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FOREWGORD
This report is divided into three volumes. Volume 1 is the body of the report,

Volume 2 contains Appendices A through I, and Volume 3 contains Appendices

J through L.
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SECTION I
INTRODUCTION

A technology program has been conducted to investigate the feasibility of using
electromechanical devices as primary flight control actuators for aerospace
vehicles. This program was initiated after studies of electrohydraulic and elec-
tromechanical systems had indicated that a highly efficient battery-powered elec-
tromechanical actuation system had potentially significant advant#ges over the
electrohydraulic actuation system. In addition to its potential weight reduction
(extremely important in many aircraft, missile and spacecraft applications) the
electromechanical actuator shows great promise in terms of reliability and
maintainability. However, before such an approach could be seriously con-
sidered, hardware feasibility of electromechanical actuator concepts suitable

for aerospace vehicle applications had to be demonstrated.

The purpose of the Electromechanical Flight Control Actuator Program is to

‘ develop an electromechanical actuator that will follow a proportional control
command with minimum wasted energy, and demonstrate the feasibility of meeting
space vehicle actuator requirements using advanced electromechanical concepts.
The approach was restricted to a four-channel redundant configuration (Figure
1-1). Each channel has independent drive and control electronics, a brush-
less electric motor .with brake, and velocity and position feedback transducers.
A differential gearbox sums the output velocities of the motors. Normally,
two motors are active and the other two are braked. 'A 270 Vdc battery powers

the actuator.

The most unique feature of the electromechanical actuator (EMA) is its use of
a brushless self-synchronous motor having a permanent magnet rotor.  The stator
of this machine is similar to. that of a conventional three-phase synchronous

or induction motor, and is simple in construction and windings. The rotor has
permanent magnet poles made of samarium cobalt, which is an extremely effective
magnetic material, resulting in a lightweight, low-inertia machine with very

high efficiency. Brushes and commutator are eliminated in this motor through
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Figure 1-1. Electromechanical Actuator Block Diagram
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. the use of a rotor position sensor (RPS) and solid-state electronics. The
stator windings are excited by three-phase waveforms to create a rotating
magnetic field. As the rotor moves, the RPS sends signals to the control
electronics to indicate which windings should receive excitation ‘to produce
the torque required by the load. Thus, the machine operates in a manner
similar to a conventional dc motor, except that the conventional commutator

and brushes are replaced by the RPS and control electronics.

The design goals for the system were established in the NASA Statement of
Work for the program (Ref. Appendix C). The major tasks for this effort

included:
e Design and fabrication of the four-channel actuator
e Design and installation of necessary test instrumentation
e Modification of the NASA-furnished actuator test stand
® Development of mathematical models of the actuator and its

major subsystems )
® The design, fabrication and testing of a state-of-the-art
' single-channel power electronics breadboard
o Planning and conducting design verification tests of the
four-channel actuator
® Participation in formal program reviews
® Documentation of the program with plans, reports and an

operations manual,
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SECTION II
CONCLUSIONS AND RECOMMENDATIONS

2.1 CONCLUSIONS

The Electromechanical Flight Control Actuator Program has clearly demonstrated
the feasibility of meeting stringent space vehicle flight control actuator
performance requirements using advanced motor, gearbox and power electronics

concepts.

A four-channel redundant electromechanical actuator (EMA) has been developed
and tested which exceeded virtually all its design goals. The displacement
linearity design goal is 1% of full travel, and the worst-case measured devi-
ation was found to be 0.22%. The threshold design goal is 0.0275 degree, and
all combinations of two active channels easily met this requirement. The
position null design goal is 0.275 degree. This requirement was also easily
met. The hysteresis design goal is 0.0275 degree. The worst-case measured

‘ hysteresis was less than one-third of the goal. Velocity tracking tests
showed that all combinations of two active channels had steady-state speeds
which were in agreement within 3% of the maximum motor speed (thus meeting
the design goal for the system). The frequency response characteristics also
exceeded the EMA design goals. The -4 dB bandwidth was typically 9.5 Hz
compared with a design goal of 3.0 Hz.

The phase characteristics of the EMA also exceeded the design goals (for
example, the -45° phase shift frequency is 3.4 Hz compared to a design goal
of 3.0 Hz). The step response characteristics were the only ones which did
not exceed the EMA design goals. At small step amplitudes (less tﬁan 2% of
full travel, or 1.1 degree) the step response met the design goals. At
larger amplitudes (from 2% to 5% of full travel) the step response overshoot
slightly exceeded the design goal of 25% (the worst-case overshoot was 30%).
For a 5% step command, the EMA exceeded the time allowed to reach 85% of full
travel (0.160 second compared to a design goal of 0.145 second). For step
commands of 4% or less, the response reached 85% of the steady-state motion

‘ in less time than the design goal of 0.145 second.
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‘ To aid the understanding and evaluation of the test results, analytical models
of the EMA were developed. The models were also used to finalize and optimize
the system design. The analytical models which were developed include:

e Simplified single-channel servo models

Detailed single-channel servo models

Detailed dual-channel servo models

Detailed dual-channel servo models

Nonlinear servo models
- Simplified
- Detailed.

The simplified models take into account the dominant parameters of the system
and are very useful in gaining an understanding of the basic system character-
istics. The detailed analyses take into account all of the major system
parameters including load characteristics. In general, the complexity of

the detailed models is such that it was most expedient to develop computer
programs for use with these models.

In addition to the servo models, analyses were made of several EMA subsystems.
The transient conditions which occur during motor current commutation were
analyzed, and an analysis was made of the current source (chopper) which
supplies the motor current. These analyses are important in understanding

the electrical stresses which occur in the power electronics.

The agreement between the analytical models and the actual hardware test
results has been found to be very good, thus providing a high degree of
confidence that system performance characteristics predicted from the models

actually can be achieved.

The four-channel EMA power electronics used Integrated Hybrid Transistor
Switches (IHTS), developed by Texas Instruments for the U. S. Army. These
devices are rated at 60 A, and are the limiting element in establishing the
output power capability of the actuator. With operating margins which assure

safe transistor conditions, the four-channel power electronics is capable of
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‘ developing two-thirds of the motor's rated output power. Since the development
of the IHTS, power transistor technology has advanced considerably. As one of
the tasks in this program, a single-channel power electronics breadboard was
developed (using state-of-the-art power transistors) which has been tested
to demonstrate full rated motor power (17 hp). This single-channel power
electronics breadboard has been extensively tested and clearly demonstrates
the feasibility of driving the EMA motor at full power with very safe trans-

istor design margins.

2.2 RECOMMENDATIONS

Several efforts can be recommended on the basis of the results which have been
achieved in this program:

e Make technical improvements to the EMA subsystems

e Design, build and test a prototype EMA suitable for flight testing.

Improvements have been made in the magnetic properties of samarium cobalt
since the EMA was designed. An improved EMA motor should be developed

. utilizing these newer materials to achieve improved performance character-
istics and higher power density. The rotor position sensor should be replaced
by one having greater resolution, and more sophisticated commutation angle
control should be incorporated in the EMA design to provide improved per-
formance and efficiency. The power electronics should be improved by making
use of the latest power transistors. This would provide greater output power,

while retaining adequate design margins in the power electronics design.

The feasibility of the EMA has been demonstrated during this program. The
next recommended'major effort is the design, fabrication and testing of a
prototype unit suitable for flight testing. This effort would establish the
size, weight and environmental characteristics of a state-of-the-art electro-
mechanical actuator concept, and would also demonstrate the performance
capabilities which can be achieved. After laboratory tests have been made
(including flight simulation tests), actual flight tests should be conducted.
These tests should be made on an aircraft having sufficient space available for
monitoring and recording the behavior of the actuator under the full range
. of flight conditions typical of high-performance aircraft.
R78-1 2-3
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. SECTION ITI

SYSTEM FUNCTIONAL DESCRIPTION

3.1 FOUR-CHANNEL SYSTEM FUNCTIONAL DESCRIPTION

The electromechanical actuator (Figure 3-1) is composed of four independent servo-
controlled channels. Each channel consists of control and drive electronics, a
brushless electric motor with brake, and velocity and position feedback trans-
ducers. The four electric motors are driven into a differential gearbox which
has a common double-ended output which is coupled to the NASA-supplied rotary
actuators (planetary gear reducers). The output velocity of the gearbox is
proportional to the sum of the velocities of the motors. In the normal mode of
operation, two of the four motors are driving and the other two are braked. Each
motor has independent control and drive electronics, providing servo control and
power control for motoring and electrical braking modes of operation. The
electromechanical actuator (EMA) is powered from a battery which has a nominal

terminal voltage of 270 V,

COMMAND CONTROL
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COMMAND CONTROL
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MOTOR|  |MOTOR
BRAKE BRAKE
o
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| AS SEMBLY /(
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. Figure 3-1., Electromechanical Actuator Block Diagram
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The most unique feature of the EMA is its use of a brushless synchronous motor
having a permanent magnet rotor. The stator of this machine is similar to that
of a conventional three-phase synchronous or induction motor, and is simple in
construction and windings. The rotor has permanent magnet poles made of
samarium cobalt, which is an extremely effective magnetic materiai, resulting
in a lightweight, low-inertia machine with very high efficiency. The ceramic-
like magnets are bonded to a solid steel shaft. A fiberglass band is wrapped
around the rotor to aid in resisting centrifugal forces, and provides a smooth,
cylindrical rotor surface to minimize windage losses. Brushes and commutator
are eliminated in this machine through the use of the rotor position sensor
(RPS) and solid-state electronics. The stator windings of the motor are ex-
cited by three-phase waveforms to create a rotating magnetic field. As the
rotor moves, the RPS sends signals to the control electronics to indicate which
windings should receive excitation to produce the torque required by the load.
Thus, the machine operates in a manner similar to a conventional dc motor,
except that the conventional commutator and brushes are replaced by the RPS

and control electronics. The resulting machine is capable of operating at

much higher speeds than one having rotor windings and a commutator. Because
the permanent magnet rotor has virtually no losses, the thermal problems
associated with cooling the machine are greatly simplified. Virtually all losses
in the machine occur in the stator; therefore, cooling is easily accomplished
by allowing air to flow through the stator slots which are only partically filled
by the machine's windings.

The power control electronics for the machine are relatively simple. For servo
control purposes it is very convenient to provide a controlled torque mode of
operation. This is easily accomplished in the permanent magnet motor because

its output torque is proportional to the current in the stator windings. For

a given rotor position, two of the stator windings receive excitation. Idealized
motor phase currents are shown in Figure 3-2. For example, at electrical

angles between 0 and 60°, the motor current flows into winding A and out

through winding B. During the next interval, from 60 to 120°, the current
continues to flow into winding A, but out through winding C. The current is

thus commutated at intervals of 60 electrical degrees to provide three-phase

R78-1 3-2
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‘ current waveforms. The magnitude of the current is controlled to produce the
desired torque, and the rotor position sensor and control electronics switch

the controlled current through the appropriate pair of windings.

ELECTRICAL ANGLE -
0° 60° 1200 180 240 30¢° o°
! | 1 ! l | ! | 1 | 1 | 1
'A —t— | —+— +—
'8 'r { —t—t + —

Figure 3-2. Idealized Motor Phase Currents

3.1.1 SYSTEM OPERATION

Figure 3-3 is a simplified system block diagram of a single channel of the
actuator. For convenience, all torque, inertia, and motion variables are
referenced to the load. Linearized load effects (viscous damping, load spring
and steady-state hinge moments) are represented, and the velocity and position

feedback paths are shown.
The position command and position feedback signals are compared to form a

position error signal. This signal is amplified and combined with the velocity

feedback signal to develop a current command signal. The current source

R78-1 3-3
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‘ develops a motor current in response to the current command signal. The motor
current produces a torque which accelerates the reflected inertia of the system

and overcomes the reflected hinge moment of the load.

In normal operation, two channels of the actuator are active (Figure 3-4).

Each motor is controlled in essentially the manner described in the preceding
paragraphs, but a velocity correction loop is also included. The tachometer
outputs of the two active channels are compared to form a velocity error signal.
If the two motors are not rotating at the same angular velocity, the error
signal causes the slower motor to speed up, and the faster motor to slow down.
In this manner, under idealized operation, each motor would operate at the

same speed, produce the same torque, and thus share the load equally with

the other motor.
The servo aspects of the actuator design are given in Paragraph 6.3.

3.1.2 CURRENT SOURCE POWER CONVERTER

. The brushless, self-synchronous motor is driven by a current source power con-
verter. The current source power converter is achieved with an inductor-
coupled pulse width modulator (chopper) and inverter (Figure 3-5). The chppper
establishes a dc current level with an acceptable ripple component in the
coupling inductor in response to a torque error signal. The inductor current
is processed by the inverter to form a six-step motor current waveform

(Figure 3-6).

The current source power converter is implemented with the Integrated Hybrid

*
Transistor Switch (IHTS) as a basic building block. This unit contains two
power transistors and antiparallel power diodes, together with over-temperature,

over-current, and control logic interface circuits.

* The IHTS is described in:
1. Texas Instruments Bulletin No. DL-S 7311988, April 1973.
2. D. Balthasar, E. Reimers, '""The Integrated Hybrid Transistor Switch,"
IEEE Conf. Rec. of the 1972 IAS Meeting, 72CHO-8-1A, pp. 495-503.
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A. COUPLING INDUCTOR CURRENT
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Figure 3-6. Typical Power Converter Waveforms
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3.1.2.1 Torque Control, Motoring Mode

Figure 3-7 is a simplified schematic diagram of the power converter. Q1 through
Q6 are connected to form a three-phase inverter. The inverter controls the
currents in the motor stator windings. Idealized motor phase current wave-
forms are shown in Figure 3-2. Switch QM controls the current through the
inverter during motoring operation, and QB controls the inverter current during

regenerative braking.

DR
-
Qm Q1 Q2 Q3
Dg B D2 D3
c MOTOR
L _c —
== vy

Qg Qq | Qg Q4
Dy - 104 Ds "N TDs

Figure 3-7. Power Electronics Schematic

During motoring operation, if the current in the current source inductor 1is
less than the commanded value, QM is turned on; this applies full battery
voltage to the input terminal of inductor L. Therefore, current increases

in the inductor as indicated in Figure 3-6. Hysteresis in the control circuit
allows the current to build up to a preestablished level which is slightly

greater than the commanded current. At this point, QM is turned off. The

R78-1 . 3-9
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current which is flowing through the inductor at the switching time then flows
through diode DM' The current then decreases to a value slightly below the
commanded current, at which point QM is again turned on, thus restarting the
cycle. Figure 3-6 shows the coupling inductor current waveform, as well as

the motor phase currents.
The current in the inductor is routed through the proper motor windings by the
inverter transistors Q1 through Q6' These transistors are turned on and off

by signals which are derived from the RPS.

3.1.2.2 Torque Control, Regenerative Mode

When the load is capable of returning energy to the battery, the power converter
operates in a regenerative mode. In this mode, the inverter transistors (Q1
thru Q6 in Figure 3-7) are all turned off. Their antiparallel diodes, D1
through 06, then act as a three-phase full-wave rectifier load on the motor
(which is acting as a permanent-magnet generator). Current through the coupling
inductor is controlled by transistor QB and the braking diodg, DB' ‘If the
current in the coupling inﬁpctor is less than the commanded current, QB is
turned on. Again, hysteresis designed into the control circuitry alloéws the
current to build up in the inductor to a level slightly greater than the
commanded value. At this point, QB is turned off, and the current which is
flowing in the inductor now flows through diode UN back into the battery. When
the current decreases to a value somewhat lower than the commanded value, QB

is again turned on, thus restarting the current control cycle.

3.2 SINGLE-CHANNEL POWER ELECTRONICS BREADBOARD FUNCATIONAL DESCRIPTION

The single-channel power electronics breadboard performs essentially the same
function as the power converter described in Paragraph 3.1.2, but is designed
to provide substantially greater currents (and therefore much larger power
output levels). A simplified schematic diagram of the motor driver is given
in Figure 3-8. During motoring, the current is controlled by transistors

QM1 and QM2, diode DRM and the motoring inductor, LM. OMl and QM2 operate
alternately, controlling the current in LM (and thus the motor current). The

R78-1 ) 3-10
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Figure 3-8. High Power Single-Channel Motor Driver

inverter is formed by transistors QAP, QAN, QBP, QBN, OCP, OCN, and their

associated antiparallel diodes.

During regenerative braking, the inverter transistors are all turned off, and
the current is controlled by transistors QBl and 0B2, diode DRB and inductor
LB. The high-power, single-channel power electronics breadboard switches are
discrete devices (rather than the Integrated Hybrid Transistor Switches dis-
cussed in Paragraph 3.1.2). A more detailed description of the High Power
Motor Driver and its related driver and power supply circuits is presented in

Paragraph 5.2.
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. SECTION IV

EQUIPMENT DESCRIPTION

4.1 DELCO BREADBOARD SYSTEM DESCRIPTION

The Delco breadboard system was used during the company-funded design develop-
ment phase. The following paragraphs describe the breadboard system and

indicate how it was used to develop the EMA.

4,1.1 POWER SOURCE
As indicated in Section III, the high-voltage power for the electromechanical
actuator (EMA) is obtained from a battery (270 V nominal). For development
purposes, Delco utilized a battery bank consisting of 24 heavy duty batteries
(Figure 4-1). Quick-disconnect cables were used to allow the battery voltage
to be tapped at selected levels. The battery is connected through cables and
protective switchgear to the Electromechanical Actuator Development Laboratory
which is located approximately 150 feet from the battery bank. The batteries
. power both the Delco breadboard and the NASA four-channel actuator system.

Figure 4-2 shows the battery charger which was used with the system. A simple
Variac control was used to adjust the charger output voltage and control the

battery charging rates.

4.1.2 SYSTEM DESCRIPTION

The Delco breadboard system consists of a single channel of electronics, a
motor, a gear train, and position and velocity feedback transducers. The
assembly which was used in developing the basic circuitry for the EMA is shown
in Figure 4-3. The electronics rack includes a variety of instrumentation used
to monitor motor currents and various system voltages. Torque transducer and
r/min instrumentation is also mounted in the rack along with an electronic
wattmeter. The electromechanical assembly (Figure 4-4) is mounted on the
laboratory bench and consists of a baseplate on which are fastened the
synchronous motor, dynamometer, gear train and associated electromechanical

assemblies.
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Figure 4-1. Battery Bank
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. Figure 4-2. Battery Charger
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At this stage of the program, the permanent magnet motor had not yet been
developed; the actuator motor shown in the lower right-hand corner of Figure
4-4 is a five kilowatt wound-rotor, self-synchronous motor which is operated
with fixed field excitation. The motor is coupled to a torque transducer
which also provides an r/min indication by means of a toothed wheel and per-
manent magnet pulse generator arrangement. The motor assembly is coupled to

the large induction machine with a V-belt.

The induction motor was used to drive the assembly when the actuator motor was
operating as a generator, and as a dynamometer when the actuator was under

test in its motoring mode.

The system also drives a servo-type gear reducer which is mounted at the left
end of the baseplate. The gear reducer drives a tachometer at the high-speed
end and a position transducer potentiometer at the low-speed end of the gear
train. This arrangement was used to aid in system development before the final
motor was designed. After the permanent magnet motor was designed, it was
incorporated in the same basic breadboard assembly as shown in Figure 4-5.

Here, a dc machine, coupled to the EMA by means of a toothed belt, is used to
load or drive the actuator system. The dc machine's field and armature circuits
were available for loading and control purposes. When operated as a generator,

the dc machine supplied power to a resistive load bank.

Figure 4-6 shows the breadboard electromechanical assembly at a later time.

The large dc machine has approximately the same power rating as the actuator
motor, but its speed is one third that of the permanent magnet machine. Figure
4-7 is a closer view of the same equipment. Figure 4-8 shows the Delco EMA
motor with a digital shaft encoder coupled to the right end of the motor. As
part of a continuing company-funded development effort, Delco developed a
digital rotor position sensor (RPS). The RPS uses a three-bit encoder

(Figure 4-9). One bit provides an absolute reference (once per revolution),
and the other two bits allow the RPS to determine the rotor position with a
resolution of 0.25 degree. Figures 4-10 and 4-11 are front and rear views

of the RPS electronics housing. Digital decoding and control allow the
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‘ Figure 4-5. Delco Electromechanical Assembly

‘ Figure 4-6. Delco Dynamometer Stand
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Figure 4-7. Close-Up View of Delco Dynamometer

‘ Figure 4-8. Delco EMA Motor with Shaft Encoder
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Figure 4-9. Digital Shaft Encoder
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motor's commutation angle to be varied through an electrical angle of 59

degrees, and the RPS also provides speed and direction of rotation information.

4.2 NASA FOUR-CHANNEL SYSTEM DESCRIPTION

The four-channel motor/gearbox assembly was mounted on the NASA-developed test
stand (Figure 4-12) which consists of two large spring assemblies located at
each end of the stand. The springs are coupled by means of a clevis arm into
the rotating portion of the stand. A 238.71:1 gear reducer is used to reduce
the gearbox output speed to that of the simulated control surface motion.
Figure 4-13 is a closer view of the load stand, showing the clevis arm and
load spring. A rear view of the EMA test stand is given in Figure 4-14. This
shows the electrical cabling and the compressed air filter, manifold and hoses

which provide cooling air to the system.

Figure 4-15 is a close-up view of the motor/gearbox assembly, and clearly shows
the position feedback potentiometers (mounted on the right rear corner of the
gearbox) and the tachometers (mounted on the motors). Figure 4-16 shows the
motor/gearbox assembly and also the torque transducers which are mounted
between the EMA gearbox and the planetary gear reducers. Figure 4-17 is a

rear view of the motor/gearbox assembly, showing the cable arrangement.
4.2.1 DIFFERENTIAL GEARBOX

4.2.1.1 Power Train

The differential gearbox sums the velocities of the individual servo motors
and provides a common output shaft. The gearbox also furnishes the required
gear reduction ratio between the motor shaft and the rotary hinge actuator.

A schematic of the system is shown in Figure 4-18.

The maximum motor speed is approximately 9000 r/min and the overall gear re-
duction ratio is about 2700:1, resulting in a control surface rate of 20
degrees/s. Since the rotary hinge actuator (not part of the differential gear-
box) reduction is 238.71:1, the differential gearing must provide a reduction
of about 11.30:1.
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Figure 4-13., Clevis Arm and Load Spring
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Figure 4-15. Motor/Gearbox Assembly
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Figure 4-17., Motor/Gearbox Assembly (Rear View)
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Figure 4-18. Differential Gearbox Arrangement

When any two of the four motors are operating, the differential gear arrange-
ment inherently has a 2:1 reduction; therefore, only a 5.65:1 additional gear
reduction is required. This is accomplished in two stages: 3.75:1 between

the motors and the first stage differential inputs, and 1.5:1 between the first
and second stage differential inputs. By applying the larger reduction at the

motor, the moment of inertia effect of the gear train is minimized.

4.2.1.2 Position Transducer Gear Train

The position transducer is coupled to the output of the gearbox by means of
precision servo gearing (The mounting hole for the position transducer assembly
can be seen in the lower left-hand corner of Figure 4-19). A worm gear (shown
in Figure 4-19) drives an anti-backlash gear which is mounted on the position
transducer shaft. The gear ratio of this train provides 5.189 degrees of
position transducer motion for each degree of load motion (based on a gear

reduction of 238.71:1 in the NASA-furnished rotary hinge actuator). With
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Figure 4-19. Differential Gearbox
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. typical adjustment, the position transducer motion as a function of load

angle would be as illustrated in Figure 4-20.

POSITION TRANSDUCER ANGLE, (deg)

|
40 30 20 10 0 10 2
LOAD ANGLE (degrees)

Figure 4-20. Position Transducer Motion

1 4.2.1.3 Position Transducer

The position transducer consists of four precision servo potentiometers ganged
on a single shaft. The transducers utilize a film resistive element to achieve
virtually infinite resolution. Some of the major features of the position

transducer are:

Diameter 2.0 in.
Resistance (each element) 20K ohms
Linearity 0.25%

Electrical Travel 340°

Standard Life Expectancy 10 M revolutions
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‘ 4.2.1.4 Physical Characteristics

The differential gearbox assembly (Figure 4-21) consists of three identical
bevel gear differentials of the type often used in precision instruments. Input
rotations are applied to the gears at either end of the bevel gear set. The

output speed is taken off the 'spider' or cage shaft.

The differential gear assembly is shown in Figure 4-19. All gears are ground
spiral bevel gears specifically developed for this application and fabricated
from high-quality gear steel as recommended by AGMA standards. ''Zerol' spiral
bevel gears (spiral gears with zero spiral angle) have been selected for this
design to provide smooth operation, continuous pitch line contact, superior
performance with low number of pinion teeth, and low axial bearing loads.
Adjustment capability is provided to control gear mesh clearance and backlash.
Basic gear sizing along with gear and pinion bending and contact stresses have
been determined by the Gleason Works (See Appendix B for detail gear data).
Antifriction bearings of instrument quality are used throughout. Angular con-
. tact bearings have been shosen for uses when both axial and radial loads are

present.

The gearbox housing is made of aluminum, welded and machined after welding.

0il splash type lubrication is provided for the gears.

The major gearbox power train performance characteristics are summarized below.

Maximum input speed 9000 r/min
Average input speed 2250 r/min
Maximum input torque 120 in. 1b
Maximum output torque 2700 in. 1b
Maximum input power per motor 17 hp

Average input power per motor 5 hp

Maximum output speed 800 r/min

Gear ratio (two motors operating) 11.25:1
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4.2.2 MOTOR ASSEMBLY

Figure 4-22 shows the motor mechanical arrangement. The motor output pinion is
shown at the left-hand end of the figure. The rotor position sensor is also
located at the left side of the machine. The sensor consists of nine coils

on a laminated stator which works in conjunction with a laminated rotor.

The rotor has four lobes (equal to the number of pairs of rotor poles). The
stator coils form three groups, each of which has a one excitation coil (at
the center of the group) and two secondary coils that are connected so that
their outputs buck each other when either the rotor lobe or rotor slot is
centered at the excitation coil. Excitation for the sensor is provided by a
30 kHz oscillator. The output of the secondary coils is processed by phase-
sensitive detectors to produce rotor position signals which determine the
rotor location with a resolution of 60 electrical degrees. The rotor position
sensor is very rugged and can withstand the same temperature extremes as the
motor. The RPS rotor stack is made very short to minimize its inertia. The
stator stack is longer than the rotor stack to minimize false signals which
could be caused by rotor axial motion or wobble. The stator is centered on

the rotor stack to provide overhang at both ends.

The motor rotor is an eight-pole permanent magnet assembly described later in
more detail. Compressed air is used to cool the motor. The air enters one end
of the stator assembly. The stator winding partially fills the stator slots

so that the air can flow through the stator assembly slots and out the exit
outlet at the far end. The rotor is coupled to a brake disc assembly and to

a dc tachometer which provides velocity feedback in the actuator system. The
brake consists of both a permanent magnet and an electromagnet. If the electro-
magnet is deenergized, the permanent magnet pulls the brake disc into contact
with the stationary brake shoe, thus stopping the rotor. To release the brake,
the electromagnet is energized, thus cancelling the field of the permanent
magnet. A small spring pushes the brake disc away from the brake shoe to allow

free rotation,
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‘ Figure 4-23 shows the motor shaft before the permanent magnets are attached.
Since the motor is an eight-pole machine, the central portion of the shaft has
an octagonal cross section. Figure 4-24 shows the rotor with the samarium
cobalt magnets attached. The samarium cobalt material has a high energy pro-
duct (18 million gauss oersteds). The magnetic blocks, approximately 7/8 inch
long, are bonded to the rotor shaft and then ground to a cylindrical form.
Brass end discs are bonded to the magnet assembly and retained by snap rings
(Figure 4-25).

The end discs provide material which can be removed during dynamic balancing;
they also reduce windage losses and provide a termination point for the rotor
banding. The banding is a high-strength glass filament winding which is wound
under tension using SCG 150 I/0 1Z HTS901 fiberglass, with Ferro Corp. CE 9020
adhesive, 60% solids, 40% acetone, cured at 350°F for 1-1/2 hours. The banded
rotor (Figure 4-26) is ground to provide an accurate diameter for mechanical

clearance in the stator bore.

. A special test fixture (Figure 4-27) was used during system development to
spin up the rotor. A high-speed motor is located at the left end of the
fixture. The spin tests were conducted in a chamber which consisted of two
plywood boxes, one inside the other with the void filled with sand (Figure
4-28). The rotor was spun at speeds greater than 30,000 r/min without failure;
this is better than three times the rated speed of the motor (9,000 r/min).

The stator is shown in Figure 4-29; the stator laminations are 7 mils thick

and are Vanadium Permendur.

Figure 4-30 shows the rotor position sensor for the wound rotor machine
which was used during the early development stages; the unit is mounted on

a precision indexing stand for caliabration purposes.

The tachometer is directly coupled to the motor shaft. It has a highly
linear speed/voltage characteristic, operates bidirectionally, and is designed
for long operating life. Important specifications for the tachometer are

‘ listed in Table 4-1.
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Figure 4-23. Motor Shaft

Figure 4-24. Rotor
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Figure 4-25, Rotor Before Banding

Figure 4-26. Rotor After Banding
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Figure 4-28, Rotor Spin Test Chamber
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Figure 4-30. Rotor Position Sensor Calibration
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7.0 V/1000 r/min

Output impedance, maximum 350 ohms
Output linearity, 100 to 6,000 r/min 0.1%

Ripple voltage, maximum rms 3%
Bidirectional output voltage error 0.25%
Maximum speed 12,000 r/min
Friction torque, maximum 0.25 oz-in.
Armature inertia, maximum 6.5 gm-cm2
Weight, maximum 3.0 oz
Mechanical natural frequency, minimum 1800 Hz

Life expectancy at 3600 r/min 10,000 hr

Table 4-1. Tachometer Specifications

The motor assembly has the following physical characteristics:

Length over brake 11.25 in.
Diameter of motor frame 3.75 in.
Weight of motor, RPS and cable 17.2 1b
. Weight of brake, tachometer and 2.7 1b
coupling

4.2.3 CONTROL ELECTRONICS

4.2.3.1 Physical Arrangement

The electronics for the four-channel EMA are housed in a conventional equip-
ment rack (Figure 4-31). The power control electronics are located at the top.
The volume immediately below the power control panel is presently empty, but

it is anticipated that the redundancy management electronics would eventually
be housed here. Below this area are two drawers of control electronics, each
of which contains two channels of low-level electronic equipment. The main
power electronics assembly is located immediately below the control drawers.
The bottom part of the rack contains the power contactors, 28 Vdc power supply

for the system, and the brake control electronic chassis.
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Figure 4-31, Electronics Rack
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Figure 4-32 is a close-up view of the power control panel. The power control
panel provides the necessary sequencing switches to turn power on or off in
the system, displays high voltage on-off and cooling system status, and
contains the battery voltage and current meters. Figure 4-33 shows the front

panels of the low-level electronics drawers.

The control panels on the front of the low-level electronics drawers allow
each channel to be placed in either an active or standby mode, via a two-
position toggle switch. Over-current sensing indicators are provided for
each channel. The indicators remain illuminated after an over-current condi-
tion is detected until reset by means of a momentary push button. A position
offset adjustment is also available on the panel (a locking, screwdriver-
adjustable potentiometer is used for this purpose). Failure simulation
switches are provided for future redundancy management studies, but they are

not presently wired into the control circuits.

4.2,3.2 Low-Level Electronics

The low-level electronics (Figures 4-34 through 4-36) consist primarily of
dual-in-line packages (DIP's). Where necessary discrete components are
mounted on special adapters and plugged into the major assembly. Connections
to other parts of the electronics rack are made through connectors on the rear
of the drawer. The digital logic is CMOS which operates from a 12 V supply.
The low-level analog circuitry operates from +12 V. Figure 4-35 shows one of
the circuit boards in the upright position. The connections are wire-

wrapped to allow circuit changes to be made easily, and are very convenient
for brassboard development. In addition, the wire wrap posts allow ready
access to any of the circuit nodes; this is very valuable during system check-

out and testing.

4,2.3.3 Power Electronics

The power source used for the power electronics is the same as that described
for the Delco Breadboard System (Ref. paragraph 4.1.1). Figures 4-37 through

4-39 show the power electronics drawer. The four power circuits are mounted
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Figure 4-33. Low-Level Electronics Drawer
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Figure 4-34. Low-Level Electronics Drawer
. (Component Side of Boards)

. Figure 4-35, Low-Level Electronics Drawer
(Rear Board Showing Wire-Wrap Side)
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. Figure 4-37, Power Electronics Drawer
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Figure 4-39. Power Electronics Channel D
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on two heatsinks. Each of the four power converters uses four power switch
assemblies (dual integrated power switches, Texas Instruments, Inc.). Also
mounted on the drawer are the inductor, filter capacitors, and the current
shunt used to measure the current being sent through the power converter.
Fuses for the three motor leads are shown on the upper right-hand corner of
the heatsink assembly (Figure 4-38). Liquid cooling lines are brought in at
the upper left-hand corner of the assembly and provide coolant flow through
the heatsink structure. Although liquid cooling was used in some of the early
system tests, all design verification tests were run without liquid cooling,

and the heatsink temperature rise was never significant.

The power supplies for the power switches are mounted in the channel shown at
the bottom of Figure 4-38. These isolated supplies provide necessary logic

power for the power switches.

The dual integrated power switches, rated at 60 A, 390 V, are designed for use
in precision power conversion equipment. Typical switching time at rated
current is 0.5 us. Each dual switch contains two identical circuits which

may be connected together for a single push-pull output or operated as two
independent switches. It features optically coupled isolation between input
circuitry and power system. Internal circuitry turns off each switch within
approximately 2 pus if its load is short-circuited. Approximately 2.5 ms after
turnoff caused by a short circuit, the switch becomes operational again.
Should the short circuit still exist, the switch will turn off again and re-
cycle at a frequency of approximately 400 Hz until the short circuit condition
is removed. Protection is also provided against overheating; the signal for
this condition is fed into a Schmitt trigger which, because of its hysteresis,

assures that the temperature recovers by a safe margin before operation resumes.

4.2.4 CABLING

The interconnecting cables are brought into the rear of the electronics rack.
Figure 4-40 shows the general cabling arrangement. The 270 Vdc and 115 Vac
power cables enter the lower panel. Figure 4-41 is a closer view of this area.

The power cables to the EMA motors are terminated on the power electronics
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Figure 4-40. Electronics Rack (Rear View)
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. drawer. Figure 4-42 is a rear view of the top portion of the electronics rack.

4.3 SINGLE-CHANNEL POWER ELECTRONICS BREADBOARD DESCRIPTION

The single-channel power electronics breadboard test set-up is shown in Figure
4-43, The power electronics assembly is on the table in the foreground, along
with the three low-level electronics enclosures. Delco's motor/dynamometer
stand and Variac-controlled voltage source are in the rear of the lab. During
most of the testing the variable-voltage supply was used, rather than the
battery bank, because the Variac allowed convenient control of the supply
voltage.

A closer view of the power electronics assembly is presented in Figure 4-44.
The power transistors are mounted on the heat sinks which are located on the
top side of the assembly. Figure 4-45 shows the reverse side of the power
electronics assembly. This view shows the power transistor driver circuit
cards. Close-up views of this card are presented in Figure 4-46. The power

‘ oscillator circuit card assembly is shown in Figure 4-47.

The low-level electronics is contained in the three enclosures shown in Figures
4-48 and 4-49., The middle box contains Delco's rotor position sensor elec-
tronics, and the other two boxes control the chopper and inverter power
switches. As can be seen in these figures, test jacks are available on the
panels, and the RPS panel displays the motor shaft speed, the rotor angle, and

the inverter switch drive conditions.
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Power Entry Panel

Figure 4-42.

Rear View of Top Drawer
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Figure 4-44. Single-Channel Power Electronics
Assembly, Power Transistor Side
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Figure 4-45. Single-Channel Power Electronics
. Assembly, Driver Side

. Figure 4-46. Transistor Base Drive Power
Output Circuit Card Assembly
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Figure 4-47. Transistor Base Drive Power Oscillator
Circuit Card Assembly

Figure 4-48. Low-Level Electronics Enclosures, Rear View
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Figure 4-49. Low-Level Electronics Enclosures, Front View
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SECTION V

EQUIPMENT MECHANIZATION

5.1 FOUR-CHANNEL SYSTEM MECHANIZATION

The electromechanical actuator (EMA) is a positioning servo system, and its
output motion is proportional to an input command. An idealized block diagram
of a single channel of the EMA is shown in Figure 5-1. Table 5-1 defines the
symbols used in this diagram. Both position and velocity feedback are used for
control purposes, and the motor is controlled by means of its armature current.
In the idealized case, the deflection command is compared with the actual out-
put position to provide a position error. Velocity feedback is also used, and
the resulting system error signal is used to provide a motor current command.
The idealized current controller forces the motor current to follow the
command, resulting in motor output torque. This output torque accelerates the

system inertia and produces output motion.

Figure 5-2 is a block diagram showing the actual EMA mechanization. Most of
the transfer functions are self-explanatory. The definitions for the symbols
used in this system are given in Table 5-1. For convenience in locating the
various circuits in the system schematics, reference designations have been
included for all major signal outputs. For example, the upper left block in
Figure 5-2 with the designation "AMPL D2-1" indicates that the output signal
for this amplifier will be found in area D2 of the Augat board on pin 1. The
gain adjustment resistor for KE is located in Augat area D3 between pins 11
and 6.

Scaling for the various control signals is also indicated on Figure 5-2. For
example, if the current command, ICMD, is 20 A, the signal shown as ICMD/S
would be 4.0 V. The various gains and time constants are easily changed if

desired (by replacing resistive or capacitive components).

All of the four channels are mechanized in an identical manner. Whenever two

(and only two) channels are in an ACTIVE mode (as established by the ACTIVE/
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STANDBY switch located on the front panel of the low-level electronics

control drawer), a velocity error correction loop is used to force the two
active channels to operate at almost the same velocity. This is accomplished
by comparing the velocities of the two active channels (Figure 5-3) to develop
an error signal. This signal is passed through a lowpass filter and is then
sent back to each of the ACTIVE channels (inverted, if required) where if is
combined with the other error signals (position and velocity) to provide a

motor current (or torque) command.

SYMBOL DEFINITION

DC Load deflection command, deg

PERR Load position error, deg

DE _ Load deflection angle, deg

KE Gain coefficient, A/deg

KR Gain coefficient, A/deg/s

ICMD Current command (prior to limiting), amperes

ICMD1 Current command (after command rate limiting), amperes
ICMDL Current command (after amplitude limiting), amperes
IMC Motoring current command, Amperes

A1 Gear ratio, motor-to-load deflection

A2 Gear ratio, position pickoff potentiometer-to-load
M Motor current (current into inverter), amperes
DDOTE Angular velocity of load, deg/s

Table 5-1. Definitions

Although most of the subsystems shown in Figure 5-2 are straightforward,
several are somewhat complex, and are therefore discussed in some detail in

the following paragraphs.

5.1.1 CURRENT COMMAND RATE LIMITER

The current command rate limiter, shown in block diagram form in Figure 5-4,

prevents sudden changes in the commanded control current.
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CHANNEL 1 -1  }—» CORRECTION SIGNAL
VELOCITY CHANNEL 1
ERROR
SIGNAL Av
P —e
_ 1+ Tvs
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LOWPASS +1 |—> CORRECTION SIGNAL
VELOCITY SIGNAL FILTER CHANNEL 2
CHANNEL 2
‘ Figure 5-3. Two-Channel Velocity Correction Block Diagram
12V T
ICDM ICMD1
1IcoMm -4V L
5 + } ) 379 - >
- av s
- T -12V
. Figure 5-4. Current Command Rate Limiter
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When the system is operating in its linear region, its transfer function is

Eout = 1
1 + Ts

E.
in

where T = 1/(3) (379) = 0.00088 s

When limiting action takes place (for example, if a sudden large change in
current command should occur), the output voltage changes at a rate given by

Eout = 12 x 379 V/s = 4548 V/s
With the scaling used in this circuit, 1 V represents 5 amperes; therefore, the
current command rate limit is

= 5 x 4548 = 23 x 103 A/s = 23 A/ms

Icommand

Changes to the current command rate limit or the linear-region time constant

are easily made by changing resistor or capacitor values.

5.1.2 POWER CONVERTER CONTROL

The EMA operates in three different modes:
e Motoring
e Plugging

® Regenerating.

These basic operating regions are illustrated in Figure 5-5. In the first
quadrant, the torque produced by the machine is in the same direction the rotor
is turning, resulting in normal motoring operation. If the motor is operating
at low speed in the second quadrant, the motor torque opposes the velocity, and
plugging operation results. At higher speeds in the second quadrant, a re-
generative braking mode is used during which energy from the system is returned
to the battery. Similar modes are indicated in Figure 5-5 for the third and

fourth operating quadrants.
The power converter is shown in Figure 5-6. Since it operates somewhat

differently in each operating region, it is necessary for the low-level control

circuits to establish which region is currently being encountered. This is
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Figure 5-5. EMA Operating Regions

Dgp

il

Figure 5-6. Power Converter Schematic

accomplished by comparators which establish which one of the following speed
regimes (as illustrated in Figures 5-7 and 5-8) exists:

e SPDHI e SPDNEG

e SPDIO e SPDPOS

In addition, the current command is tested by a comparator to establish which
of the following regions (Figure 5-9) is active.

e TPOS e TNEG
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/////

TPOS and TNEG Conditions

Figure 5-9.

%

The regenerative and plugging modes are then determined using the following

Boolean relationships:

RGN2 = TPOS « SPDLO
RGN4 = TPOS + SPDHI
RGN = RGN2 + RGN4
PLUG2 = TPOS * SPDNEG °*
PLUGY = TPOS * SPDPOS *
PLUG = PLUG2 + PLUG4

R78-1
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‘ 5.1.2.1 Current Limiting

Two different current limits are used in the EMA. During motoring or regener-

ation, the motor current is limited to 40 A. However, during plugging, cir-
culating currents occur in the inverter which do not appear in the current
source inductor. Therefore, the motor current in the plugging mode is limited
to 25 A. These limits were selected to permit the IHTS's to operate well within
their current ratings (60 A). The current limiting mode switching is indicated

in Figure 5-2. Solid-state analog switches are used to mechanize this subsystem.

5.1.2.2 Chopper Control

In controlling the choppers, comparators are used to determine whether the
motor current is greater or less than the commanded value. The motoring
transistor comparator is in its high state if the motor current, IM, is less
than the commanded value, IMC. In equation form this is related by

M> ML |IMC|
Similarly, the braking transistor comparator is described by

®c> m™m>- ||

A continuous check is also made of the motor current to assure that its magni-
tude does not become excessive. The equations for these two comparators are
IMHI > IM> KIHI
S IMLO > IM <—KILO
During all of the final EMA system tests, KIHI and KILO were set at 60 A.

Another comparator is used in initializing the system, and it remains in its

high state for about one second after logic power is turned on. Therefore, it

is described by |
INIT >» TIME<L 1 second

For convenience, all of the relationships describing the comparators are
summarized in Table 5-2. Almost all of the comparators (except IMHI and IMLO)

have built-in hysteresis to minimize toggling on noise.

Whenever the ACTIVE/STANDBY switch for the channel is in the ACTIVE mode,

‘o
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a logic signal called CHANXON will be high. Thus
CHANXON = ACTIVE

If the switch drivers are turned on (using the POWER CONTROL PANEL switch) a
logic signal, DRIVEON, will be high.

If a motoring overcurrent is sensed, a flip-flop, labeled IMHIL, is set.
Similarly, a regenerative overcurrent will set IMLOL. The overload indicators
are reset by

IRESET = RESET + INIT
where RESET is made high by pressing a momentary push button on the front of

the low-level electronics drawer.

A logic signal called IHIX is high whenever an overcurrent occurs, or if the
IRESET comparator has not timed out. Thus
IHIX = IMHIL + IMLOL + IRESET

If an overcurrent is sensed or if the channel is not active, the brakes for
that channel are turned on, hence
BRAKEONX = CHANXON + IHIX

If the brakes are on, or if the switch drivers are not turned.on, a signal,
SWOFF, will be high. Therefore
SWOFF = BRAKEONX + DRIVEON

All of the inverter switches are turned off if the EMA is in a regenerative
mode or if the SWOFF signal is high. Thus

QIOFF = RGN + SWOFF

The motoring chopper turn-on signal, QMON, is high if
QMON = QMC - QIOFF

Similarly, the braking chopper turn-on signal, QBON, will be high if
QBON = QBC - SWOFF . RGN

R78-1 5-11
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. These relationships are summarized in Table 5-3, along with notes which indi-

cate the location and meaning of the various logic signals used in the system.

5.1.2.3 Inverter Control

The inverter section of the power converter (Figure 5-10) consists of switches
QAP, QAN, QBP, QBN, QCP, QCN, and their antiparallel diodes. These switches
are actuated by signals developed from the rotor position sensor. During
motoring or plugging, two switches are on, thus allowing current to flow into
one motor winding and out through a second winding. In regeneration, all of
the inverter switches are open, but the diodes DAP, DAN, DBP, DBN, DCP, and
DCN act as three-phase, full-wave rectifiers for the voltages generated by the

machine.

Figure 5-11 shows the idealized rotor position sensor signals and the open-
circuit line-to-neutral armature voltage waveforms of the EMA, with the motor

moving in the forward direction.

Figure 5-12 shows the idealized rotor position sensor signals and motor currents
for both forward and reverse motoring conditions. The inverter switch turn-on

conditions can be found to be:

QAP1 = ABF + ACF
QAN1 = ABF + ACF
QBP1 = BCF + |

ABF
QBN1 = BCF + ABF
QCP1 = QAPT . QBPT
QCN1 = QANI . QBNI

QAPON = QAP1 - QIOFF
QANON = QAN1 . QIOFF
QBPON = QBN1 - QIOFF
QBNON = QBN1 . QIOFF
QCPON = QCP1 - QIOFF
QCNON = QCN1 - QIOFF

where the symbols and notation are those indicated in Table 5-4.
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Symbol Definition

A = RPSA Rotor position sensor output signal, phase A
B = RPSB Rotor position sensor output signal, phase B
C = RPSC Rotor position sensor output signal, phase C
F = TPOS Foward direction command

QAP1 Signal to turn on transistor QAP

QAN1 Signal to turn on transistor QAN

QBP1 Signal to turn on transistor OBP

QBN1 Signal to turn on transistor QBN

QCP1 Signal to turn on Transistor QCP

QCN1 Signal to turn on transistor QCN

QIOFF Signal to turn off all inverter transistors
QAPON Drive signal for transistor QAP

QANON Drive signal for transistor QAN

QBPON Drive signal for transistor QBP

QBNON Drive signal for transistor QBN

QCPON Drive signal for transistor QCP

QCNON Drive signal for transistor QCN

Table 5-4. Inverter Logic Signal Definitions

5.1.3 LOW-LEVEL ELECTRONICS

Complete schematics for the four-channel EMA are presented in Appendix A. The
low-level logic is CMOS which operates from +12 Vdc. The analog circuits use
+ 12 vdc. Most of the low-level circuitry is mounted on wire-wrap boards in

the control drawers, as was indicated in Paragraph 4.2.3.2.

5.1.4 POWER ELECTRONICS

The schematics for the power converter (SK 001228}, the brake control system
(SK 001230), the isolated power supplies (SK 001229), and the power control
system (SK 001227) are also included in Appendix A. Photographs of these

subsystems are given in Paragraph 4.2.3.3.
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5.2 SINGLE-CHANNEL POWER ELECTRONICS BREADBOARD MECHANIZATION

Aé indicated in Paragraph 3.2, the single-channel power electronics breadboard
performs the same function as the power converter for the four-channel system,
but is designed to handle substantially larger power output levels. The
following paragraphs describe the three major subsystems which form the single-

channel power electronics breadboard.

5.2.1 HIGH POWER MOTOR DRIVER

The schematic diagram of the motor drive circuit is given in Figure 5-13. The
inverter uses six power transistors (QAP, QAN, QBP, QBN, QCP, AND QCN). During
motoring, the current through the motoring inductor, LM, is controlled by the
two motoring chopper transistors, QM1 and QM2. It is possible to drive QM1 and
QM2 in several ways, but in this system they are time-shared, operating
alternately. Braking current through LB is controlled by the two braking
chopper transistors QBl and QB2. Noninductive current viewing resistors

(CVR's) are used to sense currents IMB, IAN, IBN, and ICN. Motoring and

braking control circuits use the signals from these CVR's for control purposes,
and the motor phase currents are also instrumented using broadband current

transformers TA, TB, and TC.

In mechanizing the power switches, several alternatives were considered. The
use of paralleled devices would require that they all turn on and off simul-
taneously. The required matching of turn-on, storage, and static operating
characteristics is very difficult to achieve, thus making it desirable to

avoid the use of paralleled devices. The use of Darlingtons in parallel
creates further problems, because the input stage must absorb most of the high
energy associated with turn-off if the device is operated in a saturated mode.
For these reasons, it was clear that the use of a single, large-geometry device
was most desirable in mechanizing the power switch. Three very different large-
geometry devices were tested for use in this application, and the results
summarized in EE-22T-EMA-022 (Appendix K). Of the three devices tested, two
were found suitable for the EMA switching. However, the Westinghouse D60T

type transistor was selected because its characteristics were slightly better

than the other device for the EMA application.
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5.2.2 BASE DRIVER POWER SUPPLY

The schematic diagram of the base driver power supply is given in Figure 5-14,
The output of the circuit is a 250 kHz square wave (QDRIVE AND QDRIVE) which is
used to control the currents in the base driver circuit (described in the next
paragraph). The output is transformer-coupled through Tl1. The primary of Tl

is center-tapped, and this point is connected to the 28 Vdc supply. In oper-
ation, the two ends of T1's primary are alternately grounded by the power FET's,
Q1 through Q3 operate in parallel to drive one side of T1, while 04 through Q6
drive the other side of T1. The FET's are excellent devices for this appli-
cation, since they are easily driven by CMOS logic buffers, are very fast, and
tend to act as a current source when operating under heavy loads. The hex buffer
Ul drives the FET's, and the amount of drive which is provided is controlled

by potentiometer R8. Zener diodes CR7 and CR8 assure that the drain voltages

on the FET's cannot exceed 75 V. Diodes CR10 and CR11 assure that the logic
signals driving the hex buffer Ul do not exceed safe input limits for Ul. The
input control signals (QIN and QIN) are square waves with an exact 50% duty

cycle established by counting down a higher frequency waveform.

5.2.3 BASE DRIVER CIRCUIT’

The schematic diagram of the base driver circuit is given in Figure 5-15. This

circuit uses the QDRIVE and QDRIVE signals from the base driver power supply,

and an RF drive signal for control. The RF drive signal is a 500 kHz waveform,
synchronous with the 250 Hz QDRIVE waveform. When the RF drive signal is pre-
sent, the base driver turns on the power transistor it controls. When the RF

drive signal is absent, the base driver turns the power transistor off.

The QDRIVE waveforms are coupled into the circuit through transformers T1 and
T2. The rectified outputs of these transformers result in a nominal 4 V across
‘capacitors Cl through C4, and 10 V across C5 and C6. When the RF drive signal
is present, transistors Ql and Q4 are turned on. The turn-on of Q1 re-

sults in Q2 and Q3 being turned on, thus placing a positive voltage on the base
of the power transistor which is being driven by the circuit. While the RF

drive signal is present, Q4 is on, and Q5 and Q6 are off. When the RF drive

R78-1 5-19
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signal is removed, Q4 turns off, and Q5 and Q6 are turned on. This causes the
base of the power transistor to be about -10 V with respect to its base, thus
turning it off.

The driver provides excellent control of the power transistor. At turn-on, the
base-emitter voltage rises very quickly, and the base current rises rapidly.
After turn-on, the driver maintains a base current into the power transistor
of about 15 A to assure that the power transistor remains conductive. At turn-
off, the base is rapidly driven to -10 V, and base charge is quickly removed

to minimize turn-off time. Diodes CR1 and CR2 ﬁrovide the base drive current
during the "on'" state. Schottky rectifiers have been selected for this

application to minimize circuit losses.

R78-1 5-22



DELCO ELECTRONICS DIVISION ® SANTA BARBARA OPERATIONS ¢ GENERAL MOTORS CORPORATION

SECTION VI

ANALYTICAL STUDIES

6.1 INTRODUCTION

Various analyses were conducted to obtain a clearer understanding of the EMA

and help finalize its design. These analyses covered both linear and nonlinear
servos (on both single- and two-channel systems), the chopper circuits, and
analytical studies of the commutation transients. These analyses are summarized

in the following paragraphs,

6.2 SERVO ANALYSES

6.2.1 SIMPLIFIED SINGLE-CHANNEL ANALYSES

6.2.1.1 Simplified Linear Servo Analysis

A simplified, linearized block diagram of the EMA is given in Figure 6-1.

Although this diagram ignores all system lags other than those associated with
the motor/current source, it is very useful for analyzing the affects of major
system gains, inertias, and gear ratios. In the diagram, 60, is the output

motion of the load (degrees), R is the angular velocity of the load (degrees/
second), N,, is the motor angular velocity (r/min), T

M M
(inch-1b), IA is the motor armature current (amperes), and Ic is the commanded

is the motor torque

armature current (amperes). The commanded load deflection, GC (degrees) is
compared with the actual load deflection, 60, and the error signal is amplified
(with gain KE) to provide control signal E. The velocity feedback signal, V,
is subtracted from E to form the current command, Ic. For this analysis, the
current source and motor effects are represented by a single first-order lag
with time constant 1 (seconds). The motor torque coefficient, KT (in-1b/A),
converts the armature current to a torque which is applied to the inertia of
the system, J (in-lb—sz), reflected to the motor shaft. The integrated
acceleration (with appropriate scaling) results in a motor r/min, NM. The
gear ratio, a, (and proper scale factor) converts the motor angular velocity

to load angular velocity. This is integrated to obtain the output (load)

deflection, 60.

R78-1 6-1



DELCO ELECTRONICS DIVISION ®¢ SANTA BARBARA OPERATIONS ¢ GENERAL MOTORS CORPORATION

weldeyrd XYo0yg par[duisS VWA -9 2andty
A
A
ef & _v_ 29s /bap / dwy
- Ly o8t $Sa|uOISUAWIP
{S++1)S 3 + 235-0]-u}
0g*” 0, A % dury / gj-ut
23$
bap/dwy
weaderq Y007g I01eNIOY VWY °1-9 SIndTy
NRLLEER
ALIJ0T3IA
duy
A
> My A
ollvy ViL43INI HOLOW '3124N0S 4d3141dwy
795 4viod W3LSAS INFHENI - Jodd3
bap woﬂc e wdif srg la-ul | duy{ se 4 \ duy Em<
0 < — —— € r||_| 1
8 Om 9 Wy 0 W, v 9 E|

¥ = ™ © X

6-2



DELCO ELECTRONICS DIVISION ® SANTA BARBARA OPERATIONS ® GENERAL MOTORS CORPORATION

For convenience, let

180 KT
= —— 6-1
K1 mJa ( )

The system block diagram can then be simplified to that shown in Figure 6-2.

6.2.1.1.1 Inner Loop Transfer Function

From an analysis of the simplified system diagram, the inner loop transfer

function is found to be:

Ky
Yo T
E - KK (6-2)
52 + 15 + 1y
T T
1
KV
= > (6-3)
S TS
1+ +
KIKV KIKV

A root locus plot for this loop is given in Figure 6-3. For gains such that

K,K, < 1/47 (6-4)

1

it can be seen that the loop has two real poles. For higher gains, the loop

has complex poles.

The natural frequency of the inner loop is

w_ = /K Kv/r (rad/s) (6-5)

and its damping ratio is

1
= 6-6
¢ 2Tw ( )
n
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1
KK, -
s-PLANE | IMAG INARY
KK ..L 11l
T VVvzr 2T
1
1 %77
ne L3 ne 0
T 47 47 REAL
—— —e—X
KK 2" ¢ KK .3
1V 167 1%v= 167
4 kK . L 1.1
Y 2T 27
1
1 KKy L

Figure 6-3. Inner Loop - Root Locus
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Figure 6-4 shows asymptotic Bode plots for the inner loop. The natural
frequency and damping ratio of the inner loop as a function of the loop gain,
KIKV’ is shown in Table 6-1.

KIKV wn 4

1 1

47 2t

1 21 | /2Z=0.707
2t 2 T 2

1 1 1=0.5

T T 2

2 V2 1 = 0.354
T T 2/2

4 2 1= 0.250
T T 4

16 4 1= 0.125
T T 8

Table 6-1. Inner Loop Natural Frequency
And Damping

6.2.1.1.2 Outer Loop Transfer Function

The closed-loop transfer function for the system showﬁ in Figure 6-2 is

given by
[
o 1 (6-7)
Sc 1. E!i . s2 . 1s3
Kg KK KiKg
K1 KE
= T
s3+s2+ KWKgs + KiKe (6-8)
T T T
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Figure 6-4. Inner Loop Gain Bode Plots
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The Routh table for the characteristic equation of the system is
3 K K
v

s 1 1
T
52 1 K1 KE
1 T
1 K, K
s ( 15y -k KE>
T
s0 K1 KE
T

The system will be stable if all elements in the left-hand column of the array

are positive. This requires that r, 1(1 and KE all be positive and that

K (6-9)

When KE = E!, the characteristic equation of the system becomes
T

s3 + 52/t «+ K K s/t + Kvxl/r2 =0 (6-10)
For this condition, the roots are

1 (6-11)
1 T

and

Sy Sg = +3 Kvxl (6-12)

-

Root locus plots for the outer loop can have the two general characteristics
shown in Figures 6-5 and 6-6. When the open-loop poles are all real (Figure
6-5), the root locus for the system shows that the closed-loop poles will all
be real when the loop gain is low. At higher gains, the two lower frequency

poles merge and break away from the real axis forming complex pairs.
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Figure 6-5. Root Locus - Three Real Open-Loop Poles
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Figure 6-6. Root Locus - One Real and Two Complex Open-Loop Poles ‘
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If the open-loop poles include a complex pair (Figure 6-6), the closed loop
will have one real pole and two complex conjugate poles. Typical asymptotic

Bode plots for the two possible open-loop conditions are shown in Figure 6-7.

As a special case which provides very important insights as to the affects of
system parameters, consider the case where the system's dominant time constant,
T, is small enough to be neglected. For this case, the closed-loop transfer

function of Eq. 6-7 can be simplified to:

o= 1 (6-13)
S

For this case, the natural frequency of the actuator is

_ 180K _K
w. = \/K = E (rad/s) (6-14)
v = VKK ‘\/~——-——" —

and the damping ratio is

w K K
= v

A
2 KE 2

§ =

| =

= K _ 180K (6-15)
2 Jak

These equations clearly indicate the affects of system gains, inertia, and
gear ratio on the linear response characteristics of the system. Although
this analysis is too over-simplified to provide a quaﬁtitative representation
of the system's characteristics, it does represent the ideal situation which
would be achieved if all system lags were negligible. More accurate analyses
must include the affects of all dominant poles and zeroes, and must also take
into consideration such nonlinear affects as torque limiting, velocity

limiting, and gear backlash.

R78-1 6-10



DELCO ELECTRONICS DIVISION ® SANTA BARBARA OPERATIONS e GENERAI. MOTORS CORPORATION

-20 dB / DECADE

) -40 dB / DECADE 0 ——
= 0

<C

(&

-60 dB / DECADE
-20dB / DECADE

=) —
=z 0

<C

(&)

-60 dB / DECADE

Figure 6-7. Asymptotic Bode Plots
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6.2.1.2 NONLINEAR ANALYSES

6.2.1.2.1 Step Response with Torque and Velocity Limiting

If the actuator were ideal, except for velocity and torque limiting, its be-
havior when responding to a step command would be as shown in Figure 6-8
(assuming all loading effects other than the system's inertia are negligible).
During the initial portion of the step response, the motor would operate at

full torque, thus achieving a constant acceleration. After the velocity limit
is reached, the motion continues with constant velocity. As the load approaches
the commanded position, full negative torque would be applied, decelerating the
system inertia to its commanded position without overshoot. This idealized

behavior can be analyzed using the following notation:

Symbol Description, units
IM Maximum motor current, amperes

System inertia reflected to motor axis, in-lb-s2

Motor torque coefficient, in-1b/A

ol

Z

Motor maximum speed, r/min

~3

Maximum motor torque, in-1b

> =2 X

Time to accelerate to maximum velocity, seconds

Motor angular acceleration, rad/s2

Motor angular velocity, r/min

Motor angular position, degrees

Motor travel in accelerating to maximum velocity, degrees

Total motor travel, degrees

-2 >

Load angular position, degrees

o O D@ D @ E R
m o

>

Load angular motion required in accelerating to

maximum velocity, degrees

The time required to accelerate the load to maximum velocity is given by

t,=_1 MNoooer N (s) (6-16)
0 K1, o T,

R78-1 6-12
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POSITION

TIME

ANGULAR “m [~
VELOCITY !
(1]

| TIME

ANGULAR &,
ACCELERATION

a

TIME

Figure 6-8. Step Response of Idealized Actuator with Velocity -
Acceleration Limiting
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The angle traveled in reaching full speed is found to be:

nJNM2
M
The time required to traverse a large angle (the case where velocity limiting
occurs) is
6 i NMJ
=L, M
frTEN, T, (s) (6-18)

The time required to travel through a small angle (without reaching velocity

limiting} is

t = “eTJ
T "180 TM (s) (6-19)

where
b, < 208, (deg) (6-20)
or
1 NM2J
br <% T, (deg) (6-21)

As a design example, if the maximum motor speed is 9000 r/min (corresponding
to a load angular velocity of 20 deg/s), the step command is 2.0 degrees at
the load, and

'3 = 0.006 in-1b-s° 0

TM 120 in-1b

=3
1

5400 deg
9000 r/min

Z
]

then

ty =7 (9000)(.006) = 0.0471 ()
30 120

0, =1 (9000°) (.006) = 1272 (deg)
10 120

R78-1 ' 6-14
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6E =1272| 20 | = 0.471 (deg)
A 6

9000 x
tT = 5400 + m_ 19000 x .006 = 0.1471 (s)
6(9000) 30 120

Thus, a step load command of 2.0 deg. is completed in 0.1471 s. The load
reaches maximum velocity in 0.0471 s. During this time the load has traveled
0.471 deg (and the motor has rotated 1272 deg).

For the same design example conditions, velocity limiting would be reached for

step angular commands (referred to the motor axis) greater than:

o = (9000)2(0.006) _ 2545 (deg)

T
T S 120

which would correspond to a load deflection of

5E=254s[ 20 ] = 0.942 (deg)
9000 x 6
Figure 6-9 shows idealized step response characteristics for the same design

example when traveling 1.1 deg and 2.75 deg.

Although the preceding analysis is considerably simplified, it provides an
ideal response against which the actual system characteristics can be compared.
The actual step response of the system can be made to approach the idealized
response, but can never exceed it. A more thorough analysis of the nonlinear

step response of the system is presented in Paragraph 6.2.4.
6.2.1.2.2 Sinusoidal Motion with Torque and Velocity Limiting

If the load is moving sinusoidally,

R78-1 6-15
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2.75° = 5% F. T.

O
~No
iy

2.0 —

LOAD ANGLE (deqrees)

1.0 — /4

0 0.1 0.2 0.3
TIME (s)

Figure 6-9. Step Response with Torque and Velocity Limiting
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§ = A sin 2nft (deg) : ' (6-22)
0 = 6 2nfA cos 2nft (deg/s) (6-23)
« = o= -4(rf)° A sin 2nft (deg/s?) (6-24)

where A is the amplitude of the load motion (degrees), § is the load deflection
(degrees)}, w is the load angular velocity (degrees/second), o is the load
angular acceleration (deg/s/s), and f is the frequency of the sinusoidal motion
(Hz). If the ratio of the motor speed to load speed is G, the peak angular
velocity of the motor is

= 27£GA (x/min) (6-25)

W,
M3

Therefore, if the motor speed can be no greater than NM (r/min)}, velocity

limiting will occur if the amplitude of the motor exceeds

A = Ny (deg) (6-26)

v nGE

Similarly, 1f the maximum motor torque is T (in-1b) and the system inertia

reflected to the motor shaft is J (in-1b-s ), the maximum motor acceleration

is
T, 2
ay = _M [rad][180 deg (deg/s™) (6-27)
J 2 wrad
Therefore, acceleration (torque) limiting will occur if
180 Ty . 4n%¢? Ga (deg/s?) (6-28)
mJ

Therefore, the amplitude of the motion which results in acceleration limiting

is given by

A= $ Ty (deg) (6-29)

n3f2 GJ

R78-1 6-17
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For the same design example used above, with

T, = 120 in-1b (J = 0.006 in-1b-s2)
G = 2700 (N, = 9000 r/min)
A =3 (9000) = 3.18 (deg)
T (Z700)f f
and
A, = 45 (120) (10,75 (de)

x> (2700)(0.006) £2 £

Figure 6-10 shows the velocity and acceleration limits for this design example.
For this case, velocity limiting will be encountered before acceleration
limiting for frequencies less than 3.4 Hz. At higher frequencies, the motion

will be constrained by acceleration limiting.

6.2.2 DETATILED SINGLE-CHANNEL LINEAR ANALYSIS

The simplified linear analysis presented in Paragraph 6.2.1.1 is highly useful
in showing how the dominant gains, time constants, and system parameters of the
EMA affect the natural frequency and damping of the system. However, in
examining the servo characteristics in greater detail it is necessary to con-
sider all of the system parameters. In addition, it is desirable to have a
computerized analysis available so that the effects of parameter variationms

can readily be evaluated. The following analysis was therefore conducted at

a relatively early stage in the program. A later analysis (presented in
Paragraph 6.2.3) was expanded to incorporate two operating channels, and is

therefore even more useful for analyzing the EMA.

The single-channel linear analysis was conducted using the block diagram shown
in Figure 6-11. The variables used in the computer program are shown next to
the blocks which they represent. The equations used in developing the model

are derived from the system block diagram. The inner loop gain is given by

R78-1 6-18
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Figure 6-10. Limiting Amplitude of Sinusoidal Motion
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L, = - 65 G7 G G5

G G G0 Gi4

and the outer loop gain is

The characteristic expression for the system is
CE=1-1L -1

17 b
=1+968% G5 * 6686 1 &

6 Cs C10 C14 Gy G Gg Gy Gy7 Gy
= [?4 G Gg Gyp G2 Gy4 Gjg * G5 Gy Gy Gy5 G4 Gyp Gig

+ G3 G5 G7 Gg G15 614] /LCD

CHAREQ/LCD
where LCD is defined to be

LCD = Gy Gg Gg Gy Gy, Gyy Gy

The open loop transfer function for the inner loop is given by

GIAL = G5 G, Gy G4
6 S S0 C14
“and the closed-loop transfer function for the inner loop is
GICL = G5 G7 Gg G14
(G, G

6 Cs G G4 * G G G 6

G

The open loop gain for the outer loop is found to be

GOPL = Gy G5 G; Gy Giy Gyg

Gy Gg CGg Gjo Gy Gyq Gg *+G4 G5

R78-1 6-21



DELCO ELECTRONICS DIVISION ¢ SANTA BARBARA OPERATIONS ¢ GENERAL MOTORS CORPORATION

and the corresponding closed loop transfer function is given by .
GOCL = GS G5 G7 GQ G14 G16
CHAREQ

The transfer function relating the position error to the displacement command

is given by

5 [1- 1)
e - G [1-1L

5
T CHAREQ/LCD

or

Gepc = 64 Gy2 66 (G G5 Gjg Gy . G5 G5 Gy Gp3)

G, CHAREQ

The various gains and transfer functions of Figure 6-11 (using the parameter
values at an early stage in the program) are given by
s/12409. + 1

(2]
[}

2
G3 = 100.
G4 = (s/452.4+1) * (s/213.6 + 1)
Gg = 1.
Gg = (s/999. +1) *(s/2488. + 1)*(s/879.7 + 1)
G, = 2.0
Gg = s/502.7 + 1
G9 = 1.796
G10 = [
G12 = S
G13 = 5.0
G14 = s/1061.9 + 1
G15 = 1.0
Gl6 = s/213.6 + 1

A complete program listing for the model is presented in Table 6-2. As

can be seen, several parameter changes were used for G3, G4, G13, and Gl6'
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c EPSN(10.,1) B
0 EPSN(1141) A .
n C . EMA SINGLE MOTOR MADEL LINEAR
o : ) '
0 o
0 G2 = (5712409, + 1)
0 33 = {.C
0 G3 = $10C.
0 G3 = BOC.
0 G4 = (S/7452e4 + 1)%(S/213¢6 + 1)
0 G4 » (S/504e8 + 1)8(S/4272 + 1)
0 GS = [
0 Ge ® (S/999¢ o 1)#(S/2488¢ + 1)v(S/879¢7 + 1)
0 G7 & 240 '
0 GR » (S/50Q02¢7 ¢ 1)
0 G9 & 1794
o] G10 = S
0 612 = §
0 Gi3 = 140
0 6313 = S5+C
0 G13 = 25.0
0 Gik = (S/1061.9 + 1)
0 Gi5 ‘s 10
0 G16 = (S/213¢6 + 1)
0 816 » (S/427¢2 + 1)
1
0 c '
N o CHARACTERISTIC EQUATIgN INNER AND sUTER LgBPS
v € ‘ :
0 GCEQR « G4#G6sGB*G10%G125G144G16 + G5#G7%GSuG130G4eG128516
) 1 G3#G5#G7#G9+G154G14 - ‘
0 GBOL = G3+G5eG7#GO*G1l4#G15/(G4*GEGB#GIC*G12°G14+G16 +
0 1 G4#G5#G74G9+G124G13%Gl6)
(o] o . ’ )
0 c INNER L66P RESPONSE ( BPEN LBSBP )
o] o .
o) GINL = GB#G7+G9+G13/(G6#G8*G10*G14)
o] FREQT 2 26345302035 14,500451.450022500,502G18L4CYC)
0 o '
0 €  INNER LB86P RESPBNSE { CLOSED La8P )
o] C ' v
0 GICL =(G5#G7#GO%Gi4/(G6+GBuGIC*G14 + GS«G7*GIxG13))w25279
0 . FREG( 2 2010102015 24,5Q001¢s504225042502GICL,CYC)
o] C ' )
0 c BUTER ,86P RESPONSE ( BPEN LgseP )
0 C ' v
0 FREG( 2 203801020035 14,50021¢05002250025+24G068L,CYC)
0 o -
0 c BUTER LBOP RESPONSE ( CLBSED LB6P )
0 o :
v} GACL » GS*GS*G?‘GS'GlﬁiG16/GCEO
(o] FREQ( ¢ 208210003,44,500016050022500,502GOCLLCYC)
o
¢ CcLesgD LBOBP POSITION gRROBR 18 PBSITION COMMAND
o :

GEDC s G4#G12+G164(G6+G8#G1CsG14 + GSeG7+#GI+G13)/(G2*GCEQR)
FREQ( 0 0903010501914,50001605040250455+2GEDCCYC)

o000

Table 6-2. Single-Loop Anaylsis Program Listing
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A root locus analysis of the inner loop was conducted, and a plot of the
results is presented in Figure 6-12. Since the dominant complex poles dictate
most of the system response, a gain was chosen to provide a damping ratio of
0.707. From the open loop response the gain and phase margins were found to be:
Phase margin = 62.6° at 14 Hz
Gain margin = 13 dB at 48 Hz
Figure 6-13 illustrates the resulting inner loop, closed loop response. Its
-3 dB bandwidth is 27 Hz.

Using the inner loop gains established above, the outer loop root locus was
determined (Figuré 6-14). The dominant complex poles (near the origin) are
strongly influenced by the 213.6 rad (34 Hz) double filter lags. With the
gain adjusted to give a damping ratio of 0.707, it was found that the closed-
loop phase shift was greater than the design goal. To improve the closed-loop
characteristics, the filter lag frequencies were doubled. A root locus plot
for this condition is shown in Figure 6-15. For KP = 800, the damping ratio

of the dominant closed-loop complex pair is 0.6. Corresponding roots are in-

dicated on the root loci by the rectangular symbols. The closed-loop gain
and phase characteristics for the system are given in Figure 6-16 and Figure
6-17, respectively. For comparison purposes, the design goals for the gain
and phase characteristics are also plotted in these figures, and it can be
seen that the design goals are exceeded. The outer loop phase and gain margins
from this analysis are:

Phase margin = 61° at 5 Hz

Gain margin = 10 dB at 15 Hz,

6.2.3 TWO-CHANNEL LINEAR ANALYSIS

The single-channel linear analysis which was presented in the preceding section
is very useful in establishing system characteristics, but does not take into
account the load characteristics or the effects of having two channels oper-
ating simultaneously. The analysis of the two-channel linear system described

in the following paragraphs takes both of these factors into account.
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Figure 6-12. Root Locus for Inner Loop
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Figure 6-13. Closed-Loop Response for Inner Loop
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With KR = 25 (inner loop)

Kp

3 1

2 " T/closed inner loop

(5/452.4 + 1){S/213.6 + 1) -
- j500
X
T
-
\ o
1 1‘,,‘1 1 1 1 ] s 1 . 1 1 % 1 L i L R
-2400 -1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 i €
Figure 6-14. Root Locus Plot for Narrowband Outer Loop
Im
With K., = 25 (iner loop) o0
KP . i .
(51904.8 + 1)(s/4z7.2 + 12 | /closed inner loop
O Kp = 800 (closed loop gain)
~1j500
®
jlo0
1 1 i L
Y -1000 ~500 fe
Figure 6-15. Root Locus Plot for Wideband Outer Loop
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Figure 6-16. Closed Outer Loop Gain Characteristic

100 —

PHASE (deg)
s

100

-400 Lt L 11t

0.1 . 10
FREQUENCY (Hz)

Figure 6-17. (Closed Outer Loop Phase Characteristic
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In analyzing the two-channel system there are six possible combinations of

two motors. The one that was chosen for analysis considers two motors

sharing the load through one of the primary differentials. The remaining
primary differential is locked up, thereby allowing torque transmission
through the final differential. The other possible combinations of two motors
could be analyzed in a similar manner. Figure 6-18 shows the two motors, the
differentials, and the system load. Table 6-3 presents the symbols and re-
lated data for the variables used in the analysis. For this model, all of
the compliances associated with the actuator are lumped together at the output
shaft.

A block diagram of the two-channel system is given in Figure 6-19. In this
representation the inertias of the first gear stages are reflected to the
motor shafts, and the inertias of the remaining stages are neglected. The
actuator load is modelled as a simple inertia which is accelerated by the
EMA output torque magnified by the gear ratio n, and opposed by damping and

spring load torques. The complete model block diagram includes tachometer,

velocity correction and position feedback loops as shown in Figure 6-19.

Programming was facilitated by block diagram manipulation of the load dynamics.
The load dynamics were included in the feedback torque loop and added open
loop to the output of the actuator motion. Figure 6-20 represents the com-
puter model block diagram (which is of course dynamically identical to the
model in Figure 6-19). All responses run with this model are with respect

to the EMA output shaft. Since the load dynamics can be neglected for a stiff
system such as the load stand, the test stand motion is related to the EMA
output shaft motion by

6 1

6, = g

Therefore, any of the responses which follow can readily be converted to test

stand motion.
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Table 6-3. Model Parameters

SYMBOL UNITS VALUE DESCRIPTION

§¢ radians Variable Commanded Position

Ke | volts/rad 170.4* Position forward loop gain

FC(s) See Figure 6-19 Position loop compensation

KI A/volt 1.0

KT in-1b/A 2.0 Nominal motor torque constant

JMI,JMS in-lb-s2 0.00842 Motor inertia including reflected gear

KVI,KVS volts/rad/s 0.2694* Tachometer feedback gain

N 3.75 Gear ratio, motor-to-primary differential

n, 1.5 G?ar rati9, primary-to-secondary

differential

Ng 238.71 NASA actuator gear ratio

éMl rad/s Variable Motor velocity (#1 motor)

éMS rad/s Variable Motor velocity (#3 motor)

éA rad/s Variable Primary differential input

éB rad/s Variable Primary differential input

KACT in-1b/rad 100,000 Combined actuator/mount stiffness

JF in—lb—52 96.46 NASA load inertia

BF ' in/1b/rad/s 1821.6 NASA load damping

KF in-1b/rad 8.6x105* NASA load spring rate

Tl’TS in-1b Variable Commanded motor torque

KVC{kP volts/rad/s 0.178* Proportional velocity comparator gain
KI volts/rad 4.48* ' Integral velocity comparator gain

OF radians Variable NASA test stand load position

r-)F/O0 rad/rad l/n3 (if load dynamics neglected)

Oo radians Variable EMA output shaft position

* Typical value used in the analysis
R78-1 6-30
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The program developed from the model in Figure 6-20 allows stability analyses

to be conducted for all compensation loops, and calculates frequency responses
and transient responses of all expected system errors with respect to command

inputs and disturbances. Table 6-4 is the program listing with sufficient

comment cards included to identify significant areas of the model.

No attempt was made in this analysis to provide more complex compensation for
the inner loops than was used in the single-channel analysis. However, several
compensation methods were considered for use in the outer loop design. Two
candidate designs are shown in Figure 6-21. The principal difference between
these two is four more dB of loop gain at low frequencies. This impacts low
frequency or static position accuracy. The open-loop response of the system
outer loop is shown in Figure 6-22. This response was run with the more
complicated compensation resulting in greater loop gain below 1 Hz. As can be
seen from Figure 6-22, the phase margin is 57 degrees and the gain margin is
10.5 dB. Closed-loop actuator response is shown in Figures 6-23 and 6-24,

Performance limits are included for comparison purposes.

Position error response to commanded position inputs are of interest (es-
pecially in the low frequency region). Figure 6-25 is the error frequency
response and Figure 6-26 is the transient error response to a step function
input. The increased loop gain becomes apparent as better error rejection
and the large phase margin maintains excellent system damping which is evi-
denced in the same response. The transient response settling time is also
very good which is brought about from adequate bandwidth and greater than

45 degrees of phase margin.

The next two responses deal with the velocity correction error performance.
This run utilizes a proportional plus integral compensation scheme. The
integral control was selected to eliminate steady-state velocity error, and
the proportional gain was selected to aid in the compensation phase. Integral
control alone adversely affects stability of the motor inner velocity loops.
With the compensation selected, the comparator error response to commanded

position and torque disturbance step functions are plotted in Figures 6-27
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Cas=36¢c CEMPILER
<PSNI1Cs 1)
EPSN(11,1)

LINFAR TW8 MOTBR MBDEL WITH [BAD DYNAMICS 7722777

PgSITIAN LBGP COMPENSATIGN

G1 s 170+43%(S/12¢566 & 1)9(S/29:7% & 1)’
G2 ¥ (S/9C4s8 + 114(S/427+2 + 119(S/64283 ¢ 1)e(S/474193 + 1)

FIRST M9TyR PARAMETERS

G3 = 2.C

G3 = 2.4

G4 =

G4é = (S/502¢7 + 1)
G% s 1}

G6 » +QCRu2eS

66 » «01C1eS

TACHIMETER FEEDBACK

G7 = Ce+2694
G? s ,3233

G8 = |
G8 » (57106149 + 1)

SECAND MpTHR PARAMETERS

Gi1 = 0

Gil = 2.¢

Gll & 16

Gi2 = 1

G12 = (S/502¢7 + 1)
G13 = 0

G113 = |

Glsd =

Gi14 = +0C842#S

Gi4 s «COE674S

TACHBMETER FEEDBACK

615
G15
615
Gi6
G116

0
Ce2694
02155

1
({S/1061,9 + 1)
GEAR B8X PARAMETERS
G9 = 1/3.75
G17 = 1/(4e21,50)
G18 = §
LIAR DYNAMICS

Table 6-4 (Sheet 1 of 4). Two-Channel EMA Model Program Testing
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"19 » 1eE£®D0B6ES

219 ® 0eb6748#((S/S4hedu)nu2 * Ce208S/90henk + 1)
G19 & Ce33744((S/94eb41ea2 ¢ 0e204S/F0044 + 1)
G20 8(0*REEE & 238eww2u1sEL) 28083475018

G20 = (S/7663.68)%42 4+ (,20*S/7663+68 ¢ 1

VELACITY COMPARATBR CaMPENSATIGA

G21
2}
G21
G622
22
Ga4
Ga4

0
1
behBe(S/285¢13 » 1)
1
S

1
{S/213¢63 + 1)

CHARACTERISTIC EQUATIgN FBR gPEN PaStTIBN Lggf

6GCD
Ges5

G&6
667
r48
G69
r7¢
71
672
G77
G78
ry9
G30
ﬁgi
GR2
GA3
GCE

2 ¢+ G13%GS#G17+G19+G71 + G1
3 G11#CG13%G15+G77

G4#GO*GB»Gl24G142G140G204G2203249G18
G12+G1lu»Glbo»CoCeG229G24»G18

GBuG12+Gl4eG16eG204G242G18
G4»G8G12+GlusG169G224G24
G4eGa*Gle»G24
G4+GE#GB+G2CaZ2+G24uG18
G4»GE+GB»Gl6aGZ0»G24aG18
G42G6aGBeGl24G164G22eG20
G8+G12+G16»G24
G20+G222GR4wG1 8

" G16#G20#G24#G18
G12#616G22+G24
GR*G2Q*Gc4+GLg
G8+G12%G16+G24
G4eGR#G22G2h
Gu4+GBeGlé»G24

GECD + GI*GSeG7#Ges + G3-65-aezoese + G5439eG1741154G67 «
1 GSeG21+#G11+G13%G3#G17G198GER + G11#4G13%G15%GeS + G11%G13+G21+G70

3%G214C3+#G54699G17+G19¢G72 + GIeGSeGre

GCE = GCE + G3#G5+4G7#G11+G13%G214G78 + G3eGE*G7+G138GI#G179G19°G79

{1 » G3#G5#G21%G119G134G15#G8C + GIe+GSeG21*G13vG9aG170G19GRY +

2 54794G17+G19%G11+G13sG15#682 & GSeGI+#GLl7%G194C110G134G210583

CHARACTERISTIC EQUATIBN FBR CLBSEC LOSP RESPAANSE

GLCD » GRsGhaGEsGB»G124C142GlenG20vGR20GR02418

631

G32
¢33
G3g
G636
G37
G38
G39
GuC
Gal
Ga2
Gu43

Table 6-4 (Sheet 2 of 4).

R78-1

GBe(124G14eG162G204G22

GhaG6eGBnG164G20sGR2
G8+G16+G20
G2#Gi2eGiueGlaoG2C4G2245240G18
GRuGBeG124G14eG14eGAC*G24e(318
G2oGu»GE2G1l2+Gl44G160G22+G24
GEuGheGB8eG16+G2Y
G2eG4eGeeGRaG2C(3224GR4aG18
G2eG4vGE2GBeG164GZ0*C2haG)B
G2eGavG6sGBeGICr169G22eGRM
G2+G8+G129G16%G24

G8+G20e522

Two-Channel FMA Model Program Testing
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B

R78-1

G4s
G4S
G46
G4y
G48
B4S
g85¢
GS51
652
G53
GCEG =

G8+G164620
Gl16«G20seG22
GR»G16#G20
G2#G204G22+G24+G1 8
62'616'629'624'618
G2*G12%G16#G224G2y
GEiG&*GEO“GE#OGls
G2aGB»3124G164G24
G2eGHeGR*G22eC24
G2*GusGR*Gl6+#G24
GLCD + Gil#G3+GSag

1 G1#G3+054G214G114G13GS
2 ¢ G3+G5+G7+G35 + G34G54G21+G36 + G5+G9#G174G19+G37 + GSwGpleGl
3 B134CI+G17#G19#G38 .

GCEGC = GCEQ + Gl1+G13+Gi5+G39 « G114G13aG21eGH0 + G139GI+G17sG19w

94G174G31 + G1eG11%G13eGIsG174G32 +
*G17%G33 G1eG11+4G134GZ1+#G34nSeGouGyYe

1 G41 ¢ G134G21+G3+GS*GoaG17+4G19sG42 + G1%G3%GEaG9¢GL 74611961 3+6

2%G43 + G1eG3+G5%GIeG17.

3 G7sG4

S + Gl#G1lleGilsgos

Gl7+#G3#G5+G214Gub

GCEGC = GCEQ + G3#G54G7eG114C13#G15#G4T + G3eGS#G7%G11+G13+621+G
1 + G3+#GSeG7#G13%G94G17+(G
2 *G21eG13#G9*G17%G19+G5y + G5+GI*G17+G19%G11#G13#G15%652 ¢ G5eG
3 «G17eG19+G114G134G21egs3

194G49 + GI*GE*GR219G11+4G13+G15+G5C + 63

8PEN PBSITIBN LBBP RESPANSE

GRLF »
1 #G13s
2 G173
2+ Git

FREG(

G33
{e

15

G118G13#G21#G44 & GleGl1rGl3e¢GIeG]74GIaG5*

8
*G5
k]

G1#(G39G54GI%G17e(G12eG140G16eG22 + Gy1+G13#G1S#G22 « Giy

G21+G16)+GReG2C »
GS#G174(G4%GE2GBaG
#G134G21#G3«GSag9s

s 2¢3210Qs08,10

G34G54G21+G11%G134GS%G174GReG164G20 ¢ G
22 + G3sG5#G7eG22 + G34GSeG21#GB)*G164G
G17+G2+G16#6G2C) /{G2eGCE)
JSC.IioJGﬁLPoCYC’

CLASEC POSITION LBOBP RESPEANSE

GCL = (G1#G38GS*G9+G174(G12eG144G164622 + G119G13#G15#G622 + G11
1 G134G214G16)eGBG20 « G1#G3#RSeGZ1+4G116G134G54G17+G8+G14#G20 +
2 Gl*G11#G13+GI*G17%(GheGEeCE*G22 + G3I#G5*G7#G22 + GI»GS»G214G8)
2 G164G2C + G14G114G134G214GI%G5+690G17#68+G16+G20)/GCEQ

FREG(

2 2031010 Carl,1.

25Ce2128CLLCYC)

PASITION ERROR T8 FASITIBN COMMAND RESPIANSE

GEC¥ = GCEsG2/GCEC

FREG(

e 20421:Che, s,

»5Ces1..GECH,CYC)

PeSITIon ERRGR STEP RESPSNSE

GTEC s GECM/S
TRNS( »CeCs2+0,0+018,6TEC)

POSITIAN ERROR RAMP RESPONSE

GTEC = GECM/Saa?2
TRNS ¢ ‘COClaOCI°001IGTEC)

VELACITY ERRBR TB PaSITION CHMMAND

GREP o(G1+G34GS%(G129G14eG1E*G184G2C + G11%G13+G15#G1R8+G20 »
1 G1234G94G17+G19%G12#G16)GBeGz eG4 + G1*G3+*GEaCIeG174G195G13eG8e

Table 6-4 (Sheet 3 of 4).
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® G12#160G224G2% o Glagl1#G13e(GUrG6sG8eG180G2 + G3*GS«g7#3184G20 '
+ GE#GS¥G174G19eGH=G8)¢G1646GR24G24 = GI*G11¢G130GI+G17+G19sG5+G4

4 «GReG16eG22+G234) /GCER

FREG ( » 291010Cs01,14,5C9214,GREP,CYC)

VELRCITY ERROBR STEP RgSPONSE
GTRF = GREP/S
TRNS( 5Ce0s2¢Cas0¢C1,GTRP)
VELACITY ERRBR RAMP RpSPONSE

GTRP « GREP/Ss#2
TRNS! ,C¢0,2¢54001,GTRD)

VELRCITY ERRBR Tp TaRGCUE DISTURBANCE
GRET « ((G2#G12%G14+G169G18+4G20e¢G24 + G1%G11%G13+GO»G17+G16eG20 +
1 G114G13+G15#G2#G18#C204G24 * G13#GIaG174G15%G22G12#G16sG24)»GSe
2 G4eGRAG22 + G5*GO#G1l74G19¢G13%G2uGusG82G12nG144G225G24 +
3 GS#G9+4G17+G14G114G134G4#G8+G16eG2C#G22)/GCEQR
FREG( 2 201019Cr03141425C0214,GRET,CYC)

VELACITY ERRBR STEP RESPSNSg

GTRT s GRET/S
TENS( »CeCa2eCs0¢C1,QTRT)

VELBCITY ERRBR RAMP RESPANSE -

GTRYT « GRET/Su#2
TRNS( ,Ce0,2¢C20eC1,GTRT)

Table 6-4 (Sheet 4 of 4). Two-Channel EMA Model Program Testing
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Figure 6-21. Two-Motor Model Outer Loop Compensation
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Figure 6-22. Open-Loop Position Loop
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PHASE (deg)
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Figure 6-23. Closed-Loop Actuator Response to Position Command (Gain)
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Figure 6-24. C(losed-Loop Actuator Response to Position Command (Phase)
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Figure 6-25. Position Error Response to Position Command
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Figure 6-26. Position Error Response to Stop Position Command
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and 6-28, respectively. Both responses show settling times less than 0.3

seconds and are very well damped at all times.

To emphasize velocity tracking problems, these runs were made with variances
in the two motor's inertias, torque constants, and tachometer feedback gains.
One motor's parameters were increased 20% while the second motor's parameters
were decreased by 20%. These are extreme changes in values and are definitely

not variances tolerated in the hardware.

6.2.4 SINGLE-CHANNEL NONLINEAR ANALYSIS

The preceding analysis of the linearized two-channel model is very useful in
describing the small-signal linear operation of the actuator, but it is not
adequate to describe the large-signal, nonlinear response characteristics. For
this purpose, a simplified single-channel nonlinear model was derived. The

model derivation and results are presented in the following paragraphs.

The model simplification used for this analysis is based on the results ob-

tained from the linear two-channel model. 1In that study it was found that
incorporating the load characteristics had virtually no effect on the EMA
dynamics. This result was also verified during laboratory tests. In addition,
it was found that the velocity correction loops had very little influence on
the basic tachometer loop stability. For these two reasons, the nonlinear
model was kept simple, using a single motor representation of the system.

The single-channel model simulates the proper loop dynamics as well as the
effective gear ratio which results when two motors are operating. The model

block diagram is shown in Figure 6-29.

During laboratory testing of the EMA (see Paragraph 7.4) two nonlinearities
were repeatedly observed: torque and velocity saturation. Since these were
felt to be the dominant nonlinearities, they were incorporated in the model.
In the physical hardware, velocity limiting occurs because the effective motor
counter-emf becomes as large as the battery voltage, thus preventing further

speed-up of the machine. Torque limiting occurs because the power converter
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limits the motor current. In the case of the four-channel system, the

velocity limit is about 9500 r/min (with nominal battery voltage) and the
motoring current limit of 40 A limits the torque to 80 in-1b. In the single-
channel power electronics breadboard the nominal current limit is 60 A, which

results in a torque limit of 120 in-1b.

The nonlinear model incorporating torque and velocity limiting was simulated
on the XDS Sigma 7 digital computer. Transfer functions in the control loops
were converted from the s-domain to z-domain sampled data equations by means
of the algebraic bilinear z-transform. The computer program listing is
shown in Table 6-5. With the comment cards in the listing and the system
block diagram shown in Figure 6-29, the program is largely self-explanatory.
The subroutines listed in the program are for the complete list of s to z
transforms normally encountered in most simulations; not all of them were

needed in the model even though they are included in the program listing.

Program checkout was accomplished by opening up the torque and velocity limits

to values which would assure that the solution would run in a linear manner.

With a one-degree step function input, the single-channel model was run and
the output compared very well with the two-channel lineaf Step response
(Table 6-6). During this run the maximum torque required was 399.6 in-1b

and the maximm velocity was 10,021.6 r/min during the l-degree step response
model run. The 9500 r/min velocity limit is not very significant for a 1-

degree step input, but the 80 in-1b torque limit is.

Eight cases were run with both velocity and torque limits imposed on the
solution. All runs were made with a 9500 r/min velocity limit. Four of the
runs were made with an 80 in-1b torque limit, and the remaining four were
run with a 120 in-1b 1limit. Figures 6-30 through 6-33 are the responses to
step commands of 2, 3, 4 and 5% of full travel (55 degrees). For comparison
purposes the step response design goal envelope is plotted on each response.
For the most part the runs with the 80 in-1b limit meet the system design
goals. These results agree quite well with the EMA laboratory runs, as
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9c00

scao

9C4C FOBRMAT(T6,'T!,T15,' DE +,730,'TRGK',T41,'TRKM',T5E,'CCRT!, TE7,

3¢50
3000

c

SINGLE CHANNEL NONLINEAR gMA MODEL

NAMELIST WA, WDsTRKMAX,DDTMAX,DCDT
NAMELIST KPRNT,» TEND
INPUT

INITIALT1ZE PARAMETERS

YAL
Y81
YD1
YCi
T »
Ki = 0

Y8
YR8
ypa
Yc8

XA8
xee
o] ]
xce

xat
XB1
xD1
xct

s w an
. e nae
. % ea
[oReoNoReo]

On 8 a-a

CALCULATE FILTER CBEFFICIENTS

CALL CLBWPASS(AAB,ABL,WA,14040T)
CALL CINTGRAL(BAB»1+0,0T)

CALL CINTGRAL(CAB,1.Cy0T)

CALL CL9WPASS(DAB,DBL,WD,1¢CsDT)
WRITE(1¢8,9CC0)
FORMAT(+11,T10s*EMA BNE CHANNEL NENL INEAR MEDEL'//)
BUTPUT WA, WD, TRKMAX,CDTMAX
BUTPUT CCsDT,KPRNT#TEND

BUTPUT AAR,AB1,BA0,CAB,DA8,D081
WRITE(1CR,9020)

FBRMAT( /)

WRITE(1¢8,9040)

10D8TMY)
WRITE(1£8,5050)
FBRMAT(/)
CEBNTINUE
Kl = K] ¢« 1
IF(T+GTL.TEND) GB T8 9999

PBSITIAN LBOBP EGQUATIEN
XPE s (CC = DE)#93¢5

A FILTER ( SINGLE LAG )

XA9 s XPE '

YAB = AABe(XA8 + XAL) = AQieYAQ
YAl = YAB; XAl ® XA®

VC s YaAR

TACHOMETER (B6P EQUATIOBN

D FILTER { SINGLE LAG)

X088 2 DrAaT

YO8 = CaAB«(XCB + XD1) = Dpy+YCl
YDL =« YpA 3 XDy = XDO

TA8 » YDB

VE s VC o TAQ#eQ07
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TREX = 10..VE
TBRGUE SATURATION

(a N Xa )

TRKM™ s TRGK

IF(TRGK «GT ¢+ TRKMAX) TRKMSTRKMAX
1F(TRGK (L. Tee TRKMAX ) TRKMS o TRKMAX
TKS = 1383¢9&eTRKM

B FILTER ( INTEGRATER )

(a XaNel

XBOSTKS

YBB = BARe(XBO ¢+ XBl) + vgi
XBisxBB;YBlsYBO

ODET = Y88

VELBCITY SATYRATIEN

onn

DDET s DDOT
IF (DDBT.GT+DDTMAX)DODBTMDDTMAXIYB 1 aDETMAX
1F(DDOBT.LTeeDDOTMAXIDDEBTMa.COTMAX ; YB L seDDTMAX

C FILTER ( INTEGRATBR )

(o X' Fa Xa ]

XCH = DDRTMe,002234
YCB = CaBs(XcO ¢ XC1) ¢ vci
XxC1 = xCO8;YCi = YCO
DE = YChp
IF(T.LT.DT} GO& T8 15C0
IF(KI«EGeKPRNT) GO T8 150¢
G8 TA 28500

1800 CBNTINUE
K] = ¢C

BUTPUT DATA

[ Xa Na )

WRITE(10R,5100)T,DEsTRCK, TRKM,DCAT,NDCATM
91C0 FBRMAT(Tu,FSe3sT14sF8e30T26sF9¢2,T38,FRe3,T512F%42:T64)FN2)
2500 CBNTINLF

T « T +« DT

G8 T8& 30C0 -
9999 CBNTINUE

END

Table 6-5 (Sheet 2 of 3). Nonlinear EMA Model Program Testing
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SUBRAUTINE CSECHOND(AC,B1,B2,WZs2ZETA,XK,TF)
W s TAN(WZ*TF/20)) W2 ® Wans IW 3 2ea2ETA®W) O ® §¢ ¢ 2W + 42

AQ = W24XK/Dj Bl ® e2.%(1,-w2)/C; B2 s (1,e2Wen2)/L; , RETURN
ENTRY CRIPASS(AC,B1,BZ)WZ,2ZETASXK,TF)

W & TAN(WZOTF/2e¢)3 W2 = Welj IW = 2eulETA%WI D 2 §o ¢ ZW ¢ 2

AQ = XK/D3 Bl 8 «2.¢(1,aW2)/C; B2 s (1,e2W+n2)/C3H RE TURN

ENTRY CRATELAG(AC,Bl,WZsXKsTF)) D = 24/7F; GB Tp 1

ENTRY CLOWFASS{AQsBL,WZoXK,TF) D = 1.

W s TAN(WZOTF/20)3 AC = DuawsXK/(1e+W)s By s w(loew)/(1e*W)) RETURN
ENTRY CINTGRAL(AQLXK,TF); AQ = xKeTF/2,.: RETURN
ENTRY CINTLD(AOSALIWZoXK,TF) ) WETANIWZ#TF/2¢)i DexxeTF/2e
ACsDu(1es4W)/W3 Ages=Dal(lray)/W;

ENTRY CRATE (ADsXK,TF); AC =Z,4XK/TF} RETURN
ENTRY LAGLEAD(AO,A1,BY,WZ1,WZ2,XK,TF)3 Wi ® TAN(WZ1#TF/2.)

W2 & TAN(WZ24TF/2¢)3 D ® {4+W2) W21 s W2/W1 B1 s <«(le=h2)/D

AC = XKaW218(1e+W1)/D3 Al = eXKuw2iw(leoWi}/0; RETURN
END

Table 6-5 (Sheet 3 of 3). Nonlinear EMA Model Program Testing
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Figure 6-30. 2% FT Step Response
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Figure 6-31. 3% FT Step Response
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Figure 6-32. 4% FT Step Response
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shown in Table 6-6. Times to reach the first zero error agree to within 8.5%

and the setting times agree to within 11.5%. Several parameters can be fine-
tuned to get better agreement. The 80 in-1b limit set in the model is
probably slightly different from the actual torque limit set in the EMA. The
value of 0.0069 in-lb—s2 for the motor inertia could be slightly different
from the hardware and the actual velocity limit may be slightly different

from 9500 r/min, since it is strongly dependent on the battery voltage.

In summary, the model comparison with laboratory results is very good, even
though the model is somewhat simplified. It has verified laboratory obser-
vations that the two dominant nonlinearities in the EMA are torque and
velocity saturation. Because the comparison came out so close to actual
results, it was felt that changing the torque limit to 120 in-1b would be
instructive. Based on the results in Figures 6-30 through 6-33, the 120
in-1b limit would allow the response to stay within design goal limits for

step commands up to 5% of full travel.

6.3 CHOPPER CIRCUIT ANALYSIS

One of the most important subsystems of the EMA is the chopper circuit of the
power converter (which is discussed in Paragraph 5.1.2). Its operation is
nonlinear, but a very informative approximate analysis of its behavior can be
made using the simplified circuits of Figures 6-34 and 6-35 which show both
motoring and regenerative modes of operation. Although these idealized
schematics neglect the losses and parasitics of the actual circuits, they
provide a convenient, straightforward means for analyzing the operation of

the chopper in both the motoring and regenerative braking modes.

6.3.1 MOTORING MODE
When the motoring mode is being used, and the chopper has settled into its

normal mode of operation, the time that the switch is closed is given by

T. = 2hL (6-31)
1 E - eM
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Figure 6-34. Chopper Operation, Motoring Mode
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The switch then opens for the interval ‘
T = 2hL (6-32)
2 " e
M

The period of the sawtooth waveform is therefore

1 + 1 (6-33)

T, =T, + T_= 2hL [ - —-]

M 1 2 E - ey ey
Simplifying

T = 2hLE (6-34)

M ey (E - eM)
or

T = 2Lh (6-35)

M a(l-a)E

where a is defined to be

e
.M (6-36)
- o
The chopper frequency is therefore

£, = ey (E - e | (6-37)
2hLE

or

£ = 2(1-a)E (6-38)
M 2Lh

Table 6-7 shows the calculated characteristics of the chopper circuit for a
270 V supply, a circuit inductance of 0.5 x 10'3 H, and a hysteresis setting
of + 4 A,

6.3.2 REGENERATIVE BRAKING MODE

For the regenerative braking mode (Figure 6-35), the switch will be closed

for the time interval given by
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T, = ZhL (6-39)
3 e
B

and the switch will then open for the time period

T = 2hL (6-40)

4 E - ep
The period of the steady-state waveform is therefore

i i 1o+ 1 ;
Ty = T, + T, = 2hL [es E___e_] (6-41)
B
Simplifying,
_ 2hLE (6-42)
g = ¢ (E - e)
B B

or

7. = 2hL (6-43)

B a (1-a)E
The frequency of the chopper during braking is therefore

(E - e;)

f = € —__B_

B B 2hLE (6-44)
or

£ = a(l-a)E (6-45)

B 2hL

Since these equations are identical in form to the motoring equations,

Table 6-7 is also valid for braking if the following substitutions are made:

T4 > T1
T3 & T
g = v
fB > fM
g M
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ey W

1

2

5
10
20
50
100
135
170
220
250
260
265
268
269

T (us) T2 ws)
14.87 4000
14.93 2000
15.09 800
15.38 400
16.00 200
18.18 80
23.53 40
29.63 29.63
40 23.53
80 18.18

200 16.00
400 15.38
800 15.09
2000 14.93
4000 14.87
Table 6-7.

Chopper Operation in Motoring Mode

TM (us)

4015
2015

815.
415.

216

98.
63.
59.
63.
98.
216.
415,
815.

2015
4015

18
53
26
53
18
0
4
1

fM (Hz)

249.1
496.3
1227
2407
4630
10,185
15,740
16,875
15,740
10,185
4630
2407
1227
496.3
249.1

Although this is a simplified analysis, it provides insight into the chopper

circuit's operation.

R78-1

Major effects which would modify the performance include:

The switching of power currents requires a finite amount of time,

thus lowering the theoretical chopper frequency

The comparators require some overshoot and operating time to sense that

the chopper current has reached the preestablished limits; this effect

also lowers the chopper frequency from the theoretical value.

Parasitic losses cause the chopper currents to change less rapidly

than the theoretical currents, again reducing the chopper frequency

from its theoretical value.
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6.4 COMMUTATION ANALYSIS ' .

The power converter and its control were discussed in Paragraph 5.1.2. The
inverter section of the power converter performs a function similar to that of
the commutator and brushes of a conventional dc motor. As the rotor turns, the
motor current is sent through the proper windings of the machine by the inverter
switches. To understand the transients associated with the commutation process,
an analysis of the power converter and its load has been conducted. The system
under consideration is shown in Figure 6-36. All semiconductors are assumed to
be ideal, i.e., their forward drops during conduction are negligible, and have
no leakage current when reverse biased. Losses in the circuits are neglected,
and all parameters are assumed to be independent of operating conditions. Para-
sitic elements are neglected, and all switching actions are assumed to take

place instantaneously.

The commutation instant is taken to be that shown as the electrical angle of
0° in Figure 6-37. Figure 6-37 shows the idealized waveforms that would appear
when a commutation angle advance of 30° is used, and the current source is per-

fect. At t = 0, Q3 and Q5 are conducting. At t = 0O+, Q3 is turned off and Ql

is turned on. Since the motor is inductive, i_ will continue to flow, but will

C

now be conducted through D6. Since iA cannot build up instantaneously,

il(O+) = 0, and since 13(0+) =0, il(O+) = 0. The current initially flowing

through [ Must mow flow through DR' With both Dy and D, conducting, the cir-

cuit equations for the system are:

di di di di di di
_ A B c B _ A C )
E-ey*tepg=Ll g Mg Mg Uy Mg Mg  (6-48)
0 = i, +ip + 1, (6-47)
di di di di di di
) B A c C A B 648
g -y Mg Mg *hw M&x V& (6-48)

Now letting,

A =E -eA + e
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4—%4DR ‘

Figure 6-36. Power Circuit Schematic Diagram
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Equations 6-46, 6-47, and 6-48 can be rewritten as ‘
A=L%-Lj%+0 (6-49)
R 50
B=20 -L(—:—it-E+L-d—:—% | (6-51)

Equations 6-49, 6-50, and 6-51 can be solved simultaneously to obtain

dlA - 2E - 2eA +ep ec (6-52)
dt 3L
d1B _ -E+ ~eA - 2eB + ec (6-53)
dt 3L
d1C - -E + eA + eB -ZeC (6-54)
dt 3L

For simplicity, if the counter-emf's are sinusoidal and a 30° commutation

angle advance is used

e, = Em sin wt (6-55)
e, = E_sin (ut - EE) © (6-56)
B m 3

e. = E sin (ut - 35 (6-57)
C m 3

or
e, = Em sin ut (6-58)
e, = E - = sinuwt - 13 cos wt (6-59)
B m 2 2 -
= E - = sinwt + ﬁ
°c ™ "m 2 Z cos wt (6-60)
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Substituting Eqs. 6-58, 6-59, and 6-60 into Eqs. 6-52, 6-53, and 6-54

diA

2 E-3E sin wt

dt

3L
_ 3 . 3V 3
—-E+Em(751nwt+2 cos wt)
3L
_ 3 . 3V 3
--E+Em (Esm‘”t' > cos wt)

3L

Integrating these equations, and recognizing

iA 0+) =0
ig (04) = -1
iC (0+) = Io
E.
. 2E m .
1,=3¢¢ i (1 - cos ut)
. Et Em [(1 - cos wt) + 'VE sin wf]
i, = -1 - == 4 —
B o 3L 2wl
i =1 - ET Em [(1 -cos wt) - Vgsin wt]
C o 3L 2wl

As a design example, suppose

—{
n

o

=
1}

=
1}

tm
il

E
1}

R78-1

50 A

330 uH
500 pH
270 vV
50 V

1200 rad/s

(6-61)

(6-62)

(6-63)

(6-64)

(6-65)

(6-66)

6-60
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Solving Eqs. 6-64, 6-65, and 6-66 with these values:

t : 14 1g ! i
(us) (A) (A) B (A)

0 \ 0 -50.00 i 50.00
20 : 10.87 -52.81 | 41.94
40 : 21.67 -55.59 § 33.92
60 32.40 -58.33 5 25.93
80 43.05 -61.05 ! 17.99
90 48.36 -62.39 ? 14.04
93.11 50.00 -62.81 | 12.81

After DR recovers, but with D6

comes as shown in Figure 6-38.

still conducting, the equivalent circuit be-

Figure 6-38. Equivalent C(Circuit - D¢ Conducting
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In Figure 6-38, assume the current source is ideal, then

1L = IL
ey Go 4y
B C m dt dt m dt
0=E’_B.+_diq
dt t
Solving,
dlB ) eC - eg : d1C
dt 2 L T dt

Combining eqs. 6-59, 6-60, and 6-70:

di

B

e,

dt

2L

cos wt

- M

Integrating, and recognizing iB (tl) = IB

Continuing the same design example described earlier, with

Y

R78-1

3

_I L Py
B1 2wf,
IL

-1, -

93.11 ps

50 A

" (sin wt - sin wt 1)

1

di
dt

9

(6-67)

(6-68)

(6-69)

(6-70)

(6-71)

(6-72)

(6-73)

(6-74)
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t iB iC
{us) (A) (A)

93.11 -62.81 12.81
100 -61.91 11.91
120 -59.31 9.31
140 -56.72 6.72
160 -54.14 4.14
180 -51.57 1.57
190 -50.29 0.29
192.25 -50.00 0.00

The transient currents for this case are plotted in Figure 6-39.

Although the preceding analysis covers the normal commutation transient, if D6

recovers before D_, the equivalent circuit becomes that illustrated in

R’
Figure 6-40.
For this circuit
di di di di
=1 A _B . B A 6-75
E-eprep =L MaE Lndt *Ma (6-75)
but since
1 = - i 6-76
1g 1, ( )
diA
- = — 6-77
E e, * €p 2L It ( )
Combining Eqs. 6-58, 6-59, and 6-77,
di E
A_E m |3 . 13 ] 6.7
dT-—Z—L--—ZT[Z sin wt + .2_C05 wt ( )
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Figure 6-39. Commutation Transient with DR Recovering Before D6 .

—t—
-

Figure 6-40. Equivalent Circuit, DR Conducting
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Integrating Eq. 6-78, and letting iA (tl) 8 IA ‘
1
iA = IA . E(t'tl) - 3Em [}cos mtl - cos wt) + VE-(sin wt (6-79)
1 2L. 4wl 3
- sin wtl)]

1p = -1, (6-80)
i

c* 0 (6-81)

As a design example, consider the following conditions

I =50A
o

L = 330 pH

L0 = 500 uH

E=270V

E =125V
m
w = 3000 rad/s

Solving Eqs. 6-64, 6-65, and 6-66 with these values

t s ip 1¢

us A A A
0 0.00 -50.00 50.00
20 10.68 -48.78 38.10
40 20.91 -47.36 26.45
60 30.69 -45.77 15.08
80 40.02 -44.02 4.00
87.36 43.34 -43.34 0.00
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Solving Eq. 6-79 with t) = 87.36 us and IA1 = 43.34 A, ‘

Es iA

87.36 43.34
90 43.81
100 45,52
110 47.17
120 | 48.76
128.1 ! 50.00

The transient currents for this case are plotted in Figure 6-41.

60~

50
a0 iA
30
20}
10} ic

| I,

| S SO S —
20 40 60 8 100 120 140 160 18 200 220
-104- TIME (usec)

AMPERES

Figure 6-41. Commutation Transient with D6 Recovering Before DR
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SECTION VIT @

TESTS AND TEST RESULTS

7.1 MOTOR TESTS

The EMA motor was tested extensively to provide data such as:

Winding resistance

Winding self-inductance

Winding mutual inductance
Incremental inductance with dc bias
Open-circuit voltage characteristics
Cogging torque

DC torque

Short-circuited braking characteristics

Alternator performance under load.

The tests which were conducted and the results which were obtained are
summarized in Appendix E. Since virtually all of the motor characteristics
are functions of the rotor position, stator currents and environmental condi-
tions, it is necessary to review the actual data for detailed information.
However, for convenience, Table 7-1 summarizes some of the typical results

presented in Appendix E.

7.2 EFFICIENCY TESTS

Dynamometer tests were conducted in both the motoring and regenerative braking
modes to determine the efficiencies of the motor and electronic subsystems, as
well as the overall system efficiency. The methods used in conducting the
tests, as well as the results, are presented in Appendix F. Table 7-2 pre-
sents efficiency data in both motoring and regenerative modes for a shaft
power of 8.0 hp. In general, the efficiencies improve at higher power levels,
and the system is more efficient in the motoring mode than in the regenerative

braking mode.
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Parameter ' Yﬂiﬁf.
DC winding resistance, line-to-neutral 0.06 ohm
Winding line-to-neutral self-inductance 0.290 mH
Winding phase-to-phase mutual inductance 0.020 mH
Winding line-to-neutral incremental inductance 0.220 mH
Current source inductor incremental inductance 0.450 mH
Current source inductor dc resistance 0.012 ohm
Open circuit line-to-line rms voltage 0.02 V/r/min
Open circuit line-to-neutral rms voltage 0.012 V/r/min
Peak dc torque with line to neutral current 1.3 in-1b/A
Maximum short-circuited braking torque 130 in-1b

Table 7-1. Summary of Typical Motor Test Data

MOTOR ELECTRONICS OVERALL
~ MODE EFFICIENCY (%) EFFICIENCY (%) "EFFICIENCY (%)
Motoring 92.7 97.0 89.9
Regenerative 91.8 91.3 83.8

Table 7-2. Efficiencies at 8.0 Shaft Horsepower
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7.3 ELECTRONICS TESTS

7.3.1 LOW-LEVEL ELECTRONICS TESTS

The low-level electronics circuits were tested extensively as part of their
checkout. Each of the four channels underwent similar tests, and the results
of the tests conducted on Channel D are presented in Appendix G. All channels

have virtually the same characteristics.

7.3.2 POWER CONVERTER TESTS

Waveform measurements were made of various voltages and currents in the power
converter circﬁit under various motoring, plugging and regenerative braking
conditions. These tests were made using Delco's dynamometer (described in
Paragraph 4.1.2 and shown in Figures 4-6 through 4-8). The results of these

tests are summarized in Appendix H.

7.4 DESIGN VERIFICATION TESTS

7.4.1 DESIGN VERIFICATION TEST PLAN

The NASA Statement of Work (SOW) which is given in Appendix C established
design goals for the four-channel actuator. As a part of the system tests,
Design Verification Tests (DVT) were conducted. The basic DVT plan is pre-
sented in Appendix I. The plan outlines the tests to be conducted, the

instrumentation to be used, and the purpose and duration of each test.

7.4.2 DESIGN VERIFICATION TEST CONFIGURATION

The Design Verification Tests were conducted using the circuit configurations

shown in Appendix A. The basic system gains are given by:

Position loop current gain 450 A/deg
Velocity loop current gain 15 A/deg/s
Velocity correction current gain 32 A/deg/s

These gains are given with respect to output motion at the spring load.
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The current limits were set at 40 A for motoring or regenerative conditions
and 25 A for the plugging conditions. The comparators for the SPDHI or SPDLO
conditions have a nominal load speed setting of 0.92 deg/s (which corresponds
to a motor speed of 410 r/min) with a hysteresis of + 0.25 deg/s. The com-
parators for the SPDPOS and SPDNEG conditions toggle at a nominal load speed
of 0.11 deg/s and have a hysteresis of t+ 0.12 deg/s.

The current overload sensors are set to indicate an overload if the motor
current exceeds 60 A, The hysteresis built into the motoring and braking
current control comparators is # 2.1 A, The dominant filter time constants

are shown in Figure 5-2.

7.4.3 DESIGN VERIFICATION TEST RESULTS

The Design Verification Test results are presented in Appendix J. For con-
venience, some of the more important results are summarized in the following

paragraphs.

7.4.3.1 Output Stroke

When mounted on the load stand, the safe maximum output travel is about + 11

degrees. The design was therefore set to limit travel between 9 and 11 degrees

in each direction. The measured travel limits were % 10.3 degrees.

7.4.3.2 Output Velocity

The maximum output velocity of the actuator under no-load conditions, and with

a nominal battery voltage of 270 Vdc was 22.7 degrees/second.

7.4.3.3 Output Torque

The actuator was operated in three different modes as indicated in Table 7-3.
The temperature rise which was measured is also shown in the table, and did

not exceed 24°C for any of the tests.
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Test Steady-state Peak-to-peak Input Test Measured
Cond. Load Spring Sinusoidal Freq. Duration Motor
Deflection Motion (Hz) (minutes) Temper%ture
(degrees) (degrees) Rise (°C)
I 8.0 1.0 2.5 26.0 24
II 6.0 4.0 1.0 5.5 12
111 6.0 4.0 ' 1.27 1.5 3

Table 7-3. Output Torque Test Conditions

7.4.3.4 Displacement Linearity

The displacement linearity tests showed that the linearity of each of the
position feedback transducers was much better than the design goal of 1%. The

worst-case maximum deviation was 0.22%.

7.4.3.5 Threshold
The design goal for threshold is 0.0275 degree. All combinations of two active

channels easily met this requirement.

7.4.3.6 Position Null

The position null design goal is 0.275 degree. All combinations of two active

channels easily met this requirement.

7.4.3.7 Hysteresis

The design goal for hysteresis is 0.0275 degree. All combinations of two
active channels easily met this requirement. The worst-case hysteresis was
measured using channels C and D. This combination had a hysteresis of 0.008

degree.

7.4.3.8 Cross-Channel Velocity Tracking

The cross-channel velocity tracking error under steady-state conditions has a
design goal of 3% of the maximum motor speed. All combinations of two active
channels met this requirement. The average of all the cross-channel velocity

tracking errors was found to be 1.5% of full motor speed.
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7.4f3.9 Frequency Response

All six motor combinations were tested for frequency response, and all easily
met the design goals for the system. The -4 dB bandwidth was typically 9.5 Hz
compared with a design goal of 3.0 Hz. The -45° phase shift frequency was
typically 3.4 Hz compared to a design goal of 3.0 Hz.

7.4.3.10 Step Response

The step response of the EMA was found to meet the design goal for step
commands up to 2% of full travel. For larger commands, either the overshoot
exceeded the design goal of 25%, or the time to reach 85% of the steady-state
response exceeded the design goal of 0,145 second. A summary of the measured

step response characteristics of the EMA is given in Table 7-4.

Step Command Measured Time to Reach 85% of
(% Full Travel) Overshoot Steady-state Displacement
(25% is Design Goal) (0.145 s is Design Goal)
2% 25% 0.100 s
3% 30% 0.120 s
4% 27% 0.140 s
5% 22% 0.160 s

Table 7-4. Step Response of EMA

7.4.3.11 Motor Brake

During this test the EMA output shaft was locked. One at a time, each motor
was operated at its full output torque to test the braking torque of the other
three brakes. All brakes operated without appreciable slip during these tests.

7.4.3.12  Chatter and Instability

The design goal for chatter and instability is 0.055 degrees peak-to-peak.

None was observed or recorded which approached that value.

7.4.3.13 Velocity Gain Test
The measured velocity gain was 0.035 A/r/min (or 15.7 A/deg/s at the load).

R78-1 7-6



DELCO ELECTRONICS DIVISION ® SANTA BARBARA OPERATIONS ® GENERAL MOTORS CORPORATION

7.4.3.14 Torque Gain Test

The measured torque gain was 427 A/degree.

7.5 COMPARISON OF ANALYTICAL AND TEST RESULTS

As a check on the validity of the math models which were developed for the
EMA, lab test results were compared with the analytical results. In
paragraph 6.2, the step response characteristics obtained in the nonlinear
model were compared with the EMA lab test data. A summary of the results
(Table 6-6) showed excellent agreement between the two. A comparison was
also made of the frequency response characteristics of the EMA and its math
model. A block diagram of the two-channel configuration is shown in Figure
7-1. Figure 7-2 is the frequency response of the inner (tachometer feedback)
loop. Again, the correlation between test and analytical results is excellent.
Figure 7-3 presents the open-loop response of the position loop, Figure 7-4
gives the closed-loop response gain characteristic, and Figure 7-5 shows the

phase characteristic. Figure 7-6 presents the position error response to a

position input command. In all instances the math models and test data show

very good agreement.

7.6 POWER COMPONENT TESTS

Power transistor selection for the single-channel power electronics breadboard
was based on the requirements and goals shown in Table 7-5. A vendor survey
was conducted in an attempt to find suitable devices, with inquiries being
sent to 19 manufacturers. From the responses which were received, three
devices were evaluated which appeared suitable for the EMA application without

requiring parallel operation:

e Westinghouse developmental unit 17B-X (predecessor to Type D60T)
e RCA type J15490 (transcalent device)
e Power Tech type PT-4503,

Tests were conducted on the candidate devices, and the test methods and results
were reported in Delco Engineering Exhibit EE-22T-EMA-022. 1In general, all

three of the transistor types tested were found to have excellent
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PARAMETER REQUIREMENT GOAL
Vero (sus) 400 V 425 Vv
I 60 A 100 A
I PEAK 100 A 150 A
BETA AT 60 A 10 AT Vo = 1V 15
BETA AT 100 A 7.5 AT Vop = 1.5V 10
Ve (saT) 1 VAT I = 60A, I, =6 A 0.5V
Py 250 W AT T, = 100°C 300 W
RISE TIME 0.8 MICROSECOND 0.5
STORAGE TIME 6 MICROSECONDS 3
FALL TIME 1.2 MICROSECONDS 0.8

Table 7-5. Power Transistor Parameter Requirements and Goals

characteristics. The RCA device had superb turn-off characteristics and very
low average losses. However, it did not have as much current-handling capa-

bility as either the Power Tech or Westinghouse transiétors. Both Power Tech
and Westinghouse devices provided adequate current and voltage margins, but
the Westinghouse unit had somewhat lowef losses than the Power Tech unit.
Although either type would have been suitable for use in the single-channel
power electronics breadboard, the Westinghouse D60T power transistor was
selected, since it is an improved version of the Westinghouse 17B-6, tailored

to applications such as the EMA power converter.
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7.7 SINGLE-CHANNEL POWER ELECTRONICS BREADBOARD TESTS

The single-channel power electronics breadboard was tested to demonstrate that
it could drive the motor with a nominal current of at least 60 A using a nominal
supply voltage of 270 Vdc. This was successfully accomplished, and the test
results were summarized in EE-22-EMA-023 (Appendix L). The snubbers limited
the collector-emitter voltages to acceptable values, and the power switch

currents were within the capabilities of the power transistors used in the

breadboard.
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SECTION VIII

FINAL STATUS

All of the tasks which were intended to be conducted as part of this program
have been completed. It was not necessary to discontinue any of the planned
efforts. The four-channel electromechanical actuator has been delivered to
NASA, and the power electronics breadboard has been designed, fabricated,
assembled, and tested. All documentation has been delivered, and this report

completes the total effort conducted under the current contract.
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