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THE DEVELOPMENT OF THE POINCARE-SIMILAR F.LEHENTS WITH

THE TRUE ANOMALY AS THE INDEPENDENT VARIABLE

By Alan C. Nu-^ller

Analytical and Computational Mathematics, Inc.

1.0 INTRODUCTION

In reference 1, Seheifele established the Hamiltonian of the unperturbed
two .-body problem in extended phase space. Depending on the type of time
transformation, eight canonical elements were develo ped with the true
anomaly or the eccentric anomaly as the independent variable, These two
new sete, DS M and DS(u), however, contain singularities for small eccen-
tricities and inclinations. In reference 2, these singularities are removed

a	
I	

by a transformation from DS(u) to eight canonical PS(u) elements. As
in the DS(u) variables, the PS(u) variables have the eccentric anomaly
as the independent variable.

	d	 In reference 3, the DS(4) variables are transformed to the PS(0
elements to remove the singularities, However, no direct relation was
established between the eight canonical PS(4) elements and the Cartesian
coordinates, It is the pur pose of this report to establish those relations

11 and to develop the perturbed equations of motion in the PS(0) space.
#	 As will be seen, the relationships are not trivial to establish; however,

once obtained, they are found to be rather simple expressions.

z .
jLastly, this report will demonstrate the accuracy of this new set

when it is applied to numerical orbit prediction problems.
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2.0 TRANSFORMATION FROM DS(b) TO FS (0) VARIABLES

In reference 1, Scheifele presents the Delavnay -similar ( DS) elements
with the true anomaly as the independent variable - DS(0). The angular
variables are as follows.

0 = the true anomaly.

g = the ar gument of perifoaus.

h = the ar gument cf the ascending node.

e = the time element.

The action variables are as follows.

m = conjugate to e, related to two -body energy.

G = the ; dotal angular momentum.

H = the Z -component of the angular momentum.

L = the total energy ( two-body energy plus perturbing potential).

The corresponding Hamiltonian with a perturbing potential V _ is given
by

2

F=m - a +r V	 (1)
a

where	 q	 G- 
2 
m+	

u	
_	 (2)

2 F2

 equations of motion can be written as

de r - OF	
e^ Br hr l

dt	 aLr

(3)

dL'	 _ aF	
L, = m G H L

di	 ae r	 -	 __	 r	 r	 r	 ..

Note that in unperturbed motion (fi = 0)

0 = z + Aa	
__

(4)

_
Vi

(2Lo) 3/2 T, 
+ P.

1

I

i

)'f	

where z is the independent variable. All other variables remain constant.
a	

P	 N
The DS ( b)-alements, however, become ill defined for vanishing eccentric-

';	 ities and inclinations. To remove these singularities, one should transform

2 i	 w



to a type of element similar to the Poincare variables. These PS M elements	 p

	

113 	
will be named a	 (coordinates) and P	 (momenta). As in the DS(f) 	 ^(
elements, the PS(i) elements have the true anomaly as the dependent variable.
These elements should not be confused with the PS(u)'vartables presented
in reference 2; however, in many aspects they are similar,

The PS(o) elements can be defined by a canonical transformation from 	 ^(
the DS(0) elements by the generating function S.	

11

S = z P4	 ;+ (A + g + h)P - i P 22(tan( g + h))
2

E

	

^ 	 - 2 P32 tan (h)	 (5D

where

- - as	
Li t 	IS

- a0	 ae^

and

eT = 
(0 1 0 2 , '3 , 04)

The transformation Yields the coordinates,

r

02 = - 20, - G) sing + h)

03 2(G - H) sin(h)	
(6)

^
74

and the ;momentas,

i	 P1 = 9

P2 =42(o - G) cos( g + h)	 (7)

(P

PS = 2(G - H) cos(h)

P4=L

The Hamiltonian now written in PS W elements reads

9 a

3

t

^	 o



a

1

r,

where

q =_ 	
0 2

2 + u
0 2 	 P 1 -^2

2Py (g)

The equations of motion can be written'as

dQ	 OF

dT	 8p

- (10)
d a 	 OF

IT

For the solution in the un perturbed case (V	 0),

E

(11) t	 ,
e

°p	

(204p)312 T + °40 is

All other variables are constants.

l^
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3.4 EQUATIONS OF MOTION

In reference 11, a method is presented in which the e quations of motion
in extended phase space are extended to include forces that cannot be 	 n
defined as derivatives of the potential. The equations of motions in	 yE
Cartesian space may be written as

 y

x +
r R 

g	
ag 

+'r	 (12)

where F is the perturbin g force, V is the perturbing potential, and
is the force not ex pressed as a potential. If the un perturbed Hamiltonian

is ex pressed as

F o = 01 - f—	 (13)
op

then the equations of motion in PS(m) space now become	 y

do	 aFo 	 a(r2lq)	 r2 aV \I - 
gdT = !c + V	 ap	 + q O /

—	 (111)

dbV a(r2/q) + r2 a  + S
dT	 aQ	 q aQ'

where a' and F are the canonical forces and are defined as follows.

B 42 AT P	

A

2	
—	 -:

r	 ag
I	 - _ —
}	

S	
q 

FT P

	

B	

a 0	 f75)	 ^

2V AT
Do 	 Tx

aV_ 
HT 

aV

sae	 ax

f	 "

i



where

2S _ (x 1,	 x2, xq ,	 t	 %	 time)
PT c

(P 1 ,	 P 2 , P 30	 P4)
,.	

4 01	 1 '2' P 2	 • 3	 3)
x i , x 2 , x 3 a velocity vector {

Equation	 14 can now be written as

r2
do

-
Pro

+ V
a	

q	 r2	 aV
+	 AT ^ax - P^0,T ap ap	 G 11l

(t 6-)
- r

I/
dE-- 2)

- V 
a

\n  2	 PVr	 PT
dT a- a	 7x-

The matrices A	 and B	 can be found from the equations relating the
Cartesian coordinates and time in terms of 	 n	 and	 ,.	 Here, also,	 it
is worthy to note that -	 -

ii
dt_J r2
dT	 - Q

(16a)

1(

i

^r



4.o CARTESIA 4 COORDINATES (X 11 XP , X31 to X1, z21 z3)

	

-_	 IN TERMS OF PS(A) ELF14ENTS (a, o)

Although the PS W elements are uni quely defined by e q uations (6)
and (7), their relations with the Cartesian state vecEor must be Riven
directly, without makin g use of the DS(o) elements, since 0 and g are
numeriu,dily ill defined for near-circular orbits and h is ill defined
for small inclination orbits. However, the DS(f) elements 0 and H
may be used occasionally as abbreviations since they are always well defined.

From reference 1,,, the coordinates and the time can be obtained from
the DS(m) elements as

x 1 = r (cos(s + g)cos h - sin(o + g)sin h cos I]

x 2;, = r [cos(o + g)sin h + sin(o + g)cos h cos I]
(17)

X 3 = r sin(m + g)sin I

X 4 = t =	 +u /2 (E - b	 P	
1 — e2 a sin 6)

(2L) 3 ,

where	 ;I

r =	 P
1 + e oos A

2

P = u (G - o + 2L

	

r -' e2 =	 2L P
u

(1g)

(19)

(20)

cos I = G
	

(21)

t

r
E = 2 are tan g 	 + e	

/
	tan z)	 (22)

l	 \\\ 

-Note here that these notations areused as abbreviations in the DS(^)
theory to transform from the coordinates to DS ( ^) elements. Although

j	 they are similar in form to Keplerian elements, they ars the same only
when the perturbin g potential V = 0.

Imo'
By trigonometric identities, equations ( 17) ma y be rewrittenas

X1 = r sing 
I 

eos (h	 + R)] + r cost7	 2 cas( 4 + g + h)I

r	 ^l



(25)

(26)

II

	to
	 x2 = r ain2 

2 
sin [tj - (m + g)] + r cost 

2 
sin( 0 + g + h)	 (23)

a+
d	 x3 = 2 r cos	 sin 

2 
sin (b + g)

	

-	 From equations (5) and (6), it is easil y shown that

m - G =	 (022 + 022)

and
	

(24)

G - N = 2 (03 2  + 032 )

si
Then,	 using equations	 (21) and (24),	 we	 find

20 - N) = a V sin
2 =
	 03	 + 03

i

Equation	 19 may be writt:,
-,a

,

P	
1	 ?	 (p_2 e + u22) +

P4]

From the identitv

sin	 a1	 sin	 (g + h) + cos a 1	cos(g + h)	 = cos m

we Find by multi plication with 2(m

0 2	sin	 01	 +	 02 , cos a 1	=	 2(m	 - C)	 cos

Similarly, one can derive

0 2 sin a i	+ 0 2 cos 0 1  - G) sin

From the identity

sin a1 sin h + cos a 1 cos h	 = cos	 (0	 + g)

one can derive

-03 sin 0 1	 + 03 cos	 01 = 2	 sin 
2 

cos(m + g)

and,	 similarly,

03 sini	 0 1	 + 03 cos	 01 e 2 f sin	 sin(m + g)
jj
J 8

U

^I

r

(2§1

H

G

K
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uatidisi ill definedfor small eccentricities, the right-hanc sidesAlthou gh

of 28) remain well defined because multiplication

facto	 2 a - G
equations (^ 26 an bd 29) if th e

	small. The same argument applies for
e inclination is small where 14 + R)l is

ill defined.

By using equations (20), (27), and (28), one can derive expressions

(	 e cos	 Z10	 (31) -

e sin b o 2 2U	 (32)

where	
.

j 1
	 2 

e0e a	 o
1 - 

2 sin a,	 (33)

	

d{ ',	 p

Z 2 	02 sin a 1 + 0 2 00s a1	 (34)

and

1/2
1 P4	 2u	

1 02 2 + P2 2 	 (35)

a=P [ C P11	
z C 	))J

There is no numerical _problem in computing Q except in the case where
3	 .^

	

'	 a-.1 OC	 2p 4 
^ 2 

(a 22 + p22)

3^ We can now make use of eauations (6), (7), (29), and (30) to substitute
in equations (23).

xl q -R a3 + r cos al

x2	 -R*p 3 + r sin a1	 (36)

x 3 = R P ,r2(G + H)

where

rn

r

R*2G (37)

_	
r

and

R = a3 sin a l + a 3 cos of	 (38)
Note that the second terms in x l andx 2 are dominant for small eccentri-	 r
cities and inclinations.

I

9 w

i

t t	 -.

i
I
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n

'^	 l

^f The radius, "
11

8 r	 =	 P(39)
t+e Cos A

" is evaluated by using e q uations	 (26)	 and	 (31).

` The time equation,

'
u	

(E	
r
	 1	 -	 e	 e	 sin m)	 (40)x4	 = t	 7 all	 + (204)3/2	 p

t) is evaluated b y using equations (20) and	 (32) and by

/	 e sin m
E -	 _ -2 are tan	 f	 (41)14

1+	 1- e	 + e cos b
I

° We may now proceed to the com putation of the velocity components.
In the case of the DS(m)	 elements,	 the velocity components were preferably
computed by forming the time derivatives of the transformation equations

- for the coordinates.	 The reason was to avoid the numerical difficulties
' that are encountered at some pslints of the orbit. 	 These numerical dif-

° fieulties were caused by the intermediate step of computing the spherical
coordinates.

The time derivatives of the DS(,l) elements are different from zero
and depend on the current value of the perturbin g potential,	 Vc .	 We
denote the ""unperturbed orbit" that is obtained from the Hamiltonian, )

r 2
i' ADS = m _	

u	 + Vc	 (42)

ni
-i

2L	 o

where 	 V c	is a constant,	 the "DS orbit."

Because	 g,	 h,	 a„	 and	 H do not a p pear in the Hamiltonian,	 the
° DS(4) orbit has the following properties,

C	 =	 const.,	 H	 =	 const.,	 L =	 const.,	 h	 = const.	 (43)
1

Thi^, means that the orbital plane and the total energy remain unchanged
oo t,jat	 C,	 H,	 L,	 and	 h	 are osculating elements.	 By examination
of equation	 ( 17),
	
one must conclude that, 	 in fact,	 the quantity	 + a

is osculating.	 Thus,	 from the angular momentum law,

dt	 -dt	 r2

If' these	 facts are taken into account in the PS($)	 element system,	 we
;r- can conclude from e q uations (6) and (7) that

•	 -	 C	 = 0
	 (45)
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n

i	 whom	 (	 )'- ddt)
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 time derivatives of the remaining	 PS(4)	 elements can be computed
ing the canonical equations to the Hamiltonian.	 {(	 i

2
'	 FPS = P 1	 u + r , V o	(4G)

i
2 Pq

q	 = -Z	 022 +	 P22 , -	 P i	 -	 (117)	

J
'	 First,	 the equations for	 P 2	and	 a 2	are established.

4	
d P 2	 aFP„	

(L2)

— Va
	 002	

-	 "„	 (118)	 x

u

SI 

l	 da.)	 OFPS	
a	

n

I	 d r	 10 2 	c 002

Noting	 equation	 ( lua),	 tae	 find	 -

a	 i=2

i
^	

_11 2 	 dt	 e	 g
02 

= ar	 dt ` —Ve 
I 2 aa2	

(5a)

"

rad o2	
dr	 q	 o ^	 (57)02 -
	 ° Vc r2 aa2

(	

-.	

..;	

t

However,	 the time derivatives of 	 P2 and	 0 2	are not needed directly
but as combina tions	

F

\	 .	 ations - as	 are	 ^

0 2 aZ +	 P 2 p2	 (52)

Before we proceed to the computation of expression (52), we will observe

that if	 C	 is a function of the expression	 022 + 1)22

l	
C	 o	 C(022	 +	 022 )	 (53)	

jtI

a ^and does not depend on	 0 2	or
	

02	 in an y other fashion.; then

i- aC	 a C	 (51I)	
-

,'	 02aaP2 -	 P2	 ao2	
= 0

for symmetrical reasons

k
j

K1



I

q	
IF'

AfY r

Y

Observe that	 p ,	q , and Q are functions of the ty pe. found in equation

(53).

Thus, C

+ V C

a a1^1

° 2	 _ P2

a \QI\	 /)
0 2°2	 P 2 P 2 r2 aP2

2
ao2.

r
r, Lr r2	 ao	 2	 aq-= VC

v2 C2	
IO2 aP2 _

L	 \
P2 302 1 P	 302^P2 a02

/1
I

-

0

Noting equations (32) and (39), we find

2 r	 aP aP	 r2 a(e cos 6)
02n2 + 02n2 = V C r p	 02 aP2 - a2 ao2)	 p	

02 aa2

0

a(e	 cos 6)^

Pe 	 aP2

r aQ aQ Q cos + sin- -V 
Z 1 (02 P2)+ a2 o1 P2

p I	 aP2 ao2	 \ /J

0

_Pr V. Q (02 cos 01	 + P2 sin o1/ (55)

Next,	 let us compute uj,	 where we note that	 o1	 occurs in	 r only by

e cos 6	 in equation (31).

q	 BFPS c	 a	
r	 2

V	 ^_
_2	

ar

— Vo —
P1	 _ r 2 aa1

-_ _ _	
\rr2	 c	 aP1	 o r	 aa1

2r Vc a(e cos 6) _ -PC Vc Q	
(
P2 sin 01	 + 02 cos a1I

\
(56)

P c a01

derivative of

/

the distance, ry 7
Finally , we proceed to the com putation of the time

"PS orbit." For this 'purpose, it is convenient to Give the derivative
r,	 on a

12>

p



Ili..

_z
of	 , which is

r2 	2r	 r2

	

^°^	
° rj°2o

dT(r.2 ) - 	- q	 a^42^ Bak
Lr2 dak

	

 ° 	
q
r2	 dT	 r2	 [ ao k dT + apk

j	 k=1

(57)

q	 a\°2)	 2^ _	 2/V ° r2
	 lack	 auk	 apk	 aok

k=1

0

+ n a/°2) + 
a

(

g2

)

	 u
r2 a

`
ai	ao4 (2a 4 ) 3/2

0

2r

n— 0 ( 0 2 sin o  + 0 2 cos a1) (58)

(59)

(6o)

To obtain q, we use equations (55) and (56)

4

ao	 aq	 1

aak 6  + auk S 	 2 p - (°2°2 + a2a2)
k=1 (

r VC0 (p 2 sin a 1 + a2 oos o 1)
P

Finally, equation (58) is solved for r.

ro r	 2q ° +2r^r2q

LID and expressions (59) and (60) are inserted, with the result that



Noting equations (31) and (33), we find

e sin
p 	 2 qVC 

L2 
+ q	 (61)

In DS theory (and, accordingly, PS theory), one requires that the Hamiltonian
vanish on the DS (or PS) orbit. Noting e quation (46), one can see that
for the Hamiltonian to vanish, U

r 2
V C	 p	 (62)

But from equation (47),

	

+	 2	 2)2q	 P,	 2 + 02
\[2-0

4

2 (c - pl) + cF2
2 
+ 022	 P1	 (63)

2 p4 j

Inserting e quatjons (,62) avid (63) into enuation (61), we obtain the final
t

f6e.,n for

	

a sin	
2

r = — 2q - o l + (' 2
2 p22)]
	 (64)

p 

We now can obtain the velocities by differentiatin g e quations (36).

3 + r Cos 01 - r° 1  .9 1

-x 2 =	 +r sin 0 1 + r a l cos °1	 (65)

^3 = A * ^r2—(G+ H)

where
it	

rR + Rr
sin 01= °1(03 cos (1 1	 0 32G

J
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S+t

1	 }

Noting-equation	 (45) and grouping terms, we arrive at the final form of
" the velocities.

xt	 4*0, +	 cos a .-= sin	 01 (66)
r

ii	 r

f{ ^"'3 z2	 _5 0 0 3 + r sin 0 1 	 + r Cos	 °^ (67) t

1. x3 = ft	 20 + N) , (68)

NN 	
rR 2G Rr	 P

r2 /03
cos	 01	 -	 a3 sin	 °^^ (69)

,

F f r	 ,

ii
I	 JI

I

r	
yV

,

1

t	 ;

.^

s
t	 :
I

n

^ a

t

?
4

,

>t II J _
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5.0	 PS( 4)	 ELEMENTS ( p, 	 o)	 IN TERMS OF THE

CARTESIAN COORDINATES ( x t ,	 x 21	 x 31 t,	 z t ,	 z 21	 z3)

i	
From reference 3, we obtain

01	
^ x

2 i 3	 x3k2
(70)

f

02	 x 3 z t - 03 (71)

03	 ° x t xds - x2 x 1 (72)

G =	 G t	 + G 2	 + G 3 (73)

H = G3 (74)

„	
L = r _ 2 (%12 + x 22 

+ x32)- V
(75)

where

r -	 x 1 2 + x 2 2 + x3'^ (76)

Since the value of the value of the homo geneous Hamiltonian (eq.(1)) must
vanish,	 one finds that,	 in DS ( m) theory,

rm_ G_	 G 	 2r V+	 u (77)^t
"	 2L vL

t	 From equation (7)

01	 m,	 P U	 _	 L (78)

Insertin g these values in equations ( 2) and	 (19), one arrives at (,

q -	G	 t	 $ +	
u (79)

2	 2HL

2
D -	 -	 m +	 0rG (80)

u ``

	

^)

And notl,ng eouation	 ( 24),	 we	 find	 that satiation ( 35) can be expressed
as -	 _<

+H-r•at /z

4= [PU^^
V	 'U (81)
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-	 From expressions (31) and (39),	 one obtains

(P/r,1)
Z1	

(P/
- (82)Q	 „

^A

and if we note that

Y
k	 F

G =_ P1	 -	 2	 (0
22 +	 022) (83)'

then one obtains from expressions (32) and	 (64) i

32- 2a P- G
(84) 	 j

Q

where

x `I

y h - (85)	 fl
'	 p r

t By the definition of the angular momentum, 	 its com ponents can be written
as ^{

1

	 s in 

^	 h= -GsinIgG	 hcos (36)

G 3 = G cos I	 -

From expressions 	 (6),	 (7),	 (25),	 and	 (86),	 one can derive

-	 2G1
03	

[2(0 + H)]1/2
(87)

- 202
(88 )

1 By ecuations	 (36) and	 (37),	 we obtain

2G(x3/r)
1R =

[2(G + H)]1/2
(89)

r cos	 o 1	 = x1	 + A^ 03 (90)

3
^1r sin	 = x 2 + R	 u3 (91)

a' and thus
/

c1 =arc tan
(r cos	 01)

(92)
(
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Solving equations (33) and (34) for 0 2 and 02 , we find'

9 2_= Z 2 Cos 01 - Z 1 sin 01	 o	 (93)

02 = Z2 sin 0 1 + Z 1 cos 0 1	 (94)

Notin g equations ( 20), (31); (32), (40); and ( 41), one obtains the final
element	 _ 

0 4	 = t - u3 / 2
rE -- m	 - "p •Z24	 l - e	 1 (95)

(204)	 \ III

_ where

E - A	 e -2 arc tan Z2̂...^;--- 00)

yand
a _

1

	

--e-
2L 

P (97)

A sequence of the computations that Rive the transformations to and from
the elements and coordinates will be definitely outlined in the appendix.
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7.0 NUMERICAL APPLICATIONS

1: }j

In reference 2, a number of numerical expe6 ,iments were performed,
comparing the PS(u) formulation with the KS formulation described in ref-
erence 4:-In_reference 2, a complete description of the force models
and the initial conditions for different orbits were given. These same
experiments were performed except that the orbits were integrated with
the use-of FS(m) elements.

7.1 Example 1

The first example is a highly eccentric orbit (e = 0.95) about the
Earth. The satellite is subject t^ the perturbing conservative potential
of the Earth's oblateness (J 2 ) and'-the perturbing forces due to the Moon.

As in reference 2, the PS( m ) elements were integrated with an RK-45 fixed-
step method. The PS(u), KS, and PS M solutions, at the end of 50 revolu-
tions, were com pared to an extremely accurate reference solution found
in reference 4.

The problem descri ption for the first example is as follows.

Coordinate s ystem: X 1 X2 fixed in Earth equatorial plane.

X 3 perpendicular- to Earth equatorial plane.

Initial conditions: x t = 0.0 km, x 2 = -5888.9727 km

x3 = -3400.0 km

z t = 10.691338 km/sec

i2 = 0 km/sec, z3 = 0 km/sec

The time of com parison is at 288.12768941 days. The Earth oblateness
and lunar perturbation models are described in section 9.0, parts a and
b of reference 2.



i

TABLE I.- EXAMPLE 1

x 1 , km	 x2, km	 x3, km	 Energy	 Steps/rev
check

Ref. -24 219.0503 227 "962.1064 129 753.4424

PSu 8.2157 .0072 .3843 0.21 x 10-6 40

KS 8.2221 .0079> .3883 .20 x 10 -6 40

PS4 43.7435 99.6752 74.1071 0.33 x 10-7 40

PSu 0422 .1066 .4421 .22 x 10-8 80

KS 0422 .1070 .4420 .11 x 10 -8 80

PsP 21.2402 3.4532 4.2147 .98 x 10 -9 80

PSu .0499 _.1064 .4424 .18 x 10- 9 - 160

KS	 - .0499 .1064 .4424 .14 x 10- 9 160

PS 5 .1738 .1694---- .4783 .42 x 10- 10 160

Note; The values shown are identical to the corresponding reference
value except for the digits shown in the table. The energy check is the
difference between the integrated value for the total eneray and the total
energy computed from position, velocity, and perturbing potential, divided
by the integrated energy.

As one can see, the PS(u) and KS solutions produce similar results,
whereas the PS( 0) =olutions produces results that are not as accurate

j

that are 	 eccentric 	 KS both 
r have

	 h i ghly
!	 eccentric satellite approaches the apogee point, the lunar perturbations

become very pronronounced
unced.. The

The PS(u) and KS both havv independent

nd	 v

 variables
1^	 PS(0) has the true

' jl	 anomaly as the inde endent variable 	 Therefore nea th a o e	 thP	 ,	 r	 e
PS(u) and KS formulations are evaluating the strong lunar

p ge,	 e

perturbations
more often than the PS ( 0)	 formulation for the simple reason of geometry.

7.2	 Example 2

J2	 perturba-In the second 

example,ta	

is subject to thesatellite

t	 n

Y
se ctiona nd b. 	 sat ellit e o rbit 	 t he E a rth,
aneccent
	 0	 .

Again,	 the experimentswereperformed
in the same manner as described in , the reference.	 One can see from Table 1y
II that all formulations integrate this example easily.

` The problem descr iption for the second example is as follows.

+

,-

P6
^ g

I
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Coordinate system:	 same as that for example 1

Initial conditions:	 x 1 	= 0.0 km,x 2 = -5888.9727 km,	 x 3 := -3400.0 km

z 1	 = 8.3 km/sec,	 i2 = 0.0 km/sec,	 x 3	 = 0,0 km/see

The time of com parison is at 4.30899150 days, after a pproximatel y 50 revo-
1 tions.	 The oblateness and drag perturbations were computed from the
equations in parts a and c of section 9, 	 reference 2.

^,E
TABLE II.- EXAMPLE 2

z

i{

x1, km	 x2, km	 x,	 km	 Energy	 Steps/rev

3
i

Ref.	 819.9225	 -5960.6168	 -3175.3500	 0.70 x	 10 -12	 160

PSu	 .9225	 .6168	 .3500	 .27 x	 10` 8 	30

1 KS	 .9225	 .6168	 35001	 x	 10- 8 	30

PS b	 .9225	 .6168	 .3500	 .74	 x	 10 - 9 	30

' PSu	 .9225	 .6168	 .3500	 .22 x	 10- 9 	50

KS	 .9225	 .6168	 .3500	 .18	 x	 10- 9 	50

PSG	 9225	 6168	 .3500	 .70 x	 10 -10	 50

i

^

7.3	 Example 3

s

In this last example,	 a particle is placed at the libration point
P

in the Earth-Moon system.	 If the Earth and the Moon are assumed to move
in circular orbits about their center of mass and if an infinitesimal
mass is placed 60° ahead of or behind the Moon at the sameradius and
circular speed as the Moon, 	 then from the theory of the restricted three-

'	 'i	 { body problem,	 the mass will remain at either of these points indefinitely.
If the particle is placed there with a small initial position error, then

i the particle will librat'e about that point. 	 The motion of such a,particle
is computed by the PS(b),	 PS(u),	 and KS methods.	 As before,	 the experiment
is the same as described in reference 2, 	 section 9.3•

The problem description is as follows.

Coordinate system:	 X	 and X	 in Earth-Moon plane; X3
1
	:dicular

1	 =	 192 2 300 km x 2	 =	 332 900.165,x.	

,	
x3

'	 ^33 Initial conditions:	 x	 km, 
x3	

0 km I

z 1	 = -0.8872840638 km/sec, 	 k2 = 0.5125402247 km/see Iq

z 3 = 0^ km/sec

27 P^;



The final time is 10 000 days.	 The lunar ephemeris used in this example

is given in part d, section 9, of reference 2.

TABLE III.- EXAMPLE 3

x 1 ,	 km x2,	 km r, km Energy Steps/rev
check

Ref.	 -178 094.8956 -340 462.3726 384 229.6435 0.50 x 10-13 8o

PSu 5.4693 1.9627 .5463 ..12 x 10"7 10

KS 6.4119 .8837 30.7993 .72 x 10 -5 10

PS$ _	 _rr 0474 .0933 .4664 -	 .12 x 10- 7 10

PSu .9156 .3688 .6495 .25 x 10-9 20

KS .9470 .3989 .6907 -.2 11 x 10 -6 20

PS$ .9036 .3753 6497 .25 x 107 9 20

PSu .8963 .3726 .6439
11

.36 x 10- 11 40

KS .8972 .3735 .6451 .75 x 10 -8 40

PS m .8958 -----.-3729 .6439 .38 x 10 -9 40

1	 '/	 I'	 s

I	 ;

li

I

7.

From table III, one finds that the PS(m) and PS(u) formulations give more
accurate solutions than the KS method, for step cr r izes of 10, 20, and 40

steps/rev.
t^ 4
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8.v CCNCLUSInN5

a 1	
The differential equations for the perturbed two-body elliptical 	 ^!

-^

	

	 motion are defined in elements that are similar to the two-body classical
canonical PoincarA elements, which have time as the independent variable.

C i

	

	
Anew Hamiltonian is defined that enables the introduction of two more
canonical variables, the total energy and the time element. Also, these
new elements have as their independent variable, the generalized true
anomaly,

d,

	

	 The accuracy of the solution of this new set is equal to that of
the PS(u) or KS formulations except for the highly leecentric case where
the PS(O is at a disadvantage because of geometric reasons.
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APPENDIX

COMPUTATIONAL PROCEDURE
tI	 £-

In the numerical integration of a trajectory by means of the PS(0)
elements, one may follow the procedure described ;elow. 	 Initiall y , the
position and velocity vectors are converted to the PS(0) 	 elements (COTOPS)'.
The numerical integrator will evaluate the PS(0) differential equations
(P;SDEEQ) and estimate the value of the PS(0) elements at 	 r = to + 47,
the independent variable.	 In PSDEEO, one must evaluate the value of the
perturbing forces that are usually given as a function of the Cartesian
state vector and time.	 Therefore,	 PSDEEO must convert the PS 0 elements
into the coordinates (PSTOCO).	 The algorithms for COTOPS,	 PSDEEQ, and

IPSTOCO are outlined in the following sections. 	 The left column gives
the quantity to be computed, and the right column references the equation
number in the text.

fI	 f
COTOPS

Given	 x,	 i, and time,	 transform to	 a_	 and	 L.
3

Evaluate the potential,	 V.

Then°scauentially compute; 	 From equation -

*	 p4	 °	 L	 (75)

C 1 ,	 c 2 ,	 G 3	 (70)-(72)

r	 ^	 ^
0 3	 (73)

j

;,	 H	 (74)

*	 p1	 =	 (77)

i

q	 (79) ((
	 .

P	 (80) V^
'

Q	 (81) f

, *	 °	 (87)3 

*	 a3	 (88)

R	 (89)
i

r cos	 °1	 (90)

r -sin	 (91) 1

. . 
 ECEDING PACE BLANK NOTFILMED

t r	 (85)
7	

a

_	 33

u
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r 7

I

I

^n Z1
(62)

Z 2 (84)

02 (93)

'-III

,
E — (96)

p t	 — e

(93) n ^^

\ 04 (95) ^r

j PSTOCG - ^

^^	 4 f

Given	 L	 o,	 transform to	 x, x,	 t = time.

Se q uentially compute: From equation

-	 Z, (33)

Z2 (34)

Q (35)

e cos (3,)

e sin (32)

P (26)_
`

r (39)

R (39)

G (83)

NG-	 (G-H) (24)

r xl,	 x 2 ,	 x 3 (36)

- e
(20)

^II
E - (41)

v

{ t (40)

? q (9)

>

r (64)
t

" s RM (69)
s

z1,	 x2,	 x 3 (66)-(68) 1
1

34



(10o)

(98)

(99)

(13)

(16)

PSDEEQ

W	
givendo 

do

	

Z, !o COMDVte	 I

Proceed to PSTOCO,

Then evaluate x,	 V,	 P 1,	 P2, and P3.

Compute sequentially:

	

au k	 30k

2(e sin 0)	 a(e sin 0)	 2(e cos t)	 5(e cos 6)

— 
0 — 1 —

	

au k	 ON	 auk	
1

	 30k

a(E – 0)	 a(E – 0)

	

auk	
auk

---ar	 3r

JP k IN

!M p i6
aA k	 auk

A	
ax

7-0

B	 al

OFO	aFo

7p i , iP4

du 	 d P
j-T

(LA

From equation
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