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DUE TO BLADE/VORTEX INTERACTION

by
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and

SHEILA E. WIDNALL

ABSTRACT

A potential cause of helicopter impulsive noise, commonly called
blade slap, is the unsteady lift fluctuation on a rotor blade due to
interaction with the vortex trailed from another blade. The relation-
ship between vortex structure and the intensity of the acoustic signal
is investigated. The analysis is based on a theoretical model for
blade/vortex interaction, due originally to Widnall. Unsteady lift on
the blades due to blade/vortex interaction is calculated using linear
unsteady aerodynamic theory, and expressions are derived for the
directivity, frequency spectrum, and transient signal of the radiated
noise. The inviscid rollup model of Betz is used to calculate the
velocity profile in the trailing vortex from the spanwise distribution
of blade tip loading. A few cases of tip loading are investigated, and
numerical results are presented for the unsteady lift and acoustic sig-
nal due to blade/vortex interaction. The intensity of the acoustic
signal is shown to be quite sensitive to changes in tip vortex structure.
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LIST OF SYMBOLS

bo	reference length, blade semichord

' C
L
	 unsteady section lift coefficient

c	 speed of sound

D	 - Airectivity function, eqn. (3.27)

h	 -mondimensional distance; vortex to blade in semichords

k	 :^mondimensional acoustic wavenumber bow/c

.kx,ky	 wavenumber in x, y.,direction

Lo	 -lift/unit span

M	 :blade normal Mach number; U/c

p-.	 - -pressure

P	 -Fourier transform of the pressure

r	 _ (x2 + y2 + z2 ), also radial coordinate in trailing vortex

S	 Strouhal frequency, S wbo/U

S	 Doppler shifted Strouhal frequency

So	 blade interaction length in semichords

t'	 -retarded time, eqn. (2.3)

Uc	 -convection velocity along the blade

U	 blade velocity

ve	 circumferential velocity in trailing vortex

wo	 vertical velocity as a function of E, fig. 3

wo	 Fourier transform of vertical velocity in wavenumber o

w	 vertical velocity as a function of t'

w	 Fourier transform of vertical velocity in frequency S

t
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_x,y,z

	

	 Cartesian coordinate system, y also spanwise coordinate of
chapter 4

Q	 -*angular velocity of the rotor (radians/second)

	

F	 rb	 bound circulation on the blade (chapter 4)

T..	
circulation in the trailing vortex (chapter 4)

d	 :delta function

R	 angle between blade and vortex, fig. 3

p	 fluid density

a	 ^ravenumber of Fourier transform in 	 fig. 3

.-coordinate system of fig. 4

W	 ::aerodynamic frequency (radians/second)

w	 --zacoustic frequency (radians/second)

n	 blade passage frequency (radians/second)

r

F
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INTRODUCTION

-The sound generated by a helicopter rotor can be categorized as

either "rotational" or "broadband" noise. Rotational noise is charac-

terized by a periodic acoustic signal giving rise to line spectra at the

:blade passage frequency and its harmonics. Broadband noise is nonharmonic

.;. 4nd has a continuous spectrum.

..Rotor noise is due to the combined effect of several complex acoustic

k-sechanismsP 1Sources of rotational noise include steady and periodic blade

.:loading, and at sufficiently high blade Mach numbers, volume displacement

.and nonlinear aerodynamic effects. -Broadband noise arises from randomly

-varying blade forces, due for example to atmospheric turbulence.

-Under certain flight conditions, helicopter rotor operation produces

^ an impulsive, highly directional noise, repeated at the blade passage fre-

quency. Commonly referred to as "blade slap," it is the predominant acous-

tic effect when present. At least two mechanisms can be responsible for

;blade slap. Qne is shock formation due to local transonic flow on the

,a-vancing blade side. Another is the unsteady lift fluctuation on a blade

%caused by interaction with the tip vortex trailed from another blade. This

blade/vortex interaction is the subject of the present investigation.

A rotor blade leaves behind a continuous vortex sheet due to spanwise

"lift variation. The inboard sheet is diffuse and does not seem to induce

appreciable velocities at the rotor disc, while the more intense outboard

sheet rolls up and moves inboard, forming a concentrated tip vortex (fig. 1).

If flight conditions are such as to cause the rotor blades to pass in close

proximity to these tip vortices, blade slap can occur.
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-Fig. 2 depicts schematically-the loci of tip vortices and important

-blade/vortex interactions for single and tandem rotors. As indicated by

the sketch, the essence of the blade/vortex interaction problem is that

of a long blade passing obliquely over a vortex. For the case of small

yangles between the blade and vortex, the interaction occurs over a signi-

ficant portion of the blade span, so that two-dimensional aerodynamics . can_.•...

Abe used to model the problem except near the blade tip.. Comparison of

-figs. 2a and 2b indicates that blade/vortex interactions are more likely

-to-occur at small angles for the case of the tandem rotor, although recent

-:.,experimental evidence [2] indicates that such interactions can be an im-

;portant source of noise for single rotor helicopters as well.

--^! Widnall [3] has developed a theoretical model for blade/vortex inter-

-action. The unsteady spanwise lift distribution is computed on a two

-:dimensional airfoil passing obliquely over an infinite line vortex. This

lift distribution is then taken as the boundary condition on a finite blade

in the calculation of the acoustic farfield. The Widnall model has since

been refined by Chu [4] in order to incorporate sweep and convective fluid

of ects.

In Widnall 's original investigation, the tip vortex is modelled as a

potential vortex. The viscous core is taken into account by locating the

--=center of the vortex an "effective distance" below the blade, defined by

_	
+ 

z
Neff	 hactual	 rcore

-where rcore is the radius of the vortex core.

The potential vortex model is convenient in that it affords an

{essentially analytical treatment of the problem. It gives good agreement

RI Rtj I AG2 Is
^® QUA
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-with experiment for square tipped blades. For the case of the blade

: _cutting through the vortex core, experimental results show a plateauing of

-:both pressure fluctuation on the blade and radiated noise. This effect is

--zccurately predicted by the theory, provided 
rcore 

has been selected

-appropriately.

.In the.present study we examine the relationship between vortex

--structure and the acoustic pulse, in an attempt to identify features of the

4ip vortex that make the most damaging contribution to the-radiated noise

-level. We have developed a numerical-analogue of Widnall's analysis to com-

.pute the unsteady lift on the blade and the farfield acoustic signal asso-

-xiated with a vortex of arbitrary-vorticity distribution.

-We are also interested in predicting vortex structure given the dis-

tribution of blade loading, so that we can directly relate rotor blade

.design characteristics to acoustic performance. Recently this problem has

received considerable attention in the study of aircraft wake turbulence,

-where attempts have been made to predict the trailing vortex structure in

the wake of an arbitrarily loaded aircraft wing. Donaldson [5] has sho%.m

that the long forgotten model of Betz [6] can be successfully applied to the

problem. Betz assumes that the circulation and moment of vorticity of the.

:initially flat trailing vortex sheet are conserved during the rollup process,

and derives a relationship between the spanwise coordinate in the flat wake

and the radial coordinate in the fully rolled up trailing vortex.

_,Donaldson shows that complicated spanwise loading configurations gener-

ate a discrete set of trailing vortices, such that each segment of the dis-

Aribution contained between relative maxima or minima in the loading rolls

i
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.ar into a single trailin

eluctuates widely during

roughly estimated at 75%

tonically to zero at the

25% of blade span in the

1 vortex. Although helicopter blade loading

flight, the position of maximum loading can'be

of blade spaJ73The loading falls off mono-

blade tip. Hence, we need only consider the outer

determination of tip vortex structure. We assume

that the tangential blade velocity is uniform over this length.

The Betz model is easily adapted to a numerical scheme. We apply

.At here to a few different loading configurations, holding the location

•.and magnitude of the maximum blade loading constant for all cases. The

Choice of loading configurations is somewhat arbitrary, as little is known

-about the precise distribution of tip loading on helicopter blades. The

--examples have been selected to illustrate salient features of the model

-and to suggest general guidelines for design to minimize noise.

Finally, we discuss some general aspects of noise generation due to

-blade/vortex interaction and recent experimental attempts to minimize

blade slap through tip shape modification. [2, 8]

T

_..Ii
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2. • UNSTEADY AERODYNAMICS OF BLADE/VORTEX INTERACTION

.-We wish to compute the unsteady lift distribution on a two dimen-

sional airfoil passing obliquely over an infinite vortex filament. From

.linear aerodynamic theory, this unsteady lift can be calculated by re-

quiring the condition of no flow through the airfoil in the presence of

:=the upwash field induced by the vortex.

2.1 The Upwash Spectrum Due to Blade/Vortex Interaction

:The-geometry of blade/vortex interaction is depicted in fig. 3.

:$lade/vortex separation is h, angle of obliqueness A. As is standard

In unsteady aerodynamics, all quantities have been nondimensionalized by

the blade velocity U and blade semichord b o . The coordinates are fixed

in the fluid.

-Me define the spatial coordinate E measured perpendicular to the

--vortex in the plane of the airfoil. Then given the distribution of

circumferential velocity in the vortex, along with h and A, the upwash

induced at the airfoil location at a given instant can be written as

w,;E). Using Fourier transforms, w0 M is represented as a distribution,

in spatial wavenumber Q, of sinusoidal gusts.

woM =

CO

 
W0(a)e'aEda

CO

WO(a) = Zn wo(k)ed^

As the blade passes over the vortex, the upwash pattern is convected

-Tong the span with nondimensional convection speed U c , given by

ti

(2.1)



1
Uc	

tan A	 (2.2)

This upwash can be written as w(t'), where t' is the "retarded time"

defined by

t'	 t - X	 (2.3)

UC
F

-We define the nondimensional aerodynamic frequency

wb
S

	

	 °	 the Strouhal number.	 (2.4)
U

Here we have used the symbol 	 in order to distinguish the aerodynamic

frequency from the acoustic frequency that appears in Chapter 3.

Using Fourier transforms, the unsteady upwash w(t') is represented

.as a distribution of sinusoidal gusts of frequency S.

.w(ti) =	
W(S)eiSt'dS

	

-^	 (2.5)

	

^(S) = 2n	
w(t')e- iStIdt'

We can use egns 2.1 to express the upwash spectrum, W(S) of eqns 2.5,

in terms of the spatial upwash distribution w o (0 . An airfoil passing

over a sinusoidal gust of spatial wavenumber experiences velocity fluc-

tuations of frequency

S - acosA
	

(2.6)
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-'From geometry,

to	
cosA

These relations are substituted into egns. (2.5) to give the upwash spectrum,

m

W(S) = 1	 ^' (^)e^^o^d^( 1 ) =	 1	 W ( Q )	 (2.8)
T	 o	 cosA	 cosA o

for v= S
cosA

.2.2--Unsteady Lift Due to Blade/Vortex•. Interaction

..A-gust of frequency S causes a sinusoidal lift variation along the span

-i(k x-St)	 -iSt'
L(x,t;S) = L0 (S,A)e	 x	 = L0 (^,A)e	 (2.9)

-4ihere Lo (^,A) is an (as yet) undetermined complex lift amplitude. Since the

purpose of this work is to determine the effects of tip vortex structure

upon the acoustic signature, we have-used the incompressible theory of

-Filotas [9] to calculate the unsteady lift due to one such oblique sinusoidal

•gust. Compressibility effects are thereby excluded for reasons of simplicity

.and consistency with ref. 3. It is felt that these effects would not essen-

tially alter the results of the present study. We are currently using the

more complex unsteady aerodynamic theory of Amiet [15] to investigate the

acoustic ratiation from blade/vortex interaction at higher frequencies in a

-compressible flow.

The Filotas theory gives the unsteady lift due to an oblique sinusoidal

gust as

!a	 4

f
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1(x 9t,S) = pU2boCL

CL = 2naT

a	 W(- 
i(kxx-St)	 (2.10)__

-where a is the instantaneous angle of attack,

7. and l' = T(a'* A) = T(cosA'A) is the (complex) "lift transfer function"

.lof.Filotas, given in Appendix B.

.7-relates the magnitude and phase of the unsteady lift to that of

the incident sinusoidal gust, analogous to the well known Sears' function

`	 --for the case of a parallel blade/gust interaction. T=1 at zero reduced

-frequency (steady upwash case). As frequency tends to infinity, T

:.approaches zero as the infinite number of upwash oscillations become

mutuall y self-cancelling over the chord of the airfoil.

-Comparing eqns (2.10) and (2.9), we have for the (complex) unsteady

lift amplitude

Lo(S,A) = 27TpU2b0T(cosA'A)W(SI
	

(2.11)

The unsteady lift at a spanwise station x is found-by integrating

eqn (2.9) over all frequencies, as the inverse Fourier transform

L(V) - L0(S,A)eiSt dS .°` (2.12)

For reference, we include the forward transform

m

Lo(S,A) _ 
21r

L(t)eiStIdt'

-co

(2.13)
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3. -ACOUSTIC RADIATION FROM BLADE/VORTEX INTERACTION

-lie now analyze the acoustic field-due to blade/vortex interaction.

The unsteady spanwise lift distribution previously calculated is now

taken as a boundary condition on a blade of finite length in the solution

of the acoustic wave equation.

..3.1 Problem Formulation

- -ale assume that the blade chord is smaller than a wavelength, so

-=what the unsteady lift may be modelled as a line of acoustic dipoles,

=woving with velocity U in the y direction (fig. 4).

The governing equation for the unsteady pressure is

v2 p = _
L 	

(3.1)
c2 W

Y Defining an effective blade/vortex interaction length s o , the boundary

-condition may be written

. p7 (x,Y- O ) - P (x,Y, O ) = L(t-x/Uc )6(Y-Ut) lxj<so

(3.2)

= 0	 1xI>so

Dimensional variables have been introduced temporarily for the sake of

clarity. L(t-x/Uc ) is the unsteady lift of eqn. (2.12), with U c the

phase velocity with which the lift pattern is convected along the blade,

_from eqn. (2.2).
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:Returning to a nondimensional formulation with reference quantities

.-blade velocity U and semichord bo , this boundary condition is'written

-P (X,,Y.0) -P+ (x ,Y, d) = L(t-x/Uc )S{b0 (y-t)} 1xI <s0

(3.3)

	

3 0	 1xI >so

inhere the dimensions of pressure p-force/length' and section lift

•L:_force/length have been retained.

3_2 Transforming the Problem

-4e introduce the Fourier transform in x, y, and t, defining the

---transform pair

l

CO

 ikxx + ikyy -iSt

--p(x,y,z,t) =

	

	
a	

P(kx,ky;S;z)e	 dkxdkydS

(2n)
-^	 (3.4)

C

-ik x-ikyy+iSt
P(kx ,ky ,S;z) =	 P(x,Y,z,t)e	 x	 dxdydt

wbo

	

where S is nondimensional frequency, 	 .
U

The Fourier transform of the boundary conditions is given by

S
-ik x-ikyy+iSt

AP(kx
 
s k

y 
,S) =	 L(t-x/Uc)S{bo(y-t)} e	 x	 dxdydt	 (3.5)

-Go -SD

F

t

E
r

F^F

E

r
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-From the properties of the delta function, the only contribution to

-the y-integral occurs at y=t.	 Using

m

td(au)du	 =	 a

.m

-*e perform the y integration. 

cc	 so
-ik x-ikyy+iSt

x-:11P(kx ,ky,S) =	 b L(t-x/Uc ) e	 dxdt
0

(3.6)

~ID -so

To evaluate the t integral, we introduce the retarded time t', as

yin-eqn.	 (2.3).

t' = t- x

Uc

-dt' = dt (x is held constant over the t integration)

• so that
r

OS	 • S
0

-ik x i(S-k )(t'+x/U )
tP(kx ,ky ,S) =	 L(t')e	 x e	 y	 c dxdt' (3.7)

—oo -SO

Regrouping,
PS

0

• i{[(S-k )/U ]-k }x	 °'	 i(S-k )t'
c	 xOP(kx ,k,S)y =	 y	 L(t')e	 y	 dt'	 dx (3.8)fso

The bracketed term in eqn. (3.8) is the Fourier transform of the

=unstead	 lift in the fro uenc	 arameter S-k	 With reference toy	 q	 y p	 y•

s;
A
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-eqn. (2.13), we therefore identify S-ky as the aerodynamic frequency S,

-giving the transform of the unsteady lift as the unsteady lift spectrum

L°(S) (within a factor of 21T). Since P is the Fourier transform of the

:acoustic signal, we see that 'a Fourier component of unsteady lift of

frequency S on the moving boundary will be perceived at acoustic frequency

S in the sound field. This is usually referred to as the Doppler shift.

.fqn. (3.8) then becomes

s
° i(S/Uc - kx)x

_,ZP(kx ,ky ,S) = 2nLo (S)	 a	 dx	 (3.9)

-s
o.

,-The x integration is straightforward, giving the Fourier transform of

-4he boundary condition as

sin{s (S/U - k )}
- =AP(kx,ky,S)	 b^ Lo 

(S) o 	 c	 x
o	 (S/Uc - kx)

We now take the Fourier transform of eqn. (3.1), giving

(3.10)

d2Z2 - (kx 2 + ky2 - k2 )P = 0

where the relation k=S/c has been used.

The solution to eqn. (3.11) is written

+Z 
C +k .._k

-P(kx ,ky ,S) = A(kx ,y ,S)e	 x	 y

where A can be complex.

(3.11)

(3.12)

I
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.The argument of the exponential in eqn. (3.12) must be purely

-:complex for waves that are radiated into the farfield. This establishes

gas-a .cutoff condition

k 2 > kx 2 + k  2 for non decaying waves	 (3.13)

-from geometry k 	 c -kx - y	 so that eqn (3.12) can be written

±ik z

	

`-P(kx,ky,S) = A(kx ,ky ,S)e	 z	 (3.14),

^^onsidering only those waves that propagate outward from the boundary,

--so that the quantity 
±kzz 

is always positive, we define

i c -k - c	 z

	

forz >0, P+ =A+e	 x y

(3.15)
-i c - cx - cyz

..for z < 0, P- = A-e

Ae now impose the transformed boundary condition of eqn. (3.10)._

+	 47r	 - sin {s o (S/Uc - kX ) }
P-	

z=0 

= b Lo 
(S)	 ry

	o 	 (S/Uc-kx)

In addition, we require that the pressure discontinuity be symmetric

across the boundary, that is

3P+ _ ap

	

2	 (3.16)
z=0

leading to A+ = -A-.

0
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.Application of these two boundary conditions determines the constants

Oland A- , giving the Fourier transform of the pressure as

+	
2a	

sin{so(S/Uc-kx)}

F (kx^ky^S)	
+ bo 

Lo(S)	
(S/U -k )	

(3.17)

C x

:'aking the inverse transform-defined by eqns. (3.4) gives the pressure

-field as

00

-1	
Ysin{so(in -kx)} iz -kX ky

P(x^Y^ z ^ t) =	 L (S)	 e
(2n) 2	obo 	 (S/Uc-kx)

ik x x+ikyy-iSt
e

	

	 dkdkdS	 (3.18)
X y 

3.3 Evaluating the Farfield Pressure

.The pressure in the farfield is obtained by performing the inte-

	

--grations indicated in eqn. (3.18) in the limit of x +y +z	 We take

.advantage of the farfield asymptotic behavior of the integrand to carry

out the integrations over k  and ky , using the method of stationary phase

^10^•

In general the method of stationary phase utilizes the self cancelling

,oscillation of an exponential factor in an integrand, allowing the con-

tribution of the integrand to be neglected everywhere except in the neighbor-

hood of one or more critical points.

We identify the "phase" of the integrand in eqn. (3.18) as

z{kx 
i + ky Z + c -<x -ky }	 (3.19)

F
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If the phase is a rapidly increasing or decreasing function of

kx or ky , the exponential e io alternates rapidly in sign with a change

in kx or ky . It, the limit of x,y,z-+	 these oscillations become mutually

.-self cancelling, so that contributions to the integral occur only in the

vicinity of tho3e points at which the phase is rendered "stationary" with

respect to k  and ky . That is,
ir

t	 •

-a^- _	 = 0	 (3.20)ax	 ay

Application of egns. (3.20) leads to the result

k*	 kX	 r
(3.21)

ky* = kr

-where asterisks have been used to identify kx and

ky evaluated at the stationary point.

from geometry, kx* and ky* describe a wave that propagates radially

-,outward from a point source. Physically, the method of stationary phase

-tells us that only these waves are present in the farfield limit.

Whitham [11] presents the result for application of the method of
4

stationary phase to multiple integrations. If we write egn.(3.18) in the

form

Go

-izW ik x+ikyy-iSt
-p(x,y,z,t) =	 F(kx,ky.D e	 e x	 dkxdkydS

_cc

(3.22)
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where	 i

sin{s (S/U -k )}
F(k ,k ,S) _	 -^	 b L (S)	

o	 c x

x y	 (21r)2 0 0	 (S/Uc-kx)

-:and	 W(kx,ky,k) _ -1P-kx2-ky2

z-then -application of Whitham's formula leads to

`

	

	 -

fF(kx*,ky*,S) (ZE) det aka
2 112

ak
x y	 kx*,ky*

_m

(3.23)

eikx*x+iky*y-izW(kx*,ky*,k)-i^ sgnW" dS

-Using kx* and ky* from egns. (3.21), we evaluate

_ 112

2	 k2-k *2 -k *2	 2a W	 x	 y	 _	 z
det ak

x aky	=	 k	 - 
k r2

k *,ky*

and	 S = S-ky* = S(1-M Y-)
r

,where the relation k = MS has been used.

K

^I	 r
S	

,

c
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These expressions are substituted into eqn. (3.23) to give, after

Some algebra

1	 sinfsS [tan A (1-h^) -Mr]}
_p(x,y,z,t) =	 iL fs(1-M-)}

o
2nbo	o	 r	 S[tan A (1 ,. Mr) -Mr]

(3.24)

IS (Mr-,--)
IS a	 dS

-where we have substituted U c = l/tan A.

=Equatiun ( 3.24) could equivalently have been expressed as an inte-

:gral over aerodynamic frequency S rather than observed frequency S. The

a atter seems the more reasonable choice because it clearly indicates that

:we are evaluating the pressure as an inverse transform of the farfield

-frequency spectrum.

'P(X.Y^Z^t) = 1
zT

(S) a-ist dS
t

--We change to spherical coordinates, with reference to fig. 4.

x = rcosesin^

y = rcosecos^

z = rsine

F
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S and S are now related by

S - S(1-Mcosecosfl
	

(3.25)

^	 1

f

-and equation (3.24) becomes

7p(r,e,7 ► ,t) =	 1  ^ i b Lo{S(1-mcosecosw2 ^o
min{s0S[tanll(1-Mcosecos^)-Mcosesin*]} sine	 iS Mr-t

MSe (	 )dS

S[tanll(141cosecos,P) -Mcosesin^]

(3.26)

73.4 Directivity of Blade/Vortex Interaction Noise

Using relation (3.25), we define the acoustic directivity factor

-appearing in eqn. (3.26) as

sin{soS[tanA-hlcosesin ^/(
1-Mcosecosy)>}

sin8

D(e, ^, S) =
(1-McosecosIy)2{soS[tanA-Mcosesin^/(1-Mcosecos^)]

(3.27)

Eqn. (3.27) is expressed as a function of aerodynamic frequency S,

in conformity with the conventional interpretation of the directivity

factor as a representation of the acoustic field due to a source of pre-

scribed frequency., For a given value of S, observed frequency S varies

throughout the field, so that writing the directivity in terms of S would

have been misleading.
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Using eqn. (3.27), the farfield pressure of eqn. (3.26) is written

Ms

p(r,e,*,t) _ (1-McosecosV) , .0	 iLo{S(1 -Mcosecos*))D {e,y,S(1-McosecosP))

IS(Mr/bo-t)	 (3.28)
Se	 dS

-.or equivalently, in terms of S,

Mso m
	

_	 i [-sm-Mcosecow ] (Mr/bo-t)
P(r,6,^y,t)	

27rr	
iLo {S)D{6,^,S)S e	 _ dS	 (3.29)

_.

•where r has been redefined in dimensional terms.

-The directivity factor of eqn. (3.27) can be expressed in terms of

k, the acoustic wavenumber at the blade location.

=Using the relation k = M , we write

sin{s ok[tanA/ M - cosesin^/(1-Mcosecos^)]) sine

D(e ' .̂ ' k) -(3.30)(1-Mcosecos^) Z {s ok[taM/M - cosesin^/ (l -rtcosecos^ )])

-for the case of the source dimension much smaller than a wavelength

(kso«1), eqn. (3.30) is seen to reduce to the directivity factor associ-

ated with a convected point dipole, derived in appendix A as

*k
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D(e,)	 sine	
(3.31)

( 1-Mcosecos*)2

= This expression applies in cases where the important blade/vortex

:interaction is confined to the tip region, as in the single rotor flow

geometry sketched in fig. 1.

-for effective blade/vortex interaction lengths of the order of the

-blade length (is o»1), more likely to occur for tandem rotor blade/vortex

-interactions, the directivity pattern becomes highly concentrated about

-:the combination for which

tanA	 tosesin^crit
M -	

= 0
1-Mcosecos^crit

(3.32)

For these critical values of a and ^ , the directivity factor is

-also given by the point dipole expression, eqn. (3.31). 
D(e,*crit) 

is

-plotted in fig. 5 for M = .53 at various values of A . (This corresponds

to the numerical case investigated in Section 5.) The maximum value of

'^crit 
barely exceeds 50° for these cases, indicating that the acoustic

-power is beamed strongly forward.

3.5 The Acoustic Signal Due to a Repeated Transient

The acoustic pressure of eqn. (3.28) is that due to a single blade/

vortex interaction. For helicopter application, this transient is re-

peated at the blade passage frequency 2 = ma, where a is the angular

velocity of the rotor and m the number of blades. (We note that although

the frequency content of the transient is Doppler shifted due to motion

of the blades, the repetition of the signal is perceived at the blade
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passage frequency for the case of a hovering helicopter.)

-For notational convenience, we write eqn. (3.28) as

CO

- p (t) =	 P(S)e-istdS

so that

P(S) = 
21r

p(t)e
iSt

 dt.

- _The repeated signal is given by

Pr(t) _	 p(t-nT)	 (3.33)
n=-co

=inhere T is the (nondimensional) period,

T = 27r U
n bo	

(3.34)

The spectrum of the repeated signal is

Go

	P r(S) = 2^	
p(t-nT)eiStdt =	 eiSnTP(S)	 (3.35)

n=	 n=-co
_00

We can write

eiSnT = 21T 1 6(ST-21m)
n= 	n=-Co

= 27r I d(S L--- _ -uo	 6(S-m_—° )	 (3.36)

	

m=	 m--CO



r
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so that

P	
f2b m

r(S) 	 P(S)
^-^	 (3.37)

and

i2b
P
r
(t) _ QUO	

P(rtr °) a

-irt	 t

M=--W U 	(3.33)

Denoting SM= R
U , the repeated acoustic signal is then written as

the Fourier series

r ePr ( , ,^ ,t ) = i(1-Mcosec0s^)2 Ms 0
27rr	

(3.39)

	

t2b	 W
x	 o

	

U	 1 Lo{Sm(1-Mcosecos^ )JDfe ,Vp ,Sm (1-Mcosecos^)} S ASM(Mr/bo-t)M=-00
m

C
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4. THE BETZ VORTEX MODEL

The Betz [6] vortex model predicts the-approximate structure of

.a fully rolled up lift generated trailing vortex given the spanwise lift

distribution on a flat wing.' It does not treat the intermediate stages

between the initially flat trailing vortex sheet and the rolled up vortex.

=qhe rollup process is assumed to be inviscid and two dimensional.

-:We use the Betz method to predict the velocity profile in the tip

--vortex corresponding to an assumed form for the steady spanwise blade

J oading distribution. Donaldson's results-suggest that only the vorticity

situated between the helicopter blade tip and the position of maximum span-

-wise loading rolls up into the tip vortex. We assume that the.maximum

.loading occurs at 75% of blade span, [7] and that the loading falls off

monotonically to zero at the blade tip, so that only the outer 25% of

-blade radius contributes to tip vortex structure. The tangential blade

velocity is taken to be uniform over this length.

-With reference to fig. 6, the spanwise coordinate on the blade is y,

w4 ch y=0 at 75% span, and y=L at the blade tip. The radial coordinate in

-the fully rolled up trailing vortex is r. We denote the spanwise distribu-

tion of bound circulation as r b (y), and the radial distribution of circu-

lation in the vortex as rv(r).

The result of the Betz method is the determination of a function

r--r(y) such that r b (y) = rv (r) at corresponding values of r and y, subject

to the constraint that rb and ry be related by three conservation relations

for two dimensional systems:
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I. The circulation is conserved.

r (p)	 r = - L dr b (Y)	
_ rmax drv

b	 .o	 .dy	 dy	 dr dr
	 (4.1)

0	 0

II. The centroid of vorticity remains at a fixed spanwise

location.

_	 - 1	 drb(Y)
y ( o)-	 Y dy dy	 (4.2)

	

r	
.

o

III. The second moment of vorticity is conserved, Jv=Jb=J.

° _	 dr (y)	 rmax	 dr (r)

	

[Y(o) -y] 2 	 dy 	 dy -r2	
dr	

dr	 (4.3)

L	 o

-where rmax is the radius within which all the vorticity

is contained in the fully developed vortex.

—Equations (4.1,2,3) are further assumed to apply piecewise, beginning

at the wing tip, to successive portions of the sheet in toward the wing

root:

r,
Yl drb (y )	 _	 drv(r)

dy	
dy	

dr	
dr	 (4.4)

	

L	 o

	

—	 1	

yl 
drb(y)

Y(Y1)	 rb Yl	
Y dy	 dy	 (4.5)

L
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Y,	 r
dr (y)	 1 dr (r)

MY0 - Y12 by	 dy =	 r2 dr	 dr	 (4.6)
L	 0

Aossow [12] uses the above equations to-obtain the relation between

---r and y as

Y

r	 rrb --	 rb (Y 1 ) dy i 	(4.7)

L

The circumferential velocity in an axiall y symmetric vortex is

-found from

Tv(r)	 rb{y(r)}
ve
 = 2^rr = 2nr	

(4.8)
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S.	 APPLICATION TO A NUMERICAL SCHEME

•.ln this section we outline the adaptation of previously derived

.results to numerical computation.

5.1 The Betz Model

Using egns. (4.7) and (4.8) it is quite straightforward to develop

^a numerical procedure to predict the structure of the trailing vortex,

.^ given an assumed form for the s panwise distribution of bound circulation

:won the blade rb(y).

teferring to section 4, egn.-(4.7) is integrated numerically from

•y - 0 (corresponding to r = 0 in the•rolled up vortex) to y = L (corre-

.=sponding to rmax ). For each pair of values (r, y) thus found, eqn. (4.8)

Is used to evaluate the circumferential velocity v e (r). The vortex is

-assumed to be irrotational for r> 
r 
max , so that we use a potential vortex

-model ( ve -- 1/r) for this region.

We note that ve = 0 is always used at r = 0. (This is necessary for

-subsequent computation.)

5.2 Blade/Vortex Interactions

From the circumferential velocity distribution computed as in section

:5.1 and blade/vortex separation h, we begin by computing the upwash in the

plane of the airfoil (w
0 
R) of egns (2.1). The Fourier transform indicated

in eqns. (2.1) is then computed numerically, using a fast Fourier transform

VFT) subroutine. The application of the FFT subroutine is described in

••-reference

-Given blade/vortex interaction angle A, the upwash spectrum at the

airfoil location W(S) is obtained from eqn. (2.8), and used in eqn. (2.11) to 	
r;

-give the spectrum of the unsteady lift L 0 (S). The inverse transform indi-

i
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cated in eqn. (2.12) is then evaluated through the use of the FFT sub-

-- routine to give the unsteady lift due to a single blade/vortex interaction,

Similarly for the pressure, the inverse transform of the farfield

.spectrum is evaluated using the FFT subroutine to give the farfield signal

.(due to one blade/vortex interaction) of eqn. (3.28). Strictly speaking,

--eve should evaluate the Fourier series of eqn. (3.29) to give the signal due

-to a series of transients repeated at the blade passage frequency 0.

#lowever, numerical evaluation of eqn. (3.28) shows that the nonzero extent

of the transient due to a single interaction is of much shorted duration

-than the blade passage period T, so that the transient decays too rapidly

_.to contribute acoustic energy to any subsequent pulses. Therefore, an

interval of the transient signal of duration T looks identical to one

--period of the signal due to repeated interactions.
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6.	 RESULTS AND DISCUSSIDN

The model is applied to three tip loading configurations. For the

vortex corresponding to each of these cases, numerical results are pre-

sented for the unsteady lift experienced by a blade interacting with the

vortex and the associated acoustic signal over a range of interaction

geometries. General features of the noise due to blade/vortex interaction

are considered, and results of some recent experimental attempts to

minimize the problem through alteration of tip vortex structure are dis-

cussed in light of the theory.

6.1 Cases Investigated

Inputs to the model are:

(1) bo , blade semichord 	 r

(2)
Ueff' effective blade velocity

(3) rb (y), distribution of bound circulation on the blade tip

shedding the vortex for input to the Betz model

(4) h, blade/vortex separation

(5) d, blade/vortex angle

(6) so , effective blade/vortex interaction length

(7) r,e,^, coordinates of the observer, fig. 4

(8) n, blade passage frequency

(9) p,c, fluid density and sound speed, taken for air at STP

Helicopter parameters used to perform the computations were those

of a Bell model UH-1H. Relevant specifications are listed below (from

ref. [14]).
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Number of Blades	 2

Rotor Diameter	 48 ft.

-.Slade Semichord	 10.5 in.

-.avg. tip speed	 780 ft/sec

--avg. gross weight	 -8000 lbs.

-.blade passage frequency	 -65 rad/sec

To obtain an order of magnitude estimate of the maximum section load,

maximum loading was assumed at 75% blade radius, with spanwise loading

4aken to fall off linearly from a maximum (L max ) to zero at the blade root

-and-tip. For two 24 ft blades supporting an 8000 lb helicopter, this gives

Lmax = 333 lbs/ft. Denoting maximum circulation by r0 , the relation

Lmax = pUr
o from lifting line theory (with U at 75% radius)gives

To = 238 ft'/sec.

?he three spanwise distributions of bound circulation assumed for

--the blade tip (outboard 25% span) are presented in fig. 7. 1' o is the same

for the three cases (elliptical, linear, and cos' circulation distributions).

_For the acoustic parameters, effective blade/vortex interaction length

so was estimated as 2/3 of the blade length, or s o = 16 ft. Effective blade

velocity was taken to be .75U 
tip' 

or Ueff = 585 ft/sec, corresponding to

,.a Mach number of .53. Calculations were performed for blade/vortex angle

A = 0, 15, and 30°, with blade/vortex separation distance h = 0, .2, .5, 1,

and 2 blade semichords investigated for each value of A.

Observer coordinates were selected to yield the most intense acoustic

-signal for each case. (e. I'crit corresponding to Dmax from eqns. (3.31) and

(3.32) were computed for each value of A.) r = 1000 ft was used.
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The cases investigated are summarized below.

I. :Tip Load Distribution (ro = 238 ft2/sec, y = 0 at 75% span,

Y - L.-at blade tip)

i) elliptical r = ro	 - y

ii) Linear r = ro (1 - y/L)

iii) cos t	r = ro Cos 2(2L)

M. -Blade/Vortex Interaction and Acoustic Parameters

-so = 16 ft

Jeff = 
585 ft/sec (M = .53)

r 1000 ft

....A = 00 , 6 = 40.7°,	 0°

A = 15% e = 38.0 0 , = 23.30

R = 300 , e = 180 ,	 = 52.70

6.2 Results

-Results are presented in figs. 8 through 27.

-fig. 8	 - circumferential velocity profile in the vortices

corresponding to each loading case

flg. 9 - 17 - unsteady section lift experienced at a spanwise

-station during blade/vortex interaction

fig. 18 - 26 - farfield acoustic signal due to blade/vortex

interaction

fig. 27	 - comparison of acoustic intensities
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6.3 Discussion

i) Trailing Vortex (fig. 8)

-.The-structure of the trailing vortex, as predicted by the Betz

:theory, is profoundly influenced by the slope of the loading function at

-the blade tip. In the case of the elliptical load distribution, for

.which the loading falls off with infinite slope at the blade tip, a square-

--root singularity in circumferential velocity is predicted at r = 0. For the

-Cos ta oad distribution, zero slope at the blade tip leads to v e = 0 and

dr = 0 at r = 0, and the maximum circumferential velocity occurs at a
-finite distance from the vortex center. The linear load distribution has

a finite nonzero slope at the blade tip, giving a finite nonzero velocity

at r  0 (requiring a velocity discontinuity here).

—Adaptation of the theory to numerical computation requires v  = 0

at r = 0. This acts to reduce the severity of the singularity and the

=discontinuity encountered in the elliptical and linear loading cases. The

.•effect of viscosity in the real fluid would also moderate these abrupt

features of the velocity profile. (Viscous effects were not considered

here to avoid unnecessary complication of the analysis.)

-ii) Upwash

The distribution of circumferential velocity in the trailing vortex

-represents the upwash encountered by a blade at zero blade/vortex separa-

tion. With an increase in separation, we see two effects:

(1) The amplitude of the upwash signal is decreased, as circumferential

velocity falls off with an increase in distance from the vortex

center (except in the immediate vicinity of r = 0 for the cost

loading case).
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(2) The high frequency content of the upwash transient is diminished;

the signal is smoothed out as the blade passes further outside

-.abrupt fluctuations in circumferential velocity that are con-

centrated about the center of the vortex.

The blade experiences the most-concentrated, sharply peaked upwash

signal (i.e. largest high frequency content) through interaction with the

..trailing vortex for the case of elliptical loading. A more gradual

- :variation in upwash is experienced for the cases of the linear and cost

loading distributions. The peak to peak amplitude of the upwash signal is

,largest for elliptical loading, less for the cos t case, and smallest for the

case of linear loading. With an increase in sweep angle (A), the upwash
c

Signal becomes less concentrated, i.e. the high frequency content of the

signal is diminished.

iii) Unsteady lift (figs. 9 - 17)

--The character of the unsteady lift signal can be expected to resemble

that of the upwash signal. Accordingly, the peak to peak amplitude of the

unsteady lift signal is largest for the case of elliptical loading, less

for the cos' case, and smallest for linear loading, corresponding to the

relative amplitudes of the upwash signals. An increase in sweep angle .

spreads out the unsteady lift signal as it does the upwash.

The relationship between unsteady lift and upwash is governed by the

Filotas "lift transfer function", which gives a decrease in the amplitude

of the unsteady lift signal with an increase in gust frequency and/or

sweep angle. We note also that the transfer function 	 is unity for a

zero frequency gust (steady upwash case), but introduces an aerodynamic

._phase shift between upwash and unsteady lift at higher gust frequencies.
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.Consequently, the degree of harmonic distortion in the unsteady lift signal

(relative to the upwash signal) is seen to increase wi'tii.an increase in the

-.high frequency content of the upwash signal. This is particularly evident

for the case of elliptical loading at small values of h, as this upwash

-signal is the richest in high frequency content.

iv) Acoustic Signal (figs. 18 - 26)

-.le have modelled the helicopter blade as a finite line of acoustic

-,dipoles. It is not surprising, then, that analysis of the acoustic radiation

,from a single convected point dipole affords much insight into the problem.

-1-he farfield sound due to a convected point dipole of amplitude F 

=(point force) and sinusoidal frequency wo is derived in appendix A as

wo

F 
	

1	 -1(-Mcosocos^,)(t-r/c)W  , D(e,*)e
2nr

where the directivity factor D(e'o =sine
1-Mcosecosyl F-

-Two features of the dipole expression are of interest here:

(a) The magnitude of the acoustic pressure is proportional to

frequency, wo.

(b) As indicated in section 3.4, convection acts to concentrate the

-acoustic power in the forward direction, giving rise town in-

crease in the value of the maximum acoustic pressure attained

(over that of the nonconvected case).
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(a) Frequency Dependence

The results clearly indicate the-dependence of the peak acoustic

pressure on frequency. We find, for example, that at h = 0 the amplitude

t
	 of the .upwash signal associated with elliptical loading is about twice that

-for the cos t case, but that the acoustic signal for cos t loading is 34 db

—down. This dramatic difference (corresponding to a fifty fold decrease in

.acoustic pressure) can be attributed to the abrupt (high frequency)

-character of the unsteady lift signal of the elliptical case relative to the

—gradual (low frequency) character of the cos' case. Similarly, for small

- walues of h, cos t loading gives a signal that is 10 db down from the corre-

-:.sponding linear-loading case, even though the amplitude of the unsteady

lift signal for the cos' case is larger.

(b) Effect of Sweep

The introduction of sweep causes a substantial reduction in radiated

--noise, as demonstrated in fig. 27. As already indicated, an increase in A

diminishes the high frequency content of the unsteady lift signal, which

can be taken as a partial explanation for the change.

A more subtle effect is the relationship between A and the convection

-speed of the lift pattern through the fluid. Since the convected Mach

number of the wave along the moving blade is M/tanA, the effective Mach

number of the wave through the still fluid is

Meff - 
M' + tanK M ) 

2 
= M/sinA	 (6.1)

so that M = sinA is the boundary between supersonic and subsonic wave

speeds.
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Disturbances moving at subsonic speeds with respect to the still fluid

.radiate no sound; for M < sin A the only sound that is generated originates

-at the ends of the blades and is due to the finite dimensions of the source.

-For this case values of (e, ^crit) satisfying eqn. (3.32) do not exist, so

that no concentration of the acoustic signal occurs. As a result, the

-radiated noise is greatly reduced. (This case was not investigated

,numerically.)

-.Conversely, disturbances moving at supersonic speeds are efficient

.--acoustic radiators, and the intensity of the peak acoustic signal increases

,-,with Mach number. With reference to fig. 27, the diminution of the peak

signal for A = 30° is due, in part, to the fact that the disturbance

-velocity is barely supersonic for this case 
(Meff - 1.06).

At large values of A it must be remembered that the two dimensional

-aerodynamic model used is no longer valid, due to three dimensional effects

at the blade tip. At some point, the tip/vortex interaction becomes the

.-predominant acoustic source.

6.. Blade-slap Minimization Through Tip Modification

Potential methods of blade slap minimization include reduced tip speed,

-reduced disc loading, changes in blade design (area, twist, and shape) and

alteration of blade tip shape 30f these, alteration of tip shape is of

-particular relevance to the present study, as this technique entails changes

in tip vortex structure that minimize noise.

The most significant result of this investigation with regard to tip

.design is that the slope of the spanwise loading distribution at the blade

tip strongly influences tip vortex structure and the associated intensity of

noise due to blade/vortex interaction. This result is consistent with recent



-41 -

experimental findings [8] that show substantial reduction in blade slap

intensity through the use of a tapered ("ogee") blade tip. (fig. 28a)

.Another technique that has yielded positive results [2] makes use

of a "sub-wing" tip (fig. 28b). This design apparently divides the tip

- .:vortex into two less intense twin vortices that destructively interact

to produce a diffuse trailing vortex. However, more quantitative acoustic

data is needed to judge the efficacy of this method.

t
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Z. CONCLUSIONS

Blade/vortex interaction is an important source of helicopter blade

slap. Several experimental studies indicate effective blade slap mini-

--inization through modification of tip design in an effort to alter vortex

structure.

-Theoretical analysis of blade/vortex interaction, through application

of linear unsteady aerodynamics and the-acoustics of a moving source, is

amble to account for the essential role played by many of the parameters

,sthat- govern the occurrence of blade slap.

--1he-numerical model developed to extend the analysis to tip vortices

:of-arbitrary structure constitutes a powerful investigative tool. The

method affords useful insight into the relationship between the character

_of the tip vortex and the associated noise due to blade/vortex interaction.

?he intensity of the noise was found to be quite sensitive to changes in

-tip vortex structure.

-This model is applicable to blade/vortex interactions at small

ob'ique angles, for which the interaction occurs over a 'large portion of

the blade span. Such interactions are probable for tandem rotor helicopters.

For single rotors, blade/vortex interactions are likely to occur at large

angles, for which the interaction is confined to the blade tip region.

Additional theoretical modeling is required to account for the three

dimensional aerodynamic effects associated with this case.

Other effects the model is not equipped to handle include blade or

self-induced motion of the vortex filaments during blade/vortex interaction,

--curvature of the vortex filaments, and blade rotation. These problems deserve

d	 future study.

-	 {	 f
}

-	 __...1
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The aerodynamic theory used to model blade/vortex interaction

--strictly applies only to the case of a • low frequency gust in an in-

compressible fluid. Making the appropriate low frequency assumption that

r	 the blade chord is smaller than a wavelength, we neglect chordwise pressure

variation in the unsteady lift calculation and model the blade as a line

Hof dipoles in the analysis of the acoustic field. At higher gust fre-

-Auencies or higher Mach numbers, compressibility effects become important,

_,.and a more powerful aerodynamic theory such as that due to Amiet [15] is

.;required. The simpler aerodynamic model used here is sufficient to account

-for the essential details of the relationship between vortex structure and

.the acoustic pulse. The additional refinement obtainable from consideration

:of compressibility and high frequency effects was felt to be unnecessary

for this initial study. The extension to include the full effects of com-

pressibility is currently underway.

s
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- -APPENDIX A: Sound Field Due to a Convected Point Dipole

The calculation of the sound field due to a convected point dipole

-follows the analysis . of section 3 (for a moving line of phased.dipoles).

The simpler boundary condition, however, gives the farfield-pres^ure sig-

dnal in integrable form for the case of harmonic oscillation.

41e consider a point force of magnitude f(t), oriented normal to the

:x y.plane, moving with velocity U in the y direction.

The governing equation for the unsteady pressure is

v2p =	 a—! -	 (Al)
c2	 at 

--with boundary conditions

aP = P(x,Y ' O ) - P(x,Y,O+) = S(x)d(y-Ut)f(t)	 (A2)

WE introduce the Fourier transform in x,y, and t, defining the transform

pair

00

^	 i(kx+ky-wt)
P(X-Y9z't) - (2n)3
	

P(kx,ky,w;z)ex 
y	

dkxdkyd w

P(kx Ay ,w;z) =	 P(X,Y,Z,t)e	 x	 dkdydt

_00

The Fourier transform of the boundary condition is given by

AP(kx ,ky ,w) =	 S(x)d(y-Ut)f(t)e 
-i(k x x+kyy-wt)

dxdydt

_C

(A3)

(A4)
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From the properties of the delta function, the only contribution to the

y integral occurs at y = Ut, giving

m
ik x+i(w-k U)t

zP(kx , ky ,w) =
	

f(t)6(x)e- x	 y dxdt	 (A5)

_m

We define the frequency w = w-kyU, recognizing that a frequency w

located on the moving boundary is perceived at Doppler shifted frequency

w --in the field. Eqn. (A5) is then writtev

cc-
	 x	 iwt

- -,&P(kx,ky,W) - J_6(x)e 	 x	 f(t)e	 dt dx	 (A6)

.Defining the transform pair

-f(t) =	 F(w)e_Qdw

 (A7)

F(w) _ 
	
f(t)eiwtdt

-we identify the bracketed term in eqn. (A6) to be 21rFG).

Then

OD

-ik x
:-AP(kx ,ky ,w) = 21rF(w) L6 We x 

dx

Contribution to the x integral occurs at x = 0, giving the Fourier

transform of the boundary condition as

F
i

(A8)

L
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AP(kx,ky ,w) = 27rF(w)	 (Ag)	 k

where m = w-kyU

'	 4
i

i

Taking the Fourier transform of eqn. (Al) leads, as in section 3, to

the expression

-}iz -k -k

P-.(X syszgt) = A± ( kx , ky ,w)e	 x y	 (A10)

-.:Applying the boundary condition of eqn. (A9)-and imposing the

-additional requirement

8P+ __ 8P-
3z	 3z	 (All)

z=0

-gives the constants A} _ + nF(w).

The unsteady pressure is then given by the Fourier integral indicated

-An eqn. (A3),

m

1	 i(kxx+k -wt)+iz	 -kx -k
p(x,y,Z,t) _ -	 2	 F(w)e	 yy	

c	
y dkx ,dkyd w (Al2)

8n

As in section 3, the k  and k  integrations in the asymptotic farfield

-limit can be evaluated by the method of stationary phase, giving the

k `
	 farfield acoustic pressure as

E
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m

p(x,y,z,t) = 4n
r

iF(w) s Se	 dw	 (Al3)
 c

.Changing to polar coordinates, with reference to fig. 4

x = rcosesini

Y = rcosecoO

z = rsine

gives

—iw(t-r/c)

	

7rr	
iF(w)sine 

c 
e	 dw	 (A14)

-where w = w(1-McosecoSO

For the case of a simple harmonic dipole of frequency w°,

iw°t
0

f(t) = F e	 (A15)

-tFe transform is given by

	

!-0 	
i(w-w )t

F(w) 
_ 2̂ 	 f(t)eiwtdt = 2r
	

e	 ° dt

	

= Fod(w-wo )	 (A16)

Using w = 
w/(1-Mcosecosfl ,eqn. (A14) then becomes

CO

''	 p(r,e,^.t) = F° 	 d(w-w )	
sine	 m e i(I-Mcosecosipdw

	

21Tr	 o (1-Mcosecos^) 2 c
_W

(A17)
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-Contribution to the integral occurs at w = wo , giving the unsteady

-pressure as

W

Fo wo	 -i(1-McoseD(e,^y)e	
cosT )(t-r/c)

p(r,e,^,,t) = 
21rr c

.where the directivity factor is defined by

D(e,,,)=	
sine

-Mcosecos*

(Al 8)

(Al 9)

i	 t
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APPENDIX B: Lift Transfer Function of Filotas Theory

The lift transfer function is used to calculate the unsteady lift

.,due to an oblique sinusoidal gust impinging on a two dimensional airfoil

-in incompressible flow (fig. B1). For a gust of nondimensional wave-

.number a = cobo,

^r(2 - A) (1+ 2 sinA)

-exp{-ia [co sA-	 ]}
. 1+27ra(1 + 2 sinA)

T(c,A)
`	 1 +nQ(1+cos 2A.+ ^rQSinA )

E4
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APPENDIX C: Computer Program

t



COMPLEX*8 C (!048),vW (204d) , CL;T,V 0Ao'P
COMPLEX*8 CMPLX,CEXP
BEAL L,LAMBDA,MACH,VTHET(1024),VR(1024)
DIMENSION GRAF1 (512,7)
DIMENSION	 UU (514) ,V 1 (514) , V 2 (514) ,V3 ( 514) i v4 (5i4i,V5(5i4),V6(514)
COMMON W,C,VR,R,TIIETA,PSI,LAMBDA,OMEGA,GA"1MA,GAMMAO,MACH,RHO,SO#

E	 8U,U,11,Pl,UFLO,
E	 COSLAI.I,TANLAM,COTHET,COSPSI,

• E	 DS, DSBAR, DT, ATP, DELI, DR,
S	 N,N2,N4

C VARIABLES USED IN MAIN PROGRAM:
C HLDS:	 N0.	 OF	 ROTOR	 131-ADES
C B0: BLADE SEi`IICHO VD (FEET)

C CL:UNSrEADY SECTION LIFT COEFFIC19NT FROM FILOTAS THEORY
C D1REC:DIRECTIVITY	 FACTOR,EON.	 3.27
C GAtIMAO:CIRCULATIO.N.(FT**2/SEC)
C GAMP.A:NUNDLNPNSIONAL CIRCULATION (GAMMA=OAMMAO/BO*U)
C GC:GRAVITATIONAL CONSTANT(LBM*FT/LBF*SLC**2)
C H:VORTEX TO BLADE DISTANCE IN SEHICll0RDS #	SEE FIG 3
C •LAMBDA:ANGLE BETWEEN	 BLADE AND VORTEX,	 FIG.3	 (RAD)
C MACH: BLADE MACH	 NUKBER
C OMEGA: ANGULAR fREQUENCY OF ROTOR (RAD/SEC)
C (CORRIESPONDS TO	 ALPHA OF TEXT)

P: PRESSURE (LBF/FT+*2)
C R,THE'rA,PSI:000RDTNATE SYSTEM OF FIG.3
.0 SO:BLADE INT§RACTIO'N' • LENGTH	 IN SEMICIIORDS'^
C U:BLADE VELOCITY I-kT/SEC)
C RIIO:FLUID DENSITY (LBM/jFT**3)
C SBAR:	 STROUHAL FREQU'LNCY	 (AERODYNAMIC FREQUENCY)

p 6 C S:	 DOPPLER SHLFTED ST,ROUHAL FREQUENCY 	 (ACOUSTIC FREQUENCY)
C UFLO:	 USL'D	 IN	 UNDERF'LOW CHECK--,

'b PI=3. 1415926
BO_10.5/12.

t^ SO=16./BO
Fd R=1000.

DL•GRAD= 2.0 *PI/360.0

1

w
J •

ti
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LAMBDA= 15-.O*DEGRAD
THETA=38. *DEG RAD

PSI = 23.3*DEGRAD
U=585.

r MACH=U/1100.
OMEGA=32.5
GAMMAO=238.
GAMMA=GAMMAO/ (BO*U)
GC=32.17
RIIO=.077/GC
COTI)ET=COS (THETA)

k COSPSI=COS (PSI)
COSLAN,=COS (LAMBDA)
TANLAt]=TAN (LAMBDA)
N=2048	

r

N2=11/2
N4=11/4
DO	 100	 M=1,N
C (N,)=CMPLX (0.0,0.0)

100	 C014TINUE
TEN=10.0
UFLO=TEN** ( -40.0)
YO=0.0

C H=0.0
C ******a***************#*#****#***#**##**#######**#********

G * TO AVOID CONFUSION DUE TO THE NUMBER OF DIFFERENT CASES
C * INVESTIGATED, SUBROUTINE CALLS AND PLOTTING ROUTINES HAVE NOT
C * BEEN INCLI)DED HERE.	 THE FOLLOWING SEQUENCE WOULD RETURN THE
C * ACOUSTIC SIGNAL IN COMPLEX ARRAY C:
C *	 CALL B--TZ (NLOAD)	 (SEE SUBROUTINE BETZ)
C *	 CALL	 TRNSF;;
C *	 CALL SOUND
C SUBSTITUTION OF 'CALL LIFT'	 FOR 'CALL SOUND'	 WOULD RETURN THE
C * UNSTEADY LIFT IN COMPLEX	 ARRAY C

E

C ***************************k********#******************#******#*

N
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C
0
C
C
C
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SUBROUTINE BETZ(NLOAD)
BETZ COMPUTES THE CIRCUMFERENTIAL VELOCITY DISTRIAbTION IN THE
TRAILING VORTEX USING THE BETZ ROLLUP MODEL OF CHAPTER 4, AND
EVALUATES THE VERTICAL VELOCITY W AS A FUNCTION OF Z, THE
SPATIAL COORDINATE PERPENDICULAR TO THE VORTEX.
(Z CORRESPONDS TO XCI IN TEXT, FIG 3)

SAMPLING INCRENENTrIS DLLZ, OVZR INTERVAL VRTSEP
W(l) CORRESPONDS TO Z = O. W (1 , ...1 024) CONTAIN' VALUES FOR POSITIVE
Z, W(1025,...2048) VALUES FOR NEGATIVE Z.'VALUES ARE STORED IN
ORDER OF INCREASING Z

COMPUTATION PROCEDURE:
EQN 4.7 IS INTEGRATED NUMERICALLY AND USED WITH EQN 4 * 8 TO COMPUTE
A SET OF N/2 CORRESPONDING VALUES RB(M) AND VCOR(M); THE RADIAL
COORDINATE AND CIRCUMFERENTIAL VELOCITY RESPECTIVELY IN THE
RO'T'ATIONAL PORTION OF THE TAILING VORTEX. VCOR IS THEN SAMPLED
AT 114CREMENT DR OVER 11/2 POINTS TO COMPUTE VR, THE
CIRCUMFERENTIAL VELOCITY PROFILE IN THE TRAILING VORTEX, OUTSIDE
THE ROTA`L'IONAL REGION (R>RB(N/2)) VR IS PROPORTIONAL TO 1 /R.
UPWASH W IS COMPUTED FROM GEOMETRY,

NLOAD IS AN INDEX IDENTIFYING THE TIP LOADING CASE INVESTIGATED.
NLOAD=1 FOR ELLIPTICAL LOADING, 2 FOR LINEARs AND 3 FOR COS * *2.
COMPLEX*8 C (2048) , W (2048) ,CL,T, W0,LO,P
COMPLEA*8 CMPLX;CEXP
REAL L, LAMBDA, M1CH, R4 (1024) , VCOR (1024)

GVTIIET.(1024) ,VEi(r1Q24). '..
INTEGER NLOAD
CO ;MON W,C,VRd;R,TiIETA',PSI,LAtIBDA,OMEQA,'G'AMMAOGAMMAO*MACHeRHOoSOo

&	 BO,U,H,PI,UFLO,
6	 COSLAM,TANLAM,COTIIET,COSPSI,
6	 DS, DSDA R, DT, DTP, DELZ, DR,
E	 N,N2,N4

BLDS=2.
VRTSEP= (2.0*PI/ (BLDS*OMEGA*BO)) *U*COSLAN.
VR'PSEP=VRTSEP*4.

4	 r 	 ,'1 •



DELZ=VRTSEP/FLOATjN)
DR-DELZ/1.95
L=15./QO
DY= (L/"2.0) /N2
SUi'1=0.0
RB (1)=0.0
VCOR (1)=0.0

C	 YY IS THE SPANWISE COORDINATE. (CORRESPONDS TO Y OP TEXT) YY=0 AT
C	 75% SPAN, YY=L/2 AT BLADE TIP. (IN TEXT, Y=L AT BLADE TIP)
C	 VCOR (M) IS THE CIRCUMFERENTIAL VELOCITY CORRESPONDING TO
C	 RADIUS RD (M) IN THE TRAILING VORTEX. (VTIIETA, R USED IN TEXT)

DO 100 M=2, N2
Fit=M- 1
YY= (L/2. 0) - (FM*DY)
GO TO	 (14, 15, 16) ,N LOA D

14	 GG= (YY/ (L/2. 0) ) **2
GAM=GAMMA* { (1.0-GG) **0.5)
GO TO 17

15	 GAM = G AIlMA* (1 . 0- (Y Y* (2. 0/L) )
GO TO 17

16	 GG- (Y Y* Pt) / (L/2. 0)
GAM = 0. ,5*GAMMA* (1 .O+COS (GG) )

17	 CONTINUE
SUM=SUil+ (GAM*DY)
RB (M) =ABS (SUM/GAM)
VCOR (M) =GAM/ (2. 0*PI *RB (M) )

100 C014TI NU E
C	 CORAD IS THE RADIUS WITHIN VHICH ALL VORTICITT IS :.
C	 CONTAINED. (RMAX OF TEXT)

CORAD=RB (N2)
VR (1) =0.0
DO 400 M=2, N2
FN,=M-1	 •
RED=Fl1*DR
IF (RP.GT .CORAD) GO TO 700
DO 500 J=2,N2

i



r-

IF	 (RD(J).GT.RP)	 GO TO
IF	 (J. EQ. N2)	 GO TO 600

500 CONTINUE
600 VR (M) =VCOR (J)
400 CONTINUE
700 CONTINUE

DO	 £300	 K = M, N2
FK=K-1
RP=FK*DR
VR (K) =+GAMMA / (29 0*PI*RP)

800 CONTINUE
DU	 250	 1=1,N

j W (I) =Ci1PLX (0.0,0.0)
250 CONTINUE

DO 900	 M=2,N2
FM =M -1

't
cn

Z=FM*DELI	 _	 cn
RZ= (Z**2+11**2) * *0*5
POS=RZ/DR
K=IFIX (POS+0. 5)
IF	 (K. LT.2)	 K=2
IF	 (K. GT. N/2)	 K=N12
ETA=ATAN2 (H,Z)

C VRTVEL IS VERTICAL VELOCITY
VRTVEL=+VR (K) *COS (ETA)
IF	 (K. EQ. N2)	 VRTVEL = +GAMMA /(2.0*PI*Z)

C TAIL 1, AND TAIL2 AE L' THE POSITIVE AND NEGATIVk "TAILS 11 OF THE
C UPWAS11 PROFILE THAT APPROACH ZERO AS Z APPROACHES INFINITY.	 THEY
C Alta USED IN	 THE	 "ALIASING 11 STEP	 (DESCRIBED IN	 REP.	 13),	 NECESSARY
C FOR SUBSEQUENT COMPUTATION OF FAST FOURIER TRANSFORMS`

TAIL1=0.0
TAIL2=0.0
DO	 150	 I=1,41

FJ=I -21
IF	 (FJ. EQ. 0)	 GO TO	 150
Z 1= (FJ*VRTSEP) +Z
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I

Z2= (FJ*VRTSEP) -Z
TAILI=TAILI+GAM:SA/(2.0*PI*Z1)
TAIL 2=TAIL2+GAMHA/ (2.0*PI*Z2)

150	 CONTINUE
N (M) =C`IPLX (-VRTVEL, 0. 0) +CMPLX ( -TAILI v0.0)
V (N-M+2)=CMPLX (+VRTVEL,0.0) +CMPLX (-TAIL200.0)

900 CONTINUE
RETURN
END

1

o+



SUBROUTINE LIFT
C SUBROUTIN9 LIFT COMPUTES THE UNST.EAbY LIFT . Oi THE iLADS BY
C EVALUATING THE INVERSE FOUR.IER TRANSFORM OF L0, THE COMPLEX LIFT
C AMPLITUDE. LO IS EXPRESSED AS A FUNCTION OF AERODYNAMIC FREQUENCY
C SDAR.	 LIFT IS EXPRESSED AS A FUNCTION OF RETARDED TIME TP,
C WHERE TP = T — X/UC.	 UC IS THE PHASE VELOCITY OF THE LIFT
C PATTERN,	 UC=1J/TAN(LAMBDA)
C VALUES ARE RETURNED IN COMPLEX ARRAY C.

COMPLEX*8 C (2048) ,W (2048) ,CL, T, W0, L0, P, V
COMPLEX*8 CMPLX,CEXP
REAL L,LA2IBDA,MACH,VTHET(1024),VR(1024)
COMMON W,C,VR, R, TiiETA,PSI,LAMBDA,OMEGA,GAMMA,GAdMAOtl1ACH,RHOOS0*

6	 6U,U,H,PI,UFLO,
E	 COSLAM,TANLAM,COTiiET,COSPSI,
6	 DS, DSBAR, DT, DTP,DELZ, DR,
6	 N, N2, N4	 cn

DO	 177	 t;=1 , N
C (M) =CMPLX (0.0,0.0)

177 CONTINUE
A=2.0*PI *RHO* (U**2) *BO
DTP= (2. O*PI) / (FLOAT (N) *DSBAR)
TPO=DTP*FLOAT (N) /2.
DO	 100	 M=2, N2

DO 200 J=1,2
'	 = IF	 (J. LQ. 2)	 FM=—FM.

t°= SBAR =FM *DSBAR	 .t
CL=T(SHAR/COSLAM,LAMBDA) 	 >

«IF	 (J.EQ. 1)	 WO= W (t1) 	 '.".- IF	 (J. EQ. 2)	 WO=W (N— M +2)
k LO=A*CL*NO

L 0 = L 0 * C E X P (CMPLX (0'.0,SBAR*TP0)
IF	 (CABS (LO)	 LT. UFLO)	 GO TO SOO

{IF	 (J. EQ. 1)	 C (M) =LO
IF	 (J. EQ.2)	 C (N—M+2)=LO:;,•.	 c

200 CONTINUE

i



100 CONTINUE
C	 FOURT IS A FAST FOURIEa TRANSFORM SUBROUTINE
500 CALL FOURT (C, N,4,1,-1,+1, WORK)

DO 300 M=1,N
C (M) =DSBAR*C (M)

300 CONTINUE
RETURN
END

I
cn
co



SUBROUTINE SOUND	 S
C	 SUBROUTINE SOUND COMPUTES THE FARFIELD PRESSURE StGNAi BY

C

C

C

it

C

177

EVALUATING THE INVERSE FOURIER TRANSFORM OF P * THE FREQUENCY
SPECTRUM! OF THE FARFIELD SIGNAL. P IS EXPRESSED AS A FUNCTION OF
OBSERVED FREQUENCY S. THE FARFIELD PRESSURE IS EXPRESSED AS A
FUNCTION OF TINE,T. OBSERVED FREQUENCY S IS RELATED TO
AERODYNAMIC FREQUENCY SBAR BY SBAR=S* (1-MACIi*COS(TUETA) *COS (PSI)
VALUES ARE RIETURNED IN COMPLEX ARRAY C
COMPL E• X*0 C (2040) , W (204£1) , CL, T, WC, L0, P, V, VANLYT
COMPLEX*8 CMPLX,CLXP
REAL L,LAMBDA,MACH,VTiIET(1024),VR(1024)
COMMON W,C,VR,R,TLIE TA,PSZ,LAMBDA,OMEGA,GAMMA,GAMMAO,MACH, RH0,S0,

S	 80,U,H,PI,UFLO,
6	 COSLAM,TANLAM,COTIIET,COSPSI,
6	 DS, DSBAR, DT, DTP,DELZ, DR,
E	 N,N2,N4

DO 177 M=1,N
C (M)=CMPLX (0.0,0.0)
CONTINUE
A=2.0*PI*RHO* (U* *2) *BO
D= (MACii #SO) / (2.0*PI*R)
X=MACH*COTHET*COSPSI
Y=1.0-X

DS=DSBAR/Y
DT= (2.O*PI)/ (FLOAT (N)*DS)
TO=DT*FLO!AT (N) /4.
DO 400 M=2, N2

DU 50G J=1,2
IF (J. EQ.2)' FM=-FM
S = FM x DS '	

<<,..

S BAR= FM3*DS BAR
CL=T (SBAR/COSLAM,LAMBDA)
IF (J. EQ. 1) WO= W (M)

IF (J. EQ. 2) WO=W (N-14+2)
LO=A*CL*WO

y
^' 1

ŵ
o	 .
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I

E= SO *S* ( (TANLAM*Y) -X)
DIREC=SIN (THETA) *SIN (E)/E
P = D*L0*S*DIREC *CMPLX (0.0,1.0)
P=P *CEXP (CMPLX (O.0,S*TO) )
IF (CA BS(P) . LT. UFLO) GO TO 700
IF (J. EQ. 1) C(M)=P
IF (J. EQ.2) C (N-M+2)=P

500 CONTINUE
400 CONTINUE

C	 FOURT IS A FAST FOURIER TRANSFORM SUBRO"PINE
700 CALL FOURT (C, N,+ 1,-1,+ 1, WORK)

DO 600 M=1,N
C (M) =DS*, C (M)

600 CONTINUE •• r
RETURN
END



SUBROUTINE TRNSFM J

C TRNSFd COMPUTES THE FOdRlt$ fiANJFO9' M OF VERTICiL VELOCITY
C W IN TERMS OF WAVENUMBER SIGMA, THEN EXPRESSES THE TRANSFORM
C AS A FUNCTION OF AERODYNAMIC FREQUENCY SBAR,
C WHERE SBAR=SIGMA*COS(LAMBDA)

COMPLEX*8 C (2048) ,W (2048) ffCL*T,WO,L0,P
COMPLEX*8 CMPLX,CEXP
REAL	 L, LAMBDA, MACK, VTIIET (1024) , VR (1024)

' COMMON	 W,C,VR,F,TIIETA,PSI,LAMBDA,OMEGA ,GAiltlA,GAMMAO+IyACH,RHO,SOO
E	 B0, U, if 	 PI, UFLO,
E	 COSLAM, TANLAM,COTIHET, COSPSI,
6	 DS, DS BA F, DT, DTP, DELZ, DR,
6	 N,N2,N4

C FOURT IS A FAST FOURIER TRACiSLL"GAM SUBROUTINE
CALL	 FOURT (W, N, +1,-1, +1,WORK) .
DO	 100	 1;=1, N	 Q,
W (M) =Pi (M) * (DELZ/ (2. 0*PI))	 -'

100 C014TINUE
DSIG= (2.0*PI) / (FLOAT (N) *DELZ)

• DSBAR=DSIG*COSLAM
DO 200	 M=1, N
W ( M ) =W ( M ) /COSLAM

•200 CONTINUE
RETURN
END
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FUNCTION FMIN (C,N)
C	 FEIN IS THE MINIMUM REAL VALUE CONTAINED IN COMPLEX ARRAY C OF
C	 LENGTH N

COMPLEX*8 C (N)
P=0.0
DO 100 M =1, N
Q=REAL (C (M) )

t 1F (Q. LT. P) P=Q
100 CONTINUE

FMIN=P
PETURN
END

C
FUNCTION FMAX (C,N)

C	 FMAX IS THE MAXIMUM REAL VALUE CONTAINED IN A COMPLEX ARRAY C OF	 +
C	 LENGTH N

COMPLEX*8 C (N)	 N
P=0.0
DO 10U M=14N
Q= REAL (C (M) )
IF (Q. GT. P) P=Q

100 CONTINUE
FMAX=P
RETURN
END



SUBROUTINE DB
C	 D13 COMPUTES Tilt INTENSITY OF THE ACOUSTIC SIGNAL IN DECIBELS

COMPLEX*tI C (2048) , W (204$) , CL, T, 410, LO
COMPLEX*6 CMPLX,CEXP
REAL L,LA-LiDDA,MACH,VTHET(1024),VR(1024)
COMMON W,C,VR,R,THETA,PSi,LA[1BDA,OMEGA ,GAMMA,GAMItAO,MACU,RHO,SO,

6	 BO,U, ti, PI, UFLO,
&	 CUSLAM,TANLAM,COTHEZ,COSPST,
6	 DS,DSBAR,DT,DTP,DELZ,DRe
6	 N,N2,N4
DELP=F:iAX (C,tl) —FMIN (C,N)
P= (DLLP/2.0) #47.8£3
PREF=0.00002
DBL=20. 0*ALOG 10 (P/PREF)
WRITE (6, 99) H, DBL

99	 FORMAT(F10.2,F10.2)
RETURN
END

1	 `•
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COMPLEX FUNCTION T(SIGMA,LAMDbA)
C	 T IS THE LIFT TRANSFER FUNCTION GIVEN BY FILOTAS THEORY
C	 SIGMA IS A DIMENSIONLESS WAVE NUMBER, SIGMA=SBAR /COS(LAMBDA)

REAL LAMBDA
COMPLEX*8 E
COMPLEX*8 CMPLX,CEXP
SINLA[1=SiN (LAMBDA)
COSLAM=COS (LAMBDA)
PI=3.1415926
SIGA©S =ABS (SIGMA)
A =1.0+ (0.5*SINLAM)
B=PI* ( (PI/2. 0) -LAMBDA) *A
C=1 .0+ ((l.0*PI*SIGABS) *A)
P11I=C0SLA;4 (B/C)
D=1 .0+ (COSLAM**2) + (PI*SIGABS*SINLAM)
F 1.0+(PI*SIGABS*D)
G=F**0.5
E = CEX P (Ctl PL X (0.0, -SIGMA* PHI) )
T=E/CMPLX(G,0.0)
RETURN
END
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Figure 1. Generation of Helicopter Rotor Tip Vortices (after ref. 4)
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Figure 2. Blade/Vortex Interaction for Singleand Tandem Ro'ors
(after ref. 3)
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Figure 3. Geometry of Slade/Vortex Interaction (after , ref. 3)
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Figure 4. Geometry of Acoustic Model
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Figure 5. Maximum amplitude of the directivity factor as a
function of 6 for ks0»1 ; 201ogD(0,^crit^ for M=.53
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rb(Y)

.L

.75Rtip

Tb(Y) =rv(r)

Figure 6. Geometry applied to the Betz vortex rollup model.
Maximum loading is assumed at 75% span, so that
vorticity shed from the outboard 25% span rolls up
into the trailing vortex.
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-figure 28a. Comparison of farfield acoustic signatures for ogee(fig.)
end square-tipped rotor blades. Tests were conducted with
a Hughes model UH-1H helicopter in level flight at a

^_tominal 61 meter altitude. Microphone is located at ground
..level in line with the flight path. (ref. 8)

'^ ^U

Figure 28b. Sub -wing Tip (ref. 2)
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---Figure B1. Infinite Span Airfoil Interacting with a sinusoidal gust

(after ref. 4)
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