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SUMARY
 

During the final annual period of Grant NGR-06-002-102 (I November
 

1976 - 31 October, 1977) work was done in five areas: climate, radiation
 

budget, oceanic precipitation, mesoscale weather and tropical storm
 

measurements:
 

1) A Ph.D. dissertation investigating the role that clouds play
 

in climate determinations was completed.
 

2) A paper on the annual variation of the global heat balance of
 

the earth was submitted for publication.
 

3) Progress was made in an attempt to determine the accuracy of
 

precipitation estimates made from passive microwave measurements from
 

satellites. Also a paper on seasonal oceanic precipitation frequencies
 

was published.
 

4) A paper on obtaining mesoscale temperature and moisture fields
 

over land from VTPR data was published.
 

5) Some initial work was done on obtaining surface winds and pressures
 

in tropical storms from Nimbus 6 Scanning Microwave Spectrometer data.
 

During the annual period the Grant fully supported one Ph.D.
 

candidate and sponsored the publication of two papers, the completion of
 

one Ph.D. dissertation and the initial work on a paper presented in
 

December 1977.
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1.0 INTRODUCTION
 

During the 7 years of sponsorship, more than 35 papers and publica­

tions have been produced under Grant NGR-06-002-102. A complete list
 

appears in Appendix A. During the final year of grant sponsorship,
 

two papers were published, one was accepted for publication, one Ph.D.
 

dissertation was completed, and the initial work for a paper presented
 

in December 1977 was done. One Ph.D. student (S. Kidder) was fully
 

supported by the Grant and several research staff were partially
 

supported. A brief discussion of scientific results is given below.
 

2.0 DISCUSSION OF SCIENTIFIC RESULTS
 

2.1 Cloud Albedo for Global Climate Studies
 

J. Ellis (1978) has used radiation budget measurements from Nimbus-3
 

and from a 29 month composite from six satellites (Vonder Haar and Ellis,
 

1974) to investigate the effects of clouds on the radiation budget of the
 

earth. He found that clouds affect the absorbed shortwave flux more than
 

the emitted longwave flux and that this effect is larger over the ocean
 

than over the land. He showed that other things being equal, an increase
 

in global cloud amount would cause a decrease in the global mean surface
 

temperature, and that clouds tend to moderate climate variation by
 

reducing the amplitude of the inter-annual variation in the planetary
 

net radiation budget. Contrary to the results of Cess (1976), his study
 

shows the definite and significant importance of clouds on the earth's
 

radiation budget. These and other findings comprise Ellis' Ph.D.
 

dissertation which appears in Appendix B.
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2.2 	 Variation of the Annual Cycle of the Radiation Budget Components
 

In a companion study to Oort and Vonder Haar (1976), Ellis,
 

Vonder Haar, Oort and Levitus (1977) have used satellite radiation budget
 

data, atmospheric energy transport data, and ocean temperature data to
 

obtain the annual variation in the global heat balance of the earth.
 

Their paper has been submitted to the Journal of Geophysical Research.
 

(See Appendix B.)
 

2.3 	 Oceanic Precipitation
 

Progress was made on our project to investigate the accuracy which
 

one can expect from precipitation measurements from passive satellite
 

microwave data. A copy of a Mie scattering program, with which to
 

calculate the brightness temperatures for various rainfall rates and
 

atmospheric/surface conditions, was obtained from Robert Curran of
 

Goddard Space Flight Center. Data for model input and for checking the
 

output was collected, and progress was made on converting the model from
 

the infrared to the microwave portion of the spectrum. But much re­

mains to be done.
 

A paper by Kidder and Vonder Haar (1977)-entitled "Seasonal Oceanic
 

Precipitation Frequencies from Nimbus 5 Microwave Data" was published in
 

the Journal of Geophysical Research. A reprint appears in Appendix B.
 

2.4 	Mesoscale Temperature and Moisture Fields from VTPR Data
 

A paper by Hillger and Vonder Haar (1977) entitled "Deriving
 

Mesoscale Temperature and Moisture Fields from Satellite Radiance Measure­

ments Over the United States" was published in the Journal of Applied
 

Meteorology. It covers work performed and reported on earlier under this
 

grant. (See Appendix B.)
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2.5 	 Tropical Storm Surface Winds and Pressures from Nimbus 6 Scanning
 
Microwave Spectrometer (SCAMS) Data
 

Some initial work was done on a project to obtain information on the
 

surface winds and pressures in tropical storms from the 55.45 GHz channel
 

of SCAMS. The basic idea is that the weighting function for this channel
 

peaks in the region of the maximum warm anomaly above the storm. The
 

55.45 GHz brightness temperature, therefore, provides information on the
 

mean warming in the column and thus the surface pressure. A correlation
 

coefficient of -.86 was found between brightness temperature anomalies
 

° 
(difference from mean conditions 4-10 latitude from the storm center) and
 

central pressure for 13 storms during 1975. Also an attempt was made to
 

calculate outer surface winds from pressure gradients. A paper on the
 

subject (Kidder, et al., 1977) was given in December, 1977. (See Appendix
 

B.)
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ABSTRACT
 

The ability to provide mesoscale temperature and moisture fields from operational satellite infrared sound­
ing radiances over the United States is explored High-resoluton sounding information for mesoscile analysis 
and forecasting is shown to be obtainable in mostly clear areas An iterative retrieval algorithm applied to 
NOAA-VTPR radiances uses a mean radiosonde sounding as a best initial guess profile Temperature sound­
ings are then retrieved at a horizontal resolution of -70 km,as is an indication of the precapitable water 
content of the vertical sounding columns Derived temperature values may be biased in general by the initial 
guess sounding, or in certain areas by the cloud correction technique, but the resulting relative temperature
changes across the field when not contaminated by clouds will be useful for mesoscale forecasting and models 
The derived moisture, however, since affected only by high clouds, proves to be reliable to within 0 5 cm 
of precipitable water and contains valuable horizontal information Present day applications from polar 
orbiting satellites as well as possibilities from upcoming temperature and moisture sounders on geostationary 
satellites are noted 

1. Introduction 

High-horizontal-resolution temperature and moisture 
sounding information has become increasingly neces-
sary for mesoscale research and app catons Both 
mesoscale forecasting and computer models require a 
large mass of nput data on temperature and moisture 
Only recently has th s data become avaiable from 
high resolution sounders such as the Vertical Ter-
perature Profile Radiometer (VTPR)onNOAA opera-
tional satellites However, the calibrated radiances are 
not used operationally to produce temperature profiles 
over the land masses, but only over data-sparse regions 
of the oceans where conventional soundings are not 
available. The method outlined here shows how the 

radtances canbed aped owesoscaesameamleVTR radiances be toVTPR can appled mesoscale 
weather situations such as those over the Great PlainsofatherUiteduatesuas hoeny o hansunding 
of the Unted States Potentlly, a sounding can be

available at every VTPR scan spot at - 70 km resolu-
tion, if clouds do not prohibit obtaining a sounding 
to the earth's surface. This is a great increase in 
resolution from normal operational radiosonde sound- 
ings which are spaced approximately every 400 km in 
the western United States In the operational retrieval 
of soundings over the oceans many adjacent scan 
spots of the VTPR are used in order to compensate 
for cloud-contaminated fields of view and to provide 
the best sounding without need for a "best" first 
guess profile However, a single-field-of-view tempera-
ture retrieval algoritbrn, based on a best initial guess 

profile, is used here to obtain soundings at much 
higher resolution 

An important aspect is that a concurrent radiosonde 
sounding is used for the first guess. This is possible,
in general, only over land, not over the oceans. Fritz 
(1977) has independently approached this method,
which he terms the "adjustment method." For an 
excellent synopsis of the impact of satellite tempera­
ture soundings over oceans on large-scale weather
forecasts, the reader is referred to Phillips (1976). 
A similar study of the impact of satellite data on 
mesoscale forecasts over land is in order and follows 
from the present study. At present, satellite soundings 

are available at 6-12 ht intervals from the sun-syn­
chronous NOAA and DMSP (Air Force) satellitesHowever, in 1980, temperature and moisture sound-
Hoeri190tmpauean misreond 
ings of much higher frequency (i e, 30 min to 3 h)
will be available over the United States from thegeostationary satellites (Suomi et al, 1971). 

Recent work has shown that mesoscale temperatures 
can be derived even i partly cloudy conditions 
(Hillger and Vonder Haar, 1976a,b) A eloud-corre ­
tion tech que based on a single field of view isable 

to provide suitable above-cloud soundings in some 
completely and partly cloudy situations The technique 
proves to be too simple in complex cloud situations, 
and temperatures derived in cloud areas may remain 
cloud-contaminated. Cloud problem areas are pointed 
oLtt and should be used vith caution Even if clouds 
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do significantly interfere with remote soundings, the 
use of high-resolution radiances does increase the pos-
sibility of sensing between clouds to obtain clear 
atmospheric temperatures. However, besides obtaining 
temperatures, mesoscale precipitable water (PW) fields 
are also realizable by eliminating temperature effects 
on the VTPR H20 sounding channel. An application 
of these techniques is shown to provide mesoscale 
temperature and total precipitable water fields for 
24 April 1975, a case study day for NASA's Atmo-
spheric Variability Experiment (AVE) No. IV. (Hill 
and Turner, 1977). 

2. 	 Retrieval algorithm for NOAA VTPR applied to 
the mesoscale 

The retrieval algorithm is based on a modified 
iterative type solution developed by Duncan (1974). 
To obtain the temperature profile of the atmosphere, 
one must find a solution T(x) which satisfies the 
radiative transfer equation 

N(v,) =Bv,,T(xo)Jr(v,,xo) 

foOr (t'.,x) 

+1 B[v.,T(x)]- dx (1) 
ax 

for each of the observed outgoing radiances N(v,) 
sensed by the satellite. The observed radiances are 
a product of the blackbody radiances B and the 
atmospheric transmittances r(v,,x) integrated from the 
surface, or cloud top, xo to the satellite along some 
vertical coordinate x. The blackbody radiances B are 
related directly to the temperature profile T(x) and 
channel wavenumber P. by the Planck equation 

Bv1,T(x)]= [ 	 (2) 
exp[C2v,/T(x-l-

where C, and C2 are known constants. Chahine (1968, 
1970) applied the relaxation equation 

B1+i)[v,,T(x)]= --Bn'Ei,,T(x)] (3) 
N(-)(v,) 

to the radiative transfer equation to obtain an iterative 
solution for temperatures T(x) at certain levels x, 
where the number of levels was equal to the number N 
of observed radiances The observed radiances are 
thus used to fit the blackbody radiances B for each 
channel s. in successive iterations n,until the residuals 
between observed and calculated radiances 

(4) 

librium. The dependence of the transmittances on 
changes in temperature is small compared to that of 
the Planck function so that the transmittances are 
calculated once before the first iteration to account 
for larger differences in initial guess temperature 
profiles 

Smith (1970) applied a relaxation formula based on 
radiance differences 

B "+11[v"T(x)]=[9V)-N(")(P0]
 
+B(")[v.,T(x)] (5) 

rather than radiance ratios However instead of ob­

taining a solution at only specified levels x, inde­
pendent estimates of the temperature profile T(x) can 
be obtained for each channel v. through the Planck 

blackbody equation The weights 
W(VX)=BTdV ,) for XFXO
 

W(v,,xo)=r(.,xo) for x=xo
 

or derivatives of the transmittance are then used to
 

compute a weighted average temperature T(x) at each
 
level x, i e, 

6L T(n+l)(v,,x)W(v.,x) 

T(n+i)(x)= (6) 
i (isz) 

In this case the six VTPR CO2 channels are used to 
derive the entire temperature profile T(x). 

Smith et aL (1972) also used as his vertical co­
ordinate x=fl' divided into 100 equal levels in x 

from 0.01 mb to 1000 mb. This allows a temperature 
profile to be obtained which is not restricted to six 
atmospheric levels where the weighting functions are 
maximum. This method does not increase the informa­
tion content of the radiances, but effectively allows 
a temperature determination at any desired level. 

Duncan applied Chahine's relaxation formula (3) 
to Smith's independent temperature determinations in 
his retrieval algorithm This is basically the same 
algorithm used in this study with modifications for 
input of any temperature profile as an initial guess 
sounding with an appropriate stratospheric profile 
above where the radiosonde sounding ends. 

The VTPR instrument contains a water vapor and 
a windo channel besides the six CO2 channels as 
shown in Table 1 [for information on calculations of 
the transmittances see Weinreb and Neuendorffer 
(1973) and McMilln and Fleming (1970) for the H20 

Dj)=.R(v,)-N~(, ) (4) and C0 2 transmittances, respectively]. The CO2 trans­

for each channel reach an acceptable limiting value, mittances are temperature-corrected by the initial 
usually the instrumental noise level, guess profile using a second-degree polynomial repre-

This radiative transfer equation assumes a non- sentation according to the difference between the 
scattering atmosphere in local thermodynamic equi- initial guess profile and a chosen standard atmosphere 
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TABLE 1 NOAA VTPR channels 0I 

Channel 
number 

Wavelength' 
(in) 

Wavenumber 
(cr ­ ) 

Approximate 
peak level of 

weighting 
function 

(mb) 

. 

C02 channels 15 ,UmCO2 absorption band 

1 
(Q branch) 

2 
3 
4 
5 
6 

1496 

1477 
1438 
14 12 
13 79 
13 38 

6685 

6775 
6950 
7080 
7250 
747 0 

30 

50 
120 
400 
600 

surface 

10 
V) 
a 

o 00 

1000 

H1,0 channel 

7 

rotational water vapor absorption band 

18 69 5350 600 

0 I 2 

CO 2 

3 4 5 6 7 8 

TRANSMITTANCE 
9 10 

Window channel atmospheric window region 

8 11 97 833 0 surface 

FiG. I VTPR CO transmittances for U S Standard Atmosphere 
(Channels 1-6) 

are most near the actual atmospheric temperature 
profile. Typical transmittances and weighting func- structure at the time of observation by the satellite 
tions for the six CO, channels are shown in Figs. 1 Even on this AVE experiment day there is a dis­
and 2 for a U.S. standard atmosphere The H20 crepancy between the radiosonde launch times which 
transmittances, however, are much more dependent are used to compute initial guess profiles and the 
on the initial guess profile than the CO I transmittances satelbte overpass time of at least 1 or 2 h. During 
and are not shown here Wark e al (1974) have done this time, since it is early morning, there usually is 
some work with atmospheric water vapor which a large change in surface conditions as the morning 
utilized the water vapor, window and lowest CO, surface inversion is broken or lifted Also, the moisture 
channel Other information on the VTPR instrument changes rapidly during this time as vertical mixing 
and the data archive format from which the data takes place Horizontal distances across the desired 
was obtained are explained in McMillin et al. (1973) field may also reveal different types of air masses 

The retrieval of temperatures is a fairly straight- with differing lapse rates and moisture contents 
forward process using the iterative method with up Because of physical limitations, temperature retrieval 
to 25 iterations for each profile to obtain a convergence methods lack the vertical resolution to change small 

2 -noise level of less than 0.25 m"7 (m sr cmiti) for vertical features below the resolution of the weighting 
each of the six VTPR C02 channels This convergence functions In spite of this an attempt is not made to 
value is considered to be a limitation due to instru- find the best initial guess for each air mass, but to 
mental noise, and the reason for the cutoff at 25 
iterations is due to a decreasing improvement in the cI 
radiance residuals with successive iterations at the 
expense of computer time. 
3. Initial guess profile 

The retrieval program was modified to provide E 
mesoscale temperatures from calibrated radiances from 
NOAA VTPR archive data tapes and a suitable initial LU 

guess profile which has close proximity in space and Z 10 
time to the desired soundings By using radiosonde Z)L 
soundings to create an initial guess we hoped to a 2 
obtain reasonable retrieved profiles, because an itera- 10o 3 
tive program, such as the one used, provides best 4 
resultant temperatures with a "best initial guess 0 °0 1 02 03 04 05
profile." A best initial guess profile should also aid 
to the cloud correction used, which depends on a good DERIVATIVE OF CO, 
initial guess profile, as will be explained later. TRANSMITTANCE (-fir/d(Ve) 

The idea of a best initial guess profile is one that 
will allow the retrieval of temperature profiles which Fic 2 As in Frig 1 except for VTPR CO,weighting functions 
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Fc 3 VTPR scan coverage and resolution Left half of 
several scan lines are shown (spots 12-23) for sateilite pass 
over the Great Plains on 24 April 1975 at 1615 GMT 

provide one initial guess profile which should be ap-
plicable across the whole horizontal field desired This 
may not be the best approach in many weather 
situations where air masses are widely different. How-
ever, by averaging a number of radiosonde soundings, 
features such as temperature inversions particular to 
individual radiosonde profiles should be smoothed out 
in the initial guess and features present across the 
whole field should be retained Then, the same initial 
guess could be used to obtain the real or observed 
profile features through the iterations on the observed 

radiances without adding features particular to one 
radiosonde used as initial guess Actually, Chahine 
(1968) proposed using an isothermal initial guess 
profile However, in that case the transmittances 
would not be correctly initialized by the initial guess 
profile in terms of temperature lapse rates and total 

moisture content A mean initial guess profile should 
then provide a best initial guess for the wide range 
of conditions on a certain day Work is continuing on 
using two or more widely different initial guess profiles 
to try to optimize the desired effects of each profile 

The initial guess profiles used for 24 April 1975 
AVE radiosonde launches were derived from special 

which provided soundings approximately every 3 h 
during the day VTPR radiances were available at 
approximately 1615 GMT over the Great Plains from 
the morning or descending orbit of the NOAA 4 satel-
lite INe used a space-averaged sounding derived from 

the radiosonde profiles as an initial guess profile for 
the area of the satellite pass shown in Fig 3. 

To obtain the space-averaged sounding required 
taking a set of radiosondes and weighting each one 
equally in an averaging program. All AVE radiosondes 
were given in 25 mb increments, so they were easily 
averaged. The main impact of this averaging was to 
smooth out small temperature inversions particular 
to specific areas and to make a mean mixing ratio 
p-ofile which should be more moist than the driest 
sounding and drier than the most moist soundings 
This average sounding is a rather smooth vertical 
profile and will not reproduce small temperature in­
versions when used as an initial guess in the retrieval 
algorithm Also, since the mean moisture profile will 
be too dry in the moist air mass it will cause tem­
peratures to be retrieved that are too cool in very 
low levels Moisture makes the observed radiances 
low, therefore causing low retrieved temperatures near 
the H20 weighting functions peak, usually at or below 
700 mb On the other hand, the mean profile will be 
too moist in the dry region causing higher tempera­
tures than with a correct moisture profile These 
temperature differences are being studied as another 
approach toward moisture determination using the 
CO., channels alone 

The initial guess profile that was used was obtained 
by averaging ten 1800 GMT radiosonde profiles from 
the AVE radiosonde network shown in Fig 4 Likewise 
a 1500 GMT mean profile was also computed from 
all 10 radiosondes, but the 1800 GMT profile was 
chosen as an initial guess because of higher surface 

Fri 4 Location of radiosonde launch sites for AVE IV experiment 
on 24 April 1975 



719JULV1977 DONALD W HILLGER AND THOMAS H VONDER HAAR 

in- TABLE: 2 Results of using different mean profilestemperatures and lack of a surface temperature 
as initial guessversion. The difference between the two mean profiles 

was less than 1 00C except below 850 mb where the Case 
temperature was 2 50C larger at the surface in the A- B** 
1800 mean profile than the 1500 mean The main 
reason for choosing this profile was to aid the cloud RMS difference between mean 
correction technique explained below profiles for 38 levels 

Another mean profile was also calculated at 1500 (25 to 950 mb) 2 8C 0 80c 
GMT. Besides the one containing all ten stations, RMSdifferencebetween500mb 

using only the six southern stations in Fig 4 temperatures derived usinga mean 
each initial guess profile for 

was also used as an initial guess in a small sample 27 sample profiles I 4°C 07°C 
The 2nital pes ( 6C 0 8C 

of 27 soundings scattered from north to south 
results of comparisons between temperature and mois- Intial guessdifferenceat 500rob (26C) (08-C) 

ture values using each mean profile as an initial guess Correlation coefficient for 
500 mb temperatures fromcase A with 10 and 6 pr-are shown in Table 2 For ro- two samples 0.95 0 99 

files, respectively, in the mean, the main difference in Total precipitable water (PW) (1) 1 88 cm 1 88 cm 
the initial guess profiles was generally warmer tern- meach intial guess (2) 1 96 cm 1 87 cm 

peratures by 2-3oC in the southern mean profile below Correlatin coeficint for PW 
samples 099 099200 mb (tropopause) and cooler temperatures above values from two 

This is caused by a higher tropopause
the tropopause 
in the southern mean In spite of this difference, the * Case A Comparison using mean profiles at 1500 GMT, one 
derived profiles give 500 "rob temperatures which are containing all ten radiosondes (1) and the ether only the six 

only 1.40 C warmer using the southern initial guess, southern radiosondes (2)in the mean 

the initial guess difference was 2 60 t ** Case B Comparison using mean profiles at 1500 GMT (1)
whereas C at and 1800 GMT (2), each containing all ten radiosondes in the 
500 mb The retrieved temperature profiles are af- mean
 
fected by the initial guess, but a correlation of 0 95
 
between two ampls woof 50 mb temperatures for clouds, it does eliminate problems with
samples o 500 somebetwen mbtempratresforlevel 

e ­27 profiles shows a high degree of reproducibility of cloud i do i ate problem h 

the field structure in spite of two different initial cloudy fields of view, thereby producng more hor­
zontally homogeneous temperatures compared to 

guesses, even in cloudy cases included in the sample. 

The difference in initial guess total precipitable nearby non-cloudy columns at and slightly above the 
cloud level than with no correction 

water for the two profiles was negligible acalculated 
the two data samples results Basically the idea relies on a best initial guess

relation of 0 99 between 

in spite of the difference in temperature profiles for profile and integrated radiances derived from it through
 

the radiative transfer equation (1) These integrated
the two initial guesses 

to observed radiances
Case B is a similar comparison between the two radiances are then compared 

using all for three VTPR C02 channels whose weighting func­
previously mentioned mean profiles created 
10 profiles at 1500 and 1800 GMT, respectively. The tions peak lowest in the atmosphere (channels 4, 5 

and 6). If the rms residual between the observed and
difference in the initial guess profiles was smaller here 

then the observed radi­and the correlation was higher for the two samples calculated radiances is large, 
ances are probably cloud-contaminated and have low

of 500 mb temperatures These comparisons show that 
values. The hypothesized cloud level is then raisedthe obtained horizontal field structure is not highly 

tested here Other in increments and the radiances are again calculateddependent oil the initial guesses 
initial guesses with different lapse rates and different and compared until the rms radiance residual reaches 

a minimum, meaning that the calculated radiances are
moisture profiles should exhibit larger differences in the 

now smaller than the observed radiances, or that an
derived profiles 

effective cloud-top level has been attained. Using the 
of the4.Cloud correction technique 1800 mean profile as an initial guess instead 

1500 mean aided the cloud correction technique The 
The cloud correction is a modification of a technique higher lapse rate near the surface at 1800 GMT made 

used by Shaw el al. (1970) The technique is not the determination of the effective cloud level easier 
intended to be sophisticated, but to correct for cloudy If a temperature inversion were present the rms 
situations which are most easily identifiable, single radiance residual would reach a temporary minimum 
cloud layers The cloud layer is assumed to be com- value at that level, falsely underestimating the cloud­
pletely overcast, and if not overcast, a lower than caused minimum, which may be at a higher level. 
actual cloud level will result Although this cloud The use of a best initial guess profile will also aid 
correction technique does not work well in many this method by producing calculated radiances nearly 
situations with small cloud amounts or high or multi- like those of the desired profile in a clear atmosphere. 
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A similar technique was used by Hodges (1976) in a throughout the iteration process for all derived profiles. 
cloud model in an attempt to also obtain cloud amount The H20 channel radiance is used solely for the de­
ififormation. The technique used here will be valid termination of precipitable water amounts. A least­
only for overcast situations unless a fractional cloud squares linear regression between this H 20 radiance 
cover is assumed. In this case, since 100% cloud residual and the precipitable water values at the 
cover is assumed, the cloud level will be at a minimum radiosonde sites gives a high correlation, as will be 
or lower height in order to make the rms radiance shown. 
residual a minimum. Temperature soundings are then Looking back at Table 2, we see in case A that 
obtained above this effective cloud level through the the derived 500 mb temperatures using each initial 
iterative process previously outlined guess profile had an rms difference of 1 40 C Values 

for other lower levels tended to be larger where the 
5. 	 Integrated moisture values initial guess profiles were most different. However, 

the derived precipitable water values were still highly
To obtain precipitable water values a slightly more correlated at 0 99. At least for the mean initial guess

involved method was required The idea was to corn- profiles used here, there appears to be little effect of 
pare observed HsO channel (channel 7) radiances with the initial guess on the structure of the obtained 
radiances calculated using the radiative transfer equa- total precipitable water values Larger rms differences 
tion on the derived temperature profiles with a known in initial guess profiles should again display cor­
initial guess precipitable water amount. The com- respondingly larger rms differences in the resultant 
parison was done after the iterative process was used derived temperature profiles, but only initial guess 
to obtain the temperature profiles in order to try to profiles with different vertical temperature structure 
compensate for horizontal temperature changes in should display a lower correlation in derived total 
each scan spot across the derived field moisture values. Again, work is expanding into the 

The HO channel radiance is strongly dependent testing of different initial guess profiles to optimize 
on both total atmospheric moisture and temperature, the resultant horizontal structure of the moisture 
but by reducing or eliminating the temperature effect fields A better feeling for errors in the moisture con­
on the H20 radiance, the result should be correlated tent can be seen by looking at the linear least-squares 
with conventional precipitable water values obtained line fit shown with the precipitable water results 
at the standard radiosonde sites The H120 radiance 
residual, as it is called here, is a difference between 
the observed H20 channel radiance and the calculated 6. 24 April 1975 results 
H20 channel radiance using the iterated or derived The AVE experiment day, 24 April 1975, proved 
temperature profile to be quite interesting and also provide radiosonde 

at time periods near the satellite overpassH20 Residual=Nb(T,PW0 ) -N l0 (T.,PWO) 	 soundings 
at 1615 GMT. The surface weather observations for 

[H20 channel] 1600 are plotted using the standard station model in 

where: Fig. 5 for the most interesting area centered in Okla­
homa The surface dry tongue extending through the 

Ta actual temperature profile panhandle of Texas into Oklahoma presents a strong 
PW. actual precipitable water amount moisture gradient along the dry line to its south. 
T. iterated temperature profile 	 The most important features in this figure are the 
PW0 initial guess precipitable water amount (--2 cm observed cloud cover shown in the stippled regions 

for 24 April 1975 18 GMT mean initial and the isopleths of surface dew point temperature. 
guess sounding) These isodrosotherms will later be shown to be re-

The initial guess precipitable water amount is a produced quite well by the integrated moisture values 
constant value which is not changed in the iterative obtained from the VTPR H20 channel 

process Now, if the iterated temperature profile ap- Fig 6 shows the Synchronous Meteorological Satel­

proximates the actual profile, 1e., T,. T., then the hte (SMS) visible image for this case study day at 
Texas and most of Oklahomadifference between the calculated and observed radi-	 1600 GMT. Northern 

are clear. Cloud cover is extensive in Kansas, and 
ances will be a function only of the difference between 
actual and initial guess precipitable water amounts: partly cloudy conditions in southern Texas will be 

shown below to affect the derived temperatures there 
1120 Residual = P --PV 

z:PW. 7. Derived 500 mb temperatures on the mesoscale 

This radiance residual is, however, just proportional Temperatures obtained through iterations on the 
to the actual precipitable water amount PIV since mean initial guess profile were plotted according to 
the initial guess moisture content P11o was constant their calculated horizontal positions for certain pressure 
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Fio 5 Surface observations plotted according to standard station model Isopleths 
of dewv point temperature are analyzed and stippled regions indicat clouds 

levels and analyzed. An earth location algorithm ini-
volving spherical geometry was used to calculate 
individual scan spot positions from satellite orbit 
parameters. The 500 mab temperatures are charac-
teristic of the mesoscale temperature fields which 
satellite sounders are capable of producing. Higher 
tropospheric levels contain less temperature variation, 
and lower levels are plagued both by clouds and the 
unchanging initial guess moisture profile used Since 
temperature profiles were derived only above the cat-
culated cloud level, the 700 mb temperatures, for 
example, were unobtainable in many cloudy, columns. 
The 700 mab temperatures were also too high in the 
dry tongue area due to the effect of the dry atmo­
sphere on the VTPR CO2 channels with lowest weight­
ing function peaks The dryness, as explained earlier, 
causes observed radiances to be high and therefore 
causes temperatures derived from these observed ra­
diances to be high when the moisture content is kept 
constant in the iteration process

Fig 7 shows the derived 500 m) temperatures at 

1-615 GMT The contours Mere analyzed from about 
200 temperature soundings obtained at almost every 
scan spot of the VTPR instrument over this region.
The initial guess 50(1 mb temperature was about 
-15-C, corresponding to a mean temperature on the 

Kansas-Oklahoma border at this level The indh­
vidually derived temperature xalues at 5010 mb are 
shown to indicate data coverage and resolution and to 
give a feel for the random noise in the temperatures 

The 500 mb temperature analyses obtained from 
the radiosonde soundings alone are shown an Figs. 8 
and 9 The ifirst figure contains the 500 nmb tempera­
tures from AVE radiosonide launches at a time period 
before the satellite pass at 1500 GMT and the second 
contains the radiosonde launches for the period 3 h 
later (1800 GMT) after the satellite pass Both figures 
are fairly consistent with only a slight warming in 
the 1800 GMT 500 mb temperatures and a slight shift 
of the cold trough axis to the east 

When compared to the radiosonde analyses, the 

Fic 6 SMS visible image for 24 Aprl 1975 at 1600 GMT 

ORIGINAL PAGE Is 
OP POOR QUALITY 
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Fis 7 Satellite-derived 500 mb temperature field obtained 
using an iterative retrieval algorithm with a mean radiosonde 
sounding as initial guess profile Numbers at scan spot positions 
indiate data coverage and resolution 

satellite-derived temperatures in Fig 7 appear in 
general to be biased too low by about 1-2 0 C. This is 
probably due to the vertical structure or magnitude 
of the mean initial guess temperature profile used, or 
to the transmittances which are corrected for tem-
perature and moisture by the initial guess profile The 
initial guess temperature profile has a strong corn-
pounding influence since it is used both as an initial 

guess and to calibrate the transmittances (Associating 
the bias to the initial guess profiles also assumes that 
the observed radiances are calibrated correctly ) Using 
the mean profile created from the six southern sta-
tions at 1500 or 1800 GMT instead of for all ten sta-
tions should have raised the derived temperatures at 
500 mb and reduced the bias in the analyzed field 
fHowever, the absolute values are not as important 
as the relative temperature changes, especially the 

horizontal temperature structure at the mesoscale 

Absolute temperature values are not needed to de-

termine significant horizontal changes across the tern­
perature field The cold trough axis does appear in 
central 'hLlahoma about where it is also shown in 
the radioonde analyses Any difference in the actual 
axis location between the two data sets is probably due 

Lo the difiercnce in horizontal resolution capabilities of 
the tWo data sets Since the satellite-derived tempera­
tures are more densely paced by a factor of about 36, 

trough axis is probably more correctly placed by 
this much denser satellite data network 

main problem areas caused by clouds exist 
(in this particular 500 mb analysis The low tempera­

tureby regions of -14'C in southern Texas are causedcloud 
by cloud contamination which was not sufficiently 
dealt with by the simple cloud corrections technique 
These scan spots contain small cloud amounts which 
are handled least effectively by the cloud correction 
technique when complete cloud cover is assumed The 

effective cloud level was placed at too low a level, 
derived temperature to be low by 3-4°C 

above the assumed cloud level However, by knowing 
that these cases are biased too low by clouds they 
can hopefully be eliminated Also in Kansas where 
clouds do become thicker, the ability to obtain sound­
ings does decrease The horizontal resolution capability 

is reduced by clouds extending up to and above 500 mb 
Here again, where the 500 mb temperatures are ob­
tained in cases with small cloud amounts, they are 

too low because of the assumed 100% cloud 
amount in only slightly cloudy columns The position 
of the effective cloud level is critical to the cloud 
correction technique used here, and the effect of clouds 
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actual cloud level tend toward the cloud top tem­
perature when the observed radianc s originate from 
a completely overcast column 

-iua ' 56, The idea behind using this cloud correction tech­
5 	 4nique was to try to obtain more horizontal tempera­

-20_ ture resolution in cases where the vertical column was 

-. 5 not completely clear Over half of the derived tempera­
-/W -	 561-, tures were obtained from completely clear columns, but 

-19 a certain amount of horizontal resolution would have 
-19. i ie. 3 been lost by throwing out all cloudy columns. Rather, 

-03-	 / 
 -the cloud correction was applied and its effects on 
-17	_ __ -- , / _derived temperatures are pointed out to show that 
- 155 -1 1 577it is 	least effective in cases with small but detectable

cloud amounts and in high or multi-level cloud situ­
._1 - -120 ations. So, unless the cloud situation is knoivn, this 

14 -- Sl simple cloud correction technique provides little extra 
Ln577 5-78 -IZ7 value to the clear soundings alone. For this reason, an 

-12 120 586independent visible or infrared channel, from which 

1J
 

-ILI .4K.--1 cloud amount information can be extracted, should be 
-,OF -105 1 available along with the satellite sounding radiances

10 	 5 Such information will be available from the new genera­

tion of sounding instruments to be launched on the 
-95 "-operational 	 NOAA satellites m the 1980's 

8. 	 Precipitable water field on the mesoscale 
500mb 
24 APRIL 1975 Perhaps the most interesting and useful analysis 
1715 -1800 GMT obtained isthe precipitable water (PW) analysis in 

FIG 9 Radiosonde 500 nb temperatures at -1800 GMT .5 U12 is 2020 .4 "20 0 

can be summed up as mainly increasing the variability I0 2 I 2 2

of temperatures derived under cloudy situations 3 2 3
 

An example of the effect of small cloud amounts is
 
the region in southeastern Colorado 'and western 225a 24 2- 21
 
Kansas where the isotherms are bent towards lower 2 2,
 

temperatures This feature does not show up in the
 
radiosonde analyses alone and is associated with the 2
 

small cloud amounts there Other temperature features ", ,9 ,
T 0 

which occur in clear areas are associated with the 2 .20
 
observed radiances and not the cloud correction 'a 4 14 14 5
 

technique Also, multi-level and high-cloud situations, it 1. 7 


such as in central Nebraska and Kansas, lead to ,7- Lr 


temperatures which are too warm. The simple cloud 15 a7I
 

correction should not be expected to work in such I 3 2
 

'complex cloud situations. 3 17 2 

These two problem areas show the need for an o 17 

assumed cloud amount parameter in this simple cloud- 4 20 

,,corrections technique, especially small cloud amount 2 , 
cases. In cases with small cloud amounts, the effective 5 2 20 

cloud level is much lower than the actual partial
 
cloud level. This causes temperatures above this to 21
 

effective cloud level to be biased too Iowi due to an
isoheral empratreendncyof he ~ried ro- Fro 10 Satellite-derived prcipitable wvater field obtained
isothermal temperature tendency of the derivd pro- using a least-squares linear regression of radiosonde total pre­
files below the cloud level when no cloud is assumed cipitable water %alues against [1O radiance rcsiduals Numbers 
(Chahme, 1970) The derived temperatureb beloi% the indicate data coverage and resolution 
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FIG 11 H2O channel radiances plotted against time-interpolated 
precipitable water values at radiosonde sites in the study area 

Fig 10 The procedure explained earlier was used to 
try to eliminate the temperature effect on the VTPR 
H20 channel by using the derived temperature profiles 
to obtain calculated radiances If the derived tern-
peratures are reasonably accurate then differences 
between observed and calculated radiances would be 
due to moisture effects only This is shown graphically 
in Figs 11 and 12, where HO channel radiances and 
H20 channel radiance residuals are plotted against 
time-interpolated PW values at the AVE radiosonde 
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FIG 12. As in Fig 11 except for H20 radiance residuals 

sites. In order to obtain a larger set of data points 
for comparison, the field of derived satellite soundingswas extended up into the northern Great Plains 
PW values at approximately 1500 and 1800 GMT 
were used to obtain time-interpolated PW values at 

evle tapoimtl 50ad10 M
1615 GMT which were then plotted against the radi­
ance values from the H20 channel and the H20 
radiance residuals 

When plotted against the H20 channel radiances, 
the PW values produced only a -049 correlation 
Large radiances are correlated with low PW amounts, 
but are also strongly dependent on temperature This 
is seen in the general arrangement of the radiosonde
stations with highest temperatures also having the 
largest H20 channel radiances The southern, or 
warmer, stations in Fig. 11 are in the top of the graph
and the least-squares line fit shows a steep slope which 

is only weakly dependent on the PW amount 
However, in Fig 12, by trying to eliminate the 

temperature effect on the H20 channel radiance, the 
stations are not arranged preferentially according to 
temperature, but arranged in terms of PW amounts 
The slope of the least squares line fit shows much 
more variation explained by PW changes than in 
Fig 11. The rather high correlation of -0 88 excludes 
the station FSI (Fort Sill, Okla.) which did not have 
a sounding launch at 1500 GMT This point was not 
used because it could not be treated as the others to 
obtain an interpolated PW value at 1615 GMT 

Because of the high correlation, a least-squares 
linear regression was used to calculate coefficients to 
convert -120 radiance residuals directly into the PW 
values plotted in Fig 10 The scatter of time-inter­
polated PW values about the regression line, except 
for FSI, is less than 0 5 cm of H0 which can be 
considered a maximum error level for this data set 
Dashed lines at 0 5 cm from the line fit encompass 
all values except for FSI. 

The only high-resolution data set to compare with 
PW values are the surface observations in Fig. 5 

surface dry tongue through Texas into Oklahoma 
is shown in the satellite derived field by a large change
in PW values from less than 0 5 cm in western Texas 
to over 2.5 cm of H1O in eastern Texas The surface 
dry line oriented southwest to northeast is designated 
by a strong PW gradient of about 1 cm of H20 per
70 kin, the linear distance between scan spot centers

The moist areas in eastern Texas and western 

Kansas in the surface observations contain over 2 5 cm 
of PW However, the dry region in central Kansas 
of less than 1.5 cm of PW is caused by cloud con­
tamination up to and above the 500 mb level In this 

the radiances are integrated from vertical columns 
truncated by the high cloud levels As expected, this 
causes the radiance residuals to be low because of the 
decreased difference between observed and calculated 
radiances which arises mainly from HO differences 
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in the low levels. Clouds do, therefore, cause some 
contamination of these data but the PW values seem 
to be mostly unaffected unless cloud levels are high. 
In southern Texas where lower clouds caused 500 mb 
temperatures to be low, the PW values seem to be 
unaffected compared to neighboring scan spots. High 
PW values here agree with small dew point depression 
values in the surface observations 

These two data sets (Figs 5 and 10) should not 
be correlated exactly since one is for surface values 
and the other for integrated moisture However, since 
moisture in the atmosphere is concentrated near the 
surface, there should be some indication of PW 
amounts in the surface dew point temperatures (Smith, 
1966) Differences in the two moisture analyses should 
yield an indication of vertical mixing of moisture 
provided the data sets were obtained at the same 
time High surface dew point temperatures and low 
PW values would indicate little vertical mixing, 
whereas higher PW values with the same surface 
moisture would indicate more vertical mixing 

Moisture features such as the indicated dry line 
feature or moisture gradient in the derived PW values 
are extremely important to forecasting convective 
storm development The horizontal position of the dry 
line usually determines a line along which the most 
severe storms occur The dry line feature and vertical 
moisture mixing information together could help pin-
point subsequent convective development later in 
the day 

9. Conclusions 

High-resolution temperature and moisture informa-
tion is necessary for mesoscale weather analysis and 
forecasting The ability to provide such mesoscale 
information is shown to be feasible now, from existing
operational satellite sounding radiances over the United 

States Even though the derived temperature values 
are biased by cloud contamination in certain areas, 
they do show significant relative horizontal changes 
in non-cloudy areas, which for example can better 

locate cold trough positions
Precipitable water information is probably the most 

needed information on the mesoscale Moisture varies 
more rapidly in space and time than temperature at 
smaller scales Precipitable water values derived from 
the NOAA VTPR H20 channel, when corrected for 
temperature effects, provide a reliable source of hori-
zontal moisture information Cloud contamination 
which lowers temperature values does not significantly 
affect the derivedintegrated moisture amounts beyond
the maximum noise level of 0 5 cm of H20 except in 
high cloud cases 

An important aspect of the present study, in con-
from 

trast to earlier large-scale temperature soundings
satellites over the oceans, is the use of concurrent 
satellite and radiosonde data in a joint analysis The 
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more widely spaced radiosondes, with their good 
vertical resolution, may be considered the trunks of 
the data set, the higher horizontal resolution satellite 
data (the branches) are coupled to and dependent 
upon the trunks. No attempt has yet been made of 
optimum analysis and assimilation of the data sets. 
That study, as well as preparation to add the fourth 
dimension (time) from upcoming high-frequency geo­
stationary satellite sounders will be the subject of 
considerable future research. If information on tem­
perature and moisture does become routinely available 
from satellite soundings for mesoscale analysis and 
forecasting, it will provide a valuable additional tool 
to conventional radiosonde sounding information alone. 
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Seasonal Oceanic Precipitation Frequencies
 
From Nimbus 5 Microwave Data
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Microwave brightness temperature data from the Nimbus 5 satellite have been analyzed by usingthreshold brightness temperatures to yield tropical oceanic precipitation frequencies for several classes ofrainfall rates during the season December 1972 through February 1973 Data taken near local noon and near local midnight were analyzed The overall results are consistent with both climatological precipi­tation frequency and with concurrent satellite-derived frequency of highly reflective clouds The differencebetween the local noon and the local midnight frequency is small, but the heavier rainfall rates tend to occur more frequently near local noon The ratios of the frequencies of light, moderate, and heavy rainwere observed to be relatively constant over the tropical oceans Passive microwave measurements fromspace seem to be an important step toward accurate measurement of oceanic precipitation 

INTRODUCTION 
Knowledge of oceanic precipitation is of fundamental im-

portance to meteorology Approximately 80% of the earth's 
precipitation falls in the ocean [Sellers, 1965], where fewer 
than 10% of the world's weather stations exist Yet latent heat 
released over the ocean plays a major role in the maintenance 
of the general circulation and affects almost everything known 
as 'weather' 

Many ingenious attempts to determine oceanic precipitation
from surface observations have been made [eg, McDonald, 
1938, Tucker, 1961, Jacobs, 1968, Allison et al, 1969], but such 
observations have not the spatial nor temporal resolution nec-
essary for accurate measurement of anything except long-term
climatological precipitation Satellite data offer much better 
resolution, but until the launch of Cosmos 243 in 1968 and 
Nimbus 5 in 1972, all satellite data were from the visible or 
infrared portions of the electromagnetic spectrum in which 
precipitation cannot be observed directly because of the opac-
ity of clouds (See Martin and Scherer [1973] ahd Dittberner 
and Vonder Haar [1973] for a review of precipitation estima-
tion techniques using visible and infrared satellite data )

Several authors have shown the usefulness of microwave 
imagery from the Nimbus 5 electrically scanning microwave 
radiometer (ESMR) in depicting oceanic precipitation zones 

1974[Theon, 1973. Sabatini and Merritt, 1973. Allison et al, a, 
b. Wilheit et al. 1976] The present study uses Nimbus 5 
ESMR data to infer tropical oceanic precipitation frequencies 
for the season December 1972 through February 1973 This 
approach is a first step toward measuring seasonal precipi-
tation amounts, and the results may be of interest to modelers 
of the general circulation 

THE RADIOMETER 

Nimbus 5 is a sun synchronous satellite which crosses the 
equator at 1130 and 2330 LT and has an orbital period of 107 
mm The ESMR receives radiation in a 250-MHz band cen-
tered at 19 35 GHz (I 55 cm), with a noise equivalent temper-
ature difference of approximately 2 K The antenna electrically 
scans across the spacecraft track from 500 left to 500 right in 
78 steps every 4 s In this study, only data within 300 of nadir 
were used The radiometer half-power resolution is 25 X 25 
km at nadir and degrades to 42 km crosstrack by 30 km 
downtrack at 300 from nadir 

Copyright © 1977 by the American Geophysical Union 

In the course of this study it was found that the ESMR 
brightness temperatures vary with scan angle in amanyer not 
explainable as increased path length through the atmosphere 
or as variation of the sea surface emissivity Also, a small 
offset between noon and midnight data was found Additive 
corrections, amounting to at most 6 K, developed bywere 
requiring the 3-month mean brightness temperature over non­
raining areas of the Pacific Ocean to be independent of scan 
angle and local time [Kidder. 1976] 

MICROWAVE DETECTION OF OCEANIC PRECIPITATION 

Because the physics of the transfer of microwave radiation 
through the atmosphere has been described in detail elsewhere 
[e g, Wtlheut, 1972], only a brief summary will be given here 
The 19 35-GHz brightness temperature of the ocean surface 
(emissivity 04)is approximately 120 K, which is colder than 
any thermodynamic temperatures encountered in the atmo­
sphere The active constituents of an atmospheric column 
(oxygen. water vapor, and liquid water) over the ocean are 
therefore seen in emission, they add to the upwelling radiation 
stream in the normal process of absorption and reemission A 
nonraming atmospheric column, however, is more than 96% 
transparent, thus it adds only a small amount to the satellite­
observed brightness temperature, which ranges from 125 to 
175 K over the ocean in the absence of precipitation Rain­
drops, which are comparable in size to the I 55-cm ESMR 
wavelength, interact strongly with microwave radiation and 
rapidly increase the brightness temperature of an atmospheric
column over the ocean Wilheit et al [1975] have done prelimi­
nary calculations of the 19 35-GHz brightness temperature as 
a function of rainfall rate and freezing level (Figure 1)Com­
parisons between radar data and ESMR data and betweenground-based radiometer data and rain gage data indicate that 
these curves are accurate to within a factor of 2 

In this study, zonal mean freezing levels [Oort and Rasmus­
son. 1971, Taljaardet al, 19691 were combined with the curves 
of Figure I to obtain zonal threshold brightness temperatures 
for the detection of precipitation during the season Decem­
ber-February (Figure 2) Brightness temperatures correspond-
Ing to the 0 25 mm h-i rainfall rate were selected as thresholds 
to differentiate raining from nonraming observations on the' 
basis that the curves of Figure I become relatively fiat at 0 25 
mm h-i The use of a threshold temperature to detect precipi­
tation has several problems, among them are that (1) precipi­tating areas which do not fill the beam (500 km 2at nadir) may 
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ZONAL THRESHOLD TEMPERATURES (K) 
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Fig I Theoretical satellhte-observed 19 35-GHz brightness term-

perature versus rainfall rate [after Wilheir t t . 1975] 


not be detected and (2) local atmospheric and surface cond-
tons may deviate from those used to calculate the brghtess 
temperature versus rainfall rate curves However, comparison 
of radar data and ESMR data shows that the 170 K brightness 
temperature contour (which corresponds to a 0 25 mot h- 1 
ramnfall rate when the freezing level is 4 km) closely follows the 
radar echo (Allhson et at, 1974a] 

DATA ANALYSTS AND RESULTS 
10 -

Data from the period December 22, 1972, through February 
2,. 1973, were stratified by position (5' latitude-longitude 
squares) and local time The data in each category were first 
,orrected for scan angle, and then the fraction of the observa-
tions above each of the brightness temperature thresholds was 
calculated Figure 3 shows the fraction of observations aboveC 

h­
o 1 threshold, which may be interpreted 

frequency of precipitation regardless of intensity Noon and 
midnight frequencies have been averaged Figure 4 shows, for 
comparison, the precipitation frequencies of McDonald [1938] 
compiled from ship observations 

The microwave precipitation f'requencies reproduce the ex-
pected general pattern (1) narrow convergence bands, (2) dry 
eastern oceans, and (3)'the splitting of the ITCZ in the mid-
Pacific The precipitation frequencies in the northwest oceans 
may be biased upward by the more frequent occurrence of 

the 0 25 mm o- as the 
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Fg 2 Zonal19 35-GHz threshold brihtess temperatures For 
the detecton of oceanc precpiaton durng the Season Deeem­
bet-February 

strong winds in those areas [McDonald, 1938] Strong winds, 
by forming foam on the sda surface, increase the surface erms­
sivity and thus the observed brightness temperature [Nordberg 
et al , 1971]

The microwave precipitation frequencies are generally lower 
t 

than those of McDonald, and the mid-Pacific precipitation 
maximum seems to be about 20' further west These findings 
are in agreement with Ramage [19751, who in his study of the 
1972-1973 El Nifio found that the frequency of highly reflec­
tive clouds was generally less in December 1972 than in the 
more normal period of December 1971 and that the position of0 

maximum cloudiness had shifted westward in December 1972IO
 

Figures 5-7, showing the frequencies of light (0 25-1 0 mm 
h-'), moderate (1 0-2 5 min It-), and heavy (>2 5 mm h- 1) 

precipitation, indicate that the ratios of the frequencies in 
these categories do not vary appreciably over the tropical 
ocean 

Finally, an indication of the diurnal variation of precipi­
tation frequency was obtained by comparing the noon and 
midnight frequencies Table 1, showing the percentage of the 
total of noon and midnight precipitation events occurring near 

60 40 20 0 20 40 609 0 

\ /' r Z 

'' I#II130 0 
Fig 3 Frequency of precipitation (inpercent orobservations) for the season December 1972 through February 1973 as 

derived from Nimbus 5 ESMR data The noon and midnight observations have been averaged 
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FFg 4 Frequency of prcpiaton (i percent of observaons)e for the season December-February from shp obsebt 

pons taken at noon unversal time [after McDonald, 1938] 
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Fig 5 Same as in Figure 3 except for frequency of light precipitation (0 25-1 0 mm h- 1) 
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Fig 7 Same as in Figure 3 except for frequency of heavy precipitation (>2 5 mmIt) 

TABLE I Percentage of the Total of Noon and Midnight Precip-
itaton- Events Occurring near Local Noon in Oceanic Regions 
Between 20-N and 30'S During the Season December 1972 through 

RainrallCategory, 
mm h 

Light (0 25-1 0) 
Moderate (I 0-2 5) 
Heavy (2 5-5 0) 
Very heavy (>50) 
All rain 

February 1973 


Precipitation Frequencies 

Dry Regions Wet Regions All Regions 
(0-5%) (5-100%) (0-100%) 

47 50 48 
48 52 49 
49 54 51 
53 61 57 
49 52 50 

local noon in oceanic regions between 20 0N and 300S, in-
dicates that there is little difference between noon and mid-
night precipitation frequencies Although a diurnal variation 

of tropical oceanic precipitation with an early morning max-

imum and a late afternoon minimum has been observed, little 
difference is to be expected between noon and midnight fre-
quencies [Lavoie, 1963, Jacobson and Gay, 1976] However, 
the increasing tendency, shown in Table 1, for the heavier 

precipitation events to occur near local noon supports the 
early morning maximum 

CONCLUSIONS 

Nimbus 5 ESMR data have yielded reasonable seasonal 
precipitation frequencies over the tropical oceans by use of 
preliminary calibration curves Other investigators are work-
ing on obtaining oceanic precipitation amounts [Rao et al. 
1976] and on improving the calibration curves Soon we will be 

able to accurately measure this important atmospheri param-
eter and itsinterannual variation 

Acknohledgments This research was sponsored by the National 
Aeronautics and Space Administration under grant NGR-06-002-102 
Acknowledgment is also made to the National Center for Atmos-

pheric Research, which is sponsored by the National Science Founda­
tion, for the computing time used in this research 

REFERENCES
 

Allison, L J, E R Krems, F A Godshall, and 0 Warnecke, 
Examples of the usefulness of satellite data in general atmospheric 
circulation research, NASA Tech Note D-5630, 1969 

Allison, L J, E B Rodgers, T T Wdlheit, and R Wexler, A mult­
sensor analysis of Nimbus 5 data on 22 January 1973, 
NASA/GSFC X Doc 910-74-20. 1974a 

Allison, L I . E B Rodgers. T T Wilheit. and R W Fett, Tropical 
cyclone rainfall as measured by the Nimbus 5 electrically scanning 
microwave radiometer. Bull Amer Meteorol Soc. 55. 1074-1089, 
1974b
 

Dittberner, G J , and T H Vonder Haar. Large-scale precipitation 
estimates using satellite data Application to the Indian monsoon, 
Arch Meteorol Geophys Bioklnatol. Ser B, 21. 317-334. 1973 

Jacobs, W C ,The seasonal apportionment of precipitation over the 
ocean, Ass Amer Geogr Yearb. 30. 63-78, 1968 

Jacobson, R W, and W M Gray, Diurnal variation ofoceanic deep 
cumulus convection, Amnis Set Pap 243. Colo State Umv, Fort 
Collins 1976 

Kidder. S Q, Tropical oceanic precipitation frequency from Nimbus 
5 microwave data. Atuos Sct Pap 248. Colo State Univ, Fort 
Collins, 1976 

Lavoi, R L Some aspects of the meteorology of the tropical Pacific 
viewed from an atoll, Rep 27. Hawai Inst of Geophys, Honolulu,
1963 

Martin. D W, and W D Scherer Review of satellite rainfall estima­
tion methods, Bull Amer AMeteorol Soc. 54. 661-674, 1973 

McDonald. W F, Atlas of Chtmatic Charts of the Oceans, U S 
Weather Bureau, Department of Agriculture. Washington, D C,
1938 

Nordberg W. I Conawav. D B Ross, and T Wilhelit. Measure­
ments of microwave emission from a foam-covered, wind-driven 
sea, J Atmos Sit. 28. 429-435. 1971 

Oort. A H andE M Rasmusson, Atmospheric circulationstatistics. 
NOAA Prof Pap 5. U S Dep ofCommer, Rockville, Md, 1971 

Ramage, C S. Preliminary discussion of the meteorology of the 
1972-1973 El Niho Bull 4ner Meteorol Soc, 56. 234-242 1975 

Rao M S V . W V Abbott Illand J S Theon, Satellite-derived 
global oceanic rainfall atlas (1973 and 1974), NASA/GSFC X Doc 
911-76-116. 1976 

Sabatini, R R . and E S Merritt, The Nimbus 5 ESMR and its 



2086 KIDDER AND VONDER HAAR OCEANIC PRECIPITATION FREQUENCIES 

application to storm detection. EPRFSJ-0873-004, U S Navy Envi-

r~n Predict Res Facl ,Monterey, Calif. 1973 


Sellers. W P, Ph)sieal Climatolog, University of Chicago Press, 

Chicago. Ill 1965 


Taljiard I J H van Loon, H L Crutcher and R L Jenne Climate 

oJ the Upper Atmosphere, part I Southern Hemisphere, vol I Na-

tional Center for Atmospheric Research, National Weather Re-

cords Center, and Department of-Defense, Washington. D C , 

I969 


Theon, J S A multispectral view of the Gulf ofMexico from Nimbus 

5,Bull Amer Meteorol Soc. 54, 934-937, 1973
 

Tucker, G B Precipitation over the North Atlantic ocean, Quart J 

Roi Meteorol So, 87, 147-158, 1961 


Willhet T T. The electrically scanning microwave radiometer 

(ESM R) experiment, in The nibu 5User's Guide, edited by R R
 
Sabatni. ERTS/Nimbus Project, NASA/Goddard Space Flight
 
Center, Greenbelt, Md ,1972
 

Wilbeit, T T, M S V Rao. T C Chang, E B Rodgers, and I S
 
Theon, A satellite technique for quantitatively mapping rainfall
 
rates over the-oceans. NASA /GSFC X Doc 911-75-72 1975
 

Wilheit, T T, J S Theon. W E Shenk, L J Allison and E B
 
Rodgers. Meteorological interpretations of the images from the
 
Nimbus 5 electrically scanned microwave radiometer, J Appi Me­
teorol 15, 166-172 1976
 

(Received September 24, 1976, 
revised January 17 1977 

accepted January 17, 1977 



VOL 83, NO C4 JOURNAL OF GEOPHYSICAL RESEARCH APRIL 20, 1978 

The Annual Variation in the Global Heat Balance of the Earth 
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-An annual variation with a range of 31 W m 2 isfound in the global net radiation balance of the earth 
The net radiation flux values measured from satellites and the changes in total heat content computed
from independent sets of atmospheric and oceanic data show annual variations which are consistent with
each other in both phase and magnitude The net energy gain and loss by the planet ithin a year is 
stored and released within the system primarily by the oceans 

INTRODUCTION 
The analyses of independent sets of satellite radiation flux, 

oceanic temperature, and atmospheric temperature and hu- 
midity data presented in this paper give, for the first time, 
estimates of the annually varying heat balance of the earth As 
far is the authors know, an annual variation in the global heat 
balance has not been reported in the literature However, an 
annual variation in the global net radiation balance was sug-
gested by Simpson [1929] Vonder Haar and Suomt [1971] and 
Ravchke [1973] indicated the possibility of an annual variation 
in the radiation balance from limited sets of early satellite 
data The annual variation in the radiation balance reported in 
this paper has been determined from a29-month composite of 
satellite data 

For global energy balance the net radiation flux across the 
upper atmospheric boundary must at all times equal the rate of 
change in total heat content of the combined atmosphere-
ocean-cryosphere-land system Energy available due to geo­
thermal heating is extremely small in comparison with the flux 
of solar radiation [Sellers. 1965] and has been neglected in this 
study Thus the energy balance for the atmosphere-earth sys-
tem can be written as follows 

FTIA = SA + S. + SL + St (I) 

in which 

ErA 
-fo 

[(I - A)[ - R] dA (2) 

is the net global flux of radiation at the top of the atmosphere, 

sa J fojo p(CA T+ gZ + L~q)dA dz (3) 

is the rate of storage in the atmosphere, 

a f p 
= atJ ol fo pCoTdA dz (4) 

is the rate of storage in the oceans, SL isthe rate of storage in 
land (neglected in this study), S, isthe rate of storage in snow 
and ice, and 

Now at Lawrence Livermore Laboratory. Livermore. California 
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A planetary albedo, 
CA, C, specific heat at constant volume for atmosphere and 

ocean, 
g acceleration due to gravity, 
I incoming solar flux, 

L, latent heat of evaporation, 
q specific humidity of air, 
R long-wave flux to space. 
t time, 

T temperature. 
z height, 
p density 

A height of 20 km was chosen as the 'top' of the atmosphere 
and a depth of 275 m as the lower limit of integration for the 
oceans because of the almost negligible contributions beyond 
these limits 

BASIC DATA 

Data sets used in this study will be briefly described Net 
radiative flux values were computed from a 29-month set of 
satellite data Some of the important characteristics of this 
data set are shown in Table I The composited radiation values 
include data from wide-angle field of view sensors on board 
Experimental, Essa 7, Itos I, and NOAA I satellites and 
medium field of view scanning sensors on board Nimbus 2and 
3 satellites Ellis and Vonder Haar [1976] have discussed the 

spatial and temporal distribution of the data and uncertainties
in the measurements In a later part of this paper we will show 
that the total uncertainty in the composited global mean 

- 2 val­
ues is probably less than 10 W m 

Atmospheric temperature and humidity data between the 
surface and 20-km height were taken from 5 years (May
1968-April 1973) of daily rawinsonde measurements at 850 

meteorological stations over the globe Figure I shows the 
distribution of these stations and illustrates the relative lack of 
observing stations in the southern hemisphere As aresult, less 
confidence can be placed in the southern hemisphere contribu­
tion to our results The method of analysis of this data set is 
the same as the one used by Oort and Rasnzusson [1971] The 
uncertainty in the rate of atmospheric storage is less than I W 
m - 1 for the northern hemisphere but somewhat larger for the 
southern hemisphere because of data void regions 

Oceanic temperature analyses were based on historical data 
files from the National Oceanographic Data Center, Washing­
ton, D C , containing approximately 400,000 hydrographic
soundings, 740,000 mechanical bathythermograph soundings, 
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1 TABLE I Chronological List From Which Present Radiation Measurements Were Taken
of Earth-Orbiting Satellites 


Year 

1964 1965 1966 1967 1968 1969 1970 1971 
Sample
Size 

January 
February 
March 
April 

EX (1030) 
EX (1035) 
EX (1040) 

E7 (1430) 
E7(1430) 
E7(1430) 
N3 (1130) 

N3(l30) 

11(1500) 

3 
2 
2 
2 

May 
June 
July 
August 

EX (0830) 
EX (0855) 

N2 (1130) 
N2 (1130) 
N2 ( 130) 

N3 (1130) 
N3 (1130) 
N3 (1130) 
N3 (I130) 

11(1500) 
11(1500) 

NO (1500) 4 
3 
3 
2 

September 
October 
November 
December 
Annual 

EX (0915) 
EX (0940) 
EX (1005) 
EX (1030) 

6 3 3 0 

E7(1430) 
E7(1430) 
E7(1430) 

3 

N3 ( 130) 

9 4 1 

1 
3 
2 
2 
29 

The approximate local time at which each satellite crossed the equator during daylight hours is given in parentheses EX stands for 
experimental. N2,Nimbus 2,N3, Nimbus 3 E7. Essa 7. 11.Itos I,and NOI, NOAA I 

and 100,000 expendable bathythermograph soundings The attempt to describe large-scale permanent or semipermanent 
data were averaged by month for each 10 latitude-longitude features of the oceanic temperature distribution The use of 
square at 11standard levels between the surface and 250 m An observations that may have been taken during anomalous 
objective analysis scheme of the iterative difference-correction situations will be reflected in the analysis Uncertainty in the 

- 2type [Cressman, 1959] was applied at each standard level to rate of oceanic storage is about 10 W m , but owing to 
produce aglobal analysis A depth of 275 m was taken as the sampling deficiencies, particularly in the southern hemisphere,
maximum significant depth for the penetration of the annual even this error estimate must be considered tentative A com­
temperature wave Figure 2 shows the distribution of sea sur- plete description of the oceanographic data, their representa­
face temperature observations for the month of March The tiveness, and the analysis methods used can be found in the 
bias toward more observations in the northern hemisphere work of Levaus and Oort [1977]
coastal regions is true of all other months as well Because of The rates of heat storage in the atmosphere and ocean were 
this bias the oceanic estimates from the southern hemisphere computed as follows Monthly means of the heat content were 
must be considered less reliable than the estimates from the evaluated at all grid points for each month Rate of heat 
northern hemisphere Examination of the distribution of ob- storage for any particular month was then computed as the 
servations as a function of depth for all months indicates that difference in heat content between the following and previous 
down -to 250 m the distributions are similar to the surface months 
distribution, although the number of observations does de- The rate of storage in snow and ice was computed from the 
crease' The use of historical data and the general lack of change in areal coverage of snow and ice reported by Kukla 
observations must be considered in evaluation of the oceanic and Kukla [1974] for the period August 1968-July 1969, an 
rate of storage estimates Essentially, a sampling problem is average water equivalent depth of 50 cm for the snow and ice 
involved With the exception of areas around ocean weather being assumed The resulting values are quite small, about one 
ship stations where relatively long-term serial data exist, most half the atmospheric values, and correspondingly, their uncer­
of our data are scattered in time Our ocean analysis is an tainty contributes little to the uncertainty in the total rate of 
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Fig. 2. Distribution of sea surface temperature observations for the month of March. A small dot indicates a I' square
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storage. More detailed information on the methods used in near-zero values), six are Essa 7values. As a part of the Essa 7 
determining uncertainty in the rates of storage can be found in data reduction method, global radiative equilibrium (FTA = 0) 
the work of Oort and Vonder Haar [1976]. was assumed to exist on a time scale of several days. This 

assumption was a necessary constraint for determining the 
RADIATION BALANCE COMPONENTS planetary albedo. It is apparent from the distribution of values 

The mean values of the radiation terms on the left-hand side in Figure 3 that global radiative equilibrium does not gen­
of (1), which are based on the 29-month set of satellite data, erally exist even at the longer monthly time scale. 
are tabulated by month in Table 2. Shown are the global The scatter of the values about the composited net radiation 
averages of reflected and long-wave flux to space at the top of profile should be a measure of the uncertainty. The plotted 
the atmosphere. In addition, the computed global averages of values suggest a value of about l0 Wm- ' for the uncertainty.

incoming solar flux and net radiation at the top of the atmo­
sphere are given as well as the albedo of theearth-atmosphere- -, .
 
ocean system. The incoming solar flux is computed from the IS *
 
known characteristics of earth-sun geometry and an assumed j * t
 
solar constant of 1360W m-1 [Drummondetal., 19681. £ : *
 

The mean global values of planetary albedo, long-wave, and j . x 
net radiation flux are also shown graphically in Figure 3.The+ f-­
values for the 29 individual months of our data set are in- . . .. . .[
dicated by crosses, while the mean annual variation isshown - U - Mi - S t M E Vi 

by a solid curve. Of the seven zero net radiation values (or I , 

TABLE 2, Radiation Components of the Global Heat Balance I f.
 
I A (I - Air R Fr. a
 

January 350.7 0308 242.7 231.1 11.8 + 
February 347.6 0,309 240,2 230,0 10.1 at i W i -LB 0 IR W Be 
March 342.5 0.299 240.1 227.8 12.1 
April 336.8 0.304 234.4 246.8 -12.4 3-
May 332.0 0.314 227,8 2450 -17.1 X 
June 329.1 0.311 226.7 245.4 -18.6 
Jul 328.8 0.296 231.5 236.5 -5.0 + 
August 331.1 0.290 235.1 235.2 -0.3 
September 335,7 0.287 239.4 231+1 8.4 
October 341.6 0.298 239.8 235.8 4+1 
November 347.3 0.313 238,5 232.6 5.. 
December 350.5 0.318 239.0 230.7 8.5 B W W W W 
Annual 339.5 0.304 236.3 235+7 0.6 Fig+ 3. Components of the global radiation balance of the earth. 

Shown are (a) the planetary albedo. (6) long-wave flux to space. and
All values (except A) are in units of watts per square meter. (r) net radiative flux 
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TABLE 3. Storage Components of the Global Heat Balance sun in January and farthest from the sun in July, This creates 
an annual 11.2 W m- amplitude variation in the solar flux 

S. S. $', S + S. + S received by the planet earth.This variation is a purely external 

driving mechanism, since it depends only on earth-sun geome-January -6.4 0.9 -0.1 -5.6 
February 1.6 0.7 0.3 2.6 try. 
March 18.8 0.7 0.6 20.1 When a value of 30.4% (Table 2) for annual mean global 
April -5.2 1.6 -2.7 albedo is used, the annual 11.2 W m- amplitude variation ofNlay -25.5 2.2 0.90.9 -22,4
June -9.5 2.6 0.2 -257 incoming solar flux translates into an approximate 7.8 W m 

variation in absorbed solar flux at the top of the atmosphere.July -1.7 0.6 0.6 -05 
August -6.0 -2.1 -0A -8.2 This value is of interest, since it gives an estimate of the 
September 5.5 -3.1 -0.4 2.0 variation in absorbed solar flux apparently due solely to a 
October 5.7 -2.8 -0.9 2.0 
November 9.4 -. 4 -2.0 60 change in earth-sun distance. 

Theglobal albedo varies considerably from the annual meanDecember 13.4 0.0 -1.1 12.3 
Annual 0.0 0.0 0.0 0.0 of 30.4%. This seasonal variability may be nearly described by 

a linear combination of an annual and semiannual wave. The 
All values are in units of watts per square meter. minima, 29.9 in March and 28.7 in September, occur at a time 
-Estimated from Kukla and Kukla [1974). when the sun is most directly over the earth's equatorial zone, 

which apart from a narrow band of cloudiness associated with 

It is clear that there is an approximate 15 W m- amplitude the intertropical convergence zone has a lower albedo than the 
wave in the seasonal net radiation profile detectable above the extratropics. Maxima occur when the snow- and ice-covered 
scatter of values. polar regions are receiving the greatest amount of incoming 

As an independent check, monthly averaged values of the solar flux, near the solstices. An annual wave and other anom­
components of radiation balance from the wide-angle Earth alies may be associated with the advance and retreat of sea ice 
Radiation Budget (ERB) experiment on board the Nimbus 6 and snow cover and with seasonal variability in cloud cover. 
satellite are also plotted in Figure 3 for the months of July It is reasonable also to expect an annual cycle in the earth's 
1975-June 1976. These data are not included in the corn- long-wave emission to space because of the large surface tem­
posited mean profile. They are preliminary data which incor- perature contrasts between land and oceans and the asymmet­
porate corrections to the calibration transfer function and ric land-sea distribution between the northern and southern 
earth view factor as discussed by Smith ei al. [1977]. The ERB hemispheres. Atmospheric data show an annual cycle in the 
albedo values are generally larger than the composited mean global average near-surface temperature with an amplitude of 
values, but the phase and amplitude of the profiles are quite 20C [Van Loon. 1972]. Maximum and minimum values are 
similar. The ERB long-wave values are an average of daytime found in July and January, respectively. This temperature 
and nighttime data, and they compare favorably with the variation may be interpreted as an amplitude variation of 7 W 
composited profile. During the months of April and May some m -2 in the long-wave flux emission to space if typical atmo­
differences are noted which could be a manifestation of inter- spheric emissions are considered and all temporal variations in 
annual variability or diurnal time-sampling bias [Ellis and the intervening atmosphere are ignored [Ellis, 1977]. This ef-
Vonder Hoar, 1976], fect in the long-wave flux combines with the effect in the 

-absorbed flux to give a 15 W m ' amplitude variation in the 
HEAT STORAGE COMPONENTS annual net radiation balance profile. The variation found in 

The terrestrial components of the heat balance in the right- this suggested accounting of a cause and effect relationship is 
hand side of (I), which are measured in situ, are presented in in close agreement with the variation observed in the coin-
Table 3. Shown are the global rates of storage of energy in the posited profile from satellite data.
 
oceans, in the atmosphere, and in the snow and ice cover for
 
each calendar month.
 

To compute the typical rate of ocean storage per unit ocean GLOBAL HEAT BALANCE 

area, the value of S. in Table 3 should be divided by 0.71,
 
which is the proportion of ocean to land. The storage of energy
 
in the atmosphere and cryosphere is found to be much smaller A
 
than and approximately 900 out of phase with the ocean 15
 

storage and the radiation flux. The rate of storage in land is , . . , , ,
 
negligible, as was shown by Gabites [ 1950]. 5,
 

GLOBAL HEAT BALANCE 0 

/A graph of the global components is shown in Figure 4. It 3 ,, ,, ;Vt 
shows that the rate of ocean storage is in close agreement 

,with the net radiation flux except for the months of January 
and February. (This disagreement may be due in large part -s 
to possible errors in southern hemisphere ocean data.) IOTO a 

The annual variation in the earth's net radiation balance - ',, 

may largely be accounted for by considering the effects which -Z5 

the present day earth-sun geometry and the asymmetrical dis­
tribution of continents between the northern and southern i F M A M j A 5 0 1 

hemispheres have on the net radiation balance. The orbit of Fig. 4. Principal components of the global heat balance ofthe earth 
the earth about the sun is such that the earth is closest to the (in watts per square meter). 

0 
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Examination of the storage components of the global heat 
balance shows that the world oceans play the dominant role in 
the earth's response to the annual variation in incoming solar 
flux This result is expected because of the exceptionally 
high heat capacity of water and the large portion of the plane­
tary surface covered by oceans The rate of heat storage in the 
ocean is of nearly the same amplitude and in phase with the 
net radiation flux The global ocean can maintain equilibrium 
by an average change in its heat content between times of 
maximum storage and maximum release of less than IOC over 
a 50-m-thick layer 

The atmospheric component of the global heat balance is 

seen to be out of phase with the net radiation flux This is a 
result of the global land-sea distribution The maximum and 
minimum of the atmospheric component occur during north-
ern hemisphere summer and winter, respectively The extremes 

of heating and cooling of the atmosphere over the northern 
hemisphere continents dominate the annual cycle 

Although the rate of storage in ice and snow is relatively 
small, their presence or absence may influence the global heat 
balance because of their effect on the earth's albedo 

There is no doubt that each of the data sets used in this 
study contains inaccuracies One must also consider that the 
observational periods during which the data in each set were 
taken are different However, the fact that the satellite radia-
tion budget and the atmosphere-ocean heat storage data sets 
are independent of each other yet give results which nearly 
satisfy both sides of (1)suggests that the annual cycle ofglobal 
heat balance presented in this paper is real Furthermore, the 
Independent data sets are not likely to be grossly in error The 
findepdeta nt anualaritio n t be ros derrr Tefiner details in the annual variation must be considered tenta-
tive until improved data are collected and assimilated into a 
composite profile 

SUMMARY 

The observations discussed in this paper may be summa-
rized as follows There is a significant annual variation in the 
two major components of the global heat balance net radia-
tion flux and rate of ocean storage No cause and effect rela-
tionship is established, however, the effects of the earth-sun 
geometry, land-sea distribution, and pole to equator albedo 
difference in the global net radiation balance are discussed 
The combined effects are in agreement with the observed an-
nual variation The world oceans apparently store and release 
heat in phase with the annual variation in the net radiation 

balance The results of this study should be tested with more 
accurate and more extensive data as these data sets become 
available Of particular interest are possible interannual varia­
tions from the average conditions reported in this paper 
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1. INTRODUCTION
 

It has long been recognized that satellite 

data is useful in the study of tropical cyclones 


(Sadler, 1964). With the launch of the Nimbus
 
5 and Nimbus 6 satellites in 1972 and 1975,
 
respectively, scanning radiometer data have
 
become available in the radio window of the
 
earth's atmosphere (I An to a few meters). Be-

cause clouds are nearly transparent to micro-

wave radiation and because emission of micro-

wave radiation is sensitive to a number of 

atmospheric and surface parameters, many studies 

of the microwave characteristics of tropical 

cyclones have begun to appear in the literature 

(e.g Allison et al., 1974; Adler and Rodgers, 

1976, Rosenkranz et al., 1977). Two important 

parameters of tropical cyclones are surface 

wind speeds and surface pressures. In this
 
paper, we will examine one technique for ex­
tracting wind and pressure information in tropi-

cal storms from brightness temperatures measured 


by the Scanning Microwave Spectrometer (SCANS) 

on board Nimbus 6. 


2. THE RADIOMETER 

The Scanning Microwave Radiometer is a five 

channel instrument sensing radiation nominally
 
at 22.235, 31.65, 52.85, 53.85 and 55.45 GHzs 

(Staelin et al., 1975). The upper three chan­
nels are used for sounding the atmosphere, 

while the lower two are used to measure inte-

grated atmospheric water vapor and liquid water 

content. The lower two have also been used to 

measure surface wind speed in typhoon June 

(Rosenkranz et al., 1977). The radiometer scans 

across the spacecraft track in 13 steps at 7.20
 
intervals each 16 s. The half power beam width
 
is 7.50 , which results in a spacial resolution 

of 145 km at nadir degrading to 220 km down-

track by 360 km crosstrack at the maximum scan 

angle. The orbit and scan geometries are such
 
that the earth is viewed completely twice per
 
day, and more often near the poles. The data 

are recorded on magnetic tape and archived at 

the National Space Science Data Center. 


The upper three channels are located on the
 
wing of an oxygen absorption band. In the 

absence of scattering (precipitation) the bright-

mess temperature observed by channel i-(i 


3, 4, 5) of the radiometer is given by: 


t +J T(z)W(z)dz (1)T i 
 is 

where ei is the surface e~issivity, t1 is
 
the transmittance from the surface to the satel­
lite, T is the surface temperature, T(z)
s 

is the atmospheric temperature at height z and
 

Wi(z) is a weighting function (Staelin et al., 
1974). Wi(z) is weakly dependent on temperature, 
humidity, and e * and is more strongly depen­
dent on scan angle. Figure 1 shows the SCAMS 
weighting functions suitable for use over an
 
ccean surface.
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FIGURE 1. SCANS weighting functions for use
 
over an oceanic surface. (After Staelin et al.,
 
1975.)
 

The LMS noise levels of the radiometer are
 
0.2 K for the lower tto channels, and 0.5 K for
 
the upper three. The absolute accuracy is + 1.5K
 

(Rosenkranz et al., 1977). ­



3. TEMERATUJRE ANO0MALIES 50-0 " 

The strong surface winds in a tropical cy- 100 -N 
clone can be traced through the hvdro6tatic and 150 
gradient wind equations to temperature anomalies 
centered in the upper troposphere Frank (1977) 200 

has calculated the azimuthally-averaged tempera- 250" 
ture anomaly (difference from tezoeratures 140 

00 6 4
from the storm center) for the mean t5 phoon 

(fig. 2) The main feature is the large posi- 350 
tive anomaly centered between 250 and 300 mb and 400, 
extending several hundred kilometers from the 
center of the storm A much smaller cold anom- 450 

aly exists at approximately 100 cb. Atlantic !50OE5similar structure (LaSeur
storms exhibit a very 

and Hawkins, 1963; Hawkins and Rubsam, 1968, 550 

Hawkins and Imbembo, 1976; Gray 1977). 600
 

Because the weighting function for SCAMS 650 

channel 5 peaks in the region of maximum temper- 700 
ature anomaly, one would expect to see a posi- 750 
tive anomaly in the channel 5 brightness tem­

perature over tropical cyclones. Indeed these 800 
anomalies have been observed previously by 850 
Rosenkranz and Staelin (1976) and by Rosenkranz 
et al. (1977) for West Pacific typhoon June of 900 
1975. In an effort to substantiate the above 950 
findings and to relate them to surface charac­

8 0 1 14
teristics, we obtained SCAMS data for eight Sfc 4 6 

typhoons and five hurricanes during 1975 (Table 0 4 (degre2s6 ' 02ude)
 

1).
 
FIGURE 2. Temperature anomalies for the mean
 
typhoon. (After Frank, 1977)
 

TABLE 1
 

Tropical Cyclones Used in this Study (all 1975).
 

NAME PEAK INTENSITY DATE/TIME OF MINIMUM SEA CENTRAL LOCATION
 
(knots) PEAK INTENSITY LEVEL PRESSURE AT TIME OF PEAK
 

- (mb) INTENSITY
 

June 160 19 Nov/12Z 875 13.2N 141.0E
 

Phyllis 120 14 Aug/18Z 925 24.1N 137.IE
 

Rita 80 22 Aug/12Z --- 32.9N 134.4E
 

Tess 95 4 Sep/18Z 945 23.ON 147.6E
 

Winne 65 10 Sep/O6Z --- 31.ON 162.8E
 

Alice 75 17 Sep/12Z 973 15.4N 123 IE
 

Betty 95 22 Sep/OOZ 947 22.6N 123.6E
 

Cora 105 4 Oct/18Z 943 30.3N 133.2E
 

Caroline 100 31 Aug/OOZ 963 24.ON 97.0W
 

Doris 95 2 Sep/18Z --- 37.7N 44.2W
 

Eloise 110 23 Sep/06Z 961 28.4N 87.3W
 

Fay, 84 26 Sep/18Z 979 31.ON 63.1W
 

Gladys 125 2 Oct/O0Z 942 31.0N 73 OW
 



The storms uere positioned by interpolating be-

tween six hourly best track locations from the 

1975 Annual Typhoon Report and from Hebert 
et al. (1977). Maximum sustained surface wind 
speed estimates for the typhoons were inter-

polated from the best track estimates from the
 
Typhoon Report. Hurricane winds were inter-
polated between aircraft measurements, when 
available, and between satellite estimates, 
otherwise, both from Hebert et al. (1977). 

Central pressure estimates were interpolated be-
tween aircraft observations in Hebert et al. 
(1977) and Staff, JTWC (1976). In all, 116 images 
of the storms were collected. The quality of 

the images varies according to the minimum dis-

tance of the subsatellite point from the center
 
of the storm and the amount of missing data. 


Figure 3 shows examples of channel 5bright-
ness temperature anomalies over four storms of 
varying intensity. The temperatures plotted are 
the difference between the observed brightness 
temperatures and the mean brightness tempera-
ture in the region between 40 and 100 latitude 
from the storm center (the environment). Before 
the environmental temperature was calculated, 
all temperatures were corrected for scan angle 

by adding the temperatures listed in Table 2. 

This correction was developed by Rosenkranz 

et al. (1977) and it "flattens out the bright-

ness temperature near the equator". 


TABLE 2 


Corrections to channel 5 (55.45 GHz) for scan 

angle away from vertical, 


Scan Angle (degrees) Correction (K) 

7.2 0.1 

14.4 0.6 

21.6 1.8 

28.8 3.2 

36.0 4.9 

43.2 7.2 

Surface winds greater than 7 m s-l cause 
foam formation which increases surface emissivi-
ty and can increase satellite observed bright-
ness temperatures (Nordberg etal , 1971). How-
ever, the SCAMS channel 5 weighting function is 
zero at the surface, thus the channel 5 bright-
ness temperatures are not affected by surface 
winds. Clouds and precipitation also alter the 
satellite-observed brightness temperature. At 
the levels sensed by SCANS channel 5, most of the 
cloud droplets will be frozen which reduces ther 
microwave absorption about two orders of mag-
nitude (Westuater, 1972) Most of the precipi-
taton is far below the peak of the channel 5 
weighting function and thus should only change 
the satellite-observed brightness temperature
 
slightly, and, because of back scattering by the 
raindrop-size particles, heavy rain will de­

crease the brightness temperature (Tsang et al., 
1977). We conclude that the brightness tempera­
ture anomalies plotted in figure 3 represent real
 
atmospheric temperature anomalies. This same
 
conclusion was reached by Rosenkranz et al. (1977). 

Typhoon June was an extremely large storm
 
with 50 kt winds extending 200 n mi from the cen­
ter (1975 Annual Ty Report). The warming in
 
the center of June is striking. It extends 30
 
from the center and reaches 4.1 K. The warming
 
in less intense storms is of lower magnitude
 
and covers a smaller area. In weak storms such
 
as Caroline, however, the warming is probably
 
within the noise level of the data.
 

4. CENTRAL PRESSURES
 

It has been observed that the 50 mb level is
 
virtually undisturbed by the tropical cyclone
 
below it (Frank, 1977). It follows from the
 
hydrostatic equation that a large positive temp­
erature anomaly in the upper troposphere will
 
cause a surface pressure drop. Because the
 
SCAMS channel 5 brightness temperature is pro­
portional to a weighted mean upper tropospheric
 
temperature, it ought to be correlated with sur­
face pressure (See Gray (1977) for elaboration
 
of this point.) However, the height (with re­
spect to pressure) of the tropopause decreases
 
from equator to pole and the temperature of the
 
lower stratosphere increases. Since the peak of
 
the SCAMS channel 5 veighting function is at a
 

constant pressure, the environmental brightness
 
temperature increases away from the equator.
 
This is clearly evident in figure 3b. To avoid
 
latitude corrections, we correlated central
 
pressure with brightness temperature anomalies
 

rather than with the brightness temperature it-'
 
self. This is equivalent to assuming that the
 
environment has a constant pressure.
 

A plot of central pressure versus maYl­
channel 5 brightness temperature anomaly within
 
20 of the storm center for the cases: (a) for
 

which we had central pressure estimates, and
 
(b) in which the satellite passed reasonably close
 
to the storm center, is shown in figure 4.
 

The correlation coefficient is -0.859, and the
 
best estimate of the standard deviation from the
 

regression line is + 15 mb. Thus if this sample
 
is representative of all tropical cyclone cases,
 

one ought to be able to estimate the central
 
pressure to within 15 mb approximately two thirds 
of the time. Some of the causes of variance are:
 

1) Radiometer noise 
2) Eye smaller than radiometer resolution
 

and of variable size
 
3) Non-constant environmental pressure
 
4) Vertical variation of the position of
 

maximum warming
 
5) The scan angle correction
 
6) Non-centering of the eye in the radio­

meter scan spot
 
7) Weighting function peak not at level of
 

maximum temperature anomaly
 
8) Clouds and precipitation.
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FIGURE 3. 55.45 G~z brightness tem erature anomalies (K).
 
The three circles are at radii of 2 o 30, and 40 latitude
 

from the interpolated best track Storm center. The inter­
polated wind speed and central pressure are shown in the 
upper right hand corner. The environmetal mean brightnessRGIA 
temperature and its standard deviation are shoe" in the bottom ORGN LPAGE IS8 
right and corner. The numbers in the bottom left and 	 OF POOP, QUALITY 
corner are the mean anomalies inside the 20, 30, and 40
 
circles and the number of points used to calculate the means.
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FIGURE 4. Central pressure versus maximum 

channel 5 brightness temperature anomaly within 

20 latitude of the interpolated best track
 
center.
 

Some of these errors may be corrected by more
 
rigorous treatment of the data (3, 5, 8) and
 
some could be alleviated in the future by a dif­
ferent radiometer design (1, 2, 7). Neverthe-

less, it is encouraging that this preliminaryI 

treatment of the data yields such a high cor­
relation between central pressure and bright-

ness temperature anomaly. 


5. OUTER WINDS 


If one can obtain the surface pressure field
 
of a tropical storm, one can obtain an estimate 
of the surface winds by assuming that they are 

in gradient balance. It has been suggested by
 
Hughes (1952), Riehl (1954, 1963) and Shea
 
(1972) that outside the radius of maximum winds,
 
the tangential wind varies with radius as:
 

x
Cr- (2)

V 


where x is approximately 0.5. We assumed 

that x - 0.5 and that the tangential winds 

were in gradient balance, 


2 
- - l
RT 3 l -- (3)
)88---+ f Ve
RT r 


where R is the gas constant, T is the
 
temperature, and f is the Corio­

parameter. Treating f and T as constants,
 
equation (3) can be integrated
 

- ["- + 2fCr% (4)=I 4
 

Po is an integration constant. Setting
 

y RT ln p (5)
 

where p is the observed surface pressure, we
 
find by the method of least squares that C is
 
the positive, real root of the following equa­
tion.
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+ 3f (J(r - r C 

N
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2
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+ f ) r (Eyr) 0 
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We used the regression line in figure 4 to calcu­

late the surface pressures. Although the regres­
sion line underestimates pressures (being based on
 
observations of a relatively small eye), and al­

though there is noise in the pressure field pro­
duced, we believe that the azimuthal averaging
 
inherent in the least squares technique produces
 

approximately the correct radial pressure gradi­
ents and azimuLhally-averaged tangential winds. 
For T - 300 K, we calculated tangential winds 
using the position of the maximum temperature 
anomaly inside 20 radius as the center of the 
storm. Figure 5 shows the results for the four 
storms in figure 3. Note the large differences 

in the outer circulations.
 

We have as yet no data with which to compare
 
these curves. They appear to be reasonable, yet
 
the winds for Gladys seem to be underestimated,
 
and, in a few cases not shown, the winds at 10
 
radius are larger than the interpolated maximum
 
winds. Still it is possible that improved treat­
ment of the data could yield good estimates of the
 
outer winds around tropical cyclones.
 



150 


130 


120 ­

105 

90
'Adler, 


60 ­
4 -CORA 2771528 


30 - CRLN .4=73RW. 
Ias 

15 GLADYS 2731558-
0 1 1 I 1 IMeteorol. 

0 5 10 15 2.0 25 30 &5 40 45 50 
RADIUS (degrees) 

FIGURE 5. Calculated tangential winds for the
 
four storms in figure 3. 


6. SUMMARY AND CONCLUSIONS 


Microwave observations from space contain a 

wealth of information on tropical cyclones which 

is unavailable from visible and infrared observa- 

tions because clouds are opaque to visible and
 
infrared radiation The Dvorak technique 

(Dvorak, 1975). for example, yields estimates 

of maximum surface wind in a tropical cyclone 

from the structure of cloudiness observed in 

visible satellite images. However, it yields
 
little or no information on outer winds or sur-

face pressures because they are not well-correlated 

with cloudiness patterns. Microwave radiation, 

on the other hand, easily penetrates clouds and
 
is sensitive to atmospheric and surface para-

meters which are directly related to surface 

winds'and pressures We believe that in the not 

too distant future, a complete picture of surface 

winds and pressures in tropical cyclones will be 

obtainable from satellite-borne microwave radio­
meters. 


In this paper we have shown that the warm 

55.45 GHz brightness temperature anomaly pre­
viously observed over typhoon June can be found 

over other tropical cyclones We have correlated 

maximum brightness temperature anomaly with 

central pressure and calculated a correlation 

coefficient of -0.859. Finally, we calculated
 
outer wind speeds by assuming gradient balance 

and using the regression between brightness tem-

perature anomaly and central pressure to esCtmate 

the pressure gradients. These winds appear to be 

reasonable, but they have not been verified
 
against observations. We conclude that the 

technique of using SCAMS-type data for measuring 

surface winds and pressures in tropical cyclones
 
appears promising and deserves further attention. 
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ABSTRACT OF THESIS
 

CLOUDINESS, THE PLANETARY RADIATION BUDGET, AND CLIMATE
 

Satellite planetary radiation budget measurements
 

from the Nimbus 3 satellite for four semi-monthly periods
 

along with a 29 month composite of measurements from six
 

satellites are applied in a quantitative study to evaluate
 

the effect of cloudiness on the planetary radiation budget.
 

Annual and seasonal results are expressed as zonal, hemi­

spherical and global mean values.
 

The results show that for the planet as a whole the
 

effect of "present day" clouds in reducing the absorbed
 

shortwave flux is larger than their effect in reducing the
 

longwave emitted flux. The difference between the two
 

effects is significantly larger over oceans than over land.
 

Similarly, the sensitivity to changes in cloud amount is
 

greater in the shortwave absorbed flux than in the longwave
 

flux emitted to space. It was also shown that the presence
 

of clouds act to reduce the amplitude of the annual varia­

tion of the global planetary net radiation budget.
 

One may hypothesize from the results of this study
 

and the works of others that a uniform increase in global
 

cloud amount (in the absence of changes in cloud top
 

height, cloud albedo, other atmospheric constituents, and
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vertical temperature lapse rates) will decrease the global
 

mean surface temperature until tadiative equilibrium is
 

restored.
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1. INTRODUCTION
 

The objective of this study is to quantitatively
 

determine the effect of clouds on the planetary radiation
 

exchange with space. This effect is examined on spatial
 

scales from zonal mean to global and temporaly from months
 

to an annual mean.
 

This study was undertaken to satisfy a need for
 

quantitative information on the role of cloudiness in main­

taining or changing climate regimes. Present climate study
 

models cannot adequately incorporate clouds and cloud
 

effects in an interactive mode because of the lack of
 

observational and diagnostic studies of cloudiness at the
 

larger planetary scale. Schneider (1972) clearly stated
 

the problem... the global distribution of cloudiness is
 

itself a consequence of the general circulation which, in
 

turn, is driven by virtue of the latitudinal radiative
 

imbalance between the incoming solar (minus the reflected
 

flux) and the outgoing atmospheric IR (emitted longwave
 

flux) radiation. Thus, in a study of the sensitivity of the
 

global climate to changes in cloudiness; it is first
 

necessary to determine the initial magnitude of such changes
 

in cloudiness on the radiation balance. Simpson (1928)
 

discussed the same problem but more from a point of view of
 

required changes in cloud amount to offset changes in
 

incoming solar radiation. Studies of this type have been
 

more recently undertaken by Schneider (1972) and Cess
 

(1976). Schneider found that a uniform change in global
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cloud amount has a significant effect on the globally inte­

grated planetary radiation budget while Cess (1976) found
 

it to have an insignificant effect. Cess went on to con­

clude that clouds may not provide a significant climate
 

feedback mechanism.
 

Cloudiness has traditionally been specified by cloud
 

type, amount and base height above the ground. Even if
 

these cloudiness specifications were exactly determined
 

over the entire planet, they would not be sufficient for
 

determining radiative properties of the clouds. Additional
 

information needed are the cloud top height and temperature,
 

the absorptance, emittance and reflectance or transmittance
 

of the clouds. These are minimum requirements. Specifi­

cation of microphysical processes and properties within
 

the clouds would aid the specification of some of the cloud
 

properties. The measurement of all aforementioned cloud
 

properties is difficult to perform at the small scale
 

(mesoscale 2 to 200 km). The technology has not been and
 

may never be implemented or totally developed to make such
 

measurementson the global scale. Yet such information
 

is needed for the specification of the radiative properties
 

of clouds.
 

The present study short-circuits the very detailed
 

measurements of individual cloud properties by determining
 

with satellite measurements the bulk effect of cloudiness
 

on the planetary radiation budget. By bulk is meant a
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taking together of all the properties without discrimin­

ating the effect of any one property. The importance of
 

the present study is in the need for the information, the
 

simplicity and accuracy of the method, and that the
 

measurements are now available to quantitatively implement
 

the method.
 

The joint Organizing Committee (JOC) of the World
 

Meteorological Organization (WMO) and the International
 

Council of Scientific Unions (ICSU) in a plan for advanding
 

our knowledge of the climate and its variations (GARP No.
 

16, 1975) proposed observational efforts in three categor­

ies. Basically the three categories were directed at des­

cribing processes relevant for modeling, testing and vali­

dating models, and long-term monitoring programs of diagnos­

tic variables for the detection of possible future climatic
 

variations. A requirement for knowing the effect of the
 

appearance and disappearance of various forms of extended
 

cloudiness on the radiation budget is identified in their
 

report (Chapters S and 6). Studies of the present type
 

have applicability to all three categories but are most
 

relevant to the latter two categories in testing and valid­

ating models, and monitoring diagnostic variables of a
 

changing climate. Besides the immediate application to
 

climate study models for initialization, constraint and
 

validation of model output, the results of the study will
 

be available to validate the radiative effect of clouds
 

from detailed measurements as they become available.
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The planetary radiation exchange with space is part­

itioned into incoming solar flux, reflected and scattered
 

solar flux back to space, and emitted terrestrial flux.
 

The incoming minus the other two component fluxes is the
 

net flux. The components, other than solar flux, have been
 

determined from measurements by earth orbiting satellites
 

and.are indicative of the fluxes at satellite height, or at
 

some lower height above which the earth's atmosphere has
 

no radiative properties significant to this study.
 

The effect of cloudiness on the radiation exchange
 

with space is determined by measurements of the radiation
 

budget components from space of a cloudy and cloud-free
 

planet earth. The difference between the two states is the
 

cloud effect for the present climate. Given the cloud
 

effect for our present cloud cover, an extrapolation is
 

made to other cloudiness states of both lesser and greater
 

cloud cover.
 

The development of the satellite measured radiation
 

budget components is discussed followed by development of
 

the method and its application,to zonal and global space
 

scales. Finally, a discussion of the sensitivity of the
 

planetary radiation budget to changes in cloudiness is
 

given so that its significance as a-climate feedback
 

mechanism may be assessed.
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2. DATA COLLECTION, PROCESSING AND ANALYSIS
 

Radiative energy flux between space and planet Barth,
 

including its atmosphere, has been determined both through
 

model calculations and direct measurement by earth orbiting
 

satellites. Previous model calculations which normally
 

relied on ground base measurements, some aircraft measure­

ments and theory gave reasonable values for the fluxes.
 

Since the middle 1960's earth orbiting satellites have been
 

measuring the fluxes. A considerable number of satellite
 

measurements collected since then have permitted the
 

development of a planetary radiation budget climatology.
 

The planetary net radiation budget is composed of
 

incoming solar flux, reflected solar flux to space and
 

emitted terrestrial flux. It is mathematically defined at
 

top of the earth-atmosphere boundary as:
 

N = (1-a) S-I (2.1) 

where:
 

a = the ratio of reflected solar flux summed over
 

all angles to the incoming solar flux
 

S = incoming solar flux bas'ed on a solar constant 

(SC) of 1360 wm -2 (after Drummond et.al. 1968) 

S = SC() 2 cosine 

I = emitted flux by earth-atmosphere system.
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2.1 	 Flux Estimates Before Satellite Measurements
 

Prior to the availability of a planetary radiation
 

budget climatology from satellite measurements, planetary
 

heat budget studies required estimates of the radiation
 

budget. Several extensive works published then computed
 

the radiative energy fluxes by the application of theory to
 

a combined set of ground based and aircraft measurements.
 

Two such studies include that of London (1957) for
 

just Northern Hemisphere and that edited by Budyko (1963)
 

for the entire planet. In both studies, the cloud effect
 

on solar and terrestrial fluxes had to be incorporated into
 

cloud-free planetary calculations. These cloud effects
 

were estimated from ground based observations of cloud
 

amount and type and aircraft and ground measurements of
 

cloud radiative characteristics.
 

2.2 	 Satellite Measurement of Planetary Radiation Flux
 

Data from satellite measurements of reflected short­

wave and emitted longwave radiances have been compiled into
 

global'radiation budget climatologies. They are in chrono­

logical order as follows: Bandeen et al. (1965), Raschke
 

and Pasternak (1967), Winston and Taylor (1967),
 

Vonder Haar and Suomi (1971), Raschke et al. (1973a),
 

Vonder Haar and Ellis (1974), and Ellis and Vonder Haar
 

(1976). The last two publications are the most extensive
 

including as many as six separate satellite measuring
 

systems. The last publication, Ellis and Vonder Haar
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(1976), is a compilation of 29 months of measurements
 

summarized into mean month, season and annual zonal mean­

meridional profiles. This satellite data base is used for
 

the present study.
 

The 29 month set is a selective compilation including
 

many, but excluding some of the satellite measurements
 

available at that time. Table 2.1 is a list of all measure­

ments comprising the set. Analyzed measurements from the
 

later two satellites, ITOS 1 and NOAA 1 are from Flanders
 

and Smith (1974). All measurements are from polar orbiting
 

satellites in sun synchronous orbits. Local daylight
 

sampling time at the equator is also given in the table.
 

There is considerable daytime diurnal variability in
 

sampling with Experimental in the morning, Nimbus 2 and 3
 

near noon and ESSA7, ITOS 1and NOAA 1 in the afternoon.
 

The publication by Ellis and Vonder Haar (1976) gives
 

a complete discussion of the data set and treats in detail
 

uncertainties in the measurements. Uncertainty in the
 

monthly means of net radiation summarized from that publi­

cation are shown in Table 2.2. The uncertainties are
 

generally less than 10wm -2 with smallest values near polar
 

regions of the winter hemisphere.
 

In the present study measurements from Nimbus 3 are
 

used separately and as a part of the 29 month set. A
 

complete description of the medium resolution infrared
 

radiometer (DIRIR) aboard the satellite is given in the
 

NIMBUS III USER'S GUIDE (1969). It is a S channel
 



Table 2.1 	 Chronological list of earth-orbiting satellites from which the present radiation 
measurements were taken. The approximate local time at which each satellite 
crossed the equator during daylight hours isgiven in parentheses. EX =Experimental.
N2=Nimbus 2, N3=Nimbus 3, E7=ESSA 7, 11 = ITOS 1 and NO1=NOAA 1. 

YEAR
 
SAMPLE
 

MONTH 1954 1965 1966 1967 1968 1969 1970 1971 SIZE
 

Jan EX (10:30) E7 (13:00) N3 (11:30) 3 

Feb EX (10:35) E7 (14:30) 2 

Mar EX (10:40) E7 (14:30) 2 

Apr N3 (11:30) 11 (15:00) 2 

May N2 (11:30) N3 (11:30) 11 (15:00) NO1 (15:00) 4 

Jun N2 (11:30) N3 (11:30) 1] (15:00) 3 

Jul EX (08:30) N2 (11:30) N3 (11:30) 3 

Aug EX (08:55) N3 (11:30) 2 

Sep EX (09:15) 1 

Oct EX (09:40) E7 (14:30) N3 (11:30) 3 

Nov EX (10:05) E7 (14:30) 2 

Dec EX (10:30) E7 ,(14:30) 2 

ANNUAL 6 3 3 0 3 9 4 1 29 



Table 2.2 Uncertainty inmean monthly net radiation (v-2) 

Latitude Jan Feb Mar Apr May Jun 

North 85: 4 5 7 8 8 11 

75 5 8 8 9 8 10 

65 8 8 7 9 8 9 

55 6 9 8 9 7 9 

45 7 8 8 10 7 9 

35 7 9 9 10 8 9 

25 8 10 10 11 8 9 

15 8 10 10 11 8 9 

5 8 10 10 11 7 8 

South 5 8 10 10 10 7 9 

15 9 10 10 11 8 9 

25 9 10 10 10 7 8 

35 9 10 10 10 7 7 

45 9 10 9 9 6 7 

55 9 10 9 8 5 10 

65 9 10 8 7 10 5 

75 10 10 7 9 4 4 

85 10 14 9 6 4 4 
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instrument with one shortwave channel (0.2 to 4.8 pm) and
 

four longwave channels spanning the spectral range 6.0 to
 

23.9 pm). Total outgoing longwave radiance was computed by
 

Raschke et al. (1973) through application of a multiple
 

least-square regression formula to radiances in each of the
 

four longwave channels. The field of view (FOV) of the
 

instrument varied from 50 km of geocentric arc distance at
 

satellite nadir to 110 km at an angle of 400 from nadir.
 

The measurements were mapped to polar stereographic and
 

mercator projections at 500 km to 200 km earth located grid
 

spacing. This gridding allows grid scale to global scale
 

studies.
 

Wide angle measurements by flat plate radiometers
 

comprise 19 months of the 29 month set. Measurement
 

resolution at the earth's surfaces varies with height of
 

the satellite. For satellite heights in this set, the
 

ground resolution of the wide angle sensors is 5900 km to
 

7770 km of geocentric arc distance in diameter. These
 

data have been mapped on a 10 degree latitude-longitude
 

grid. It is preferable to use these data for spatial
 

scale studies of the 6000 km to global scale.
 

2.3 Cloud Free Flux
 

The satellite data set is composed of individual
 

measurements of flux from cloud-free and cloudy atmospheres.
 

To assess the effect of cloudiness on the components of
 

the planetary radiation budget it is necessary to know the
 



flux components over a cloud free earth-atmosphere system.
 

Cloud free reflected and emitted flux may be determined
 

from satellite measurements. The small grid scale mapping,
 

small FOV, and daily sampling during all seasons of the
 

year by the Nimbus 3 MRIR permit a cloud-free determination.
 

These gridded data are archived as 10 semi-monthly sets
 

(table 2.3).
 

Table 2.3 - Nimbus 3 MRIR semi-monthly data sets*
 

April 16 to 30, 1969 July 1 to 15, 1969
 

May 1 to 15, 1969 July 16 to 31, 1969
 

May 16 to 31, 1969 August 1 to 15, 1969
 

June 1 to 15, 1969 October 3 to 17, 1969
 

June 16 to 30, 1969 January 21 to February 3, 1970
 

Four semi-monthly sets were selected from the 10 sets,
 

one within each season of the year, to approximate the
 

variation of the planetary radiation budget with season.
 

The four periods having the best temporal and spatial
 

sampling are: May 1-15, July 15-31, October 3-17, 1969
 

and January 21-February 3, 1970.. The last period,
 

representing winter in the Northern Hemisphere, is inade­

quate poleward of 45N due to large data void regions,
 

particulary over the North Pacific Ocean (Raschke et al.,
 

(1973b) shows global maps).
 

* From Raschke, et al,(1973b)
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2.3.1 Cloud Free Albedo
 

Cloud free albedoes may be determined at each
 

horizontally spaced grid area by selecting the smallest
 

measured albedo value from a time series of measurements
 

at that grid area. The concept assumes that a cloudy grid
 

area has a higher albedo value than does a grid area'which
 

is cloud-free. This minimum method of obtaining cloud-free
 

measurements in the shortwave portion of the solar spectrum
 

has previously been applied by Coburn (1971) and Miller and
 

Feddes (1971) to satellite measured brightness values.
 

Coburn found that a time series of 7 days was sufficient to
 

observe most grid areas as cloud-free. In the present
 

study a time series extending,the duration of each semi­

monthly period has been used.
 

One may conceive of partly cloudy cases with the
 

albedo as seen from space being less than the cloud-free
 

albedo. Two such cases could occur with scattered clouds
 

over wet soil or a vegetated region versus cloud-free, dry
 

soil or desertificated soil. Instances of this type are
 

considered to be within the noise of the cloud effect
 

study.
 

The minimum albedo is not a cloud-free albedo at all
 

grid areas because of residual cloudiness not removed by
 

the minimum method. Persistent stratus cloudiness over
 

oceans east of subtropical high pressure centers are not
 

always removed. Chen (1975) using data from a higher
 

spatial resolution instrument, the NOAA 4 scanning radio­
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meter, also observed this. Some grid areas in regions of
 

frequently occuring extratropical cyclones, such as the
 

Aleutian Islands and Icelandic region, are not observed
 

cloud-free during a semi-monthly period. Furthermore, in
 

the intertropical convergence zone with frequent and
 

persistent cloudiness, which are often smaller than the
 

spatial gridding of Nimbus 3 MRIR measurements, clouds are
 

not removed from all grid areas by minimum compositing.
 

To "clean-up" minimum albedo maps so as to obtain
 

cloud free zonal mean meridional profiles, further process­

ing was required. The initial data reduction of the MRIR
 

measurements required application of models to account for
 

anisotropic reflections from various surfaces in the FOV
 

(Raschke et al, (1973)). There were three models'called
 

cloud-land, snow, and ocean models. All three models
 

accounted for the directional dependence of reflectance on
 

solar zenith angle and bi-directional reflectance depend­

ence on position of observer and solar zenith angle. A
 

criterion for applying the ocean model, a model applicable
 

to cloud-free ocean reflectances only, was that the
 

measured reflectance be 0.10 or less. Presumably, one
 

should be able to use the solar zenith angle dependence
 

part of this model (the directional reflectance part) to
 

compute an upper limit reflectance cut off value. All
 

reflectance values above the cut off are cloudy values, and
 

thus should be eliminated from the minimum albedo maps.
 

(See Appendix A for ocean and cloud-land models.)
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Conover (1965) determined cloud-free albedoes over the
 

Gulf of Mexico to be 0.09 andover the Pacific Ocean to be
 

0.07. The values were taken as an average from the TIROS
 

VII satellite measurements at solar zenith angles between
 

3 and 42 degrees. If 0.09 is taken as the instantaneous
 

directional reflectance at a zero solar zenith angle (E=0),
 

then application of the ocean directional reflectance model
 

will overestimate the daily mean cloud-free albedo. The
 

model calculations give a daily average albedo of 0.115 at
 

the latitude of solar declination, which is significantly
 

larger than Conover's 0.09. However, using the 0.09 value
 

as an upper limit cloud-free reflectance value (at E=0)
 

allows for varying ocean surface characteristics which may
 

have larger planetary albedoes than an ocean with a smooth
 

and homogeneous surface. It also allows for uncertainty
 

in the ocean model itself. For the most part, albedoes in
 

the tropics of the minimum albedo maps, before application
 

of the upper limit cutoff value, were 0.08 to 0.10. The
 

lowest values were observed in May over the North Indian
 

Ocean as 0.06. This lowest value is at the limit of what
 

molecular scattering theory predicts for a daily mean
 

shortwave albedo over a black background with just mole­

cular scattering (after Joseph, 1971).
 

Over land surfaces a simple reflectance model was not
 

used to eliminate residual cloudiness because the spatial
 

and temporal variability of cloud-free albedo is not
 

directly dependent on the solar zenith angle. Results of
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the combined ocean and land cloud-free albedoes have been
 

reported on before without the reflectance cut off value
 

over oceans by Vonder Haar and Ellis (1975) and with the
 

cut off value by Ellis (1975).
 

Zonal mean profiles of albedo and cloud-free albedo
 

for land-plus-ocean, and ocean are shown in Figures 2.1 and
 

2.2, respectively. For the most part, the large spike in
 

albedo in the intertropical convergence zone (ITCZ) does
 

not appear in the cloud-free albedo of the ocean profile;
 

over the oceans the ITCZ cloudiness effect has been complet­

ely removed. Aibedo and cloud-free albedo is smaller over
 

* the ocean than over the land-plus-ocean. However, differ­

ences between cloudy and cloud-free albedo, Aa, are largest
 

over the oceans, particulary in the middle to high latitudes
 

of each hemisphere. The land-surface being brighter than
 

the oceanic surface gives a smaller difference between the
 

cloudy and cloud-free land-plus-ocean profiles than is
 

observed in the ocean profile.
 

Positions of the mean zonal albedo maxima in the
 

tropics are in agreement with mean brightness composites of
 

Kornfield and Hasler (1969) and relative cloud cover
 

derived from satellite brightness of Miller and Feddes
 

(1971). A narrow spike in albedo at 6N for May is from
 

cloudiness of the ITCZ at 8N in the Pacific and 5N in the
 

Atlantic. In July the peak is located at 9N with the base
 

of the peak spreading north to 30N and south to the equator.
 

This July albedo feature is characteristic of the cloudiness
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Figure 2.1.: 	 Albedo (at) and cloud free albedo (a min)
 
over land-plus-ocean.
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associated with the ITCZ at 9N in the Pacific, and at 
ION in
 

the Atlantic, the Southwestern Asian Monsoon and the stratus
 

off of the southwestern coast of North America. 
The south
 

to north albedo increase in the Southern Hemisphere
 

tropics is also due to stratus 
off of the west coast of
 

continents and a cloud band oriented northwest-to-southeast
 

off of the northeast coast of Australia. In October, the
 

predominant peak remains at 9N with a secondary ridge 
over
 

the oceans at 9S. 
 The secondary ridge is a combination
 

effect of stratus off of the west coasts of South America
 

and Africa, a cloud band off of the northeast coast of
 

Australia as noted before, and the Indian Ocean ITCZ at
 

approximately 5S. Finally, in the January-February period,
 

the difference in the cloudy and cloud-free albedo is 
less
 

in the total zonal profile over the Northern Hemisphere,
 

than over the Southern Hemisphere, due to a brighter under­

lying surface. 
Again the bright peak of the tropics is in
 

the Northern Hemisphere at 5N. However, a generally
 

elevated albedo zone 
extends from SN southwards in
 

agreement with an 
ITCZ at 7N in the Pacific, SN in the
 

Atlantic, 5S-to-los in the Indian Ocean and Malaysia, and
 

the cloud band off of the Northeastern coast of Australia.
 

The tropical cloudy albedo does not exceed 25 percent in
 

this last period, where as 
in three other periods the
 

highest values were 28 percent in May and July, and 26
 

percent in October.
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The minimum albedo method as a tool for obtaining a
 

cloud-free albedo is not valid over bright snow and ice
 

surfaces at large solar zenith angles. As was shown by
 

Hauth and Weinman (1968), using visible channel measurements
 

from the Nimbus II MRIR in June 1966 over the Greenland
 

ice cap, bidirectional reflectances from thick clouds were
 

less than from the background surface for relative azimuth
 

angles between sun and satellite greater than 90 degrees.
 

The difference increased at larger satellite zenith angles.
 

The bidirectional reflectance from clouds has. been
 

observed to be less than the background ice cap even at
 

relative azimuth angle less than 90 degrees. Figure 2.3
 

is a photograph taken from an aircraft over Southern
 

Greenland within one hour of local noon on 22 June, 19751
 

The slope of the ice cap in the area of the photograph-is
 

toward the sun and observer. The relative azimuth angle
 

between sun and observer is approximately 30 degrees.
 

The clouds cast a shadow which are the darkest areas;
 

clouds are brighter; the background ice sheet is brightest.
 

In latitude zones poleward of 65 degrees in each
 

hemisphere a snow model was applied during the'initial data
 

reduction of all Nimbus 3 measured reflectances greater
 

than 0.50 (Raschke et al., 1973b). That model assumed
 

diffuse reflection over bright snow and ice surfaces.
 

1 	Photograph taken by Dr. Stephen Cox, Department of
 
Atmospheric Science, Colorado State University.
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Figure 2.3.: 	 Photograph from aircraft showing partial
 
cloud cover above Greenland's ice sheets
 
on 22 June 1975 at 1600 GMT.
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Cloud reflectances were not distinguishable from background
 

reflectances. If such a model could isolate clouds over
 

the bright surface, it is quite likely that these cloud
 

albedoes would, after angular corrections, be lower than
 

the cloud-free albedoes. Thus all cloud-free albedoes
 

poleward of 65 degrees in latitude in each hemisphere
 

derived by the minimum method are not to be considered as
 

cloud-free albedoes.
 

Annual'profiles of albedo and cloud-free albedo were
 

computed from the four semi-monthly profiles by assuming
 

each period to be representative of a season and weighting
 

it in the annual average by the mean season solar insolation.
 

Annual profiles for total (land-plus-ocean), ocean and land
 

from Nimbus 3 data are shown in Figure 2.4. The mean
 

position of the cloudiness associated with the ITCZ at
 

7N-to-1ON is apparent in both the total and ocean albedo
 

profiles. An albedo of 23 percent in the ITCZ of the ocean
 

albedo profile and the larger area of land surface in the
 

Northern Hemisphere contribute to a brighter Northern
 

Hemisphere. Oceanic albedo is essentially the same in
 

corresponding latitude zones of each hemisphere except at
 

the latitude of the ITCZ.
 

The annual land albedo profile shows a general increase
 

in cloudy albedo from 35S to 65N latitudes. The cloud-free
 

land albedo profile shows a lesser albedo increase from
 

south-to-north, except for the 1SN-to-30N zone, which shows
 

a larger albedo increase. This zone includes the Sahara
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Figure 2.4.: 	 Annual albedo (at) and cloud-free albedo 
(a min) over land-plus-ocean, ocean and land. 
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Desert and Saudi Arabia, which are bright land surfaces.
 

The latitude of largest cloud-free albedo occurs at 20N.
 

The difference between cloudy and cloud-free albedoes over
 

land (Ac) is smallest in the 15N-to-25N zone, a zone of
 

subtropical deserts which are nearly cloud-free, except
 

during the period of the summer monsoon.
 

Cloudless albedo of the Southern Hemisphere from
 

Sasamori et al (1972) is plotted on the land-plus-ocean
 

albedo profile of Figure 2.4. The Nimbus 3 cloud-free
 

albedo is greater by 2 to 3 percent from the equator-to­

50S latitude zone. In the SOS-to-South Pole zone their
 

values are considerably larger than the Nimbus 3 values.
 

Undoubtedly this difference is due to differences between
 

the two results in the equatorward extension of the sea ice
 

around the Antarctica Continent and the albedo of the ice
 

sheets.
 

Northern and Southern Hemisphere cloud-free albedoes
 

from Nimbus 3 data are compared to cloudless albedo values
 

of London (1957) and Sasamori et al (1972) for the Northern
 

and Southern Hemisphere, respectively, in Table 2.4. The
 

Nimbus 3 cloud-free values are larger in all seasons except
 

for the Southern Hemisphere winter value which is identical
 

to the value of Sasamori et al. Annual global cloud-free
 

albedo from Nimbus 3 data is 16.9 percent as compared to
 

a global value of 14.1 percent from their combined hemi­

sphere values. London and Sasamori (1971) give an annual
 

global value of 15 percent. This suggests that the 14.1
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Table 2.4 - Cloud free albedo (percent) 

Winter Spring Summer Fall Annual 

London, 1957 
(10ON-0) 

17.3 
I 

15.0 13.5 13.4 14.7 

Nimbus 3 (90N-0)
(65N-0) 

19.1 
19.1 

18.7 
16.9 

18.2 
16.9 

17.4 
17.0 

18.3 
17.2 

Sasamori et al 
(1972)
90S-0 

13.8 14.0 14.8 11.1 13.6 

Nimbus 3 
(90S-0) 
(65S-0) 

13.8 
13.8 

16.3 
13.6 

16.6 
13.7 

13.7 
13 4 

15.5 
13.7 
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percent value should be considered as being too low. The
 

difference between the Nimbus 3 data results and results
 

of these other studies might be attributed to inadequate
 

aerosol scattering to space and inaccurate land and ocean
 

surfaces albedoes in the other studies, and residual
 

cloudiness in the cloud-free albedoes of the present study.
 

The true value of the annual global cloud-free albedo most
 

likely falls between their value and the value of the
 

present study.
 

2.3.2 Cloud Free Emitted Flux
 

The cloud-free emitted flux may be obtained in a
 

fashion similar to cloud-free albedo by selecting the
 

largest flux value at each grid area over each semi-monthly
 

period. The concept assumes that without clouds a larger
 

flux is measured from space with a standard atmosphere of
 

decreasing temperature with increasing height above ground.
 

Clouds are taken to be more opaque to terrestrial infrared
 

and near infrared flux (3 to 30 pm) than other constituents
 

are, and thus less terrestrial flux is emitted to space
 

with clouds than without them.
 

It seemed prudent to test the empirical formula, used
 

by Raschke et al (1973b) to extract total longwave radiance
 

from the four Nimbus 3 IR channel radiances, for bias error
 

with and without cloud cover. The four IR channels measure
 

radiances in the llm window, the 15 um CO2 absorption band
 

and two water vapor absorption bands, one of which detects
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emission largely from lower tropospheric water vapor. In
 

the presence of middle and upper tropospheric opaque cloud
 

cover the spectral composition of emitted flux to space will
 

be different than cloud-free emission, principally because
 

of the absence of emission from lower tropospheric water
 

vapor. If the regression formula did not adequately
 

consider this, then a bias error will be present in the
 

difference between cloudy and cloud-free total longwave
 

radiances.
 

A spectral IR model of Cox et al., (1976) was applied
 

to a model atmosphere to compute channel radiances. The
 

regression formula of Raschke et al., was applied to each
 

model computed channel radiance to determine total broad­

band longwave radiance. The regression formula results
 

were compared with broadband results of total longwave
 

radiance. This comparison showed that the least squares
 

regression formula handled the spectral radiances adequately
 

both with and without middle tropospheric clouds, so that
 

no significant bias error was introduced into the total
 

longwave flux. (The model analysis appears in Appendix B).
 

An exception to using a "maximum" IR value at each
 

grid point within a semi-monthly period is the case of
 

clouds at the top of a lower tropospheric temperature
 

inversion overlaying a cold surface. According to
 

Vowinckel and Orvig (1970) such a condition is frequent and
 

persistent over large areas of the Arctic particularly
 

during winter. Large anticyclonic areas show a substantial
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increase in radiation loss to space when clouds of this
 

type are present because of higher temperature at cloud top
 

than at the earth's surface. During the winter, in absence
 

of appreciable solar flux, overcast low and middle clouds
 

contribute to a larger radiation flux loss to space in the
 

Arctic than during cloud-free conditions. As in the cloud­

free albedo portion of this study, determining cloud-free
 

IR by a "maximum" method will be limited to the latitude
 

zone 65N-to-65S, inclusive.'
 

Besides limiting the cloud-free zonal emitted flux
 

profile to being the zonal average of "maximum" IR values
 

at each grid area, all maximum IR values over ocean regions
 

were excluded from the zonal mean whenever the ocean
 

reflectance model, as applied to minimum albedoes, indicated
 

the presence of clouds. This "throw out" criterion follows
 

from a consideration that if, over some time interval, the
 

minimum albedo is not a cloud-free albedo, then the maximum
 

IR over the same time interval is not a cloud-free IR.
 

Zonal mean meridional profiles of cloudy and cloud­

free IR are shown for each semi-monthly period in Figures
 

2.5 and 2.6 for land-plus-ocean and ocean, respectively.
 

Notable in the May and July cloud-free profiles is the dip
 

in flux values at the ITCZ. The dip in the July ocean
 

.
profiles amounts to 25 wm-2 This dip over the oceans at
 

the mean position of the ITCZ may be a result of colder
 

ocean surface temperature, or increased absorption and
 

emission at a lower temperature due to abundant water
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vapor, or cloudiness remaining in the profile. An analysis
 

of this feature is made by considering differences between
 

features at the ridge (30N) and trough (ION) of emitted
 

flux.
 

Zonal average sea surface temperatures (SST) were
 

computed from gridded data of Washington and Thiel (1970).
 

The zonal mean SST at ION is 1 to 20C larger than at 30N in
 

July. Thus emission from the sea surface will act to reduce
 

the difference in iON and 30N emitted flux. However, the
 

SST effect on the difference may be minimal because of the
 

nearly opaqueness of the atmospheric window at 8 to 12V
 

due to large optical depths of water vapor as found in the
 

tropics (Cox, 1975).
 

To demonstrate the magnitude of water vapor absorption
 

along with the change in SST on the north-south flux
 

gradient, a radiative transfer model was applied to July
 

zonal mean vertical profiles of temperature and specific
 

humidity of Oort and Rasmusson (1971) at 30N and iON.
 

The radiative transfer model is a total longwave flux model
 

(broadband infrared) reported on by Cox et al. (1976).
 

The computed flux was 10 wm-2 less at iON than at 30N. To
 

further assess the potential effect of the water vapor
 

gradient, a vertical specific humidity profile of a compos­

ited Western Pacific cloud cluster (Gray et al ., 1975 and
 

Frank, 1976) was inserted into the radiative calculations.
 

This profile is to be considered an extremely moist atmos­

phere with a good portion of the water vapor excess being
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in the upper troposphere. This new computed value was
 

23 wm 2 less than the previously computed flux value at
 

30N. Thus the water vapor absorption-emission contribution
 

to the north-to-south flux decrease appears to lie some­

where between 10 wm- 2 , a space-time mean and zonal mean for
 
-2
 

land-plus-ocean, and 23 wm 2 , a time mean of very moist
 

cloud clusters.
 

Finally, the existence of residual cloudiness, which
 

was not removed by application of this maximum IR method,
 

must be considered. Effects of optically thin cirrus cloud­

iness, which is not significantly detectable in the short­

wave portion of the solar spectrum but is detectable in the
 

IR, may not have been eliminated over the ITCZ. Theoretical
 

work of Zdunkowski et al., (1965 and 1971) indicates that
 

can re­cirrus-cloud, invisible from the ground (or haze), 


duce the total longwave flux emitted to space by 10 percent
 

(25 wm-2 He further states that his results are consist­

ent with those from radiometer measurements made in
 

tropical regions (the radiometer measurements show a sudden
 

decrease in the infrared total net outgoing flux in the
 

upper troposphere). The extent and persistence of such
 

cloudiness is not known but its presence could add to the
 

magnitude of flux decrease in the cloud free profile. It
 
-2
 

is reasonable to assume that as much 10 wm of the cloud­

free flux profile dip at the ITCZ is caused by residual
 

"haze" or thin cirrus cloudiness.
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The cloud-free profile nearly coincides with the cloudy
 

profile in the latitude zone 37N-to-55N for January-February.
 

Even though the span is 13 days, at many grid areas there are
 

less than 8 samples in time. Also the greater portion of
 

the Pacific Ocean poleward of 45N was not sampled at all.
 

Thus, the utility of the January-February period for this
 

type of study certainly must be questioned. Over cold land
 

surfaces the coincidence or near coincidence of the two
 

profiles is entirely reasonable but not over an ocean
 

surface.
 

Annual mean profiles for land-plus-ocean, ocean, and
 

land were computed by averaging the four semi-monthly
 

periods (Figure 2.7). As in the cloudy albedo, the cloudy
 

IR shows the mean position of the ITCZ to be at 7N. The
 

magnitude of the ITCZ dip is considerably reduced in the
 

annual mean because of averaging the north-south migration
 

of the zone with season. It is halved in the annual
 

profiles from July values. Similarly, the albedo increase
 

due to the ITCZ over oceans is halved in the annual mean
 

from a magnitude of 5 to 2.5 percent.
 

The validity of the cloud-free emitted flux can only
 

be suggested by radiative transfer calculations.
 

Schneider (1972) applied radiative transfer calculations to
 

a model atmosphere of the globe to obtain a cloud-free
 

2
total infrared'flux of 279 wm- . Using the same model
 

atmosphere and applying a radiative transfer model as
 

discussed in Cox et al., (1976), the cloud-free flux was
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Figure 2.7.: Annual longwave flux, (I) and cloud-free
 
longwave flux, (I max) over land-plus-ocean,
 
ocean and land.
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Computed to be a 257 wm-2in the present study. With the
 

inclusion of a mid-latitude ozone model of Krueger and
 

Minzner (1976) in the model atmosphere, the cloud-free
 

planetary emitted flux calculated with Cox's model was
 

further reduced to 251 wm
 

The application of a middle latitude, Northern
 

Hemisphere ozone model atmosphere is not a truly correct
 

application but merely an approximation to show the gross
 

effect of ozone emission on the terrestrial longwave flux
 

to space. Total column ozone varies considerably with
 

season in the higher latitudes. Not only does the total
 

column ozone generally increase from near the equator to
 

the higher latitudes, but the height of maximum ozone
 

concentration decreases from the equator to the higher
 

latitudes so as to further complicate the effect which ozone
 

has on the total longwave flux to space, Dutsch (1971).
 

In the higher latitudes over a very cold surface, such
 

as might occur early in the spring season when total
 

column ozone is largest, the ozone emission may increase the
 

longwave flux to space. Not allowing for spatial and
 

temporal variations is a shortcoming in using a one-dimens­

ional model atmosphere. A similar discussion could follow
 

on the effect of temporal and spatial variability in
 

water vapor. However, it is quite reasonable to consider
 

the ozone effect to be quite small (3 percent or less) in
 

light of what will later be shown to be the cloud effect.
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The global and annual mean value derived from the
 

"maximum IR" method is 261 wm-2 
 This value is within
 

2
4 wm- , or 1.5 percent, of the model atmosphere calculations
 

using Cox's model without an ozone profile. The semi­

monthly global satellite determined values range from
 

-
268 wm 2 in May to 251 wm-2 in the January-February period.
 

Again a severe sampling limitation both in space and time
 

of the latter period places that value in question. The
 

next lowest value is 261 wm-2 in October. A recomputation
 

of the mean, excluding the January-February period, yields
 
-2 -2
 

a global mean value of 265 wm This new value is 14 wm
 

less than Schneider's, 8 wm-2 larger than results with Cox's
 

model using the same model atmosphere, and 14 wm-2 larger
 

than results computed from Cox's model with inclusion of a
 

mid-latitude ozone profile. Quite apparent is that results
 

of the "maximum IR" method are in the middle of the theore­

tical calculations. Thus it is concluded that the maximum
 

IR method gives results which are reasonable.
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3. CLOUD EFFECTS ON THE PLANETARY RADIATION BUDGET
 

In this section the effects of "todays" cloudiness in
 

"todays" planetary radiation budget are examined. By
 

"today" is meant the period for which satellite radiation
 

budget measurements have been composited in this study,
 

1964 through 1971.
 

The heat budget of the planet is the long term control
 

of the planet's climate. The planetary radiation budget is
 

a part of the global heat budget. The role that clouds
 

play in the radiation budget partially defines their role
 

in the global heat budget. A discussion of the cloud role
 

in the global heat budget should go concurrently with, or
 

be preceeded by a discussion of its role in the planetary
 

iadiation budget. Furthermore, the role of cloudiness in
 

climate change, commonly referred to as cloud feedback
 

processes, can be considered only after gaining thorough
 

knowledge of its role in the global heat budget. This
 

section will examine the single role of cloudiness in
 

today's planetary.radiation budget.
 

The cloud amount sensitivity may be defined as
 

equation 3.1:
 

aN _ Ab - 3I (3.1) 
aAc aAc @ 

a 
by operating on equation (2.1) with aAc, a local derivative 

taken with respect to fractional cloud amount, Ac.
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This derivative, or sensitivity factor, has been discussed
 

in theoretical studies by Schneider (1972) and more
 

recently'by Cess (1976). This sensitivity factor, derived
 

from the present diagnostic study, is compared to their
 

theoretical results in the next major section. The clbud
 

effect in the planetary radiation budget, AN, for "todays"
 

radiation budget climatology is examined by differencing
 

"todays" planetary radiation budget with a cloud-free,
 

non-equilibium radiation budget. It is mathematically de­

fined as:
 

AN = AAb (3.2)-A 


AN 2 AAc 'Nwhere: 


or from equation (2.1)
 

AN = (S Aa + AI) (3.3) 

with a consideration that the solar constant does not vary
 

with changes in cloudiness. The AN should be thought of as
 

the radiative forcing in the heat budget which would exist
 

with an instantaneous removal of all clouds. It will be
 

examined on the zonal mean and global space scales, and on
 

a seasonal time scale.
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3.1 	 Zonal Mean Cloud Effect 

The a and Al profiles, where A indicates cloudy minus 

cloud-free, were shown in Figures 2.1, 2.2, 2.4, 2.5, 2.6, 

and 2.7. Resulting profiles of AN, the cloudy planetary 

radiation budget minus the cloud-free radiation budget, are 

Figures 3.1 and 3.2 for total land--plus-ocean and ocean, 

respectively, for each semi-monthly period. Figure 3.3 

shows the mean annual AN profile of total land-plus-ocean, 

ocean, and land. 

All of the profiles show that AN is less than or equal 

to zero in all latitude zones except for occasional
 

positive values in polar zones, zones comprising 10 percent
 

or less of the global area. A negative AN indicates that
 

clouds have a larger effect on AAb, the absorbed solar flux,
 

than 	on AI, the emitted terrestrial flux. Largest negative
 

values are in the hemisphere of solar declination. The
 

values become more negative going from equator to approx­

imately 60 degrees latitude in each hemisphere.
 

Contribution to AN from the two terms on the right side
 

of equation (3.3) may be determined by examining the zonal
 

profiles of Au and AI in the previous section. Now A of
 

Figures 2.1 and 2.2 increases away from the equator in each
 

hemisphere in all seasons except for the Northern Hemisphere
 

winter total land-plus-ocean profile. The profiles of AI,
 

Figures 2.5 and 2.6,show no systematic change from equator
 

poleward. Therefore, the negative increase in AN with
 

latitude in the hemisphere of solar declination is
 



39
 

JAN 21-FEB 3,1970 TOTAL MAY 1-15,1969 TOTAL2O°°..........* pjpp 200.. ..
 
200. 300QJ 

E 

-400. -o. 

" 65"45 25 5-5 -25 -45-65 -006545 25 5 -5 -25 -45-65 

LATITUDE LATITUDE 

JULY 16-31, 1969 TOTAL OCT 3-17,1969 TOTAL 
200** 200 *. . 

IoO. I00,
 

E
 

-I00.-i 4-I00. ,
 

-2006 . ... t T w , ,t- 00
 
6545 25 5-5 -25 A5-65 6545 5 5-5 -25 -45-65 

LATITUDE LATITUDE 

Figure 3.1.: Cloud effect on net flux for land-plus-ocean.
 



40
 

JAN 21-FEB 3,1970 OCEAN MAY 1-15,1969 OCEANZOO " .. . . , , . , ' 2 00 . 

tOo too. 

0. 0 

-too.-- - - -- . 

5-5 -45-65 V"45' 25 -25 
LATITUDE LATITUDE 

65 45 25 -25 65 5-5 -45-6E 

JULY 16-31,1969 OCEAN OCT 3-17,1969 OCEAN200- .. .... , , . Zoo .. .. ,, , 

500._ 100._100. -100 
E 

0. 

65 45 25 5-5 -25 -45-65 200 65 45 25 5-5 -25 -45-65 

LATITUDE LATITUDE
 

Figure 3.2.: Cloud effect on net flux for oceans.
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principally a result of the shortwave component, SAa, in
 

equation (3.3). The AN over oceans, Figure 3.2, is greater
 

than -100 wm -2 in the SO to 60 degree latitude zone of the
 

summer hemisphere. In the total (land-plus-ocean) profile
 

the symmetry with time is absent because of the asymmetri­

cal distribution of land surface between the two hemispheres.
 

The largest negative value is -50 wm-2 in the Northern
 
-2
 

and July periods, and -80 wm
Hemisphere during the M-lay 


to -100 wm -2 in the Southern Hemisphere during the October
 

and January-February periods, respectively. A comparison
 

of the ocean and land profile in Figure 3.3 shows a largqr
 

cloud effect in AN over ocean - a manifestation of a lesser
 

41bedo over cloud-free-ocean than over land.
 

Also of considerable'interest is the cloud effect in
 

the tropics. A smaller AN in tropical latitudes than in
 

middle latitudes illustrates a reciprocal nature of the
 

absorbed and emitted flux above clouds in the tropics.
 

This has also been noted by Winston (1967) for instant­

aneous satellite measurements. Increased reflected flux
 

in the presence of a cloud is nearly offset in the net
 

flux by a corresponding decreased emitted flux over
 

tropical oceanic zones. Examination of oceanic AN profiles
 

in Figure 3.3 show nearly complete compensation in May
 

= 
at 0-to-SS (AN -3wm -2). In the same zone the AN for
 

July is -8 wm -2. This zone of.smallest difference moves
 

northward to 0-to-SN in dctober (-8 wm -2); in January­
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February it is at SN-to-1SN. All of these minimum
 

differences occur in the hemisphere opposite the solar
 

declination where incoming solar flux and SAa decrease to
 

nearly balance AI.
 

Adjoining the minimum AN is a rather abrupt increase
 

to'a larger negative AN value. The position of this
 

increase is precisely the mean position of the ITCZ as
 

identified in thE proceeding section. The largest increase
 

in the ITCZ anomaly, over what would exist with a smooth
 

north-to-south profile across the zone, occurs in July. It
 

-Z.
is approximately 25 wm Now this value is of the same
 

magnitudeas the observed decrease in cloud-free IR over
 

the ITCZ (Figure 2.6). As discussed in the previous
 

section, this anomalous dip in cloud-free IR may be
 

accounted for by both the presence of abundant water vapor
 

and a haze type, or nearly invisible type, of cirrus cloud­

iness which affects only the cloud-free IR.
 

In polar zones during the polar night, AN is positive.
 

The presence of clouds act to decrease the emitted flux
 

loss to space. This holds true except for low and middle
 

cloudiness formed just above a surface inversion in which
 

case the opposite may be true. If the vertical lapse of
 

temperature from the ground to some height above ground is
 
.aT
 

greater than zero, !- > 0, then clouds at the inversion
 

top will increase the emitted flux loss to space. Over ice
 

free oceans, such an inversion may not be present because
 

the free air temperature is most often lower than the
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temperature of the ocean surface. A crossover to positive
 

AN occurs, as a valid result, at latitudes 52S and 57N in
 

the July and January-February ocean profiles, respectively.
 

It cannot be ascertained that AN should remain positive
 

all the way to the polar night pole because of the possible
 

existence of strong surface inversions overlying ice and
 

snow surfaces. If the effective cloud tops are warmer than
 

the ground, then AN would be negative in the polar night
 

zone.
 

The annual mean profiles in Figure 3.3 show that for
 

all latitudes within the 65N-to-65S zone, AN is negative.
 

The minimum cloud effect in the total land-plus-ocean
 

-
 a maximum value of -49 wm-2
profile is -7 wm 2 at 12N with 


at 55S. Asymmetry in AN between the two hemisphere's is
 

largely the result of asymmetry in land mass distribution.
 

The annual mean ocean profile is quite symmetrical about
 

the equator. Thus, the cloud effect on the planetary
 

radiation budget over oceans appears to be the same in both
 

hemispheres. The annual mean AN profile over land surface
 

lacks symmetry between hemispheres largely because of
 

differences in land surface albedo. In the zone 30N-to-15N,
 

-
AN is less than 10 wm 2 because of bright and relatively
 

cloud-free land surfaces.
 

3.2 Global an4 Hemispherical Mean Cloud Effect
 

The global and hemispherical mean cloud effects are
 

summarized in Table 3.1. Seasonal AN values were computed
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by applying a seasonal solar insolation to equation (3.3)
 

with the semi-monthly albedo and emitted flux values both
 

taken as being representative of seasonal values. The
 

annual value is merely the average of the four seasonal
 

values. The values in Table 3.1 are not quite global and
 

hemispherical, but are limited to 65N-65S and 0-65 degrees
 

latitude, respectively, because of uncertainty in the
 

cloud effect polewardsX of 65 degrees latitude.
 
-2 

The annual mean global value is -20 wm indicating 

that global cloudiness has a larger effect on absorbed solar 

flux than on emitted terrestrial flux. Instantaneous ­

removal of clouds over the 65N-65S latitude zone would have 

an immediate effect of a net gain of 20 wm-2 in the global 

planetary radiation budget. The cloud effect is 9.5 wmn2 

larger in the Southern Hemisphere than the Northern
 

Hemisphere or, in other words, the Northern Hemisphere's
 

cloud effect is only 62 percent of the Southern Hemisphere's.
 

The cause of the asymmetry between the values of the
 

two hemisphere's is elucidated by Table 3.2.1 Each latitude
 

zone is considered to be composed entirely of ocean so that
 

over a 65N-65S oceanic zone an annual mean AN of -30.6 wm
-2
 

would be observed. This value is 1.5 times larger than the
 

landplus-ocean value of Table 3.1. Thus, whether clouds
 

are over land or water is of significant concern in
 

studying the cloud effect on the planetary radiation
 

budget. Furthermore, the difference in annual means of the
 

two hemispheres in Table 3.2 is less than 4 wm-2 and of
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Table 3.1 - Cloud effect in net flux (AN) for land-plus-ocean (wn-2) 

MAM JJA SON DJF ANNUAL 

65N-65S -14.0 -16.0 -23.5 -26.7 -20.0 

65N-0 -14.2 -23.5 -12.0 -11.3 -15.3 

65S-0 -13.8 - 8.5 -34.9 -42.0 -24.8 

Tabie 3.2 - Cloud effect in net flux (AN) for oceans (wm-
2 ) 

MAM JJA SON DJF ANNUAL
 

65N-65S -30.1 -29.2 -30.0 -33.2 -30.6
 

65N-0 -44.8 -48.2 -18.0 -19.1 -32.5
 

65S-0 -15.3 -10.2 -42.0 -47.2 -28.7
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opposite sign to the difference in annual mean hemispherical
 

totals of Table 3.1. The difference between ocean values
 

is most likely not significant or real in light of limited
 

ocean sampling in higher latitudes of the Northern Hemi­

sphere, butthe difference in annual hemispherical values
 

of Table 3.1 is undoubtedly due to differences in land­

ocean distribution between the hemispheres. Also of
 

interest is the variation in global values with season.
 

For the land-plus-ocean values this variation amounts to
 

12.7 wmC2 whereas over oceans it is 4 wm 2 indicating that
 

seasonal variations in AN are principally a result of
 

asymmetry in land and ocean distribution. The season with
 

largest global cloud effect is DJF. Largest negative
 

values appear in the summer season with the southern
 

summer value being nearly twice as large as the northern
 

summer value.
 

3.3 Seasonal Variations In the Cloud Effect
 

Seasonal variations, are examined both qualitatively
 

and quantitatively in zonal profiles and global mean values.
 

3.3.1 Zonal Variations
 

Time-latitude displays of zonal mean profiles of
 

albedo, longwave emitted flux and net flux are shown in
 

Figure 3.4. These are from the composited 29 months set
 

of satellite measurements discussed in Ellis and Vonder
 

Haar (1976). Also shown in Figure 3.4d is a time-latitude
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Figure 3.4.: 	 Time-latitude analysis of zonal mean profiles
 
from the 29 month set: (a) albedo, (b) long­
wave flux, (c) net flux and Cd) cloud amount.
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display of tropical cloud amount from Murakami (1975).
 

Large seasonal variations in albedo and longwave flux occur
 

in the 30N-30S latitude zone. Of particular interest is
 

the albedo increase in the Equator-to-20N zone from a low
 

value of 24 percent in May to 28 percent in August,
 

followed by an abrupt decrease in October to 25 percent
 

(Figure 3.4a). Undoubtedly the variation is associated with
 

the cloudiness change during the Southwest Asian Monsoon.
 

The same seasonal variation appears in cloud amount.
 

Similarly, south'of the equator in the tropics, a variation
 

of lesser magnitude and of opposite sign takes'place.
 

In latitude zones both north and south of the tropics,
 

large changes in albedo take place throughout the year.
 

By August and September the extratropical zones of the
 

Northern Hemisphere attain their minimum albedo. Undoubt­

edly, this is an effect of a minimum in ice-snow and cloud
 

coverage associated with the northward retreat of the polar
 

front and a decrease in cyclogensis. At 45N latitude the
 

seasonal variation amounts to 17 percent while at 45S
 

latitude the variation is but 7 percent.
 

It must be recalled that these profijes are greatly
 

smoothed in the north-south direction because the individual
 

measurements were resolved at a geocentric arc distance at
 

the earth's surface as large as 7770 km for some satellites,
 

while as small as 50 km for others (Ellis and Vender Haar,
 

1976). Some of the smaller wiggles in the isolines are
 

artifacts of the satellite sampling. The emitted longwave
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flux of Figure 3.4b shows seasonal variation but of opposite
 

sign to the albedo at corresponding temporal and spatial
 

positions.
 

Net flux time-latitude depiction, derived from the
 

albedo, emitted longwave flux and solar insolation, does not
 

show the tropical zone anomalies as previously discussed
 

(Figure 3.4c). To a large extent, the albedo and longwave
 

anomalies largely cancel each other in the net. The over­

whelming seasonal varying pattern in the net follows closely
 

the pattern of extraterrestrial solar flux as shown in
 

Sellers (1965).- Seasonal variations due to cloud effects
 

in net radiation as observed in zonal mean profiles are
 

apparently quite small compared to the effect of the north­

south march of extraterrestrial solar flux with time.
 

3.3.2 Global Variations
 

The effect of clouds in the qnnua1 (intra-annual)
 

variation of the global net radiation budget is assessed
 

by two methods. The first is an indirect method which
 

evaluates contributions to the annual variation from other
 

than the cloud contribution. The residual variation not
 

explained by the other than cloud contribution is taken to
 

be the cloud contribution. The second method, a direct
 

method, examines the annual variation of the globally
 

integrated values from the four semi-monthly zonal profiles
 

of cloud effects. Each of the methods are discussed in
 

order, first the indirect and then the direct.
 



51
 

3.3.2.1 Indirect Analysis Method
 

The radiation budget components of incoming solar flux
 

and outgoing reflected shortwave and longwave flux were
 

globally integrated and composited into monthly mean values
 

from the 29 month satellite data set compiled by Ellis and
 

Vonder Haar (1976). A discussion of the integration method
 

along with a monthly mean tabulated listing of the global
 

incomilg solar insolation, albedo, reflected shortwave flux,
 

outgoing longwave flux and net flux are given in Appendix C.
 

Global values of the planetary net radiation flux, the
 

composited mean values (N) and the individual monthly values,
 

are plotted in Figure 3.5a. There is a considerable amount
 

of month-to-month variability in both the composited mean
 

curve and in the envelope of all values. Even though the
 

as large as 10 wm-2
uncertainty in the global values is 


(Ellis and Vonder Haar, 1976), which is more than one half
 

the amplitude of the annual variation, the fact that the
 

shape of the envelope and the composite curve are so very
 

similar gives credibility to the phase and amplitude of
 

the annual variation. Another way of looking at the
 

credibility of the annual variation is to observe that the
 

variability of the individual monthly values about the
 
-2
 

composite curve does not exceed ± 12 wm for any monthly 

period, while the variability of the individual monthly 

-values about the annual mean value is greater than ± 25 wm 2 .
 

-2
The difference, 13 wm , can be attributed to annual variation.
 

The credibility of annual variation in global net radiation
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Figure 3.5.: Annual variation in global net flux.
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is further validated by planetary heat budget studies.
 

Annual variation in the rate of change in heat content
 

(storage) of the planet Earth was shown by Ellis et al
 

(1978) to be of the same amplitude and phase as the seasonal
 

variation in the planetary net radiation budget. The
 

global heat storage had been computed from independant,
 

in situ measurements of temperature.
 

That there should be an annual variation in the global
 

planetary net radiation budget was discussed from a theor­

etical viewpoint by Simpson (1929) prior to the advent of
 

artificial earth satellites for its measurement. Raschke
 

(1973) concluded from the data of the medium resolution
 

infrared radiometer (MRIR) onboard the Nimbus 3 satellite,
 

that during the ten semi-monthly periods examined, there
 

was appreciable annual variation. The Nimbus 3 values,
 

which are included in the composite profile, are uniquely
 

identified in Figure 3.5a. Also identified are preliminary
 

values from the wide angle earth radiation budget sensor
 

aboard the Nimbus 6 satellite (Smith et al, 1977). The
 

Nimbus 6 data have not been included as part of the
 

composite data set, since they are preliminary values.
 

The agreement between the Nimbus 3 and Nimbus 6 value is
 

suprisingly good.
 

Annual variation in the planetary radiation budget is
 

hypothesized to receive principal contributions from the
 

following:
 

1. Annual variation in the earth-sun distance.
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2. 	A semi-annual cycle in the global albedo because
 

of enhancement from the highly reflective polar
 

regions near the time of solstice.
 

3. 	Annual variation in the global albedo because of
 

the seasonal advance and retreat of sea ice and
 

continental snow cover.
 

4. 	Annual variation in the longwave emission to space
 

because of unequal temperature response between
 

the land and water surfaces and the assymetrical
 

distribution of these surfaces between the
 

Northern and Southern Hemispheres.
 

5. 	Seasonal variation in the distribution and amount
 

of global cloud cover.
 

The orbit of the planet Earth about the Sun is
 

eccentric. The solar flux received by the planet as it
 

moves in its orbit varies as a sine wave with a period of
 

one year because of the eccentric orbit. The amptitude in
 

annual variation of globally integrated solar flux received
 

by the earth is approximately 11 wm-2 (assuming a solar
 

constant equivalent to 1360 wm-2). The annual cycle was
 

removed from the incoming flux and the global net radiation
 

was recomputed. These artificial global net radiation
 

values are plotted as a composited mean curve, Nr, in
 

Figure 3.5b. The difference between the N and Nr curves
 

illustrates the contribution to the annual variation in net
 

radiation flux from the annual variation in incoming solar
 

flux. The contribution is slightly less than one half the
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amplitude of annual variation of the globel net flux.
 

Therefore the annual variation in global net radiation is
 

only partially explained by the contribution from solar
 

flux.
 

The other two components of the global net radiation
 

balance, the global albedo and global outgoing longwave
 

flux, will be examined for annual variation. The global
 

albedo composited mean profile and the envelope of
 

individual monthly values are plotted by month in Figure 3.6a.
 

.There is but one value plotted for five of the monthly
 

periods, because the albedo values from the ESSA 7
 

satellite data were excluded from this analysis (discussed
 

in Appendix C). The global albedo values from the prelim­

inary Nimbus 6 data set are plotted, but are not included
 

in the composite curve. The Nimbus 6 albedo values are
 

systematically larger than the composite curve, but
 

generally show phase agreement with the composite. Largest
 

discrepancies in month-to-month variation between the two
 

curves appear in the months of March and November.
 

The contribution to the annual variation in the global
 

albedo due to north-to-south differences in the earth­

atmosphere planetary albedo can be assessed, ie. the
 

snow and ice covered polar latitude zone i-n each hemisphere
 

(60 to 90 degrees) has a larger zonal mean albedo than the
 

tropical latitude zone (20N to 20S degrees latitude)
 

(Vonder Haar, 1968; Vender Haar and Soumi, 1971; Ellis
 

and Vender Haar, 1976).
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Figure 	3.6.: Annual variation in global albedo.
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The annual albedo in each latitude zone (c(¢)) can be
 
I 

computed with equation (3.4)
 

12 months
 

_ O(¢t) s ( ,t) dt (3.4) 

s(4,t)dt
 

where:
 

= the zonal mean planetary albedo
 

s = incoming solar flux
 

t = time in months
 

= latitude
 

The global albedo may now be computed for each month,
 

assuming that the annual albedo in each latitude zone
 

prevails for that month,
 

a
u(o)s (¢,t)d(sin € 

aj = -v/2 (3.5)
 
s(4,t)d(sin p)
 

The a values are plotted by month along with the actual
 

composite global albedo values (a) in Figure 3.6b.
 

The ai curve shows semi-annual periodicity with maxima at
 

the summer and winter solstice and minima at the vernal and
 

autumnal equinox. The largest maxima occurs at winter
 

solstice. The difference between maximum and minimum
 

values amount to 1.5 percentage values. The at annual
 

variation contributes approtimately 4 wm-2 to the annual
 

variation in the absorbed shortwave flux.
 



The ai contribution to the variation in absorbed shortwave
 

flux is negative near winter solstice. The earth is nearest
 

to the sun several weeks later (perihelion) when the solar
 

flux contribution is greatest. Six months later, when
 

the earth is farthest from the sun, the a- contribution is
 

again negative. Thus, the positive solar contribution to
 

-
the absorbed shortwave flux (+8 wm 2) is diminished by
 
-2 

2 WM near winter solstice, while the negative solar
 

-
contribution to absorbed shortwave flux (-8 wm 2) is
 
-2
 

amplified by an additional 2 wm
 

The annual variation in ai accounts for one half the
 

variation in a. The residual albedo variation, 1.5
 

percentage values (4 wm-2 ), can be attributed to varying
 

albedo within the latitude zones. Sampling bias, direct­

ional reflectance properties of an earth-atmosphere column,
 

changes in cloud, snow, ice and vegetation cover contribute
 

to the temporal albedo variation within latitude zones,
 

and thus to the residual variation in global albedo. The
 

cloud-effect appears to be less than 4 wm-2 in the annual
 

variation of the global shortwave component of net radiation
 

provided that the other temporally varying contributors are
 

not masking the cloud effect.
 

The global integrated emitted longwave flux composite
 

curve (I) is plotted in Figure 3.7a. Also shown is the
 

range of values within each month and the individual
 

Nimbus 3 values. The Nimbus3 values fall along a curve
 

which can be fitted with an annual wave. Raschke (1973)
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Figure 3.7.: Annual variation in global longwave flux.
 



60
 

has also shown the annual wave in Nimbus 3 measurements.
 

Preliminary results from Nimbus 6 ERB wide angle measure­

ments, which are not i-ncl-uded in the 29 month averages,
 

agree quite well with the Nimbus values, but with smaller
 

amplitude. This agreement suggests that the global mean
 

values from the 29 month composite may have a sampling
 

bias.
 

A fourier analysis applied to the 29 month values
 

decomposed the time plot into an annual cycle (Ia) and
 

higher frequency cycles. Figure 3.7b shows the residual
 

emitted flux (I') after removal of an annual cycle from I.
 

Along the abscissa are bracketed daylight sampling times
 

during which the measurements wore taken. Now if it is
 

assumed that global planetary emitted flux values increase
 

from the morning to afternoon, then the sign of the I'
 

perturbations agree with the sampling times. In other
 

words, there is a possibility that a duirnal sampling bias
 

is present in the composite 29 month longwave flux data,
 

The annual cycle in the satellite composited mean
 

values of outgoing longwave flux is shown as I in Figure
 

3.7c. Shown in the same figure is I(AT), a representation
 

of the annual cycle in global surface and surface air
 

temperature as it would be measured with a radiometer at
 

the top of the earths atmosphere in the absence of com­

pensations by the earths atmosphere.
 

Global integration of the combined ocean surface
 

temperature (Washington and Thicl, 1970) data and land
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surface air temperature data (Crutcher et al., 1970 and
 

Taljaard et al., 1969) showed an annual cycle in the
 

global surface temperature with amplitude of ±2 0c. The
 

effect of the annual cycle in global surface temperature
 

on the outgoing longwave flux to space was assessed with
 

the aid of the radiative transfer equation. The equation
 

in a broadband flux form for an atmosphere in thermodynamic
 

radiative equilibrium containing no scattering is,
 

F(Tr) = saTs 4 T + ft [cT(z) @Z (3.6) 

where s, the surface emissivity will be assumed to be equal
 

to unity, a is the Stefan-Boltzmann contact, T is temper­

ature, Ts is the transmittance of the atmosphere to
 

upwelling surface flux, z is height and Zt is the height
 

of the top of the radiating atmosphere. Equation (3.6)
 

may be represented by,
 

F(Tr) = F(Ts)r s + F(Ta) (3.7)
 

where F is the upward directed longwave flux at the top of
 

the atmosphere at the effective blackbody radiating
 

temperature of the earth-atmosphere system (TY), the surface
 

temperature (Ts) and the atmospheric temperature (Ta).
 

Divide equation (3.7) by F(Ts) to get,
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F(Tr) = + F(Ta)
 
F(Ts) F(Ts) (3.8)
 

It will be assumed, as a first order approximation to the
 

radiative processes, that ts and the ratio F(Ta do not
 
F-(Ts)
 

change with small changes in surface temperature. Call
 

the right hand side of equation (3.8) K, and differentiate
 

with respect to surface temperature,
 

dF('Tr) = K4oTs3 (3.9)
 
dTs
 

where:
 

K Im (3.10)
(jTs
 

with Im defined as F (Tr). Combine equations (3.9) and
 

(3.10) so that,
 

dIm 41m (3.11)

dTs Ts
 

The annual global longwave flux to space, Im, from the 29
 
-2
 

month satellite data set is 235.7 wm , while the annual
 

global surface temperature is 288 0K. Thus,
 

dIm 3.3 wm-2 (3.12)
 

dTs
 

and K is equal to 0.60.
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It is known that T 4 is approximately linear in T for the
 

normal range of atmospheric and surface temperatures, so
 

that no serious error is introduced by applying equation
 

(3.12) over the 40K range of global surface temperatures. 

If e in equation (3.6) were taken to be 0.9 rather than 

1.0, then would be 3.7 wm-2 rather than 3.3 wmdTs 
Either value is sufficient for the purpose of this 

discussion.
 

The effect of the annual wave in global surface and
 

surface air temperature was inserted into the annual global
 

longwave flux at monthly time intervals (t) by,
 

I(t) = Im + d- AA Ts(t) (3.13)
dTs
 

where ATs is the algebraic difference between monthly mean
 

Ts and the annual mean Ts. I(t) is plotted as I(AT) in
 

Figure 3.7c. Both I(AT) and Ia are of the same amplitude
 

but differ in phase by one month. It should be noted that
 

I(AT) has the same phase as the annual profiles of I for the
 

Nimbus 3 and 6 satellites (Figure 3.7a). The equivalence in
 

phase between the I(AT) and the Nimbus satellite profiles
 

and the phase difference between I(AT) and Ia further
 

supports the argument that the composited mean profile in
 

Figure 3.7a may contain temporal sampling bias. If one
 

concludes that all of the I'(Figure 3.7b) and the phase
 

shift in wave number one of I are due to sampling bias,
 

then one must also conclude that there is no apparent
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effect on the annual variation of I which is due to an
 

annual variation in cloudiness, ie. month-to-month
 

variatiQns in cloud amount, and/or effective radiating
 

temperatures. However, cloudiness modulates the amplitude
 

of I even though cloudiness may not show a month-to-month
 

effect on I. It is evident from equation (3.6) that TS,
 

the tramissivity of the atmosphere to the net upward long­

wave flux from the earth's surface, varies directly with
 

large changes in cloud amount and changes in the trans­

parency of the clouds to the upwelling flux. If the effect
 

of cloudiness on Ts and on the second term of equation (3.6)
 

is neglected, then the elimination of all cloudiness will
 

increase rs and thus increase the magnitude of response in
 

F(Tr), or I, to an annual wave in global surface temperature.
 

The converse argument with an increase in cloud amount (all
 

other cloud properties held constant) shows that the annual
 

amplitude in I will be less. The magnitude of the cloud
 

effect on the amplitude of the annual wave quantitatively
 

will be shown as part of the discussion on the direct
 

method for resolving the effects of clouds on the global
 

planetary radiation balance (Section 3.3.2.2).
 

The planetary net radiation curve has been reconstructed
 

in Figure 3.8 using just the annual cycle of the longwave
 

flux (Ia) from Figure 3.7c as the longwave contribution to
 

the net radiation flux. (Note: the phase of the net radia­

tion curve in Figure 3.8 would be shifted one half month
 

later into the year if the I (AT) curve were used rather than
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the la curve). A comparison of the curves of Figure 3.Sb
 

and 3.8 reveals that the principal differences occur in
 

the months of March and April. Both curves have the same
 

general shape over the other monthly periods.
 

The indirect method of examining the month-to-month
 

variations in the cloud effect on the global planetary
 

radiation budget has shown the cloud effect to be small.
 

No annual variation in the cloud effect was discerned in
 

the composited global longwave flux. A residual of 4 wm­

in global absorbed shortwave flux may account for the
 

effects of cloud, ice-snow and directional reflectance on
 

the annual variation. However, there could be contributions
 

to the annual variation of the net radiation flux from
 

sources other than clouds which are of the same magnitude
 

but opposite in sign to the cloud contribution. The cloud
 

effect would be masked in such cases.
 

3.3.2.2 	 Direct Analysis Method
 

A second method, a direct analysis of the globally
 

and hemispherically integrated cloud effects, will be used
 

to assess the cloud effect on the annual variation of the
 

net radiation budget. Global and hemispherical values of
 

the cloud effect on the albedo (Aa) longwave flux (AI) and
 

net radiation flux (AN) were derived by integrating the
 

zonal profiles of the cloud effects from Figures 2.1, 2.5
 

and 2.8, respectively. The integrated values are shown
 

in Tables 3.3, 3.4 and 3.5. The cloud effect on the net
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Table 3.3 - Cloud effect in net flux (AN) semi-monthly periods
 
for land-plus-ocean (wn!2)
 

MAY JULY OCT. JAN-FEB 

65N-65S -12.0 -15.8 -23.1 -26.7 

65N-0 -18.6 -23.8 -13.1 -11.7 

5SA0 - 5.3 - 7.8 -33.2 -41.6 

Table 3.4 - Cloud effect inalbedo (AN) for land-plus-ocean 

MAY JULY OCT. JAN.-FEB. ANNUAL
 

65N-65S +0.112 0.105 +0.118 +0.112 +0.112 

65N-0 +0.108 +0.105 +0.093 +0.084 +0.100 

65S-0 +0.119 +0.105 +0.137 +0.127 "0.125 

-2)
Table 3.5 - Cloud effect inemitted flux (Al) for land-plus-ocean (wm


MAY JULY OCT. JAI.-FEB. ANNUAL 

6SH-6S -27.1 -19.9 -19.5 -14.1 -20.1
 

65N-0 -28.5 -22.6 -17.5 -10.6 -16.8 

65S-0 -25.7 -17.3 -21.5 -17.6 -20.5 
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radiation is related to the cloud effect on the radiation
 

budget components (the albedo and longwave flux) by
 

equation (3.3).
 

The cloud effect on the albedo increases in both.
 

hemispheres going from the winter season to the spring
 

season (Table 3.4). This increase is probably related to
 

the increase in illumination of the clouds and the ice-snow
 

areas of the higher latitudes. A decrease, similar in
 

magnitude to the increase, occurs in both hemispheres going
 

from the summer season to the fall season. The decline in
 

the cloud effect on the albedo continues into the winter
 

season of each hemisphere. The sign of the change in the
 

cloud effect on the albedo is the same for the globe and the
 

Southern Hemisphere. Thus, the cloud effect on the albedo
 

of the Southern Hemisphere is predominant in the global
 

integral over the same effect of the Northern Hemisphere.
 

The predominance of the Southern Hemisphere cloud effect is 

most apparent in the annual mean values.
 

The annual variation in Ac may be expressed as a
 

departure from the annual mean (A),
 

Aa' = Aa - Aca (3.14)
 

so that Ad varies as ±0.007, or ±2.4 wm -2 in reflected flux.
 

This variation is small, and does not significantly differ
 

-
from the residual value of ±4 wm 2 derived by the indirect
 

method. Thus the annual variation in the global albedo due
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-2
wm
 
to cloud effects appears to contribute less than ±3 


to the annual variation in the net radiation flux.
 

The annual variation in emitted longwave flux due to
 

clouds can be expressed in the same fashion as,
 

A' = AI- A (3.15)
 

where A-Y is the annual mean cloud effect in the longwave
 
-2
 

flux. The AI' variation is slightly less than ±7 wm
 

The A' values have been added to the Ia value and are
 

plotted on Figure 3.7c as plus signs for a comparison with
 

the annual variation of the longwave flux. Notice that
 

the AI' values are of the same magnitude as the annual
 

variation (Ia) but are generally of opposite sign. Of
 

course, the four points along the curve are hardly suffic­

ient to evaluate the annual variation in AI'. Since AI'
 

is of opposite sign to Ia, the cloud effects act to reduce
 

the amplitude of Ia.
 

Table 3.6 shows AI values for a globe hypothetically
 

covered entirely by ocean. The table values were generated
 

by globally integrating the zonal AI ocean profiles of
 

Figure 2.6. Note that a global average AI' from Table 3.6
 
-2
 

has an annual amplitude of less than ±2.5 wm and is not
 
-2
 

in phase with the AI' of ±7 wm derived from Table 3.5.
 

The larger A' of Table 3.5 is largely a result of the
 

asymmetry of the land-ocean distribution between the
 

Northern and Southern Hemispheres. Indeed, it is reasonable
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Table 3.6 - Cloud effect in emitted flux (AI) for oceans (wn-2) 

MAY JULY OCT. JAN-FEB 

65N-65S -20.9 -21.7 -23.1 -18.8 

65N-0 -15.6 -23.6 -22.4 -14.2 

65S-0 -26.2 -19.8 -23.9 -23.5 
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to conclude that the removal of clouds over the continental
 

regions would increase the amplitude of Ia due to an
 

increase in the atmospheric transmittance (Ts in equation
 

3.6) to thermal radiation upwelling from the earth's
 

surface, ie. an increase in K of equation (3.9). It is not
 

suprising that clouds act to dampen the annual variation
 

in emitted longwave flux. The AI variation derived from
 

Table 3.5, may be actually less than 7 wm -2 because of a
 

data sampling deficiency in the January-February data. 

Elimination of that semi-monthly period from the study will 
-2 

reduce the variability of A' to less than ±4 wm . This 
-2 -2 

4 wm added to the 6 wm amplitude of Ia is equivalent to 
-2
 

10 wm amplitude. This is the total annual variation
 

which would be obtained apparently with an instantaneous
 

removal of all clouds. This is the same annual variation
 

which would be computed by equation (3.9) with K equal to'
 

1.0. Thus, the annual variation of the longwave flux
 

(in the absence of all clouds) is nearly equivalent to the
 

upwelling longwave flux at the earth's surface. The
 

results of this direct analysis indicate that as much as
 

-2 
±4 wm of the I' annual variation shown in Figure 3.7b 

can'be accounted for by annual variations in cloud effect 

on Ia. 

Annual variations in the planetary net flux due to
 

annual variations in cloudiness can be elucidated by plotting
 

N', the departure of semi-monthly values from the annual mean
 

net flux (N) with AN' for the four semi-monthly periods.
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The symbols are defined as:
 

AN' = AN - EN (3.16) 

and N' = N-N (3.17) 

Figure 3.9 shows that the two plots are nearly 180 degrees
 

out of phase. The difference between N' and AN' in the
 

I -2 -2
 
January-February period is 18.3 win , while it is -18.1 wm 

in the July period. The near equivalency in absolute 

magnitude illustrates an element of symmetry during the 

year. It also illustrates that the amplitude in N', 
-2 -2
 

±13 wm , could be increased to ±18 wm with an instant­

aneous removal of all clouds (without a simultaneous
 

adjustment to a condition of radiative equilibrium).
 

In summary (for the 29 month period studied) the
 

annual variation in the global planetary net radiation
 

budget due to the effect of clouds is small. The cloud
 

effect on the annual variation of shortwave absorbed flux
 

is less than ±3 wm 2, on the emitted longwave flux it is
 
-2 -2 

less than ±6 wm (and most probably less than ±4 wm in
 

ihe longwave component). Clouds generally act to reduce
 

the amplitude of the annual variation in the nct radiation
 

budget.
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Figure 3.9.: 	 Annual variation in net flux (N') and in the
 
cloud effect in net flux (AN') for four semi­
monthly periods.
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4. 	SENSITIVITY TO A UNIFORM CHANGE IN CLOUD AMOUNT
 

A local uniform increase in cloud amount at all
 

altitudes without a change in other cloud characteristics,
 

including cloud top height, will give rise to an increase in
 

the shortwave flux reflected to space and a decrease in
 

the longwave flux emitted to space. The magnitude of
 

change in the individual reflected and emitted flux
 

components determines the magnitude of change in the plane­

tary net radiation budget. It was established in the
 
AN
 

previous section that AN, or AAc AN is negative and
 
-2 

equivalent to -33 wm for the planet as a whole with the
 

present cloudiness climatology. The sensitivity to uniform
 
aN
 

changes in cloud amount, LNc' will now be established so
 

that a measure of the magnitude of the cloud effect may be
 

determined for various other cloud amounts. However, it
 

must be remembered that 'N may not be valid for other
MAc
 

climate states which have a mix of clouds with radiative
 

characteristics different than "today's". These charact­

eristics include:height, the vertical and horizontal
 

distribution of finite clouds, the land-ocean spatial
 

distribution, the cloud reflectance, transmittance and
 

emittance. Given the same radiative characteristics as
 

3N
"today's" clouds, then 
range of Ac values. The 

- is 

Ac 

a constant over the full 
will be examined at both zonal 

and global mean scales. 
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4.1 	 Zonal Sensitivity
 

The net flux sensitivity to cloud amount, hAcjas
 

been written as s by both Schneider (1972) and Cess (1976)
 

so that equati6n (3.1) is simply,
 

aAb I 	 (4.1)

Ac A~c
 

.The denominator in equation (4.1) is equivalent to Ac,
 

if the derivatives are taken as the difference between
 

"today's" cloud amount and cloud-free conditions. Since
 

AN of equation (3.3) was derived as the difference between
 

the cloud-free and "today's" cloudy net radiation budget,
 

equation (4.1) is equivalent to equation (4.2) for uniform
 

changes in cloud amount,
 

AN 	 (4.2)

Ac
 

4.1.1 Cloud Amount
 

Zonal mean profiles of Ac are available from a number
 

of studies; profiles have been deduced from satellite
 

measurements and ground based observations. In keeping
 

with a study based on satellite measurements, Ac is taken
 

from the former source. The global coverage of satellites
 

permit measurements in remote regions, where surface
 

observations are not routinely available. Values of Ac
 

determined satellite data, may not be accurate in an absolute
 

sense, however, they are potentially more accurate in a
 

relative sense (such as a north-south zonal mean profile).
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Values of Ac have been taken from studies of Sadler
 

(1969) and Clapp (1964). Both authors collected their
 

statistics from TIROS satellite nephanalyses. Clapp's
 

statistics are drawn from just one year of data (March 1962
 

through February 1963) while Sadler's are from two years of
 

data (February 1965 through January 1967). Sadler's values
 

are restricted to the 30N-to-30S latitude zone at a 2.5
 

degree latitude-longitude gridding. Clapp's values are in
 

the 60N-to-60S latitude zone (except for the winter hemi­

sphere in which the poleward limit is 55 degrees latitude)
 

and are at 5 degrees latitude-longitude gridding. Values
 

of Ac were selected from Sadler in the 30N-to-30S zone,
 

from Clapp poleward of the tropical zone and fronrthe
 

ground based observations of Landsberg (as shown by Clapp)
 

in the 65-to-60 latitude zone (65-to-5S latitude zone in
 

the winter hemisphere). Clapp (1964) suggested that the
 

cloudiness derived from the TIROS nephanalyses "tends" to
 

underestimate the amount of scattered cloudiness but to
 

overestimate cloud amount 'in the broken to overcast range
 

,of cloud cover. His values are seasonal averages while
 

values taken from Sadler are averages for the February,
 

May, July and October months. The blended profiles are
 

shown for the four periods and for the annual mean in
 

Figure 4.1. Note that the cloudiness associated with the
 

ITCZ is distinctly shown as a spike in all periods. This
 

spike can be identified with the spike in the total albedo
 

of Figures 2.1 and 2.2. Plotted along with the annual
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Figure 4.1.: Cloud amount from TIROS nephanalyses.
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mean Ac curve derived from the satellite data, is the
 

annual cloud amount of London (1957) for the Northern
 

Hemisphere and an average of the July and January cloud
 

amount of van Loon (1972) for the Southern Hemisphere.
 

Noticeable is the ITCZ spike in the 2.5 degree gridded Ac
 

values derivedfrom satellite brightness data versus the
 

smoothness of the 5 degree gridded ground based Ac values.
 

Cloud amount differences between satellite and surface
 

based data in the latitudes 30 to 65 degree of each
 

hemisphere, are quite possibly due to sampling deficiencies
 

in both sets of statistics.
 

4.1.2 Absorbed Flux Sensitivity
 

The zonal mean profiles of the first term on the right
 

side of equation (4.l),--, is displayed in Figure 4.2.
 

In the annual mean,-aA- drops to
latitude in July. 


Values range from zero at the polar night to -128 wm 2 at 
-2 

58S latitude in January-February and to -110 wm at 58N 
aAb -65 w -2m 

at 5ON latitude and becomeslarger negative at 58S latitude, 
-2 

a maximum negative value of -86 wm . The larger negative 

annual values in the Southern Hemisphere's extratropics 

indicate a greater sensitivity of absorbed solar flux to 

cloudiness over oceans than over land. Plotted along with 

the May and October profiles, is a zonal profile taken from 

the radiation model results of Adem (1967). His values 

are more than twice the satellite results in the tropical 

zones. 
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Figure 4.2.: 	 Absorbed flux sensitivity to changes in cloud
 
amount.
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4.1.3 Emitted Flux Sensitivity
 

Emitted Flux Sensitivity ( is shown in Figure 4.3.
 

Examination of the annual profile reveals that - values
 
aAb
 

are 30 to 60 percent of the aA- values in the 65N-to-65S
 

latitude zone. Thus 6, the net radiation budget sensitivity,
 

will be negative in sign for a uniform change in cloud
 

amount (Equation 4.1).
 

1 Longwave sensitivity is largest in the latitude zone
 

'17N-te-SNwitb the peak sensitivity occurring at 14N. A
 

similar peak is not apparent in the tropics of the annual
 

aAb profile of Figure 4.2. 
 The lack of similarity between
aAc
 

91 and Mb. indicates a potentially real increase in long­
aAc aAc 

wave sensitivity, which is not due to error in Ac. Now if 

the apparent residual cloudiness effect remaining in the
 

cloud-free longwave profile in vicinity of 8N latitude
 

(discussed in Section 2.3.2 Figure 2.6) were removed, then
 

the peak in the 2I1_annual profile would occur at 8N, the

OAc
 

mean position of the ITCZ rather than at 14N. The value
 

o I
 
of aAc' being less at 8N than at 14N, may be due partially
 

to an inadequacy in using cloud amount to describe thin
 

cirrus cloud cover without including some type of cloud
 

emittance description.
 

The cause of the systematic difference between the
 

D'
 
The cloud
3Ac profiles in May and October is not clear. 


amount profiles in Figure 4.1 do not show this systematic
 

difference. One may conclude:
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Figure 4.3.: 	 Longwave flux sensitivity to changes in cloud
 
amount.
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1) Clouds, in general, are higher during the October
 

period and/or have different emittance values between the 

two periods, or 2) Ac and/or AI are in error. The global
 

PAb does not show a significant difference between May and
 

significant difference (-51 versus -35 wm ) (See Table 4.5
 

aAc 

October (-72 versus -71 wm- 2), whereas does show a 
aA-c 

-

in Section 4.2). This global result givessupport to con­

firming that the zonal difference between the May and
 

October profiles of I is due to AI and not to Ac. Thus,

aAc
 

the cloud characteristics, other than Ac, appear to differ
 

between the two-periods.
 

The radiation model results of Adem (1967) gave a
 

BAc profile for the spring season in the Northern Hemisphere
 

which is in close agreement with the satellite results
 

(Figure 4.3). Particularly good agreement is found in the
 

tropical regions.
 

Differences between the July and January-February ThI
 

profiles are understandable. Spatial sampling north of 45N
 

in the latter period was extremely poor. However, a lesser
 

sensitivity to clouds during the January-February period is
 

acceptable, because the outgoing longwave flux would not
 

be as sensitive to clouds over cold continental regions
 

during the winter as it would be over warm continents 

during the summer.
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4.1.4 Net Flux Sensitivity
 
aAb
 

The annual mean -A values were larger negative than
 

the I values between 6SN and 65S latitude, so that
aAc
 

application of equation 4.1, yields negative values for &
 

6ver the same latitude zones ( Figure 4.4). The magnitude of
 

the annual 6 values decrease from a maximum in the Northern
 

Hemisphere of -42 wm at 5SN to a minimum of -16 wm at 1IN.
 

From 11N 6 again increases to a maximum value in the
 

Southern Hemisphere of -60 wm -2 at 55S. The minimum value
 

appearing at 11N would appear at 8N (the mean ITCZ position
 

in the Nimbus 3 data) if I were to be adjusted for

Ac
 

apparent residual cloud effects as previously discussed.
 

The 6 profile does not show perfect symmetry between
 

hemispheres. A comparison of corresponding latitude zones
 

between hemispheres show greater cloud sensitivity in all
 

zones of the Southern Hemisphere.
 

An examination of the semi-monthly profiles reveals a
 

negative 6 at all latitudes, except at latitudes in and
 

near the polar night. The region of the polar night
 

comprises less than 10 percent of the global area, so that
 

small positive values of 6 have little effect on the globally
 

integrated 6 value.
 

Plotted along with the July and January-February
 

profiles are Northern Hemisphere values which were computed
 

by Schneider (1972). As he stated, his values ... are not
 

intended to be taken as quantitatively realistic ...
 

However, they are qualitatively realistic as for the sign
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Figure 4.4.: Net flux sensitivity to changes in cloud
 
amount.
 



on 5. The difference at SN between Schneider's value and
 

the "quantitatively realistic" value of this study is approx­

.
mately 100 wm-2 The difference is large because of the near
 

cancellation between the satellite absorbed and longwave
 

flux sensitivities in the tropical latitude.zones.
 

Plotted on the May and October profiles are the results
 

from Adem's (1967) radiation model calculations for the
 

spring season. His values derived from a quantitative para­

meterized radiation model, compare no better with the results
 

of the present study than did Schneider's qualitative results.
 

4.1.5 Atmospheric Transport Sensitivity
 

The sensitivity of the horizontal flux divergence in
 

various latitude zones to changes in cloud amount may be
 

investigated. The energy balance equation integrated
 

throughout the vertical extent of the earth-atmosphere
 

system is written for each latitude zone as:
 

N = 2E + divFa + divFo (4.3)
at
 

where: N = the net radiation flux at the top of the
 
atmosphere.
 

E = the time rate of change of energy content
 
at within the zone, or rate of heat storage by
 

atmosphere, land, ocean and cryosphere.
 

divFa = meridional atmospheric energy flux transported
 
out of the zone, or flux divergence.
 

divFo = meridional oceanic energy flux transported
 
out of the zone, or flux divergence
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Now just the atmospheric flux divergence term,
 

divFa, will be permitted to respond to changes in cloud
 

amount. 'All rate of heat storage termsm and the oceanic
 

flux divergence, divFo, are assumed not to vary with cloud
 

amount changes. This assumption has some validity only
 

if the immediate or near simultaneous response of the
 

system to a change in cloud amount is considered. Thus,
 

the ocean transport and heat storage terms are permitted
 

to respond only at some latertime. This type of analysis
 

permits one to observe the atmosphere response as an upper
 

limit type of response.
 

Under the assumed conditions, the sensitivity to a
 

cloud amount change, AAc, may be expressed as:
 

3N divFa
-E AAc =Ac AAc (4.4)
 

or in simpler notation as:
 

AN = AdivFa (4.5)
 

Figures 4.5, 4.6 and 4.7 show the response in AdivFa 

for three different latitude zones with a bAc = t.1. The 

mean curves for divFa are taken from Oort and Vonder Haar 

(1976). The vertical bars represent a ±AdivFa response
 

aN
 
to a ±AAc. They were computed from the tabulated A--in
 

Table 4.1. They show that a change in cloud amount,
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Figure 4.5. Atmospheric mean meridional energy flux
 
divergence for the 30N-to-90N polar cap.
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Figure 4.6.: 	 Atmospheric mean meridional energy flux
 
divergence for the equator-to-30N latitude
 
zone.
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Figure 4.7.: Atmospheric mean meridional energy flux
 
divergence for the equator-to-90N polar cap.
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(N(f­ 2 ) 
Table 4.1: Zonal Values of 9-/ -

North 

Latitude May 1-15 July 16-31 Oct. 3-17 Jan. 21-Feb. 3 

60-70 -34.3 -60.5 -5.6 +21.6 

50-60 -72.8 -81.5 -32.6 -9.1 

40-50 -54.1 -64.0 -31.5 -30.1 

30-40 -33.4 -35.4 -20.3 -41.9 

20-30 -11.1 -33.8 -19.7 -14.8 

10-20 -18.8 -26.8 -19.4 -10.9 

0-10 -29.1 -24.8 -27.4 -27.9 
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which is quite large in magnitude, will not change the
 

basic shape of the annual divFa profile.
 

The northward energy transport (Tn) by the atmos­

phere is opposite in sign to divFa for the polar cap
 

30N-90N and 0-90N in Figures 4.5 and 4.7, respectively; a
 

positive divergence is an outflow from the cap and a
 

negative divergence is an inflow to the cap, or a conver­

gence. For the polar cap,
 

Tn -divFa (4.6)
 

A AAc = +.l in the 30N-90N cap of Figure 4.5 will 

require of the atmosphere, as an upper limit, a Tn increase 

of .3x1'0 watt in January-February and .75x10 watt in 

July. Likewise, for a AAc = -.1 a response in Tn of the 

same magnitude and opposite in sign would be required. 

Note that in July the sign of Tn changes with AAc = -.1 

so that a southward energy transport is required of the 

atmosphere. 

A similar analysis for the entire north polar cap,
 

0-90N, for a AAc = ±.1 uniformly distributed over 0-90N is
 

shown in Figure 4.7. The sign of Tn would change during
 

the equinoxes with a+AAc change; however, the overall shape
 

of the divFa or Tn profile with time throughout the year 

would not change even with such a large change in cloud 

amount. 
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The effect on atmospheric transport of removing
 

stratus and stratocumulus clouds east of the subtropical
 

high pressure center in the Eastern Pacific Ocean along
 

the coast of North America is examined. However, in this
 

case the contribution of toto is ignored, so that

aAc -Ac 

aN DAb (4.7)
SAc TAc 

Ignoring is a reasonable assumption in light of
 
STc
 

this cloud type which prevails near the top of a temperature
 

inversion in th6 subtropical high pressure regions over
 

a relatively cold 	ocean surface. Thus, -cwould be quite 
aAb
@A
small compared to 


Shown in Table 4.2 is the cloud amount fraction of the
 

type associated with the eastern Pacific high in the lati­

tude zone, 1SN-3SN (after Miller and Feddos, 1971). The AAc
 

for each semi-monthly period is negative which indicated a
 

removal of the cloud. The persistence and area of coverage
 

of the stratus type cloud is largest in July and smallest
 
SAb
 

in January of the four periods. Similarly, -A--is largest
 

in July, which may be associated with the high, bright
 

clouds of the southwestern Indian Monsoon, as much as with
 

the lower stratus type clouds. The zonal mean sensitivities
 

of the present work do not permit distinguishing sensit­

ivity by cloud type and by longitude. For the most part,
 

the change in D-b with season is due to seasonal solar
 

radiation weighting on the cloud albedo. The January solar
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Table 4.2: 	 Sensitivities associated with removal of stratus-type clouds
 
from the Eastern Pacific Ocean in the 15N-35N latitude zone.
 

Jan.-Feb. May July Oct.
 

Ac -.017 -.022 -.045 -.028
 

Ab -3.84 -6.42 -6.46 -4.02
 
Mc (1015w)
 

AdivFa (1015w) .07 .14 .29 .11
 

Tn (40N) (1015w) 3.7 2.4 1.6 3.5
 

%Tn (40N) 1.8 5.9 18.2 3.2
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weighting in the lSN-35N zone is approximately 65 percent
 

of the July solar weighting; it accounts for 85 percent of
 
9Ab
 

the difference in -- between the two periods.
aAc
 
Application of equations (4.7), (4.4) and (4.5) yields
 

AdivFa as shown in Table 4.2. The AdivFa is four times
 

larger in July than in the January-February period. The
 

present day Northward transport of energy by the atmosphere
 

across the 40N latitude circle (shown in Table 4.2 as Tn) was
 

taken from Oort and Vonder Haar (1976). Inspection of their
 

Table 9 reveals that all of the divFa in the 15N-35N zone
 

goes into positive northward transport across the 40N
 

latitude circle. If it is assumed that the direction of
 

energy transport by the atmosphere remains identical to
 

that of the present climate regime with a removal of the
 

subtropical high pressure stratus type clouds in the
 

eastern Pacific Ocean, then the percent increase in
 

required energy transport may be calculated. (It must be
 

assumed under a global radiative equilibrium constraint
 

that a AN of equal magnitude but opposite in sign takes
 

place north of 40N, so that this energy transport may
 

occur). These percentages range from 1.8 in January-


February to 18.2 in July (Table 4.2).
 

A more realistic study than has been discussed in the
 

previous case studies is to determine the sensitivity of
 

divFa in the 0-30N latitude zone to year-to-year changes
 

in cloud amount which are associated with the intertropical
 

convergence zone (ITCZ). Cloud amount interannual
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variability for various latitude zones within the 30N-30S
 

zone has been deatermined by Murakami (1975). He derived
 

it from 7 years of gridded TIROS nephanalyses. The varia­

bility of AAc in the 0-15N latitude zone for each of the
 

four semi-monthly periods was taken from his Figure 6.
 

This zone was selected as being representative of the
 

variability in cloud amount associated with the ITCZ.
 

These AAc values are shown in Table 4.3. Cloud amount
 

variability in the July period is twice that in the January-


February and October periods.
 

The AdivFa has been computed for the entire 0-30N
 

latitude zone for a AAc in the 0-15N latitude zone with
 

equations (4.4) and (4.S). As expected, AAc and AdivFa
 

are opposite in sign and divFa is two or more times larger in
 

July than in any other period. Using the same reasoning as
 

used in the previous case on stratus clouds in partitioning
 

%divFa into northward energy transport in the same prop­

iortion as the divFa of today's climate regime, the percent
 

change in northward energy transport at both 30N and the
 

equator were computed as shown in Table 4.3. A decrease
 

in cloud amount by 0.05 in the 0-15N zone during July may
 

be balanced by both a northward energy transport across 40N
 

and a southward energy transport across the equator, which
 

are neariy equal in magnitude. A similar argument holds
 

for the other periods in which the sensitivities are
 

condiderably less.
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Table 4.3: Sensitivity of the atmospheric energy transport out of the
 
O-30N latitude zone to interannual variations of cloud
 
amount in the O-15N latitude zone.
 

Jan.-Feb. May July Oct.
 

Ac ±.025 ±.040 ±.050 ±.025
 

M (1015w) -1.10 -1.15 -1.81 -1.67
 

AdivFa (1015w) .028 T.046 ;.090 +.042
. 

fn 1.00 .94 .26 .87
 

Tn(30N)(101 5w) 4.4 1.7 0.5 3.4 

% Tn (30N) +0.6 T2.5 T4.6 TI.I 

Tn (Eq.) (1015w) 1.9 -.1 -1.4 -.5 

% Tn (Eq.) 0 +3.0 ±4.8 ±1.0
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The foregoing hypothetical cases were presented to
 

demonstrate what may b-e considered as an upper limit to
 

the immediate response of the atmosphere energy transports
 

to changes in cloud amount. The significance of the
 

atmospheric response should be determined through climate
 

model sensitivity studies.
 

4.2 	 Global and Hemispherical Sensitivity
 

Global and hemispherical intergrated values of various
 

parameters appear in Table 4.5. The poleward limits of
 

integration used were 65N and 65S latitude. The 29 month
 

set of measurements because of the large sample size,
 

allows for better global integrated mean statistics than
 

the Nimbus 3 data set. If global (90N-90S) annual mean
 

cloudy statistics are compared between the Nimbus 3 and
 

the 29 month-data sets, one sees that the 29 month set
 

shows a planet which is both brighter and colder than the
 

Alimbus 3 set. This comparison is shown in Table 4.4.
 

Table 4.4 - Annual'Global Statistics (90N-90S)
 

ALBEDO LONGWAVE (wm-2
 

29 month .301 235.7
 

Nimbus 3 .280 242.0
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Table 4.5 - Sumary of satellite derived statistics.
 

NIMBUS 3 29 MONTHS 

MAY JULY OCT. JAN-FEB ANNUAL ANNUAL 

aAb -72.0 -65.8 -70.9 -67.5 -69.8 -83.8 

al -50.5 -36.4 -34.8 -26.0 -36.6 -46.7 

aN -21.5 -29.4 -36.1 -41.5 -33.2 -37.1 
a~c 

55N-65S ac 0.359 .347 0.355 0.350 0.354 0.389 

Ac D.553 0.557 0.579 30M578 '0.568 0.568 

aT '0.268 0.263 '0.269 ,0.268 '0.268 0.288 

am 0.156 0.158 '-0.151 "0.156 .,0.155 -0.155 

aAb -88.3 -87.1 -58.1 -43.3 -66.2 
iA-c 

a! -55.3 -43.4 -34 1 -22.4 -38.5 
Ac 

aN -33.0 -43.7 -24.0 -20.9 -27.7 
Ac 

65N-0 ac 0.376 0.369 0.345 0.348 0.360 

Ac 0.522 0.525 0.530 0.534 0.528 

aT 0.277 0.274 0.263 0.275 '0.271 

am 0.169 0.169 0.170 0.191 0.172 

ab -55.6 -44.5 -83.7 -91.6 -73.4 
arc 

al -45.7 -29.3 -35.5 -29.5 -34.8 
3T 

aN - 9.9 -15.2 -48.2 -62.1 -38.6 
Ac 

65S-0 ac 0.337 0.316 0.354 '0.341 0.346 

Ac '0.585 10.590 0.629 )0.622 /0.608 

cT '0.253 0.243 0.273 0.264 0.264 

am 0.134 0.138 0.136 '0.137 0.137 
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The annual mean global albedo and longwave flux of the
 

29 month data set is 7.5 percent higher and 2.6 percent
 

lower, respectively, than that of the Nimbus 3 data set.
 

'These differences are assumed to result from the effects
 

.of cloudiness differences between the two data sets.
 

Therefore, the sensitivity of the radiation budget to
 

cloud amount within the 65N to 65S latitude zone may be
 

estimated for the 29 month data from the Nimbus 3 statistics
 

within that latitude band. The Nimbus 3 cloudy albedo and
 

cloudy longwave flux values are increased by 7.5 percent
 

and decreased by 2.6 percent, respectively. Nimbus 3
 

cloud-free statistics are taken together with the cloudy
 

statistics to derive radiation budget sensitivity values
 

for the 29 month set. Table 4.6 compares sensitivity
 

factors derived from both sets of data.
 

Table 4.6 - Annual Sensitivities (65N-65S)(wm- ) 

aAb 3I @N
 

aAc 3Ac aAc 

29 month -83.8 -46.7 -37.1
 

Nimbus 3 -69.8 -36.6 -33.2
 

Sensitivities from the 29 month data set are larger than 

those from the Nimbus 3 data set in all radiation budget 

-2 -2 - 2components, ie. larger by 14 wm , 10 wm , and 4 wi in 

absorbed shortwave, emitted longwave, and net flux, 

respectively. 
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Global sensitivity factors have been derived in
 

theorectical studies by others. Annual global cloud amount
 

used in this study is 0.568 (Table 4.5, Ac = 0.568 for
 

65N-to-65S). The global mean value of Ac is quite uncertain.
 

Schneider (1972) used Ac = 0.500, Hoyt (1976) in his model
 

used Ac = 0.532, and Cess used Ac = 0.540. So that a
 

comparison might be made on an equal base cloud amount, all
 

sensitivity factors have been adjusted to an Ac = 0.500,
 

-
and to a solar constants of 1360 wm 2 These normalized
 

sensitivity values are shown in Table 4.7.
 

Table 4.7 - Annual Global Sensitivities (wm-2)
 

OAb BI 3N 
Ac -Ac aAc 

29 Month** (present study) -95.2 -53.1 -42.4
 

Nimbus 3** (present study) -79.3 -41.6 -37.7
 

Adem (1967)* -178.1 -58.4 -119.7
 

Schneider (1972) -129.2 -74.6 -54.6
 

Cess (1976) NH -88.4 -91.0 +2.6
 
SH -81.6 -81.0 -0.6
 

Hoyt (1976) -36.7
 

Wang & Dimoto (1974) -66.2
 

* Equator to 60N 

** 65N-to-65S 
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TAB computed by Cess agrees well with results of the
 
The 9Ac
 
present study; they should be in agreement since both studies
 

used cloud-ftee planetary albedo data, which were derived
 

from the same four Nimbus 3 semi-monthly periods. The aAc
 

values in Table 4.7 increase from Hoyt's -36.7 wm 2 to the
 

largest value, -91.0 -wm 2 of Cess. The larger c of Less

aAc
 

is quite interesting since it nearly cancels I-- thus
 
aAc
I 


giving virtually no global net flux sensitivity to cloud
 

amount. The net flux sensitivities, of all other

aWc'
 

studies are large negative values.
 

As discussed in Section 2, radiative transfer calcul­

ations with models of Schneider (1972) and Cox et al.,
 

(1976) did not give a global mean value of cloud free
 

longwave flux equivalent to that derived from the satellite
 

measurements. The global atmospheric temperature and
 

moisture vertical profiles used in the model calculations
 

were undoubtedly not identical to the global atmospheric
 

conditions existing at the time of the Nimbus 3 measure­

-ments. However, large descrepancies did exist between the
 

two model results; the satellite measurements fell between
 

them. Given identical model atmospheres and an opaque
 

Icloud top 
at 5.5 km, the model results discussed by
 

Schneider gave Ac = -74.6 while the model discussed
Scheidr a wm 


ai -2
by Cox et al. (1976) gave OAc -52.3 wm These values
 

differ significantly. The principle difference between
 

the model results may be seen in Figure 4.8. Longwave
 

flux out the top of the atmosphere for a cloud-free
 



101
 

300 	 1 1 a 

275- SCHNEIDER (1972)a Ib,..f 

NIMBUS 3 

t 25 029 MONTHS 

25 

X 225­_j COX ET ALV
 
(1976)
 

c,
200- bfC 

3o =3.5 km d, d' 
z b =4.5

o,175- =dd ,dec= 5.5ee.
e =7.5 f if 
f =8.5150 1 1 1 1 

0 1 2 3 4 5 6 78 9 10 

CLOUD AMOUNT (TENTHS) 

Figure 4.8.: 	 Longwave flux emitted by the earth-atmosphere
 
system as a function of cloud amount for
 
various heights of radiometrically black
 
clouds.
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atmosphere differs between the models by 28 wm 2.
 

Differences decrease as both cloud amount and cloud top
 

height of opaque cloudiness increase. In fact, the model
 

results converge between cloud top heights of 5.5 km and 

6.5 	km for a total cloud cover case (10/10). 

Curves of I for both the Nimbus 3 and the 29 monthaAc
 

set are plotted in Figure 4.8. The curves wore determined
 
by applying the DI
 

-- tof each set (Table 4.6) to the global

SAc
 

integrated (90-90S) longwave flux value of each set
 

(Table 4.5) at a 0.568 cloud amount. A comparison of model
 

derived longwave flux values, for various cloud top heights
 

at 10/10 cloud amount, with the satellite values, extra­

polated to 10/10 cloud amount, yields an estimate of the
 

effective cloud top height in the satellite data. The
 

effective cloud top height for the Nimbus 3 data set is
 

between 3.5 and 4.5 km using the results from the model of
 

Cox et al, and below 3.5 km from Schneider's model results.
 

The cloud tops are between 4.5 km and 5.5 km in the 29
 

month data set from both results.
 

Schneider (1972) found that he could obtain a zero
 

net radiation balance at the top of the atmosphere by
 

inserting into his longwave transfer calculations opaque
 

cloud tops at a 5.5 km height. The satellite results
 

indicate that effective opaque cloud top heights are at
 

some height below 5.5 km. However, if global cloud amount
 

is taken as 0.500 rather than 0.568, the slope of the
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satellite curves in Figure 4.8 will increase. Under this
 

condition, the 29 month curve will indicate effective opaque
 

cloud top heights to be at,5.5 km.
 

The difference in 2-, between Schneider's and the 29
 
3Ac
 

month satellite values (Table 4.7) might be largely
 

attributed to uncertainty in the global model atmosphere
 

used in the radiative transfer calculations to compute
 

cloud-free longwave flux. Cess (1976) obtained I by
aAc 

differentiating a parametric function, which described the 

emitted longwave flux as a function of surface temperature 

and cloud amount. He derived similar empirical relation­

ships for both the Northern and Southern Hemispheres by 

applying a least squares fit to annual-mean-zonal dependant 

variables. Differentiating both expressions with respect 

to cloud amount yielded -91 wm-2 and -81 wm -2 for EI_. ofAc 

the Northern and Southern Hemispheres, respectively. The' 

latitude dependence of his -II within each hemisphere 
aAc 

was less than ±4 wm- 2 , where as in the present study, it is 

-2greater than ±10 wm in the annual mean case. It is not
 

clear as @Ac values so much larger in
to why his LI are 


absolute value than those of the present study.
 

The derived from both radiative transfer model
TAc 

results are shown in Table 4.8 for various effective cloud 

top heights. The I value of the satellite method (-53 wm 

-2 with Ac = 0.50) is equivalent to a sensitivity with 

effective cloud tops at 5.5 km in Cox's model and between 

3.5 km and 4.5 km in Schneider's model.
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Table 4.8.: 	Annual and Global Mean Longwave Sensitivity derived from
 
Models
 

Cloud Top Height (km) 3.5 4.5 5.5 6.5 7.5 8.5 

Cox et al (1976) I (wm- 2 ) -31.0 -40.0 -52.0 -65.0 -80.0 -91.0 

Schneider (1972) 1 (wr-2) -45.0 -59.0 -75.0 -89.0 -104.0 -113.0 
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The of Cess allows for effective cloud tops in the
 

Northern Hemisphere at 8.5 km and 6.5 km and in the
 

Southern Hemisphere at 7.5 and 5.5 km, using the Cox
 

and Schneider model results, respectively. Not only is
 

there a large disparity between aI/aAc values of various
 

studies but there is a large disparity between the effective 

cloud top heights of the various studies. 

The differences in Mb. in Table 4.7 may be examined
aAc
 

in terms of cloud albedo (ac) by differentiating equation
 

(4.8) with respect to cloud amount,
 

at = acAc + amin (1-Ac) (4.8) 

to obtain 
a
Oat _ac + Ac Oac - amin + (I - Ac) amin
 

Ac c+AAc)Ac aAc
 

(4.9)
 

It is assumed that the albedo of-clouds and of the cloud­

free atmospheres are not functions of the cloud amount,
 

so the equation (4.9) reduces to:
 

7at = ac - amin (4.10) 

a-c 

Thus, itit is that BatAc is albedoThus s seensen tat a function of just the 


above clouds and the albedo of the cloud-free earth and
 

atmosphere system. Global values of ac and amin which
 

were used by Schneider are 0.50 and 0.22, respectively.
 

Values of ac and amin derived from the 29 month and
 

Nimbus 3 data sets for the latitude zone 65N-to-65S are
 

0.389 and 0.155, respectively. The satellite derived ac is
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based on a cloud amount of 0.568. Now if an Ac of 0.50 is
 

used in equation (4.8) along with the quasi-glbal albedo
 

data of the 29 month satellite data set, one obtains an ac
 
auc
 

of 0.421, and a D- -of 0.266 from equation (4.10). The
 

0.266 value is 30 percent less than Schneider's value of
 

0.380. Therefore, accuracy in the sensitivity of absorbed
 

shortwave flux to cloud amount is critically dependent
 

upon an accurate measure of the planetary albedo of clouds
 

and of the cloud-free planet.
 

Schneider (1972) demonstrated that a variation in
 

cloud top height by 0.6 km, while conserving the vertical
 

temperature lapse rate and cloud amount, could cause a 20 K
 

change of the same sign in surface temperature. He also
 

demonstrated that an increase (decrease) in cloud amount,
 

while conserving the vertical temperature lapse rate and
 

the cloud top height, should decrease (increase) the
 

surface temperature. The magnitude of his temperature
 

change result is model dependent. Since both his study
 

and the present one show TNcto be negative, then the sign
 

of the surface temperature change under identical condit­

ions should be the same in both studies. Thus, the results
 

of the present study indicate that an increase (decrease)
 

in cloud amount, while conserving the vertical temperature
 

lapse rate and the-cloud top height, should decrease
 

(increase) the surface temperature.
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5. CONSLUSIONS AND RECOMMENDATIONS
 

A number of conclusions are drawn from this study.
 

The principle conclusion is that a uniform increase
 

(decrease) in global cloud amount, with all other factors
 

held constant, will cause a negative (positive) planetary
 

radiation budget to prevail. If the present atmospheric
 

vertical temperature lapse rate is conserved, then the
 

global mean surface temperature will decrease (increase)
 

until radiative equilibrium is restored. Without compen­

sating changes in cloud albedo, emittance, transmittance
 

and height, a uniform change in cloud amount does appear
 

to be a significant climate feedback mechanism.
 

The cloud effect for the. globe as a whole is larger in
 

the absorbed shortwave flux than in the longwave emitted
 

flux. Similarly,the sensitivity of the absorbed shortwave
 

flux to changes in cloud amount is larger than the sensit­

ivity in longwave emitted flux to changes in cloud amount.
 

The cloud effect in the absorbed shortwave flux is
 

significantly larger over ocean surfaces than over land
 

surfaces.
 

The presence of clouds act to reduce the amplitude of
 

the annual variation of the planetary net radiation budget.
 

The amplitude reduction is mostly in the planetary longwave
 

flux term, because the presence of clouds decrease the
 

transmittance of the atmosphere to longwave flux upwelling
 

from the earth's surface. Thus, the full amplitude of the
 

annual variation in surface temperature is not seen in the
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planetary longwave flux. The annual variation of the
 

planetary net radiation budget is approximately ±15 wm -2 .
 

This variation is apparently real and is caused by :
 

1) an annual cycle in the incoming solar flux, due to the
 

eccentricity of the earth's orbit around the sun,
 

2) an annual cycle in the longwave flux, due to large
 

amplitude continental surface temperature changes of the
 

Northern Hemisphere, 3) a semi-annual variation in albedo
 

due to apparent north-south seasonal migration of the sun's
 

path with latitude over dark tropical zones relative to
 

brighter extra tropical zones, and 4) a small residual
 

variation, due to measurement and sampling biases and to
 

time varying atmospheric and surface albedoes.
 

The cloud-free planetary albedo determined from
 

satellite shortwave radiance measurements was shown to be
 

higher than the value commonly associated with planetary
 

heat budget studies.
 

It is recommended that a similar study be carried out
 

with the scanning measurements from Nimbus 6 and Nimbus G
 

Earth Radiation Budget (ERB) experiments. This would
 

permit verification of the results derived from the small
 

satellite sample used in this study. An assessment of
 

inter-annual variability, if any exists, in the cloud
 

effect on the planetary radiation budget could also be
 

done.
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It is further recommended that the results of this
 

study be implemented in planetary heat budget and "climate"
 

models to test model sensitivity to them. '
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APPENDIX A
 

The O-cean Reflectance Modei
 

"Ocean" and "Cloud-land" directional reflectance and
 

bi-directional reflectance models which were applied to
 

Nimbus 3 MRIR satellite measurements are described in
 

Raschke et al. (1973). The directional reflectance part
 

of the "cloud-land" and ocean models gives the dependence
 

of directional reflectance on solar zenith angle. It is
 

a model derived from a limited number of measurements by
 

a number of authors.
 

The effects of application of the directional reflect­

ance model to a directional reflectance value, r ( ),may
 

be simulated. This is accomplished by assuming a value
 

for the directional reflectance at zero solar zenith angles,
 

r (E=O), and then applying the model. It is described
 

mathematically by:
 

rC) = R(Z) r(c=O) (A.l) 

with E = solar zenith angle
 

r(T) = the daily mean directional reflectance 

r(C=O) = directional reflectance at zero solar
 
zenith angle
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and
 

Tn
 

R(C) = Td Cos E (t) dt (A.2) 

f Cos (t) dt 

with Td, Tn = Time of sunrise and sunset, respectively.
 

The expression, r()
 

r(T=0), is the directional reflectance
 

model as given in Table A.1. The table values were taken
 

from Sikula and Vonder Haar (1972), which were tabulated
 

from graphs in Raschke et al. (1973). In Table A.I., there
 

are two reflectance models: a cloud-land model and a
 

cloud-free ocean model. For the application of the cloud­

land model in estimating albedo over clouds as a function
 

of solar zenith angle, a value of 0.25 was selected for
 

r(E=0). This value was taken from earlier work of Ruff
 

et al. (1967) in which they investigated the angular
 

dependence of solar radiation from clouds with TIROS IV
 

measurements.
 

The ocean model was applied to obtain an upper limit
 

for albedo over a cloud-free ocean. This upper limit is
 

applied as an albedo cutoff; values larger than it are
 

considered to contain cloud contamination while those
 

lower are considered cloud-free. The value for r(E=0)
 

was taken from Conover (1965) as 0.09. Of course, this
 

value is high, but it is used only as an upper limit.
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Table A. .Directional reflectance relative to the value at 
solar zenith angle of zero degrees for the
 

Nimbus III ocean and cloud models
 

Ocean Cloud
 

Cos r(C (rwcoi 

00 1.00 1.00 1.00
 

180 0.95 1.00 1.00
 

260 0.90 1.00 1.00
 

320 0.85 1.00 1.00
 

370 0.80 1.00 1.05 

410 0.75 1.03 1.10 
450 0.70 1.10 1.14 

490 0.65 1.20 1.18 

530 0.60 1.30 1.22 

570 0.55 1.40 1.28 

600 0.50 1.60 1.32 

636 0.45 1.80 1.38 

660 0.40 2.00 1.42 

690 0.35 2.20 1.48 

720 0.30 2.50 152 
750 0.25 2.80 1.55 

780 0.20 3.10 1.58 

810 0.15 3.40 1.60 

840 0.10 3.70 1.60 

870 0.05 4.00 -1.60 
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APPENDIX B
 

Sensitivity of the Broadband Longwave Radiance Model to
 

Clouds
 

The method by which radiance'values from the four
 

longwave spectral channels of the MRIR (Medium Resolution
 

Infrared Radiometer) aboard the Nimbus 3 satellite were
 

converted to a longwave broadband radiance value(3 to 30 um)
 

has been discussed by Raschke et al. (1973). A least
 

squares relationship between spectral radiances and
 

broadband radiances was derived by using radiances which
 

were calculated from model atmospheres. Radiances were
 

calculated at various zenith angles and at eight different
 

cloud levels from a set of 160 model atmospheres. The
 

purpose in this section is to assess the sensitivity of
 

that derived empirical relationship to changes in the
 

spectral radiances as clouds, at various levels, are intro­

duced into a model atmosphere.
 

The emperical relationship between spectral longwave
 

radiances in the four channels and the broadband longwave
 

radiance derived by Raschke et al. is:
 

Nt = Ao + A1N2 + A2 N2 2 + A 3N2 3 + A 4N 4 + A5N1 + A6 N3
 

(B.1)
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where Nt is the broadband radiance, N ... 4 are the spectral 

radiances and A1 ..6 are the regression coefficients. The 

coefficients and the standard error of estimate are 

given in Table B.I. 

A global model atmosphere was selected for this 

experiment. (The model atmosphere is discussed in Sectiot 
1. 

2.3.2). Broadband and spectral longwave radiances were
 

calculated for this atmosphere for various cloud top
 

heights by applying broadband and spectral radiative
 

transfer models, as discussed in Cox et al. (1976). The
 

cm -.spectral resolution of the spectral model was 10 The 

spectral intervals used in the radiance calculation could 

not be precisely matched to the channel spectral intervals. 

The channel spectral intervals, defined by the half power 

spectral interval of the channel response function, and the 

spectral intervals used in the model calculation are
 

shown in Table B.2. The radiance measured by each channel
 

is represented by: 
v2 

Ni =f fi(v)N(v) dv (B.2) 

where fi is the normalized spectral response function for
 

N is the spectral radiance and vi to v2 denote
channel "i", 


the spectral interval of the channel response. Equation
 

(B.2) was applied to the model calculated spectral radiances
 

in an approximate form, as
 

NiN vl ((-) )N(v) dv (B.3) 
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Table B.1. 	 Regression coefficients (A)and standard error of estimate (e)for
 
equation (Bl) (Raschke et al., 1973)
 

-	 A5 A6 e(calcm-2mn -I)
AO(calcm-2min 1 ) Al A2 A3 A4 


0.0160 0.00385 0 000317 -0.951x]O -5  0.0139 0.00215 0.003144 0.00070
 

Table B.2. 	 Infrared spectral channels of the MRIR of the Nimbus 3 satellite.
 

Channel Half Power Interval Model
 

um cm-l cm-1  Weighting function peak
 

1 6.35-6.72 1488-1575 1485-1585 Upper tropospheric water vapor
 

2 10.1-11.2 893-990 895-995 Window channel
 

3 14.5-15.8 633-690 635-695 Lower stratospheric CO2
 

4 20.8-23.2 431-481 435-485 Lower tropospheric water vapor
 

http:6.35-6.72
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where a normalized rectangular response function, fi = 1,
 

was applied across the spectral interval of the half power
 

channel response, defined between wave number v1 ( ) and
 

V2 ( ). The approximate equation (B.3) was used because
 

the limited spectral resolution of the radiative transfer
 

model did not justify using the exact equation (B.2).
 

The outgoing longwave radiance values, computed by
 

equation (B.1) and by the broadband radiance transfer model
 

for a no-cloud case and for three cloud top altitude cases,
 

are shown in Table B.3. The differences between equation
 

(B.1) computed values (empirical) and the broadband radiative
 

transfer model values (model) also are shown in the table.
 

The difference between the model results and the empirical
 

results are quite large. Some of the difference may be
 

attributed to differences between the-prescribed radiative
 

characteristics of the absorbers and the numerical
 

methods applied within the three different radiative trans-

K
 

fer models used to compute broadband radiances, spectral
 

radiances and the coefficients of equation (B.1). The
 

differences may also be attributed to not computing radiance
 

values, using Cox's spectral model, over spectral intervals
 

identical to those intervals for which the coefficients
 

in equation (B.1) were derived.
 

Even though the difference between the empirical and
 

model computed broadband radiances is quite large for each
 

cloud case, the sensitivity of the empirical results to
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Table B.3. 	Spectral broadband empirical,roadband model and spectral radiances
 
calculated for a model atmosphere.
 

Cloud Top Broadband Radiance Spectral Radiances 
Height (km) (wp-2sr-]) (wm- 2srl) 
eit Model Empirical Difference Channels 1 2 3 4 

no clouds 86 103 99.863 -13.760 0.302 8.381 3.059 4.893
 

3.5 72.820 85.755 -12.935 0.301 5.796 3.058 4.720
 

5.5 64.200 76.364 -12.164 0.294 4.499 3.058 4.345
 

8.5 51.249 62.245 -10.996 0.244 2.935 3.051 3.551
 



124
 

cloud top height can be determined by examining the
 

difference of the differences between the cloud cases.
 

This difference of a difference 	will be called a D2
 

difference. The broadband differences for the no-cloud
 

and the 8.5 cloud top cases differ (a D2 difference ) by
 

-
2.8 	wm-2sr 1 (Table B.3). This difference exceeds the
 

-
0.05 wi sT (0.00070 calcm 2 sr ) standard error of
 

regression of equation (B.1) (Table B.1) by nearly two
 

orders of magnitude. This D2 difference value might be
 

attributed to differences in the radiative transfer models
 

used, as was previously discussed. How significant is this
 

D2 difference with respect to the sensitivity of equation
 

(B.1) to changes in height of opaque cloud tops?
 

The sensitivity of the D2 difference to changes in the
 

spectral radiances input to equation (B.1) should be the
 

largest for no cloud and the 8.5 km cloud top cases. Thus,
 

the no cloud and the 8.5 km cloud top cases have been
 

selected for the sensitivity study. Each channel radiance
 

willbe examined.for its effect on equation (B.1)' and on
 

the D2 differences between the two cases. The channel
 

3 radiance value does not contribute to the D2 difference,
 

since it does not change significantly between the two
 

cases. The effect of the channel 1 radiance value on the
 

empirical results can be assessed by holding it constant
 

to the no cloud value, and recomputing the empirical value
 

from equation (B.1) for the 8.5 km cloud top case. The
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empirical value for 	the 8.5 km cloud top case increases
 

-
by a mere 0.1 wm-2sr I when the channel 1 no-cloud radiance
 

value is used in the calculation. Equation (B.1) is quite
 

insensitive to cloud effects in the channel 1 radiances.
 

The bulk of the sensitivity of equation (B.l) to clouds is
 

caused by changes in the radiances of channel 2, the long­

wave window channel, and channel 4, the lower tropospheric
 

water vapor channel. The sensitivity of equation (B.1) to
 

channel 4 radiances is tested in the same way as was done
 

with channel 1. Holding the channel 4 radiance constant
 

at the no-cloud case value, 4.893 wm-2sr-I , and recomputing
 

the 8.5 km cloud top case with this channel 4 radiance
 

value and equation (1), causes the 8.5 km cloud top broad­

.
band empirical value to increase by 13.1 wm- 2sr-l Channel
 

4 radiances account for 35 percent of the broadband
 

difference between the no-cloud and the 8.5 cloud top
 

cases. This increase is 4.8 times greater than the
 
-2 -1
 

2.8 wm sr D2 difference. The channel 2 radiance
 

accounts for the remaining 65 percent of the difference.
 

Equation (B.1) is indeed significantly sensitive to the
 

change in spectral composition of the outgoing spectral
 

radiances due to cloud changes. The sensitivity is
 

significantly larger than the possible errors of this
 

simple test.
 

If the D2 difference is taken as a lack of sensitivity
 

of equation (B.1) to cloud changes rather than as an
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experimental error, then it should be examined for its
 

effect on AI, the cloud and no-cloud broadband irradiance
 

difference. The 5.5 km cloud top height may be considered
 

as the approximate global mean opaque cloud top height.
 

The D2 value at 5.5 km computed from Table B.3 values is
 

-2 
 1
 
1.6 wm sr If 50 percent global cloud cover is
 

-2 -1
 

assumed, then the D2 difference is reduced to 0.8 wm sr
 

The earth-atmosphere system is assumed to be a homogeneous
 

and isotropic emitter, so that multiplication of the
 

radiance difference by yields an irradiance difference
 

-2
of 2.5 wm . This irradiance difference is less than 10
 

-
percent of the 26 wm 2 global AI value (see Section 2.3.2).
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APPENDIX C
 

Global Integration
 

Global integrated values of planetary net flux,
 

albedo, and longwave flux emitted to space were obtained
 

from the 29 months of satellite measurements. These
 

measurements were averaged into zonal profiles of mean
 

months (Ellis and Vonder Haar, 1976).
 

Global integrated values of longwave flux were
 

computed from the zonal profiles of the 29 month set by:
 

l(t) =LT2I( , t) d(sin 0) (C.1)"r/2 

where:
 

t = month
 

0 = latitude
 

They appear in Table C.1.
 

Global integrated values of lbedo were also computed
 
from zonal profiles by:


7r/2 

(t) f 7 
7_/2 

(2 , t) S(0,t) d(sin ) (C.2) 

f T/2 S(,,t) d(sin , 

where symbols are the same as in equation (C.1) and 

S S(0 2 Cos 
d 
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Table C.l Mean monthly global planetary radiation budget
 

S* 
INSOLATION 

a 
ALBEDO 

R 
REFLECTED 

I 
EMITTED 

N 
NET 

(w -2) (Percent) (wf- 2 ) (w - ) (wm- 2 ) 

January 350.7 30.2 105.9 231.1 13.7 

February 347.6 30.5 106.0 230.0 11.6 

Iarch 342.5 28.8 98.6 227.8 16.1 

April 336.8 30.4 102.4 246.8 -12.4 

May 332.0 31.4 104.2 245.0 -17.2 

June 329.1 31.1 102.4 245.4 -18.7 

July 328.8 29.6 97.3 236.5 - 5.0 

August 331.1 29.0 96.0 235.2 - 0.1 

September 335.7 28.7 96.3 231.1 8.3 

October 341.6 29.1 99.4 235.8 6.4 

November 347.1 32.0 111.1 232.6 3.4 

December 350.5 31.7 111.1 230.7 8.7 

Annual 340.0 30.2 102.7 235.7 1.6 

* Based on a Solar Constant = 1360 m t2 
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the solar insolation. The denominator of equation (C.2)
 

is the global integrated solar insolation, S(t).
 

The global integrated albedoes were not computed from
 

the 29 month set as presented in Ellis and Vonder Haar
 

(1976), but from a 23 month set (Table C.l). The 23 month
 

set is the 29 month set less 6 months of ESSA 7 measurements.
 

These were excluded because the albedoes from the ESSA 7
 

were derived by Mac Donald, 1970 with an assumption that
 

radiative equilibrium existed in global net flux. The
 

Table C.1 values show that planetary radiative equilibrium
 

does not generally exist on time scales less than a year.
 

From the component albedo and longwave flux values,
 

global average net flux, as shown in Table 1, was computed
 

by:
 

--- N(t) = (I - O(t) ) S Wt) I'(t) (C.3) 


