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I. INTRODUCTION

The prediction of three-dimensional viscous flows with large separated

regions is an essential part .-of aircraft aerodynamics. For wings with

highly swept leading edges the flow on the suction side tends to spiral in

the manner of a vortex parallel to the leading edge. The presence of the

rotating flow provides lift augmentation at low supersonic speeds, up to

the point where the flow breaks down due to viscous effects. Unfortunately,

such viscous, vortex flows do not allow easy analysis. A classical example,

which illustrates the nature and difficulties of these flows, is the delta

wing problem.

The supersonic flow around a delta wing at angle of attack with sharp

subsonic leading edges is shown schematically in Figure 1. A conical shock

originating from the apex envelops the wing. A free shear layer separates

from the leading edges and rolls up into a pair of conically growing

vortices. As the angle of attack increases, the reattachment lines of

these main vortices on the upper surface move inboard, and secondary vor-

tices appear under the main ones, with opposite circulation.

Previous analytical studies to solve this flow field (see Reference 1)

have used the leading edge suction analogy (2), linear slender wing theory

(3), or detached flow methods (4). These studies are all fundamentally

inviscid. Some of them assume a model with two concentrated vortices lying

on top of the wing and make use of a Kutta condition which requires the

flow to separate tangentially from the leading edges. Thus, the viscous

nature of the flow is contained in these conditions. Unfortunately, all

these methods only give approximate results. A recent approach (5) uses a
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potential flow technique along with modeling of the main vortex sheet.

However, it does not take into account secondary separation and does not

-apply as yet to supersonic flow. Finite-difference inviscid calculations

(6) have also been performed but they do not account for the large viscous

effects on the leeward side of the wing.

In the present investigation, two complementary procedures are devel-

oped which avoid the shortcomings of the above methods by solving the com-

plete viscous and inviscid flow field about delta wings. Moreover, solu-

tions are obtained without the costly computing requirements of a fully

three-dimensional, time-dependent, finite-difference technique.

In the first approach, the flow is assumed to be conically self-

similar. This approximation is suggested by the results of experiments for

supersonic flows around conical bodies and wings (7,8). The resulting

Navier-Stokes equations are solved at a given Reynolds number with a time-

marching explicit finite-difference algorithm. A similar idea has already

been used for cones at angles of attack (9) and is currently applied to

delta wings with supersonic leading edges (10). These calculations capture

the bow shock, however, and are limited by a rather restrictive geometry.

The present method treats the shock as a sharp discontinuity and allows for

a completely general cross-sectional shape and distribution of the finite-

difference grid points.

In the second approach, only the streamwise viscous derivatives are

neglected in the steady Navier-Stokes equations. This has been called the

"parabolic" approximation because the equations take on the parabolic

mathematical form with respect to the streamwise direction (11). The

solution is inarched downstream from a given initial station. Previous



investigators have used this approach, along with an implicit, iterative

finite-difference scheme, to compute the supersonic flow over circular

cones at angle of attack "(12,13). This paper presents a new implicit, non-

iterative algorithm which provides better computational efficiency than the

published techniques and is not restricted to conical shapes.

In the following pages, a detailed description of these two procedures

is given. Some laminar results for cones and delta wings are shown and

comparisons are made with existing computations and available experimental

data.



II. FIRST METHOD: CONICAL APPROXIMATION

Governing Equations

The governing equations for an unsteady three-dimensional flow without

body forces or external heat addition can be written in nondimensional

strong conservation-law form in Cartesian coordinates as:

) (E - V 9 (F - Fv) 9 (G - Gv)9U
(1)9t 9x 9y 9z

where E, F, G are functions of U and Ev, Fv, Gv are functions of U,

Ux, Uy, Uz. These functions are given explicitly in Appendix A.

Conical independent variables are introduced by the following

transformation

ij = /x2 + y2 + z2 = xA

b, -1 x

c, -1 x

(2)

where A = /I + bj2 + Cj2.

The conservation-law form of Equation 1 in this coordinate system

is (14):

+ bj(F-Fv) + CI(G-GV)]>

3 (al+ af-iTI f-VE-V + (F-rv)'

+ (G - Gv) ] > = 0 (3)



The assumption of local conical self-similarity requires that deriva-

tives of all flow quantities be zero along rays passing through the apex

of the wing

3E 3F 3Fv 3G 3Gv
= 0

This reduces the number of independent variables to three: time and

two space variables. The calculations can be performed on a spherical

surface centered at the apex. The viscous effects are scaled by the Rey-

nolds number based on the radius of this surface, which is taken as refer-

ence length L.

Therefore aj = 1 and Equation 3 becomes

8 / u \ + _3_J_/JLN
at U3/

-b1(E-Ev)

-c(E-
X2

(G-G)

•KF-Fvn

A2

•^ [(E-E^+.b^F-Fv) + Cl(G-Gv)l = 0 (4)

On the sphere a, = 1, it is useful to define a new set of independent

variables by the generalized transformation

(5)

whose Jacobian is defined as

(6)



The final form of the governing equations in this new coordinate system

is

3U. 3F, 3G,

dt

where

U

H

i

9T1i i / ani 9ri

(8c)

Hl = ® [(E"Ev) + bi<F-Fi) + c1(G-Gv)] (8J)

The vectors ^, FV, Gy (see Appendix A) depend on U ., U , U , which are

given by

/ ^l 9nl\ / 3^1 3?1\
Ux ' -^bi 3b7 + ci ̂H! - ̂bi 8b7 + ci )̂U^ (9a)

an, 9?!
u ' x " u + x U (9b)

, ,
Uz = A -r— U + X .--i U, (9c)
z dci nl 3C! ̂ 1

The system of Equations 7 is mixed hyperbolic-parabolic in time; its

steady state solution can be obtained with a time-dependent technique.



Grid Generation

The domain of computation on the sphere a, = 1 is limited by the bow

shock and the body surface. Only one half of the flow field is considered;

the other half is completed by symmetry.

The grid required for finite-difference calculations is shown in

Figure 2, conically projected on the physical plane (y,z) at x = 1.

Straight rays, making an angle a with the y axis, emanate from NJ grid

points situated at the surface of the wing. Along each ray, within the

distance 6 between body and shock, NK points are positioned, which are

clustered toward the wing surface.

The choice of the surface points and angles a is arbitrary, provided

that they are regularly distributed. In the case of the delta wing, the

surface points are clustered toward the wing tip. The shock standoff

distance 6 is determined by the shock boundary condition and is time

dependent.

The generalized coordinates T\I and ̂  are defined in such a way that

in the computational plane (r)l,i;l') the grid has a square shape of side unity

with uniform spacing in both directions. Therefore, the correspondence

between physical and computational plane is, for 1 < j < NJ and

1 < k < NK, the following:

(10a)

(lOb)

and

+ s(i,j,6)cos[a(j)] (lla)

z_(J) + s(i,j,B)sin[a(j)] (lib)
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where

An,
'1 NK- 1 ' sl NJ- 1

and s is a stretching function (15) -depending on HI , 6, -and a stretching

parameter 6

Finally, the metrics 3ri1/3b1,

the relations

9Th „ 9cl

(lie)

are obtained from

3c, 9c

9C

3b

3b

(12)

where the derivatives Sb^Sn^ Sbj/S^j, SCj/Snj, 3c1/3?1 are computed

numerically with central difference operators in the regularly spaced

computational plane (16,17).

Numerical Solution of Equations

Numerical Algorithm

The governing equations are solved by a time-marching finite-difference

technique. The computations are advanced in time, from a given initial

condition, until a steady state is reached.

The numerical method is the standard, unsplit, explicit MacCormack

(1969) predictor corrector algorithm (18) which has second-order accuracy

in both time and space. A stability condition proportional to the grid
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spacing restricts the maximum time increment. For the present viscous cal-

culations, this time increment is computed using the empirical formula of

Reference 19. Still, nonlinear instabilities, due to the very severe pres-

sure gradient at the wing tip, were found to produce oscillations in the

numerical solution. These oscillations were suppressed by using the fourth-

order damping scheme introduced by MacCormack and Baldwin (20).

Each time step begins by the generation of new grid and the evaluation

of the shock boundary condition.. The finite-difference scheme is then

implemented at each interior grid point. Finally all other boundary condi-

tions are calculated.

Boundary conditions

The flow conditions at the shock boundary are computed by a "shock-

fitting" technique. The Rankine Hugoniot relations are used across the

shock which is allowed to move toward its steady-state position. A similar

method was used and described in Reference 19 for a two-dimensional shock

in body oriented coordinates. The extension to conical shocks in general-

ized coordinates is presented in Appendix B. Beside the flow properties,

the shock stand-off distance and the metric coefficient Br^/Bt are

obtained.

Along the boundary Z^ = 0 and £j = 1, the flow variables and the

geometric coefficients are determined using simple reflection about the

plane of symmetry.

At the wall, the velocities are set to zero, the temperature is given,

and the normal pressure gradient is assumed to be zero. This assumption is

not justified at a sharp wing tip but the loss of accuracy is minimized by

the fine cluster of mesh points in this region.
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Initial conditions

The initial shock shape is an elliptic cone whose upper generator is

a Mach line coming from the apex and whose lower generator is determined

from a tangent-cone approximation. The initial shock speed is zero and the

flow conditions behind the shock are obtained from the shock jump relations.

At the wall the temperature is known. The pressure on the leeward is

approximated by a Prandtl Meyer expansion, and on the windward by cone

theory.

At interior grid points, the flow variables are determined by assuming

linear variation between the values behind the shock and those at the wall.
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III. SECOND METHOD: PARABOLIC APPROXIMATION

Governing Equations

Two -independent variable transformations are again applied to the

general Navier-Stokes equations (Equation 1). They are similar to the

transformations used for the conical approximation but allow for nonconical

effects. The first transformation introduces conical coordinates

a2 = x

b, -i (13)

The second transformation allows for a stretched grid between arbitrary

body and shock surfaces

r,2 = n2(a2,b2,c2) (14)

and

~2 3(b2,c2)

At this point two assumptions are made:

1. Steady state 3/9t = 0.

2. Viscous streamwise derivatives are negligible compared with the

viscous normal and circumferential derivatives, that is, 9/9C2 = 0 in the

viscous terms only.



With these assumptions, the final form of the governing equations is

rw£
L8t;

3E, 3F. 3G,
+ —- + —- + —- = 0

3£~ 3n_ 3^2 2 2

where the unsteady term

(15)

a2
2U

(16a)

is only retained for further reference and

E2 -

a 2Ea2 t,
(16b)

"R = —— I I a
2 3. Ua2 3a,

i2 9n2

(16c)

G2 - a-' '-l

+ rr^ (F-FV) +r— (G- (16d)

The vectors

given by

FV, Gv (see Appendix A) depend on U , U , U , which are
« y Z

a, b.z 3a^ ^ 3c
Ur

3C.
-b2 9b_ 2 3C

(17a)
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(17b)

This system of equations is parabolic in the C2 direction. It can

be solved as an initial value problem.

At each station x = £,, the generalized coordinates n2 and C2
 are

defined in such a way that the domain of computation, limited by the body

surface, the bow shock and the plane of symmetry, is mapped into a square

of side unity. The grid generation in the computational plane (n2> C2) is

identical to the one described in the above subsection on grid generation.

It can be noted that Equation 15 is valid for nonconical body shapes. How-

ever, for the conical shapes considered in this paper, 9n2/9a2 = 0 along

the body surface. Therefore, the body grid points can be determined in

terms of the coordinates b2 and c2 only, independent of a2 = x.

Importance of the Streamwise Pressure Gradient

Previous analysis

If the initial value problem posed in the previous section is to be

solved by forward integration in £2. it is clear that no upstream

influence can be allowed in the solution. It has been shown (21) that an

exact representation of the streamwise pressure gradient pe of Equa-
^2

tion 15 causes information to be propagated upstream through the subsonic

boundary layer close to the wall. Different remedies have been proposed

with partial success. An obvious one is to drop altogether pr from the
^2

equations. Cheng (11) suggests evaluating pF with a backward difference
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and thus to introduce it as a source term. Some authors (12,13) have

incorporated this idea in an iterative technique, to eventually approach

the exact representation. Rubin and 'Lin '(12) have also proposed a '"sub-

layer approximation" where the term p. for the subsonic region is
*>2

calculated at a supersonic outside the boundary layer.

Numerical results for each procedure are given in Reference 12 for a

two-dimensional hypersonic leading-edge problem. Except for the approximation

p- =0, all the methods tend to exhibit instabilities and produce what is
'-2

known as departure solutions, with a separation-like increase in wall pres-

sure, or an expansion-like decrease in wall pressure. Lubard and Helliwell

(13) have performed a stability analysis of their numerical scheme when

applied to a similar system of equations. They .find that the step size

Ac- must be greater than some minimum to avoid departure solutions. This
S2

trend was verified by their numerical experimentation.

Present analysis

A new way of looking at this problem is to determine the influence of

the streamwise pressure gradient on the mathematical nature of the equations

through an eigenvalue analysis. For this, consider the two-dimensional

parabolized Navier-Stokes equation on a flat plate, assuming constant

velocity. A parameter to is introduced so that these equations are

written as
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where

pu

pu +

puv

0

(l-u)p

0

pu

puv .

72 + P

.£ ( 2 .
2

4
3 vy

Ty

(19)

Re

(Y-

In this formulation 3P/3x is to be treated as a source term with a back-

ward difference. The problem is to determine what proportion w of px

can be taken out of the source term 3P/3x and included in E* without

causing upstream influence. The inviscid limit is considered first (Re -*• °°)

r}T?5fr 'x-r*

-y- + — = 0 (20)

Except for the <opx term, these are the Euler equations which can be

written also as

(21)
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where

Q-
u A =

u p 0 0

0 pu 0 CD

0 0 pu 0

-a2u 0 0 u

B, =

v 0 p 0

0 pv 0 0

0 .0 pv 1

-a2v 0 0 v

(22)

and a is the speed of sound. These equations are hyperbolic in x and

can be integrated forward in x if the eigenvalues of (AJ1 • Bj) are real.

These eigenvalues are

A/
u

uv ± a /u2 4- u)(v2 - a2)

u2 - wa2

(23a)

(23b)

and they are real if

0) <
u

,2 - 1-21

(24)

where Mx » u/a.

Therefore, in the region where MX > 1, the px term can be included

fully in E* but it must be restricted according to Equation 24 where

M < 1. It is only in the incompressible limit, >L ->• 0, that the entire
3t •**

pressure gradient must be in the source term.

Next, the viscous limit is considered and the first derivatives with

respect to y are neglected from Equation 18. In this case
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where:

u p

u2 2pu

uv . pv

iu -

Re

j2 + v2 yp p(3u2 +

2 Y- I"1 2

0 0 0

0 1 0

0 0 i

YP 4v
L (Y-DPrp 2 " 3

0 0

0 u)

pu 0

v2) YU

0

0

0

Y
(Y - DPrpJ

(26)

These equations are parabolic in the positive x direction if the eigen-

values of (Â 1 • B2) are real and positive. The eigenvalues are given by

the zeros of the following polynomial (assuming u ̂  0)

Pr (27)

One can show that they will be real and positive if

u > 0

and

(28a)

w < 1 + (Y - DM* = f
(28b)
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The function f*(Mx) has the property that f*(l) = 1 and f*(Mx) > 1 for

Mx > 1. So that again, if MJ: > 1 the .term px can be included fully, in

E*, but must be restricted according to Equation 28b if Mx < 1. Equa-

tion 28a forbids reverse flows.

In the present code, u is computed at each point once the flow

variables are known. The equation for u) is

* * MX) £ 1

(29)

= of* (Mjj) if of* (MX) £ 1

= 1 if of*QO > 1

where o is a safety factor.

The source term 9P/3x has not been taken into account in this analy-

sis. It can be evaluated using a backward difference based either on the

local pressure gradient, or on the pressure gradient outside the subsonic

layer at a point where H^ = H^ > 1. However, the following section shows

that if a backward difference based on the local pressure gradient is used,

the source term 3P/3x can have a critical influence on the stability of

the solution, and thus may have to be dropped.

Linear stability analysis

In this section, the two-dimensional parabolized Navier-Stokes equa-

tions (Equation 18) are inarched in the x direction with the Euler

implicit scheme, and a linear stability analysis of the resulting differ-

ence equations is performed to determine which conditions must be satisfied

by the step size Ax to obtain relaxation solutions. These conditions on

Ax will prohibit solutions with exponential growth caused either by numer-

ical instabilities or departure behavior. Again, only the viscous limit of

Equations 18 is considered, but the source term 9P/9x is now included.
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(Recall that this term represents the explicit part of the pressure

gradient, that is, (1 - to)p .) This system of equations can be written as:

? ifu
vu,r 3y

2
* 9U

^ 9x
, 1H1U 9x

(30)

where

U

P

pu

pv

and EYJ, P , Fv represent the Jacobians 9E*/9U, 9P/8U, 9F /9U .
uy

If the Euler implicit scheme is applied to Equation 30 and the 9P/9x

is evaluated with a local backward difference, the difference equations are:

ITi+l TI i „ i TTi-l TIi+i oTii+l _L Tti+1U- — U- . Uj — U • !!• — 2U- + U -
:•* _J J_ j. u J J _ t. J+l J 3"1 (31)E Ax Ax = F,

U, Ay

or

- *'„u (32)

where

Ax
Ay2

and the index i refers to the x direction and the index j to the y

direction.

In order to obtain a relaxing solution, the eigenvalues of the asso-

ciated amplification matrix must have a modulus less than unity. The
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coefficient matrix (13) is obtained by replacing in Equation 32 U. by

U exp (/-TKj Ay) and U"!" by A' U exp (/-Tk Ay). The eigenvalues of the

amplification matrix are the values of / for-which the determinant of the

coefficient matrix vanishes.

detJA?-[E5 - 2<i>Fv (cos KAy - 1)] + X (?„ - E*) - pJ = 0 (33)
\ Uy I

Equation 33 is a polynomial of degree 8 in A. If the normal velocity

v is neglected and u is assumed to be nonzero, it can be shown that this

polynomial can be written as

A3 « (\- 1) • #(A,X) • tf(X,X,Mx,u) = 0 (34)

where

and

,X) =-: fl +-| XjA - 1

. XJ

(35)

+ " (1-

f (Y-DM 2 2
x

and

4yAx
puReAy•7 sin" V 2 /

(36)

(37)
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Equation 34 has five obvious roots

X = 0 (triple root)

X = 1 . (38)

X = -1

1 + -j X

If u > 0, then X > 0 and these five eigenvalues always have a modulus

less or equal to one, thus providing unconditional (neutral) stability.

The remaining eigenvalues are the roots of the polynomial of the third

degree fe(X, X, MX, u>). This equation is difficult to handle analytically.

Therefore a numerical parametric study was performed. For discrete values

of X, MX» w such that:

X > 0

MX > 0

0 < to < 1

A numerical procedure was used to find the real and complex roots of

#(X, X, MX, to). This procedure is a Newton-Raphson iterative technique

where the final iteration on each root utilizes the original polynomial

rather than the reduced polynomial to avoid accumulated errors in the

reduced polynomial.

From these numerical calculations, the following conclusions can be

drawn

(1) if MX > .1

|x| < 1 for all X > 0 and 0 < u> < 1

(2) if MX < 1 and -r— is dropped from Equation 30

|X | < 1 for all X > 0 and 0 < 10 < f * (MX)



24

(It is important to note that conclusions (1) and (2) provide an indepen-

dent check of the results obtained in the previous subsection)
gp

(3) if Mv < "1 and — is dropped from Equation 30
x — —

*
gp

and f*(Mx) < to < 1 then |x| < 1 only if X

(4) if MX < 1 and -^ is included in Equation 30

and 0 < to £ 1

then |x| < 1 only if X > X̂ t̂o.!̂ )

These results are consistent with those of Lubard and Helliwell (13)

who studied the tv/o cases to = 0 and w = 1 and found that

(1) if Mx> 1 and to = 0 "or w = 1

IM r.l for all X > 0

9P(2) if Mx < 1 and -r— is dropped from Equation 30

and to = 0

|x| < 1 for all X > 0

(3) if MX < 1 and — is included in Equation 30

and to = 0

then |X| < 1 only if

X > (39)

(4) if Mx < 1 and u = 1

then |x| < 1 only if

2(1 - M,,2)

Figures 3-6 illustrate these conclusions. In these figures, the modu

lus of the largest root of the polynomial #(X) is plotted versus the
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Mx = 1

M,

w = f* (Mx) IFMX<1

w*1 IFMX>1
*jp

SOURCE TERM— INCLUDED
9x

LOGX

Figure 3. Domain of stability for ui = f*(M )
X
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i/HllllliiiiiIIIIII
f l l l i illlllllllli

' l m

////H/II///!!//////I///////
///////////w

cj= f* <MX) IFMX <1

w = 1 IFMX>1

3P
SOURCE TERM— NOT INCLUDED

8x

LOGX

Figure 4. Domain of stability for
3P

f*(M ) and no source term T—
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parameters M and Log X, for fixed values of u>. If the modulus of the
X

largest root is greater than one, the plotting routine sets it equal to one.

With this procedure, the regions of instability are represented by a flat

surface which is easy to detect.

Figures 3 and 4 illustrate the role of the pressure gradient on stabil-

ity. Here the parameter <D is determined by Equation 29:

If IL < 1 u - f*(M..))
^ I (41)

If M.. > 1 u = 1 I
* /

In Figure 3 the source term 3P/3x is included and there is a region of

instability for small X and 1^. If the source term 3P/3x is dropped

(Figure 4), this region of instability disappears. Figures 5 and 6 compare

the results of the present analysis with those of Lubard and Helliwell. In

Figure 5 the parameter CD is set equal to one (completely implicit pressure

gradient). Again, there is an unstable region at small X and M^ The

limit of this unstable region, as determined by Lubard and Helliwell

(Equation 40) is also shown. It is clear that both analyses agree very

well. This is also true for the case u> = 0 (completely explicit pressure

gradient) as can be seen in Figure 6.

At this point, it is necessary to look at the physical meaning of the

existence of a minimum value for the parameter X. The analysis of this

section is a viscous analysis, therefore strictly valid only for the first

point off the wall boundary. This point is situated at a distance Ay

above the wall. For simplicity, the boundary condition at the wall can be

taken as a Dirichlet boundary condition (fixed Uwall). Then the numerical

solution of the difference Equation 32 will generate a round-off error
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whose dominant harmonic is likely to have a period of AAy. If only this

harmonic is considered, then

and

2y Ax
PuRe Ay

The condition

X> Xmin

is equivalent to imposing a lower bound on the marching step. In particu-

lar, if the mesh Reynolds number, Re = (PU Ay)/u, is taken as unity for accu-

racy purpose, it turns out that:

2 ̂  > Xmin <">

This unusual stability condition has been verified experimentally by Lubard

and Helliwell (13). Unlike Reference 13, the present analysis does not

provide an analytical formula for the lower bound on Ax. However, this is

not so restrictive since in a real problem, the minimum Ax has to be

determined by trial and error.

As a conclusion, it is important to recall the main result of the

present analysis: the best strategy to obtain unconditional stability is to

include only part of the pressure gradient in the normal implicit algorithm -

namely, topx where ui is given by Equation 41 — and drop the other part

entirely, that is, (1 -

"i'V
I. A. J.
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Numerical Solution of Equations

Numerical algorithm

Equation 15 is solved with a finite-difference technique adapted from

the class of completely implicit, noniterative ADI schemes introduced by

Lindemuth and Killeen (22), Briley and MacDonald (23,24), and Beam and

Warming (25-27). It uses the implicit approximate factorization in delta

form of Beam and Warming (26). The choice of an implicit algorithm is justi-

fied when the limit imposed on the marching step by the stability condition

of an explicit method is smaller than the limit required for accuracy. This

is the case of the delta wing at angle of attack where the gradients in the

longitudinal marching direction are very small compared to the large normal

gradients due to viscosity and the large lateral gradients near the tip of

the wing. Moreover the noniterative character of the present method is

expected to provide better efficiency than the iterative schemes of Rubin

and Lin (12) and Lubard and Helliwell (13).

For the governing Equation 15, written as

8 0 (45)

the delta form of the algorithm for constant step size AC2 is

3E*

W_

U

fa.

(46)
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where the superscript i refers to the level £2
 = iA?2 "

and U2 = a22u/® 2

(unsteady term of Equation 15) and

and the derivatives 3n and 3r are approximated with central differencen2 42

operators.

This algorithm has been f actorized in terms of U2 rather than E*

because the computation of the Jacobians 3F2/3U2, 3G2/3U2 is easier than

the computation of 3F2/3F2, 3G2/3E*. Since the vectors E, F, G are

homogeneous functions of degree one in U, the conservative form of the

governing equations is maintained.

For first-order accuracy in C2, the Euler implicit scheme is used

(6j = 1, 62 = 0). The Jacobians are evaluated at level i and AeP = A
1" P.

If second-order accuracy in C2 . is desired, one can use the Crank-Nicolson

scheme (91 = 1/2, 62 = 0) or the three-points backward implicit scheme

(6j = 1, 92 = 1/2). In this case, the Jacobians should be evaluated at

i = (1/2); this can be done through an extrapolation of levels i and i-1.

Also AfiP = 2A
T~ P - A1" . In this study, only results obtained with the

first-order scheme will be presented.

The complete definition of the Jacobians is given in Appendix C. Two

approximations are made in the computation of the viscous Jacobians. The

coefficient of molecular viscosity is assumed to depend only on the posi-

tion, not on the vector U. And, consistent with first-order computations,

the cross derivative viscous terms in the (n2,C2) plane are neglected from

the Jacobians.
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In practice, algorithm 46 is implemented as follows:

» ™

3E* 6 j A C 2 /3G2\
3U7 + l + 62 3^ ^Ujj AU2 = RHS(31)

3E2

BE

3U
2 e i A ?2

+ •
62 3n2

/3F2\

\3U2)
A^,

U

AU

U,1 +

(47)

Each one-dimensional operator corresponds to a block-tridiagonal system

of equations. In the present computations these systems are solved with a

routine written by J. L. Steger and described in Reference 17.

The numerical stability of the implicit portion of algorithm 46 has

been studied by Beam and Warming for simple hyperbolic and parabolic model

equations (27). Applied to those model equations, the Euler implicit scheme

(61 = 1/2, 62 = 0) is unconditionally stable.

Finally, some artificial dissipation is added to the basic scheme 46.

Fourth-order dissipation terms are added explicitly to damp eventual high-

frequency oscillations of the solutions. These fourth-order terms are

either identical to those used by Beam and Warming (26) and by Steger (17)

or similar to the MacCormack damper of the conical approximation. Also,

some second-order implicit dissipation is used. This idea, introduced to

improve the stability of time-marching solvers (28), is used here to prevent

departure solutions and to initiate the calculations. Its truncation error

is consistent with a first-order Euler scheme.
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The final algorithm is therefore (with the fourth-order explicit

smoothing of Reference 26)

SE:
£.

w. (*r \oG \

^) - -x'

21 2 i-1

+ ̂  + TTT- A E2 - ̂

2̂

(48)

where V and A are the conventional forward and backward difference oper-

ators and EE and EJ are the coefficients of explicit and implicit

dissipation.

Boundary conditions

The conditions at the shock boundary are computed by a "shock fitting"

technique for steady-state supersonic flows due to Thomas et al. (29).

Details of the procedure can be found in Appendix B. The required pressure

behind the shock is determined by an implicit one-sided integration of the

governing Equation 15. Because this technique is not truly implicit, it

puts a limit on the allowed integration step size AC2- This limit is much

larger than the one which would be imposed by an explicit stability condi-

tion near the wall. However, it can be smaller than the minimum step size

required to include the source term 8P2/3£2 (see the linear stability

analysis of the previous section). In this eventuality, the source term

has to be dropped.



35

At the body surface, the change of the conservative variables

AXU2. i-.v™. is extrapolated from the previous value A U_ and then used
j j K-*"" ™ ix

as known boundary condition in the solution of each one-dimensional normal

operator of algorithm 46. Once the flow variables have been found at the

interior grid points, the surface values are computed as in the conical

approximation. The velocities are set to zero, the temperature is given,

and the normal pressure gradient is assumed to be zero.

The plane-of-symmetry boundary conditions are computed by reflection

and they are imposed implicitly.

Initial conditions

In addition to the boundary conditions, some initial conditions are

necessary. Ideally, the region near the apex of the wing should be com-

puted with the full Navier-Stokes equations. In the present study the

conical approximation described in Section II is used to generate a start-

ing solution. The calculations are then advanced downstream to a station

52 where they are compared with another conical solution and with avail-

able experimental data.
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IV. RESULTS AND DISCUSSION

Test Conditions

Laminar calculations have been performed for three test cases. A

description of the test conditions is given in Table 1. The first case is

a circular cone, at angle of attack, for which experimental as well as

numerical results are available. It provides a good evaluation of each

procedure described in the previous sections before considering the delta

wings of cases No. 2 and No. 3.

Table 1. test conditions

Test case 1 Test case 2 Test case 3
_ __ ___ _ s _______

Experiment Tracy (80) Monnerie and Werle1 (7) Thomann (8)
Body shape Circular cone Delta wing Delta wing
Half angle or
sweep 10° 75° 75.°

Angle of attack
MOO
ReL
Twall/T~

24°
7.95
0.42*106

5.59

10°
1.95
0.76xl06

1.13

9.5°
3.04
106

3

Results from the Conical Approximation

Test case No. 1

For the cone calculations the mesh had 20 points along the surface and

31 across the shock layer. The constant-? rays were chosen normal to the

surface with a spacing of 10°. The stretching parameter 8 was set equal

to 1.12. The results are compared with the experimental data of Tracy (80)

and the numerical calculations of McRae (9).

Figure 7 shows a crosscut of the cone, the shock shapes and the tan-

gential conical cross-flow velocity contours. Outlined is the zone of

reverse crossflow. The agreement between experiment and computations is
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Figure 7. Test case No. 1 — conical approximation cross-flow
velocity contours
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excellent, for the shock shape as well as the separation point. The surface

pressure distributions are given in Figure 8. Also presented is the surface

pressure computed with the conical approximation at a station situated at

20% of the length of the cone (ReT = 0.84xi0
5). It is not the same as the

Li

pressure computed at Re = 0.42*106. This illustrates the paradox of the
L

conical approximation applied to viscous flows: the calculations remain

Reynolds-number dependent.

Test case No. 2

The grid used for the delta wing calculations is presented in Figure 2.

It has 36 points along the surface and 50 across the shock layer, with

g = 1.05. The numerical results are compared with the experimental data of

Monnerie and Werle (7). Those results were obtained with fourth-order

damping coefficients equal to 0.4 in both n and c, directions. Figure 9

shows a crosscut of the wing, the calculated shock shape and pressure con-

tours, along with the experimental shock position in the plane of symmetry.

The calculated surface pressure distribution is shown in Figure 10; since

no data are available, it is compared with Prandtl Meyer expansion for the

leeward and with inviscid cone theory for the windward. Figure 11 shows the

Cartesian cross-flow velocity directions immediately above the wing (the

scale in the normal direction is twice the scale in the tangential direc-

tion). The agreement with the experimental position of the main vortex is

excellent. One can also see the small region of secondary separation near

the tip. Pitot pressure measurements have also been performed in the region

of the vortices. The pitot tube was parallel to the wing axis so that these

measurements may be inaccurate, because of the large cross-flow velocities.

In Figure 12, the data are compared with the computed pitot pressures based
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Figure 8. Test case No. 1 — conical approximation surface pressure
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on the component of velocity parallel to the wing axis. As expected, the

comparison is only approximative. Figure 13 shows the tangential velocities

along a row of grid points immediately above the lee side of the wing and

gives the location of the separation and reattachment of the secondary

vortex. The disagreement with the experimental location is believed to be

due to a relatively coarse computational grid used. However, in view of the

relatively large Reynolds numbery the comparisons may be complicated by the

presence of turbulence in the experiment. The conical crossflow Mach

number contours are given in Figure 14; only a small portion of the conical

crossflow is supersonic. Figures 15 and 16 show the streamwise conical

velocity and temperature profiles along three constant-C rays emanating

from the wing. Ray j «= 1 is close to the windward plane of symmetry,

Ray j = 30 goes through the main vortex, and Ray j = 36 is close to the

leeward plane of symmetry. (A more exact definition of each of these rays

is given in Table 2.) The inviscid portion of the flow field as well as

the large viscous features (main vortex) are resolved properly. However,

it should be noted that the numbers of grid points in the boundary layer

(3 or 4) is not sufficient to give accurate shear stress and heat-transfer

data at the wall.

Table 2. Geometric data for
figures 15 and 16

Ray j= 1 30 36

y., = 0.0685 0 0
D

z_ = -.0123 .1336 -.01305
D

a - -2.65° 150.88° 182.65°

Note: y_ and z^ are given in the
a O

plane x = 1.



EXPERIMENTAL
REATTACHMENT

SEPARATION—-

NUMERICAL
REATTACHMENT

SEPARATION

ENLARGED\\VIEW

\

Figure 13. Test case No. 2 — conical approximation:
tangential velocities on upper surface

calculated



46

Figure 14. Test case No. 2 — conical approximation — conical crossflow
Mach number
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Figure 15. Test case No. 2 — comparison of streamwise conical
velocity profiles
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Figure 16. Test case No. 2 — comparison of temperature profiles
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Test case No. 3

In this experiment by Thoman (8), measurements were made on half a

delta wing -placed on the side wall of the wind tunnel. For the computa-

tions, a grid similar to that of the previous case was used. The calcu-

lated and experimental surface pressure distributions are compared in

Figure 17. Theory and experiment agree very well in the outboard portion

of the wing but not in the center portion. This difference is believed to

be caused by the wind-tunnel wall boundary layer (Figure 17) which extends

over half the wing and is interacting with the flow around the wing.

Results for the Parabolic Approximation

Preliminary testing of the parabolic approximation was made by calcu-

lating the boundary-layer flow over a flat plate. The two-dimensional

parabolized Navier-Stokes Equation 18 were solved using a simple Euler

implicit finite-difference scheme. The conditions at the outer edge of the

boundary layer were chosen as M^ = 4 and Re^ = 1.9*106 where L is the

length of the plate and the nondimensionalizing length. The wall tempera-

ture was taken as Tw = T^ and the viscosity was kept constant. The cal-

culations were started at station x = 0.2 (assuming a trapezoidal velocity

profile) and advanced to station x = 1. The parameter oKM^ was evaluated

by Equation 29 where the safety factor a was set equal to 0.9. The term

3P/9x was approximated by a local backward difference. The results are

compared with those of a standard boundary layer code (31). Figure 18

shows the streamwise velocity and temperature profiles. The agreement is

very good and the slight differences in the region of higher temperature

are believed to be due to the constant viscosity assumption.
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Test case No. 1

The full three-dimensional code described in Section III was then

applied to the cone at angle of attack of test case No. 1. The finite-

difference grid was identical to the one used for the conical calculations.

The solution was inarched from £2 ~ °-
2 to ^2 * 1* Conical results at

£2
 = 0.2 were taken as starting condition. Because the grid grows almost

linearly with £2»
 t*ie step size AC2

 was chosen proportional to £2-

The ratio A£2/£2 = 0.006 was determined experimentally by requiring

that the "shock fitting" procedure be stable. The smoothing constants

e£ and e... were such that e£ = 1.04 A£2 and e = 8.33 A£2. The

parameter o> was calculated from Equation 29 with a safety factor of

0.8. The 9P2/3£2 term was dropped from Equation 45. Figure 19 shows

a crosscut of the cone and the bow shock, along with the tangential

conical cross-flow velocity contours. The agreement with the experimental

shock shape and separation point is again excellent. Also the velocity

contours are almost identical to those obtained from the conical approxi-

mation (Figure 7). The surface pressure distribution is presented in

Figure 20, and it compares very well with experiment and calculations

performed with the Lubard and Helliwell code. Figure 21 shows the variation

of the shear stress with 52» *
n planes situated 5° off the plane of sym-

metry, on the leeward and windward of the cone. In logarithmic coordinates,

they are compared with a straight line of slope (-1/2), which corresponds

to the classic boundary-layer result. The deviation of the results from a

straight line for the leeward may be due to the presence of cross flow.

The short oscillation at the beginning of the calculations is a transient

phenomenon caused by the approximate nature of the starting solution.
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Figure 19. Test case No. 1 — parabolic approximation: cross-flow
velocity contours.

r ro^i DUALITY;



.03 -

O

D

EXPERIMENT (TRACY30)

COMPUTATIONS (McRAE9)

PRESENT COMPUTATIONS
ReL = 0.42x 106

ReL = 0.84x 105

30 60 90 120 150
CIRCUMFERENTIAL ANGLE, deg

180

Figure 20. Test case No. 1 — parabolic approximation: surface pressure
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1.

Figure 21. Test case No. 1 — parabolic approximation streamwise variation
of the normal shear-stress
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Some experimentation was done with the 8P2/3C2 term. If approxi-

mated with a local backward difference it leads to quickly departing solu-

.tions. It was not possible to cure this problem by increasing the step

size A£2 since this would have made the shock fitting procedure unstable.

With the sublayer approximation, slowly oscillating or departing solutions

were obtained for 1 < Mv < 2.5. For M~ > 2.5 the results were withinXg -xe

5% of those obtained with 3P2/3C2 = 0.

Test cast No. 2

For the delta wing, the solution was started from conical results at

52 « 0.5 and advanced to C2 = 1, with the same grid as in the conical

calculations. Again the step size was allowed to grow linearly with £2-

However, in this case a more severe restriction on A£2 was necessary to

prevent instabilities in the wing tip region so that A?2 = 0.001 £2-

These results, apparently contradictory with the unconditional stability

property of the implicit method, may be explained by the strong non-

linearities in the vicinity of the tip. The smoothing coefficients were

chosen so that EE = 100 • AC2 (MacCormack smoothing) and eT = 50 A£..

The parameter 01 was computed from Equation 29 with a = 0.8. The

term 3P2/3£2 was set equal to zero. The results are close to those

obtained with the conical approximation. Figure 22 shows a crosscut of the

wing and the bow shock, along with pressure contours. The surface pressure

distribution is compared with the conical results in Figure 10. The curves

are similar, differing only on the leeward by about 10-15%. Figure 23 shows

the Cartesian <?-••<• :.s-flow velocity directions just above the wing (the scale

in the normal direction is twice that in the tangential direction). The

position of the main vortex is predicted very well, but the region of
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Figure 22. Test case No. 2 — parabolic approximation: pressure contours
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Figure 23. Test case No. 2 — parabolic approximation: cross-flow
velocity directions
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secondary separation is somewhat smaller; this might be due to excessive

smoothing and lack of resolution. This lack of resolution is again brought

out in Figures 15 and 16 where the streamwise conical velocity and tempera-

ture profiles along rays j = 1, j = 30, and j = 36 are compared with the

conical'results. The agreement for the velocity profiles is excellent.

The temperature profiles on the windward also agree very well. Some disa-

greement appears on the leeward which is caused by the viscous terms not

included in the conical approximation. The main differences however are in

the boundary layer where the number of grid points is not sufficient for

valid comparisons.

Computation Times

The results of this study were obtained on a CDC 7600 computer. The

conical code required 3.61 * 10-lf sec of computer time per step and per

grid point. About 15 min were needed to obtain a solution for the cone and

close to 2 hr for the delta wing. These numbers could be improved upon by

using some of the recently developed algorithms (32,26). However, the

standard MacCormack scheme was chosen for its reliability and ease of pro-

gramming and because the main point was to evaluate the conical

approximation.

The parabolic code required 6.74 * 10"1* sec of computer time per step

and per grid point. This is to be compared with an average of 54 * 10"1* sec

for the Lubard and Helliwell code, thus providing a factor 8 improvement.

The cone results took about 2 min of computer time and those for the delta

wing less than 20 min.
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V. CONCLUSIONS

In this study, typical realistic three-dimensional flows with large

separated regions have been calculated in a reasonable amount of computer

time. Both conical and parabolic approximations have predicted quantita-

tively the viscous and inviscid features of supersonic flows over cones and

delta wings at angle of attack. Most notably determined is the location of

the main vortex. The conical approach even produces results somewhat better

than expected. However, the space-marching technique gives supplementary

information about the streamwise variation of the flow variables and can be

applied to nonconical bodies.

Also presented in this paper was a new approach for solving the

parabolized Navier-Stokes equations. A procedure was developed to avoid

upstream influence and still retain streamwise pressure variations. Also,

a new implicit noniterative finite-difference algorithm was implemented

which provides substantial improvement in computational efficiency over

previous techniques. The results prove the approach to be justified.

However, a new shock fitting procedure will be required to remove the step

limitation of the present method. It will then be possible to include the

source term 8P2/3C2 (Equation 45) and thus retain the full pressure

gradient pr . Future work should also be directed toward calculating flow

fields around nonconical bodies such as ogives and wing-body configurations.
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VIII. APPENDIX A: GOVERNING EQUATIONS

The fundamental equations governing the unsteady flow of a perfect gas,

without body forces or external heat additions, can be written in conservation-

law form for a Cartesian coordinate system as

3(F-FV) 3(G-GV)

where

t
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In addition, an equation of state must be specified. For a perfect

gas, it can be written as

p = (y-l)pe

The Navier-Stokes expressions for the components of the shearing stress

tensor and the heat-flux vector are

°xx = pi

°yy

azz

JL
Re

/9w I ,, +\
fe - 3 div V

Txz = Re

= JL ̂ Z .9w\
Re \9z 9y/

_ y 3T
x (y - l)M00

2ReLPr 3x

y (y - l)M00
2Rer Pr 3y

= y _3T_

where the coefficient of molecular viscosity u is obtained from Sutherland's

equation and the coefficient of thermal conductivity is computed by assuming

a constant Prandtl number Pr = 0.72.

These equations have been nondimensionalized as follows (the bars

denote the dimensional quantities)
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I is the length defined by the Reynolds nuaber
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IX. APPENDIX B: "SHOCK-FITTING" PROCEDURES

Conical Approximation

The conical shock is allowed to move toward its steady-state position.

The displacement of the shock is introduced through the time dependence of

the shock standoff distance 6 in the plane x = 1. The problem is to

express St as a function of the fluid velocity at infinity and the rela-

tive fluid velocity normal to the shock (see Figure 24).

The local velocity of the shock is given by

Us = -6tn - Ns (Bl)

where Ng denotes the inward unit normal to the shock

-12_ - z ̂ L\ I _ J5_ t H
» & r\ I ± — I '

(B2)

shock

and the subscript shock refers to values along the shock in the plane x = 1.

The algebraic value of the local shock velocity can be related to 6t by

cos a - -r̂ - sin a)
3C1 /

(B3)

shock

The vector component of the fluid velocity normal to and measured with

respect to the moving shock is

Vl = (¥„ + USNS) • Ns (B4)

Substituting for V^, Ug, and Ng, 6fc can be obtained as
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i / T J
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Figure 24. Shock fitting notations
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- z

9z cos a - -r-±- sin aoc,

(B5)

shock

Finally, the metric coefficient Sr^/St results from the differentiation

of the stretching function (lie)

26

[
(B6)

-
where s is given by Equation lie. From this point on, the method is

identical to that described in Reference 19.

Parabolic Approximation

As the calculations proceed downstream, the position of the shock is

computed simultaneously with the rest of the solution. The shock standoff

distance 6 is obtained from the values at £2 through an Euler

integration

86
(B7)

The problem is to determine the slope 6f at station 50. The inward
^2 2

unit normal to the shock is given by

V'2 * fe)
(B8)
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where

cos a - sin b2 -ZB
(B9)

and the derivatives with respect to £2 are .taken along the shock. If

denotes the upstream flow velocity normal to the shock

V (BIO)

Substituting for V^ and Ng, this equation can be solved for 6^ (the root

such that 6r_ > 0 is retained)

fdz ay
^— \T — — '

[fe)2+te)1
„ 2 .
"

8z
cos 3y

(BID
sin a

The metric coefficient

tion lie:

is obtained by differentiating Equa-

(B12)

where s is given by Equation lie. Once the new shock position is deter-

mined, the application of a one-sided version of the finite-difference

algorithm gives the pressure behind the shock. The rest of the flow

variables result from the exact shock jump relations.
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X. APPENDIX C: JACOBIANS 9F2/9U2, 3G2/9U2, and 9E*/9U2

The-Jacobians 3F2/3U2 .and 3G2/3U2 -are .given by

9n2
9U2

(ci)

9U2 3U2

fa [/ 3?2 3C \ 8?2 ^2 11
t®7 [p 3bJ - C2 9^j(E - V + 1*7 (F - V + *^ <G - Gv>Jj

(C2)
Clearly, these Jacobians have an inviscid part and a viscous part:

3TT I SIT I \ 3TT I
du2 \dU2/inviscid VU2/viscous

3 G \ / 9 G

9U \9U0/ \ 3U I
2 \ 2/inviscid \ 2/viscous

The inviscid part can be written as a linear combination of 9E/9U, 9F/3U,

3G/3U

/3FA ^/ Sn, : 9T,,

VVinviscid " 32 V2 3a2 " 2 9b2 "
9c2 9U a2 9b2 9U a2 3c, 9U

(C5)

'inviscid a2 V ̂  9b2 ^2 ̂ 2y
 9U a2 *b2 3U a, 3c2 3U

where

E
U

r 0 | 1 1 0 1 0 | 0

2 2 i i ; i
-uv ! v ! u ! o i o

! T T '-uw w 0 ' u ' 0
- 1 . - L i '

(C7)
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The viscous part of the Jacobians is

/8F2\ a
/ • 9U9/viscous 2

fa2 f/ 9rl2 9n2 9n2\

("®I [V2 9^" " b2 3b7 " C2 I^/

(CIO)
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9 = J l 7 2 j _ 7 2 j . 7 2
'1 3 fcl * *2 S

* 3 - « , 2 + ' 2 Z + f

'"* 3

p s- _!_ f p 2
^ pr V 1
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£1 = 32 3^- b S

- _!^
£2 3b^

and (-)n indicates derivative with respect to ru. Similarlyn *

3n, 3n,
,, ,_ P —

St, ~ C0 3~ 3 ~3b2 2 3c2 3

E«

8n2

3c2

(C13)

'viscous 2

viscous
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(Y - I),2
|»2 r

••'pi
U2 + V2 + W2]|

" 2° JJC

— s- —1 ' mc
A /«2 i

I tn.,1 — =- —
°/C 3\322 °

'^ ^) i -'A- ^^22 °/c, , \a2
2 c/:

2
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where:

_ o A — 9 — 9
ml + T m2 + m3

m,
— o4- m2 + -=•A —

m JL rs 2
7 - pr

(C16)

* C

(C17)

and (Or indicates derivatives with respect to ?,. In these viscous
^2 ^

Jacobians, the cross derivative viscous terms have been neglected and the

coefficient of molecular viscosity has been assumed to depend only on the

position, not on the vector U.

Finally, the Jacobian 8E*/3U2 is given by

3U,

0

u ) ( Y - l ) - 2 , u ( Y - l ) , •> •>.2 u' I £ (v 1 w )

-uv

-uw

[ -Ye t +(Y- l ) ( U
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0 | 0
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(C18)
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