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ABSTRACT

The numerical solution of the full Navier-Stokes Equations for

viscous flows with high Mach numbers and a strong detached bow shock =_!_

is obtained.	 Two dimensional flows around (a) a circular cylinder, and

(b) a circular cylinder with an aft-body in the form of a fairing, have 4	 5

i

been considered.	 The solution of the compressible N.S. Equations was

accomplished by the method of finite differences.	 An implicit scheme

of solution, the S.O.R., was used with the optimum acceleration parame-

ters determined by trial and error.	 The tensor notation was used in !

writing the N-S	 Equations transformed into general curvilinear coordi-
r

nates.	 The coordinate system used is a general non-orthogonal. $	 f

curvilinear system with coordinate lines coincident with all boundaries. t

This coordinate system is numerically generated. 	 The computational i

domain is limited	 upstream by a boundary located at a short distance =;

ahead of the bow shock. 	 V.e shock has been treated as a sharp but "`

continuous transition zone. 	 (Shock capturing method.) 	 The boundary

conditions at this upstream boundary are the uniform flow conditions. !	 }°

The Euler equations were solved on the exit plane to establish the t	 E	 +,,;:

``

	 j



}

e	 '^ e

...E	 1
i

a

downstream boundary conditions.	 The capability of attracting the
J

coordinate lines to otherg	 ,	 ,pre-deli Hated lines and	 or, points exists.
r	 'j	 1

This technique was applied to blunt body flows with strong-shock to

concentrate in and define the region of the shock. 	 The amount of

concentration was controlled by the factors "attraction amplitude" and

"exponential decay" which were expressed as functions of the local

density gradient across the shock. 	 The equations for the generation of

the coordinate system (using coordinate control) were solved, followed

by the solution of the N.S. Equations, at the end of a set of given

number of time steps. 	 This process was repeated for different sets;'

thus the coordinate system concentrated in the shock region and moved ;._:;	 4
i

with the shock.	 "Wiggles", by far	 constituted the one major problem

that needed to be overcome. 	 These oscillations that were encountered

had no	 h sical mean -Inn	 and	 a	 rise	 ato	 uantities such	 s ne ative -p Y	 g	 g	 q	 g

temperatures, which ultimately caused the computational program to

break down. It was found that the application of certain dissipative

finite-difference schemes damped these oscillations. The Shuman Filter,

in particular, proved the most effective. The results are obtained for

a Mach No. of 4.6 and a Reynolds No. of 10,000, and are compared with

the experimental results available for these free stream conditions of

flow around a circular cylinder.

vi
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Operators;

div = Divergence

grad = Gradient y	 j

{	 } = Transpose

'	 Subscripts:
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CHAPTER I

INTRODUCTION

In the accurate numerical prediction of real flows in general,

there remain serious difficulties due to the complexity of these flows

arising from unsteadiness, turbulence, three-dimensional character,

large variations of flow gradients, etc. The numerical solution of the

full equations for viscous flows, i.e., the Navier-Stokes Equations has,

thus, attracted much attention, to treat fluid flow problems for which

no simplified model exists. Generally it is found that the N-S

Equations apply when the continuum hypothesis is satisfied; this

condition being satisfied when the Knudsen Number is less than 0.01.

Victoria and Widhopf [ 1] reported that the use of the N-S Equations to

solve hypersonic low Reynolds/Nigh Knudsen Number flow problems, is

valid. They considered the flow about a sphere in a Mach 10 flow at a

free stream Reynolds Number of 152, with a corresponding Knudsen Number

of 0.10. The range of validity of the N-S Equations does, indeed, seem

to cover most of the aerodynamic problems relating to aeronautics and

astronautics.

The present investigation concerns the numerical solution of the

complete N-S Equations for viscous flows, with strong shocks, ahead of

a two-dimensional arbitrary body. 	 The detached bow shock separates

a- the flow disturbed by the body from the undistrubed flow. 	 Behind the
zs

shock wave there, is a sub--sonic region bounded by it, the body and the

"sonic lines."	 The flow field outside of this sub-sonic region is again.. j1
t

t
;I

super-sonic, with the exception of the region of the wake immediately ^.

behind the body.	 The shape of the bow shock ahead of the body is

i

_	 ,



the incompressible N-S Equations.

influenced by the shape of its leading edge. The numerical solution of

the compressible N-S Equations in the case of a mixed sub-sonic and

super-sonic flow field as described above is a difficult task and cannot 

yet be ranked along with the standard theoretical tools currently used
i?

Of the various types of methods in use for the numerical solution

of the N-S Equations,the finite-difference method is perhaps, by far the
f

most widely used. In the last few years, finite-element methods have 	 f ;_

1
received increasing attention as a substitute to finite-difference	 {::

methods in fluid mechanics problems, particularly in the solution of

1

in applied aerodynamics.

To keep the computing time within reasonable bounds it is important

to minimize the number of mesh points and this usually requires that it

the mesh system be taken non-uniform in the physical plane. 	 This can

be achieved by imposing a variable mesh spacing in a given coordinate

system.	 The mesh system is generally also chosen so as to make the
a

boundaries of the computational domain, particularly solid walls, `1r,::.#

coincide with mesh lines; this considerably simplifies the treatment
f	 i

of boundary conditions.	 One of the novel features of the present

research is the use of the body fitted coordinates which are a system

of general curvilinear coordinates, that are numerically generated,_
3	 ;a

4	 ^

developed by Thompson, et. al., [ 2 	 and Thames [ 3 ].	 This system of

coordinate generation is quite versatile due to the fact that it allows
s ,

the coordinate lines to be coincident with all boundaries of a general

multiply connected region including the boundaries formed by the sold
i

i

walls of any number of quite arbitrarily shaped bodies.	 The boundaries

may even be time-dependent. 	 Thus with this procedure the numerical

2



solution of the N-S Equations may be obtained on a fixed rectangular

field or the transformed plane, with a square mesh. No interpolation

of the flow variables is required regardless of the shape of the

physical boundaries or the spacing of the curvilinear coordinate lines

in the physical plane.

Once the coordinate system has been chosen, and the choice of a

mesh size is made, various techniques may be Shade use of to reduce the

computing time as much as possible for a given numerical scheme. In

an explicit scheme of solution, the local maximum time step depends

strongly on the local mesh size in physical space; if the physical mesh
c

varies considerably throughout the computational domain, the time step

will be determined by the smallest mesh and will be, in all probability,

very small. It is then practically indispensable to divide the domain

into several regions in each of which a different time step is used so

as to reduce the total number of operations necessary to advance the

solution in time in the entire field - all of which leads to compu-

tational comnlications and restrictions. Thus it is seen that time step

limitation is the main drawback of explicit schemes; however, these

methods have been widely used because of their simplicity and the fact

that the number of numerical operations at each step is kept to a

minimum. Another approach which is attracting more attention now is

the use of implicit schemes which lead to less severe stability con-

ditions or which are unconditionally stable. Roger Peyret and

Henri. Viviand [41 concluded (in 1975) that "no clear cut conclusion

can be drawn at this time regarding the best type of method - implicit

or explicit." However, the fact that an implicit scheme is uncon-

ditionally stable proved irresistable and one such scheme - the S.O.R. --

3

_
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was used in the present work. Also tensor notation was used in writing

the N-S Equations transformed into general curvilinear coordinates as

this measure greatly simplified the overall problem of analytical

development and rendered the method more general. Thus the extension

of the method to three dimensions is now purely formal.

The flow considered being super-sonic about a blunt body, a

detached bow shock exists ahead of the body, as noted earlier. The

computational domain was limited upstream by a boundary located at a

short distance ahead of the bow shock, treating the shock as a thin

but continuous transition zone. This is the "shock capturing" method.

Tannehill and Holst [ 5] used this approach for law Reynolds Number

flows. However, they found that (as indeed, we too) for high Reynolds

Number flows it was not "practical" to capture the bow shock because of

the numerical difficulties associated with the large gradients at the

bow shock. Instead, they found it more convenient to treat the bow

shock as a discontinuity, across which the Rankine-Hugoniot Equations

could be applied, while leaving the boundary layer to be "captured."

This approach is called the "shock-fitting" method and is generally

favored because, the flow being practically inviscid in the vicinity

of the shock, the N-S Equations are not really needed to calculate the

shock; but the problems associated with this method are those that arise

due to the necessity of having to couple the inviscid and viscous flow

solutions and the a priori definition of inviscid and viscous regions.

The shock-capturing method was used in this research, not withstanding

the numerical difficulties associated with this method, because it is

much more convenient to solve the N-S Equations in the entire flow field

when the inviscid flow region is of a small extent. This situation

4
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exists in the case of bow shocks in high Mach number flows. Now the

thickness S of a normal shock wave in real viscous fluids varies ass

1/Re for fixed Pr. For high Reynolds Dumber flows it then becomes

likely that 6 s < Ax (the mesh size normal, to the shock). When this

occurs,oscillations develop aft of the shock leading to the numerical

difficulties as reported by Tannehill and Holst and a host of other

investigators. If l/Re -} 0 and if the finite-difference method has no

artificial viscosity, then there is no dissipative mechanism by which

the oscillations may be damped out. Many authors have associated these

spatial oscillations, also called "wiggles," with non--l.inearities,

or with linear instabilities in the transient calculation. Roache [G ]

has however, demonstrated that wiggles are not caused by iterative

instability or non-linearities, but that they simply are a solution

of the finite-difference equation used. In the numerical computation

of flow fields containing shock waves, these oscillations or wiggles

may be damped by the application of dissipative finite-difference

schemes. The concept of introducing an implicit dissipation term by

using a dissipative finite-difference scheme to damp out short wave

oscillations has been used by many researchers. Vliegenthart [ 7 1

reported that these encountered oscillations which have no physical

meaning, can be suppressed by applying Shuman's technique of introducing

dissipation, and that, in certain cases this even appears to remove

nonlinear instabilities as in the case of the computation of a detached

shock in front of a blunt-body. Due to its extreme simplicity and

effectiveness the Shuman Filter, which is discussed in Chapter IV,

has been used in the present research, to overcome the problem of

wiggles. Unlike other schemes, the Lax-Wendroff,for instance, the

5
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Shumann Filter is not an integral part of the difference ap proximation.PP +

Lax's scheme, yields a shock which is spread out over a large number ^	 f	 t

of mesh spacings, while the Shumann Filter yields a shock which is A.i^

considerably narrower.
'

The capability of attracting the coordinate lines to other pre-
f

=x

designated coordinate lines or grid points exists at present, and

through the application of this technique to blunt body flows with t	 ={

strong shocks, an effort was made to concentrate in, and define, the

region of the shock. 	 The magnitude of concentration is controlled by

the factors "attraction amplitude91 	 "exponentialexponential decay. I1	(These

terms are discussed in Chapter II.) 	 These c000rdin.ate control factors

were expressed as functions of the local density gradient across the

shock.	 The equations for the generation of the coordinate system,
f

F

using coordinate control, were solved, followed by the solution of the #

N-S Equations, at the end of a set of given number of time steps. 	 This y

process was repeated for different sets of time steps. 	 Thus the '	 i

coordinate system was refined in the region of the shock and moved with jr
F	

}

at

the shock.	 This measure obviated the need of having a very refined

mesh in the entire computational domain by providing refinement only in

'	
k

the region through which the shock happened to be passing at any given

time.
n.

'^	 <	 ^^+

The results presented pertain to a flow about a two--dimensional
:o

circular cylinder with a free stream Mach Number of 4.6 and a Reynolds

Number of 104 . A few results for the case of a circular cylinder with {

an aft body (fairing) have also been included for comparisons. The 

wall pressure, normalized with respect to the stagnation pressure, as	
;'t'



solution for the circular cylinder and the two results are in good

agreement. All the numerical results are discussed in Chapter v.



CHAPTER II -'

WMERICAh GENERATION OF CURVILINEAR COORDINATES

2.1.	 The Boundary-Fitted Coordinate System

` The accurate numerical representation of boundary conditions, be
i

it the body surface or the infinity boundary, is best accomplished
R

when the boundary is such that it is coincident with some coordinate

line.	 Linder such circumstances the boundary may be made to pass

' through the points of a finite difference grid constructed on the ...

coordinate lines.	 This eliminates the need for any interpolation of ^'

the dependent variables between points of the grid. 	 The avoiding of

-.* interpolation is particularly important for boundaries with strong
t

a {

curvature or slope discontinuities, and for differential systems that

produce Large gradients in the vicinity of the boundaries.	 Thus the

'	 r generation of a curvilinear coordinate system with coordinate lines

j coincident with all boundaries is an essential part of a numerical
1

r' solution.	 Extensive use of the method of numerical generation of a

curvilinear coordinate system due to Thompson, Thames and Mastin [2

has been made in the present work. 	 The main idea of this method is to

fill the computational domain enclosed between the body and the

external boundary with intersecting, coordinate lines in the physical
i

(x ,y) space.

j^ het	 = ^(x,y) and n = q(x,y) be two continuously differentiable

functions of the Cartesian coordinates (x,y).	 Further, let n = no = i

constant be the body contour, while n = n. = constant be the external
;r

boundary contour. 	 The region na _< n 5 n,,,. must now be filled by inter- F

secting coordinate curves	 = constant and n = constant.	 Because of `..

a
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.

the closed region under consideration it is natural to specify the

determining differential equations for C and n as elliptic equations

to be solved under the proper boundary conditions for	 and n at the

,. E

body-and at the external boundary.	 Since the simplest elliptic equation

is the Laplace Equation, we then pose the problem of solving the
1 *  _^

k.
is

Laplace Equations for C and n with x and y as independent variables

under the Dirichlet boundary conditions.	 Let r1 be the curve
' a

,. defining the body contour n = np and r2 be the curve defining the outer

boundary n = n	 in the xy-plane as shown in Fig. 1.	 The elliptic

boundary value problem is then

nn2L	 0	 (2. 1 ) 

i 	
3

v2n - o	 (2.2) 1

on rl :	 = fo (x,Y), n = no	 (2.3) :f

^.'^.: on r2 	 fco (x,Y) , n - nW	 (2.4)
r

The solutions of Eqs. (2.1) and (2.2) under the boundary conditions IG	 .`	 r}.

^. (2.3) and (2.4) can conveniently be obtained in those cases when n 	 anda i

I

nW can be specified by simple analytic methods (such as a circle,

ellipse, etc.).	 To obtain coordinates for arbitrary shaped bodies, it

is convenient to transform the Eqs. (2.1) and (2.2) such that x and y:

? are the dependent while 	 and n are the independent variables. 	 This
r	 'A

' transformation is more easily performed for either two or three-
j

i

dimensional coordinates by the method of tensor analysis and is detailed

in Appendix B.	 Referring to Eqs. (B-13) and (B--14), we find that

Eqs. (2.1) and (2.2) are equivalent to
z	 t	 x

g22 x	 - 2g12 x n 
+ 

gl1 xnn 	0
	 (2.5)

g22 Y	 - 2g12 yin + gll 'Ynn - 0
	 (7..G)

9
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=	 t'

i

where the variable subscripts denote partial differentiations and the

g,J is the metric tensor defined in Appendices A and B. The boundary

conditions are now

On r*: x - ri (g ,no) a y = F (^.no)	 (2.7)
	

I^.

On r2: x - Gl (.nm)^ y - G2 (& ' n.)	 (2,8)

where as shown in Fig. 2, r and r2 are the images of the body and the

external boundary contours in the gn-plane.

The geometrical meaning of the transformed equations (2.5) and

..'``. (2.6) is that the body and the external boundary contours in the xy-

plane have been mapped on to the Cn-plane which is rectangular. 	 In

other words, we can say, that the contours in the xy-plane have been

t. opened up to form the straight lines n	 no = constant, and n	 nm
pj

t

constant in the En-plane.	 This can be achieved by imagining a cut
S	 e

_ a

connecting the body and the external boundary in the xy-plane as shown
#.

in Fig. l., such that all functions and their derivatives are con-

y tinuous in crossing the cut.	 Since a cut line is a part of the field,

no boundary conditions can be imposed on r3 and r 	 of Fig, 2.

The appearance of no and 11. in Eqs.	 (2.7) and (2.8) is now purely F.

symbolic, denoting the names of the body and of the external boundary

respectively.	 Given the body and the external boundary contours, we

r
can always establish the values of x and y either graphically or

e

. analytically for any desired distribution of ^-values.	 The n-values

^

can be chosen arbitrarily to farm rectangular meshes in the fin-plane.
t	 k

Equations (2.5) and (2.6) are the basic equations for the

generation of coordinates. 	 To have a control over the spacing of the .

and n lines, we envisage another general transformation, say from

f;; 10



E,n to g' and n% Retaining the 9,n notation, the equations take the

form

822 7-99 - 2812 'En + g11 xTIn 
= Rx9 

Rxn	
(2.9)

822 
ygg - 2812 ytn + gll ynn 3 Py + Qyn	

(2.10)

For details on the above derivations refer to [8 1. The same form of

equations are obtained if one starts considering the Poisson Equations

in place of Eqs. (2.1) and (2.2) and inverts the transformation from

x,y to ^,n as independent variables.

The function P and Q are to scrae extent arbitrary and can be chosen

in various ways to have a desired distribution of coordinates in a given

region. In the present research we have made P and Q to depend on the

density gradients to contract the coordinates in the region of the

shock. The chosen forms of P,Q are [ 9 ]
A	

E
n`

I.
	 P - g k

E1 A^ sgn (t-Ck) exp (-Wk - k1)

m

+ g E=1 E, sgn ( 9-42} exp (-E'R^}	 (2.11)

_ n

Q - g k=1 Ak sgn (
n-nk) exp (-nkI n-nk ])

+ g X-1 s^ sgn (n-n^} exp (-E^RR 3	 (2.12)

where

g 1-- 811 g22 ` (gl2)2 _ 
.r2	 (2.13)

RX = M
-tt)2 

+ (n-
n

p.
) 2 1 1/2	 (2.14)

The first terms on the right hand sides of both (2.11) and 2.12) are

used in the line attraction, while the second terms in both equations

11

'T	 7777T



4	
A,	 j

tw

are used for the point-attraction. Various terms which appear in these

equations have been defined in the "List of Symbols".

In the present research, we have used only the point attraction

term of Eq. (2.12) to concentrate the coordinate Lines near the shock.

The amplitude factor is a function of the maximum density difference

along each ^-line in the region of the shock. This amplitude factor

BI thus changes according to the position Q,n) and is defined as

B9 = (constant) (P 2-P1)/Pl 	(2.15)

where the subscripts 1 and 2 denote the respective values in the front

and behind of that shock which has been computed without coordinate

contraction. The constant appearing in (2.15) is selected by trial

and error and retains the same value for all C and n positions, that

correspond to the shock location.

The method of numerical coordinate generation offers much freedom

in the orientation of both the ^ and n coordinates in the physical xy-

plane. For example, the n = const. lines can be chosen to go round

the body as shown in Fig. 1, or they may not be chosen to form a

complete circuit as shown in Fig. 5. However, a suitable choice has

to be made in advance of computing the coordina tes, because the

resulting configuration of the body segment, the cut lines, or the re-

entrant segments, and the outer boundary segments in the transformed

to-plane depend on this choice. In the present research we have chosen

the coordinate configuration as shown in Fig. 3, in which the front

outer boundary is a hyperbolic arc and the rear outer boundary is a

circular arc. Figure & shows the corresponding segment orientation in

the fin-plane. This type of segments orientation requires much care in

12



}! 	 T. 1 S ! I '

the computer programing for both the coordinate generation and for the

numerical solution of the Navier-Stokes Equations. In Section 2.2 the

finite-difference approximations of all the equations have been

discussed.

2.2. Finite Difference Approximation

In this section the finite difference approximations and the

numerical methods used for the solution of the elliptic systems, Eqs.

(2.9) - (2.10) is discussed.

Before proceeding with the pertinent method of solution, it is

important to mention that in the method of body--fitted coordinates it

is superfluous to specify the step sizes AE and On, both of which are

equal. to 1. If IMAX and MAX represent integers for the maximum

numbers of ^ and n points respectively in a field, then this input and

the desired contraction controlled by the amplitude and decay factors

of Eqs. (2.11) - (2.12) decide the variable mesh sizes to be obtained

by solving the generating system (2.9) - (2.10). This aspect has been

thoroughly discussed in [ 81. Thus the main utility of numerically

generated body-fitted coordinates actually lies in the availability of

meshes or nets in the En-plane on which the Wavier-Stores Equations are

to be solved without specifying the step sizes. Further, the vari-

ations both along the &-and n-coordinates, are labeled by the con-

secutive integers in the range 1 S I<_ MAX and 1 < J <- MAX.

The solutions of Eqs. (2.9) - (2.10) have been obtained by the

Gauss-Siedel method with successive over relaxation (SOR) under the

prescribed boundary values for x and y on the body and the external

boundary contours, along with the prescribed values of IM N and MAX.
k



(11
9 ) 1,.T	 (IN1+1,3 - AI-1,J)12

(A 9t ) 1,,1 :-- (h1+l,J - 2A 1 'j +X1 1-1, J)

The spatial derivatives are approximated by the central differences,;.; ;.'.

where X is a surrogate variable and I,J.denote positions along ^ and n

coordinates respectively.	 Similar expressions are obtained for X n , 1.nn

and Ain.
a

The solutions of Eqs. (2.9) - (2.10) yield x and y for the whole

flow field as functions of 	 and n.	 This data is then used to generate F j

the derivatives x,, xn , y^, yn , the metrical coefficients g ii , the:` }

determinant g, and the Christoffel symbols pijk.
It was mentioned in Section 2.1. that the orientation of the

coordinates of the form shown in rig. S requires due care in obtaining 71:. r
t
E

derivatives on the cut line. 	 Referring to the schematic shoran in Fig.
A,

}3 with the x-axis oriented along the cut line, letT u 	and I	 denoteC	 LC

the integral values of I on the upper and lower parts of the cut

respectively.	 Thus
f,

+	 = MX + 1	 (2.18)ILC UC

l;.

^#
;'.. ;. ;

Equation (2.18) establishes the following correspondence between 1LC ^`

.

3	 }

and 18C

LC	 Uc !

1	 Corresponds to	 IMAX

2	 rr	 a	 IYAX 1

r_

I	 tl	 rr	 TMdX—I+1

C

ILl	 tt	 rr	
IB2 	 (2.19)

I

14
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where Z y and x	
represent the same point of the body reached by the

Bl	 B2 4 '

lower and upper parts of the cut respectively. 	 Obviously

lL2	 (1M + 1) - lB1 f=

From (2.19), we conclude that

x(lUC' J) _ x(,LC'J)
(2.20)

and

x('Uel,J) = x(ZLC-"J) (2.21) s

The first derivatives on the lower and upper parts of the cut are
44jff a

(x) I,C 	
2 [x(ZLC+I ,I) - x{^LC-l'^)

a

r

T1 LC
= 	^x(ZLC,2) - x(ZUC,2)3

^,

.	 (yt)LC W	 [^(x^c+l'^} - y(ILC l=1)]
f

.1

(Y^ ) r,C - 2 IY(ZLC' 2) - Y(ZUC'2))
(2,22} s .,

where 2 S ZLG < Zal - l

(x ) UC 	 2 [x(ZUel,l) - 
x(x

uC l, ^ } j
I

_	
i
î{{

(xn)UC	
[x(ZUC,2) - x(ZLC ,2)) '	

33f33f

:..,

(Y)uC T Z [Y(ZUC+1 ' 1) - Y(Iuc-1,l))

(Y^)UC	^Y( UC' 2) - Y(xLC'2)]
{2,23)

r

where`
$2 C

f

r



Using (2. 21), in (2.23), we find that

(YUC = - (X^
)LC

(Y^)UC - (Y9
)LC = 0

(XTI UC _
	

(X11 ) LC 
= 0

(YT)UC = - (y TI

From the definition of ri given, in Eck. (B-6) we find that on the cut

line

I

r



pW + pZ sa

b - (T+p) v - ea • v -- a0p grad T

Pe+2 PIvl2

v= KI+d

K= A divv

17
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3.1. Formulation of the Problem

For solving the blunt body problem in general curvilinear coordi-

nate system, we consider the nondimensionalized Navier-Stokes system of

t>.	 equations in the invariant tensor form. The conservation equations are

-	 Mass Conservation:

ZE + div( pv) 0	 (3.I)

Momentum Conservation:

at (py) + div T 0	 (3.2)

Energy Conservation:

DY
a-t +div b - 0	 (3.3)



d - udef v = u[grad y + (grad v)T]

e - 1/Re

aQ = e/pr (y-1)11m

(3.4)

The nondimensionalized equations (3.1) - (3.4) have been obtained

by referring all lengths to the diameter 2e; velocity vector, density,

viscosity, temperature, enthalpy and pressure to the free stream values

per, 11 Tm, hm, and p* V*2 respectively. The N-S Equations (3.1) -
CO

(3.4) by themselves do not give a complete description of the motion of

a compressible fluid because changes is pressure and density cause

temperature variations and thermodynamic principles must, therefore,

enter into the considerations. Assuming the gas to be calorically and
J.

thermally perfect, the equation of state in the nondimensional

variables is

p = PT
	

(3.5)

where y is the adiabatic exponent. Similarly, the nondimensional

temperature is given by

T= y (y-1) 112- (p - 2 1v 	 1 2 )	 (3.6)

The relation between temperature and viscosity is provided by the

Sutherland formula, which in nondimensional form is

(1+51)T3/2
u

	

	 (3.7)
T + S  

Sl
zahere S  =

T
W

S1 1100K



^.. i

Since T is a function of T, hence the system of equations (3.1) - (3.7)

form a closed system of equations provided A 	 A(u) is also prescribed.

In the present formulation we have used the Stokes' condition
aj

3A + 2p - 0	 (3.8)

as the required relation.

'.I
a

-	
The boundary conditions for the system of equations (3.1) - (3.3)

i{

BTat the body surface are:	 0, T	 ^, or (^n)w specified
j 1

Twpw

TW -- Y (Y-1 M
j

j x

f	 p  w (3.9)
3	

pw	
YM^

at free stream infinity:	 ! vj	 1, p = 1, T	 I 3

p
Yrf2

m

3 ^``	 +2	
Y (Y-)1 M:

In (3.9) the subscript w denotes the wall condition. 	 The density pw is

not known in advance but must be obtained by the equations themselves.

Since the governing equations are of parabolic-elliptic type, we

therefore need to specify the outflow boundary conditions. 	 In place of

 specifying the derivative conditions, we have used the complete

solution of the Euler Equations to specify the downstream boundary

condition with the stipulation that at the outer downstream boundary

the effect of viscosity is negligible.

19 .!
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3.2, Transformation of the Equations

The governing equations (3.1) -- (3.3) are now transformed to a

general coordinate system 91 (1 = 1,2) by the method of tensor analysis

(Appendix A). using the summation convention on repeated indices, and

introducing the new dependent variables

o ° +— P s P m *Ig— P, D J = ,rg— P, E _ /g—Y	 (3.14)

the equations are

ZICT

at + 
ai (avi )	 0	 (3.1.1)

ac

a (QVi} + 
a 

(avivj ) + ri ovjuk = — a ('gij)at	
agi	

3k	
ati

- P rijk + { a (x	 ij
jk g 	)39 1

+ a ^ + r k (^ g + D^ }	 (3.1.2)

aE + a {(E + P)vi} = s 
a 

(^ vi) + c 
a 

Cum gi3 
DT }
	 (3.13)

at	
ag e'	

ati.	 0 a^i	 DO



T.

T

In Eqs. (3.10) - (3.14), the superscript indices denote the

contravariant components, while a comma denotes the covariant

differentiation, i.e.,
4

vii	

+ Jl	 v (3.15)

4

where rjk is the Christoffel symbol.

Equations (3.11) - (3,13) are app licable both to two and three

space dimensions.	 In two dimensions, writing for brevity
+

Al a v, 	 us v2 = v

E A	 ou, Ba ov, H = 6(u) 2 , Zd = a (v) 2 , N = rruv, (3.16)

a•. (E+P)u, R	 (E+P)v
I

the equations become of the form

t	 - acr + aA	 LB	 0 (3.17}
at	 a4	 an

- aA ,^ LB + 8N + r i H + 2r 	 N + r i ^	 9
at	 ag	 an	 11	 12	 22

(3.18)
ti

aB + aN + 21-4 + r2 H + 2r2 N + r2 M
8t

(3.19)
E

i	 i. aC	 an	 11	 12	 22 #

,.` +^^.
an

(3. 20)at

{ The expanded form of various terms appearing in Equations (3.17) -
1	

=':a

(3.20) are given in Appendix A. h

The boundary conditions for Equations (3.17) - (3.20) are at the

+ body surface:	 u	 v	 0, T = Tw, or (an}w 
specified

,. .: t.

E ^
	 Tw ow

s...

•.:: w Y(Y-1)Me i 

P	 (Y-1) E

21



The local Mach Number M  is given by

where

components of the velocity vector v are

U ux + vxn

v=rye+vyn 0

at free stream: irfinity: u yn1r , v } -yV 

a rg E

where a ^ or n subscript implies partial differentiation.

1v^2 
^ll(u) 2 + 2912 u + g22(v)2 	(3.24)

a

and
z

T Y(v-l)Mz { - 2 ^v ^)	 (3.25)

The relations between the local Cartesian and the local contravariant



CHAPTER IV

NUMERICAL SOLUTION Or THE N-S EQUATIONS

4.1. Navier-yokes Algorithmrithm

The Navier-Stokes Equations (3.17) w (3.2(}) can he put in tho

numerical vector form as

aW BF aG

8t+ 
+ Bn +H 0

where
a

A
^m

B

E

B

N
G

M

R

rl H + 2r' N + r' M - B
11	 12	 22

H	 r2 H + 2r22 N + r2 bE -
11

23



,t	

We now discretize Eq. ( 4.1 } by a fully implicit difference

approximation. The time derivative is approximated by a first--order

.''	 bach.-lard difference at u+l, where n is the time step of size At, while

the spatial derivatives are approximated by central, differences. The

system. of equations are solved by point--SOR, which are
i`

wn+l W w
I,d	 R,,J
n+I(p) + w	 (4.6)»I,J	 ^ 

where W is the relaxation parameter and the superscript (p) denotes

values at the previous iteration. The function R is

n	 n+l (p) of n+1	 n+1
HI,J 'X WI,J - t7I,3	 - 2 (?I+1,3 - 9I--I,3

+Gn+l - Gn+ 1 I - (dt) Hn+l'9 I,J+I	 1,3-1	 I,J (4.7)

where the values of w in r, G and H are those which are the most recent

values available from the previous iteration. Fully expanded forms of

(4.7) are given in Appendix D.

4.2. n--Derivatives on the Gut

To find the TI-derivatives on the cut, we refer to Figure 4. The

point I of the physical plane (Figure 3) transforms to the location



.s qq

x.	
F

For a scalar ^, the first 11-derivatives are
5

( af) I 	 ,1	 Cf (ILC ,2) "' f(	 a2))Lc	 ^rxc ;

(af) lf(	 ,2) - f	 2
IUC

.^

Thus
k

4 to) of
ILC,1	 {^)C^1	 (4.8)

_ `

i
d

Similarly, the sec!-";Id 'n-derivatives are
s

. (8'12'ILC. - s 
f(ILC 2 ) ° 2f(ILC,I) + f(IUC,2)	 (4.7)

(82f)

8r,2 	tC=^	
f (IUC, 2) _ 2f (IUC,1) + f (IL C , 2)	 (4.10)

f

^ But fis a scalar, so that
}

f	 f

,S

i

i

f (TLC' 1) - f (IUC , I)
s

{

3

'
hence both (4.9)	 and	 4.Ifl '(	 ) represent the same value.

To find the n-derivatives of a directional quantitp u on the cut,

!
we need the value of u at the fictitious point.	 Since in the physical. #	 {^

i_ plane u in the lowerrected art of the cut is directed Opposite to that on the
upper part of the cut, hence

k

au
	

, 1	 2 [u(ILC,2) - (-u(I	 .2))]
tan)

(aR)I

s uc 

'I

The same holds for v, x, 	 TI, y	 and pJ i

Based on the p
receding analysis it is easy to show that either for

a scalar 
function f or a vector function v the derivatives across the

cut are continuous.

25
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4.3.	 Calculation of Llal,	 Density
j

1=The wall density is calculated by evaluating each term of the

continuity equation (3.17) at the body surface. 	 Denoting by J=1 the

'	 body surface, we have }

as 
n+1 BB

 n+l

Using a three-point forward difference approximation for the right hand

side, we obtain

n+1	 n	 At	 n+1	 n+1o	 a	 -	 (4B	 - B	 )	 (4.12)

j.

I,2	 T,3

;here Bz+i - 0. -^
J!
d

Though Eq. (4.12) is fully implicit, nevertheless its use at the
i

trailing edge point always produces unrealistic density values. 	 To =	 €

circumvent this difficulty, Eq. (4.12) was used at all points of the 'I

body except at the trailing edge point where an explicit scheme based -.

on the leap-frog method was used: a'

n	 n-
au	 aB
at	

-- t )
a n

.-

E

T,l

YF

+1on- Qn--1

-	
n	 n

(B I,2 -• BI,[#)2At	 2

where "0" is a fictitious point. 	 Using a second order extrapolation in

space and time, we get

Bn	 = 2$n-1 - Bn-2
j

I,0	 I,1	 I,2
;

Thus the wall density is obtained by the expression ^:`: f.=

on^-1 = o
it	 - At (Bn	

+ Bn-2}	 (4.13)
.:

-0	 Ae

3
the
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4.4. Nonlinear Instability

In the solution of compressible flow equations, several types of

nonlinear instabilities are encountered. Among these, the most dominant

is due to the difference approximation of the convective derivative.

These instabilities can be avoided by introducing some dissipation in

the difference approximation of the differential equation being solved.

In this context, McCormack [10) has used a fourth--order damping term

for his explicit schemes. Boris and Brook [11] have developed a flux-

corrected transport (FCT) technique which is quite efficient for use

in the continuity equation;. Vliegenthart [7] and Harten and Zwas [12]

have used "Shuman Filtering" to supress the convective instabilities.

In the present research both the FCT of Ref. [11] and the Shuman

Filtering of Ref. [7] have been trued. Though the Shuman Filter adds

more dissipation than desired, particularly near the shock, it always

produced wiggle--free solutions for all regions of the flow field. The

application of Shuman Filter amounts to replacing the flow variable
r

Wi,j' by -,j 
T
	 in 4.7, where

w n = (1/8) [wn	 + wn	 + w'"	 + w n	 + 4 ran ]	 (4.14)

This scheme was used on all the four primary flow variables in the

form of alVg—, A/r, B/ Ai and E/F. After Equation (4.14) was applied

to these quantities the original dependent variables of the N-S

Equations were recovered by multiplying each of the filtered variables	 I
i,

by the 3acobian, r. This filtering technique was carried out on the

converged solution that was obtained at the and of 5 time steps, each

time step (At) being 0.01. The frequency of application of the Shuman

Filter had to be determined by trial and error.

27
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4.5.	 Downstream Boundary Conditions
r	 ;!

`^- For the solution of the parabolic -elliptic system of Equations

i (3.17) -- (3 . 20), beside the boundary conditions at the body surface and .,

r ,l at the upstream free boundary (Eqs. 3 . 22)), it is also necessary to

specify a proper set of conditions at the downstream boundary. 	 To
{

t obtain these conditions, the downstream boundary was placed at a

sufficient distance where the viscous dissipation is negligibly small

and the complete Euler's Equations were solved on the entire down-
:r

stream boundary.	 The computer program has been structured in such a

way that it soaves both the Navier-Stokes and Euler's Equations with

;i

r each iteration.

The Euler Equations that were solved on the downstream boundary, J

at each iteration, are:
1-

YI

aA + BH+ aN
+[r1 R +2r1N+ r1 N]

at	 a	 an	 11	 12	 22

;'.^-

.:

= (1/g)[gl2 an - 922 ag] + (P/9)[922(r1l + r22)

^

- g 	 (r 1	 + r2 )]	 (4.16)
_	 12	 22

s

1 BB
+aM	 arNj + [r2 

H + 2r12N + r2p]
1 F ^]

at	
+

= (1/g)[g	 LPg	 ate] + (P/g)[g	
( .r1	 + rz)

12 a	 -	 11 an	 11	 12	 22

_ g12 (r I	 + r^2 )]	 (4.17)

F	 _ BE 
+ R + aR - U	 (4.18)
ag	 ens at

1
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The finite-differencing of these equations was carried out by

C ;i

three--point forward-differencing in the 	 direction on the	 = 1

' coordinate and by three-point backward-differencing in the	 direction

on the	 _	 coordinate.	 Central, differences were used for the n
max E

derivatives. E

4.6.	 Coordinate Contraction Near a Shock

The capability of attracting the coordinate lines to other pre--

designated coordinate lines or grid points exists at present and

through the application of this technique to blunt body flows with ^	 ^,

strong shocks an effort was made to concentrate in, and define, the

region of the shock.	 The magnitude of concentration is controlled i	 ,?

{ by the factors B^ and E^ defined in Eq. (2.12). 	 These coordinate

control factors were expressed as functions of the local density
I
f	 1

gradients across the shock as shown in Eq. (2.15). 	 The equations for

the generation of the coordinate system (Eqs. 	 (2.9), (2.10), using

coordinate control, were solved, as well as the Navier-Stokes I	 ,a^

Equations, when a quasi steady-state has been reached. 	 This process ; 3

was repeated after a pre-assigned number of time steps.	 Thus the

si coordinate system was refined in the region of the shock and moved

with it.	 This measure reduced the need of having a very refined mesh

' in the entire computational domain by providing refinement only in

the region through which the shock happened to be passing at any

given time.	 However, it must be noted that this refinement near the Q

shock was achieved at the expense of the accuracy near the wall where

a finer mesh is always needed to resolve the boundary layer.

a^
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CHAPTER V

COMPUTATIONAL PROCEDURE AND RESULTS

5.1. Computational Procedure

The first step in the numerical solution of the transformed N-S

Equations is the determination of the computational domain so that the

appropriate boundary conditions may be prescribed around it. In the -

present case of super-sonic flow, the flow field remains unperturbed

upstream of the bow shock wave; and the computational domain is limited

upstream by a boundary located at a short distance ahead of the bow

shock. The "stand-off" distance of this detached shock, for a given

free stream Mach Number, is estimated using empirical equations L131.

On the upstream boundary the uaiform flour conditions are used as

boundary conditions. Particular care had to be taken to ensure that

the bow shock did not cut across any segment of this upstream boundary.

On the downstream boundary the boundary conditions varied with time

and were determined by solving the Euler's Equations (cf. Chapter IV).

The computational domain and the profile of the body in it having

been determined, the next step was the numerical generation of the

coordinate system which has already been described. The cartesian

coordinates of each of the mesh points in the entire computational

domain having been determined and stored, the coefficients that occur

in the Navier--Stokes Equaitons due to transforming them into general

curvilinear coordinates could now be calculated and stored in a file.

The actual solution of the N-S Equations now starts with an

assumed initial guess of the solution for the entire computational

domain. These initial conditions need not necessarily be physically

30
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realistic and when they are not, the transient solution has no physical

meaning.	 In the present case the initial conditions chosen for the

whole flow field were the uniform flow conditions that were prescribed

on the upstream boundary. 	 It was however found that this could not be

' done if the free stream Mach Number was very high, or if the isothermal
:'t

j.

temperature condition prescribed on the body was far different from the

^ free stream value. 	 The finite-difference scheme chosen was the S.O.R.
_S	

-	 4

which is an implicit scheme.	 The value of the optimum acceleration

k # parameter for all the equations, i.e., continuity, momentum and energy,

was determined, by trial, to be 0.9. 	 In approximating the convective

derivatives of these equations, the average of the product (A.O.P.)

I ^; finite-difference scheme rather than the product of the average (P.O.A.)

proved fruitful, even though it is generally considered that a non-linear

t [ instability can result in regions of flow reversal when the average of "i

+
k

^. the product scheme is used. [[[
f

The problem of the treatment of boundary conditions at an imperme-

able wall in viscous compressible flows reduces to that of the

calculation of the pressure or of the density. 	 In this research the

i wall density was calculated from the continuity equation written at

ta..

the wall.	 Peyret and Viviand [4 j report that such a technique is of
A

7
delicate use and may lead to strong oscillations or even to divergence

if no artificial viscosity term is added to the continuity equation;

and that, in particular, in the case of separated flows negative values

of the density may be obtained. 	 This, in fact, was what happened at
x:

the trailing--edge poinc using the continuity equation.	 This problem

was overcome by using an explicit discretization based on the leap-frog :`:-`

scheme, only at the trailing edge (cf. Eq. 4.13).
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j;
la general it was found that at a given time-step iterative con-

vergence to the tolerance of 10-6 occurred in about 6 iterations.

While carrying out these iterations the downstream boundary conditions
1	 a

varied with every iteration.	 Progress in time was made by increasing k

the time by a At of . 01 at the end of each time step. 	 The problem ;:>

of wiggles was overcome by applying the Shumann filter at the end of

' every 5 time steps.	 Provision was made in the computer program to

store the solution obtained at the end of any desired time step in

a file; and the ability to read back from this storage file and to

restart the program where it last left off was also incorporated.

The computer program also locates and calculates the maximum change

that occurs in a typical flow variable, such as density, along every j

constant line that passes through the region of the shock.	 Thus

at the end of any pre-designated time step the location of the shock

► and the change - in the density across it is automatically recorded. ^.s

1
This information is used again if necessary in the generation of a,

`

a

new coordinate system wherein the coordinate attraction technique is
 {	 7^^

used to refine the mesh in the immediate vicinity of the shock. r
i

4
On an average it took 0.525 minutes of computer time (on a UNIVAC

1108) to achieve iterative convergence at each time step. 	 The stand-

off distance of the bow shock became quite constant after about 320

time steps , each increment in the characteristic time-step being equal

to .01.	 All the cases were, however, run up to 400 time steps and

the total computer time requirement to achieve this "steady-state"
i

solution was about 2 hours and 30 minutes.
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A reduction in the time-interval At should normally .lead to more

accurate results. The use of a filter, such as the Shuman filter,

however, increases the dissipation with decreasing time-interval At.

For the case of the clyinder, with a time-step of 0.005 the pressure

distribution was generally found to be higher, particularly in the

vicinity of the 90° point, i.e., the top of the cylinder. The use of

the Flux Corrected 'Transport Filter was not quite satisfactory as it

introduced too littwa dissipation, as opposed to the Shuman Falter

which introduced too much. In fact, the Shuman Filter introduced so

much artificial viscosity that it overshadowed the effect of a

reduction in the free stream Reynolds Dumber. For the same At of

0.005 a reduction of Re from 100,000 to 10,000 made no difference to

the solution. In general it was found that an increase in Reynolds

Number required a smaller time-increment At.
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5.2.	 Discussion of Results

The numerical solution of the complete Navier-Stokes Equations for

a super-sonic flow was obtained for the flow about a two-dimensional

circular cylinder. 	 The uniform flow conditions used in the computations

00	 M

For these free stream conditions the coefficient of viscosity works out

to be 11*	 1.13154 x 10-5 kg/m-sec and the density p* 	 3.11593 x 10-

kaW.	 The ratio of the specific heats was assumed to be -f = 1.40.

All calculations presented in this report have been performed for the

isothermal wall temperature T 	 of 556'K.	 The diameter of the circular

cylinder was 2R*	0.3048m.	 The Knudsen Number for a perfect gas is

defined by the expression i-y7Tf (M /Re,.), which for the above free

stream conditions is 6.821529 x 10-

The graphical results presented correspond to the steady state

solutions at a characteristic time of 3.20, with the exception of the

Mach contour plots which are presented at two different periods of

time so as to give an insight into the formation and progress of the

bow shock wave as the solution of the N-S Equations advances in time

towards a steady state.

Figure 5 shows the physical field, which constituted the

computational domain and Figure 6 represents the transformed &-q field

used in the numerical computations. 	 In this transformed field the body

extends from	 9 to	 31 on the lower side.	 The upstream boundary

transforms to the line on the top while the two vertical sides

represent	 the downstream boundary.	 A fairly compact field with 19

lines in the &-direction and 35 lines in the n-direction was used.
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Even so the computer program required 62K of core capacity on ? UNIVAC

1100 series computer. As the n-line spacing was already sparse to

begin with, the scope for mesh refinement in the region of the shock

was very much restricted. In Figure 7 the concentration of the n--lines

in the region of the shock is exhibited.

Figures 8 and 9 are the Mach contour plots at the characteristic

times of 0.8 and 3.2 and depict the progression of the bow shock wave

from the body to its steady state stand-off distance. The Mach contour

interval is 0.1. The sonic lines between the bow shock and the body,

in which region the flow is wholly sub-sonic, are indicated in Figure

9. It can he seen from this figure that aft of the body too, a sub-

sonic region exists which extends up to a distance of about 2 times the

diameter of the cylinder from its center. Behind this sub-sonic region,

the flow again is super-sonic. In the field shown in Figure 5, the

computational domain downstream of the body was limited by a semi-

circle of radius 2.5 and the boundary conditions on this exit plane,

as mentioned in Sect. 4.5, were established by solving the Euler's

Equations on it. Since the downstream boundary is Located beyond the

sub-sonic region and wholly in a super-sonic field of flow the use of

the Euler's Equations is thus seen to be perfectly valid and accurate.

In Figure 5 it can be noticed that the upstream boundary of the field

starts and ends vertically above and below the cllinder respectively.

This was dictated by the need of having to prescribe the free stream

conditions at least up to those points. Figure 10 shows the Mach

contours at time 3.2 for the field with mesh refinement.

Figures 11 through 18 depict the variation of density, pressure,

temperature and velocity from the front stagnation point of the cylinder
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state. In the physical field the front stagnation point is located at

x = - 0.5 and the upstream boundary, on the line of symmetry, at

x = - 1.25. The absolute values of x are indicated in the plots.

Figure 11 is the density distribution without mesh refinement, while

12 is the density variation with mesh refinement in the shock region.

While the trend of density, pressure, temperature and velocity distri-

butions seems satisfactory, the shock stand-off distance is more than

what the ideal theories of Refs. [13] and [15] predict. This effect is

due to the introduction of numerical dissipative terms 9 necessitated

by the need to damp out wiggles. The disturbance of the smooth

variation of the n--lines brought about by the mesh refinement seems

to have given rise to the oscillations in the density, pressure,

temperature and velocity profiles depicted in Figures 12, 14, 16, and

18 respectively. Considering the coordinate system to be independent

of time could also have contributed to these oscillations.

t Figure 19 shows the variation of the coefficient of pressure (C) j
P.

along the upper half of the cylinder from the front stagnation point to R...-

the trailing edge, while in Figure 20,C 	 is plotted for the field with
P

€.

mesh refinement. _'

j Figures 21 and 22 show the distribution of wall pressures from 00

to 180° normalized with the stagnation value without and with mesh

' refinement respectively. 	 The mesh refinement, mild as it is, has not

made any appreciable change in the pressure distribution on top of the

cylinder as seen from Figures 20 and 22.	 In Figure 23 the results

s	 plotted in Figure 21 are compared with the experimental results quoted
F

j in Ref. [5] up to the 90° point. 	 It is seen that the numerical f

i
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solution of the compressible K-S Equations, for the free stream

conditions considered, yields results which are quite in agreement with

those obtained by experiments.

Figures 24 and 25 show the computational domain and the pressure

distribution on a cylinder with a fairing for M. = 4.6 and Re = 10.

It is noticed that the pressure increases as we move closer to the 90°

point, when compared with the results for the cylinder without a

fairing.
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CHAPTER VI

CONCLUSIONS

6.1.	 In general, in any numerical computational work, the finer the

mesh system the more realistic the solution is e 	 , par-y	 expected to be  ;.^

titularly in regions where large gradients are encountered. 	 This fact ,	 =,

was amply made clear in the present research where it was found that

as the intensify of the n--line spacing around the cylinder was increased

the pressure distribution on it progressively approached the experi-

mental results.

6.2.	 It is also generally agreed upon that for any given intensity of

the coordinate line spacing the farther the free stream boundary can be

located from the body, the better the solution would be - subject to

the limitations of computer time and storage. 	 In the present investi-

gation this factor was even more crucial as the bow shock tended to cut r

across the upstream boundary on which the free stream conditions were

3

prescribed.	 Hence the upstream boundary was located as far upstream ?+
-	

a

as we could and as parallel to the bow shock as possible, without

compromising too much on the n-line spacing around the body. d

5.3.	 The influence of the downstream flow conditions on the resultant

flow field about a body in super-sonic flow seems to be a controversial
^	 s

topic.	 In this research for the same number of mesh points (39 x 35)

'	 various fields were considered in which the distance of the downstream

boundary from the body varied, which in effect, varied the t- -line q

spacing aft of the body. 	 The best results were obtained for the

boundary location that resulted in a finer g--line spacing, thus

conclusively proving that downstream flow conditions do affect the

38
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numerical solution even in high Mach Number flows.	 This point is
#-	 y

discussed in detail by Roache	 6 ],

6.4.	 The nearness of the downstream boundary to the body is not too °".

detrimental so long as it is placed beyond the wake region aft of the
f	 .j

body in which viscous effects do 	 in which the flow ispredominate and i
,r

sub-sonic.	 The downstream boundary being located entirely in. a super-
=	 a

i
-	 ^ t

sonic flow field, the Euler Equations may be used to establish accu-

rately the downstream conditions.
r

6.5.	 The wall density, except at the trailing edge, was calculated

from the continuity equation written at the wall, using three-point a{

forward difference approximations. 	 However at the trailing edge, or

the rear stagnation point, an explicit discretization of the continuity

equation based on the leap-frog scheme proved beneficial in overcoming

the negative densities that were otherwise occurring there. 	 The same

scheme when applied to the rest of the body, however, drove the wall

r

densities down progressively, until negative values appeared in the

neighborhood of the leading edge.

6.6.	 Generally it is considered that a non-linear instability can
^ 	

t

result b	 using the average of the product (A.O.P.) scheme inY	 g	 g	 p

approximating the convective derivatives, particularly in regions of t

flow reversal.	 In this research however, the A.O.P. scheme seemed to t

result in oscillations that were detrimental to the solution and thus t

the product of the average scheme was used. t	 ',

6.7.	 Normally we would expect a better solution by refining the mesh

in the region of the shock where very high gradients of the flow vari-

ables exist.	 In the present work mesh refinement in the shock region 3
a .r

39

1	 .1
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caused oscillations to build up quite rapidly there, while the pressure

distribution on the body itself remained unaffected. While no definite

conclusions can be made at this stage, it is probable that the follow-

ing factors caused the wiggles to appear in spite of the Shumann Filter.

(a) The n-line spacing in the computational domain was barely suf-

ficient to start with; and the subsequent attraction of the n-lines

into the region of the shock only caused a coarser mesh on either side

of the shock.

(b) Abrupt variations in the coordinate line spacing are not conductive

to good results. It is possible that the mesh refinement that was

attempted could have caused such uneven p-line spacing.

(c) The solution could also be extremely sensitive to perturbations

caused by the propagation of the shock by however small a distance,

even though the mesh refinement was attempted at an almost steady--state

stage of the solution.

To sum up the work done, the numerical solution of the full. N--S

Equations for viscous compressible flows with a detached bow shock

ahead of a taro-dimensional circular cylinder has been obtained. The

results agree quite well with experiment. Besides quite a steady state

solution was obtained in a very short characteristic time. Before a

comparison of the efficiency of the method can be made in relation to

any other, the following points should be kept in mind. The compu-

tational domain was small; 39 x 35 mesh points in all, iterative

convergence was obtained to a tolerance of 10-6 for all variables at

each time step (lit = .01), in 6 iterations on an average. The total

computer time required to achieve a steady state solution on an UNIVAC Y
lSSSS

.i.

1

40	 {



t	

-i	

3

1100 series computer, inclusive of the time required to generate the i

numerical curvilinear coordinate system, the coefficients of the N--S

Equations, etc., is about 3 hours. A larger computational domain and 	 1$

a finer mesh wi.i3 no doubt yield a better solution. The range of Mac2,.

Numbers and Reynolds Numbers for which this scheme is valid is yet to

F	 be tested. Nevertheless, judgi;ag from the results obtained, it is

believed that we are one more step ahead in using Computational Fluid

';.;	 Dynamics as a standard aerodynamic technique. 	 z
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APPENDIX A

This Appendix summarizes the basic rules of tensor calculus,

[161 used is transforming Eqs. (3.1) - (3.3), and the expanded form of

the pertinent terms which appear in Eqs. (3.17) - (3.20). In all the

formulae given below, repeated indices imply summation.

Lex xi be the Cartesian coordinates and ^ i the general curvilinear

coordinates. Then the metric coefficients are

	

axk axk	
(A-l)

j agi gi

	

9 1 = 
a i DO	 (A-2)
axk 

axk

	

gikgik = &1
	 (A-3)

	

g = det (gij)	 (A-4)

a{xl,x2,x3)

3 = F s	 (A-S)
a(E1,t2,gl)

The element of length ds is given by

(ds) 2 = 6 
i 

dxi dxj

= 9i3 d9i d9j	(A-G)
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x^	 `'far	 :^}}

	

l	 . a

which is symmetric in J,k. Contracting the i and j indices, we have

1	 ag # ..:	 3

rkr w 2g air 	 (A-S)	 I	 ?

Covariant Derivative; 	 F

i	 a
	i 	 av	 i x

	

v
	 (A-9) ,k	 ask -t- I'	 vkr 

Divergence of a Vector:
'^	 t

divv = 
1 a {^ vi)	 (A-10)	 Y`i

_ F9 a	
I

"	 Divergence of a Tensor yielding Contravariant Components; j

(div 
T) i = 

g ask (
3^ Tik) + 

rig 
Trs	 (A-11)

Laplacian of a Scalar ^:

a2^ = Z ai 
(F 

gik 
—a1̀ ^)	 (A-12)

3g a^	 a^

The transformation of Eqs. (3.1) - (3.3) is now direct. Using

contravarian.t components, Eq. (3.1) becomes

ap + 1 a 
(Prg vi) = 0	 (A-13)at r agi

Equation (3.2) becomes

at (Pvi) +

	

	 ak (T T ik) + r'^ ,o rs ` 
0	 (A-14)

3g ag

where i = 1,2 for two dimensions.

Equation (3.3) becomes	 y	 ^'.,

BY

	

T +	 aai (P
3g bi) - 0	 (A-15)

g

The expanded form of these equations are Eqs. (3.11) - (3.13).

i.'
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(g12 an - g22 ap) + g (g22 (rI	 + r^2 } E	 E

` g12 (r32 + 
r22 } } + 

E 
(g22 at - g12 Vin}

t	 :'__

}

+	 (aDll + aDl2 
+ r i	 D11 + 2r 1 	 D12 + ri D22a	 a n 	 12	 22	 ) (A-16} {

!	 =-

(g	
a^	 ap	 2g	 12 at - g11 arl ) + g {g11 (r12 + r22)

- g12 (r11 + r12 ) } +^ (g11 an - g12 a )

aD12	
aD22+e ( 

at	
+

an	
}. r^i ij ll .,^.. 2rZ2 D12 + r22 D22) (A-17)

wol

^' =	 {a	 (^ vi) + as (^ v 2 }

oa	
dg	

22 a^ - 612 all  }
.`

:I

a	 u	 aT	 aT+ «Q an {
	(sll an - 912 

a7 (A-18) l
Defining

G1^ - 9	 3g (A-19)

the terms D11 , D12 ,	, V 1 	 V2, etc., are

D 11 = 2	
1u[G

22 u	 ` G12 un + (G22 r11 - G12 r12)u
.

=.`'a

+ (G22 r22 - G12 r2'2)V3 (A-20)

is
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82xr 
= r  ax  - 

r  
3x  

axi

axe' a7xm	
z  

ax	
iJ 

axz ax

A,

(B-1)	 t
t

{

1

APPENDIX B

EQUATION FOR XMIERICAL COORDINATE GENERATION

As in Appendix A, we shall denote the Cartesian coordinates as

xi (the index i serving as a label only, having no tensorial signif-

icance) and the curvilinear coordinates either as xi , or xi , or C-

It was mentioned in Section 2 that we need formulae in which the

Cartesian coordinates xi are treated as dependent variables, while the

curvilinear coordinates ^i are treated as independent variables. To

achieve this goal, we shall use some formulae from general tensor

calculus. In all the expressions given below, the repeated indices

imply summation.

Formula for the Second Derivative:

Let xi and x^ be two general coordinate systems. The formula for

the second derivative [16] is

Z -

where riand ' 
are the Christoffel symbols in the x i and xl coordi-

jk

nate systems respectively. (Refer to Eq. (A-7) for definition). Since

we are considering the transformation between a Cartesian and a

icurvilinear system, hence either x or xr is a Cartesian system.

If x  is a Cartesian system, then I'r. A 0. Writing xr = x andij	 r

we have
a2x	 ax

a £ 2 

m = FQm 3EPP	
(h-2)

which is the formula for the second derivative of any Cartesian 	 z';

coordinate with respect to the curvilinear coordinates,

69
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Next, if xi is a Cartesian system, then r im = 0. Writing xi = xi
1

and x
i
 = ^

i , we have

a. z	 - rr ai a3	 (B-3)ax ax	 ij a	 ax x
m	 £ m

=i
Sj	 I

F.

which is the formula for the second derivative of any curvilinear

coordinate with respect to the Cartesian coordinates.

The use of Eqs. (B-2) and (B-3) along with the equations

i	 ax

aJ =gip 
Y	

($-4)axz 	 alp

axr a&n	
n

at  ax
 
	 p	 (B-5^ 4 

yields a series of useful equations.
n

Inner multiplication of Eq. (B-2) witha
x
 and use of Eq. (B--5)
r

yields
rr - air a 2 xs

i3	
ax  at  gi

Using Eq. (B-4) in (B-7), we have

ax	 a2x
rr	 =
i3

grt	 s	 s
aft ac i at

(B-7)

Introducing Eq.	 (B-4) in Eq. (B-3), we have

a2 ,r = ,r	 i	
axe a x- ,	 pax 	 ax i1 g	 g^q a 
Ep 

a c
(B-8)

Another fora of (B--8) can be obtained by using (B-7),which is

2 r 32x 	 ax	 ax	 ax
s	 Q	 m

ax	 ax	 = — 
grt

Q	 m

gip g^q	 y ^

a	 acj a^	 atp ae
(E'-9)

It must be noted that the right hand sides of Eqs.	 (B-7) - (B-9) have

differentiations with respect to ^ , as desired.
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Setting I = m in Eq. (B-9), using Eqs, (A-1) and (A-3), and summing

over the index m, we get

V2 r	 - Bret 9i j axs	 a xg

(B-10)

a&t

In two dimensions, writing <}

& 1 4 E, C2 	 n, x1 ' x, x2 ' y tB--i)
y

I
and using

g11^ 
822/S^ 

812
' - 912/8, 822	 $1118

{8-12)

(which are a consequence of Eq. (A-3)), we have
!!i

Q2E ° [(922 Y&& - 2912 y in + 811 Ynn)xn }

- (g
22 

x
- 

2g
12 

x
^n 

+ g
11 

x 
nn 

)Y 
n 

1/g3/2 (B-^13)

f . V

V2n	 [(822 XE& - 2912 xcn + 911 xnn)yC

I	 t.

- (S	 Y22	 ct
- 2g	 Y	 + g	 Y	 )x 1/83/2

12	 &n	 11	 nn

where E

g s 911 922 - (gl2)2
(B-15)

f^

+^Similarly, using (B-3) and (B-4), we easily obtain

C^ = Irr	 x	 y	 - rr
11	 n	 n	 12

{x	 Y	 + x	 Y ) + Fr 	x^ Y $/g&	 n	 n	 E	 22
(8-16)

E

where E l	 and E2 = n.
tE

The Laplacian of a scalar function f(Fi) is obtained as div (grad
r^

i€
^j

011̂2f o __ a	 ik	 of
(
g
 g	 ) (B-17)

j

dg a i 	 ask' `-
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(t) -	 = - 1 (ix^ + jcoast.n }cost.	 r
22

(B-19)	

r^
r

^ =coast. - (U97S + vggq) (B-23)

r	 I	 ^	 f	 r	 r	 '	 ^	
kr

i

:I

which in two dimensions has the form

B2f = ((g f - 2gI2 
f +gl f )

22 ^^	 ^.	 ^n	 1 nn
E	 r

+ (2g12 'I2 - 922 ril — 911 '2'2 )f

E

+ (2g r2	 g rz 9 - g r2 )f ] /g	 (B-18)	 i

12 12 - 22 1s	 3.1 22 Ti

Unit Tangent and normal Vectors:
a

In the generation of coordinates we have taken clocnvise traverse

along the body contour as positive. Denoting the unit tangent and	 +	
i

{	 normal vectors as t and n respectively, and k the constant unit vector

normal to the plane of the curve, the vectors (t, n, k) are assumed to

form a right-handed system. The unit tangent and normal vectors for

the C = const. and n - const. cur ,res are

(^ ) n = coast. 
= 1
^ 

(ixC + 3 y )

111

()

	

 coast.	
1 

(iyn - 3xn)^ =	
s

F922

	

(La) n = rJr',ot .	 FBI, (- iyg + IXO

(B-2a)

(B-21)

(B-22)

where i and J are unit vectors along x and y respectively. The re-

solved parts of the velocity vector along the cur ,.es C = coast. and

coast. are



 ^	 .. ^	 ^,	 _^	
^	 ^	 ^	

E	

^	 1	 ^	 S	 ^	 ; 
	 k ma'''r _	 4	 ^	 E	 ^,.	 }	 i

^'	
(•t)	

coast.	 f	 (ug11 	 vg12)	
(B-24)	 j.

gll

(v.n)^___	 (g-2y)
s const.	 U

} -	 g22

(tF•11)^	 CC3Ii8t.-^- v	 (E-26)
^'	 gll

where u and v are the contravariant components of the velocity vector

v, which are related to the Cartesian components through Eq. (3.26).

a

	

1 ^	 J

1

r

S

1
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APPENDIX C

FINITE-DIFFERENCE APPROMATiON OF THE N-S EQUATIONS

This Appendix gives the details of the discretization of the

N-S Equations, Eq. (4.1), by a fully implicit difference approximation.

The time derivatives are approximated by first-order backward differ-

ences, while the spatial derivatives are approximated by central 	 I

3f?

differences. The resulting -system of finite-difference equations are
u	 'M

solved by the S.O.R. method.. In what follows below the quantities at

r	 the previous time step are denoted by an overhead bar. Also AC

and An do not occur in these equations as they both equal 1.

Finite-di.fferencing of equation (3.17):

(aij )* = oi,J - (At/2) [(Ai.+l,i - A1-.;,,j)

+ (Bi, 3+1 - Bi,,F-1 ) ]	 (C-1)

In the S.Q.R. scheme (C-1) is used as follows:

ai,J = (I-w) c ilip + w(oi'j ) *	(C-2)

in Equation (C--2) the superscript p denotes that the quantity is

from the previous iteration. The second term on the R.H.S. of Equation

(C-2) marked by an asterik is a provisional term defined by Equation

(C-1), which is recovered from (C-2) for w = 1. w = 0 indicates that

!	 no progress is being made in iterative convergence, which is a trivial



r 
1	 {	

aNr

r^	 s

i

l
The finite-differencing of Equations (3-18) through (3.20) are 	 }

carried out in a similar fashion:.
r 	 -

_	 -	 -4+	 (Ai^J 	 AisJ	 (At/2) [(Bi+l,j	 Hi-1,3)

a—
	+ (Ni,J+l	 i,J-1))

-» At [ r7
1M 

+ 2r'
2 ii + r22	

'
M - 0 1 i J	 (C-3)

{
 ft

Ai 
s 
J -- (1-w) Ai p + w 

(Ai> J
) 	 (C-4)

s^ 

(Bi' J} 
= Big J — (At/2) [ (Nx+Y,.^ — Ni—1 , J)	 i

+ (Mi,i+l - mi,J-l))

— at[r11 + 2r12N + r2ZM — ^li,j	
(c-5)

Bid = {1-w) Bi, p + w(Bi9J 	 (C-6)

(Ei,j) - 
Ei,J - (At/2) [(Qi+1,J - Q9-1,J)

+ (Ei,J+l - Ei,J-1))

- AtT
i,J	

(C-7)

Ei,J = (1-w) Ei,J p + w(Ei,j ) *	(C-8)

The terms 0, ^ and `1' that occur in Equations (C-3), (C-5) and

(C-7) are defined by Equations (A-16), (A-17) and (A-18),repectively.

The finite-differencing of these equations is carried out next.

S	 -
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Certain combinations of Christoffels and other terms that occur

in groups frequently have been abbreviated as follows:

DA= ^(G22(r' + ri2) .. G1z(r12 +12	 22FIi,a

DB = 
[G22r11 - G12r12i,1

DC 
= [G22 r11 - GI2r12Ii-1,j

I	 IDD = [G
22`
	 r'DD

DE = IG22rII2 - G12rI22^i-1,j

DF =G22r11 + Gllr12 -	
1

G12(r11 + r12) Ii,j

DG = (G22 r11 + Gllr12 - G12 (rI + r12)Ii,J--I

DH = [G22 r12 + G11r22 - G12 (r12 + r
2
22)]i,J+l

DI = FG22 r12 + Gilr22 - G12 (r12 + r22)Ii,j-1

2	 2D3 = [G
11 - G12r11Ii,j

DK = IG	
1	 1

22r12 - G12r22Ii,3

DL = 
[G22r12 + G11r22 - G12 (r1 1) + r22)Ii,3

DM = fG11rz22 - 
G12 r?_2 Ii,]

DN = [G12 (ri + r2 )/^Ii,j

Do = [G22r1I + G11r12 - G12 (r' 
+ r2

22r

DP = [G
22 r12 + Gll r22 -
	 r. 1 +r 2

+ r22)Ii+l,J
	 s
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	DQ = [G r2 + G r l	 G (r z + r2 )] _`22 12	 11 22	 ^2 12	 22	 ] , j
I	 '

DR = [G r2 — G r2 ].:..,11 12	 12 ll i, j+1
.r i

	

2	 2D5 -- [G11 r12 — G12rllji,j-1.

DT - 
[G11r22 - G12r12]i,j+1

	

1	 i

	

2	 2DU - 
[G11r22 - G12 r12 i,j-1

i

With these abbreviations the finite-difference approximation of
j

Equation (A-16) takes the following shape.

i, j	 12	 i,j	 i, j+l	 1>j -1
1

(G22/2 Vg) 
i, 
j (pi+l, j - pi—1,j ) + (pi , j )DA

+ e(G22/2) 1,j [(Xk,j + hi+l,j )(ui+l,j - ui,j)

(Xi, j + Ai-l, j )(ui , j - ui-1, j)I
	

4

+ e(G22/4) [Ai+l,j (Vi+l,j+l - vi+l,j-1)

	

f 	 ^	 i

f8•

- )L
i-l,j (vi-1,j+1 - vi-1,j-1)]

+ £ (132212) [((r11
 +r 2 2) au)

i+l,j - ((r11 +r
2

2
 ) Xu)i_l,jj

+ E(G22/2) [((r^
2 
+ r22 )av)

i+1,j - ((r^2 + r22) Xv)i-1,j1

- e(G
l2 /4) [;k i, j+l (ui+l, j+l - ui-1,j+1)

- Aisj-1 (ui+l,j-1 - ui-1,j-1)l

- e ( 1312 /2) [ 
(Ai ,j + Ai , j+1) (vi ,j+l — vi , j )

- e(G12/2) [((r l + r22) AU) i^j+1 - ((rl + F 2 ) Au)i ,j_lI

1j
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f
1	 i	 f	 a

E
i {

,

4t

3

- E(G	 /2)	 [((F 1 	 + F2 )AV)	 ((F1	 '}' F2 )AV)	 ]
12	 12	 22	 i, j+l —	 12	 22	 i, j-1

9

f	
t

22 i, j 	22 i+1,j	 i+l,j	 i-,j i

}- -- ((llG22 ) i, 
j + (uG22 ) i-7 , j) (ui,j - ui-1, j) ] r

(E/2 ) [ (uG
12 ) i+l, j (ui+!. j+l	 ui+l, j-l) 4 ;

1

- (liG	 )	 (u	 - u	 ) ]12 i-1, j	 i--1, j+1	 i-1, j-1 3

+ F- [DB(pu) i+l, j - DG (Pu) i-1, j ] R.I

+ E[DD(Uv)
i+7,j " DB(Pv)i_1,j]

i

f

:r
+ (El2)[((1iG11)i,j + (tiGll)i,j

+1)(ui,j+l _ ui,j)

((vo jl) i, j + (liGll ) i, j-1) 
(ui ,j - 

ui, j-1) ]

+ (E/4) [ (1iG22 ) i, j+l (vi+l, j+1 - vi-1, j+1 ) -?

(uG22 ) i, j-]	 (vi+1, j-1 - vi^-1, j-1) ] i
'

}
12 i, j+l 	 i+l, j+1	 i 1, j+1

i

- (uG	 )	 (u	 -	 )
12 k,j-1	 i+l,j -1	 i-1,j-1

l ` - (e/ 2 )	 [ (( uG	 )	 + OG	 )	 ) (v	 )12 i,j	 12 i,j+l	 i+l,j
P

`1
j, i

- ((-'G12)i1j + (kG12) ilj _1)(vi,j	 vi,j_1)]

• 
(E/2) 

[DB(Ilu)i,j+l - DG(pu)i,j-1]
E`

-l• 
(E/2) [DH(liv)i,j+l - DiOV)i,j-1!

• e i1 
[(ui+1,j - ui-l a •) - (ui , j+l - ui , j

-l)]DB	
-§► 	 '



^	 I	 I
i

+ 
Epl ,j(°:.+1sj — Vi—1,j)DD

1	 1— 
eui,j(visj-i^l — vi,j`1 ) (r12GZ2 — r22GI1]i,j

+ 2e(uu)isj f(r11)111 
DB + (r12)isj DF + (r22)i,j DJI

+ 2e(pv)isj [r11)i, j DID + (ri2)i, j DL + (r22 ) i ^ j DM)

(G12/^) i,j (p i+l,j — pi—1 ,j)

(Gll/F) i, j (pi ,j+l — pi,j-1) + p i, j DN

+ (e/4) 
(G1I ) i, j [ Ai, j+l (u3+Z, j+Z — ui—Z, jl-Z)

- 
Ai,j -1 (ui+l, j—Z - ui-1,j—Z)

,1

+ (E/2
) (Gll)i,j HAi , j + A i, j+1) (vi , j+l — viyj)

(Ai ,j + Ai , j -1) (vi,j — vi,j-1)

+ ((r11 + r2
2 ) AU)

i, j+Z — ^% 11 + r22)Au}i.,j-1

+ ((r12 + I'22
)Av)

i,j+l 	 ((r12 + r22 } Av
}i,j

—ll

— (E/2)(G12 ) i ,j I(Ai,j + A i+Z, j )(ui+Z ,j — ui=j)

— (Ai , j + Ai—l,j )(ui,j — u:L—1,j)I

— (e/4)(G
12 ) i 1 j [A i+l,j (°i+Z, j+l — Vi+l,j -1)

— A
i-1,j (vi—1,j+Z — °i—l,j-1)]
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YY
	 t	 P

	

ì 	 r

(E/2) (G12 ) ig j C ((rl1 + r2 )au):.+1,J

((P11 + P12)Au) i-i lj - ((r12 + r
2-
2
 )AV)

(`r12 + 
r22) au)i-1, j

+ (e/4) [(uG11) i+l,j (ui+l li+l - ui+1,j-1)

- (,'Gll) i-1, j (ui-1, j+1 ` ui-1, j -1) I

+ (E/2) [((-pG22)11i + (UG22) i+l,j )(vi+l,7 - vi, J)

-w ((PG22)i,j + (uG22 ) i--l, j )(vi,j - vi-1,j)

- ((PGl` ) i,j + (UG12 ) i+l,j ) (ui+l,j _ ui,j)

+ ((VG12 ) i,j + OG12 ) i-l,j )(ui
3
,j - 

ui-1,j)I

- (s/4) t(uG12 ) i+l,j (vi+l,j+l ` vi+z,j-1)

- (JjG12 ) 1-1, j (vi--1,j+1 - vi-Z, j--1)

+ ( e /2) t bu) i+1, j DF - (pu) i-1, j DO

+ (uv) i+llj DP - (uv)i-1,j DQ1

+ e[t(1^G11) i_j + (^`G11)i,j+1)(vi,j+l _ vi,j)

-- ( (uGII ) i, j + (PG ll ) i, j-1 ) (vi1i - vi,j-1) ]

- (e/2) [ (PGl2 ) i., j+l (vi+l, j+l - vi-1, j+l)

(uG12 ) i,j-1 (vi+l,j-1 - vi-l,j-1)
1
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u	 a

+ E [ (uu)	 +1 DR
	 (pu)	

DS1!!!

^r

(uv) 	 DT - (uv)1^j-1 
DU]	

W
i	 1

s

+ e i, j (ui+1, j - ui-1, j ) (r11^22 ) i, j - (r12G12 ) i, j }

+ (u.	 — u	 )DJ
i, j+1	 i j-1

+ (v	 - v	 )((r
2 	 2G ) 	 (r G )	 )	 `_

i+1, j	 i--1,j	 12 22 i,j	 22 12 i, j
2	 - 2

a, j+1 	 i,j-1 	 22 11 i,j	 12 12 i,j

-`i
+ 2s(uu)	 [ (r2 )	 DB + (r2 )	 DF + {r2 7	 DS]ii,j	 11 i, j 	 12 ,j	 22 i9j

+ 2E ( pv) .	 [ (r2 }	 Dx + (r2 ) .	 DL + (r2 }	 mil	 (C-10)
11 i,j	 12 ^, j 	22 i,j

T	 - s[ (Fv l )	 - (^v l ) .	 + (Tv2) i
	

- (rv2)i	 ]i, j	 +l, j	 z-? , j 	,j+1 

..	 + (a /2 ) [ ((pG	 .	 + OG	 .	 )(T.	 - T .)a	 22) x,3	 22) ^.+l,j	 z+^.,j	 1^J

-- MG22 ) i9j + 
(uG22 ) i--1, j )(Ti,j - Ti-1,j)]

- 
(ao/4)[(uG12 ) i+1,j (Ti+1,j+l - Ti+l,j-1)

- (uG12 ) 1-1,j (Ti-1l j+1 - Ti-1,j-1)]

+ 
(a 012)t((uGll)i,j + (uG11 ) i, j+1)(Ti,j+1 - 1i,j)

- ((uG11 ) x, j + (uGll ) i ,j-1) (Ti ,j - T, , j wl ) ]

- (a0/4) [ UG12 ) i, j+l (Ti+1, j+1 - Tai.-1, j +1)

- (uG12 ) 1,j-1 (Ti+1,j-1	 Ti-l,j -1)]
(C-11)
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APPMIx-D

The non-dimensionalization of the N-S Equations is given in many

standard text books. The non-dimensionalization of the other equations

such as the Sutherland viscosity law, the thermodynamic equations of

state, etc., are given in this Appendix.

Even in the range of super-sonic Mach Numbers, m < 6 in air, the

temperature rise in the gaseous stream is high enough to force us to

take into account the effect of temperature on the properties of the

gas, in particular, on its viscosity. The kinematic viscosity of most

gases, and of air among them, increases considerably as the temperature

is increased. The temperature dependence of viscosity p(T) must be

obtained from experiments. The Sutherland viscosity law is:

u* = Cj(T*)1.5/(T* + S * )]	 (D-1)

where C and 5 1 are constants and for air have the values C = 2.27 x 10- 8

and S '̂  = 110 °K. Dividing Equation (D-1) by the corresponding ex-

pression for free stream conditions, we get:

1.5	 ti
( P. = (T /T* )	 L(T* + S ) / (T + S*)]CO

s
f	 or in nondimensional terms

u = 1.5T 	
(1 + 51)/(T + S1 )	 (D-2)

where S1 = S*/T*

^x

The nondimensional equation of state is obtained as follows: 	 `.

since p = p (cp - cv)T	 (D-3) 'i

is
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CO
*z ) 

+ Jv12
/21

_ [(TTmcp/y Um2 ) + JyJ2/21

^d
F	 '^

i

S	 0

6

9

(Y/P) = [(c 
v

T* /U*2 )  + +V j 2/2I

Y

1I .

ii
a .;

^I

I

P	 -j

Plk /P *UW 	v	 p= P (Cp -- c) (T*/U*2) (C /C

= P (Yo - 1) CPT' / (Yo *2 )

= P (Yo - 1) CPT*T/ (YoU*2)

= P (Yo - 1) h,.T / (YoUCO

= P (Yo - 1) T/ (70 (Yo - 1)MI-)

i.e., the nondimensional equation of state is:

p = PT/Yo 2	 (D-4)

Nondimensionalization of the equation for temperature, now

Y = P* e* + (1 /2)P*1V*1 2 , thus

T = T*/PmU 2 + P[(e*/Um2 ) + iV1 2/21, or

_ [ (T/Yo (Yo - Z)M2 ) + JV1 2 12, or

T = Yo(Yo _ X)M2 [Tlp) - IVJ 2 /21	 (D-5)

where JVi 2 = gi Vy

and V^ are the contravariant components, u and v, of V. Thus

1y1
2  g11u2 + 2g12uv + 

g22°2	(D-6)	 i
l

tf

i?
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a

The local Mach Number, which was used in plotting the Mach

contours, is obtained, as follows:



Y
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