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ABSTRACT

Krishna Devarayalu, Doctor of Philosophy, 1978

Major: Engineering, Department of Aerophysics and Aerospace Engineering
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Equations for Super-Sonic Flows with Strong
Shocks

Directed by: Dr. Z, U. A. Warsi

Pages in Dissertation: 86 Words in Abstract: 405
ABSTRACT

The numerical solutiom of the fFull Navier-Stokes Equations for
viscous flows with high Mach numbers and a strong detached bow shock
is obtained. Two dimensional flows around (a) a circular cylinder, and
(b) a circular cylinder with an aft-body in the form of a fairing, have
been considered. The solution of the compressible N.S. Equations was
accomplished by the method of finite differences. An implicit scheme
of solution, the 5.0.R., was used with the optimum acceleration parame-
ters determined by trial and error. The tensor notation was used in
writing the N-S5 Equations transformed into general curvilipear coordi-
nates. The coordinate system used is a general non-orthogonal
curvilinear system with coordinate lines coincident with all boundaries.
This coordinate system is numericelly generated. The computational
domain is limited upstream by a boundary located at a short distance
ahead of the bow shock. Ti.e shock has been treated as a sharp but
continucus transition zome. (Shock capturing method.) The boundary
conditions at this upstream boundary are the uniform flow conditioms.

The Euler equations were solved on the exit plane to establish the
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dovmstream boundary conditions. The capability of attracting the

coordinate lines to other pre-designated lines and, or, points exists.

This technique was applied to blunt body flows with strong-~shock to
concentrate in and define the region of the shock. The amount of
concentration was controlled by the factors “attraction amplitude'" and
"exponential decay" which were expressed as functlons of the local

| density gradient across the shock. The equations for the genmeration of
the coordinate system (using coordinate control) were solved, followed
; by the solution of the N.S. Equations, at the end of a set of given

E number of time steps. This process was repeated for different sets;

thus the coordinate system concentrated in the shock region and moved

* with the shock. "Wiggles", by far constituted the one mgjor problem
that needed to be overcome. These oscillations that were encountered
had no physical meaning and gave rise to quantities such as negative
temperatures, which ultimately caused the computational program to
break down. It was found that the application of certain dissipative

finite-difference schemes damped these oscillations. The Shuman Filter,

in particular, proved the most effective. The results are obtained for
a Mach No. of 4.6 and a2 Reynolds No. of 10,000, and are compared with
the experimental results available for these free streamconditions of

flow around a circular cylinder,

-




P de i { N S - T o e AT vt Bl feT v MPETDI s G S
TABLE OF CONTENTS
ACKNOWLEDGEMENT . v o o« = « = = s s = s s « s« & » & o
AB ST RACT . - - - - - L -’ - L] - - [ ] L - [ ] - L) - L] L] L]
L I ST OF SYI‘IBOL S - - - L] L] L] L ] L ] - a . - . . - - - . -
LIST OF FIGURES . . . . . . c e e e o= . e s
CHAPTER
I. INTRODUCTION & ¢ o o o o o o o« & s 2 s + s a &«

II.

IIIL.

v.

V.

VI.

NUMERICAL GENERATION OF CURVILINEAR COORDINATES . . .
THE NAVIER-STOKES EQUATIONS . . .
NUMERICAL SOLUTION OF THE N-S EQUATIONS . . « . . . &
COMPUTATIONAL PROCEDURE

CONCLUSIONS o + ¢ o « « ¢ « s o ¢ o & 2 s s s s &« &« »

AND RESULTS « ¢ 4 v v 4 o o« »

APPENDIX~-A
APPENDIX-B
APPENDIX-C
APPENDIX-D

BIBLIOGRAPHY

FIGURES . . .

= ¥ ® o & ¥ 8 * ¥ . + ®= & & s & s 0°o @ .
» ® & = a2 & & = * . = s = = s w = s & @
* v @ - 8 @ . = - . = s ® = ° = = »
s + s s = = = = @ - [ S N D I R R Y R R )
@ & & 8 & ® 8 4 2 s & & & " 2 * 8 ° 2 s " 2
+ # ® a2 & & 8 8 3 =2 a2 = = ® * + % ¥ & ® @

vii

viidi

xii

17
23
30
28
42

e A

o

ot gl g g

A el R




LIST OF SYMBOLS
a = Local Speed of Sound
A = gu {Dependent Variable)
Ak = Amplitude Factor for n-Line Attraction
Aﬁ = Amplitude Factor for E-Line Attraction
B = gv (Dependent Variable)
Bg = Amplitude Factor for n-Point Attraction
Bi = Amplitude Factor for £~Point Attraction
c; = Specific Heat at Constant Pressure (Dimensional)
Cp = Pressure Coefficient
d = Deformation Tensor
Dk = Decay Factor for n-Line Attraction
Dé = Decay Factor for E~Line Attraction
pH =/gad, i=1,2,3=1,2
e = Non~dimensional Specific Internal Energy
E = Vg ¥ (Dependent Variable)
EQ = Decay Factor for n-Point Attraction
Ei = Decay Factor for £-Point Attraction
£ = Scalar Function (Surrogate)
o3 = Det (gij)
gij = Covariant Components of the Metric Tensor
gij = Contravariant Components of the Metric Tenmsor
€ = gy,/7e
H = g(u)?
i,3,.-- = Subscripts In Index Notation

viii




=2

1,7
TMAX, JMAX
Tp1e T2

e *ic

'

[}

1

i

Idem Tensorj Equal to Gij when Referred to Cartesian
Coordinates and 844 OF gl} when Referred to Curvilinear
Coordinates

Integers
Maximum Values of I and J Used
Values of I where the Cut Meets the Body

Integers Representing I Values on the Upper and Lower
Parts of the Cut Respectively, Fig. 5

Jacobian where Stated
Conductivity (Dimensional)
Adivy

Knudsen Number

Number of Points Involved im Attraction Along the E-
Direction

a(v)?2

Local Mach Number

Free Stream Mach Humber
Unit Normal Vector
Number of n-Lines Involved in n-Line Attraction
ouv

Nondimensional Pressure
/s p

Prandtl Number

(E+P)u

(E+P)v

20 *V*R¥

o &N

o , Free Stream Reynolds Number
He

Nose Radius (Dimensional)




Ty : .

ﬂ;..f ‘ij"‘ ‘ l . Lﬁ - i o -t - kl...“.‘_'. fj .‘.;:JEI_:,.T"J '.'L.,,'A',:f.g,.‘ ;::;.1‘.‘, w,'::l_.:'." ik ':‘;,’:,;:ﬁ :.1 .ﬁ_l_.."., :FE_ LA ,:_:'_7‘:.3»:1':;'.:.‘.:.:;'_4:'::»_;.‘4“‘ 22 ':;-gt:;‘f_:iii:’.‘__'.i,‘,"_—i—r ! — _i. e " :

Sl = Sutherland's Coustant
sgn = Sign Function
t = Unit Tangent Vector
T = T*/T: » Nondimensional Temperature
u = vl, Contravariant Velocity Component
| v = v, Contravariant Velocity Component
i u,v = Cartesian Velocity Components
vi = Contravariant Componsnts
vy = fovariant Components
v = y*lvj, Nondimensional Velocity Vector
vfj = Covariant Derivative
(x,y) = Nondimensional Cartesian Coordinates
i X, = Cartesian Coordinates Cxl =X, Xy = v)
a = Nondimensional Constant, Eq. (3.4)
I’;'k = Christoffel Symbols
Y = cglci, Adiabatic Exponent
é E.n = Transformed Coordinate System
E Ei = @General Curvilinear Coordinate System, (El =g, £E2 = )
Ek,nk = Values of £ and n for Varyinmg k, Eq. (2.11)
¥ = Total Energy
P = p*/p:, Nondimensional Density
o = ﬁgp(Dependent Variable)
G = Btress Tensor
M = u*lu:, Nondimensional Viscosity
A = A*/u:, Nondimensional Bulk Viscoszity} also a Surrogate
Variable where Stated
T = Tensor

—re AT a St s e o A S SRR SR i 92 LEtoeTe e
R P B B B .



ﬁij

Operators:
div

grad
¢ )

Subscripts:

i")

E,n

W
13
53

Superscripts:

e

*

i3

= llRé

= Vorticity; alsc as Acceleration Parameter where Stated

= Kronecker-9§

Divergence

L]

Gradient

]

Transpose

Denotes Vector

i

Partial Differentiation

Free Stream Value

H

Wall Value

i

= Qovariant Tensor

]

Covariant Derivative

= Covariant Vector; when used with x or
Tensorial Significance

= Stagnation Value

= Denotes a Tensor
= Denotes a Dimensional Quantity
= Contravariant Tensor

= Contravariant Vector

£, then no

4
.
o
- 1
- 1
"
I
i
- 3 B
SERE
i
3
3

I T Al A Tt WA B f e, R e A
e maae e e e = e b g




LIST OF FIGERES

Figure Page
1. Physical Plane . + « o « o o s o o o = s s o o o o o = « » 42

2. Field Transformation « « « « o « s o o o s « + =« s o o » « &2

3. Grid Points Across a Cut in the Physical Plane . . . . . . &3

4, Grid Points Across a Cut in the Transformed Plane . . . . 43

5. The Computational Domain . . « « o &+ o o o 4 « o o + » » » 44

6. The Transformed Computational Domain . + + . « « « « » . » 45
7. The Computational Domain with Mesh Refinement . . . . . . 46

8. Mach Contours at Time 0.8 . . . & & & & & ¢ o « o o « = . &7

9, Mach Contours at Time 3.2 . . & 4 & & « » = « « =« « » » o« 4B ;F"

10. Mach Contours at Time 3.2 for Field with Mesh Refinement . 49

1i. Density Variation Across the Shock on Stagnation Line . . 50

TS RRER ST NI PRI v

o Tnic: 06 ceal s 0

12. Density Variation Across the Shock for Field with Mesh ;é.
Refinement . . v o « v 4 4 ¢ o « & 4+ o s o 2 o o o« s « o+ 51 i

4 13. Pressure Variation Across the Shock on Stagnation Line . . 52

14. Pressure Variation Across the Shoek for Field with Mesh jé ;fﬁ
Refimement « « o v o & o ¢ ¢ = o o o s o « & » o o « « o « 33 T

15. Temperature Variation Across the Shock on Stagnation
Line - - - . - - - L - Ll L] - - u . - - - - - - - - L] L] - L 5 4

16. Temperature Variation Across the Shock for Field with i
Mesh Refinement . . . 4 ¢ &+ o 4 ¢« ¢ ¢ v ¢ « &+ o o o o « =« 35

17. Velocity Variation Across the Shock on Stagnation Line . . 56

18. Velocity Variation Across the Shock for Field with Mesh
Refinement « « o ¢ « o o o o o 2 o o o = » o s s« o « = « » 57

19, Coefficient of Pressure Distribution on Top of Cylinder . 58

20. Coefficient of Pressure Distribution for Field with Mesh o
Refinement . . . & « ¢« ¢« v ¢ o 4 o o 4 o o 0 s s 0 o 4 . i

Pressure Distribution on Top of Cylinder . + « « + « +. « &




SRR ISR R SN U SO R SAOK FOUNUN SIS NS SR SN SO SUNUIL SUDUL SIS D e S otet et i

Figure Page

22, Pressure Distribution on Top of Cylinder for Field with
Mesh Refinement « + « o o o ¢ o 2 o = s o =« v « o o = o & 61

23. Comparison of Pressure Distribution with Experimental
ReSultS L . L L] - - - * » * L L] - L - - - - - [ ] Ll - - L] * 62

24, Computational Domain for a Cylinder with a Fairing . . . 63

25. Pressure Distribution on Top of Cylinder with a Fairing . 64

xiii

T AR o bbb e T St




R e L,

CHAPTER I

INTRODUCTION

In the accurate numerical prediction of real flows in general,
there remain serious difficulties due to the complexity of thése flows
arising from unsteadiness, turbulence, three-dimensional character,
large variations of flow gradients, ete. The numerical solution of the
full equatilons for viscous flows, i.e., the Navier-Stokes Equations has,
thus, zttracted much attention, to treat fluid flow problems for which
no simplifled model exlsts. Generally it 1s found that the N-§
Equations apply when thehc0ntinuum hypothesis is satisfied; this
condition being satisfied when the Knudsen Number is less than 0.01.
Victoria and Widhopf [ 1] reported that the use of the N-S Equations to
solve hypersonic low Reynolds/high Knudsen Number flow problems, is
valid. They considered the flow about a splhere in a Mach 10 flow at a
free stream Reynolds Number of 152, with & corresponding Knudsen Number
of 0.10. The range of validity of the N~§ Equations does, indeed, seem
to cover most of the aerodynamic praoblems relating to aerenautics and
astronsautics,

The present investigation concerns the numerical solution of the
complete N-5 Equations for viscous flows, with strong shocks, ahead of
a two—dimensiongl arﬁitrary body. The detached bow shock separates
the flow disturﬁed by thé body from the undistrubed flow. Behind the
shock wave there is a sub-sonic region bounded by it, the bady and the
"sonic lines." The flow field outside of this sub~sonic region is again
super-sonic, with the exception of the region of the wake immediately

behind the body. The shape of the bow shock aliead of the body is

R =t
RN N PO PN




influenced by the shape of its leading edge. The numerical solution of
the compressible N-§ Equations in the case of a mixed sub-sonic and

super-sonic flow field as described azbove is a difficult task and cannot

yet be ranked along with the standard theoretical tools currently used
in applied aerodyunamics.
Of the various types of methods in use for the numerical solution

of the N-S Equations, the finite-differenc2 method is perhaps, by far the

most widely used. In the last few years, finite—element methods have
received increasing attention as a substitute to finite-difference
methods in fluid mechanics problems, particularly in the solution of

the incompressible N-S5 Equatioms.

To keep the computing time within reasonable bounds it is important
to minimize the number of mesh points and this usually requires that
the mesh system be taken non—uniform in the physical plane. This can
be achieved by imposing a variable mesh spacing in a given coordinate
system. The mesh system is generally also chosen so as to make the
boundaries of the computational domain, particularly solid walls,
coincide with mesh lines; this considerably simplifies the treatment
of boundary conditions. One of the novel features of the present
research is the use of the body fitted coordinates which are a system
of general curvilinear coordinates, that are numerically generated,
developed by Thompson, et. al., [ 2] and Thames [ 3]. This system of
coordinate generation is quite versatile due to the fact that it allows
the coordinate lines to be coincident with all boundaries of a general

multiply connected reglon including the boundaries formed by the solid

walls of any number of quite arbitrarily shaped bodies. The boundaries

may even be time-dependent. Thus with this procedure the numerical
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solution of the N-S Equations may be obtained on a fixed rectangular
field or the transformed plane, with a square mesh. No interpolation
of the flow wvariables is required regardiess of the shape of the
physical boundaries or the spacing of the curvilinear coordinate lines
in the physical plane.
Once the coordinate system has been chosen, and the choice of a
mesh size is made, various techniques may be made use of to reduce the
| computing time as much as possible for a given numerical scheme. In
‘ an explicit scheme of solution, the local maximum time step depends
strongly on the local mesh size in physiq?l space; if the physical mesh

varies considerably throughout the computational domain, the time step

will be determined by the smallest mesh and will be, in all probability,

very small. It is then practically indispensable to divide the domain

into several regions in each of which a different time step is used so
as to reduce the total number of operations necessary to advance the
solution in time in the entire field - all of which leads to compu-
tational complications and restrictions. Thus it is seen that time step

limitation is the mailn drawback of explicit schemes; however, these

)

g methods have been widely used because of their simplicity and the fact

E that the number of numerical operations at each step is kept to a

% minimum. Another approach which is attracting more attention now is

g the use of implicit schemes which lead to less severe stability con-
ditions or which are unconditionally stable. Roger Peyret and

Henri Viviand [4 ] concluded (in 1975) that "no clear cut conclusion
can be drawn at this time regarding the best type of method - implicit
or explicit.”" However, the fact that an implicit scheme is uncon-

ditionally stable proved irresistable and one such scheme - the S§.0.R. -
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was used in the present work. Also tensor notation was used in writing
the N-S Equations transformed into general curvilinear coordinates as
this measure greatly simplified the overall problem of analytical
development and rendered the method more general. Thus the extension
of the method to three dimensions is now purely formal.

The flow considered being super-sonic about a blunt body, a
detached bow shock exists ahead of the bady, as noted earlier. The
computational domain was limited upstream by a boundary located at a
short distance ahead of the bow shock, treating the shock as a thin
but continuous transition zone. This is the "shock capturing" method.
Tannehill and Holst [ 5] used this approach for low Reynolds Number
flows. However, they found that (as indeed, we too) for high Reynolds
Number flows it was not "practical" to capture the bow shock because of
the numerical difficulties associated with the large gradients at the
bow shock. Instead, they found it more convenient to treat the bow
shock as a discontinuity, across whieh the Rankine-Hugoniot Equations
could be applied, while leaving the boundary layer to be "captured."
This approach is called the "shock-fitting" method and is generally
favored because, the flow being practiecally inviscid in the vicinity
of the shock, the N-S Equations are not really needed to calculate the
shock; but the problems associated with this method are those that arise
due to the necessity of having to couple the inviscid and viscous flow
solutions and thea priori definition of inviscid and viscous regions.
The shock-capturing method was used in this research, not withstanding
the numerical difficulties assoclated with this wethod, because it is
much more convenient to solve the N-S Equations in the entire flow field

when the inviseid flow region is of a small extent. This situation

[T
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exists in the case of bow shocks in high Mach number flows. Now the
thickness Ss of a normal shock wave in real viscous fluids varies as
1/Re for fixed Pr. For high Reynolds Number flows it then becomes
1ikely that Gs < Ax (the mesh size normal to the shock). When this
ocecurs, oscillatlons develop aft of the shock leading to the numerical
difficulties as reported by Tannehill and Holst and a host of other
investigators. If 1/Re = 0 and if the finite~difference method has no
artificial viscosity, then there is no dissipative mechanism by which
the oscllilations may be damped out., Many authors have associated these

spatial oscillations, also called 'wiggles," with non-linearities,

or with linear instabilities in the transient calculation. Roache [6 ]
has however, demonstrated that wiggles are not caused by iterative
instability or non-linearities, but that they simply are a solution

of the finite-difference equation used. In the numerical computation
of flow fields containing shock waves, these oscillations or wiggles
way be damped by the application of dissipative finite-difference
schemes. The concept of introducing an implicit dissipation term by
using a dissipative finite~difference scheme to damp out short wave
oscillations has been used by many researchers. Vliegenthart [7]
reported that these encountered oscillations which have no physical
meaning, can be suppressed by applying Shuman's technique of introducing
dissipation, and that, in certain cases this even appears to remove
nonlinear instabilities as in the case of the computation of a detached
shock in front of a blunt-body. Due to its extreme simplicity and
effectiveness the Shuman TFilter, which is discussed in Chapter IV,

has been used in the present research, to overcome the problem of

wiggles. Unlike other schemes, the Lax-Wendroff, for imstance, the

Pt
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Shumann Filter is not an integral part of the difference approximation.
Lax's scheme, ylelds a shock which is spread out over a large number
of mesh spacings, while the Shumann Filter yields a shock which is
considerably narrower.

The capability of attracting the coordinate lines to other pre-
designated coordinate lines or grid points exists at present, and
through the application of this technique to blunt body flows with
strong shocks, an effort was made to concentrate in, and define, the
region of the shock. The magnitude of concentration is controlled by
the factors "attraction amplitude" and "exponential decay." (These
terms are discussed in Chapter II.) These cooordinate control factors
were expressed as functions of the local density gradient across the
shock., The equations for the generation of the coordinate system,
using coordinate control, were solved, followed by the solution of the
N-5 Equations, at the end of a set of given number of time steps. This
process was repeated for different sets of time steps. Thus the
coordinate system was refined in the region of the shock and moved with
the shock. This measure obviated the need of having a very vefined
mesh in the entire computational domain by providing refinement only in
the region through which the shock happened to be passing at any given
time.

The results presented pertain to a flow about a2 two~dimensional
circular cylinder with a free stream Mach Number of 4.6 and a Reynolds
Number of 10%. A few results for the case of a circular cylinder with
an aft body (fairing) have also been included for comparisons. The

wall pressure, normalized with respect to the stagnation pressure, as

T




reported by Tannehill and Holst [ 5] has been compared with the present

solution for the circular cylinder and the two results are in good

agreement. All the numerical results are discussed in Chapter v.
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CHAPTER II

NUMERICAL GENERATION OF CURVILINEAR COORDINATES

2.1, The Boundary-Fitted Coordinate System

The accurate numerical representation of boundary conditions, be
it the body surface or the infinlty boundary, 1s best accomplished
when the boundary is such that it is coincident with some coordinate
line. Under such circumstances the boundary may be made to pass
through the points of a finite difference grid constructed on the
coerdinate lines. This eliminates the need for any interpolation of
the dependent varisbles between points of the grid. The avoiding of
interpolation is particularly important for boundaries with strong
curvature or slope discontinuities, and for differential systems that
produce large gradlents in the vieinity of the boundaries. Thus the
generation of a curvilinear coordinate system with coordinate lines
coincident with all boundaries is an essential part of a numerical
solution. Extensive use of the metrhod of numerical generation of a
cuxvilinear coordinate system due to Thompson, Thames and Mastin [2 ],
has been made in the present work. The main idea of this method is to
fill the compuiational domain enclosed between the body and the
external boundary with intersecting coordinate lines in the physical
(x,y) space.

Let £ = E(X,y) and n = n{x,y) be two continuously differentiable
functions of the Cartesian coordinates (x,y). Further, let n = n, =
constant be the bedy contour, while n = n_ = constant be the external

boundary contour. The region n, £ 1 £ n, must now be filled by inter-

secting coordinate curves £ = constant and n = constant. Because of
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the closed region under comsideration it 1s natural to specify the

determining differential equations for & and n as elliptic equations

; to be solved under the proper boundary conditions for £ and n at the

body and at the external boundary. Since the simplest elliptic equation

; is the Laplace Equation, we then poss the problem of solving the

!
¥

Laplace Equatlons for £ and n with x and y as independent variables
under the Dirichlet boundary conditions. Let Pl be the curve
defining the body contour n = M and P2 be the curve defining the outer

boundary n = n_ in the xy-plare as shown in Fig.l. The elliptic

boundary wvalue problem is then
VZE = { (2-1)
Vzﬂ =0 (292)
onTy: E=£ (6y), n=n (2.3)
on I,: £ = £ (£5,y), n=n (2.4)

The solutions of Egs. (2.1) and (2.2) under the boundary conditions
(2.3) and (2.4) can conveniently be obtained in those cases when Mo and
n, can be specified by simple analytic methods (such as a circle,
ellipse, etc.). To obtain coordinates for arbitrary shaped bodies, it
iz convenlent to transform the Egs. (2.1) and (2.2) such that x and y
are the dependent while £ and n are the independent variables. This
transformation is more easily performed for either two or three-
dimensional coordinates by the method of tensor analysis and is detailed
in Appendix B. Referring to Egqs. (B-13) and (B-14), we find that
Egs. (2.1) and (2.2) are equivalent to

8yp Xep T 2g12 Xn gy LI 0 (2.5)

B2 Yeg = 281p Yen t By Ypn T O (2.6)
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where the variable subscripts denote partial differentiations and the

gij is the metric tensor defined in Appendices A and B. The boundary
conditions are now
On Tj: x = Fy(§,n ), ¥ = FpEn.) (2.7
*n - =
On rz' X Gl(g'nm)’ y Gz(ﬂmm) (2.8)

where as shown in Fig. 2, Fi and r; are the images of the body and the

external boundary contours in the £n-plane.

The geometrical meaning of the transformed equations (2.5) and
(2.6) is that the bedy and the external boundary contours in the xy-
plane have been magpped on to the £n-plane which is rectangular. In
other words, we can say, that the contours in the xy-plane have been
opened up to form the straight lines n = n, = constant, and n = n_ =
constant in the En-plane. This can be achieved by imagining a cut
connecting the body and the external boundary in the xy-plane as shown
in Fig. 1., such that all functions and their derivatives are con-
tinuous in crossing the cut. Since a cut line is a part of the fleld,
no boundary conditions can be imposed on Pg and Yz of Fig. 2.

The appearance of s and n_ in Egs. (2.7) and (2.8) is now purely
symbolic, denoting the names of the body and of the external boundary
respectively. Given the body and the external boundary contours, we
can always establish the values of x and y either graphically or
analytically for any desired distribution of E-velues. The n-values
can be chosen arbitrarily to form rectangular meshes in the En-plane.

Equations (2.5) and {(2.6) are the basic equations for the
generation of coordinates. To have a control over the spacing of the

£ and n lines, we envisage another general transformation, say from

10
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E,n to §° and n”’. Retaining the £,n notation, the equationé take the

form
g22 xgg - 2512 xgn 3+ gll xnn = ng 'y an | (2.9)
322 ygg.- 2812 ygﬂ + gll Ynn = Pyg + Qyn (2.10)

For details on the above derivations refer to [8]. The same form of
equations are obtained if one starts considering the Poisson Equations
in place of Eqs. (2.1) and (2.2) and inverts tlhe transformation from
x,¥ to §,n as independent variables.

The function P and Q are to some extent arbitrary and can be chosen
in varicus ways to have a desired distribution of coordinates in a given
region., In the present research we have made P and a'to depend on the
density gradients to contract the coordinates im the region of the

shock. The chosen forms of P,Q are [ 9]

o

It
P=g kgl A; sgn (§-§,) exp (—DQIE-Eki)

pr

m
+g §=1 B, sgn (En&z) exp (~EjR)) (2.11)
— n
Q=g L A, sgn (n-nk) exp (-Dkln—nk])
m
+gi By sgn (n-n,) exp (-E,R) (2,12)
where
g =8 By — (8p)% = J° (2.13)
_ _r 32 Y 1/2
Rg = [(g gz) + (ﬂ ng) ] (2'14)

The first terms on the right hand sides of both (2.11) and 2.12) are

used in the line attraction, while the second terms in both equations

11




are used for the point-attraction. Various terms which appear in these
equations have been defined in the "List of Symbols".

In the present research, we have used only the point attraction
term of Eq. (2.12) to concentrate the coordinate lines near the shock.
The amplitude factor is a fumction of the maximum density difference
along each E—liné in the region of the shock. This amplitude factor
Bg thus changes according to the position (£,n) and is defined as

B, = (constant) (pz-pl)/pl (2.15)
where the subscripts 1 and 2 denote the respective values in the front
and behind of that shock which has been computed without coordinate
contraction. The constant appearing in (2.15) is selected by trial
and error and retains the same value for all £ and n positions, that
correspond to the shock location.

The method of numerical coordinate generation offers much freedom
in the orientation of both the & and n coordinates in the physical Xy~
plane. For example, the n = const. lines can be chosen to go round
the body as shown in Fig. 1, or they may not be chosen to form a
complete circuit as shown in Fig, 5. However, a suitable choice has
to be made in advance of computing the coordins“es, because the
resulting configuration of the body segment, the cut lines, or the re-
entrant segments, and the outer boundary segments in the transformed
En-plane depend on this choice. In the present research we have chosen
the coordinate configuration as shown in Fig. 3, in which the froat
outer boundary is a hyperbolic arc and the rear outer boundary is a
circular arc. Figure 6 shows the corresponding segment orientation in

the En-plane. This type of segments orientation requires much care in

12
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the computer programing for both the coordinate generation and for the [ 7;
" nuzmerical solution of the Navier-Stokes Equations. In Section 2.2 the
finite~difference approximations of all the equations have been

discussed.

2.2. Finite Difference Approximation

In this section the finite difference approximations and the

numerical methods used for the solution 2f the elliptic systems, Egs.

{(2.9) - (2.10) is discussed.

Before procaeding with the pertinent method of solution, it is

important to mention that in the method of body-fitted coordinates it
is superfluous to specify the step sizes Af and An, both of which are

equal to 1. If IMAX and JMAX represent integers for the maximum

numbers of £ and n points respectively in a field, then this input and
the desired contraction controlled by the amplitude and decay factors
of Eqs. (2.11) - (2.12) decide the variable mesh sizes to be obtained
by solving the generating system (2.9) - (2.10). This aspect has been
thoroughly discussed in [ 8], Thus the wmain utility of numerically

generated body-fitted coordinates actually lies in the availability of

meshes or nets in the En-plane on which the Navier-Stokes Equations are
to be solved without specifying the step sizes. Fuarther, the vari-
ations both along the £-and n-coordinates, are labeled by the con~
secutive integers in the range 1 § I £ IMAX and 1 £ J 5 JMAX.

The solutions of Eqs. (2.9) - (2.10) have been obtained by the
Gauss-Siedel method with successive over relaxation (SOR) under the _:1€
prescribed boundary values for x and y on the body and the external ffj y

boundary contours, along with the prescribed values of IMAX and JMAX.
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The spatial derivatives are approximated by the central differences

(A {2.16)

1,0 = Qg5 ™ g, 272

A 2 +

,d "~ 2y Ao, (2.17)

where ) is a surrogate variable and I,J denote positions along £ and n
coordinates respectively. Similar expressions are obtained for hn, Ann
and A

En’
The solutions of Egs. (2.9) - (2.10) yield x and y for the whole
flow field as functions of £ and n. This data is then used to genexrate
the derivatives xg, xn, yg, yn, the metrical coefficients gij’ the
determinant g, and the Christoffel symbols P§k.
It was mentioned in Section 2.1. that the orientation of the
coordinates of the form shown in Fig., 5 requires due care in cbtaining
derivatives on the cut line. Referring to the schematic shown in Fig.
3 with the x—-axis oriented along the cut line, let IUC and ILG denote

the integral values of I on the upper and lower parts of the cut

respectively. Thus

ILC + IUC = IMAX + 1 . (2.18)
Equation (2.18) establishes the following correspondence between Lo
and IUC=

ILC IUC
1 Corresponds to TMAX
2 " " IMAR-1
I " " IMAX-T+1
L L1]
IBl IB2 (2.19)

14




where IB]. and IBZ represent the same point of the body reached by the
lower and upper parts of the cut respectively. Obviously
IBZ = (IMAX + 1) ~ IBl .
From (2.19), we conclude that
x(Iucﬁ']) = x(ILG! ) (2'20)
and '
The first derivatives on the lower and upper parts of the cut are
1
(yﬁ)m = y(IL +1,1) = y(I;~1,1)]
=1 -
where 2 £ ILC < I}31 - 1.
(spyg = 7 1e(TpgHsd) - x(lyg D]
) = = [%(Ty02) - %I )]
wue = 2 Fye? Tre
=L - ‘
G = 2 [y (I4ps2) y (100 2)] (2.23)
where
IBZ-!-lsIUCsIHAX—l .
15
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Using (2.21),1n (2.23), we find that
Geedye = = (xpdpg
(yl-;)UC = - (YE)LC = 0
ye = = &)y = 0
(yn)UC = - (}7“)1.G (2.24)

From the definition of I‘;'k given in Eg. (8-6) we find that on the cut

line

Ill = P2

16
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CHAPTER 1II

THE NAVIER-STOKES EQUATIONS

3.1l. Formulation of the Problem

For solving the blunt body problem in general curvilinear coordi-

nate system, we consider the nondimensionalized Navier-Stokes system of

equations In the invariant tensor form. The conservation equations are

Mass Conservation:

38 4 aiv(ey) = 0 (3.1)

Momentum Conservation:

2 oy +divi=0 (3.2)

Energy Conservation:

Y
5t +divh =0 (3.3

where

pyy + pi - €6 \

1
i

0w
i}

(¥+p)y ~ €G+v - agu grad T

HE
L

pe + = o|y|?

fa'¥t

KI +

Qe
)

K=2Adivy
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d = udef v = plgrad v + (grad y)TI

g = :l./R.e

o = e/Pr (y-1ym2

{3.4)
The nondimensionalized equations (3.1) - (3.4) have been obtained

by referring all lengths to the diameter ZR;; velocity vector, density,
viscosity, temperature, enthalpy and pressure to the free stream values
vE, oF, u¥, ¥, h:, and p¥ VEZ respectively. The N-§ Equations (3.1) -
(3.4) by themselves do not give a complete description of the motion of
a compressible fluid because changes in pressure and density cause
temperature variations and thermodynamic principles must, therefore,

enter into the considerations. Assuming the gas to be calorically and

thermally perfect, the equation of state in the nondimensional
variables is
pT

= (3.5)
D M

co

where v is the adigbatic exponent. Similarly, the nondimensional

temperature is given by
1=y & -3 lvl® (3.6)

The relation between temperature and viscosity is provided by the

Sutherland formula, which in nondimensional form is

) (1+Sl)T3l 2

W= s, (3.7
1
*
ther g o
wheve S1 ® S1 = 110°K .
TG)
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Since ¥ is a function of T, hence the system of equations (3.1) - (3.7)
form a closed system of equations provided A = A(u) is also prescribed.
In the present formulation we have used the Stokes' condition

A+ 2u=20 (3.8)

as the required relation.

The boundary conditions for the system of equations (3.1) - (3.3)

at the body surface are: [y[ =0, T= TW, or (%E)w specified

TPy

w  y(-DH

=3
If

o T

ww
at free stream infimity: |v| =1, p=1,T=1 1
Lo
'\(Mi
¥ = % + ——.];——-_
¥ (y-1)M3

In (3.9) the subscript w denotes the wall condition. The density P is
not konown in advance but must be obtained by the equations themselves.
Since the governing egquations are of parabolic-elliptic type, we
therefore need to specify the outflow boundary conditions. In place of
specifying the derivative conditions, we have used the complete
solution of the Euler Equations to specify the dowmstream boundary

condition with the stipulation that at the outer downstream boundary

the effect of viscosity is negligible.
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3.2, Transformation of the Equations

The governing equations (3.1) - (3.3) are now transformed to a

general coordinate system Ei(i = 1,2) by the method of tensor analyszis

(Appendix A). Using the summation convention on repeated indices, and

introducing the new dependent variables
o= Vg e, B=vg p, 0= Vg aM, me Y

the equations are

30 3 i
ot agi
8 , i 2 i 4 1 3k 3 13
— (ov") +— (ov'v') 4+ [, ov'y = = — (Pg™)
at an Ik agj
i
-Pl‘;'kgjk-ﬁ-s{——aj (Rvg gj)

(12

13
+ 2yl (w0
agj j v

-QE+-§E-{(E+P)vi}=s—-‘3—i(J§—ui)+a 2 s g AL,

ot 2E aE 0 agi aaj

where gij is the transformation metric tensor, and

i.,..m
v kel s u(giksjm vgk + vy )V

20
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In Egs. (3.10) -~ (3.14), the superscript indices denote the
contravariant components, while a comma denotes the covariant

differentiation, l.e.,
i

i et L4k
w Oy (3.
vsj agj ij W (3.15)

where r_i“k is the Christoffel symbol.
Equations (3.11) - (3.13) are applicable both to two and three
space dimensions. Tn two dimensions, writing for brevity
gluwg, g2, vi=y, v¥=v
A=mou, B=ov, E=o()? =02, N = ouv, (3.16)
Q =" (E+P)u, R = (EP)v

the equations become of the form

%%+_g%+_g.%g (3.17)
2 -g% + %% +rE+or}, N+ riu e 0 (3.18)
g% " %% + -g% + T2 0 + 212N + T2 = ¢ (3.19)
%+%%+%§_,¢ (3.20)

The expanded form of various terms appearing inm Equations (3.17) -

(3.20) are given in Appendix A,
The boundary conditions for Equatioms (3.17) - (3.20) are at the

_ AT :
body surface: u=v =20, T = TW, or (Bn)w specified

Tw O
E

Yo oy(y-1M2

PW = (Y“I)Ew »
21
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at free stream infinity: u -+ ynl Vg , v+ -yENE

? - /gl

L

£+ a6 X

—t (3.22)
T (v-1)M2 '

where a2 £ or n subscript implies partial differentiation.

The local Mach Number M, is given by

[
M, =1 |v|//T (3.23)
where
IYI2 = gll(u}2 + 2g,uv + gzz(\r)2 (3.24)
and
T = y(y-1)42 €-§- - ']2—' lvi?3 (3.25)

The relations petween the local Cartesian and the local contravariant
components of the veloelty vector v are
Y= uxg + =,
V= vzyg + ¥y e (3.26)
The vorticity w is given by the formula
W o= - (—BE"——""' {3.27)

where vy are the covariant components of v, which are related with the

contyravariant components as

The pressure coefficient is defined as
£ *

ut g,V (3.28)

Ve = Byy 811

P - B, 1
Cp o= 1--—;—-—-—-—- = 2(1) - ﬁg) (3-29)
7 Pa Ve
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CHAPTER IV
NIMERICAL SOLUTION OF TEE N-S EQUATIONS
4.1, Navier-Stokes Algorithm
The Navier-Stokes Equations (3.17) - (3.20) can be put in the
n.uméripal vector form as
| dw OF 3G .
FT T el Sl (4.1)
where
o
A
W= (4.2)
B,
B
A
H
F = (4.3)
N
Q
B
N
G = (4.4)
M
R
1 1 1 -
iy B+ 2T}, N+ T3, M-8
2 2 2 u - .
‘_ ged 12 R+ 20, NHTH M- (4.5)
{ -V
;




We now discretize Eq. (4.1) by a fully implicit difference
épproximation. The time derivative is approximated by a first-order
backward difference at ntl, where n Is the time step of size At, while
the spatial derivatives‘are approximated by central differences. The

system of equations are solved by point-SOR, which are

S L (p)
¥r,g T ¥,y teBpg (4.6)

where w i8 the relaxation parameter and the superscript (p) denotes

values at the previous iteration. The function R is

. n+l(p) _ At onl o+l
Ry, g = ¥i,0 " ¥1,7 3 ey ,5 =~ Ipeg,g
nl ntl mwHl
+ 91 Jo1 ~ G ge1d ~ (8) By g .7

where the values of w in ¥, G and H are those which are the most recent
values available from the previous iteration. Fully expanded forms of

{(4.7) are given in Appendix D.

4.2, n-Derivatives on the Cut

To find the wn-derivatives on the cut, we refer to Figure 4. The
point 1 of the physical plane (Figure 3) transforms to the location
marked x on the transformed plane, while point 2 remains at its original
position relative te the cut. Thus in principle, the function value at
the fictitious point shown under the lower cut must be replaced by
the funetion value at the point 2 on the upper cut. Now two cases

arlse depending on whether the function is a scalar or a veetor,




For a scalar £, the first nderivatives are

(Bf

—

1
1 " 7 L) ~ £,

af 1 '
('5;' Iuc’l = '2" [f(Ichz) - f(ILC’Z)]

Thus
of of '
&) = - () (4.8)
MLy M Lo

Similarly, the second n-derivatives are

a2 Ipgel = f(ILC,2) - Ef(ILc,l) + (L0 2) (4.9)

an? el = £(Iye,2) - 26(1,,1) + £(I; ,2) (4.10)

But f is 3 scalar, so that
f(ILC’l) = f(lucsl)

hence both (4.9) and (4.10) represent the same value.

To find the n-derivatives of a directional quantity u on the cut,

we need the value of u at the fictitious point. Since in the physical

Plane u in the lower part of the cut is directed opposite to that on the
upper part of the cut, hence

Ju 1
(3;1- L ool =3 [u(ILan) - (-u(IUC,2))]

= (&
an IUC,l (4.11)

The same holds for v, e L e and Yn
Based on the preceding analysis it ig easy to show that either for

& scalar function f or a vector function y the derivatives across the

cut are continuous.
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4.3, Calculation of Yall- Density

The wall density is calculated by evaluating each term of the
continuity equation (3.17) at the body surface. Denoting by J=1 the

body surface, we have

n+1 n+1

( ) ( )
11 n'y1

Using a three-point forward difference approximation for the right hand

side, we obtain

ntl = At il n+1
0y 1 = %,1 = 3 By - Bp 3 (4.12)
o1
vhere BY'— = 0,
i,1

Though Bg. (4.12) is fully implicit, nevertheless its use at the
trailing edge point always produces unrealistic demsity wvalues. To
circumvent this difficulty, Eq. (4.12) was used at all points of the
body except at the trailing edge point where an explicit scheme based

on the leap-frog method was used:

Q" L @B
at 1,1 an 1,1
o+l n-1
L1 Ll_ _lgn  _gn )
28t 2 1,2 " F1,0

where "0" is a fictitious point. Using a second order extrapclation in

space and time, we get

n  _ ,.n-l n-2
Br,0= 2811~ Br s

Thus the wall density is obtained by the expression

: - .13
, 91,1 T 91,1 1,2 1,2) (4.13)
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4.4. Nonlinear Instability

" In the solution of compressible flow equations, several types of
nonlinear instabilities are encountered. Among these, the most dominant
is due to the difference approximation of the convective derivative.
These instabilities can be avoided by introducing some dissipation in
the difference approximation of the differential equation being solved.
In this context, McCormack [10} has used a fourth-order damping term
for his explicit sc.hémes. Boris and Brook [11] have developed a fiux-
corrected transport (FCT) technique which is quite efficient for use
in the cohtinuity equation. Vliegenthart [7] and Harten and Zwas [12]
have used "Shuman Filtering" to supress the convective instabilities.

In the present research both the FCT of Ref. [11] and the Shuman
Filtering of Ref. [7] have been tried. Though the Shuman Filter adds
more dissipatiéﬁ than desired, particularly near the shock, it always
produced wiggle-free solutions for all regions of the flow field. The
application of Shuman Filter amounts to replacing the flow variable

‘.'.rg’js bY ";.1’3 = @G;-l,j’ in 4.7’ where

-n _ -n -1 -z -n -n
Vig T (1[8)[wi+l,j + Vi1,3 + ) + Wi4-1 + 4 Wi,j] (4.14)

This scheme was used on all the four primary flow variables in the
form of o/vg, A/Vg, B/Vg and E/Yg. After Equation (4.14) was applied
to these quantities the original dependent variables of the N-S
Equations were recovered by multiplying each of the filtered variables
by the Jacobian, ﬁ; This filtering technique was carried out on the
converged solution that was obtained at the end of 5 time steps, each
time step (At) being 0.01l. The frequency of applicatiou of the Shuman

Filter had to be determined by trial and error.
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4.5. Downstream Boundary Conditions

For the solution of the parabolic-elliptic system of Equations
(3.17) - (3.20), beside the boundary conditions at the body surface and
at the upstream free boundary (Egs. 3.22}), it 1s also necessary to
specify a proper set of conditions at the downstream boundary. To
obtain these conditions, the downstream boundary was placed at a
sufficient distance where the viscous dissipation is negligibly small
and the complete Euler's Equations were solved on the entire down-
stream boundary. The computer program has been structured in such a
way that it solves both the Navier-Stokes and Euler's Equations with
each iteration.

The Euler Equations that were solved on the downstream boundary,

at each iteration, are:

2A
+ 5t + =0 (4.15)
aA o SR 3 N+ [r}y8 + 2rdN + Thou]

BE 12

= (/)8 3= - &y ag] + (2/8) gy, (T1; + Ty)
- 312 (ri + 1-22)] (4.16)

B, W,

2 2
3E + [P H + 2T

2
12N + P M]

= (U/g)eyy 2 ag - 8, an] + @/e) gy (], + T3))

- 1 2
gy, (Tl + 12,)] 4.17)
BE +3‘§~+ R_p (4.18)
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The finite-differencing of these equations was carried out by
three-point forward-differencing in the £ direction on the £ = 1
coordinate and by three-point backward-differencing in the £ direction
on the § = Emax coordinate. Central differences were used for the n

derivatives.

4.6, Coordinate Contraction Near a Shoek

The eapability of attracting the coordinate lines to other pre-
designated coordinate lines or grid points exists at present and
through the application of this technique to blunt body flows with
strong shocks an effort was made to concentrate in, and define, the
region of the shock, The magnitude of concentration is controlled

by the factors B, and EE defined in Eg. (2.12). These coordinate

L
control factors were expressed as functions of the local density
gradients across the shock as shown in Eq. (2.15). The equaticns for
the generatinﬁ of the coordinate system (Eqs. (2.9), (2.10), using
coordinate control, were solved, as well as the Navier-Stokes
Equations, when a quasi steady-state has been reached. This process
was repeated after a2 pre-assigned number of time steps. Thus the
coordinate system was refined im the reglon of the shock and moved
with it. This measure reduced the need of having a very refined mesh
in the entire computational domain by providing refinement only in
the reglon through which the shock happened to be passing at any
given time. However, it must be noted that this refinement near the

shock was achieved at the expense of the accuracy near the wall where

2 finer mesh is always needed to resolve the boundary layer.
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CHAPTER V

COMPUTATIONAL PROCEDURE AND RESULTS

5.1. Computational Procedure

The first step in the numerical solution of the transformed N-S
Equations is the determination of the computational domain so that the
appropriate boundary conditions may be prescribed around it. In the’
present case of super-sonic flow, the flow field remains umperturbed
upstream of the bow shock wave, and the computational domain is limited
upstream by a boundary located at a shért distance ahead of the bow
shock. The "stand-off" distance of this detached shock, for a given
free stream Mach Number, is estimated using empirical equations [13].
On the upstream boundary the uaiform flow conditions are used as
boundary conditions. Particular care had to be taken to ensure that
the bow shock did not cut across any segment of this upstream boundary.
On the downstréam boundary the boundary conditions varied with time
and were determined by solving the Euler's Equations (cf. Chapter IV).

The computational domain and the profile of the body in it having
been determined, the next step was the numerical generation of the
coordinate system which has already been described. The cartesian
coordinates of each of the mesh points in the entire computational
domain having been determined and stored, the coefficients that occur
in the Navier-Stokes Equaitons due to transforming them into general
curvilinear coordinates could now be calculated and stored in a file.

The actual solution of the N-8 Equations now starts with an
assumed initial guess of the sclution for the entire computational

domain, These initial conditions need not necessarily be physically
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realistic and when they are not, the transient solution has no physiecal

meaning. In the present case the initial conditions chosen for the

whole flow field were the uniform flow conditioms that were prescribed
on the upstream boundary. It was however found that this could not be
done if the free stream Mach Number was very high, or if the isothermal

temperature condition prescribed on the body was far different from the

free stream value. The finite-~difference scheme chosen was the S.0.R.
which is an implicit scheme. The value of the optimum acceleration

parameter for all the egquations, i.e., continuity, momentum and energy,

e i e L e

was determined, by Etrial, to be 0.9. In approximating the convective

derivatives of these equations, the average of the product (A.0.P.)
finite-difference scheme rather than the product of the average (P.0.A.)
proved fruitful, even thoughit is generally considered that a non-linear

instability can result in regions of flow reversal when the average of

the product scheme is used.
The problem of the treatment of boundary conditions at an imperme-

able wall in viscous compressible flows reduces to that of the

calculation of the pressure or of the demsity. In this research the
wall density was calculated from the continuity equation written at

the wall. Peyret and Viviand [4 ] report that such a technique is of

delicate use and may lead to strong oscillations or even to divergence

if no artificial viscosity term is added to the continuity equation;
and that, in particular, in the case of separated flows negative values
of the density may be obtained. This, in fact, was what happened at
the trailing-edge poinc using the continuity equation. This problem

was overcome by using an explicit discretization based on the leap-frog

scheme, only at the trailing edge (cf. Eq. 4.13).
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In general it was found that at a given time~step iterative con~
vergence to the tolerance of 10~% gecurred in about 6 iterations.
While carrying out these iterations the downstream boundary conditions
varied with every iteration. Progress in time was made by increasing
the time by a At of .01 at the end of each time step. The problem
of wiggles was overcome by applying the Shumann filter at the end of.
every 5 time steps. Provision was made in the computer program to
store the solution obtained at the end of any desired time step in
a file; and the ability to read back from this storage file and to
restart the program where it last left off was also incorporated.

The computer program alsc locates and calculates the maximum change
that occurs in a typical flow variable, such as density. along every
E£ = constant line that passes through the regilon of the shock. Thus
at the end of any pre-designated time step the location of the shock
and the change.in the density across it is automatically recorded.
This information is used again if necessary in the generation of a
new coordinate system wherein the coordinate attraction technique is
used to refine the mesh in the immediate vicinity of the shock.

On an average it took 0.525 minutes of computer time (om a UNIVAC
1108) to achieve iterative convergence at each time step. The stand-
off distance of the bow shock became quite constant after about 320
time steps, each increment in the characteristic time-step being equal
to .01. All the cases were, however, run up to 400 time steps and
the total computer time requirement to achieve this "steady-state"

solution was about 2 hours and 30 minutes.
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A reduction in the time-interval At should normally lead to more
accurate results. The use of a filter, such as the Shuman filter,
however, dincreases the dissipation with decreasing time-interval At.
?af the case of the clyinder, with a time-step of 0.005 the pressure
distribution was generally found to be higher, particularly in the
vicinity of the 90° point, i.e,, the top of the cylinder. The use of
the Flux Corrected Transport Filter was not quite satisfactory as it
introduced too littls dissipation, as opposed to the Shuman Filter
which introduced too much., In fact, the Shuman Filter introduced so
much artifiecial viscosity that 1t overshadowed the effect of a
reduction in the free stream Reynolds Number. For the same At of
0.005 a reduction of Re from 100,000 to 10,000 made no difference to
the solution. 1In general it was found that an increase in Reynolds

Number required a smaller time-increment At.
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5.2. Discussion of Results

The numerical solution of the complete Navier-Stokes Equations for
a super-sonic flow was obtained for the flow about a two-dimensional
circular cylinder., The uniform flow conditions used in the computations
were M_ = 4.6, Re_ = 10,0005 T¥ = 167°K, p¥* = 14.93 N/M* and P_=0.72.
For these free stream conditions the coefficient of viscosity works out
to be u¥ = 1.13154 x 1075 kg/m-sec and the demsity p¥ = 3.11593 x 10~
kg/ma. The ratio of the specific heats was assumed to be y = 1.40.

All calculations presented in this report have been performed for the
isothermal wall temperature T: of 556°K. The diameter of the circular
cylinder was 2R§ = 0.3048m. The Knudsen Number for a perfect gas is
defined by the expression ¢§;7§-(Mm/Rem), which for the above free
stream conditions is 6.821529 x 107",

The graphical results presented correspond to the steady state
solutions at a characteristic time of 3.20, with the exception of the
Mach contour plots which are presented at two different periods of
time so as to give an insight into the formation and progress of the
bow shock wave as the solution of the N-S Equations advances in time
towards a steady state.

Figure 5 shows the physical field, which constituted the
computational domain and Figure 6 represents the transformed &-n field
used in the numerical computations. In this transformed field the body
extends from £ = 9 to £ = 31 on the lower side. The upstream boundary
transforms to the line on the top while the two vertical sides
represent the downstream boundary. A fairly compact field with 9

lines in the &~direction and 35 lines in the n-direction was used.
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Even so the computer program required 62K of core capacity on 2 UNIVAC
1100 series computer. As the n~line spacing was already sparse to
begin with, the scope for mesh refinemeni in the region of the shock
was very much restricted. In Figure 7 the concentration of the n~lines
in the region of the shock is exhibited.

Figures 8 and 9 are the Mach contour plots at the characteristic

times of 0.8 and 3.2 and depict the progression of the bow shock wave

from the body to its steady state stand-off distance. The Mach contour

interval is 0.1. The sonic lines between the bow shock and the body,

in which region the flow is wholly sub-sonic, are indicated in Figure
9. It car be seen from this figure that aft of the body too, a sub-
sonic region exists which extends up to a distance of about 2 times the

diameter of the cylinder from its center. Behind this sub-sonic region,

the flow again is super-sonic. In the field shown in Figure 5, the
computational domain downstiream of the body was limited by a semi-
circle of radius 2.5 and the boundary conditions on this exift plane,
as mentioned in Sect. 4.5, were established by solving the Euler's
Equations on it. Since the downstream boundary is located beyond the
sub-sonilc region and wholly in a super-sonic field of flow the use of

the Euler's Equations is thus seen to be perfectly valid and accurate.

In Figure 5 it can be noticed that the upstream boundary of the field
starts and ends vertically above and below the clyinder respectively.

This was dictated by the need of having to prescribe the free stream

conditions at least up to those points. Figure 10 shows the Mach

contours at time 3.2 for the field with wmesh refinement.

Figures 11 through 18 depict the variation of density, pressure,

temperature and velocity from the front stagnation point of the cylinder
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to the upstream boundary along the symmetry line (£ = 20) in the steady
state. In the physical field the front stagnration point is located at
x = - 0.5 and the upstream boundary, on the line of symmetry, at

% = - 1.25, The absolute values of x are indicated in the plots.
Figure 11 is the demsity distribution without mesh refinement, while

12 is the density variation with mesh refinement in the shock region.
While the trend of density, pressure, temperature and velocity distri-
butions seems satisfactory, the shock stand-off distance is more than
what the ideal theories of Refs. [13] and [15] predict. This effect is
due to the introduction of numerical dissipative terms, necessitated
by the need to damp out wiggles. The disturbance of the smeooth
variation of the n-lines brought sbout by the mesh refinement seems

to have given rise to the oscillations in the density, pressure,
temperature and velocity profiles depicted in Figures 12, 14, 16, and
18 respectively. Considering the coordinate system to be independent
of time could alsc have contributed to these oscillations.

Figure 19 shows the varilation of the coefficient of pressure (Cp)
along the upper half of the cylinder from the front stagnation point to
the trailing edge, while in Figure 20,CP is plotted for the field with
mesh refinement. -

Figures 21 and 22 show the distribution of wall pressures from 0°
to 180° normalized with the stagnation value without and with mesh
refinement respectively. The mesh refinement, mild as it is, has not
made apny appreciable change in the pressure distribution on top of the
cylinder as seen from Figures 20 apd 22. 1In Figure 23 the results
plotted in Figure 21 are compared with the experimental results quoted

in Ref. [5] up to the 90° point. It is seen that the numerical
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solution of the compressible N8 Equations,; for the free stream

conditions considered, yvields results which are quite in agreement with

those obiained by experiments.

Figures 24 and 25 show the computational domain and the pressure

distribution on a cylinder with a falring for M_ = 4.6 and Re = 10.

It is noticed that the pressure increases as we move closer to the 90°

point, when compared with the results for the cylinder without a

fairing.
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CHAPTER VI

CONCLUSIONS

6.1. In general, in any numerical computational work, the finer the
mesh system the more realistic the solution is expected to be, par-
ticularly in regions where large pradients are encounitered. This faet

was anply made clear in the present research where it was found that

as the intemsity of the n-line spacing around the cylinder was increased
the pressure distribution on it progressively approached the experi~
mental results.

6.2. It is also generally agreed upon that for any glven intensity of
the coordinate line spacing the farther the free stream boundary can be
located from the body, the better the solution would be - subject to
the limitations of computer time and storage. In the present investi-
gation this factor was even more crucial as the bow shock tended to cut
across the upstream boundary on which the free stream conditions were
prescribed. Hence the upstream boundary was located as far upstream
as we could and as parallel to the bow shock as possible, without
compromising too much on the n-line spacing around the body.

6.3, The influence of the downstream flow conditions on the resultant
flow field about a body in super-sonic flow seems to be a coatroversial
topic. In this research for the same number of mesh points (39 x 35)
various filelds were considered in which the distance of the downstream
boundary from the body varied, which in effect, varied the E£-line
spacing aft of the body. The best results were obtained for the
boundary location that resulted in a finer E-line spacing, thus

conclusively proving that downstream flow conditions do affect the




nunerical solution even in‘high Mach Number £lows. This point is
discussed in detail by Roache [ 6 ].

6.4. The nearness of the downstream boundarﬁrtn the body is not too
detrimental so long as it is placed beyond the wake region aft of the
body in which viscous effects do predominate and in which the flow is
sub-sonlec. The downstream boundary being located enitirely in a super—
gonic flow field, the Euler Equations way be used to establish accu-
rately the downstream conditions.

6.5. The wall density, except at the trailing edge, was calculated
from the continulty equation written at the wall, using three-point
forward difference approximations. However at the trailing edge, or
the rear stagnation point, an explicit discretization of the continuity
equation based on the leap-frog scheme proved beneficial in overcoming
the negative densities that were otherwise occurring there. The same
scheme when applied to the rest of the body, however, drove the wall
densities down progressively, until nepative values appeared ia the
neighborhood of the leading edge.

6.6, Generally it is considered that a non-linear instability can
result by using the average of the product (A.0.P.) scheme in
approximating the convective derivatives, particularly in regions of
flow reversal. In this research however, the A.0.P. scheme seemed to
result in oscillations that were detrimental to the solution and thus
the product of the average scheme was used.

6.7. Normally we would expect a better solution by refining the mesh
in the region of the shock where very high gradients of the flow vari-

ables exist. In the present work mesh refinement in the shock region




caused oscillations to build up quite rapidly there, while the pressure
distribution on the body itself remained unaffected. While no definite
conclusions can be made at this stage, it is probable that the follow-
irg factors caused the wiggles ito appear in spite of the Shumann Filter.
(a) The n-line spacing in the computational domain was barely suf-
ficient to start with; and the subsequent attraction of the n-lines
into the region of the shock only caused a coarser mesh on either side
of the shock.
(b) Abrupt variations in the coordinate line spacing are not conductive
to good results. It is possible that the mesh refinement that was
attempted could have caused such uneven n-line spacing.
{c) The solution could also be extremely sensitive to perturbations
caused by the propagation of the shock by however small a distance,
even though the mesh refinement was attempted at an almost steady-state
stage of the solution. ;
To sum up the work done, the numerical solution of the full N-8
Equations for wviscous compressible flows with a detached bow shock
ahead of a two-dimensional circular cylinder has been obtained. The
results agree quite well with experiment. Besides quite a steady state

solution was obtainad in a very short characteristic time. Before a

comparison of the efficiency of the method can be made in relation to

any other, the following points should be kept in mind. The compu-
tational domain was small., 39 x 35 mesh points in all. Iterative

convergence was obtalred to a tolerance of 107 for all variables at

each time step (At = .0l), in 6 iteratioms on an average. The total

computer time required to achieve a steady state solution om an UNIVAC
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1100 series computer, inclusive of the time required to gemerate the

numerical curvilinear cooxdinate system, the coefficients of the N-§

Equations, etc., is about 3 hours. A larger computational domain and

believed that we are one more step 2head in using Computational Fluid

a finer mesh will no doubt yield a better solution. The range of Mach f ¥
Numbers and Reynolds Numbers for which this scheme is valid is yet to : o
be tested. Nevertheless, judgiang from the results obtained, it is 2‘1

‘é

Dynamics as a standard aerodynamic technique. ﬁi-
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Sonic lines

Figure 9. Mach Contours at Time 3.2.
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APPENDIX A

This Appendix semmarizes the basic rules of tensor caleulus,
{16] used in transforming Egs. (3.1) - (3.3), and the expanded form of
the pertinent terms which sppear in Egs. (3.17) - (3.20). 1In all the
formulae given below, repeated indices imply summation.

lex xi be the Cartesian coordinates and Ei the general curvilinear

coordinates. Then the metric coefficients are

ox, 9
I (o)
J 3E 3Ej
gld - _E_ _§_ (A-2)
9% 9%
ik _ &l A-3
85k Gj (A~3)
(R, yXnsX,)
J = /g = i S i< i (A=5)
8(el,E2%,6%)
The element of length ds is given by
2 -
(ds)- = aij dxi dxj
- i 4.3 -
= gy 46 de (a-6)

Based on the above definitions, we collect other formulae from
tensor calculus.

Christoffel symbols:

og og 9g.
i1 18 “Bas Bk Byk -
k=28 R z) (&-7)




B

L

1

S SO S VAU S D SO W DN S S

iy

| N | LTS SUN SO,
st ok s e o g b D R VAL R DTV

which is symmetric in j,k. Contracting the i and j indices, we have

1 3g
ko=
rkr 2g 3g® (A-8)

Covariant Derivative:

& =% -+ Pk‘r v (A-9)

Divergence of a Vector:

div v = —31 /2 v%)

1
— (A-10)
Vg 3¢

Divergence of a Tensor yielding Contravariant Compomnents:

(div 1) = ——EE (/g 1%y 4+ 11 LTS (A-11)
BE, rs

oY |~

Laplacian of a Scalar ¢:

1l 4 3
v2g = 2 o (/g gt 2

I (4-12)
Vg 3¢ 3¢

The transformation of Eqs. (3.1) - (3.3) is now direct. Using

contravariant components, Eq. (3.1) becomes

3 -9 i 2
=+ T (Vg v) = 0

(A-13)
12

oY i

Equation (3.2) becomes

R R R R Al

(A-14)
Va BEk T's
where i = 1,2 for two dimensions.
Equation (3.3) becomes

8y 1 9 — .1
=L (g b)) = 0 (A-15)
ot JE agi

The expanded form of these equations are Eqs. (3.11) - (3.13).
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The terms appearing in Egs. (3.17) - (3.20) are

oP

® (312 -8 3ty g (&2 (Tpy *+ T3y

_ . ) e 5K
81y (T35 + 13,01 +,§ (837 55 ag = 813 3n)

apll  apl2 1 311 1 pl2 1 p22
+g ('—EE— P o— an + rll D + 21‘12 D + 1‘22D ) (A—lﬁ)

ap

P 1 2
¢ = (312 ag T By e tg ey (O, +13)

9K

12 22
4—3(325 ag + 12, pll 4 2r2, p12 + 12, p22) (a-17)

boelyp Ur o) + L (/7 v

ba A (E o I o1

I (855 3¢ o ~ 812 30}

u aT

3 3 3T
*a 5e L;g (817 57 - 85 280! (A-18)

Defining
Gy = 8yy/7e (a-19)
the terms D!, pl2, | | » vl V2] ete., are
11 - _ 1 1
DT 2ulGyy up = 6y up + (6, T, EPRETYL

i
* Gy T35 = Gy TI VI (4-20)
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N .-«-«»'---»»m—i.l_un-—‘[. I O, DU U SOV S e STt Tetotiart TeBukiits W i o R
12 _ -
D I-l[(G + G22 vg) Gy (ug + vn)
2 1 2
+ 1Gyy T§y + 6y Tiy = Gy (T + T
2 1 2 -
+ {G 22 1“12 + Gll 22 12 (rl + T 2)}v] (a~21)
“{ki,‘: 22 - 2 - 2
i b 2;1[G P Ve + (Gll 7y = 69 I'll)u
+Gyy T9p = Gpp TV (4-22)
R =Alu, + v + (P]y + T3)u + (O], + 13,)v] (A-23) 1
1. 1
v: = Ku + "(Gll 622 u -+ GIZ 622 v + u)v.l
2002 2. 1l
+ u{Gl?_ Gy, U+ (Gzz) v}v,l u{Gll G12 u + (GIZ) v v}v’?2 .
.
2 i ‘!,","
- ul(6,,)%u + 6,5 6y, viv? %) (A-24) W f
e
2 o - 20} ) ks
v Rv u{Gll G12 u + (Glz) V}V,l \
- 2 w2
u{(clz) u+ G,y Gy, v u}v’l :
2 1
+ ul(Gy )% + G5 G, viv,
2 —
+ u{G_.L.L (312 u + Gll G22 v + v}\;r’2 (A~25)
-
o
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APPENDIX B

EQUATION FOR NUMERICAL COORDINATE GENERATION

As in Appendix A, we shall denote the Cartesian coordinates as
Xy (the index i sexving as a label only, having no tensorial signif-
icance) and the curvilinear coordiantes either as xi, or Ei, or Ei.

It was mentioned in Section 2 that we need formulae in which the
Cartesian coordinates x; are treated as dependent variables, while the
curvilinear coordinates Ei are treated as independent variables. To
achieve this goal, we shall use some formulae from general temsor
calculus. In all the expressions given below, the repeated indices
imply summation.

Formula for the Second Derivative:

Let xi and X be two general coordinate systems., The formula for

the s.cond derivative [16] is

azxr = TP er - rF axi ax

— . —

T
ot e WP U e (8-1)

where Pi and fi are the Christoffel symbols in the xi and X~ coordi-

jk ik
nate systems respectively. (Refer to Eg. (A-7) for definition). Since
we are considering the transformation between a Cartesian and a
curvilinear system, hence eiiher xi or ii is a Cartesian system.
If x° is a Cartesian system, then f;j = 0. Writing xr = xr and

~i i
x = £, we have

azxr p axr
=7 — (B—Z)
BER agm fm aE'p
which is the formula for the second derivative of any Cartesian

coordinate with respect to the curvilinear coordinates,

RES A e .

P

P B A B AR B, 9 N A %

oo o o e o A 0

RN PRV

g b bt beamt o 2 E

S A I T

R SRR : o D [ SR SRS S ST S |

Sp e S i e

e e ) B

R SIS S SR PN/



&
s

—

r-—-—
i

Next, 1f %* is a Cartesian system, then FEm = 0. Writing o= x

i i
and x~ = £, we have

82t oT aet ped

Bxg axm 1j Bxg me

i

(8-3)

which is the formula for the second derivative of any curvilinear

coordinate with respect to the Cartesian coordinates.

The use of Egs. (B-2) and (B-3) along with the equations

éﬂif = P fﬁﬁi
) agP
oK

r BEn - g%
ng axr P

ylelds a series of useful equations.

ag ™
Inner multiplication of Eq. (B-2) with g%— and use of Eq
r
yields
2
e agr ] xs
1 0x, oL o3

Using Eq. (B-4) in (B-~7), we have

32x

ox
s S

agt agt agd
Introducing Eq. (B-4) in Eq. (B-3), we have

LS O e W™
ax£ 3xm i] 2eP agd

Another form of (B-8) can be obtained by using (B-7),which is

2
azar _ grt ip gjq ? L axs Bxg me

% . :
%y 8%y ag™ agd ag® 2P agd

(8-4)

(8~5)

. {B-5)

(8-6)

(B-7)

(3-8)

(8-9)

It must be noted that the right hand sides of Eqs. (B-7) - (B-9) have

differentiations with respect to El, as desired.
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Laplacian: \kg :
Setting £ = m in Eq. (B-9), using Egs. (A-1) and (A-3), and summing ?%
over the index m, we get i% ":
4
Ik @¢x i
v2gT = - gft 13 _%—_i 5. (B-10) E i
' 3E" ag™ agd ; -
In two dimensions, writing ?
gl =g, E2=n, X, =%, x, =y (B-11) oot
1 2 s
(I
and using i
11, 12 - o 22 o -12
8= Byy/8s 8 81,78, 8% = 8;,/8 (B-12) |
{(which are a consequence of Eg. (A-3)), we have : ;f :
2 u - i
VEE = [(g,, Yee 28,5 Yen * 813 ynn)xn .
- (B, X, = 28, X, + g,y X_)y llg:"/2 (B~13)
22 TEE 12 “&n 11 "nn''n
v2n e [(g,, X.. - 28., K.+ g,; X_)y :
22 TEE 12 "En 11 "an’ g i f
- ¢ 2 + 1/ (B-14) '
22 yEﬁ €12 Yen ¥ 811 Yy xE &
where .
- - 2 -
8 = 8y By = (8y,) (8-15) |
i)
I
Similarly, using (B-3) and (B-4), we easily obtain % .
{
r r r r i
= - + + B-16
ey [Py X, ¥ = Typ Gp vy F 3y + 15, x yelfe (B-16) ;
]
tx
where £! = £ and 2 = n. ﬁ
1
The Laplacian of a scalar function £ (Ei) is obtalned as div (grad j i
i
'& %
il v
£), V2§ ,_%:._EI vz gik.3§? (B-17) S
/g 3E 13 i :
P &
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; which in two dimensions has the form
9'—4
F 2s - - +
VL = [(gy, £pp - 28y Tpp o8y )

g
: 1 1 i
% * ey T1g = 8y Tig = 81y T2)Ee

;

‘ 2 2 . 2 B-18
| + gy T7y = 89y Tqy = 8y T30)E1/8 (B-18)
-

Undt Tapgent and Normzl Vectors:

In the gemeration of coordinates we have taken clockwise traverse
along the body contour as positive. Denoting the unit tangent and
normal vectors as t and n respectively, and k the constant unit vector
normal to the plane of the curve, the vectors (E, o, g) are assumed to
form a right-handed system. The unit tangeant and normal vectors for
the £ = const. and 1 = const. curves are

(t) = - (x4 4y (B-19)
=7E = const. Ja ~n n
822
i (t) = (x, + 3y (B-20)
~'n = const. ~E E
11
() =~ (1y - 3x) (B-21)
~“E = const. /o ~n n
822
(n) =2 (- 1y, + jx.) (B-22)
: ~‘n = const. Jo ~E 3
i 811
3
' vhere i and j are unit vectors along x and y respectively. The re-
: solved parts of the velocity vector along the curves § = const. and
? i} = const. are
| (v-t) S (ug. ., + veg,.) (B-23)
: ~ ~’E = const. /o 12 22
: g
; 22
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n = const. ("'311 + Vg]_z) (B=-24)

. 1 53
= const. 2 . (8-25)

const. [ &E— v (B-26)
\ 811

where u and v are the contravariant components of the velocity vector

(ven), =

(¥-n)

n

v, which are related to the Cartesian comporents through Eq. (3.26).
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APPENDIX C

FINITE-DIFFERENCE APPROXIMATION OF THE N~S EQUATIONS

This Appendix gives the details of the discretization of the
N-5 Equations, Eq. (4.1}, by a fully implicit difference approximation.
The time derivatives are approximated by first-order backward differ-
ences, wnile the spatial derivatives are approximated by central
differences, The resulting‘s&étem of finite~difference equations are
-*
solved by the S.0.R. method.. In what follows below the quantities at

the previous time step are denoted by an overhead bar. Also AE

and An do not occur in these equations as they both equal 1.
Finite-differencing of equation (3.17):

(o,

ij A

)*¥ =0, ;- (ar/2) [(a

i, i+1,J i)

11,3

+ (B B )1 (c-1)

A X R T 2 |

In the 5.0.R. scheme (C-1) is used as follows:

g = (1-w) ci,Jp + w(o (c-2)

)*
1,J i,J
In Equation (C-2) the superscript p denotes that the quantity is
from the previous iteration. The second term on the R.H.S5. of Equation
{C-2) marked by an asterik is a provisional term defined by Equation
(C-1), which 1s recovered from (C-2) for w = 1. w = 0 Indicates that

o progress is being made in iterative convergence, which is a trivial

case.
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The finite-differencing of Equations (3-~18) through (3.20) are

carried out in a similar fashion:

-
By,07 = Ayg - Be/2) Tl o -8 5

N g - Ny g
i 1 ’ 1
- ot [Ty B+ 2rb N + Thyu - el o (c-3),
- (1 p & -
Ai’J (1-w) Ai,j + m(Ai’J) (C-4)

® _
(B, P* =3, ;- (ue/2) [(v

1 141,57 = Ni-1,7)

NG Ry
— ARlT2 2 2 -
At[PllH + 2112N + I5.M ¢]i,j (C-5)
} P P * -
Bi,J {1-t) Bi,j + w(Bi,J) (c-6)

*—
By, = By 5= /D) [Quy 5= Qy o)

+ Ry 5 - By 1)

| - At?i’J (c-7)

&
E, ;= (1-w) Ei, )

Py w(E,
: i, ( 1,

J J (c-8)
The terms 0, ¢ and ¥ that occur in Equations (C-3), (C-5) and
(C-7) are defined by Equations (A-16), (A-17) and (A-18), repectively.

The finite-differencing of these equations is carried out next.
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Certain combinations of Christoffels and other terms that occur

in groups

DA

DB =

bBC =

Db =

DE =

DF =

e =

DH =

DI =

DJ =

DK =

DL =

DM =

DN =

DO =

D? =

frequently have been abbreviated as follows:
1 2 - 1 2
[(6yy(Tqy + T55) = 61p(Tyy + 13,00/ Y8l

G,. Il

1 _
(65513 = G1aT1204 5

1 1
1GypT11 = G1afi2di1,5

1 1
[GyoT1s = G1aT20) 541, 5

1 1
[655T15 = G1aT20150

+ @ Tl

2 - 1
(65,711 * €13712 ~ 612(Tyg

2
HRETI PR

1 _ 1
[G + G, Glz(I'll +

2 2
22711 ¥ G111 ri221i,5-1

2 1 2
[Gzzrl2 + Gllr22 GIZ(I'12 + r22)]i,j+l

2 1 1 2
[Gy T1p * Gyalap = G Ty + 15015 54

2 2
[6)1770 = G014

1 _ 1
[GyaT12 = G12T59]5

2 1 _ 1 2
[8ypT75 * G139y = G1p(Tyg + T304 5

2 _ 2
[611755 = 812551y

1 2
[6,, (T}, + Flz)/fgli,j

2 - 1 2
[Gy Ty + Gqlyy = Gy #1015 5

2 | 1 2
T T P AU VIR T UY) PR
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B o U S oy T TR i‘.",‘?"i" ot ol
= 2 1 _ 1 2
DQ = [€ypT7p * Gy3Tan = C1aTyp + o))y 5
- 2 _ 2
DR = [6;4775 = 619773y 541
- 2 _ 2
DS = [6y3712 ~ S1a™1aly, 51 :
- 2 _ o p2
DT = 1633795 = G35712)1 yua '
2 2 i
DU = [614755 = C1oT1aly 51 S
EE
With these abbreviations the finite-difference approximation of
Equation (A-16) takes the following shape. i
A
%1 = Crof¥B)y 5 @y ga 7 Py 50 =
= (Gpl2Ve)y o oy 5 - Ry ) ¥ (py DA '*
¥ ey 5 Py ¥ e, Caaa 5 ™ By ,
;
BRI TR N R TN o
*eGyy/®) Dy 5 Waaa, 541 ™ Vi, 5o |
t
= A1,y a1 T Vi1, g-10] !
1 2 _ 1 2
+ elByy/2) [((Tgy +T7p) Awypy 4~ (T3 4775 Aw)y,y ]
1 2 _ 1 2 !
+eGyy/2) [Ty + T50M 0 5 = ((Tgg +T55) A, 4 4]
- eCa/®) Ty 1 (ygn 541 ™ Yio1, 500
i @ g1 T Yo, 3-1] |
b 1
- €(6,,/2) [(J\j_,j + )‘i,j+1) (vi’_ﬁL - vi,j) A
_ 1 2 _oeqnl 2 i
, e(6;,/2) [({Iy; + T'y) M)y e — ((Tgy +T3p) M)y 4 4] ﬁ
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e(6,,/2) [((riz + ng)’“”i,jﬂ - ((r:lL2 + sz)’“’)i,j-ll

elC8y,)y 5+ (MBpodypy ) (g § — 9y 5
((ugzz)i’j + (uG22)i'-l,j)(ui,j - ui-l;j)]
(e/2)[W6 )50y 5 (yag g41 ~ i, 517

e[DB(pu) - DC(pu)

itl,] i——l,j]

(512)[(("G11)1,j + (“G11)i,j+1)(“i,j+1 - “i,j)

(e/4) 1)y 541 Wina,j41 = Vi-1,541)

(G004 51 iy 41 Vi-1,j-10]

Z
e
B TR

(e/4) 1619)5 5a1 (y4q,541 ~ “i~1,j+1)

(W61 9)y,5-1 (Mi41,4-1 = uy,3-101 o

(e/2) [{WG1p)y 3 + (C1p)y 141 (Vy 54a)

<(uG12)i,j + (ﬁclz)i,j—l)(vi,j - vi,j—l)]

(e/2) [DF(”“)i,j+1 - DG(uu)i,j-1] .
S

- (e/2) {DH(uv)i’j+l - DI(uv)i’j_ll % \
108 A

ey g0y g ) T (5 T Y5
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+ en. (v

1, V1,5 " Vi-1,50P

- - 1
ey 30 gan T Vi,5-1) [T12812 ~ T80y, 5
1 1
+ 2e{uu)1 i [(I‘ll 1,3 DB + (1'12)1’j DF + (1‘2?_)]._’j DJ]

+ Zs(uv)i,j [ril)i’j DK + (Fiz)' DL + (T DM] (C-9)

22)i

= (6, /J3

3 1,5 Pit1,i " Pi-1,5’

- (Glllig)i’j (By 441 = Py o) ¥ Py 4 DN

/G 5 Py g G541 T Y1, 540

= Ay 5en (e ge1 T %o, 50!

+ (5/2)(G11)i’j [(}\i’j + Ai,j+1)(vi,j+l - vi’j)
R TR I DA AR S

TGy T g - ATy R T L

1 2 - 1 2
T *+ Tpdd)y sy = Ty + 75030y 5 4]

u, )

= (&2 (Gyp)y 4 DO 5+ Ay P Mg 5~ Yy

- Qs M, T Y, )]

- (e/4)(E,), 4 IA S

141,35 “Vidtl,341 " Vi+1,j—l)

Me1,5 a1, g4 T Vie1,5-17 ]
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- 1 2
(£/2)(8y,), 4 LUTyy + 1000 140 5
- 1 2 - i 2
((Tgy + Pydwd; y 3 = Ty + T2 g

- 1 2
((Tgg + T5) 35 1,3

*(e/8) T0yds0g 5 oy san ™ Baw,5-1)

- W8ypdy g5 ®aor, e T Bger,3-10

- ((szz)i,j + (uGzz)i“lgj)(vi,j - )

Vi-1,j
= (B o+ Byl ) (g 5~ 8y )

+ ({u6 + (16

1271, 1 1275-1,1 ®g,9 = %go1,30]

= (e/8) TQey9)y0q 4 i1, 541 7 Vi1, 3-1)

= WGp9)y g 5 (yig g4~ Vi-1,5-10]

* (e/2) [Qu)yy, 4 DF - Quly , o DO

+ (uv) DP - (“V)i—l,j DQl

i+, 3

el y)y 5+ G6pdy 540 Oy gy 7 Yy, 5)

- \ -
(/2106y} aq Vygg 341 MEREY

= W6o)y s Uigq, g1 ™ Vi1, 517 ]
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el(uu); .44 DR - )y 5 D8

(uv)l, c4q DT = (uv)y ,i-1 DU]

A R IR LA LY FIP R CEPCIPA PR
(g, 541 ~ %, 3027

Wisa, s ™ Vae1,3) (T19800)5,5 = (T55810)4 )

Vg g1 = V1,520 (F5p810)4 5 = (FEoB1p)y )1
Ze(uu)i’j[(ril)i’j DB + (1“?_2)1,j DF + (r2 224,35 DI
Ze(uv)i’j [(1“?_]_)1’j DK + (riz)i,j DL + (ng)i,j DM]

L0,y - VBvhy

-3

@ /2D TWE,p)y 4+ (MGppd ey I (Typy 4 =Ty )

ey 4 + (Gyp)s 1 (T, )]

1,1 - Ti-l.«j

(0 /4G ) o (T

41,5 Tas,541 ~ Tia, -0

6yp)5g,5 Tip, 54 7 Ti1,5-101

(o /2L (6 )

i,j + (e

104,940 Ty 542 = Ty 5)

(yp)y g+ W65 5 2Ty 5 = Ty 5uq?]

(2 /8)[(u6,5) 5 i,j+1 (Ti+1,j+1 - Ti—l,j+¢)

(uGlz)

1,3-1 i, 5-2 = Ti-1,5-2)1
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APPENDIX-D

The non-dimensionalization of the N-S Equations is given in many

standard text books. The non-dimensionalization of th2 other equations

such as the Sutherland viscosity law, the thermodynamic equations of

state, etc., are given in this Appendix.

Even in the range of super-sonic Mach Numbers, M_< 6 in air, the
temperature rise in the gaseous stream is high enough to force us to
take into account the effect of temperature on the properties of the

gas, in particular, on its viscosity. The kinematic viscosity of most

gases, and of air amwong them, increases considerably as the temperature
is increased. The temperature dependence of viscosity u(T) must be
obtained from experiments. The Sutherland viscosity law is:

u* = [t

/{T* + s%)] (D-1)
where C and Sl are comstants and for air have the values C = 2.27 x 1078
and §* = 110°K. Dividing Equation (D-1) by the corresponding ex-
pression for free stream conditions, we pet:

@A) = @/ [T+ st/ + 58]
or in nondimensional terms

= Tl.5

M (1 + 8)/(T + 5)) (D-2)

Rk
where S1 =8 /Tw

The nondimensional equation of state is obtained as follows:

since p* = p*(cP - cv)T* (D-3)
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e ) (T /UZ2) (e fe )

}

p(vo

fl

* R
1) ¢ T/ (U2

p(y

o

]

* *2
1) CPTmT/(YOUm )

D(Yo

fl

1) hyT/ (v 0E2)

il
]

D(YD

1) T/ Cr (v, = M)
i.e., the nondimensional equation of state is:

p = oT/y M2 (D-4)
Nondimensionalization of the equation for temperature, now

L AT
¥ = p¥e® + (1/2)p |V¥|2 , thus

¥ o= ¥¥/p¥0*2 4 o[ (¥/u*2) + |V]|2/2], or

(¥/p) = [(e T*/U3%) + [v]?/2]

]

J 2
[(chT:cP/cPUZZ) + |v|?/2]

i

[(rTle /v 052 + |v]?/2]

L@y (v, - DM2) + |7]2/2, or

|
n

Y, (Y, - LM2I¥/e) - |v]|2/2] (D-5)
2 - i3
where |V[2 = gijvlv

and V- are the contravariant components, u and v, of V. Thus

ly]z = gllu2 + Zglzuv + gzzv2 (D-6)
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The local Mach Number, which was used in plotting the Mach

contours, is cbtained as follous:

Il

M

i . |v|/a = V|V ¢y plo) , or

M, =M |V[/VT (0-7)
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