a) _ 

Y11^ 
n (

a ) + cosh(w3ax,) Y 
_g 

(a)

+	 2	 —- 2	 cosh w a	 8 l
1	 ^	 3 1

3
{	 a + 3S Y1 

ml(a) _ Y
1 1 ^5 n1(a)

si gn(wl) 09 h 1 ( )	 s	 -
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cosh(w ax Y	 'Y
k2(X1'a)	

Y if a cosh w l ah l
 Y7 92(a)^ 	 _ Y l l si9n(w3)S10h2(a)

	13 	 1	 1	 12	 12

yY2 	 Y11 5	 cosh(w3ax1) Y Y11 9 (a)
-	 m (a) +	 n (a)

Y12 T 
2	 3^ 2	 cosh w3ah1 8 Y12 1

_ Y 11 sign(w3)s]Oh (a) - ^ Y11 Y2 m (a) + y11^ 
n (a)Y	 1	 s Y T 1	 ^- 1

_12	 12	 3	 3.

	

1	
cosh(wIaxl)

k 3(xl'a) - 2Y13 ()* f a cosh wlahl Y7 -92(a) 	 Si9n(wl)R9h2(a)

Y*	 Y* vr̂ ,-	cosh(w ax )

alv"0*5 
Iwil M

2 (a)
	 X2 --^ w- i 5 n 2

(a) + cosh w
3
 ah 

1.
7 Y8

*	 *

-g l (a) sign(w^)^*h 1 (a) - a l q Y* ml (a) - a2 Y'--^5 n^(a)
l	 1w1	 ^w1

	

1	
cosh(wlaxl) 	 Y*	 Y*

k4(xl^a)	 2 * f a cosh w ah	 Y7 92 ( a) * 1 + *1 s9n(w3)^^0h2(a)

I	 Y13 ( )	 1	1,Y 12	
Y 12	 3

*	 *	 #
/--WX Y*11 Y2

* 

m a pt + Y11 ^2 305 h a	 +
 cosh ( w

3 	 )
+ ►

	

0 5 1 Y* 1w*1 2' )	 Iw	 - 2 ( )	 cosh w3ah	 Y8	
a

12	 3	 3	 x!

jl 	
Y*1 g l (a) + * 1 s ign(w3)O Oh l (a) + X l^ 

Y
* 1 Y	 m (a)

Y	 YY 12	

----

	 1, 2	 12 
W 3

Y11^2ys5
n^(a)

Iw3I

	1 	
cosh(w^ax2)

k (x a) _	 -	 *	 Y* -g (a) + sign(w )Oi h (a)
5 29
	 Y13f a	 cosh(wl ah) 7	 0	 1. 9 0

2
*

y	 Y T	 cosh(w ax )

^	 + ^ ^ mo(a)
	

l^^ no ( a ) +	 * 
2 

Y8 -9^a)
1	 cosh(w3ah2)
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Y1 1
+ s.ign(wl )O9h(a) + I	 woo 	

s
- -- 	 5 ,n(a)

1	 1

1	
cosh(w1ax2) Y 

1	
Y1 	 11

k 	 .a)	 *
	

Y7 9 (a)	 -	 sign(w3)01oho(a)6( x, 	 _Y13f a cosh(wl ah2) 	 °	 Y12 Y12

	

Y	 Y Aocosh(w*ax) * Y
y	 mo(o,) + 	 no (a) +	 * 2 Y8 y g(a)
12	 3	 3	 cosh(w3ah2)	 12

- — - sign(w3 )0 1 oh(a) - 3 Y 1:1	 - m(a) + Y w O 5 n(a)
12	 12	 3

cosh(w*ax) *	 * *	 2

k7 (x2 ,a) _ * 1	 1 2 y* -go(a)	 sign(wl)Ogho(a)
2y13f(a') cosh(wlah2)

	

Y*	 Y*	 cosh(w3ax2)

1 m (a) - a	
] 1 * s n (a) + —	 *	 Y -9(a)

l S S ^wl l ^	 2 (w l ^	 °	 cosh(w3ah2) 8

- si gn(w* )a*h(a) - a	 Y^ m( a) _ a -^-	 n(a)

	

1 9	 1	 5 I w1 1	 2 1w 1	
s	 ,

a	
^osh(wlax2) *	

a) 
yi1

k8(x2^ )	 *	 *	 Y7 90(

	

2y f(a) cosh(w,ah 2 )	 _ Y12

13	 u
Y*

+ Y*1 
s gn( w3)S10 ho (a) +	 Al *'	 * mo(a)

Y	 Y	 ^w3112	 12

y* ►	 cosh( w ax) * Y*	 Y*
+ ^ 1 * 

O$ no(a) +	 * 2 Y8	 11 g ( CO + *1 sign(w3)
1w	 cosh(w3ah2)	 Y12'	 Y123

3

O* h(a) + X 3 
* Y11 

Y2 m(a) + y* 1 2 —^ n ( a)

	

l	
O10	 y*	 *I	 Iw31

12 w3

The kernels K j (_j =1,4) used in Eqs. (6.15a,b)
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K1(n^Y) 2y	
Yle^^W,IaY/^ _ Y2 Y 1 1 e-^w3IaY/^ cosahlsinanda

13 0	 ^2

+'^' ( e
	 _ Y392 (a) +Y4g 1 (a) + s gn(w l ) S9 Y3h2(a)

Y13 0

I	 +	 h (CO +	
Y1	

Y m (a) + Y m {a)	 Y11 ^S Y n (a ) + y' n (a)Y4 1	 3 2	 4 1	 Iw1l	 3 2	 4 1

f 1	 ,

+ e- (h1-n)aYpS/ lw3l ^11	 Y11

Y1 2

Y392 (a) + Y491(a) - Y12 sign(w3 )^10
 Y3h2(a)

+ 
Y 

h 

,(a) 

_	 X11 Y2	 Y m2 (a) +Y4m ( a ) + Y11 ^s ,
4 1	 Y ^ 3	 1—

1z

Y3n2
(a ) + 

Y4n,(a)	 co a dot

1	 -{h2-^) a /lw1l_ `(ha+n)a/ lw1IK2 (n.Y) = 
2
*	 e	 s	 e	 s

Y13

1

Y3g2(a)+ 4g
1
(a) - sign(w)59 Y3h 2 (a) + Y4h1(a)

4

7
-

	

	
Y3m2(a)

(W1I

+	
m (a) - 

11yR5.2 Y 
n 

(a)+Y4n (a)	
+ e -(h 2 -p)a 	 3^

41	 32	 1	 w	

j

(h2+n) aY 5/I w* I	 Y11

Y12

+ Y* 1 sign(w3 a310 
Y3h2(a)

Y12

,.: -106-



* *^	 Y*

+ Y4'1 (a) +
	

Y Y	
Y 3m2(a ) + Y4m1 (a) 

+ 1Iw*I z Y3n2(a)

a	 12 Iw3l	
I 3I	

^

+ Y4nl(a) co a da

1	 -lwll aY/, s _ e-^W3I aY/^ sinahlsinanda
K3(n-Y) = ^ jo Y11 e

+ 1	 [e (hl-n)(%vl0—s/jwll -[Y9 
tanh(wjahj)92(oL)

to

+ Y
10

tanh(wfh l )9l (a)

g	 tanh(w ah )h (a)+ Y tanh(w ah )hl(a) 
si n(wl )^9 Y9	 1 l 2	 10	 3 1 	

i
f

YI g	 1 1 2	
+ lOtanh(w3ahl)ml(a)+ r$5Y tanh(w ah )m (a) Y

`	 IwII
Y11^

- —^---T— Y9tanh(wlahl)n2(a)
Iwil

+	 tanh(w ah )n (a) + e_ (hl-r1)a^/ IW3I Y 1 1 y9tanh(wlahl)92(a)
Y l0	 3 1 1	 Y1z

+ Y tanh(w ah )gl(a) 
Y1 1 

s i 9n(wOl O Y9tanh(wlahl)h2(a)

10	 3 1	 YI z

+ Y tanh(w3ahl)

10

Y11 Y2 Y tanh(w ah')m (a)+-y Otanh(w3ahl)ml(a)
h1(a) s 

Y12 
T 9	 1 1 2

f 
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+ Yii^ 

lk

^9tanh(w l ah l )n2 (a) + Ylptanh(wph,)nl(a)l 	
sing da

	

Iw 3 1	 J

K (n,Y) _ * f
o

-
e-(h2-n) a /^ w^L e-(h2+n)a^/^w* I

4	 2 Y13

- [Y 9tanh(w lah l )9 2 ( a ) + YlOtanh(w 3ah l )9 l ( a) - s gn(w1)O9

+	 tanh(w ah )h (a) -	 Y'*' Y9tanh(wlahl)ly9tanh(wlahl)h2(a)	
wIl

Yl p	 3 1 1	
J 

(a) +Y tanh(w ah )m (a) - 
Yi i	 ^2 Y9tanh(wlahl)n2(a)

m2	 10	 3 1 1	 lwll

tanh(w ah )n (a)
l
 + j e-(h2 -n)a ► 5/ Iw3 1

Ylp	 3 l 1	
J

- e- (h2
+n)a

/^W3^

	

	 *' Y9tanh(wlah1)g2((x)

Y 12

+YlOtanh(w3ahl)gl(a)

+ —Ll sign(w*)^*10 Y tanh(w ah )h (a)+Ylptanh(w3ahl)`hl(a)
Y* 2	 3	 9	 1 1 2

+ V* YY 1 -'- T Ygtanh(wlah1)m2(a)+ YlOtanh(w3ah1)ml(a)

12 Iw3l

Y11	
a2

 ly tanh(w ah )n 2 (a)'+ Ylptanh(w3ahl)q^(a)	
si
aa 

da

l w*	
9	

1 13

r

a
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APPENDIX C

Evaluation of some Integrals

fo a
-at

sin bt dt = az+6'£	 a > 0

r	 -at
cos bt dt = a+

o	 e	 , a> 0 F

h
7r

^z  cos ax dx 	 e-a6

x

0

fo S-- sin ax dx = 7Te-as

fo 
x S +x sin ax dx = 

2
Sz (l - e-as)

Go 

-aa coshay da = - - 2	a > 0
e

r	 jo	 a -y

i
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APPENDIX D

Derivation of the Stress Intensity Factors

DA Case of Integral Cracks

The stress intensity factors are defined as:

k  = lm	 xl-a	
oly(x1 0)x1-+ a

kb = l im	 x2-b	
a2 

(x
2)0)	 (D . l a , b )

X 2 
-+	 Y

From Eq. (4.16a) we can write:

a (x ,0)	 2Y14	 ( a ^ (t) dt + ao (x ,0)	 ( D . 2
ly 1	 -vxY vyx 

La 
t-x l	ly 1

where an y (x 11 0) is a bounded function.-

F t)	 F(t)e7i/2

a	 (t-a) (t+a)

Define th^^ sectionally holomorphic function;

^	
_ 1	

a	
t	 dt

	

^(z) _ —
 f a7r
	

t -z

From [14] we obtain:

Tri 12
_	 3V(z) = F(-a)e	 F(a)	 +	 (z)	 (D.3)

	

(2a)II(z+a)-'^	 (2a) 32 (z -a) 	 °

Using (D.3) to evaluate (D.2) and with the definitions

given in (D.1a,b) we have:

3
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ka = - -^^4 E--^---j ^ F (a) _ - ^ Y^4 E^	 r Fo (1)
	xY yx ra	 xY yx

and similarly

k = - 
2Y 1 4 E* 	 1 F*(b) _ - 

ZY1 4E* 3Ti F*(1)
b	 (1-vxyvyx) 3b	 (1_vxyvyx)	

o

D.2 Case of Broken Laminates

ka = x2^mh2	 2Y(x2 + h2 ) Y a2y(x2 ,0)	 (D.4)

From Eq. (5.2b)

a2 (x2'0)	
2Y

* *4E	 hlk2ls 2(x^	 2t)^(t) dt + a y (x2 , 0 )	 (D.5)
Y	 (1-v v ) fhxy yx	 1

where 62y (x 2 ,0) is a bounded function.

	

F(t)
	 =	 F(t)eTOY

	

(h^-t 2 ) Y 	(t-hl)Y(t+hl)Y
^(t) =

Define:

	 f h
^,(z)	 dt

Tr

h 1 t z

then:
5

i

1"^(Z) = F(-h l )e	 1	 F(h1) 	1
	 +(Z)	 (D 6)

(2hl)Ysin" (z+hl)Y	 (2h,)Ysin7rY (z-h l ) y

Using (D.4), (D.5) and (D.6) we obtain:

	

(hl)YY14EyFo(1) 	 1w, 1/	 awl
k 	

( 1 -vx v*)siniTy X101	 lwi^ iwx) Y +X102 
Iw31iwi f 

Y
Yy

x

-111-

ORIGIDIAL PAGE
OF poop. QUAD,



i

i

I w 3Ii 6	 Iw3Ii6
+ X103 w3 W* Y + X104 ^34Y

5

k b has the same expression as the one we derived in the
previous case.

D.3 Case of a Crack Crossing the Interface

D.3.a Singular Behavior at the Interface:

In this case the definitions of the, stress intensity

factors are:

kb = X im	 c-x2 a2y(x290)
2}c

kxx - 1i+ YS Q1x ( h1 Y)
Y` O

and

kxy 	 ^^^. ETY I Xy (h 1 .Y)	 (D. 7a , b c )

From Eq. (6.2b) we can write:

Q
2y 

(x2 ,0) = 2y
1* Ey*	

h2` *fit) dt + ao (x 1 0)	 (D.8)
(1 -V* 7r c t x2	

2y 2

where a2 y (x 2 10) is_a bounded function.

	

*(t) =
	

F*(t)

(t-c)^(h2-t)S
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Ip* (z) _ 1
f

c2 *(t dt=	 F*(c)e 
i "/2	

1

(h2-c) ssin7r/2 (z-c)'^

F*(h2 )	 1

(hc)n^rs (z- h2)0 + ^o(z)	 (D.9)2-ksi 

Using (D.9) and (D.8), Eq. (D.7a) yields to:

* *

k =	 2Y14EY F*(c),T
b

(1-,xyvyx) (h2-c)S

or

l_S * *	 a
kb _ 2 Y14Ey(h2-c)

(1-v* v*	 F o
(-1)

xy yx)

Separating the singular	 1

	

g	 parts of Eqs .. (6.15a,b) we have:
n(1 -v v

	2Ev yx) a
l x ( h 1 ^Y)	 h^K (n,Y)O(n)dnf	

x	
f	 is

1-hl

2*o+ f h

c 
K2s (n,Y) (n)dn + alx(y)

hTr

2G	 T lxy( h1, = j 1 K3sh,Y)O(n)dn
XY	 hl

+
 J(

h

	

c 2K4s (n,Y)O*(n)dn + Tlxy(Y)	 (D_.10a,b)

i,	

owhere v 
o
lx(Y) and TOlxy  (Y) are bounded.

Fi T.s
Let:	 0(t) -L(t)	 _ F(t)e

9

^ h1-t2 )S	 (t+hl)S(t-h1)S
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then

z = 1 hl ^ dt = F(-
h1)e i^rs	 1	 _ _
	 F(h l )	 +

^( Z) 7rJ	 t-z	 s	 s	 s	 s	 ^Uo(z)

_hl	
(2h1) simrs (z+hl)	 (2h1) simr6(z-hl)

1

k =	
Ex	 1	 h1	 Y1	 _	 Yll	 1

xx	 l-vxyvyx 2a+ sinfrs/2 Y13 Lit a 
Y2 Y12	 R

_ w^ (Y3'81+W82 )_ 
wj (Y3'83+W84 )

	

_	 FO(-1)
s^w l	 ^	 w3 s

80	

P580 j

+	 2-(hcl	 Iw1I (Y3A89+Y4'90 ) + Iw3I (Y3'91 +Y4X92 ) F* 
1)*	

*	 wB	 S	 o f

'^Y13^80	
w

(D.11)

Using (D.11), (D.9), (D.10a,b) and the definitions (D.7b,c)

after lengthy algebra we obtain:

and

k	 =	
^xy	 h1	 _	 Yll	 +	 Yll

xy	
2D+l cos 	 Y13	 wr S
	 w 3

3s5	 3a5

(Y a +Y ' ) w	 (Y ' +Y a ) w_ 9 81 10 82 ^ _ 9 83 10 84 ^ Fo(_1)

a80 1--i-^- S	 ^	 X80
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i

---

 ---------

(h2-c)g N'89"1090)w* + (Y9'91+Y10^92) I

{	 13 80	 gs	 S s

D.3.b Non-Singular Behavior at the Interface

E

kb
 = x'-,T

-T a2y(x2.0)
r

The derivation is similar to the one done for the case of

internal cracks. Thus, we have:

Yrkkb =	 2Y14E* * 	 Ho(1)
(1-V*

f

E	 .

-115-
^t

t


