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ABSTRACT

Winter and spring near-shore ice conditions have been analyzed

for the Beaufort Sea 1973-1977, and the Chukchi Sea 1973-1976. n.The

chief objective of this analysis was to assess hazards related to

activities associated with offshore petroleum developmEuts.
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	 Landsat imagery has been utilized to map major ice features related

to regional ice morphology. Following this, significant features from

individual Landsat image maps have been combined to yield regional maps

of major ice ridge systems for each year of study and maps of.flaw lead

systems for representative seasons during each year of study. These

regional maps have, in turn, been used to prepare seasonal ice morphology

maps.

The seasonal ice morphology maps show, in terms of a zonal analysis,

regions of statistically uniform ice behavior. The behavorial characteristics

of each zone have been described in terms of coastal processes and

bathymetric configuration.

Based on the combined seasonal morphologies, a zonal analysis of

potential hazards related to offshore petroleum development has been

made for the Chukchi and Beaufort seas. The hazards addressed are:

safety of field personnel performing offshore geologic reconnaissance,

large-scale displacement or deformation of fast ice sheet, the probability
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I	 Introduction

A. Definition , of the Problem

1. Exploratory and development pressures on nearshore areas.

Environmental concerns stemming from'the.possibility of petroleum

related development on the Alaskan Continental Shelf have brought about

^.'	 great interest in-:Alaskan coastal processes. The distinctive feature of

the arctic coasts of Alaska is that for a significant portion of the

-, year these coastal waters are covered by ice. Clearly, an understanding

- 3

4

of the dynamic morphology of ice in near shore areas is essential to an

assessment of environmental and personnel risks imposed.by offshore.

petroleum developments. The goal of this project has been to develop a

synoptic picture of ice behavo.rial patterns along the Alaskan coast and

to describe this morphology in such a way that the env roamental and

human risks can be identified.

Obviously the greatest ice-related influence on environmental

hazardI4 arising from petroleum development in ice-frequented waters

arises from containment of petroleum. under or within the ice. For this

reason:, it is necessary to develop a morphology of near shore ice 	 s

characteristics and address this problem . through those characteristics.

A second hazard. related to ice, although not environmental, is.the

hazard:gers.onnel and equipment are subjected . to.when using.ire .,as a platform
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1)	 entrapment of light, water-so.luable tractions of petroleum

! under the . i:ce barrier with resulti;ng.: . prol..on.g d high con-

centration of these known toxic ageaats

.2)	 difficulty in detection and delineation of the .extent of

" the spill,

4 'q: 3) 	 possible, transport of petroleum beneath the ice or with
F	

Y

-^ ice during dynamic events, and

.

.4)	 clean-up difficulties caused by combinations of l through

s
3 and possible danger to personnel and equipment during

} dynamic ice events. ?i

2.	 General ice conditions  in near shjre . areas

Ice conditions vary significantly depending on season and geo-

graphic location.	 Although the morphology presented later will be more

complex:, for the salve of this introduction two major zones of ice in

near shore areas need be considered..	 These are:
r _
r

1) The "fast ice zone", the area generally shoreward of the.

..24-meter isobath with quite stable ice much of the ice year. 1

(December through June.)

2) The "shear zone", the area generally extending some distance

beyond .the 20-meter is.obath.- In:.: this. ..zone . the..ice potentially
3

wx can. undergo shear to the point of failure and move with respect

to. the ..fast ice at. any. time.

i Within each zone the year can be broken: into se-,reral behavorial :

E periods.. These are

-,
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f Month Fast Zone Period: Shear Zone Period

Oct. Freeze-up :	 Ice freezes in Freeze-nom:	 Complex process with
place. or 'is driven.. into near. periods' 'possibl3r including :pack
shore areas and piled.. "ice, new ice pans, open:water, etc.

:i

.Grounded ridges. formed out_- Result is nearly complete covering =,
to the 20-meter isobath. of ocean with ice not stable and
The result is a. stable: sheet.' subject '.to motion. a'

4 of fast ice.!

a

Nov. Stable:	 Ice within zone' is Semi-stable:::.S:tatic ice can.. 03
Dec: stable with few leads result- extend several tens of :km seaward
Jan.. ing from.shear.	 Cracks can_ beyond fast ice for several weeks
Feb. occur resulting 'from temper- at a time..	 Ice can fail in shear

ature-related-tension at any time.
s and tidal processes.	 Opening

Mar. and closing of these cracks Shearing and.refreezi.ng.:	 Iceooze
Apr. can. cause micro-ridging.. prone to shearing events and failure
May. Ice grows in thickness adjacent to edge of grounded ridges.

approaching 3 meters by end However, after failure with cessation
of period

..
of :Motion '. tendency forice cover
to be reestablished by freezing.

June Decay and break-up:	 Solar Close pack:	 successive shearing
July flux.sufficiently great . to events break-up . ice into pans of

} initiate melting.	 Grounded various size.	 Refreezing does not
£ ridges break up; fast ice take place. Ice subject to significant

melts close to shore,. displacement resulting from currents
f breaks up and melts farther and winds.

offshore.

Aug.. Ice Free:	 Area generally Ice Free:	 Area generally free of ice
' Sept. free: of ,-ice Except for except for blown-in pack ice

grounded .remnants and blown- aa.d grounded features including ice
in pack ice. islands.

3 j
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3. Relevance of Ice Hazards to Operational Phases of Petroleum

Industry

The relevance of ice--related environmental hazards to petroleum

development: should be considered in terms of four major'phases of petroleum-

related activities: Exploration. I, Exploration II, Development and

Productiot. Each of these phases has particular ice-related problems.

a. Exploration I. This activity is mainly geologic

mapping by seismic crews. Currently seismic mapping is being carried

out in the Beaufort Sea using fast ice as an operational platform rather

than using boats during the relatively short and undependable open water

season. Although few, if any, environmental hazards are created by this 	 9

activity, hazards are imposed on the crews performing such work.. The

i

i

t

F

t

i

4

ice morphology developed here has been interpreted in terms of persistence

of.var.ious. ice zones and. the period (if any) that exploration activities

can be carried out from the ice within these zones.

b. Exploration II. During this phase, test wells are

drilled--very likely from temporary structures including man-made gravel

islands, anchored . drill ships, movable platforms, etc. The choice of

temporary, structure used will depend in part on the morphological be-

havior of'the ice in: the location where a test well is desired. For
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C. Development. During this phase, permanent structures

are constructed for drilling of permanent wells and extraction facilities.

Collector pipelines are laid and other permanent facilities are constructed.

The considerations involved in the placement of these structures include

the probability of ice piling around and upon man-made islands, ridge

keel gouging of pipelines and also the effect of the facility on the

morphology of near shore ice and this in turn on the quality and Mature
i

of habitats.

The.information provided here will obviously yield information

about ice piling and the probability of bottom plowing. Through the

morphology of near shore ice including the dynamics of ice behavior near

natural obstructions to ice motions, descriptive models of the. impact of

the creation of man--made islands on the morphology of near shore ice can-

be developed. This can then in turn be related to impact on near shore

habitats.

d. Production. This phase of petroleum-related activities

would take place over a span of many years. Consideration, has to be

given to the probability of adverse ice conditions over a period as long

as twenty years and how these conditions relate to structures designed

to support pumping and piping of crude petroleum. Within this period

the greatest environmental hazards would arise from the possibility of a

large oil.spill.. Because. of the ice cover on the ocean most of the

year, there is a great probability that a spill will become associated

.	 wi.th.the.ice. In:addition the presence of ice may even enhance the

probability of a petroleum spill during the ice season. The ice morphology
'i

presented in this report has been interpreted in terms of the fate of an

oil spill created at a time when it could become incorporated into the

ice and at times when spilled oil would become trapped under the ice:



what transport might take place, how much spreading might occur, how

long entrappment might last, and when release might occur. Also based on

the morphology developed, consideration has been given to favorable

locations for production facilities and to anticipation of techniques

which may be used to deal with specific spills through prediction of the
_. f

4.`	 ice behavior to be expected within statistically-determined zones of

uniform behavior of ice. Finally, consideration has been given to

possible destruction of underwater facilities as a result of ocean-floor

plowing by grounded sea ice features within each statistically-determined

zone of uniform ice behavior.

rte:.x
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	 B.	 Background

1. Geographic area. The area of this study includes the

near shore regions• of the Beaufort and Chukchi Seas, extending from

Demarcation Point in the eastera Beaufort Sea to Dome on the south side

of the Seward Peninsula. This.:area encompasses approximately 2500

,.	 kilometers of coastline., extending from approximately 141° to 169° west

longitude and 64°30' to 71'30' north latitude. The coastline is ir-

regular in shape, consisting of numerous bays, .points, capes, and lagoons.

i
	

The lagoons are bordered on the seaward side by long, narrow islands

16ss than 4 meters elevation.
-1

There . is Little human habitation in she region, especially along

the Beaufort Sea coast. 11ome., Kotzebue, Barrow, and Prudhoe Bay are the

major population centers writh populations of 3000, 400.0; and 10.00 respecti-

vely. There is oue year-round native v i llage with a popullation of

approximately 200 along the Beaufort Sea coast east of Barrow, located

in the Colevil.le Delta, The only permanent human. habitations along this

coast are three military Distant-Early-Warning stations at Lonely,

Gliktok Point and Barter Island and the oil fields at Prudhoe Bay.

However, there are several native tillages along the coast between

Barrow and Nome, most having populations less than 100 persons.

2. Physical setting. The bathymetry varies significantly in the

.	 area of study. In the Beaufort Sea the 80-meter i:sobath is approxi-

mately 70 kilometers offshore from Barrow to Demarcation. Point and is

the approximate edge of the continental shelf. The sea floor drops offPP	 S	 P	 = 
Ê

very sharply from there to depths of 4000 meters.

'	 The bathymetry of the Chukchi. Sea is route different from that of

the Beaufort Sea.. The maximun, depth of the Chukchi-Sea is approximately
^	 a

4	 7f



70 meters. However, for most of the Beaufort and Chukchi Seas the

bathymetry is not known accurately, especially the shelf areas of the

Beaufort Sea.

The Pacific Gyre and the Bering Strait current are the major

currents in the Beaufort and Chukchi Seas. The Pacific Gyre is a large

clockwise flow of water that dominates the water currents in the Western

Arctic Ocean. It results in an east-to-west flow of water in the Beaufort

Sea. The Pacific Gyre does not directly affect the flow of water in the

Chukchi Sea. The Chukchi currents are dominated by the northerly flow

of water through the Bering Strait and into the Arctic Ocean.

The amount of tidal fluctuation varied significantly throughout the

study area. At Point Barrow the range of the diurnal.tide (the difference

between mean, higher high water and mean lower low water) is 12 centimeters

(0.4 feet) along the entire Beaufort Sea coast from Barrow to Demarcation

Point. However, the tides in the southern part of the Chukchi Sea are

much greater; the diurnal range at Kiwalik in Kotzebue Sound is approxi-

mately 80 centimeters (2.7 feet) and at Nome is approximately 50 centimeters

(1.7 feet). These are still relatively small fluctuations but they may

measurably affect the ice conditions along the coast. The size of the

tidal fluctuations is a function of the latitude; the tides generally

decrease in size with increasing latitude.

The amount of daylight, i.e., the period from sunrise to sunset,

undergoes large seasonal variations at high latitudes. At Barrow, the

northern most point of land in this study, the sun does not set during

the summer months from late May to late July, while the sun is below the

horizon from approximately late November to late January. The conditions

at Nome, the most southerly point in the study area, are similar although
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3. Climate. The climatic conditions along the Beaufort Sea coast

are relatively uniform from Barrow to Barter Island. The mean annual

temperature at Barrow is -12.6°C with a record maximum of +26°C and a

record minimum of -49°C. The normal yearly water equivalent precipi-

tation at Barrow is 12.4 centimeters with an average yearly humidity of
Y	 /	 "

 80 percent. The mean yearly snowfall is 72.6 centimeters. The average

windspeed at Barrow is 18.4 km/hr from the east; the maximum wind

velocity was 93 km/hr from the west_ The prevailing wind directions are

from the east-northeast to east-southeast.

The weather conditions at Barter Island are similar to those at

Barrow. The Barter Island mean annual temperature is -12°C with a

maximum of +26°C and a record low of -51°C. The normal yearly water

equivalent precipitation is 17.9 centimeters with a normal yearly snow-
:1

fall, of 113 centimeters. The humidity at Barter Island averages 80

percent. The average windspeed is 21.0 km/hr with a record maximum of

130 km/hr. The prevailing winds are from the west from January through

April and from the east from May through December.

The climate along the Chukchi Sea coast from Barrow to Name is

warmer, wetter, and somewhat more variable than along the Beaufort Sea
-.0

coast. The climatic conditions at Kotzebue are similar to those along

the Beaufort coast. However, Kotzebue, being farther south, is somewhat

warmer with a mean annual temperature of -6.2°C. The record maximum and

minimum temperatures are +20°C and -47°C, respecti-ely. Kotzebue receives

slightly more precipitation than Barter Island, 22.3 cm water equivalent

per year and 120 cm of snowfall per year. However, the humidity is

slightly lower at Kotzebue, averaging 78.gerceat. The yearly average

windspeed is 20.5 km/hr from the east with a maximum recorded windspeed

s	 •

9
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of 149 km/hr from the southeast.- The prevailing winds are from the west
	 t

from May through August and out of the east the remainder of the year.

Nome is on the Bering Sea side of the Seward Peninsula and therefore

has weather somewhat different than that of the areas described above.

The mean annual temperature at Nome is -5.1°C with a record high of
r•

x-25°C and a record low of -39°C. The precipitation at Nome is nearly

twice as great as at anywhere in the Chukchi or Beaufort Seas. The

normal yearly water equivalent precipitation at Nome is 41.8 centimeters.

However, the amount of snowfall_ is 137 centimeters, only slightly greater
i

than at Barter Island and Kotzebue; a larger percentage of the precipi-

tation occurs in the form of rain. Despite the higher precipitation,

the average yearly humidity at Nome is 72 percent, considerably less

than at Kotzebue or Barrow. The average windspeed at Nome is 17.3 km/hr

from the north, off the hills of the Seward Peninsula. The maximum

recorded windspeed at Nome was 88 km/hr from the southwest. Although

the average yearly prevailing winds are from the north, the monthly

averages are more variable. From December through March the winds are

from the east, from the north April through May, from the west-southwest

from June through. August, and from September through November are again

from the north.

1!!!

F,
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A. Selection of Scenes for Analysis

The primary sources of data for this study were Landsat I and

Landsat II band-7 imagery. Landsat acquired images of the same .160.

kilometer square area once every eighteen days. In the high latitudes
f,

of the Beaufort and Chukchi. Seas, overlap of succeeding days' images of

up to 80 percent occurs. In the Beaufort Sea, a given area may be

imaged up to four days in a row. In the Chukchi Sea the overlap decreases

with decreasing latitude 'so that in the Nome vicinity, an area will be

imaged up to three days in a row. Twelve days' images are required for

continuous coverage from Demarcation Point to Point Barrow. A minimum

of six days' images are required to continuously cover the Chukchi Sea

coast line from Point Barrow to Nome.

Each eighteen-dap Landsat cycle was used as a data set. Depending

on the availability of the images, several cycles of images were mapped

for each year from 1973 through 1976 for the Chukchi Sea and 1973 through

1977 for the Beaufort Sea. Landsat does not obtain imagery from

approximately mid-November to early February in the Beaufort and

Chukchi Seas because the sun does not rise above the horizon at those

latitudes during that time. Consequently, February is the earliest that

images are available for these areas. Cycles of Landsat images were

mapped for the following periods, depending on availability of images:

(1). midwinter (mid-to-sate February to early March) (2) late winter
t

(mid-to-late March); (3) early spring (Late March to Irate April); (4)

late spring (May to mid--June); (5) summer (late June..to mid-July); .(6).

late summer _(late July to paid-Augush); and (7) Late fall to early winter

(late October.to:mid-November).

The choice of Landsat cycles used for this study dependedprimarily

upon the cloud cover of the :scenes of 'each `cycle and the . numbed' of

^^	
i
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f	 images available. Some Landsat scenes were not available from NASA due
.1

to dense cloud cover. Other images with up to eighty percent cloud

cover were obtained from NASA but not used. The usefulness of the

images in a cycle was determined on an image-by-image basis. Two criteria 	 j

were used. 7irst, there needed to be enough coastline showing on the
^s k

image to match a coastline overlay to the image. Generally, if even a

sip-11 section of the coastline or coastal river was visible on thei i

i

	

	 image, the image could be lined up with the overlay, using the latitude

and longitude marks or, the image. The latitude and longitude marks were

not usable by themselves due to the difference in projections of the

Landsat image and the Lambert conic conformal map overlay. The second

criteria.required that significant ice detail be visible through the

cloud cover. "Significant" ice detail varied from scene to scene. For

example, a low-contrast scene with moderate cloud cover but showing open

leads in the ice has informational value whereas a scene with the same

cloud conditions but not showing open leads may be useless for ice

mapping. Generally, Landsat cycles with fewer than five usable scenes

were not considered for detailed analysis. Exceptions included scenes

used in stationary ice and open water maps (see below).

The Landsat cycles used in this study are shown in Figures TT-1

through 11-31 for the Beaufort Sea, and Figures 11-32 through 11-48 for the

Chukchi Sea. The location, area and extent of each scene and the scene
F

identification numbers are shown.

B. Mapping Technique
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scale black and white prints of available. Landsat imagery as standard

products. The 1:1,000,000 scale images were too small to accurately.map

details while the 1:250,000 scale imagery was too expensive. Therefore,

the 1:500,000 scale imagery was chosen. as a compromise between cost and

#

	

	 resolution of detail.r

General overlays of the Beaufort Sea and Chukchi Sea coastlines
f

including the major rivers were drawn in ink oa clear acetate. The base

maps used for the overlays were the 1:500,000 scale sectional aeronautical
.3

charts of Point Barrow, Cape Lisburne and Nome. These maps are published
i

by the U.S. Department of Commerce using the Lambert conformal conic

projection (standard parallels 49°20' and 54 140'). This projection is

the closest to the Landsat projection found. The error in locating

points on the Landsat image using the base map overlay is approximately

a kilometer.

The technique used in mapping the ice on each Landsat image is as

i
follows. First, the base map overlay was placed onto the image and the

two were lined-up as closely as possible. Then a blank sheet of clear

acetate was placed over the base map overlay. The coastline and rivers
i

were drawn onto the blank acetate. Then the ice features were also

drawn onto this acetate from the Landsat image. Finally, the bathymetry 	 j
S4

4

obtained from National Ocean Survey (formerly Coast and Geodetic Survey)

nautical charts was drawn onto the map.

?

	

	 The initial interpretation was made using a blue-line copy of the

acetate map. The distinguishable ice features, such as flaw leads,,r	 _	 ^

ri_+ige systems, areas of smooth ice, ete: , were. identified primarily from..

Landsat image but other data (see below) were also used:. The interpreted 	 4

i
results were then transferred to a copy of . the . original acetate ice. .snap.

13
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in the form of labeling nomenclature which was then reduced to page size

(approximately 1,000,000 scale) for publication. These annotated ice

maps of each Landsat image were the preliminary data products.

C. Creation of Composite Data Products

The preliminary ice maps of the individual Laadsat scenes were

r'
used to create secondary, composite data products. The first generation

of composite data products consisted of maps of edge of contiguous ice

and of ridge systems for the Beaufort and Chukchi. Seas.

A composite map showing the edge of contiguous ice, defined as the

seaward boundary of the currently stationary ice was made for each

Zandsat cycle. The composite for each cycle was prepared by making a

mosaic of the maps of the scenes is the cycles and outlining the contiguous

ice edge. When the ice conditions were rapidly changing the significant

changes in the edge of contiguous ice were observed from one day to the

next, the edge of ice on the latest image was used in the composite map.

The mosaic was then transferred to mylar, drawing in the contiguous ice

edge, the 20-meter isobath, the coastline and the major rivers. Each

composite map of contiguous ice edges contained either the data of all

of the cycles for each year studied or the data for each season for all

the years studied. Three seasons were differentiated, winter, early



Yearly composite maps of the ridge systems visible ou the bandsat

imagery were made using the same method used for making the contiguous

ice edge maps. One composite map was made for each ice year. Then

all composite maps were compiled into one map of "all-time"

ridge systems. These maps are discussed in Section IV.

The second generation of data products utilizing the preliminary

and composite ice maps consists of ridge density maps, sea ice morphology

maps-and ice hazard maps for the Beaufort and Chukchi Seas. The ridge

density maps were prepared from the all-time ridge system maps by visually

delineating the areas of differing ridge density. The sea ice morphology

maps were prepared from various sources including contiguous ice edge

composite maps, ice ridge density maps and other data listed below.

Morphology maps were prepared for the late fall to early winter ice

season (approximately October to early March) and the midwinter to late

spring ice season (approximately mid--March to late May - early June).

The morphology maps contain information on the various ice conditions

such as average edge of ice, fast ice, ridge occurrences, areas of

smooth ice, fast-moving ice, hummock fields, etc. (see Section IV). The

ice hazard maps used all of the above sources of data for determining

the type and location of ice conditions that may be hazardous to offshore

structures and ship traffic. The hazards include areas of heavy ridging,

.^,	 continuously changing ice conditions, ice islands, etc. The ice hazard

maps are discussed in detail in Section IV of this report.

Other ata products, compiled directly from Landsat im agery , includedr	 P	 ^	 ^ P	 Y 	 -

maps of stationary ice and open water for the Beaufort Sea. The term

"stationary ice" as used here defines ice that was observed to have

remained unmoved by wind and currents during breakup of the near shore

q
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i ice from one Landsat cycle to the next. Stationary ice is either grounded

or attached to grounded ice. The stationary-ice maps were prepared by

superimposing two images of the same location, but acquired at different

times, on a viewing screen. The ice which had not moved during the

time interval between the two images was mapped by placing a sheet of

mylar over the viewing screen and tracing the outlines of the stationary

ice onto the mylar. One such map was made for each year from 1973

through 1976 (see Section 1V for the Beaufort Sea only). Due to lack

of 1977 summer images, no 1977 stationary ice map was made.

The Beaufort open-water maps show the progressive increase in open

water occurring in the near shore areas from the start of the melt season

until the end of summer for the years 1973 through 1977. The open-water

maps were prepared by overlaying a sheet of mylar on each Landsat

!	 image and tracing the outline of the extent of the open water. Data

from all available imagery were used. The Beaufort Coastline was mapped
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D. Ground Truth

This project has conducted numerous aerial reconnaissances

along the Beaufort and Chukchi coasts with the objective of relating

ice conditions and features with patterns observed on Landsat images

This effort was always placed at a disadvantage because of the six-week

ti` 4 	 to two-month delay between Landsat data acquisition and the availability 	 s{

of hard copy imagery for reconnaissance purposes. Hence, only the most

stable ice could be compared directly with imagery. In areas of unstable

ice it was necessary to note and photograph ice conditions during the

reconnaissance and wait two months for the comparison. process. The

difficulty with this was that nearly always the reconnaissance overlooked

a feature of apparent significance on the Landsat imagery..



E.	 Applicability of Techniques Developed to Other Places Where

Near Shore Ice is a Hazard.

The chief utility of Eandsat data was found to be the

defection, of large ridge systems and lead openings by .direct observation

j and observation of ice piling and shearing events largely by inference.

The analysis of the ice hazards depends on the gathering of sufficient

data to make possible the development of a synoptic picture of ice

conditions.	 This, in turn, depends on two factors: 	 the commitment of

E the spacecraft for data acquisition anal a sufficiently adequate number

of cloud and haze free.occasions when data could be obtained.

Other than data availability two other factors need be considered:

the nature of the hazard and the size of the area under consideration.

The techniques used here have been developed to determine rather large

.	 F zones of somewhat broad hazard description.

.



A.	 Interpretation of Ice Maps

1. Selection, of ice features pertinent to morphology. The

individual maps of each Landsat scene were examined and annotated in

terms of ice conditions observed on the sequence of images to which the

individual image belonged. This exercise served to develop a historical

perspective of ice behavior along that portion of coast. Descriptive

histories, even with associated maps do not in themselves constitute a

morphological description of ice behavior. In particular, the salient

features of several year's ice dynamics must be compared to determine

the patterns of ice behavior.

In order to accomplish this task, the maps which had been prepared

were examined to find the mapped characteristics which could be compared

from season-:.o-season and year-to-year.

One obvious class of characteristics found was large ridge systems.

Ground truth exercises, described in section IID, had shown that maps

based on Landsat imagery could be expected to show the locations of

large ridge systems with a good degree of confidence.

A second class of characteristic found useful for development of a

near shore ice morphology was the l ocation of the seaward edge of con-

tiguous ice. The term "contiguous ice" is used rather than "fast ice"

-7.

	

	 because of the widespread useage of the term "fast ice" by various

authors to describe a variety of conditions related to near shore ice.

"Contiguous ice" means ice contiguous with the shore and continuous to

the first break. Often the first break is the flaw lead. However, it



j	 These two classes of features, recorded on as .frequent a schedule
f

as possible were found to be a suitable basis for formulating a near

shore ice morphology related to hazardous conditions. Their utility is

discussed in the next two sections.

2. Fudge of contiguous ice.. The edge of contiguous ice is

often the boundary between "pack ice" and "shore fast ice." However, it

should be realized that within a short period of time, the edge of

z	 contiguous ice can vary by tens of kilometers. This is particulary true 	 s:

off the Beaufort coast where tbLe edge of contiguous ice has been observed

to range from the 20-meter isobath to a point 30 to 40 km seaward. The

cause of these extensions appears to be an absence of sufficient winds,

currents and interval forces within the ice sheet to keep individual
{	 it

pans within the pack ice from freezing together. This condition can

persist for several weeks before sufficient forces exist for failure to

take place along lines considerably closer to shore. 	 `.

When observing conditions similar to the-La, some observers define

the "fast ice" as being defined by the ice called "contiguous" here.

i
Others insist that the true "fast ice" is defined by the ice which would

i
remain adjacent to shore after a major shearing event and subsequent

failure of the ice sheet. Those.who use.the latter definition.generally

associate well-grounded ridge systems and other ice features with this
tz	

.'.	 stable edge of ice. Our results have shown sufficient exceptions to 	 {j{

this association to cause usto not use this definition except in the

most general sense and develop ice descriptions for each zone which can

be identified to have uniform ice behavior.

3

i J;

7 .
mod.



3. Ridge system Tags. Ridge system maps are useful in

several ways leading to development of a near shore ice morphology.

Ridges located within the existing contiguous ice sheet observed on the

earliest available Landsat images each year, serve as a record of earlier,

unobserved, ice event. inhere they are grounded, ridges often--but not

i	
always--serve as anchoring points for the near shore ice sheet. By

T.

mapping ridges created for each year and

possible to determine variability of dyn

the next. Compilation of several years
i

the persistent locations of-this type of

implying year-to-gear persistence of the

comparing year-to-year it is

3mic ice events from one year to

ridge data onto one map shows

feature, at the same time

conditions responsible for

ridge creation.
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B. BEAUFORT SEA RESULTS

1. Contiguous Ice Edge Maps

a. Yearly Ice Edge Maps: For each year of study a single
t

map has been prepared showing the edge of contiguous ice for each Land-

sat cycle yielding useful data. Throughout these maps it should be

noted that generally the contiguous ice edge is not mapped for Date

spring. This is often because near shore flooding and melting occured,

destroying the contiguous aspect of the near shore ice although vast

areas remain in place. These vast areas of ice have been mapped under

the heading; "stranded ice."

1). 1973 (Figure III-1)

i. 2-19 March Landsat cycle. During this time the

edge of contiguous ice was quite far off shore. The individual. Landsat

image maps drawn for these dates merely indicate that the edge of ice is

beyond their boundaries. This information is indicated here in terms of

a series of lines indicating that the edge of ice was no closer to

shore than these lines.

ii. 31 May--17 June. Where it could be identified

the edge of co,ati.guaus ice has been mapped.

2). 1974 (Figure I1I-2)

i. 23 February--14 March. Shown by a dashed line,



ii. 15 March--3 April. Indicated by the dotted

line, the edge of ice has remained very nearly constant except'-for the

eastern Beaufort where it as now considerably closer to shore.

iii. 20 April-w8 May. Indicated by alternating dots

and dashes, contiguous ice was well off shore during this period and

only the shoreward Limit is shown here for much of the Beaufort Sea.

iv. 13-30 June. Shown. by a line consisting of two

dashes followed by a single dot, the edge of ice shows some agreement

with earlier ice edges but also indications of the advanced season and

decay of ice in Harrison, Bay.

3). 1975 (Figure 112-3)

i. 20 February-10 March. Only one good Landsat

cycle was found for this year showing the edge of contiguous ice.

Dosing this time there is an indication that the edge of ice had been

considerably farther off shore until just recently and was now nearly

coincident with the 20-meter isobath for much of the Beaufort coast.

4). 1970 (Figure 112-4)

i. 22 October--S Navember. This ice edge, shown

by a dashed line is the only extensive ice edge data obtained in the

fall season during the entire study. It shows the edge of contiguous

ice roughly coincident with the 20-meter isobath along the western

Beaufort and significantly seaward of that line east of Harrison Bay.

ii. 0-23 February. This ice edge is indicated by

a dotted line. For most of the Beaufort coast, the edge of contiguous

ice is beyond the area mapped by the individual Landsat images. Only in

the vicinity of Barrow is the actual ice edge mapped.
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iii. 24-12 March. This ice edge is shown by a

sequence-of dots and dashes. For a good portion of the Beaufort coast

this line is nearly parallel to the 20-meter isobath--tending however,

to bridge over indentations in this contour.

iv. 31 March--17 April. the observed edge of

^.._•	 contiguous ice for this date is shown by a line consisting of a dash

followed by two dots. The data indicate that during this Landsat cycle

the edge of contiguous ice moved considerably shoreward. The earlier

images obtained in the eastern Beaufort show the edge of contiguous ice

far off shore while the later images show the ice edge much closer to

its normal position. Comparison of data obtained on March 12 and 14

show this to actually be the case in the central portion, of the Beaufort

Sea.

1). 1977 CFigure 111-5)

	

i.	 12 February--9 March. This Landsat cycle yielded .,

ice edge data between February 26 and March 9 across the eastern and

western portions of the Alaskan. Beaufort Coast. It is interesting to

	

mote that except at Barrow,	 this ice edge is significantly seaward of	
°i

the 20-meter isobath. It appears reasonably safe to assume that the ice

edge for these dates extends across the unobserved area directly linking

the two observed portions. At Barrow the ice edge does coincide with 	
a

the 20-meter isobath.

^i
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iv. 14 April--1 May. Data for this Dandsat cycle

begins opposite the Canning River and coutinnes beyond Barrow. Now, the

edge of contiguous ice is nearly coincident with the 20-meter isobatii

along the entire coast.

V. 2 May--30 June. The edge of contiguous ice war

observed during this period across the central Beaufort coast. During

this time it was again located significantly seaward of the 20-meter

isobath.

Vi. 25 June--15 July. Data for this l,andsat cycle

exists between July 6 and July 8. During this time the ice edge was

observed .off the Beaufort coast between the Canning and Colvill,e.Rivers:.

On July 7 the ice edge was again found far off shore Shortly following

that, on the 6th it was,. again located along the 20-meter isobath.

^i
i
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vii. 31 March--17 April.. The observed edge of

contiguous ice for this date is shown by a line conistiag of a dash

followed by two dots. The data indicate that during this Landsat cycle

the edge of contiguous ice moved considerably shoreward. The earlier

images obtained in the eastern Beaufort show the edge of contiguous ice
4

i	 far off shore while the later images show the ice edge much closer to

its normal position. Comparison of data obtained on March 12 and 14

show this to actually be the case in the central portion of the Beaufort

Sea.

b. Seasonal Ice Edge Maps: The data representing the various

edges of contiguous ice have been recompiled for each season yielding

sufficient information to warrant analysis: late winter (February-

March), early spring (June-July) and late spring--early summer (June-

July). The reason for these groupings is obvious; to determine whether

each season can be characterized by a single, generalized ice edge

representing that season. The results of this analysis will be discussed

in order of season.

1). Late Winter Ice Edge. Data from the following Land-

sat cycles are utilized: 2-1 0, March 1973, 25 February--14 March 1974,

20 February--10 March 1975, 24 February--12 March 1976, and 19 February--

9 March 1977. These ice edges, with the exception of the 1973 data show

a `ood degree of similarity--running parallel and off shore from the 20-

meter isobath, and bridging across landward indentations of the 20-meter

isobath. The 1973 ice edge has been discussed previously--it was located

very far off shore, well beyond the near shore area (Figure III-6).



2).	 Early Spring Ice Edge,	 Data from the fo.J,lowing

Landsat cycles were utilized'	 15 March--3 April 1974, 31 'Mar6h-"'

17 April 1976, and 2.7 March--14 April 1977.	 The early spring ice edge is

similar to the late winter ice edge. 	 The most s triking deviation is in

the western Beaufort where the 1976 data show the ice edge closer to the

20-meter isobath than any other data--indicating that during early.

spring at least a degree of variability za ice edge in this regioni	 p_	 g	 g.	 Y	 g

:. (Figure 111-7)..

3).	 Zate Springy-Early Summer z.ce . Edge.	 The following

landsat cycles were utilized	 31 May--17 June 1973, 13-30 June 197.4, and

"	 17-30 June 1977.	 It is worth noting that the 31 May--17 June";data

coincide with the 20.-meter isobathinthe western Beaufort. 	 This locatiaza.

F	 is somewhat landward of the bulk of'o.ther ice edge data in this region

but it does not represent a highly significant deviation. 	 East of

4	 Harrison Bay the 1973 data strike significantly seaward.. 	 However, this

is not considered to be a seasonal morphological feature; other data

have shown that this phenomenon can occur in any season. 	 What this does

show, however, is that this can occur even this late in the ice season.

The . mid-Sure 1974 data are the only ice edge information repre-

sentiug contiguous ice which show the decay of near shore ice to points

will within the 20 -meter isobath.	 This is only true for mid Harrison

Bay to points westward:.. 	 To;".the east of Harrison Bay the edge of con-

ti.guous. ice is again located roughly along the 20-meter isobath (Figure-
f^
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2. Ridge System Maps

a. Yearly Ridge System Maps: For each year of study a

single map of the Beaufort coast has been prepared from the individual

Landsat image maps showing the ridges observed during that year. No

attempt has been made here to identify the date of formation of each

ridge. The object of.this mapping exercise was to identify those locations

where ridging does occur in order to relate this phenomemon with bathy-

metric features including depth and isobath configuration. Mapping on

a yearly basis was performed in order to provide information regarding

year-to-year persistance in location and severity.

1). 1973 Ridge System Mafia:  This map shows a cluster of

major ridges offshore between Prudhoe Bay and Harrison Bay and a few

ridges very close to shore in the western Canadian Beaufort. The ridges

mapped well inside Harrison Bay.are located in shallow waters and were

very likely created at time of freeze-up (Figure III-9).

2). 1974 Ridge System Map: Here ridges were found	 _1

throughout the length of the Beaufort coast. Of particular note are two

prominent hummock fields in outer Harrison Bay where the complex of

ridge ice have been represented by a series of dots covering the area of

the hummock field. Also worthy of note is the far.-shaped focus of

ridges centered on the headland just east of Camden Bay (Figure III-10).

3). 1975 Ri_. a System Maw:  Not many ridges were mapped

for this year. However, in consistency with the previous two years, the

greatest density of ridging occurs well offshore between Prudhoe and

Harrison Bay (Figure III 11.)

Y
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4).	 1976 Ridge System Mme:	 Again, as in 1974, major

ridges were found throughout the length of the Beaufort coast. 	 It is
,. g	 g	 y	 Yinteresting to note these rid es are almost entirely located be and the

{.	 20-meter .isobath.	 This:is : a.strong,.indicatioa that these ridges were

j	 formed after early winter.	 Again, as in previous years, the greatest

ridge density occurs. offshore between Harrison and Prudhoe Bays. 	 Again, s

the fan-shaped assembly of ridges occurs in Camden. Bay (Figure 111-12).

5)..	 1977 Ridge System Mme:: 	 A.larger volume of'data.was

f

used in the compilation of the 1977 Ridge System Map than in previous

maps.	 Not seen. in. previous years' data are the large number of ridges
i

north of Camden Bay located 100 kilometers or more offshore.	 The area

of hummocked ice can again be seen north of Harrison Bay. 	 Generally,

the pattern of ridging is the same as that observed in previous years

(Figure 111-13).

b.	 Composite Ridge System Map:	 This map shows the combined

ridge systems for 1973, 1974, 1975, 1976 and 1977. 	 Here ridge density

trends noted on the yearly ridge maps become more clear (Figure 111-14):

1).	 The greatest density along the Beaufort coast is

found far offshore between Uarrisoa and Prudhoe Bay.

2).	 A secondary maximum ridge density occurs in a fan-

shaped pattern in eastern Camden Bay.

3).	 There is an indented area across inner Harrison Bay

with a moderate tendency toward ridging.

4).	 A cluster of ridges occurs seaward of Midway and

Cross Islands with a tendency toward greater density between the islands

and the 20-meter isobath.

5).	 The focus of the fan-shaped ridge cluster in eastern

Camden Bay is located significantly landward from the 24-meter isobath.
F
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C. RIDGE DENSITY MAP: (Figure 111-15) Using the composite Ridge

Density Map as agdide, the near shore Beaufort Sea region has been.delineated.,^'-

into regions of low to heavy ridge density. The. ridgedensit y map is then

used when preparing maps of morphological ice behavior by combining information.
y.

from several sources. It. should be recognized that the ridge density map

is based on several year's data and rather than predicting what density of

ridging should be expected in any one year, should be thought of as showing

the probab, 4 1ity of ridging in any one year.
4
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3.	 Stationary Ice Maps

a. Stationary vs. Contiguous Ice

During winter along the Beaufort Sea coast, large ridges form in a

zone parallel to the shore. These ridges have keel depths sufficient to

cause grounding out to approximately the 20-meter bathymetric contour.

This zone of grounded ridges varies between a few kilometers and many

tens of kilometers in width and effectively shields the smoother ice

inshore from the effects of pack ice motion. The zone of immobile ice

is usually referred to as the "fast ice zone."

When summer bread: up occurs, these grounded ridges are often the

last ice forms to dislodge. These areas were not mapped in terms of

edge of contiguous ice because they are not contiguous with the shore.

Yet the ice does remaa.n bottom fast and is an important part of the near

shore ice regime. Three questions need to be answered regarding these

stationary ice areas. 1) Where are these areas located? 2) Do they

occur in the same locations each year? and 3) How long do they last in

the summer?

b. Method of Analysis

The data base used in this study of stationary ice was Landsat

band-7, 70 mm imagery projected onto a screen at 1:500,000 scale. The

projection device used was an international Imaging Systems additive

colorviewer. In order to determine which ice was stationary, two images

taken at different times of the same area were projected simultaneously

onto a screen. The two images were lined up by matching coastal fea-

tures visible on both images. A transparent overlay with the coastline

and major rivers drag-. in was then. I-Ad on the screen. The areas where



Images of the Beaufort Sea are not readily available in the . mid and

late summer because the area is often covered by clouds. As a conse-

quence, only two or three sets of images for each year were available.

This made repeat coverage from year to year not generally possible.

There were also problems determining which was stationary ice and

which ice had moved. Because the margin of error due to the difference

in projection of the Landsat image and the overlay maps was approxi-

mately l km, ice that appeared to move less than l km was generally

considered to be stationary.

The time period between images was also important. Generally, if

the images were one Landsat cycle (18 days) apart, the ice could be

considered stationary if it had not moved. However, occasionally the

only sequence of images available were only a day or two apart. Small

drift rates during these times were difficult to observe.

d.	 Composite Stationary Ice Map (Figure 121-I6).

Four years' data were analyzed for stationary ice - 1973, 1974,

1975, and 1976. The data were combined on one map extending from Point

Barrow to Herschel Island. The smallest stationary ice object plotted

was ap-•_•oximately a kilometer in diameter. Analysis of this map shows

that:

1). Stationary ice is generally located inshore of the

20-meter bathymetric contour. Inshore areas that are generally clear of

stationary ice include the majority of Harrison Bay and the immediate

river mouth vicinities.



2). Areas where stationary ice recurs were difficult to

determine because of insufficient data. One area where it recurs and

seems to last, most of the summer is along the 20-meter contour north of

the Colville River in Harrison Bay. Each year a large hummock field-

forms, causing a seaward bulge in the edge of the fast ice that persists

until late summer. Another area where stationary ice was seen to recur

was between Oliktok Point and the 5agavomirktok River, extending from

shore to the 20-meter contour.

3). In 1975, stationary ice was last seen to exist on 2

August only in a small area west of Harrison Bay. The next image of the

area W77s not obtained until 20 August (one Landsat cycle later). By	 }

1%:he stationary ice had disappeared completely. Therefore, it. can

be concluded that stationary ice is generally gone by mid-august. One

exception to this was seen in 1974. A large piece of a ridge system

north of Oliktok point was ob„erved to remain throughout the summer of

1974 and was still there in the spring of 1975. However, it did not

remain as stationary ice in 1975.

4. Ice Island Observations and Freguen.cy

a.	 Ice Islands - background

For approximately thirty years the existence of T ice islands” in

the Arctic Ocean--particularly in the Pacific Gyre has been established..

These features are tabular floes of freshwater ice ranging in size from

dimensions on the order of km downwards. Their thickness can be as

33



great as 35 m. It has been reasonably well established that they ori-

grate from the Ellesmere Ice sheet. The number and size distribution

of these features are not known. The Ellesmere Ice sheet does not calve

continuously and it is possible that all existing ice islands were

created in a small number of calving events. Ice islands ablate at the

exposed surface and could be expected to possess a relatively long

lifetime. However, there have been several observations of grounded ice

islands along the Beaufort coast having broken into several pieces.

Further, at least one large ice island has been observed to exit the

gyre and enter the Atlantic Ocean.

Ice islands have been c;snsidered to constitute a threat to offshore

facilities because their bulk is capable of obtaining a momentum many

times greater than any conventional floe. For this reason it would be

very useful to be able to develop statistical data representing their

number, size distribution, and frequency of occurrence in nearshore

Beaufort waters.

b. Results of Analysis of Imagery for Ice Island Data

Because of the potential value derived from determining statistical

information concerning ice islands, each handsat image used was examined

explicitly for evidence of ice islands. It was thought that even if no

ice islands could be observed directly, large ice islands would drift

differentially from pack ice because of their deep draft and leave an

identifiying wake in their trail.



islands were observed along the Beaufort coast during aerial reconnais-

sance operations. In both cases the broken-up island was approximately

300 m in diameter.

Attempts were made to identify taese ice features on Landsat imagery.

Positive identification could not be made in either case. In the first

case, the ice island was observed well inside the contiguous ice between

Admiralty and Smith Bays (1574). The exact position was difficult to

determine however, because of rather poor navigation equipment on the

aircraft used. The second ice island was observed during a 1975 photo-

graphic reconnaissance trip. It was located well by navigational equip-

ment on board the aircraft and also by its location with respect to

other ice features in the vicinity. Both grounded ice islands were

located in water on the order of 20 m in depth. (These results are

discussed in Section VC.)

C.	 Chukchi Sea Results

1. Contiguous Ice Edge Maps

a. Yearly Ice Edge Maps: For each year of study a single

map has been prepared showing the edge of contiguous ice for each Land-

sat cycle yielding useful data.

1). 1973 (Figure I11-17).
P

i. 2-19 March. Available data is shown by a

dashed line. Later seasonal ice maps will show the ice edge data for

this date to be rather unusual in the outer Kotzebue Sound region..

Usually on this date the edge of contiguous ice is located well off

'i
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shore--bridging across the mouth of the Sound as far west as Shismaref.

Here the edge of ice appears to cross the mouth at Cape Krusenstern. It

should also be noted that between Point Hope and Cape Lisburne there is

a portion of coast where the edge of contiguous ice coincides with the

shore.

	

ii.	 7-24 April. Available data is shown by a 	 yi

series of dots. Again as will be seen later, the edge of ice is con-

siderably landward of its normal location in Kotzebue Sound during this

period. Again, although in a slightly different location, the edge of

contiguous ice coincides with the shore lime in the vicinity of Cape

Lisburne.

	

iii,.	 31 May-17 June. These data are shown by a ling:

of dots and dashes. Rote that by tb.=.s time much of Kotzebue Sound is

free of ice and several less protected areas are also free of ice.

21. 1974 (Figure III-18) .

i. 25 February--14 March. Contiguous ice edge

data for this date are shown as a series of dashes. Note how far out

into outer Kotzebue Sound this ice edge is found, yet it nearly touches

the shore south of Point Hope and again approaches the shore near Cape

Lisburne. Beyond Cape Lisburne this ice edge remains far off shore

until it reaches Cape Franklin.

ii. 2-19 April. Ice edge data for these dates are

shown as a series of dots. Generally closer to shore, the ice edge for

this date follows the shoreline configuration more closely than did the

earlier ice edge. Note that at Cape Lisburne this ice edge does meet

the coast.

36



iii. 26 May--12 June. Represented by alternating

dots and dashes, the ice edge on this date is generally closer to shore

than the dotted line representing the April ice edge. In some places,

however, the contiguous ice edge even for this late date can be found

seaward of the earlier edge--indicating that the edge of ice does not

merely retreat with advancing season.

iv. 13-30 June. Contiguous ice edge data for this

date are represented by a sequence consisting of two dots and a dash.

Note that this ice edge is the most seaward of the four plotted for this

year in the region just southeast of Point Hope. This ice is most

likely pans which have been driven into this location and compacted

somewhat. Farther north, the ice edge for this date can be seen to be

quite close to shore except at Pt. Franklin where the April ice edge was

actually closer to shore.

3). 1975. Note the unusually close similarity between

the ice edges shown for this year (Figure III-19).

i. 24 February--9 March. Data for this period are

represented by a series of dashes. Again, as in previous years, this

earliest ice edge extends farthest seaward in outer Kotzebue Sound and

off Cape Lisburne.

ii. 28 March--14 April. The contiguous ice edge

for this Landsat cycle is indicated by a line of two dots followed by

two dashes. Note that north of Wales, the edge of contiguous ice now

extends farther seaward then previously. This occurred as a result of

s-ridge build-up of a large hummock field in this location. This ice
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edge becomes adjacent to the coast south of Point Hope--as do all other

ice edges for this year. (None was recorded for late June as was shown

for the previous year.) This ice edge also coincides with the coast at

Cape Lisburne as March ice edges have done in previous years.

iii. 1 6-23 April. Ice edge data for this date are

shown by a series of dots. This ice edge is similar to the previous ice

edge except on the exposed sides of the Seward Peninsula and Cape

Lisburne. In both cases the ice edge now extends considerably farther

seaward.

iv. 30 May--16 June. Data are shown for this date

by a dot-dash sequence. Where these data were available they did not

differ greatly from the previous ice edge data.

4). 1976 (Figure 111-20).

i. 6-23 February. Shown by a dashed line, this

ice edge differs significantly from other winter ice edges which have

been mapped for this period: This ice edge indents far into Kotzebue

Sound while previously for this date the edge of ice has been far

seaward, well into outer Kotzebue Sound.

ii. 24 February--12 March. Shown by a dot-dash

sequence, this ice edge appears similar to ice edges drawn for the same

date on previous years. Note that at Cape Lisburne it indicates no ice

adjacent to the coast for a considerable distance. To the north, this

ice edge generally resembles ice edges drawn for previous years during

this period.
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iii. 14-31 March. These ice edge data are shown by

a sequence of two dots followed by two dashes. While this ice edge

resembles others for this period in the vicinity of the Seward Peninsula

and Kotzebue Sound it differs somewhat to the north where it is unusually

distant from the shore in the vicinity of Cape Thompson and Cape Lis-

burne. Farther north, between Icy Cape and Pt. Franklin this ice edge

advances unusually far seaward followed by a rapid coastward motion.

North of Pt. Franklin this behavior is repeated somewhat.

iv. 19 April- -6 May. Shown by a series of

dots, the contiguous ice edge data for this date are as unusual as the

data shown for 6-23 February: Here, instead of indenting toward and

into Kotzebue Sound, this ice edge actually bridges across out Kotzebue

Sound. It would seem that the winter and spring data were interchanged.

Farther to the north, the springtime data continues to exhibit this

unusual behavior--remaining tar seaward.

b.	 Seasonal Composite Maps

1). Late Winter. Shown here are the ice edge data for

late winter (February-March) Landsat cycles, 1973 through 1976. These

data indicate some interesting trends showing areas tending toward a

high degree of variability in ice edge location. While one might

expect a focusing of ice edge locations at exposed headlands (Wales,

Point Hope, Cape Lisburne, Pt. Franklin, and Barrow), Pt. Lay is not

similarly exposed but yet the ice edge data there also exhibit this

behavior pattern (Figure 111-21).
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2). Mid-Spring. Shown here are the ice edge data for

mid-spring (April-May) Landsat cycles, 1973 through 1976. Again as with

the late winter data there are zones of great location stability and

other areas with a high degree of variability. Generally while there

appears to be a greater overall uniformity of ice edge location here,

less stability is indicated off Point Hope and Point Lay (Figure III-

22) .	
1

3). Late Spring--Early Summer. Shown here are the ice

edge data for late spring and early summer (Map-June) 1973 through 1976.

These data show that in some regions (Kotzebue Sound, for iLstance)

there can be a high eegree of variability at this time while other

locations exhibit a tendency toward more uniform ice edge behavior.

Because of the absence of data from each year in some locations, some

indicated trends--particularly those toward uniformity should not be

considered as particularly atrong (Figure II1-23).

C. Average Seasonal Ice Edges

The composite maps of section b have been analyzed to produce a

single average ice edge for each season. In addition, the greatest and

least bounds of observed ice edge have also been shown in order to

document the reliability of the average ice edge for use in morpho-

logical modeling and hazard analysis.

1). Late Winter. The average ice edge for February-

March passes close to shore at Bering Strait and proceeds toward Kotzebue

Sound at a great distance from shore, bridging across the mouth of outer

Kotzebue Sound. North of Kotzebue Sound, the average edge is consider-



ably closer to shore than south of the Sound, finally passing just a few

km off Pt. Hope and Cape Lisburne. North of Cape Lisburne the average

ice edge follows the coastline at some distance until reaching Pt.

Franklin, where again the average edge is quite close to shore. The

average edge bridges across the coastal indentation between Pt. Franklin

and Harrow, passing that point at a distance of approximately 10 km

(Figure 111-24).

2). Mid-Spring. The average ice edge for this period

does not differ a great deal from the average ice edge for late winter

except for a tendency to lie closer to shore in some locations. It is

interesting to cote that the envelope of greatest and least bounds is

much smaller during this season, than during late winter--indicating

perhaps a steady-state condition, during this period. However, the

variability in outer Kotzebue Sound is still quite large during this

season, (Figure 111-25).

3). Late Springy--Early Summer. The average ice edge for

this season is generally closer to shore than. the previous season's

average ice edge. The envelope of maximum and m ,_'Umum contiguous ice

edge loactions during this period is generally nar.7ow except for the

vicinities of large embayments. For instance, in Kotzebue Sound the

envelope is large just as it has been in other seasons--only now it is

located even farther inshore (Figure 111--26).

d. Migration of Average Seasonal Edge of Contiguous Ice

This map shows the three seasonal average ice edges described in

section c plotted together so that the possibility of a systematic

change in ice edge location can be investigated. When considering the

d
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relationship between these ice edges, the envelope of maximum and minimum

ice edge location must be borne in mind. For instance, both in Kotzebue

Sound and north of Cape Lisburne, there is a wide seasonal spatial

variation in average ice edge location and the immediate conclusion

might well be to consider any apparent seasonal motion of ice edge more

significant than opposite Icy Cape where the spatial variation is smaller.

However, in Kotzebue Sound the variation envelopes are all quite large

so that seasonal average ice edges Located relatively close together

(late winter and mid-spring for instance) do not indicate a significant

variation. North of Cape Lisburne the envelopes are generally small so

that some credibility may be given to the mid-spring ice edge being

found more seaward then the late winter ice edge. At Icy Cape the

variation envelopes are small so that despite the proximity of the

average ice edges the seasonal progression shown may have statistical

significance.

Bearing these qualifications in mind the following observations can

be made from this map (Figure 111-27).

1). At Wales, Point Thompson, Point Hope, Cape

Lisburne, and Point Franklin there are at least small stretches of coast

where the average ice edge remains at the same distance from shore

throughout the three seasons. The mechanisms responsible for the agree-

ment of these average ice edges will be discussed in the development of

the Chukchi coastal morphology. It should be noted that at Wales, Point

Hope, and Cape Lisburne and Point Franklin the variation envelopes

. JS 
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are fairly large indicating that the ice edge varies in location during
5	 -

each season. The agreement in average location at Pt. Thompson between

each season indicates that no seasonal trend is to be found in the

varying location of ice edge here.
	 i

2). North of Cape Lisburne there are significant reaches

of coast where the sequence of average ice edge distance from shore

varies uniformly with season. That is, late winter is furthest from

shore, mid-spring is intermediate, and late spring--early summer is

closest to shore.

3). Immediately north of both the Seward Peninsula and

Cape Lisburne the ice edge sequence for winter and spring is reversed.

4). The winter and spring sequence are reversed in

Kotzebue Sound. However, this trend would not appear if the 6-23 February

1976 data were removed from the late winter data set. This could only

be done if some valid justification can be found. The data here should

be taken to indicate a high degree of variability of contiguous ice edge

in this zone.

d.	 Chukchi Sea Ice Ridge Systems

1). Yearly Ridge System. These maps show locations of

ridge systems which could be recognized on Laadsat imagery clearly as

ridge systems. The ridges identified are generally s -ridges which are

several kin long.

i.	 1973. Ridges were mapped in only a few locations

this year. It is interesting to note that they were found in locations

adjacent to headlaa.:ds in all cases. These headlands were: the tip of

the Seward Peninsula at dales, Point Lay and Point Franklin (Figure 111- 28).
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ii. 1974. The ridge pattern mapped for 1974 is

significantly different from the 1973 pattern. There appears to be a

tendency for ridges to be located on the south side of major embayments.

The large "V" shaped ridge northeast of Cape Lisburne was formed when

ice was driven southward toward the coast. It is interesting to note

that although the forces creating this ridge system were compressional

the ridges formed under shear failure (Figure III-29).

iii. 1975. Ridge systems mapped for 1975 were even

fewer than previous years. No particular pattern was observed. In the

embayment between Barrow and Pt. Franklin a ridge was observed to follow

the coast in a way resembling the pattern found between Point Franklin

and Icy Cape the previous year. Off Cape Lisburne a long ridge system

was found in a position indicating flow of ice across Cape Lisburne.

Ridges in this location were not seen previously (Figure 111- 30).

iv. 1976. Three ridge systems were observed this

year north of Bering Strait. They have an interesting similarity in

that they all lie "north" of the three major headlands; Seward Peninsula,

Cape Lisburne, and Icy Cape (Figure III- 31).

2). Ridge System Composite (Figure III-32)

All ridge systems observed and discussed previously are plotted

together on this map. There are two objects of this exercise: The

first is to indicate where, over a long time period, ridging occurs.

The second is to determine whether, when seen together, the individual

yearly ridging patterns fit into a single morphological pattern.

s
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The first objective is reflected in the general morphological and

hazard maps produced where long term average behavior is under con-

sideration. The second objective will help determine the year-to-year

reliability of the morphological picture developed. Under this second

category we should note upon ezaming the ridge systems drawn for each

year that the following behavorial patterns emerge:

i. Generally, the 1976 ridges are the most seaward

in all locations.

ii. The 1973 ridges are the most landward in all

locations .

Nevertheless,

i. All the ridges north of the Seward peninsula

form a single pattern. as do the ridges off Pt. Lay and Icy Cape and the

ridges south of Barrow indicating that although they occurred in different

years, they represent a single morphological pattern.

ii. The possible exception to this uniformity is

found at Cape Lisburne where three year's data appear to indicate three

distinct. patterns.

The general over-all pattern which emerges is that of streamlining

along the coast from Barrow to Point Lay with an abrupt seaward shift at

that location to a new flowing pattern across the tip of Cape Lisburne

followed by a similar pattern across the tip of the Seward Peninsula.



In this section, the results described in Section III are

interpreted in terms of seasonal morphologies of the Beaufort Sea near

shore ice regime. Then, based on these morphologies, an assessment of

relative hazards has been made for the Beaufort nearshore area.

The development of a complete near shore morphology should be based

on an analysis of statistical :iata from several years where average

conditions and deviations from average conditions have been determined,

followed by detailed analysis of specific individual events to test the

validity of the conclu8ions drawn on the basis of the statistical analysis.

In the Beaufort Sea five years' statistical data has been compiled and

related to specific ice events observed during the period of study.

Rather than being considered a completed product, this analysis should

be considered a starting point for further study.

The ice year has been broken into two periods: bate fall to early

winter, and mid-winter to late spring. A map has been prepared for each

season showing: areas of relatively uniform behavioral characteristics

which can then be described for each area. These two periods include

the times when ice hazards ap pear to be greatest. The division was

based on splitting the period of formation of the most stable ice from

the later period when this ice is essentially static.

1. Beaufort Sea Near Shore Ice Morphology

a. Date fall to Early Winter Morphology: This period

includes the time of freeze-up to the establishment of stable ice within

the nearshore area. This period roughly corresponds to early November

t	 _ e
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through late January. Unfortunately, very few direct observations of

ice conditions during this period are available; in late fall cloudy

conditions prevail and between late November and early February no

Landsat data is normally obtained because solar depression angles less

than 6 0 generally do not provide good imagery. However, this project

was able to arrange with NASA to obtain imagery at solar depression

angles down to 0° during fall, 1976. These images were found quite

useful even at 0° solar elevation angle.

Other than interpretation of the few fall images which were obtained,

the construction of the late fall-early winter morphology was based

:Largely upon inference from later imagery and observation of processes

occurring at other times. This morphology is presented in the form of a

map of the Beaufort Sea nearshore area showing areas having statistically

uniform morphology conditions. These conditions are described in the

legend to the map (Figure IV-1).
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Legend - bate Fall to Early Winter Morphology Map

Z.	 This zone contains generally smooth ice located in water less

than 10 meters deep. This ice is often formed in place but it can

consist of floes of recently formed ice rafted into location and

surrounded by a matrix of younger ice. In the latter case, rough-

ness is not uncommon, espcially around the rims of these floes.

Leads have often been opened in this area and subsequently frozen

over, providing long, broad avenues of smooth ice. These frozen-

over leads have often been subjected to compressive forces which

have formed pressure ridges within them. The ice within this zone

is completely formed by early January; it would be very unusual for

lead openings, other than tidal or tension cracks, to occur after

this date.

Shear ridging appears to be at a minimum within this zone,

principally because sufficient anchoring mechanisms occur at the
"d

edge of this zone, causing stress concentration at outer locations. 	 }

Because of their large draft, multiyear floes do not penetrate into 	 r

this zone but tend to pile up along the 10-meter i.sobath where they 	 M_

ground and become anchors for ice located shoreward. 	 v.

:i

Na-h.	 These areas are the active shear zone as soon as the anchor-	 I

ing floes are established along the 10-meter isobath. S-ridges

form within this zone, adding strength to the newly formed ice

sheet. The sheet quickly builds seaward through growth of new ice, 	 y

attachment of floes, construction of new ridges and grounding of

multiyear floes. The dashed line represents the mean seaward

bot:udary of this activity. However, it should be recognized that
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in the absence of disturbance, ice contiguous with the shore can

extend over 104 kn, seaward, remaining in place for weeks at a time.

On the other hand, until the ice in this zone is well stabilized,

leads can open and ridging or shear deformation can take place at

almost any location within it.

Pack ice motion is usually from east to west. When forces act

to cause compression along the line of contact between moving and

stationary ice, s - ridges are formed. This ridging activi ty appears

to be greater in some areas than in others. Details of ridging

activity are given in the following subsections.

IIa.

	

	 This rather large area strectching from Cape Halkett to Barrow

has rather low ridging activity, although lead formation appears to

be rather frequent. This would suggest a relative absence of

compressive forces along this portion of the coast.

IIb.	 Moderate ridging occurs in this area early in the ice

year as a result of ice being driven into Harrison Bay from the

east. This activity soon ceases as a result of the increased

	

strength created in the ice. Thereafter, coastal ice motions are 	 _4

deflected along zone tic.

IIc.

	

	 This zone of moderate ridging is created after the increased

strength of ice in zone llb halts motions into Harrison Bay from

the east. Because of shoals just shoreward of the 20-meter isobath,

large draft multiyear floes act as anchoring mechanisms for the

sheet of ice to the shoreward (Zone III). Ridges created in this

zone during early winter have a high probability of remaining in

place the entire ice year.

pRxG ^.^ ^UAL()F P	 M
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IId.	 This zone of high ridging frequency begins approximately

at the 20-meter isobath and extends seaward to the vicinity of the

40-meter isobath. Ridges in this zone are not well grounded and

can be severed by lead formation. However, following such an

event, there is a high probability of new s-ridge formation along

the boundary of the opened lead. All along this zone, from Mikkelson

Bay to a point off Cape Halkett, long highly identifiable s-ridges

can be formed by the combination of motion of pack ice toward the

west and by compressive forces as it is held against the fast ice.

IIe.	 This is a zone of moderate ridge formation extending from the

west side of Camden Bay to Mikkelson Bay. It is presumed that,

although westward slippage of seaward ice takes place here similar

to Zones llc and lld, compressive forces are not as great along

this section of coast. As a result, s-ridging is less pronounced.

Uf.	 This is a zone of high ridging frequency formed largely by

compression of pack ice against fast ice as the ice moves either

east or west. The compression is created when the moving pack ice

encounters ice held fast against the large headland in this vicinity.

Note that the zone of high ridging frequency extends considerably

shoreward of the 20-meter isobath. It is of interest to note that

the prevailing wind at Barter Island shifts from east in November

to west in December, returning to east in January and then back to

west in February. Hence, these ridges could be created by ice

motion in either direction.

IIg.	 This area has a low frequency of ridging. One possible

explanation for this phenomena is that when winds are from the

east, if ice motion in this vicinity takes place, it simply fails

in tension and pulls away from the shore with the result that no
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compressive components exists to form large s-ridges. If, on the

other hand, the wind is from the east, the ice piles in compression

here and fails in shear to the north, forming Zone llf. The com-

pression piles are not as visible as s-ridges hence the area is

mapped as having a low frequency of ridging.

IIh. Ridging frequency is increased in this zone as a result of the

shoreline being more nearly parallel to the direction of ice motion

with the result that east winds can cause creation of s-ridges.

Ili.

	

	 This is an area of low ridging frequency in the middle of

outer Harrison Bay. It apparently forms because shoals to the

seaward cause grounding of multiyear ice features and pressure

ridges. As a consequence large s-ridges form to the seaward of the

shoals, providing additional protection.
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b.	 Mid-winter to Late Spring Morphology: The morphology

of nearshore ice during this period has been determined by direct

observation through Landsat imagery. Many areas with considerable ice

activity during the previous period are now static with very little

chance of violent deformation. However, tension and tidal cracks appear

and "work" as conditions change. Other areas are now static and nave

very little chance of major failure resulting in s-ridging but have been

observed to develop crack patterns suggesting failure under shear. In

general, during this period the active edge of ice often moves further

from shore than the 60-meter isobath and then returns to that vicinity

during dynamic ice events.

The morphology of nearshore ice during this period has been

summarized in map form (Figure IV-2). Based on the statistical data,

zones have been delineated which can be described in terms of a uniform

ice behavorial pattern within each zone-. The behavorial patterns have

been described in the following legend.
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Legend -.Mid-Winter to late Spring Morphology Map

I.

	

	 Stable fast ice. The ire within this classification is usually

well formed by the beginning of February. With one possible exception

(denoted Ib), the ice in this category is sufficiently stable that

flaw leads form to the seaward throughout this period (somewhere

within category II). Hence, except for opening and closing of

tidal and tension cracks, the ice within this zone is static during

this period. The following subdivisions within this zone are based
k

on statistical occurrence of major ridges.

Ia.	 gone of light ridging. Generally overlying shallow waters,

this ice is free from major ridges. Often large expanses of very

smooth ice can be found.

Ib.

	

	 .Zone of moderate ridging. A variety of conditions can be

encountered reflecting conditions during time of freeze-up. Multi-

year floes may be encased in a matrix of new ice. Large floes of

worked, first year ice may be broken by smooth, frozen-over lead

systems. Pressure ridging can be expected in these areas. There

is also a moderate probability of encountering an S-ridge created

some time during freeze-up.

Ic.

	

	 Zone of intermediate ridging. Ice conditions are similar to

those described for zone Id. However, the probability of large S-

ridges is considerably increased.

Id. Zone of severe ridging. The ice in these areas is likely

to be first year pack ice and multiyear floes - obviously nr4.

formed in their present location. A great deal of ridging and

pressuring has taken place, creating Large grounded hummock fields
r
a
	 in some areas. Note that these areas occur along the seaward	

i
i	 =3
i
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boundary of stable fast ice and often at points of inflection of

this boundary. These areas are the main anchors of the fast ice
i

system.

II.	 Zone of mid-winter - late spring flaw lead formation. The

areas within this classification are prone to flaw lead formation

at any time during this period. Following flaw lead formation, S-

ridging may occur, the lead may freeze over and remain static for

weeks at a time, the recently frozen lead may close, creating S-

and P-ridges, or the leads may open yet again. However, it is also

possible to have an extensive sheet of stable, unbroken fast ice

for long periods of time within this zone. Flaw lead formation

probability is low at the shoreward boundary of this zone, increases

seaward to a maximum probability, then begins to decrease further

from shore. The variability of ridge density is the major criterion

for the subdivisions within the zone.

Ila.	 Zone of moderate ridging with a h-gh probability of flaw lead

formation. Ice behavior is related more to the Chukchi Sea morphology

than to the Beaufort Sea.

1Ib	 Zone of relatively low ridging probability, but prone to flaw

lead and polynya formation during this period.

IIc.	 Zone of moderate ridging, prone to flaw lead formation during

this period.

IId.	 Zone of intermediate ridging, prone to flaw lead formation.

He.	 Zone of flaw Lead formation with greatest probability of ridge

formation. Very often long S-ridges can be observed running the

length of this zone.

1If.	 Zone of flaw lead formation with intermediate ridge formation

frequency.

pp.
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IIg.	 Zone of low probability of flaw lead formation with moderate

probability of major ridge formation. (Flaw leads are more likely

to be formed shoreward of this zone).

IIh.	 Zone of flaw lead formation with moderate ridge probability.

IIi.	 Zone of flaw lead formation with low ridge probability.

IIj.	 Zone of low probability of flaw lead formation with low ridge

probability

III.	 Generally zone of pack ice. Usually a flaw lead or recently

active flaw lead (currently thinly frozen over) can be found between

this zone and zone I. P-ridging is a frequant phenomenon in this

zone and S-ridging can occur but the probability is much lower than

in the II zones.

fi
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2. Hazards Resulting From Beaufort Sea Ice Morphology

Based on the Beaufort Sea seasonal morphologies, an

assessment of relative hazard during the several phases of offshore

petroleum development has been made. The hazards identified are, of

course, related only to those aspects of the general over-all ice morphologies

identified here. These hazards include: 1) The relative safety of

field crews operating on the ice, 2) Possible ice motion endangering .

drilling operations from temporary structures (anchored drill ships, ice

structures, pile structures, etc.), 3) The probability of ice piling

events posing obstruction to rapid surface evacuation from potentially

hazardous situations, 4) The potential for ice piling events and subsequent

damage to under sea structures from the subsurface structure of the

piled ice, and 5) The potential for increased bearing load against

bottom-founded structure. , as a result of piled ice.

Figure IV-3 shows the Beaufort coast with several major hazard

zones delineated. The hazard zones have been chosen on the basis of a
;A

rather uniform hazard potential within each zone. The zones have been

grouped into 5 major zones based largely on probability of ice edge
_R

occurrence and subdivided further largely on the basis of ridging pro-
_.y

.bability. In the caption for Figure IV-3 each major zone is described



Caption - Beaufort Sea Ice Hazard Map

T.	 This zone represents the most stable ice along the Beaufort

coast. After December it is extremely safe for surface travel,

(with one possible exception noted later) it has not been observed

to fail in shear between December and June (therefore deformations

are generally small), and ice piling is at a minimum.

Actually, this zone contains two subzones not shown mere

determined almost entirely by depth of water. The first subzone
s^

consists of water less than two meters in depth. The significance
i

of this zone is that by late winter, the ocean freezes to this

depth hence after that date this subzone should be very stable.

The second subzone consists of the balance of Zone I and contains

depths as great as 10 meters. These two subzones have not been

differentiated because the relative hazard between the two has not

been considered extremely great.

The greatest source of hazard observed to occur in this zone

was the mid-winter formation of thermal tension cracks. These

cracks occur generally during very cold temperatures in December

and open to a width of 2 to 3 m. Often the new ice formed in the

crack is drifted over with snow with the result that it does not

equal the thickness of the surrounding ice. On one occasion in

Prudhoe Bay a large piece of equipment and its driver were lost

when an attempt was made to merely drive across a frozen-over

tension crack. There appears to be some repetition from year-to-

year of these cracks; one major tension crack appears between

Thetis Island and Oliktok Point annually.

019, 's	
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Ridging occurs within this zone only early within the ice

season with the participating floes generally on the order of 30-40

cm in thickness. Major ocean floor plowing should not be expected

from these events. After December and January the active edge of

ice is well seaward of this zone. No ice failure events have been

observed to occur which indicate deformation within this zone

between the end of January and the end of May. It is estimated

that an event resulting in 20 m deformation would have been obser-

vable by the techniques utilized here.

II.	 Like Zone I, this zone consists of stable fast ice during

late winter and early spring. However, the relative hazards

related to this zone are somewhat greater than those related to

Zone I. During the five year observation period reported here,

failure to the point of large scale displacement (10 km) was not

observed within this zone.

The zone has been subdivided generally in terms of ridge

density although not entirely with respect to that attribute.

Generally the zone is safe for surface travel during winter and

spring. Structures are subjected to varying amounts of ridging,

and varying amounts of displacement can take place. However, this

is still within the zone of "stable fast ice" generally held in

place by grounded ice features along its seaward edges. Oil spilled

under this zone should encounter a relatively smooth undersurface

and might spread significantly. This process would be aided by

lunar and barometric pumping of water in the confines between the

ocean floor and bottom of the ice.
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IIa.

	

	 This zone is adjacent to Zone I and parallels the coast from

Barrow to Barter Island. Its chief distinction from Zone I is that

within it there is a greater ridging density. During winter and

spring few hazards should be encountered by surface operations.

The probability of deformation in this zone is greater than in Zone

I. During the five-year observation period reported here, failure

under apparent shear was observed on only a few occasions within,

this zor. The failure resulted in crack formation in a stress

t	 release pattern with displacements on the order of a kilometer.

Complete failure accompanied by s-ridge or lead formation was

observed on one occasion and has led to the distinction between

Zones Ha and IIb. The probability of lead formation is low and

the probability of encountering major obstructions during an

attempt to escape lead-forming events is not extremely great.

This zone does contain the shallow areas just seaward of the

Barrier Islands, however, and is often seaward of the 10 -meter

isobath, although generally contained by the 20-meter isobath. The

ridge density was observed to be greater than in Zone I and con-

sequently ice piling events by older and thicker ice than ' in Zone I

are likely.

Oil spilled in this zone would encounter a somewhat rough

under ice surface and therefore would spread less than in Zone I.

Cleaa-up operations, however, would be hampered by the ice surface

roughness.
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IIb.	 This has been designated a separate hazard area from Zone Ila

because of one lead-forming event occurring along the dotted line

distinguishing these two zones. It is interesting to note that

were Zone IIb not recognized, this would be the only significant

area in Zone IIa seaward of the 24-meter isobath. However, the one

lead-forming event observed indicates that this area is not as

stable as the balance of Zone IIa and should be distinguished.

Within this zone then, there is greater hazard to surface parties

through the possibility of ice failure.

llc.

	

	 This is an area of relatively smooth ice surrounded by ice

which is statistically rougher in terms of major ridge systems. It

has often been found to contain floes of varying ages surrounded by

younger ice. Generally, however, bath are annual ice. This has

been determined to be a zone of relatively low hazard to surface

travel. Dynamic ice events appear to be at a local minimum.

Deformation and lead formation has not been observed during winter

and spring. Oil spilled under this ice might spread but could well

be channeled by the smooth uadersurface of the newer ice surrounding

the older floes.

IId. and IIe. These are areas of heavy and moderate ridging respectively,

located inshore from the average location of flaw leads. Although

ridging occurs here, these areas are quite stable and often contain

large areas of grounded ridge systems. The chief hazard to personnel

performing surface operations comes from the probability of lead

formation, compounded by the difficulty imposed on attempts at

- w
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rapid escape by the great surface roughness. Clearly is Late fall

massive ridge-forming events occur here and at least once, an ice

island fragment was observed grounded in this vicinity. It would

appear, then, that structures placed in these zones could bear the

load of ice piled from several meters above the sea surface all the

way to the ocean, floor.

Oil spilled under this surface would most likely become

trapped in many deep pools located between ridge keels and as a

result spread less than in other areas.

iif.	 This is a large zone of moderate ridging located largely

inshore from the average edge of winter and spring contiguous ice

Hazards to crews performing surface operations vary somewhat de-

pending on proximity to the average location of flaw leads where

there is the greatest chance of deformation or lead opening. Ore

arm of this zone extends well into inner Harrison Bay where surface

conditions are more stable than at the zones' seaward edge. Some

deformation and accompanying displacement has been observed in this

region during winter and spring. However, the ice has not been

observed to the point of creation of an edge of contiguous ice

through flaw lead formation.

Structures placed in this region could be confronted with

massive ice piles and, in fact, large hummock fields have been

observed in this zone. Oil spilled under this zone world encounter



IIg.

	

	 This is a zone of severe ridging located shoreward of the

shoreward limit of the observed envelope of flaw leads. Located

northwest of Cross Island, it is often the site of massive s-ridges

formed in November and early December. Many of these ridges are

apparently well-grounded and remain in place well into summer.

Cracks have been observed here in mid-winter, but the ice has not

failed to the point of major lead formation and followed by dis-

placement along tae lead.

Surface operations in this area would involve an element of

risk related to the chance of lead formation and the relative

impediment to surface travel presented by the ice surface. Struc-

tures could very well have massive ice piles adjacent to them and

available to exert relatively large forces against them.

An oil spill would tend to pool under this ice and have its

spread thus retarded.

IIh.

	

	 This zone is the east end of an area of severe ridging. This

portion lies shoreward of the flaw lead.zone. Hazards in this zone

are essentially the same as those described for Zone IIg.

IIi.

	

	 This is a rather large zone of moderate ridge density lying

shoreward of the shoreward edge of winter and spring contiguous

ice. In two places this zone is shoreward of areas of more severe

ridging between it and the shoreward edge of contiguous ice while a

large area actually borders this edge. A good portion of this zone

lies seaward of the 20-meter isobath. This circumstance might

raise a question concerning the stability of that portion. Cer-



Oil spilled under this ice could be expected to pool somewhat

because of the moderately rough undersurface.

An additional hazard in this subzone not encountered by other

subzones in the II group is the possibility of ice island occur-

rences because of the large area with water depths greater than 20

meters.

IIj.	 This is a none of severe ridging located shoreward of the flaw

lead zone. Because this zone lies seaward of the 20-meter isobath,

its stability should be held in question. However, the flaw lead

has consistently been observed along its seaward edge. Hence,

while surface operations might be performed, precautions should be

made to make certain that evacuation could be made quickly.

Structures placed in this zone would not only be endangered by

the possibility of major ridge-building events but also by the

possibility of _ce island transacts across the zone during open

water and freeze-up periods.

An under ice oil spill located here would probably not spread

greatly as a result of the enhanced underwater topography.

Ilk.	 This is a zone of moderate ridging lying to the east of

Barter Island. bike Zone IIj, much of this zone lies seaward of

the 20-meter i.sobath. Hazards described for this zone are essenti-

ally the same as those described for IIj except that the probability

of a major ridge confronting a structure is diminished and the

pooling effect of an underwater oil spill is similarly decreased..
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III.	 This major zone is defined by the statistical envelope of

observed flaw leads. During mid-winter flaw leads quickly freeze

over after formation while during late spring they tend to freeze

much more slowly and as a result remain active much longer. During

the mid-winter periods when the Beaufort flaw lead has frozen in

this vicinity, a vast area seaward of this area is often constituted

of contiguous ice. The term "flaw lead" looses its significance

during this period. However, when a flaw lead does appear it has

the greatest probability of occurring within Zone III.

Hazards iv. Zone III are significantly greater than in Zone II

because of the flaw lead probability and because this zone lies

almost entirely seaward of the 24-meter isobath making visits of

ice islands and other deep-draft ice features very possible. Under

ice oil spills located within this zone face a high probability of

exposure to the water surface through the creation of -flaw leads.

It should be noted that whereas Zone II could be thought of

as having a good probability of remaining static throughout winter

and spring, with the result that large ridge probabilities could be

thought of as ind cating stability through grounding and consequent

anchoring of ice, a high ridge probability in this region indicates

a high probability of instability through flaw lead formation and

ridge-building events.

Major ice displacements are possible in this zone at any time

associated with lead-formating events and ice deformation. This

possibility is found throughout this zone and should be kept in

mind in terms of the subzones defined below.

ORIGINAL PAIGE, 13
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IIIa.	 This zone rounds Pt. Barrow joining the Beaufort and Chukchi

Seas. It represents an area of moderate ridging and a very narrow

focus of flaw lead location. It should be considered extremely

hazardous for surface operations. Structures placed in this zone

would be confronted by almost constant ridge-building events. An

oil spill located here would be pooled significantly by the ice

bottom topography but would also face a high probability of exposure

to the water surface and incorporation within the ice over a large

area through lead and ridge activity.

IIIb.	 This is an area of high probability of flaw lead formation

with a low probability of ridging. During winter and spring there

is often new ice being formed in this vicinity. It should be

considered etremely hazardous for surface operations. Structures

placed in this zone may very well have a high probability of escaping

major ridge-building events. However, their interaction with the

often newly-created ice within this zone should be considered

carefully. Further, the probability of ice island visits may be

enhanced by coastal configuration here. Oil spilled within this

zone would have a high probability of incorporation into new ice

and transport with pack ice motion.

IIIc.	 This is a large area of low probability of major ridging

oriented parallel to the coast and located far beyond the 20-meter

isobath. It should be considered significantly hazardous for

surface operations. A structure placed in this zone would have a

low probability of encountering a major ridging event but ice
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island visits would be quite possible. Oil spilled under this zone

would not be pooled by major ridges and would have a large probability

of incorporation into the pack ice through lead formation.

IIId.	 This zone runs parallel to the coast for much of the length

of the Alaskan Beaufort Sea. It possesses a moderate probability

of ridge building events, few impediments to ice island visits and

a good chance of being located seaward of the flaw lead. For

these reasons the zone should be considered hazardous for each of

the activities considered here under "hazards".

Ille.	 This is a relatively small zone of moderate probability

of major ridging located inshore of Zone IIIf (described next)

possessing a high probability of major ridging. It is generally

somewhat stable but flaw leads have cut across it. Presuming

suitable precautions are taken, surface operations could be per-

formed in this zone. Structures placed here could well be con-

fronted by by major ridge-building events while there is a small

probability that because of the bathometric configuration, some

protection from ice island visits may be afforded. Oil spilled

under this zone would very likely be pooled by the bottomside ice

configuration.	 i

IIIf.	 This is a large zone of great probability of major ridging

running parallel to the coast from Harrison Bay to Flaxman Island.

This zone also has a great probability of containing the flaw lead.

And, because it is largely located over waters deepen: than 20

meters, there is a good chance of an ice island visit.
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Surface operations iu this zone should be considered fairly

hazardous due to the compounding effect of great ridge density and

Probability of lead formation events. structures placed in this

zone would be subject to major ridge-building events and at least

the potential for ice island visits. Oil spilled under this zone

mould very likely be pooled significantly by the underside con-

figuration of the ice. However, there would also be a great pro-

bability of near future oil incorporation into ice piles through

!	 lead formation and ridge-creating events.

Mg.	 This is a narrow zone of light ridging located beyond Zone

M d.	 The hazards related to this zone are essentially the same as

the hazards in Zone IIId except that the probability of flaw lead

formation between this zone and shore is even, greater, and the

possibility of an ice island visit is enhanced while the probability

of major ridging is decreased. :#

IIIh.	 This is a zone of low probability of major ridge building

events but with little obstruction to ice island visits.	 The

probability of a flaw lead formation between a point located in

this zone and shore is very great.	 During lead-forming events

there is a good chance that field crews could flee dangerous situations
1

to nearby points but not escape to shore by surface transportation. _A
:.s

Structures, while largely free from major ridge-building events

could very well be confronted by ice islands. 	 An under ice oil

spill would probably spread significantly and soon be introducedP	 p	 Y	 P	 g	 Y

into the pack ice.
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IIIj.	 This zone possesses a low ridging probability and a high

probability that flaw leads are located to the shoreward. Hazards

are essentially the same as Zone IIIh.

IV. This zone contains ice with a moderate probability of major

ridge formation as a result of ice interaction with the shore, yet

there is a high probability that flaw leads will be found shoreward

of this zone. Because of the shore-linked aspect of its morphology

and hazards, it has been differentiated from Zone V which is

s	 essentially pack ice.

Surface operations in this zone should not be performed without

provisions for non-surface evacuation. Structures placed in this

zone will be subject to at least a finite probability of major

ridge formation, while ice island and floeberg visitations are

entirely possible. Oil spilled under this zone would tend to be

pooled significantly by major ridges but be subject to introduction

to the ocean surface during lead-forming events.

V. This zone is essentially the pack ice zone. Here, influence

of shore on ice morphology and hazards has been reduced to regional

influences. In the region north of the Beaufort Sea there are

periods of stable ice extending up to six weeks duration. During

that time, field operations could be carried out here subject to

the provision for non-surface evacuation if necessary. However,

the relative danger is actually diminished from that in Zones III

and IV because of the smaller chance for major shear deformation in

this zone. It is very unlikely structures will ever be placed in

this zone. An under ice oil spill would essentially be a spill

into ,pack ice.
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B.	 Chukchi Sea

In this section, the results described in Section. III are

interpreted in terms of seasonal morphologies of the Chukchi Sea near

shore ice regime. Then based on these morphologies, an assessment of

relative hazards has been made for the Chukchi nearshore area.

1. Chukchi Sea Morphology

The ice year has been broken into three periods: mid-

winter, early spring and late spring. The morphology of the Chukchi Sea

ice is much more dynamic than the Beaufort Sea morphology. While the

Beaufort Sea exhibits a vast area of static ice with an occasional much

larger area attached, there is an almost constantly active flaw lead

along the Chukchi coast with new ice being formed, detached, piled, and

transported almost constantly. For that reason the morphology of

Chukchi ice has been described in a somewhat different way from the

morphology of Beaufort Sea ice.

Figures IV-3, IV-4 and IV-5 contain the morphological description

of Chukchi Sea ice behavior. Two fundamental ice features have been

utilized to construct these maps: The edge of contiguous ice which

essentially coincides with the flaw lead, and large massive ridge systems.

In some respects these two ice features are independent of one another;

the edge of contiguous ice is, in general, controlled by season--being

farther off shore during winter and advancing toward shore with advancing

season while the location of large ridge systems appears to be controlled

mainly by bathymetric configurAtIon.

Because of this relative independence, the major influence or
_.a

change in the near shore morphology will be seen to be the changing
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location of the edge of contiguous ice.	 Lest this seem an over simpli-

fication of the near shore morphological processes, it should be pointed

out that at some places a direct relationship has been noted. In

particular, north of Bering Strait s-ridges have been observed to build

seaward extending the edge of contiguous ice in that direction while

elsewhere the edge of contiguous ice is retreating toward shore.

The Chukchi Sea Ice Morphology Maps have a much different appearance

than do the Beaufort Sea Maps. One major reason for this is the oppor-

tunity for ice to move out Bering Strait. All during the late winter

and spring period, ice moving events take place along the Chukchi coast,

often creating shear ridges along shoals jutting seaward from the string

of capes and headlands which are so prominent along the coast. Increasingly

as one travels to the south, the edge of'contiguous ice between headlands

is more poorly defined and the ice contained is more prone to seaward

motion leaving areas of open water behind. In general, there is often a

lead system extending the length of the coast from Barrow to Cape Lisburne.

Just south of Cape Lisburne and north of Point Hope is an area with

a constantly reformed polyaya.

South of Point Hope the effect of ice motion out Bering Strait is

even more prominent. Another recurring polynya occurs just southeast of

Point Rope formed by southward ice motion. Kotzebue Sound is generally

covered by stable ice during much of the ice year, but the presence of a

zone of weak and often moving ice just seaward hints that this sheet of

ice is probably potentially unstable.
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At the southern end of the Chukchi Sea is Bering Strait. Just

north of the Strait is a large system of shoals where large extensive

shear ridges can be built during ice motion out the Strait.

2. Hazards Resulting From Chukchi Sea Morphology

Based on the Chukchi Sea Morphology described in the

previous section, the question. of hazards related to offshore petroleum

development has been addressed. Map IV-7 shows a number of hazard

descriptor areas having sufficiently uniform conditions within each area

that a hazard description could be written for each area.

The hazards addressed include: the safety of crews and equipment

used to perform surface exploratory operations, an, assessment of the

possible load-bearing ice surface imposed on structures resultin g from

ice piling events, the possible plowing of the ocean floor by ice piling

events, and the possible fate of petroleum spilled in each descriptor

area.

The following table describes the hazards related to each of the

descriptor areas defined on map IV-7.

4.1

v^

dt1 t
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CHUKCH1 SEA ICE HAZARDS

Zone	 Descri tion ,of Hazards

1. This is an area geaerally safe for travel from January through

early June. Depending on conditions at freeze-up, ice seaward of

the islands can vary from smooth to very rough. In front of

Barrow, this zone narrows to a strip 200 m wide.

This is not an area of major ridging and surface structures

would be subjected to a minimum of hazards resulting from ice

piling or keel plowing of the ocean floor.

Fall and early winter oil spills could be transported away

or incorporated into permanent ice. From early winter till breakup,

under ice spills would remain trapped except for transport through

occasional tension and tidal cracks.

2. An area of moderate ridging formed early in the ice year,

this area is generally safe for surface travel from January through

early June. Chances of seaward lead formation increase with

the advance of the season. There is also moderate hazard -co structures

resultYng from ice piling and keel plowing.

Fall and early winter oil spills are very likely to be trans-

ported away with ice motion. Dater spills are likely to be trapped

under the ice and pooled between ridge keels until spring when

thawing and breakup of the ice would cause lead pumping and trans-

port of the oil.



3. An area of moderate ridging formed early in the ice year

is subject to lead formation with low probability from January

through March. Lead formation is very likely after that date.

Surface travel is least hazardous during January through March and

moderately hazardous at other times. Because of dynamic ice events

in this region, this area should not be considered for the location

of camps.

Surface and subsurface structures are subject to damage by

moderate ridging and keel plowing of the sea ice at almost any time

during the ice year.

Oil spills would be subject to transport or incorporation into

piled ice at any time during the ice season. The longest period

during which an oil spill would not be subject to ice motion is on

the order of two to three weeks.

4. This is an area subject to moderate ridging activity at any

time during the ice season. Since lead formation is frequent

during the ice season as well, surface travel is extremely dangerous

at any time and is actually less hazardous farther offshore.

Surface and subsurface structures are subject to damage by

ice piling and plowing during the entire ice season.

Oil spilled in this region during the ice season would soon

become subject to lead pumping and incorporation into ice piles and

ridges. There would be a high probability of transport within one

week of the spill. Clean-'up attempts would be made difficult by

the possibility of ice motion.

- IP
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5. An area of severe ridging seaward of the normal edge of stable

ice at any time during the ice season, this is an extremely hazardous

area for exploration activities. In addition, surface structures

would be constantly subjected to piling events and damage by ice

keel plowing.

Oil spilled in this region would very likely be incorporated

into piled ice, pumped onto the surface by lead activity and

incorporated into newly-forming ice within leads.

6. An area of severe ridging just shoreward of the mid-winter

edge of fast ice, this region should not be considered stable.

However, during mid-winter, ice here might remain in place two to

three weeks at a time. By mid-spring, the boundary of fast ice is

located along the shoreward edge of this zone.

The safety of surface operations in this zone is similar to

that of Zone 4 except that the increased ridging in Zone 6 would

make retreats to safer ice more difficult in case o; dangerous ice

conditions, and the increased piling in this area increases the

probability of parties being caught in truly hazardous situations.

Camps should not be established in this area.

Surface and subsurface structures would be subjected to damage

by great amounts of ice piling and plowing --- perhaps as severe as

any place along the Beaufort/Chukchi coast.

Oil spills generally would be located under mobile ice

subject to piling events most of the ice year. However, during

mid-winter spills might be trapped under stationary ice for as long

as six weeks, lead formation is a possibility at any time during

the ice year.

74



r

4-

8.

This is an area of severe ridging just offshore from the

springtime edge of stable ice. It is generally stable from mid-

winter to mid-spring. But because the configuration of Point

Barrow exposes ice to the possibility of occasional dynamic ridging

events, even this area should be considered hazardous for prolonged

surface activity. (See description of Zone 6). The hazards

associated with this zone are similar to Zone 6 except that there

is a longer period - up to two to three months - when the ice may

not be subject to motion.

This area is subject to severe ridging offshore of the late

spring edge of contiguous ice yet inshore of the early spring edge

of stable ice. The ridges in this zone are formed early in the ice

year and generally remain in place until the melt season. Surface

exploration activities are not extremely hazardous. However,

because of the wide variation in location of the springtime edge of

fast ice, the relative safety of this zone is not as great as its

counterpart along the Beaufort coast.

Surface and subsurface structures would be subject to damage

by ridging and plowing events generally only at the beginning

(November-December) and end (June-July) of the ice season.

Oil spills in this zone during November and December could be

transported away with near shore ice motion or incorporated into

ice piles in the near shore area (within this zone or even inshore

of this zone). From December until early June, an under-ice oil

:a
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spill would most likely remain trapped under the ice in this area.

After June sufficient leads and cracks exist that the oil could be

pumped to the surface by ice activity.

9. An area of moderate ridging formed early in the ice year,

this area is located offshore of the late spring ice edge but

inshore of the early spring ice edge. This zone is similar to Zone

2 on the other side of Farrow in terms of hazard, and is generally

safe for surface travel. from January through June. Chances of

seaward lead formation increase with the advance of the ice season.

Moderate hazard to structures exist resulting from ice piling and

ice steel plowing.

Fail and early winter oil spills would probably be trans-

ported away with any ice motion. Later spills are likely to be

trapped under the ice and pooled between ridge keels until spring.

10. This is an area generally free from major ridges running from

south of Barrow to near Pt. Franklin and is located seaward of the

late spring ice edge but shoreward of the early spring ice edge.

Because of the great statistical variation of the ice edge in this

region, the description of this area and Zone 11 should not be

considered entirely accurate. One reason for the wide variation of

behavior here is the location of these areas in waters considerably

deeper than 20 meters, and hence, the absence of significant grounded

ice features to provide anchoring mechanisms for fast ice. This

situation is reversed on headlands (Pt. Barrow, Pt. Franklin, Icy

Cape, etc.) where many of the identified near shore zones are

located within the 20--meter isobath.

t

- 4r

76



Si

^i

This area tends to be free of lead activity from mid-winter ^,	 a

t:
until mid-spring. However, surface travel should be considered'

hazardous even at those times because of the wide variation in

behavior mentioned above.

Surface and subsurface structures are relatively free from

hazards due to major piling and plowing events. Subsurface oil

spills may be pooled under stationary ice for up to a month at a

time but lead activity and ice motion would eventually result in

the pools of oil breaking up and being redistributed.

ll.	 This area, generally free from major ridges, runs from south

of Pt. Barrow to north of Pt. Franklin and is located seaward of

the early spring ice edge but sir+)reward of the mid-winter ice edge.

Because of the reasons described far Zone 10, the boundaries of

this zone are not well defined. The hazards described for Zone 10

also apply to this zone. However, the probability of stationary

ice here is even less than in Zone 10 and the possibility is generally

restricted to the period December-February.

12.	 This is a broad zone subject to moderate ridging running from

Barrow to Pt. Franklin and located shoreward of the late spring ice

edge. Although this is a generally stable zone with some grounded

ice features, the relative hazard to surface travel increases as

one progresses seaward. Some lead activity has occurred here

during winter months although, statistically, this area is con-

sidered stable from December through late June.
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Under-ice oil spills would be trapped under generally stable 	 J

ice from December through June with a low probability of transport

or major pumping onto the surface by lead activity.

Surface and subsurface structures would be subjected to

hazards due to moderate ice piling and plowing events earl y (Novem-

ber-December) and late (June-July) in the ice season.

13.	 This zone of ice extends from shore to the area of moderate

ridging and is entirely within the late spring edge of ice, being

wide in areas of embayment and narrow across headlands. Although

this zon• extends along the entire coast it has been divided into

smaller zones because some characteristics of the ice change from

place to place.

Ice topography is this zone is dependent on conditions at

the time of final freeze-up, which usually has occurred by the end

of December. The ice surface topography will vary from location to

location and from year-to-year. The surface can at times be suffi-

ciently smooth for the operation of wheeled vehicles. At other

times it consists of a jumbled pile of small plates of ice about 30

cm thick and 2-3 m across presenting a major obstacle for even foot

travel. Ridging generally does not occur in this zone and, in

fact, usually forms the seaward boundary of this zone.

Structures placed in this zoae would be subject to relatively

hazardous conditions due to piling and plowing. By the end of the

ice year most first year ice is on the order of 2 m thick and as a
4

result considerable expanses of the ice in this zone Xll be frozen

f
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to and into the bottom. This is particularly true in lagoon areas such

as Pt. Franklin. Because of this and the long life of the ice zone,

under-ice oil spills could spread considerable distances along this

zone.

14. This zone adjacent to pt. FraaE=' a appears to exhibit ice

behavioral characteristics somewhat diifereat from ice zones

adjacent to other headlands. Very little ridging appears to occur

here and the edge of contiguous ice varies little from season to

season. This behavior appears to be explained by the fact that the

ocean floor profile drops off rapidly to 24 meters along this

section of coast and the same profile is maintained much of the

length of this region. Hence, ridging resulting from differential

motion under compression ("shear r 4_dging") is confined to a very

narrow zone and may not be of sufficie` extent to be observable on

a Landsat image. This zone may be quite narrow and consist of i

single shear ridge perhaps 50 m wide.

Obviously this zone is hazardous for surface t-avel because

of the high degree of activity within it and structures would be

endangered by the corostant ice motion.

15. This is a broad zone of moderate ridging located seaward of

the late spring edge of contiguous ice but shoreward of the mid-

winter: ice edge. The statistical variation of the edge of this

zone is relatively small., hence, the boundaries of this zone should

be considered fairly well defined.

Surface travel in this zone should be relatively safe

from December through late March, with increasing risk toward the

seaward side. Structures placed here would be exposed to moderate
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ridging before December and after March. Underwater oil spills

would be contained under the ice from December through March and

subject to transport at other times.

16. This is a zone of moderate ridging inshore of the late spring

edge of ice and located between Pt. Franklin and Icy Cape. This

zone is generally stable from December through late March and could

be used for surface exploration with a reasonable degree of safety

during this period. Structures are subject to ice motion, piling

and plowing before December and after April. Under-ice oil spills

could be expected to be trapped under the ice.

17. This is a continuation of Zones 13 and 1. Though this zone

may be free of ridging, the surface can vary considerably from

place-to-place and from year-to-year. (See description of Zone

13).

18. This zone of relatively stable ice between December and

February has a high probability of spatial variation. It is located

off Icy Cape and seaward of a zone of moderate ridging. While from

time-to-time stable contiguous ice exists here, its suitability for 	
9!

surface travel is very poor. It is subject to being broken off at

almost any time to join the adjacent pack ice.

This area is subject to ice motions at any time during the ice

year with stable ice perhaps two weeks at a time between December

and March.

Oil spills under this region would soon be introduced into

the pack ice.
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19. This is an area of severe ridging located between the early

spring and late spring boundaries of contiguous ice. This zone

Lying off Icy Cape is located over Blossom Shoals with water depths

on the order of six meters. Early in the ice year ice grounds on

these shoals and remains stranded until the edge of contiguous ice

migrates across the shoals with the advance of the ice season.

This particular zone includes the stranded piled ice which is

broken free between March and May-June.

Under normal conditions surface travel on this zone would

be relatively safe between late December and lay. Obviously

structures located here would be subjected to severe ice piling

events during November and December, but after that time structures

would be insulated from piling events.

Oil spilled under this region would be trapped under the ice

between December and May and would very likely be pooled in many

small chambers beneath the piled ice.

The variation in boundary location of this zone is on the

order of half the width of the zone itself. Hence while the zone

is statistically meaningful the precise position of the zone can

vary on the order of its own width.

20. This zone is a region of severe ridging located inshore of

the late spring edge of fast ice. This zone is similar to Zone 19.

In terms of hazards, the hazard to surface travel in this zone is

considerably less than in Zone 19 although during most years the

ridging might make travel difficult.

81



21,22.	 This is a region of moderate ridging with an adjacent zone of

severe ridging located between the mid-winter and early spring

edges of ice. This is an active area during the entire ice year

with perhaps the exception of a few weeks between December and

March. However, the statistical variation of the location of these

zones is sufficiently large so that their precise positions cannot

be reliably determined. Also, depending on ice activity, ridges

created in these two areas may be broken away to drift with the

pack ice.

Generally, these two areas are extremely hazardous for surface

travel. Also, structures located within these zones would be

subjected to nearly constant piling and plowing except for perhaps

one or two periods of several weeks in mid-winter.

Oil spilled under these two regions would soon be transported

into the pack ice.

23. A zone of moderate ridging located between the early spring

and late spring edges of fast ice, this zone is similar to the

adjacent Zone 19 except for ridge density (see description of Zone

19).

24. A zone of mid-winter contiguous ice extending from Icy Care to

Point Lay, this zone lies between the mid-winter and early spring

edges of fast ice. However, along this section of the coast the

variation of the mid-winter edge of ice is large and the width of

this region can vary considerably. For this reason, the existence

of this zone should not be depended upon for surface travel.
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Structures located in this region would generally be free

from ice piling and plowing events. Oil leaked under this area

would soon be transported into the pack ice region.

25. This is a zone of reasonably stable contiguous ice located

between the early and late spring boundaries of contiguous ice.

The statistical variation of the positions of these boundaries is

on the order of the width of the zone and hence, its width and

precise location can vary from year-to-year. The ice .within this

zone is generally relatively smooth and free from major ridges. It

is formed during early winter (November-December) and is broken up

by late spring (April-May).

This area is moderately safe for surface travel in mid-winter

with decreasing safety toward the seaward boundary. Structures in

general would not be subject to major piling and plowing although

this section of coast should not be considered entirely free from

ridging activity. Subsurface oil spills within this zone would

generally remain trapped between December and April--May and,

because of the lack of ridged ice in this area, might spread con-

siderable distances beneath the ice.

26. This zone is composed of generally ridge-free ice located

inshore from the late spring edge of ice and is actually an ex-

tension of Zones 13 and 17 farther to the north. However, it

widens out in this vicinity and has a somewhat different morphology

than Zones 13 and 17.
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This zone consists of two sub-zones: ice within the barrier

islands and ice outside the barrier islands. Within the barrier

islands the ice is essentially lagoon ice. It is generally formed

early (November) in the ice year and often melts earlier than ice

just seaward of the barrier islands. It is ridge-free but often

has working tension and tidal cracks, and in areas less than two

meters deep, it is often frozen to the bottom. Because of these

characteristics, structures are subject to a minimum of piling and

plowing while Ender water oil spills would remain in place under

the ice for great lengths of time, working to the surface through

the tension and tidal cracks. Obviously surface travel in this

portion of Zone 26 is quite safe until the ice melts or overflows

with melt water.

The portion of Zone 26 outside the barrier islands is generally

ridge-free and remains in place until May-June. The statistical

variation of its outer boundary is quite large and hence the exact

width of this zone measured from the barrier islands will vary from

year-to-year. This zone is formed early in the ice year and is

generally free of major ridges. Lead activity does not occur until

late spring (May-June). The area is generally safe for surface

travel with hazard increasing significantly after early spring and

with distance from shore. Structures placed in this zone would be

subjected to relatively small ridging and plowing events. However,

it is very likely that one or more small shear ridges may become

frozen into the zone during its time of formation. 0j:1 spilled

under this zone is likely to remain until May or June.

M
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27. This is a zone of moderate ridging located between the early

and late spring edges of ice. The early and late spring edges of

ice converge along this section of coast off Pt. lay while the mid-

winter edge of ice remains much farther offshore. Also, the shore-

ward statistical variation of the mid-winter edge of ice is quite

broad here, generally coinciding with the combined edge of early

and late spring fast ice. This small zone is reasonably safe for

surface travel until early spring but increasingly hazardous after

that time. Structures would be exposed to a moderate amount of

ridging and plowing. Underwater oil spills would most likely be

trapped under ice here until mid-spring when lead-forming activity

would introduce the oil into the pack ice.

28. This zone of moderate ridging is located inshore from the

combined early and late spring edges of fast ice. (See description

for Zone 27.) This zone is formed during November and December and

usually lasts until mid-spring. Early and late spring data show

that variations in the boundaries of this zone can cause it to be

very narrow with flow leads quite close to shore.

This area should be safe for surface travel from December

through early March but with increasing probability of lead for-
,

mation following that date. Structures placed in this zone are

exposed to ice piling and plowing events during November and

December. Oil spilled under the surface in this zone would normally

remain in place until May when it would be introduced into the pack

ice due to breakup of the ice.
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29. This is a zone of moderate ridging just seaward of the combined

edge of early and late spring contiguous ice. This zone is subject

to lead formation generally after early March but the data show

that lead formation has occurred at earlier dates. For this reason,

surface travel in this area is somewhat dangerous between December

and March and increasingly so after that date. The relative danger

of surface travel is increased by the occurrence of moderate ridging

in the area making rapid travel away from developing hazards diffi-

cult.

Structures placed in this area are subject to damage due to

ice piling and plowing at nearly all times during the ice season.

Oil leaked under this area would be introduced into the pack ice

through lead opening activity.

30. This zone of generally ridge-free ice is located inshore from

the late spring edge of ice and extends from Pt. Lay to Cape

Lisburne. This zone is actually an extension of Zone 26 but is

much broader and has a somewhat different morphology. Occasionally,

ridge-building events can occur within this zone (see Zone 36) but

long shear ridges are probably unusual.

This zone should be relatively safe for surface travel between

December and April-May except that during severe conditions ice

piling can occur within the area. 5t^cuctures placed in this area

would be relatively free from ice piling events and bottom plowing

appears to 5e at a minimum. Under-ice oil spills would normally be

trapped under the ice between December and April.

_ .it
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31, 32. These are zones of moderate and severe ridging resulting

from motion of ice past Cape Lisburne. Both are located seaward of

the mid-winter edge of fast ice and, therefore, not part of the

near shore regime. However, these zones have been included in this

analysis to help explain the morphology of the near shore ice.

33. This zone of moderate ridging is located between the mid-

winter and early spring edges of fast ice. The variation in width

of this zone is on the order of the width of the zone, and therefore,

even between mid-winter and early spring the stability of fast ice

in this area is uncertain. Therefore, this area is only margsnaly

safe for surface travel. Examination of individual cases shows

that the flaw lead is often located within this zone.

Because of water depths in this zone, it is unlikely that

structures attached to the bottom would be constructed. However,

it appears that any structure located within this area would rarely

be free from ice motion for more than two to three weeks. Similarly,

oil leaked under the ice in this zone would soon be incorporated

into the moving pack ice.

34. This two-part zone of ice, relatively free from ridging is

located between the early and late sprang edges of contiguous ice.

The zone is broken into two subzones by Zone 35. Examination of

the statistical variation of both boundaries of this zone indicates

that the zone is reasonably significant statistically. Hence,

between December and March this area should be reasonably safe for
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surface travel with the hazard increasing after that time. Structures

located in this area should be relatively free from the effects of

ice motion from December: through March and only flaw lead activity

after that time. Oil leaked under '_ha ice in this zone would

spread due to the absence of major ridges and be incorporated into

flaw leads after March.

35, 36. These two zones are areas of moderate ridging intruding

into Zones 30 and 34 and are basically the same. The formation of

Zones 35 and 36 decrease the utility of these areas as avenues for

surface travel. The mechanism for the creation of this zone is

somewhat different from the mechanism responsible for other near

shore areas of ridging: while most other ridges in the near shore

area are shear ridges, the ridges in this area are better classified

as pressure ridges which are due to ice moving down the Chukchi

coast a.d being driven into the near shore ice.

37.	 This is an area of severe ridging located in the vicinity of

shoals off Cape Lisburne. This zone is inshore from the average

edge of mid-winter contiguous ice but within the range of boundary

variation of this zone. Hence, this area should be considered to

be the location of early winter ridging with moderate stability

from mid-winter to early spring. After that date the edge of

contiguous ice generally moves shoreward.

This areo could possibly be safe for surface travel i yom mid-

winter to early spring. However, the safety resulting from the

relative stability of this ice is negated somewhat by the presence

of many ridges which makes rapid surface travel very difficult. 	
1
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Structures placed in this area would be subject to a great

deal of ice piling and bottom plowing everts. Oil spilled under

the ice in this area would be incorporated into the piled ice and

later into the pack ice or introduced into the pack ice via flaw

lead activity.

38. This is a zone of moderate ridging located in pack ice and is

included is this analysis for completeness.

39. This is a zone of moderate ridging located offshore from the

mid-winter edge of contiguous ice and within the boundary of a

recurring polynya. The ice within this zone is quite unstable.

Surface travel would be very hazardous at anytime. Structures

wou..u' be constantly subject to moving ice and piling events.

Bottom plowing by ice keels should be frequent. Oil spilled under

the ice in this zone would rapidly be incorporated into the pack

ice.

40. This small zone just off Cape Lisburne is subject to both

ridging and polynya formation. It should be considered extremely

hazardous for surface operations and structures. petroleum spilled

under this zone would soon be incorporated into new ice, subject to

transport with pack ice.

41, 42.	 These are zones of nearly constant production of new ice.

This area along with Zones 39 and 40 is documented more completely

in Appendix A. The ice within this zone is almost constantly

moving seaward, leaving a polynya adjacent to Cape Lisburne over

which new ice continuously forms. The average edge of mid-winter
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ice runs across this area dividing it into two zones as a result of

the very rapid formation of new ice during that period. The shore-

ward variation of the mid-winter ice runs very close to the shore

as do the early and late spring average contiguous ice edges.

This area is particularly unsafe for surface travel at all

times. However, there is the interesting possibility that struc-

tures placed here might be subject to at least a minimum of ice

hazards. Oil spilled here would quickly be incorporated into

newly-forming ice and be transported seaward into the pack ice.

43. This zone of moderately stable ice is located just north of

Point Hope, over relatively shallow water and within a reasonably

stable portion of the late spring edge of contiguous ice. This

area should be safe from ridging events and significant bottom

plowing. Oil spilled under this zone could be expected to spread

a relatively great distance and then remain at that location between

December and May.

44. A zone of intermediately safe ice located between the early

spring and late spring edges of contiguous ice. Because of the

variation of the boundaries, this zone illustrates the transition

between the relatively stable Zone 43 and the unstable Zone 45

described next.

45. This is a small zone located within the average edge of mid-

winter contiguous ice and adjacent to the recurring polynya {41 and

42}. Generally, this zone exists in this vicinity but its precise

4
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location changes frequently. This is an area where newly formed

ice from the adjacent polyuya is compacted from time to time and at

other times is broken ai;ay. It is generally unsafe for surface

travel. Structures placed within this zone would be subject to

minor piling events but probably very little bottom plowing. Oil

leaked under this zone during December through May will very likely

become incorporated into compacted new ice and subsequently enter

the pack ice region.

46. In this zone the edge of contiguous ice remains constant

throughout the ice season. An apron of ice generally extends

seaward from the shore. Pack ice rounding Pt. Hope occasionally

results in flaw lead activity at the west end of this zone.

Statistically the zone varies significantly with the seaward edge

migrating occasionally very close to shore. This zone should be

moderately safe for surface travel as long as quick access to the

shore is maintained. Structures placed in this zone would be

subject to a minimum of ridging activity. An oil leak occuring

under this area between December and May would spread along the

underside of this relatively smooth ice and remain until breakup in

late spring or until a flaw lead developed allowing the oil-con-

taminated ice to drift into the pack ice region.

47. This zone is the location of a recurring polynya formed by

the ice within this zone and Zone 46 breaking away and drifting

southward (into Zone 48). This area is completely unsafe for

surface travel during the ice season. However, a bottom-founded

structure would probably encounter a minimum of destructive ice
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conditions. Oil spilled under this zone would soon be incorporated

into newly formed ice and subsequently into the pack ice.

48. This zone, lying in outer Kotzebue Sound, is an area of ice

compaction and growth. New ice created in Zone 47 is driven into

this area through the ice season. Considerable compaction of the

ice is evident on successive Landsat images. The ice in this area

is growing in thickness due to both compaction and freezing of new

ice.

Surface travel in this area would be extremely hazardous

throughout the ice season. Structures placed here would be subject

to nearly constant ice piling although bottom plowing may not

represent a severe hazard. Oil spilled in this area during the ice

season would become incorporated into the thickening and compacting

ice and would be slowly transported southward toward Zone 54.

49. This zone of ice is similar to Zone 48 except that it is

located between the mid-winter and late spring edges of ice and is

stationary for several weeks at a time during this period. The ice

within this zone could be used for surface operations during the

period December through April providing that provisions for the

rapid evacuation of personnel are maintained. Structures placed

within this zone would be subject to some ridging and piling of ice

at all times. Ocean floor plowing should not represent a major

hazard. Oil spilled under the ice in this zone would become trapped

beneath the ice and be transported with the ice during breakup

eveni.s. The oil could also be subject to lead pumping. The actual
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length of ice trajectories during these events is relatively small

w"th the result that spills of this nature would probably be

retained in the vicinity for the balance of the ice season.

50. This zone of ice is shoreward of the late spring ice edge.

Examination of Landsat imagery of this area reveals linear features

which are very likely shear ridges running close to and parallel

with the shore. Because of the existence of these shear ridges this

zone was separated from Zone 46. These ridges are most likely

formed during November and December and remain with the ice in this

zone until May. During this period surface travel within this zone

is relatively safe. Structures placed here may be subject to some

ridge-building activity in November and December and some bottom

plowing might occur during these events. Oil spilled under the ice

could be expected to spread somewhat as a result of the relatively

smooth uudersurface of the ice in most of this zone. it would then

remain, in place until April-May.

51. This large zone of relatively stable ice is located inshore of

the late spring ice edge including inner Kotzebue Sound. During

the period of formation in November-December, dynamic ice events

may take place in this zone; pressure and shear ridges may form -

particularly in Kotzebue Sound - creating conditions hazardous to

structures. Following that period and until April, this surface

should be fairly safe for surface travel. Oil spilled here during

November-December would most likely be incorporated into the ice

1, ŷy
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somewhere within the zone - depending on the nature of the dynamic

ice events during that period. After that time oil would spread

out on the relatively smooth undersurface of the ice and remain

until breakup around May.

	

52.	 This zone of ice within Kotzebue Sound is located between

the early and Late spring edges of fast ice. Analysis of contiguous

ice edge variations shows that sometime between early and late

spring the ice within this zone is broker. up. From December until

the ice breaks up this area should be safe for surface travel.

Structures

placed within this zone wsuld be subject to ridging activity

during November-December but generally not after that date.

Oil spilled under the ice will remain until springtime breakup

events and would only be slowly transported away after that

time.

	

55.	 This is a zone of moderate ridging located between the mid-

winter and early spring average edge of contiguous ice and the late

spring average edge of contiguous ice. The ridges in this area

could be created at almost any time because of the high statistical

variation of this zone. This area is dangerous for surface travel

at all times. Structures could be subject to ice piling events and

bottom plowing at almost any tame. Oil spilled under the ice would

soon become incorporated into broken ice within a few weeks of a

spill.
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54. This is an area of moderate ridging located outside the average

mid-winter edge of contiguous ice in outer Kotzebue Sound. The

ridges created in this area are largely shear ridges and arise as

a result of motion of ice toward Bering Strait. This behavior is

largely a continuation of the process originated in Zones 47 and

48.

This area is within the extreme variation, boundaries of con-

tiguous ice for mid-winter and early spring and could be considered

for surface travel between December and March or April. However,

this ice is highly prone to breaking up at all times and therefore

surface operations should include contingency plans for rapid

retreat from this zone. Structures placed within this zone would

be subject to ice piling events at any time. Bottom plowing is

also a definite possibility in areas less than 20 meters deep

during November-through April. Oil leaked under this zone would be

trapped in pools between ridge keels and other keels related to the

generally rough surface of this zone. However, there is a high

probability of ice breakage and subsequent motion of ice allowing

lead pumping of oil.

55. This is an area of moderate ridging located beyond the average

edge of mid-winter contiguous ice. Shear type ridges are created

in this zone largely by ice being pushed out Bering Strait and

being compressed against contiguous ice in that process. This area

is occasionally within the contiguous ice zone but has a high pro-

95

^... .



bability of being sheared or broken free. It is generally a very

dangerous area for surface travel. Structures placed within this

zone would be subject to almost constant ridging processes and, in

locations less than 20 meters in depth, bottom plowing would take

place. Oil spilled under the ice in this zone would generally

become trapped. However, since the ice in this zone is frequently

broken free, such trapped oil would soon be introduced into the

pack ice.

56.

	

	 This area of severe ridging is located offshore from the

average edge of mid-winter contiguous ice. This ,gone is similar to

Zone 55 except that the density of ridging and the relative stability

is increased, (see description of Zone 55) but not sufficiently_to

cause this zone to be considered safe for surface operations.

57, 58.	 These are zones of moderate and severe ridging respecti-

vely, located inshore from the average edge of early s rin con-

tiguous ice and offshore from the average edge of mid-winter

contiguous ice. This situation is reverse from the spatial relation-

ship of these two average edges elsewhere along the coast. Further
f3..

the statistical variation of the early spring contiguous ice edge

is less than the variation of the mid-winter ice edge. These data

support the concept of a building-up of stable ice in this area

during the winter and early spring parts of the ice season while

elsewhere along the coast, maximum build-up generally occurs by

mid-winter. Presumably this effect is a result of the nearly

constant motion of ice out of Bering Strait creating many parallel

s-type ridges along this area of the coast.
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This area should be considered for surface travel only in

early spring. However, the surface roughness at that time would be

a impede evacuation attempts from dangerous ice conditions.

Structures placed in these zones would be subject to pressured ice

events during nearly all the ice season. Bottom plowing is also a

distinct possibility at nearly all times. Oil spilled under this

zone has a high probability of entrapment in pressured ice.

59.	 This is an area of severe ridging located inshore from the

average edges of contiguous ace for mid-winter, early spring and

late spring. Hence, this zone is constructed early (Nov.-Dec.) in

the ice year and remains until late sprang or early summer. It is

very likely that this ice is securely grounded on the relatively

shallow (-. 8m) shoals mapped in this area.

Because of its stability, the ice in this zone could be used

for surface operations many months of the year. However, the

surface roughness should create considerable logistical problems.

Structures placed in this zone would usually be subject to ice

piling and bottom plowing events early (Nov.-Dec.) in the ice year.

Oil spilled under this zone would be incorporated into piled ice

between November and December and entrapped under piled ice after

that time. Later, during May, such oil would be released into the

opera water with the break-up of the ice in this zone.
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6o.	 This zone contains a rapid transition of ice conditions within

two very short distances between shore and the average edge of

contiguous ice. It is interesting to note that not only do the

average edges of contiguous ice coincide for each season, but the

variations on the seaward of this line are very small indicating a

nearly constant ice condition for this zone from December through

late May. Further, although linea5: features parallel to the coast

can be identified on many images, it is difficult to establish

whether these features represent ridge systems or boundaries between

ice types.

Based on the available information, and the morphological

behavior pattern of ice moving through Bering Strait, it should be

expected that the ice in this zone is formed early in the ice year

(December) and might remain until May. Because of the nearly

constant motion of ice out Bering Strait, s-type ridges are con-

structed along the seaward boundary of this zone. However, the

variation of the edge of this zone on the landward side of the

average position, is large, indicating that ridges may be constructed

and carried away in an alternating sequence along this portion of

the coast. Further, it is likely that the ice adjacent to the

shore is rough because of this same process being operative during

its formation.

This zone is therefore not entirely safe for surface travel -

the relative danger increasing significantly with distance beyond

well grounded ridges. Similarly the ice conditions imposed on

structures would vary considerably across this zone. Finally, oil
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spilled under the ice in this zone would be subject to pooling as a

result of the rough undersurface and introduction, into the pack ice

during the occasional break-off events.

61. This is a zone of relatively smooth, stable ice formed early

in the ice year and remaining in place until late spring. It

should generally be moderately safe for surface travel from December

through May. Structures placed in this zone should be relatively

free from ice piling events and bottom plowing. Oil spilled under

this zone would be subject to considerable spreading because of the

relatively smooth uadersurface.

62. This is a zone of moderate ridging and variable stability

throughout the ice season. It is generally unsafe for surface

travel over long periods of time although brief excursions could be

safely carried out providing ice conditions were monitored carefully.

Structures in this zone would generally be subject to ice piling

conditions at any time. Oil spilled under this zone would tend to

become trapped under the relatively rough undersurface and be

introduced into the pack ice during the occasional ice breaking

events.

63. This is a broad zone of unstable ice located over relatively

shallow waters running from Cape Espenberg to Wales. This zone has

some unusual characteristics: the variation of the edges of con-

tiguous ice run adjacent to the shore. Hence the area can be

relatively broad at one time and break-up to the shore at other

times. This area should be considered unsafe for surface travel.

Structures placed iithin this zone would probably not be exempt

from ice piling events for very long periods of time. Oil spilled
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under this zone would soon become incorporated into broken and

refreezing pack ice.



V.	 Discussion

A. A Discussion of the Models Developed to Describe the Extent
and Behavior of Near Shore Ice, Its Limitations and Capabilities.

R.	 Limitations

The models developed here for Chukchi and Beaufort Sea

ice morphology are based on statistical analysis of five years' ice

data. The models represent an average of conditions observed during

only those years. An obvious limitation, then, is the lar-k of really

long-term data and the possibility that the ice during the years observed

does not represent long-term average conditons.

In addition, even if by some chance the models do represent the

long term average conditions, there is little hint of what variability

in conditions should be expected over a span of twenty to thirty years.

Hence, it is not certain what range of ice conditions to anticipate

during the active life of an offshore oil field.

For instance, during this period of observation the melt season

weather conditions have been reasonably mild. Near shore ice has broken

up and melted in place. Grounded ridge systems have slowly broken

contact with the sea floor and drifted away. We have not had the

opportunity to access the potential hazard created if a major storm were

to occur during this period when great quantities of highly mobile ice

are present in the near shore areas.

Finally, the model developed here is only semi-dynamic in that only

a few processes involved in near shore ice morphology have been identi-

fied. To develop a dynamic morphology a much more extensive analysis

would be necessary.
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2.	 Capabilities

Despite the limitations indicated above, the models

developed represent the state of knowledge of comprehensive regional ice

morphology in the Chukchi and Beaufort Seas available in the public

domain. Certainly the various zones delineated to describe near shore

ice morphology should be considered an initial stage of any assessment

of hazards related to activities of the offshore development along these

coasts.

The chief capabilities include:

1. an assessment of the relative safety of personnel and

equipment operating on offshore ice in the various zones t:;

identified.

2. a preliminary assessment of the mid-winter to late

spring probability of major ice dis placement occurring _s

in the zones identified...'

3. a preliminary assessment of the probability 	 of a

structure placed in each given zone having to withstand

the bearing load of a major ridge system. s

4. a preliminary assessment of the probability of subsurface

structures being disturbed by bottom plowing by major

ridge systems.

5. a zone-by-zone assessment of the fate of a possible under
s

icepetroleum spill.

A
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B. A Discussion. of How the Results of This Investigation Have
Been or May be Applied to Nearshore and Shoreline Construction.

These results are quasi.-regional in nature and not site-

specific. For that reason they should be used when considering regional

construction requirements. For instance, once a construction technique

has been established for structures placed in a particular set of ice

conditions, the area of applicability of that technique has been established.

This could be of value in terms of overall economic estimates.

For instance, it a particular type of technique for constructing

drilling platforms was found acceptable for the ice conditions found in

one of the zones mapped for the Beaufort Sea, the range of applicability

could be established by the boundaries of the zone. Further, when

comparing the total cost incurred by two or more techniques, each corres-

pending to different ice zones located over the same field, the total

number of wells and their configuration might be in part determined by

the configuration of the ice zones.

C. A Discussion of the Detectabilityof Ice Islands by Daadsat.

At the outset of this analysis it was anticipated that ice

islands in the pack ice during winter and spring would be detectable

because their deep draft would make them susceptible to oceanic currents

and to a certain extent drive them through the pack leaving a wake

behind. Only on one occasion was anything like this observed and it was

not possible to verify the ice island possibility. (Actually, the image

was acquired before the initiation of this project.)
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As stated earlier in this report, on two occasions, small ice

islands were observed apparently grounded in the contiguous ice zone.

Both times an attempt was made to locate the islands on Landsat imagery.

Neither time could they be found. In both cases, the islands had broken

into several fragments.

She now think that the best assessment of the number of ice islands

could be made by using summertime imagery of the polar pack. The analysis

would consist of looking for large pieces of ice with perhaps a small

polynya to one side. Week-by-Week observation should show a slightly

(1i£ferent trajectory for an ice island over ordinary pack ice.
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VI. Recommendations

Landsat data has been shown to be a useful tool for construction of

sea ice morphology. However, its greatest utility would be realized if

the data could be used for the following activities:

1. Navigations and emergency warning for field crews operating on

the ice.

2. Monitoring ice conditions in the event of an oil- spill, in

order to predict the immediate fate of the spill.

3. Monitoring ice conditions which may alter the ice loading force

on offshore structures.

4. Monitoring ice conditions which may influence migratory patterns

or feeding places of sea -related wildlife (whales, seals,

acquatic birds, etc.)

5. Monitoring ice conditons in order to help navigate ship traffic.

At present Landsat is useless for these activities because of the

long time delay between time of data acquistion and its availability to

users. To correct this situation, this project recommends the establish-

ment of a "quick-look" capability at Gilmore Creek, Alaska, where NASA

already has a Landsat data receiving station. For ice purposes, only

band 7 need be recorded but it would be necessary to obtain the imagery

at highest resolution.

VII. Other Applications of Results

The results reported here were derived in order to assess hazards

related to petrochemical extraction activities in the Alaskan near-shore

areas. The data have also been of interest to biologists analyzing the

migratory patterns of whales, the feeding locations of walruses and

seals and flight patterns of migratory arctic birds.

105

;^ s



VIII. Interest by Agencies and Companies

Interim copies of these results have been given to State and Federal

agencies and representatives of various petroleum companies performing

exploratory work in Alaska. However, because of the nature of statistical

work, no final results have been available before compilation of this

final report. We anticipate making these results available to potentially

interested companies and agencies in the near future.

IX. Future Activities

The statistical results reported here serve as a comprehensive

regional background for understanding Beaufort and Chukchi seas' nearshore

ice morphology. In the process of developing these results, several ice

related phenomena and processes have been identified which appear to be

worthy of further investigation. Funding for these activiites will be

sought from the appropriate agency or companies.

X. Publications

Because of the statistical nature of this work, no publications

have been possible until the compilation of the results reported here.
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located southeast of Point Hope.

ON THE FEASIBILITY OF A SHIP LOADING

FACILITY AT CAPE DYER OR CAPE THOMPSON, ALASKA

There are no ports along Alaska's northwest coast. Further, that

coast is the site of rather severe ice conditions. There is a good

possibility that in the near future resource exploitation in the north-

west region will require year-round ship loading facilities.

In the absence of a suitable port, nearshore loading facilities

for commodities such as coal and oil might be built in locations where

deep waters are located sufficiently close to shore for such structures

i
	

to be economically feasible. However, because of the severe ice con-

ditions along this coast, it would seem that even this sort of loading

facility would be out of the question.

Generally speaking, Grind-driven ice builds massive shear ridges

along coastal headlands parallel to ice motion. Fiany of these ridges

are grounded in water 60-feet deep and extend over 20-feet above sea

level. Maintenance of an offshore loading facility,in the presence of

these conditions would be difficult if not impossible. The most likely

locations for offshore loading facilities are locations ;:hare deep ;rater

is found close to shore and severe ice conditions are at a minimum.

As part of an extensive nearshore ice survey two likely locations

for such facilities have been located. Goth of these locations are

found at the extreme western end of the Brooks Range. They are: Cape

Ayer, located between Cape Lisburne and Point Hope, and Cape Thompson,
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Cape Dyer is on a north-south oriented portion of coast open to the

sea to the west and northwest. Cape Lisburne offers protection to the

north while the large spit at Point Hope gives protection from the south

and southwest. Steep cliffs at Cape Dyer apparently extend to a depth

of 14-16 meters offering the possibility that ships could be loaded

directly from boom-like structures extending from shore.

Examination of Chukchi Sea satellite images from 1973 to the present

(1977) indicates that the normal ice motion in the vicinity of Cape Dyer

is west of south following the tangent between Cape Lisburne and Point

Hope. Water depths are too great along this tangent for grounding of

any shear ridges to take place. Close examination of satellite ir,ages

of Cape Dyer on seventy occasions shows that ice does form. in this

indentation but it is often carried out to sea with the ice pace:, driven

by east and northeast winds which push the ice pack out Bering Strait.

Hence, even the shore-bound annual ice does not attain the six-foot

thickness usually attributed to full-season annual ice.

Although shearing motion cannot take place along' Cape Dyer, ice can

be driven into the shore from the Crest and northwest. Fortunately, ;.he

extreme wind speeds from these directions occur less frequently than from

other directions, and the sum of wind frequency from the west and north--

west is only ten percent. Corresponding to this, one occasion was observed

on satellite imagery when large pans of ice were driven into the shore at

Cape Dyer. This episode certainly would have made ship loading operations

difficult during the event. However, direct observations as well as blind

records indicate that this is a rare occurrence.

ORIGINAL PAGE 1b
op PGaP. QUALITY
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Cape Thompson is located to the south, on the opposite side of Point

Hope, on a northwest to southeast tending portion of the coast. It is even

better protected from normal shearing events than Cape Dyer, but is open to

ice motion from the west to southeast. Further, although Cape Thompson also

consists of cliffs extending beneath the ocean, available charts indicate

water depth there of less than 13 meters. While ten percent of the winds

at Cape Dyer could cause adverse ice conditions, at Cape Thompson twenty-two

percent of the winds are in this category. Beyond that, the greatest winds

observed in that area - 70 mph - have been from the southeast and could pos-

sibly cause shearing along the coast at Cape Thompson. During the four ,years

of satellite observation, no such event was witnessed. However, although a

large polynya exists gust to the south of Cape Thompson (created by south-

ward motion of the Chukchi ice) there is always. a small shelf of ice at

least a kilometer wide extending seaward from Cape Thompson. The nature

of this ice is not obvious (first year smooth ice, shear ridges, etc.)

front satellite imagery. It is quite possible that because of this near

shore ice and the shallow water that a ship loading facility at Cape

Thompson would necessarily include a bottom- founded offshore structure.

Thus, of the two locations, it would appear that Cape Dyer is the

better location for a shore line ship loading facility. However, during

wind conditions that create the greatest hazards for approach to Cape

Dyer, the pol ynya at Cape Thompson is enhanced - thus offering ships

awaiting approach to Cape Dyer around Point Hope an ice-free place to

r

wait.
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First year ice
N.S.
First year ice
First year ice
N.S.
N.S.
N.S.
New ice
New ice and Large first year pans
New ice and large first year pans

ORZGlNIA L '
AGE yj

OF POOR QUALrTy-

CAFE DYER

Date	 Scene I. D.	 Comments

1973

6 Mar.	 1226-22160-7
	

Young ice - large pans offshore
7 Mar.	 1227-22212--6
	

Not shown - large pans offshore
7 Mar.	 1227-22214-6
	

Young ice - large pans offshore
8 Mar.	 1228-22270-7
	

Young ice - large pans offshore
8 Mar.	 1228-22273-7
	

Young ice
11 Mar.	 1262--22160-6
	

Open water
12 Mar.	 1263-22212-6
	

Still water
17 May
	

1298-22155-7
	

Even more open
19 May
	

1300-22265--6
	

Open water
19 May
	

1300-22271-6
	

Open water
4 June
	

1316-2253--7
	

Clouds
23 .Tune
	 1353- 22210-6
	

Open with occasional pans
24 June
	

1326- 22262--7
	

Open

1974

1 Mar. 1586-22104-7
2 Mar. 1587-22162-6
3 Mar. 1588-22214-7
3 Mar. 1588-22220-7
4 Mar. 1589-22272-6
4 Mar. 1589-22275-6
5 Mar. 1590-22331-7
19 Mar. 1604-22102-7
20 Mar. 1605-22160-7
23 Mar. 1608-2325-6
6 Apr. 1622-22100--7
7 Apr. 1623-22154-7
8 Apr. 1624-22210-7
9 Apr. 1625-22264-6
27 Apr. 1643-22261-7
13 May 1659-22144-6
14 May 1660-22200-6
17 .Tune 1694-22080-6
18 June 16,95-22134-7
7 July 1714-22182-7

First year ice
First year ice
N.S.
First year ice
First year ice
First year ice
N.S.
First year ice
First year ice
N .S.
Narrow band of
Narrow band of
Narrow band of
Narrow band of
Narrow band of
Narrow band of
Narrow band of
Open water with
Open water
Open water

frozen in place
frozen in place

frozen in place
frozen in place
frozen in place

. .:,e-,
covered with dirt
covered with dirt

ice with water offshore
ice with new ice offshore
ice with near ice offshore
ice with water offshore
ice with broken ice offshore
ice with open water offshore
ice with open water offshore
pack ice offshore

1975

24 Feb. 1946-21585-7
25 Feb. 1947-22040-7
25 Feb. 1947-22043-7
26 Feb. 1948-22094-7
26 Feb. 1948-22101-7
27 Feb. 1949-22152-7
27 Feb. 1949-22155 -7
14 Mar. 1964--21580-7
1 Apr. 1982-21571.7
2 Apr. 1983.22025-7

f;
t
f
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CAPE DYER (Cont'd

Date	 Scene 1. D.	 Commerts

1975 Cont'd

3 Apr. 1984--22080-7 New ice and large first year pans
3 Apr. 1984-22083-7 N.S.
10 Apr. 2078-22035-7 New ice with large pans offshore
12 Apr. 2080-22145-6 Young ice
12 Apr. 2080-22151-6 N.S.
28 Apr. 2096-22034-7 Narrow belt of first year ice with open water
29 Apr. 2097-22090-7 Narrow belt of first year ice with open water
29 Apr. 2097-22093-7 N.S.
30 Apr. 2098-22144-7 Narrow belt of first year ice with open water
16 May 2114-22033-7 Narrow belt of first year ice with open water
17 May 2115-2284-7 Clouds
3 June 2132-22034-7 Open water
5 June 2134-22151--7 N.S.
25 Oct. 2276-22021-6 Open water with pans offshore
27 Oct. 2278-22131-6 Open water with pans offshore
28 Oct. 2279-22185 Open water with pans offshore

1976

10 Feb. 2384-22005-7 Young ice
11 Feb. 2385-22061-7 Young ice and older pans
11 Feb. 2385-22063-7 Young ice and older pans
12 Feb. 2386-22115-7 Dark image
29 Feb. 2403-22054-7 Narrow shelf first year with water offshore
29 Feb. 2403-22060-7 Narrow shelf first year with water offshore
1 Mar. 2404-22112-7 Narrow shelf first year with new ice offshore
1 Mar. 2404-22115-6 Narrow shelf first year with new ice offshore
2 Mar. 2405-22170-7 Narrow shelf first year with water offshore
2 Mar. 2405-22173 Narrow shelf first year with water offshore
17 Mar. 2420--21595--7 first year pans driven into coast
18 Afar. 2421-22053-7 First year pans driven into coast
19 Mar. 2422-•22105-7 Pans driven into coast consolidate and break

off, narrow shelf first year with green water
offshore

19 Mar. 2422-22111-7 N.S.
20 Mar. 2423-22163-6 Narrow shelf first year with green water

offshore
20 Mar. 2423-22165-6 N.S.
21 Mar. 2424-22221--6 N.S.
6 Apr. 2440-22101-7 Wide shelf of ice off coast with open leads
6 Apr. 2440-22104-7 Wide shelf or ice off coast with open leads
7 Apr. 2441-22155-6 Wide shelf of ice off coast with open leads
22 Apr. 2456--21584-6 Narrow shelf of ice off coast with open leads
23 Apr. 2457-22040-6 N.S.
24 Apr. 2458--22101-7 ',arrow shelf of ice off coast with open leads
15 June 2510-21572-6 Open water and occasional pans
23 July 2548-22072-6 Open; water with many pans
7 June 5415-21361-6 Narrow shelf of ice with broken pack ice
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CAFE DYER _(Cont' d)

Date Scene 1. D. Comments

1976 Con.t' d

22 July 2547-2202 No ice
8 Aug. 2564-21555 No ice
8 Aug. 2564-21561 No ice
9 Aug. 2565--22013 No ice
25 Aug. 2581-21500 Too far south
26 Aug. 2582--21552 No ice
13 Sept. 2600-21545 No ice
14 Sept. 2601-22003 No ice
10 Oct. 2637--21592 No ice



CAPE THOMPSON

Date Scene I. D. Comments

1972

1 Aug. 1009-22090 No ice
2 Aug. 1010-22145 No ice
6 Sept. 1045-22091 No ice
7 Sept. 1046-22145 No ice

1973

6 Mar. 1226-22160 Broad band first year ice near shore new ice
beyond

7 Mar. 1227-22214 Broad band first year ice near shore, new
ice beyond

8 Mar. 1228-22273 Broad band first year ice near shore, new
ice beyond

10 Apr. 1261--22104 Clouds y;'
11 Apr. 1262-22160 Broad band first year ice near shore, lead

beyond
17 May 1298--22155 Broad band first year ice near shore, new y

ice beyond
17 May 1298-22161 N.S.
2 June 1314-22041 Broad band first year ice near shore, open

water beyond
2 June 1314-22043 Broad band first year ice near shore, open

water beyond =-
4 June 1316-22153 Broad band first year ice near shore, open

water beyond
22 June 1334-22155 N.S.
23 June 1335-22210 Coast clear, pack ice beyond
9 July 1351-22095 N.S.
13 Aug. 1386-22031 No ice N.S. Z'
14 Aug. 1387-22090 No ice;
14 Aug. 1387-22092 No ice
2 Sept. 1406-22142 No ice
3 Sept. 1407-22200 No ice
22 Sept. 1426-22252 No ice c.:

7 Oct. 1441-22075 No ice
7 Oct. 1441-22081 No ice -̂-
29 Nov. 1494-22011

1974

9 Feb. 1566-21595 Too far south
10 Feb. 1567-22051 Broad band first year ice near shore, new

ice beyond
10 Feb. 1567--22053 Too far south
1 Mar. 1586-22104 Large expanse first ice extending from shore =

1 Mar. 1586-22110 N.S. r
2 Mar. 1587--22162 Large expanse first year extending from shore

broken by lead
18 Mar. 1603-22043 Large expanse first year extending from shore'.

broken by lead.
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24 Feb.
25 Feb.
26 Feb.
14 Mar.
31 Mar.
31 Mar.
1 Apr.
2 Apr.
3 Apr.
9 Apr.
10 Apr.
11 Apr.
12 Apr.
27 Apr.
28 Apr.
29 Apr.
14 May
15 May
16 May
2 June
3 June
5 June

1946-21585
191:7-22043
1948-22101
1964-21580
1981-21512
1981-21515
1982-21571
1983-22025
1984-22083
2077-21580
2078-22035
2079-22093
2080-22151
2095-21580
2096-22034
2097-- 22093
2112-21520
2113-217,74
2114--22033
2131-21580
2132-22034
2134-22151

CAPE THOMPSON (Cont'd)

Date Scene I. D. Comments

1974 Cont'd

19 Mar. 1604--22102 Large expanse first year extending from
shore broken by lead

19 Mar. 1604-22104 Too far south
20 Mar. 1605-22160 Large expanse first year extending from

shore broken by lead
5 Apr. 1621-22041 Narrow shelf near shore, new ice beyond
5 Apr. 1621-22044 Too far south
6 Apr. 1622-22100 Narrow shelf near shore, new ice beyond
7 Apr. 1623-22154 Narrow shelf near shore, new ice beyond
10 May 1656-21580 Narrow shelf near shore, new ice beyond
13 May 1659-22144 Narrow shelf near shore, new ice beyond
28 May 1674-21573 Too far south
29 May 1675-22031 Too far south
30 May 1676-22090 Too far south
31 May 1677-22141 Can't find
17 June 1694-22080
17 June 1694-22082 Too far south
18 June 1695-22134 Broad shelf decaying ice offshore
4 July 1711-22014
4 July 1711-22020 Open water
23 July 1730-22064 No ice
3 Oct. 1802-22040 No ice
4 Oct. 1803-22094 No ice
22 Oct. 1821-22094 No ice

1975

Shelf of first year with new ice beyond
Shelf of first year with new ice beyond
Shelf of first year with new ice beyond
Shelf of first year with young ice beyond
Too far east
Can't find folder
Shelf of first year ice and young ice adjacent
Shelf of first year ice and young ice adjacent
Clouds
Shelf of first year, young ice has broken away
Shelf of first year, young ice has broken away
Shelf of first year, young ice has broken away
Shelf of first year, young ice forming adjacent
No folder
Shelf of first year, young ice forming adjacent
Shelf of first year, young ice forming adjacent
Shelf of first year, young ice forming adjacent
Shelf of first year, young ice forming adjacent
Shelf of first year, young ice forming adjacent
Narrow shelf with floes adjacent
Narrow shelf with floes driven shoreward
Narrow shelf with floes drifting seawari
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CAPE THOMPSON (Cont'd)

Date	 Scene 1. D.	 Comments

1975 Cont' d

14 Aug. 2204-22025 No ice
14 Aug. 2204-22031 Too far south
2 Sept. 2222-22023 No ice
24 Oct. 2275--21563 No ice
25 Oct. 2276-22021
11. Nov. 2293--21561 Ice free

1976

9 Feb. 2383-2.1551 Narrow shelf of ice, water beyond (narrowest
part of shelf does not correspond to shallow
area)

10 Feb. 2354-22005 Narrow shelf of ice, water beyond
11 Feb. 2385-22063 Narrow shelf of ice with new ice beyond
27 Feb. 2401-21544 Narrow shelf of ice with new ice beyond
29 Feb. 2403-22060 Narrow shelf of ice with new ice beyond
1 Mar. 2404-22115 Clouds
16 Mar. 2419 -21541 Narrow shelf of ice with water beyond
17 Mar. 2420-21595 Narrow shelf with water beyond
18 liar. 2421-22053 Marrow shelf with water beyond
19 Mar. 2422--22111 Narrow shelf with new to young ice beyond
2 Apr. 2436-21481 Narrow shelf with bew to young ice beyond
3 Apr. 2437-21533 Narrow shelf with contiguous thick young ice
6 Apr. 2440-22104 N.S.
20 Apr. 2454-21474 N.S.
21 Apr. 2455-21532 Coastal lead opening up
22 Apr. 2456-21584 N.S.
22 Apr. 2456-21591
23 Apr. 2457-22042
24 Apr. 2458-22101 Coastal lead opening again
10 May 2474-21581 Nothing in folder
14 June 2509-21514 Narrow shelf with pack ice adjacent
15 June 2510-21572 Narrow shelf with water adjacent
16 June 2511-22030 Nothing in folder

5415-21361 Narrow shelf with pack ice adjacent
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