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Abstract ux>u Velocity components	 in	 the x and y y
directions	 (Eqs.	 2,3)

A	 viscous-inviscid	 interactive procedure	 for u1,u41 Velocity components	 in	 the	 je,and	 j
subsonic	 flow is developed and applied 	 to an axial directions

compressor s age.	 Calculations are cart'ied out on u,v,w Velocity component 	 in	 the F,C,	 and

a two-dimensional blade-to-b'.adc region of constant T, directions	 (Fig	 3)

radius assumed to occupy a mid-,pan	 location.	 Hub x,y Cartesian coordinates	 used	 in	 the

and tip effects are neglected. 	 The Euler Equatious inviscid	 solution	 (Fig.	 1)

are solved by MacCormack's method, 	 a viscous march- Cartesian coordinates used	 in See-

ing procedure is used in the boundary layers and 77 tion 4	 (Fig.	 4)

wake,	 and an	 iterative	 interaction scheme	 is	 con- X,Y,Z Cartesian coordinates used in 	 the

structed	 that matches	 them in a way that in:orporates viscous solution	 (Fig.	 3)

information related to momentum and enthalpy thick- a,^ Cascade coordinates	 (Fig.	 1)

nesses as well the displacement	 thickness.	 The 6 Boundary layer thickness	 (Section

calculations are quasi-three-dimensional in the 4)

sense	 that	 the boundary layer and wake solutions 6N Boundary layer thickness, nondimen-

allow	 for	 the presence of spanwise 	 (radial)	 ,eloci- signalized with	 respect	 to C(Sec-

ties. * tion 3)
6 Displacement	 thickness
e Small parameter that	 is P(S-)

Nomenclature 6 angle between B(x)	 and	 the ' 'x-direc-
tion in the cascade solution region

B(x)	 Lower boundary of the cascade	 volution (Fig.	 1)

region	 (Fig.	 1) µ,X Viscosities

c	 Speed of sound I'M Curvilinear coordinates used 	 in	 the

C	 Blade chord	 length viscous	 solution	 (Fig.	 3,	 Eqs.	 11,

c	 ,cSpecific heats 12,13)
P	 v

p Density
e	 Total energy	 (Eq. 4) Angle between the C-coordinate line
f	 Composite solution vector defined by Eq.
c and a cylindrical	 generator	 (Fig. 3)

27 )  Angular velocity of	 the blades	 (rad/
f b (0)	 Boundary	 layer solution vector	 (Fig. 4)

sec)
f,g	 Vectors defined	 in Eq.	 23
3,1J	 Vectors defined	 in Eq.	 22 Subscriptr 
F,G,H	 Vectors defined by Eq. 4
(gb (0)) 0	Vector obtained by evaluating go using

REF Denotes reference quantity
values obtained	 from the boundary	 layer

WALL Denotes evaluation at wall
solution,	 f b (0),	 (Eq.	 27) o Denotes evaluation at y=0

G1,G2,G3,	 Components of vector G 6 Denotes evaluation at y=6
G4

/ i, 3,Components of vector L^,A1,f,12,
m Denotes evaluation at	 infinity

`(/4 (Section 3)

h	 Enthalpy Superscripts
i,j	 Grid	 indices	 (Fig.	 2)

k	 Thermal conductivity
Denotes derivative 	 (Eqs.	 8,9) 

P	 Pressure

r,cp,Z	 Cylindrical	 coordinates	 used	 in	 the	 vis-

cous solution	 (Fig.	 3)
I.	 Introduction 

R	 Gas constant	 (Eq. 4)
t	 Time

The flow in	 the blade passages of an axial
T	 Temperature

compressor	 is quite complicated. 	 In general,	 the
U	 Vector defined by Eq.	 4 flow is compressible, viscous,	 unsteady with re-
us ,un	Velocity components used	 in the inviscid spect	 to the blades,	 turbulent,	 and highly	 three

solution	 (Fig.	 1)
dimensional. Furthermore,	 the	 flow may be either
entirely subsonic or at	 least	 partially supersonic.
Boundary	 layer separation may occur at	 several

*Work supported by NASA-Lewis Research Centel-under
locations	 in a compressor blade passage.	 L•1 addi-
tion,	 any computational attempt	 to	 deal	 re..,.e	 i-

+grant	 (Graduate Research Program in Aeronautics). tally with such a	 flow will	 encounter	 these d.tfi-
Now Assistant Professor, School of Engineering

culties	 in a region which	 is	 geometrically complex.
Science and Mechanics, Georgia Institute of Tech-

+_+nology. For	 these reasons,	 it	 is	 unlikely	 that	 a	 com-
Research Engineer pletely realistic solution of the flow through an

u)
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entire axial compressor blade passage conid be un-

dertaken in tilt• near future. However, a greatdeal
has alreadv been accomplished by examining, problems
of a simplified nature. Thc numerical compressor
calculations which have been undertaken have tended
to examine certain aspects of the flow in a blade

passage while ignoring other effects, even though
the effects which are omitted from the calculation
may be quite Important in practice. In this manner,
it has been possible to reduce the original problem

to one which is mathematically tractable, and to

gain	 ,me insight into the nature of such a flow.

There have been several approaches to simplifi-
cation. One approach, presented 

fit 	 by Wul,

consists of the specification of a stream surface

within the blade passage and the subsequent solution

of the Euler equation, on that stream surface. The
surface can be specified either as an annular surface
(blade to blade) or a meridional surface (hub to

shroud), and by confining the calculation to a two-
dimensional region in this fashion, it is possible

to introduce the passage gecmtetry into the calcu-
lation while retaining the numerical benefits of a
scalar stream function. Phis technique has been
used by Katsanis' and Katsanis and McNally 3 , among
others. The computer codes of references 2 and 3

are well established, and are currently used in
compressor design.

Boundary layer calculations have been done on
compressor blades and on passage endwalls 4-6 . Simi-
lar to boundary layer calculations are the viscous

Marching procedures, which are used to solve para-

holized Navier-Stokes equations 7-8 . Viscous march-
ing procedures are currently being applied to flow
in turbomachinery.

Another popular simplification of compressor

flow is its idealization as flow through a cascade
of airfoils. Man y different numerical solutions
have been carried out in cascade geometries. Per-
haps the most studied set of equations with reference

to cascade geometries are the Euler equations, and
a popular approach to their numerical solution has

been through time marching techniquesl0-12 •
	

1liese

techniques, of which MacCormack's method 13 has been

the most widely used, owe their popularity to several

factors. They are computationally efficient, they

can he used for both suhsonic and supersonic flow,
and they are not subject to some of the limitations
of simpler solution methods, such as irrotationality
and two-dimensionality. And certain recently deve-

loped time marching algorithms l4-16 which are
applicable .. the solution of the Etter equations
and Navier-Stokes equations, appear to be quite
promising for increased computational efficiency.
It is likely that these new algorithms, or variants
of them, will be used in the near future to carry
out compressor calculations of increasing sophisti-

cation.

While the preceding survey of numerical
sor calculations is by no means complete, it

to demonstrate the diversity of approaches t
overall problem, which is too difficult to be
attacked in a more straightforward manner. The
present investigation is primarily concerned with
the effect of viscosity on the flmt in a h Ltde-to-

blade surface of const,nnt radius, which may be

assumed to occupy a min span location since the

effects of the hub and tip regions are neglected.

The investigation has been ccnfined to subsonic
flows, but this limitation is not inherent in the

method developed hare. For the present discussion

the solution surface can he considered to he the
flat, two-dimensional region of it 	 cas-
cade, with cambered blades of zero thickness. How-
ever it will eventually be necessary to imagine this
flat solution region as being wrapped unto the sur-
face of a rotating right circular cylinder. The
introduction of viscosity into the calculation is
accomplished by means of a viscous-inviscid inter-
active calculation procedure.

'File inviscid calculation consists of a time-
marching solution of the• Fu ller equations by MacCor-
mack's Method. The viscous calculation proceeds in
boundary laver and wake regions, and it solves a
system of equations analpgous to the set obtained

by Horlock and Wordsworth4 for the incompressible
boundary laver on a helical blade. Although the
viscous calculation is carried out on a cylindrical
surface, the governing system of equations allows

for the presence of a radial velocity component

normal to that surface. The interaction hetween the
viscous and inviscid calculations is accomplished
by means of an iterative process. An iterative
approach to the subsonic interaction problem is not
uncommon; several researchers (e.g., Ref. 17-18)
have used this approach, in con unction with the

displacement thickness concept i ^ to obtain higher
approximations to flows. However, the present in-
teractive method differs from these procedutes in

two ways. First, the present method does not rely
solely oil 	 mechanism of a physical displacement

of the outer flow streamlines by the viscous layer,
to achieve cou p ling of the viscous and inviscid
calculations. The interaction takes the form of an
injection at blade surfaces (suction in the wake),
but it is different from the usual source-sink dis-

tribution technique in that this injection h..s a
momentum and enthalpy charactcc. SE-ond, the appli-
cation of boundary condi^.ions to the viscous calcu-
lation, and the viscous calculation itself are
carried out in a manner suggested by the theory of
matched asymptotic expansions. The details of the

interactive procedure are discussed in Section 1%.

Th. viscous-inviscid interactive calculation
procedure which is described in this paper was used
to calcul,te compressor flows for both rotor and
stator passages. Some results of these numerical

calculations are presented.

I1. The Inviscid Solution

For the inviscid solution we consider the invis-
cid, rotational flow in a rectilinear cascade of
zero thickness airfoils. The (a,0) coordiuntc 	 -
stem used for this calculation (Fig. 1) is related
to Cartesian coordinates by the relations,

u	 x	 ,	 6 = y - H(x)	 (1)

it
s

u` u cos 0- it 	 0	 (2)
x	 s	 n

it 	 u sin 0+ u cos 0	 (3)
y	 s	 n

For this coordinate system the time dependent

F.uler equations ma y he written in vector form as,

comp

compres-	 Also seen ;n Fig. 1 are the velocity components
serves	 and u , which are related to the Cartesian cum

o the	 of vo ( ity in the following manner;

NO-



are applied. The impermeability of the wall Rives
(4)	 three relations, since three components of the

vector G (see Eq. (4)) are identically zero. Tht-
effected components are Gi, 62, and G4, where the
numbers correspond to the ,,osition of the component
within the• vector. 'these relations are,

I

ST+ + + H = 0

where,
Pis

t

Cu	

-I	 x

ll ^	 s	 F - ^ux u s + p cos^ 	 J
s" it 	 ^uYUn - p sin 0
e I	

I - (e + P) U 

IPu sec 0	
`I	

(	 0
^Punu sec	 I -( P uxun - p sine a
 s n

G	 lP u^ + p) sec 9I ll =	 (Puxus + p come )L©

(V + p) u tr sec 6 J	 0

with e	 1= Plc v'f + 2 (ux + uy )^ and p = PR'1'.

A steady state solution of these equations in the

cascade is obtained by a numerica1 1 11 ime marching

solution using, MacCormack's Method .

Boundary Conditions

As is often the case with time marching solu-

tions of the Euler equations, the treatment of
boundary conditions here consumes a diseroportion-

atcly large part of the effort expended in the
numerical solution. A careful .reatment of certain

boundary conditions in such problems seems to demand

approaches which are somewhat involved. The dis-

cussion of boundary conditions which appears in

this section deals entirely with conditions as they
exist for the first inviscid solution. Modifications

to these boundary conditions are re q uired for sub-
sequent inviscid solutions within the viscous-

inviscid iteration scheme, and a discussion of these
modifications is deferred until Section IV.

In a time marching solution of the Euler Equa-

tions for the flow through a cascade (Fig. 1),
essentially three different types of boundary regions

are encountered. First, boundaries at which period-
city conditions are the proper specification.
This is the case at those portions of the boundary
which connect the leading and trailing edges of the

blades to the upstream and downstream boundaries.
Second, the upstream and downstream boundaries which

in this investigation are subsonic and permeable.

It appears necessary that the specification of
boundary conditions at theme locations be compati-

ble with the passage of wavelike disturbances
through the boundary20 . Consequently, we treat the

boundary conditions at these locations timing the
method of characteristics as suggested by Morett121.
The details of this treatment are found in Reference

22. Finally, solid wall boundaries represent a
third type of situa t ion. As the treatment of solid
wall boundary conditions is altered in subsequent
invfscie: solutions within the interactive scheme,
w, describe the situation during the first inviscid

aoit::lon in some detai', so that the changes made
for later solutions will he more apparent.

Consider .he numerical grid network ,tear a
blade surface which is depicted in Fig. 2. The
grid lines )=2 and 1 =3 lie in the interior of the

solution region, and solution values at these lo-

cations are obtained from the Maci'O rma6 altto,•ith.m.
the j = l grid line is a dummy point locattor, and it

is at this location that the boundary — niditlons

OR1(,l\AA, P.

Cli I = •GI 1 2	 (5)

G2 i 1 = -G2 1 2	 (6)

G4 1 = -G4 1 2	 (7)
,

The remaining component, G3, reduces to (p sec 01.

A fourth relation is obtained by again appealing
the method of characteristics. Following Motet tI
we seek to resolve those waves which propagate

in a direction normal to th , boundary, apart from
a translation tangent tcn 'he oo.undary due to the
gross motion of the fluia. bsiu; this approach we

ohtair (see Ref. 22) the compatibility relation,

p - '-cu --Pcic'7 ( us cos 0) - can cos 0
n

u u d9"s x	 (8)ds

where c is the speed of sound, and the primes deaotc

differentiation in a direction defined by,

dtt	ux + c stn E3, 
dot 

= sec 0(un - c)	 (9)

Equation (8) may be integrated along a hicharacte-

ristic line defined by Eq. (9) to obtain the wall
pressure. Having obtained the wall pressure in
this manner, a iourth relation is then available of

the form,

G3i 1 - 2(PWALL)i(see 0)
i - 63 i 2	 (10)

As a fival note in this section, we mention

that the Kutta condition is applied at the trailing
edge of the blades by enforcing flow tangency.

Extension to the Annular Cascade

As a preliminary to the discussion of the vis-
cous solution, it is worth noting that the numeri-

cal solution for the inviscid flow in a rectili.-ar
cascade can be related to the flow in an annular

cascade in a fairly simple way. To extend the

results of the previous solution to the flow on a
surface of constant radius which is in a state of
radial equilibrium (i.e., zero radial velocity) and
rotate.; about its axis, it is merely necessary to
imagine that the flat solution field is wrapped onto

the surface of a rotating right circular cylinder.

III. The Viscous Solution

In this section, we develop the viscous equa-

tions appropriate to the flow past cambered, yet
strictly radial, blades. These blades and the co-
ordinate system used in this development are seen

in Fig. 1. The	 coordinate system used in
this section is shown in relation to a Cartesian

coordinate system (X,Y, Z), and a cylindrical co-
ordinate system (r,O,Z). The ° and ^ coordinate
lines are shown on a cylindrical surface (1=r=

rnnst.). The angle *(;), which is measured on that
surface, is the angle between the Q coordinate line

F



and a generator of the surface.	 If we doscribt tit

	

coordinate lino as it 	 curve of anglt- ye
then the ' coordinate line will be a helix-like
curve of angle (2700 + ,). The T coordinate linos
are straight lines normal to the surface of the
cylinder. Finallv, the velocity components in the

and	 directions are denoted by u,v .tnd w,
respectively,

The curvilinear coordinates are related to Car-
tesian coordinates in the following wav;

e

Z - Po cos , d; +.	 sin	 (IIt

X ' I cos , , Y =	 sin T	 (12,13

where ,
sin •r d; - „ cos

tF '

Following Horlock and Wordsworth", we confine

our attention to the blade boundary layers which
develop in a system that rotates about the Z axis

with an angular velocity	 and make some specifi-

cation and assumptions.

(i) Radial equilibrium is specified for the

exte-'nal flow (wy = 0). The - subscript indicates

a location where	 is large.

(ii) The boundary layer thickness is smail

compared to Ov blade chord;

C	
1 , (6 N ) where 6N

(iii) The chordwise curvature of the blade is

of order ( C ). This implies that

C6S^L^(1),

and that a	 a(6N).

(iv) The chord is small compared to the radius,

I ( 1 ) where t - 1C	 s

(v) The blade speed and uW are of like order;

m

For a turbomachine it is expected that t 
	

' E.

With the ordering procedure established here,

it is possible to reduce the equations of motion

for the helical coordinate s ystem to the appropriate
boundary layer equations. The details of this re-

duction may he found in Ref. 22. The boundary lay-
er equations, correct to B(E), which result art , as
follows.

(pu) + 6-t (pv) ' 0	 (14)

dw+ '1- - ( p - C am ) + 2.. sin 1 (C t ' - p.u.) + p(4 3+)
L

	

^h	 2
h	 o ►t	 ^	 ou	 ^	 oT

	

pu ,7 + p v 	 u(p^ ^) +,. (ou) +	 (k ^. t
s

(11)

The radial momenttun t-quation (10) is uncoupled from

the other three equations in the sense that the

radial velocity (w) and the radial cuordinate (T)
du nut appear 

tit
	 (14,IS,or 17).	 ConsequentIN-

if we confi.ic our attention to a surface of constant
radiLt. (;-const.), it is possible to solve this

system of equations with tilt- appropriate boundary
conditions by numerical mtrching techniques 73 . To
complete this s y stem of equations, we take as the
equation of state,

	

p - pRT	 (!8)

and take the enthalpy, viscosity, and thermal con-

(Iuctivity t.) be governed by the relations;

h	 c 'r	 (19)
p

r REF (T/TREF 
) .76	 (20)

k = I, REF (T/T 
REF ).84

	
(21)

F.qs. (14-21) are also the governing equations for

the viscous wake.

It should he noted that, while the inviscid and
viscous calculations are both carried out on the
same cylindrical surface, the coordinate systems
used in these two calculations are diffetent and tilt-
numerical grid systems would not in general coincide
nor have the same orientation.

R'. The Interactive °rocedure

The interactive procedure takes the form of an
iteration between viscous and inviscid solutions.

In general terms, this iterative procedure is as
follows;

(i) An inviscid solution for the entire flow-
field is performed, with the appropriate boundary

conditions.
(it) Using boundary conditions, obtained from

the inviscid solution along blade surfaces and the

wake centerline, the viscous calculation is carried

out. With the viscous calculation completed, certain
adjustments arc mtdc in the inviscid solution's
boundar y conditions, to reflect the presence of
viscous layers.

(iii) Steps (i) and (ii) are repeated until an
acceptable degree of convergence is obtained.

We now attend to the actual form of this interaction.

The F.uler equations for steady flow may be
written, in Cartesian coordinates, tit

	 vector
form	

a3	
U	 (22)o iY 

where	 -	 -
au	 au	

au	
d	 du	

pu^	 ,uw.

pu	 + Cvpmua, 	 + r(µ r)	
(l5)	

3	
puj + p 	 = I p^y^'a1

J

aw	 aw	 (pu ` - amum 2 ) sing .	 puri1	 I PUV + P

	

pu 1 + pv s	 (16)	 u^(c + pt	 `u / t - + p)



I
Also, the steady Navier-Stokes equations may be
written in the vector form

+	 - 0
	

(23)

where;
	 1^	 '

Pitt	

I

	,du	 o	 au

I pu N + p -a \7x

,au	 du

_	 buy	 au	 au

^
a t

;
c e+p - ^^ +^ - 21+

tw', ^^,+	 I + k a

putt

au	 au

	

au	 au	 au,,
ouI^ +p- "^	 +r: -Z

r

	

' au	 au	 au,,,I, 

	au ` 	au	
aT

Now,  we consider the flow in the immediate

vicinity of the wall, where the viscosity and ther-

mal conductivity are important. We suppose that

this viscous strip is sufficiently thin (compared
to the radius of curvature of the wall), and that
the chordwise extent of the region under considera-
tion is for the present sufficiently small, so that
we are Justified in covering this region with a
Cartesian coordinate system (see Fig. 4). An

exact representation of the flow in this region is
given by a solution of the Navier-Stokes .equations.
Let f and g be the vectors constructed from this
solution. Also, we suppose that some solution of

the Euler equations will provide a close approxima-
tion of the exact solution when y ^ b, and let 3
and rf be the vectors constructed from this inviscid

solution. (laving identified the vectors f, g, ;i,

and 4 with these two solutions, Eqs. (22) and (23)
may he integrated from y =0 to y = b, to give;

	

Fyb _ •^o	
-	 J E 3 dir	 (24)

0

a 
a

	

g C - go = -	 f d+{ 	(25)
0

Since the two solutions are taken to coincide for

a, we may specify /; 6 = g b . F.qs. (24) and (25)
they be combined then to give,

r	 a
/^ = go +	 (3 - f ) dV	 (26)

0

OR IC ,	',I, i'..^.

Or Puoii QUA Ll i Y	 5

Eq. (26), which relates the two hypothetical solu-
tions, will serve as a starting point for our dis-
cussion of the solution technique in the viscous
layer.

It is not our intention to solve the Navict-
Stokes equations, therefore, we seek a suitable
approximation of f and g on the interval U 71

	 G.
We represent the exact solution by it composite
function, f 

c , 
where

f c . 3 + f b (0) - 30 	 (27)

These functions are sh.n+n in Fig. 4; f b (0) corres-
ponds to a boundary layer solution carried out using;
inviscid values at 44 , 0 as boundary conditions.
The composite function f is constructed in the
spirit of a matched asymptotic expansion. The

function f was chosen as an approximation of the
exact solution for two reasons. First, we expect
that th''s approach will have greater accuracy than

the usual boundary layer solution. Second, we
employ f because it has distinct computational
advantages within the context of the iterative pro-
cedure.

Applying Eq. (27) to Eq. (26) gives,

E
0 

= (gb ( 0 )) 0 +	
(3o - f b ( 0 )) dy	 (29)

0

Eq. (28) can be used as the basis for an iterative
solution technique in the following way:

(i) (""A1) o , (A2) o and (/44) are initially
set equal to zero, anti an invisci g solution is
carried out.

(ii) Using inviscid values at +10, a boundary
layer solution is performed. 	

//

(iii) Using values obtained from the inviscid

and boundary layer solutions Eq. (28)is solved
for new values of (^, i), (j,2) 0 and (/ 14) 0 .	 the
vector component (A'3) which contains the surface
pressure is evaluated using the method of characte-
ristics. Since Eq. (28) requires only surface
values from the inviscid solutl .t, a minimum of
interpolation is required between the viscous and
inviscid grid systems.

The interaction model which has been described
here can be conveniently used with those inviscid
solution procedures, which are currently employed

to solve the Euler equations in primitive variable
form. There is an alternative method for dealing
with the numerical viscous- inviscid interaction
when the inviscid flow is rotational, that being

the displacement thickness approach, but it is not
conveniently used in a problem involving complica-
ted geometries. In such an approach, bodies are

physically thickened, and it would be necessary to
rctompute the geometry of the problem at each step
in the iteration. In the present method, the
geometry of the solid surface must be dealt with

only once, and remains unchanged throughout the

Iterative process.

Thi- form which the interaction takes in the
blade wake is similar to the case of a wall boun-

dary layer, which has been described. Tfie details
of the wake calculation are not reproduced here;

•• 1



I 	 these the• reader IS relerred ► o Reference :'

V•	 Niuneri,'.11 R,-still,,

In thin Seition we present honk IOSUlt	 "tit .11n-
cd b y a III, lving this interactive •'alrul.IILon proce-
dur y to Ill,- I I,,w ill 	 :as.adr of zero,-thickness
airfoils, whose sh.,pe in that of ;I 	 it - .• mvml
line, with t' I.i - .I (sec RvI. 24 -	 fist- stagget
.eagle of the cascade is I'l o , the chorollength of Lilt-
blades is .3 It., and the blade spacing is	 ft.
We consider .I subsonic flow of air through this
c.IS" ' Id". Ili, calcul.ition takes place an a cylindri-
cal sut'f..c, of r.idiu:: :,ti ft., and we consider hoth
a rotot' passage tangular veld: itv, 00 rad /SO, ),

.Ind .t stator pars,igr (zero angular velocity`,.	 Uuc
to the nature of the equations which we are Solving
th,• se two cases will diflvr only fit 	 radial
velo,ities fit 	 ho ,undar y lavers and wake which
result.

in I'igS. 5-8, values of the Stt't-,!1M• fS4, velocity
It	 .rod density (:) .Ire plotted ailing seve • r.il B -

const. grid linen, where tilt- I,,,at ion of the .u, t ion
surface corresponds to . - l) ft, and the location
of the pressure surface corresponds to d - .. ft.
ftle viscous-inviscid Iterative scheme was run for
four global iterations, and values from the first
.end I.ist inviscid solutions are seen 

lit 	 Iigu-
ri's. The leading edge is denoted as I..E., and lilt
tr.tfling edge b y T.F.. A noleworthy feature of these
plots may be seen by comparing the first and last
inviscid solution values. omv tilt- injection-
suction houndary conditions are applied, all offe:-
tivv bluntness is ill trod tit ed al the ,r.tding edge.
Also, ail 	 displacement hodv surrounds lilt-
IraiIing edge. The new sitIlaIion is numerI, I I I v
less st ye • . • , and It m:IV he Sven that it 	 wavi-
tiess in tile so Ilit ion, wit 	 li is .flip., rent Itps l"call,
.Ind dlwrllRtte,lm of the hl.Ides, mw ifisappo.trs. 	 'Mil'
final solution values it tilt- leading edge bthave
AS though .l	 t.,gn.+t ion point had d4,velolled to tilt-
vicinity.

An important advantage of an interactive calcu-
lation over a single invis.id calcutation with .I

boundary layer added can he Seen b y c,tmparing the
flow, In the it.lmediate vicinity of the• traiIingedge
fn figs. 5 and h. At this location the interaction
between the viscous fl,w .111,1 the inviStid flow is
strung, and the :.hape of the velocity pro fIIv
ch:nges signIfit..ntly between the first and last
inviscid solution . In Fig. b, a rapid deceleration
of the IItild is Indicated slightly downstream of
the trolling edg..	 A •ingl. inviscid	 olut I ' m witit
A boundar y_ laver added would not resolve this
behavior.

In Figs. 9 and II), we plot rotor and stator
radial velocity prof Iles flit- pressure slit-face
houndar y Lever and wake locations. Me plots fn
Figs. I) and Ill arc t.lken from the ffn,tl (fourth)
viscous solution at locations about one third of it

chord length behind the leading .m.1 trailing edges
respectively.	 it may he seen that there is a large
difference between the ptofiles obtained for a
rotor passage and ;I 	 passage, at both wake
.ind boundary laver Iuc:itiens. For a rotor passage
tilt- velocities .are radiall y outward, and fill- a
stator passage the velo,ities are radially inward.
Als,,, it may he noted that genrr.i!Iv larger values
of the radial veldt Its are obtained in the• wake
than fn the blade boundar y lavers.

As do IlluhtratIon of list- .omputer program's
suriesaful ontallon, v.tlues of the
thickness (S ) .Ire plod ted over• it port fun .,1 if,.
std, t fun surface, for e•a.h of th4, tout lis.ou:.
tlonr, (I'I. 111.	 W.• have limited th, , Ill) rdwI
extent of tit. region undej cons ldorsttoll fn older
to .•xp.tnd the vertical 1. ) Scale, ., dial the
onvetr;e)).e characteristics of tilt- gloha l i terttI Ive

scheme would hr , Iva rIv vlslhle.	 I'h4, ih.oissa in
Fit;. II corresponds to distant- .Il.ntg the hlad.-
selt'lace, m4,asured Irom the IoadIug . , ifrx.	 1114 , he-
h.ivior of successive solutions tit 	 II Indieatos
, onVVtgenet- . Also, It appt-at's ihat this .onver-
gt-n,r takes place quite tapidIv, si it, • the third
and fourth soltitimis are virttialiv indistinguish-
able even .,1 this cxpandcd scale.

VI .	 I)Isi ass Ion

Mt- itutncIIvaI results of the lire, 4,ding Sect ton
wv re taken from two volutions (rotor and stat,I-
whi,h wore :.MI'I'fed out on an inviscid grid with
90 x al dimensiolis.	 fist- two calculations, whi,h
etch r, • (juired about minutes (C.6'. ► i, t imc) on a
L I NIVAC 1110, w4, re run for lour g Ill haI Iterations.
I'll,. fnvI.cfif ,alculation procedure accounted for
most of the run tile.

I'll,- computer program which has been dovolopt-d
fit the cott y : of this stud y I.-; currentl y litllitrd
in its .thiIit y to sinntlate real compressor flows
by the idea I is at ions which have been made. Ide.t l i -
zations such is blades of zero-thickness .Ind
Strictly laminar flow have been intiodu_ed to
simplif y the romptitattonal problem, hilt it f
importalit to note th.it those itivalizaltons are not
inhoient in our geltt-r.tl upproarh to the vis.uus-
invis, id interact ion. 	 1'h,• interactive calculat ion
procedure which is prescmcd here dot's not reds
for its suc.essful operation on the geometrical
s bill, IiIications which have been made, and oven
depends very IittIv on the precise form o1 the
viscous and inviseid solutions. For example, evil
integral houndaiv laver ,rlculation ceu Id he sub-
stituted for the present vIsctxis marching procedute,
or an Implicit time marching algorithm used to
So1v.• the invJ.scid equations, and the overall nature
of the interactive calculation would trot be mu, It
*ff4,cted. This internetivo scheme is novci in that
it does not rel y solely on the houndar y layer dis-
placement thickness, but im orporates information
et- Lttc•d to n10111cntum and enthalp y thicknesses as
well.	 1h4, form of the intera,tive .alculation
procedure ,onvenit-tit Iv itIomodate• s inviscid Stilu-
t ion procedtu v. which are currvnt Iv used to solve
tilt- F.uler equations in primitive variable form,
and appears to have rrt'lafn conq,utational .idv.Int,IvVS
for dealing with the viscous-inviscid interaction
Olen the inviscid Ilow is rotational.

A, k now Iedgmt-nt

Cho attth„ts wish t„ express their .appreciation
to Professor F I I Reshotko of l'as, Western Reserve
lilt iversIt y lot the IvkhnlcaI advice and ifitrttion
tihi,h ht- pcovidrd during the course of this work.
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Ò

O iv.r N

` C

LA-

rn ^

0

l

T ^^

r^

0

Q

HN

I	 I
f'^1	 Q
lO	 lO

O^

.^	 00

1

oil I c'

OF P00h ^LAi,1TY



6.00X10 4

d ft

4.80x10-4

.20206	 .30005
X. ft

Figure 11. - Displacement thickness distributions cvp r a rearwards
portion of the suction surface.



Fluid Mech., Vol. 4, Pt. h, pp. 383-392 (1958).
20. Moretti, G., Importance of Boundary Conditionb

in the Numerical 'Treatment of Hyperbolic Equa-
tions. Nigh Speed Computing in Fluid Dynamics,
Physics of Fluids Supplement 11, pp. it-13 -
1I-20 (1969).

21. Moretti, G., The Choice of a Time-Dependent
Technique in Gas Dynamics, PIBAL Repurt No. 69-
26, Polytechnic Institute of Brooklyn, .July 1969.

22. Johnston, W. Sockol, P. and Reshotko, E., A
Viscous-Inviscid Interaetive Compressor Calcu-
lation. Report FTAS/TR-78-136, Dept. of Mech.
and Aerospace Eng., Cabe Western Reserve Uni-
versity, March 1978.

23. Hornbeck, R. W., Numerical Marching Techniques
for Fluid Flows with Heat Transfer, NASA SP-
297 (1973).

14. Abbott, 1. H. and Von Doenhoff, A. E., Theory
of Wing Sections, Dover (1959).

W

Re i o rent,•,

I. Wu, C. H.. 4 General Theory of Three 1)imcnslon-
.,I Flow in Subsonic Turbomachines of Axial,
Radial and Mixed Flow Types, NAcA TN 2604 (1952)

2. Katsanis, 3'hrodore, FORTRAN Program for Calcu-
lating Transonic Velocities on a Blade-to-Slade
Stream Surface of a Turbumachine, NASA '1N D-5427
(1969).

3. Katsanis, 'Theodore and McNally, William D.,
FORTRAN Program for Calculating Velocities and
Streamlines on the Hub-Shroud Mid-Channel Flow
Surface of an Axial- ur Mixed-Flow Turbomathine,
1--User's Manual, NASA "IN D-7343 (1973).

4. Horlock, J. H. and Wordsworth, J., The Three-
Dimensional Laminar Boundary Layer on a Rotat-
ing Helical Blade, J. Fluid Mech., Vol. 23, Pt.
2, pp. 305-314 (1465).

S. Miyake, Y. and Fujita, S., A Laminar Boundary
Laver on a Rotating Three-Dimensional Blade, .1.
Fluid Mech., Vol. 65, Pt. 3, pp. 481-498 (1974).

6. Mellor, G. H. and Wood, G. M., An Axial Compres-
sor Find Wall Boundary Layer Theory, Trans., ASME
J. of Basic Eng., Vol. 93, No. 2 (1971).

7. Caretto, L. S., Curr, R. M. and Spalding, D. B.,
Two Numerical Methods for Three-Dimensional
Boundary Layers, Computer Meth. in Appl. Mcch.
and Eng., 1, pp. 39-57 (1972),

8. Briley, W. Roger, Numerical Method for Predict-
ing 'Three-Dimensional Steady Viscous Flow in
Ducts, J. Comp. Phys., Vol. 14, No. 1 (1974).

9. Delaney, R. A. and Kavanagh, P., Transonic Flow
Analysis ir, Axial-Flow Turbomachinery Cascades
By a Time-Dependent Method of Characteristics,
Technical (Final) Report, F.R1-74034, Iowa State
University, Ames, Iowa, May 1974.

10. Kurzrock, John W. and Novic%, Allen S., Transonic
Flow Around Compressor Rotor Blade Elements, Vol.
l: Analysis. Air Force Atro Pr_,pulsion Labora-
tory Report, AF'APL-TR-73-69, Vol. 1, Aug. 1973.

11. Gopalkrishnan, S. and Bozzola, R., A Numerical
Technique for the Calculation of Transonic Flows
in Turuomachinery Cascades, ASME Paper Nu. ?I-
CT-42, Gas Turbine Conference and Products Show,
Houston, TX, March 1971.

12. Erdos, .1., Alzner, F.., Kalben, P., McNally, W.
and Slutsky, S., Time Dependent Transonic Flew
Solutions for Axial Turbomachinery, NASA SP-347,
Part I, pp. 587-621 (1975).

13. MacCormatk, R. W., Numerical Solution of the
Interaction of a Shuck Wave with a Laminar
Boundary Layer, Lecture Notes in Physics, Vol.
8, Springer-V(rlag, New York, pp. 151-163 (1971).

:4. Briley, W. R. and McDonald, H., An Implicit Nu-
merical Method for the Multidimensional Compres-
sible Navier-Stokes Equations, United Aircraft
Research Laboratories Report M911363-6, Nov. 1973.

15. Beam, R. M. and Warming, R. F., An Implicit
Finite Difference Algorithm for Hyperbolic Systems
in Conservation Law Form, J. Comp. Phys., Vol.
22, No. 1, pp. 87-110 (1976).

16. MacCormack, R. W., An Efficient Numerical Method
for Solving the 'Time-Dependent Compressible
Navier-Stokes Equations at High Reynolds Number.
Paper presented at the ASME 97th Winter Annual
Meeting, New York, December 5-10, 1976.

17. Olson, L. E. and Dvorak, F. A., Viscoua'Potential
Flew about Multi-Element lwo-Dimensional and
Infinite-Span Swept Wings: Theor y ?nd F.xperimg- ,
NASA TMX-62, 513 (1975).

18. Brune, G. W., Rubbert,
'

and Nark, T. C., A
New Approach to In;, iacid Flow/Boundary Layer
Matching, AIAA Paper No. 74-601 (1974).

19. Lighthill, Fi. J., On Dispiacement Thickness, J. Ultl(ANAL YAG"

-(jF YoN )}e (4UA LIT)


	GeneralDisclaimer.pdf
	0016A01.pdf
	0016A02.pdf
	0016A03.pdf
	0016A04.pdf
	0016A05.pdf
	0016A06.pdf
	0016A07.pdf
	0016A08.pdf
	0016A09.pdf
	0016A10.pdf
	0016A11.pdf
	0016A12.pdf
	0016A13.pdf
	0016B01.pdf
	0017A09.pdf

