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3.0 SUMMARY 

The preparation  of  geometric  data fo r  i n p u t  t o  three-dimensional  potential- 
flow programs i s  a very tedious, time-consuming (and therefore expensive) task. 
T h i s  report  describes a geometry package tha t  automates and simplifies this 
task  to a large degree. Input  to the computer program for  the geometry pack- 
age  consists  of a very sparse set  of coordinate  data,  often w i t h  an order  of 
magnitude fewer points  than required for  the actual  potential-flow  calculations. 
Isolated components, such as wings, fuselages,  etc.  are paneled automatically, 
us ing  one  of several  possible element distribution  algori thms . Curves of inter- 
section between components are  calculated, u s i n g  a hybrid  curve-fit/rurface-fit 
approach. Finally,  intersecting components are  repaneled so that  adjacent 
elements on either side of the intersection  curves  line up  i n  a satisfactory 
manner for  the  potential-flow  calculations. The geometry package has been 
incorporated  into the NASA Langley version of the 3-D l i f t i n g  potential-flow 
program  and i t  i s  possible  to r u n  many cases  completely (from i n p u t ,  through 
the geometry package, and through the flow calculations)  without  interruption. 
Use of this geometry package can significantly reduce the time and expense 
involved i n  making three-dimensional  potential-flow  calculations. 



4.0 INTRODUCTION 

W i t h  the  advent of modern high-speed computers,  the  aerodynamicist 
gained the  abi l i ty  t o  study  the  effects of configuration changes i n  great 
detai l .  Whereas before he m i g h t  have  been able t o  estimate  the  effects of 
changes i n  such gross  geometric  parameters as  sweep and aspect r a t i o  on the 
t o t a l  l i f t  of an isolated wing, he now can accurately  calculate  the  effects 
of changes of quite small detai ls  of the shape of  very complex configurations 
(wing-fuselage-nacelle-pylon  cases, for example) on no t  only l i f t  b u t  also on 
spanwise and chordwise load distributions,  local pressures, flow angles,  etc. 
This ga in  i n  computational a b i l i t y  has made the  preparation of i n p u t  da t a  for 
describing  configuration geometry a very tedious, time-consuming task. General 
three-dimensional potential-flow programs, such as  the Hess program, 
(references 1 and 2 )  require  the geometry t o  be i n p u t  a s  the  coordinates of 
sets  of  points, which are  grouped t o  form quadrilateral  surface  elements. 
Many more elements  are  generally  required t o  obta in  accurate flow solutions 
than the number required for adequate pictorial  representation. For example, 
the  simple  trapezoidal wing of figure 1 ,  which can be represented f a i r l y  
accurately by twenty or so elements,  requires on the  order of two hundred 
elements t o  obta in  a reasonable flow solution. More complex configurations, 
such as  the  wing-fuselage  case of figure 2 ,  m i g h t  use nearly a thousand. A 
case which was recently run by personnel of  NLR,  Amsterdam, using 1780 
elements t o  represent an external-store  configuration is shown i n  figure 3 
(reference 3 ) .  

There i s  a clear need t o  automate  as much as  possible  the  preparation of 
the i n p u t  coordinates, both i n  order t o  reduce the number o f  points  input t o  
the programs and in  order t o  relax some of  the  restrictions on how the  points 
must  be distributed. The main d i f f icu l ty  i n  doing t h i s   i s  t h a t  there  are so 
many logica l ly  different  cases t o  consider. For example, a wing has different 
spacing  requirements t h a n  a fuselage; a fuselage has different  requirements 
t h a n  a nacelle,  or a pylon, e tc .  Moreover, bodies o f  similar type may require 
different numbers and distributions of  points due t o  the  proximity of  other 
bodies. I f  there are intersections between bodies,  additional  requirements 
are imposed on the p o i n t  distributions. A geometry package must be very 
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Figure 1 .  Typical element distribution for a trapezoidal wing. 

Figure 2. Typical  element distribution  for a wing-fuselage case. 
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,Figure 3.  Surface  elements used  by NLR, Amsterdam, fo r  an ex terna l   s to re  
conf igura t ion  (1780 elements). 

v e r y   f l e x i b l e   t o   a p p l y   t o  so many d i f f e r e n t  cases, bu t  i t  should  not be so 
f l e x i b l e   t h a t  i t  becomes  cumbersome t o  use. 

This  report   descr ibes a geometry  package  developed f o r  use w i t h   t h e  

po ten t i a l - f l ow  program of   re ferences 1 and 2 and fo r   ex tens ions   o f   the  method 
which may replace i t  in  the  fu ture.   S ince  the  requi rements o f  fu ture  pro-  
grams are  most ly   speculat ive  a t   the  present ,   compat ib i l i ty   wi th   the  present  
program i s  emphasized. 

The geometry package has  been incorpora ted   in to   the  NASA-Langley version 

of the   po ten t ia l - f low program. This program  accepts i n p u t   e i t h e r   i n   t h e  
or ig ina l   input   format   descr ibed  in   re ference 4 (w i th   m inor   mod i f i ca t ions)   o r  
i n   t he   f o rma t   o f   t he  program  described i n  reference 5. With a small amount 
o f   a d d i t i o n a l   i n p u t   t o   c o n t r o l   t h e  geometry package, it i s  p o s s i b l e   t o   r u n  
a  number o f   f requen t l y   occu r r i ng  C ~ J ~ S  completely  without human in te rvent ion .  

For example, i so la ted  wings or  bodies may be i n p u t   t o   t h e  program w i t h  a 
minimum  number o f   p o i n t s  and the  geometry package will augment and r e d i s t r i b u t e  

t h e   p o i n t s   t o   t h e  number  and d i s t r i b u t i o n   s p e c i f i e d  by  the  user. These 

coordinates can then be punched on cards f o r  use w i th   au tomat ic   p lo t t ing  
programs to   inspect   the  resul ts   before  proceeding,   or   the  potent ia l - f low 
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program can proceed immediately  to  analyze  the flow. Options  are provided to 
allow  the user to  tailor  the  distributions  to  the needs of his particular 
problem, so it should also be possible to run cases having multiple non- 
intersecting  wings  or bodies with no human intervention. More  difficult 
cases,  involving  intersecting  components, can also be treated by the  geometry 
package. Some of the  simpler  cases  involving  only  two  components,  such as a 
wing/fuselage  case,  can  also be run  completely  without  intervention, but more 
complex  cases  almost  certainly should be checked  before  proceeding  with  the 
flow calculation. Some  cases  cannot be completely handled by the  geometry 
package, but in these  cases, use of  the  geometry  package  to  augment the point 
distributions and to calculate  intersection  curves still results in a 
significant  reduction in the effort required to prepare the  coordinate data. 
An outline  of  the  major features  of  the  geometry package is given below. 

o Significant  reduction in effort required to  input a  case to  the 
potential -flow program. 

o Two  separate  modes of program input available. 

o Complete  compatibility  with  the  potential-flow program -allowing  many 
cases to be run completely  without  interruption between the  geometry 
package  calculations and the  potential-flow  calculations, 

o Paneling of isolated components 
o Al lows very sparse input coordinate data. 
o Provides  output  coordinate data suitable for  potential-flow 

analysis. 
o Uses  independent  cubic  curve-fits  for  interpolation in two 

directions on surfaces (N-lines and "lines). 
o Provides  six  options  for the point distributions on N-lines 

and four  options on "lines. 
o Allows all N-lines on a  component  to lie in parallel planes, 

if desired. 

o Calculation  of  intersection  curves 
o Requires a  distinction between intersecting and intersected 

components. 
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o Intersecting  components  represented by their "lines  only. 
o Intersected components represented by three-dimensional surface 

fits. 
o Intersection curves defined by arrays  of intersection points 

between the "lines of  the intersecting  components and the fitted 
surfaces of  the intersected components. 

o Repaneling of intersecting and intersected  components 
o Intersection curve  made an N-line of the intersecting component. 
d Other N-lines on intersecting  component shifted to restore  a 

smooth distribution. 
o Extra strip inside intersected component  automatically generated, 

if desired. 
o Intersected components repaneled to insure that  elements on 

adjacent  components  line up along  the  intersection curves. 
o Simpler  repaneling  options also provided. 

The remainder of this  report  documents the theory and operation of  the 
geometry package. Section 6 defines the geometric  terms used in the later 
sections and discusses  the basic philosophy o f  the geometric input to the 
method. Section 7 describes the paneling of isolated, non-intersecting 
components, including the options  available, the applicability and limitations 
of  the options, user requirements, methods used, and sample results. Section 
8 covers  the method o f  calculating  curves o f  intersection between components, 
including the theory, restrictions, and verification cases. Finally, 
section 9 describes the methods  that have been provided for  repaneling 
components after having calculated the  curves  of intersection between them. 
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5.0 SYMBOLS 

A M a t r i x   o f   s u r f a c e - f i t   c o e f f i c i e n t s   i n   a l g e b r a i c  form. 

A,B,C,D C o e f f i c i e n t s   o f   t h e   e q u a t i o n   o f  a plane. 

A,B,C,D, A lgebra ic   sur face- f i t   coe f f i c ien ts .  

I ,J ,K,L ,  
EsFsGsH, 

M,N,O,P 
. . ~  

C 

d 

F 

f 

G 

i 

K 

k 

R 

M 

" l i n e  

N 

N-1 i ne 

P 

Local   value  of   the  chord  of  a  component. 

S t ra igh t - l i ne   d i s tance  between adjacent  points on  a  curve. 
Also used fo r   the   d is tance  f rom a p o i n t   t o  a plane. 

Functions used t o  express a cub ic   cu rve   i n  terms o f   t he   f unc t i ona l  
values and f i r s t   d e r i v a t i v e s   a t   t h e  ends of   the  curve  on ly .  

Dummy var iab le  used t o  express  the  general  form o f  a func t ion  used 
w i th   severa l   d i f fe ren t   var iab les .  

Ma t r i x   o f   su r face - f i t   coe f f i c i en ts   i n   geomet r i c  form. 

General subscr ip t  used i n  a v a r i e t y   o f  ways. 

Parameter used i n   s p e c i f y i n g   t h e   d i s t r i b u t i o n   o f   N - l i n e s  on  a 
component. 

Curvature a t  a po in t  on  a curve. 

Subscr ip t   denot ing  var iab les  assoc iated  wi th  a l i n e  o r  curve. 

Mat r ix  of  constants used i n  conver t i ng   su r face - f i t   coe f f i c i en ts  
from  geometric t o   a lgeb ra i c  form. 

Curve on  a  component, general ly  running spanwise on l i f t i n g  
components  and i n   t h e   a x i a l   d i r e c t i o n  on n o n l i f t i n g  components. 

To ta l  number o f   d e f i n i n g   p o i n t s  on a curve. 

Curve on a  component, general ly  running  chordwise on l i f t i n g  
components  and i n   t h e   c i r c u m f e r e n t i a l   d i r e c t i o n  on n o n l i f t i n g  
components. 

To ta l   a rc   leng th   o f  a curve. 

Normalized  point number o f  the  point   having  index i. 

Arc length  a long a curve. 
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so’sl 
S 

T 

8 

Arc lengths at beginning and  end of  a curve. 

Subscript  denoting a surface. 

Superscript  denoting the  transpose of  a-matrix. 

Parameters used in calculating surface fits. 

Coordinates of  a point in a Cartesian  coordinate system. Also 
subscripts referring to these coordinates. 

Angle around a circle circumscribed  about an airfoil section, used 
in determining the cosine point spacing  distribution. 

Angle of  a curve at the  defining point having index i. 

Angle of a straight-line  segment of  a  curve beginning at the 
defining point having index i. 
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6.0 NOMENCLATURE  AND  ARRANGEMENT OF I N P U T   P O I N T S  

Before  descr ib ing  the geometry package i t s e l f ,  it i s  necessary t o  
discuss  the  general scheme f o r   i n p u t t i n g   p o i n t s  and fo r   o rde r ing   t he  elements 
that   they  form and t o   d e f i n e  some o f  the  terms  which are  used f requent ly  
throughout  the  remainder o f   t h e   r e p o r t .  Most  procedures and d e f i n i t i o n s   a r e  
ident ica l   to   those  descr ibed i n  references 1 and 2, but  some ( f o r  example, 
t he   de f i n i t i on   o f   " i gno red   e lemen ts " )  have been changed s l i g h t l y .  Reference 
should be made t o   f i g u r e  4 t o   c l a r i f y   t h e   d i s c u s s i o n  which  fol lows. 

S T R I P  ON 

N - L I N E S  ON 

M - L I N E S  ON 
I N T E R S E C T E D  

ELEMENT  ON  ELEMENT  ON 
I N T E R S E C T E D  

I N T E R S E C T I N G  
COMPONENT 

V - I N T E R S E C T I N G  
CQYPONENT 

Figure 4. D e f i n i t i o n   o f   f r e q u e n t l y  used  terms. 
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A complete configuration (such as a  wing-fuselage-nacelle-pylon case) 
is assumed to be constructed of a  number of  components, each of which is a 
set of associated points. Normally a single component is  used to represent 
a complete body (such as a wing or a fuselage), but any number of components 
per body is allowed. There  are  two types of components - nonlifting and 
lifting. Nonlifting components, such as fuselages or  other blunt-ended bodies, 
are represented by source distributions over  their surfaces and hence have no 
circulation. Lifting components, such as wings or  other bodies with  sharp 
trai 1 ing edges , are represented by both surface  source and dipole  distribu- 
tions. Circulation  about  any  section of a lifting component is adjusted in 
such a way as to satisfy  the trailing-edge Kutta condition. Lifting 
components also have associated dipole sheets  which  represent  trailing vortex 
wakes. Points on the wakes must be input to the program, as well as points 
on the bodies, and are considered to belong to  the same  components as the 
associated body  points. 

Each component  consists of a set of points which  can be connected in 
such  a  way as to form a network of intersecting lines called N-lines and 
"lines. N-lines on lifting components  are the lines running approximately 
in the chordwise direction. They  divide  a wing, for example, into a number 
of distinct sections. "lines are the lines connecting  corresponding points 
on the N-lines.  On nonl ifting components N-lines are generally those 
surrounding the major  axis of the body (if it  is possible to define an axis 
at all). In principle, the roles of the N-lines and "lines on nonlifting 
components can be reversed without  adversely  affecting the execution o f  the 
program, but in most portions of  the geometry package, it  is assumed that  the 
N-lines play the  role described above. The  potential-flow program does not 
require that all N-lines on nonlifting  components have the same  number of 
points. However  since having variable numbers of points per N-line makes it 
impossible to define "lines, most applications o f  the geometry  package require 
each N-line to have the  same number of points as  each other N-line and each 
"line to have the  same number of points as each other "line. N-lines may 
not cross  other N-lines (though they may touch  at  a point);  "lines also may 
not cross  other N-lines (though they may also touch  at  a point). 

10 



Points must  be ordered so t h a t   a l l   p o i n t s  on the   f i r s t   N - l i ne   ( i nc l . yd ing  
wake p o i n t s   a f t e r   t h e  body p o i n t s   f o r   l i f t i n g  components) a re   inpu t  con- 
secut ively,   fo l lowed by a l l   p o i n t s  on the second N- l ine and so on. The f i r s t  
N- l ine  input  may be the one a t   e i t h e r  extreme o f   t h e  component, but   the 
choice  determines  the  order  of   input  of   points  a long  the  N- l ines.   In  general ,  
the  order must be such tha t   the   negat ive   o f   the   c ross   p roduc t   o f   the   vec tor  
from one po in t  on an N- l i ne   t o   t he   nex t   po in t  on the   N- l ine   w i th   the   vec tor  
f r o m  a p o i n t  on the  N- l ine  to  the  corresponding  point  on the   nex t   N- l ine   resu l ts  
i n  a vector  which i s   d i r e c t e d   t o   t h e   e x t e r i o r   o f   t h e  component. This  requirement 

may be s a t i s f i e d  on a wing, f o r  example,  by o rder ing   the   N- l ines   f rom  t ip  
t o   r o o t  and order ing  po ints  on the  N- l ines f r o m  t h e   t r a i l i n g  edge along  the 
lower  surface  to  the  leading edge  and  back along  the  upper  surface  to  the 
t r a i l i n g  edge. On a fuselage  the  requirement i s   s a t i s f i e d  by arranging  the 
N- l ines from f r o n t   t o  back  and the   po in ts  on each N-l ine  increasing  counter- 
c lockwise   ( look ing   a f t ) .  The requirement i s   a l s o   s a t i s f i e d  by reversing  both 
the   o rder   o f   the   N- l ines  and the   o rde r   o f   t he   po in ts  on the  N-l ines. However 
pa r t s   o f   t he  geometry package requ i re   tha t   N- l ines  on fuselages s t a r t   a t   t h e  
f r o n t   o f   t h e  body, o r  more general ly,   that   N- l ines on n o n l i f t i n g  components 
s t a r t   a t  the end far thest   f rom  the f i r s t  " l i ne  of any other  components which 
i n te rsec t   t he  component. 

The area between adjacent  N-l ines on a component i s  designated a s t r i p .  
Each s t r i p  on a l i f t i n g  component has  one character is t ic   va lue o f  the   d ipo le  
d i s t r i b u t i o n  and one loca t i on  where the  Kutta  condi t ion i s   s a t i s f i e d .  On 
l i f t i n g  components, it i s   p o s s i b l e   t o   s p e c i f y   t h a t  a s t r i p  have  a d ipo le  
d i s t r i b u t i o n   b u t  no source  d is t r ibut ions and  no boundary condi t ions on any 
o f   i t s  elements. Such a s t r i p ,   c a l l e d  an e x t r a   s t r i p ,   i s   u s e f u l   f o r   a v o i d i n g  
the  abrupt   ending  o f  a dipole  sheet  (which  would  result i n  a concentrated 
vor tex)   a long  the  curve  o f   in tersect ion o f  two components  and f o r   c o n t r o l l i n g  
the  behavior  of   the  d ipole  sheet  near  wing-t ips when the  piecewise  l inear 
v o r t i c i t y   o p t i o n   i s  used. Refer   to   re fe rence 1 f o r  more d e t a i l s .  

The area  (genera l ly   quadr i la tera l  ) between adjacent  " l ines on a s t r i p  
i s  termed an element. Each element has one con t ro l   po in t  where the  boundary 
cond i t i ons   a re   sa t i s f i ed  and  one character is t ic   va lue  o f   the  source 
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distribution. It  is possible  to  designate  some  elements to be ignored elemen'ts. 
These  elements do not have source  distributions and no boundary  conditions 
are  applied  to them. If the  component is lifting, ignored elements do have 
dipole  distributions, however. References 1 and 2 allow for ignored elements 
to be defined  only  for  lifting  components, but this  restriction has  been 
lifted in the present program. 



7.0 PANELING  OF  ISOLATED  COMPONENTS 

7.1 General  Features of   the  Panel ing Method 

The f i r s t   o p e r a t i o n  performed  by  the  geometry package i s   t o  panel 
(i.e. , d i s t r i b u t e   t h e  elements)  the components as isolated  bodies,  whether or 
not  any o f  them in tersect .   A l though  the  resul t ing  e lement   d is t r ibut ions on 
i n te rsec t i ng  components may no t  be useful   for   analyzing  complete  conf igu- 
rat ions,   they  serve as  a s t a r t i n g   p o i n t   f o r   d e t e r m i n i n g   t h e   f i n a l   d i s t r i b u t i o n s  
as we l l  as a l lowing a con f igu ra t i on   "bu i l d -up"   t o  be performed  (i.e.¶  the 
success ive  addi t ion  o f  components can be performed, i n  order  to  determine 
in te r fe rence  e f fec ts ) .  It i s  assumed t h a t  each  component i s  completely 
independent o f   a l l   o t h e r s .  Since a s ing le  body may be  composed o f  more than 
one  component,  however,  and s ince  the  c lose  prox imi ty   o f   another  body may 
modify  the  element  spacing  requirements o f  a  component, it i s   n o t  always t r u e  
t h a t   i n d i v i d u a l  components a re   comple te ly   independent .   Su f f i c ien t   f lex ib i l i t y  
has  been designed in to   the   pane l ing  method t o   a l l o w   p o i n t s   t o  be  matched  where 
components  meet  (making the i r   " l ines  cont inuous)  and t o   a l l o w   t h e   u s e r   t o  
spec i fy  whatever d i s t r i b u t i o n  he  deems appropr iate  to  account  for   the 
p r o x i m i t y   o f   o t h e r  components. 

The paneling  of an i nd i v idua l  component i s  accomplished i n  two  steps. 
F i r s t  the   po in ts  on t h e   i n i t i a l   N - l i n e s   a r e  augmented i n  number  and r e d i s t r i -  
buted  according t o   t h e  number  and the  spacing  algor i thm  speci f ied by the  user. 
For   th is   ca lcu la t ion ,   the   N- l ines  must be roughly  chordwise on l i f t i n g  
components  and, if the   l a te r   repane l i ng   o f   i n te rsec ted  components i s  required, 
the  N- l ines must be roughly  c i rcumferent ia l   about an ax i s  on n o n l i f t i n g  
components. P o i n t s   i n   t h e  wake o f  an N- l ine o f  a l i f t i n g  component are 
d is t r ibuted  independent ly   o f   the body points .   Prov is ion has been made t o  
a l l o w   t h e   u s e r   t o   i n p u t   d i f f e r e n t  numbers o f   p o i n t s  on t h e   i n i t i a l   N - l i n e s  
o f  a  component. The process o f  red is t r ibu t ing   po in ts   a long  the   N- l ines  makes 
the  numbers o f   p o i n t s  equal , thus   a l low ing   M- l ines   to  be formed. The second 
step i s   t o  augment and red is t r ibu te   the   N- l ines   accord ing   to   the  number and 
a lgor i thm  speci f ied by the  user.  This is  done by  augmenting and r e d i s t r i b u t i n g  
points  a long each " l ine.  
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The process o f   r e d i s t r i b u t i n g   p o i n t s   a l o n g   e i t h e r   N - l i n e s   o r   " l i n e s  
requires a method o f   in te rpo la t ing   a long  genera l   curves   in  space. Since 
these  curves  (part icular ly  the  N- l ines)  are  not   usual ly  monotonic i n  e i t h e r  
x,y, o r  Z coordinates, some other  parameter  must be used  as the  independent 
v a r i a b l e   o f   i n t e r p o l a t i o n .  I n  the  present method, the  parameter chosen i s  

the  arc  length  along  the  polygon  formed  by  connecting  straight-l ines between 
adjacent  points. I n   t h e  remainder o f   t h i s   repo r t   t he   t e rm  "a rc   l eng th "  

a lways   re fe rs   to   th is   s t ra igh t - l ine   approx imat ion .   In te rpo la t ion   fo r  a p o i n t  
on a cuPve requi res  three  separate  in terpolat ions,  one f o r  each coordinate, 
Each separate  in terpolat ion i s  accomplished i n  two  steps. I n  t h e   f i r s t  step, 
n u m e r i c a l   d i f f e r e n t i a t i o n   o f   t h e  dependent va r iab le   w i th   respec t   t o   t he   a rc -  

length i s  performed a t  each defining  pointon  the  curve. I n   t h e  second step,  the 
values o f   t he   f unc t i on  and i t s   d e r i v a t i v e s   a t   t h e  ends of  the segments o f   t h e  
curve  are used to   de r i ve   t he   coe f f i c i en ts   o f   cub ic   i n te rpo la t i ng   po l ynomia l s .  

The n u m e r i c a l   d i f f e r e n t i a t i o n   i s  done using a "weighted-angle"  approach 
(see f i g u r e  5).  I n   t h i s  approach, the   leng ths   (d i )  and angles (emi) o f  
s t ra igh t - l ine   approx imat ions   to  segments o f   t h e   c u r v e   a r e   f i r s t   c a l c u l a t e d .  

The angle a t   t h e   m i d p o i n t   o f  each segment i s  assumed t o  equal  the  angle o f  
the   s t ra igh t - l ine   approx imat ion   to   the  segment. The angle a t  any o f   t h e  

g iven  po ints  on the  curve ( e i )  i s  then  determined  by  taking an average o f   t h e  
angles of   ad jacent  segments, weighted  by  the  distances to   t he   m idpo in ts  o f  the 
segments, 

(7.1 .l) 

Angles o f   t h e   f i r s t  and l a s t   p o i n t s  on a curve  are  determined  by  extrapolation, 
assuming constant  curvature between t h e   f i r s t  two and ' l as t  two points .  The 

der iva t ives   a t   the   g iven   po in ts   a re   then found by  taking  the  tangents  of   the 
calculated  angles. 

I n   o r d e r   t o   f a c i l i t a t e   t h e   t r e a t m e n t   o f  components having  sections 

bounded by s t r a i g h t   l i n e s ,  such as a wing  wi th a k i n k   i n   i t s   t r a i l i n g  edge 
o r  a fuselage  wi th a cy l indr ica l   midsect ion,  a mu l t i sec t i on  component opt ion 
i s  provided in   t he   numer i ca l   d i f f e ren t i a t i on   p rocedure .   W i th   t h i s   op t i on ,  
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Figure 5. I l lustrat ion of numerical differentiation procedure. 

the  curve i s  divided i n t o  several  sections. A t  the ends of  the  sections, 
extrapolations  are used t o  determine  the  derivatives, just as  they  are a t  the 
ends of the  complete  curve.  Sections  consisting of j u s t  two points  are 
represented by s t ra ight   l ines .  The slopes of these  straight  lines then 
determine  the  derivatives a t  the ends of adjacent  sections. 

The values o f  the funct ion and i ts   der ivat ive a t  each end of a curve 
segment consti tute four pieces of information which  can be used t o  determine 
the  coefficients of a cubic polynomial approximating the  curve. The form of 
the polynomial is 

(7.1.2) 
where S is the  independent  variable  (arc  length ranging from values So 

t o  S I ,  f represents  the dependent variable (x ,  y, or  z coordinates), and 
primes denote differentiation. The form of i t s  derivative  is  

f '  (5) = f '  ( S o )  + (S - S o )  f"(S,) f ; (s - S O ) *  f ' I ' ( S O )  (7.1.3) 
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Given the values  of f and f '  a t  So and SI, the simultaneous  solution 
of equations  (7.1.2) and (7.1.3)  yields the values  of f"(So)  and f " '  (So). 

Equation (7.1.2) can then be used t o  determine the value of the  function  f(S) 
a t  any value  of S w i t h i n  the given curve segment. 

T h i s  curve-fit method does not  insure  continuity  of the second deriv- 
ative  of  the  function and thus is  not a cubic  spline f i t  i n  the usual sense 
(reference 6 ) .  I t  was chosen rather than a spline method because of ' i ts  
consistently  superior  results i n  several  test  cases. For example, figure 6 
shows a comparison between th is  method  and a true  cubic  spline method. 
The interpolated  coordinates found by the  present method are  considerably 
less  wavy t h a n  those  calculated  using  the  spline method. Both methods 
fail  to  represent  the shape accurately i n  the   af ter  region of the body, 
because of the  higher  local  curvature and the  proximity  of  the ends of  the 
curve.  Other comparisons involving a i r fo i l s  and  more general  shapes  also 
showed smoother results  for  the  present method than  the  spline method, i n  

+ INFL'T  POINTS 

e INTERPOLATED  POINTS  (SPLINE METHOD) 
INTERPOLATED  POINTS (PRESENT METHOD) 

Figure 6. Comparison of curve-fit methods. 
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sp i te   o f   t he   a l l eged   p roo f  i n  reference 6 tha t ,  i n  general , a sp l ine  produces 
the  smoothest o f   a l l   p o s s i b l e   c u r v e   f i t s .  The c o n t r a d i c t i o n   o f   t h i s   p r o o f  
may poss ib ly  be. due t o   t h e  unusual  character  of  the  independent  variable (it 

being  def ined as a quanti ty  which  varies  smoothly  along a nonsmooth curve) 
o r  i t  may be due to   t he   p resen ta t i on  of the   resu l ts   by  a graph o f  one 
in te rpo la ted   resu l t   ( the   z -coord ina tes)  as a f u n c t i o n   o f   o t h e r   i n t e r p o l a t e d  
resul ts  ( the  x-coordinates).  

7.2 Dis t r ibu t ion   o f   Po in ts   A long N-Lines 

Each of   the  opt ions  for   d is t r ibut ing  po ints   a long  N- l ines  (except   the 
t r i v i a l   o p t i o n   o f   l e a v i n g   t h e   i n i t i a l   d i s t r i b u t i o n  unchanged) requi res an 
array  o f   normal ized  arc   lengths  which  appl ies  to   every  N- l ine  o f   the com- 
ponent  under  consideration. The formulas f o r  these  arc- length  d is t r ibut ions 
are  g iven below.  Given the   spec i f i ed   d i s t r i bu t i ons ,   t he  method ca lcu lates 
t h e   d i s t r i b u t i o n  on  each i n i t i a l   N - l i n e  and in te rpo la tes  each coordinate 
independently t o  determine  the  values a t   t he   des i red   l oca t i ons .   I n  some 
cases a l l   p o i n t s  on  an N- l ine   co inc ide   (as   a t   the  end o f  a pointed body, f o r  
example). Then the  method  does not  attempt to   i n te rpo la te ,   bu t   s imp ly  
prov ides  the  spec i f ied number o f   p o i n t s   t o   t h a t   N - l i n e .  The fo l lowing  opt ions 
a r e   a v a i l a b l e   f o r   d i s t r i b u t i n g   p o i n t s  on N-l ines: 

1. Input   d is t r ibu t ion ,   una l te red  
2. I npu t   d i s t r i bu t i on ,  augmented i n  number 
3. Constant  increments i n   a r c   l e n g t h  
4. Constant  increments on the  superscribed  circle  (cosine  spacing) 

5. Curvature-dependent d i s t r i b u t i o n  
6. User -spec i f ied   d is t r ibu t ion  

7.2.1 Inpu t   D is t r ibu t ion ,   Una l te red  

With t h i s   o p t i o n   t h e  method  does  no i n te rpo la t i on .  It should be used 
whenever t h e   i n i t i a l   d i s t r i b u t i o n   a l r e a d y   c o n t a i n s  a s u f f i c i e n t  number o f  
proper ly  spaced points .  If the  N- l ines   o f   the  component under  consideration 
a r e   t o  be red i s t r i bu ted ,   o r  if the component i s  involved i n  an i n t e r s e c t i o n   w i t h  
another component, then  the number of po ints   input  must  be the  same on each 
component o f   the   N- l ine .  I n  a d d i t i o n ,   t h e   d i s t r i b u t i o n   o f   p o i n t s  on adjacent 
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N-lines  should be f a i r l y   s i m i l a r  so t h a t  when corresponding  points on N-l ines 
are  connected,  the  resul t ing  " l ines make smooth curves.  This i s   t h e   o n l y .  
option  which may r e s u l t  i n  d i f f e r e n t  numbers o f   p o i n t s  and d i f f e r e n t  
d i s t r i b u t i o n s   o f   p o i n t s  among the  N- l ines o f  a  component. Although no 
in te rpo la t ions   a re   requ i red ,  some c a l c u l a t i o n s   a r e   s t i l l  necessary t o   d e t e r -  

m ine   the   der iva t ives   w i th   respec t   to   a rc   leng th   o f   the   coord ina tes   a t  each 
po in t  on each N-line. These are  needed i n   l a t e r   c a l c u l a t i o n s   t o   d e t e r m i n e  

intersect ion  curves. 

7.2.2 Inpu t   D is t r i bu t i on ,  Augmented i n  Number 

T h i s   o p t i o n   r e s u l t s   i n  a d i s t r i b u t i o n   w h i c h   i s   s i m i l a r   t o   t h e   i n i t i a l  
d is t r ibu t ion ,   bu t   con ta ins  a d i f f e r e n t  number o f   p o i n t s .  The i n i t i a l   d i s t r i -  
bu t ion  used i n   t h e   c a l c u l a t i o n   i s   t h e   d i s t r i b u t i o n   f o r   t h e   f i r s t   N - l i n e  on 
the  component, unless a l l   p o i n t s   c o i n c i d e  on t h e   f i r s t   N - l i n e .   I n   t h a t  case 
t h e   d i s t r i b u t i o n  on the second N - l i n e   i s  used. The method works  by d e f i n i n g  
a "normalized  point number", pi , ranging  f rom  zero  to one, 

pi = (i - l ) / ( N  - 1) (7.2.1) 

where i i s  the   index   o f   the   po in t  and N i s   t h e   t o t a l  number of  points. 
Arrays o f  normalized  point number a re  formed f o r   b o t h   i n p u t  and ou tpu t   d is -  
t r i bu t i ons .  The ou tpu t   a rc - l eng th   d i s t r i bu t i on   i s   de te rm ined   by   i n te rpo la t i ng  

the  curve  of   input  arc  length  versus  input  normal ized  point  number t o   t h e  
output  values  of   the  normal ized  point  number. This  procedure i s   i l l u s t r a t e d  
i n   f i g u r e  7. Sui tab le cases f o r   t h i s   o p t i o n   i n c l u d e   b o t h   l i f t i n g  and  non- 

l i f t i n g   t y p e  components. It i s   e s p e c i a l l y   u s e f u l   f o r   p r e c i s e l y   c o n t r o l  1 i n g  
the   des i red   d i s t r i bu t i on   w i thou t   hav ing   t o   l oad  a l a rge  number o f   p o i n t s  and 
without  having  to  determine i n  advance  what the  numerical   values  of   the 
arc  lengths  are.   Typical   resul ts  for  a s e c t i o n   o f  a supercr i t i ca l   w ing   a re  

shown i n   f i g u r e  8. 
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Figure 7 .  Method of distributing points on an N-line - input distribution 
augmented. 

+ INPUT  POINTS  (N = 15) o OUTPUT POINTS  (N = 25) 

Figure 8 .  Point distribution on a supercritical wing section - input distribu- 
tion, augmented. 
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7.2.3 Constant Increments in Arc  Length 

This option results in points distributed uniformly according  to the 
formula 

Si/P = (i - l ) / (N - 1) (7.2.2) 

where S is the arc length measured from  the  first point and P is the 
total arc length around the perimeter of  the N-line.  It should be  used for 
smooth bodies which do not have large  variations in curvature (for example, 
the cylindrical fuselage section illustrated in figure 9. It should usually 
not be used for wing sections, since, for a reasonable  number of points, there 
would be too  few points to accurately  define the  shape near the leading edge 
or  other high-curvature regions and too  coarse spacing at the trailing  edge 
for  the Kutta condition to be accurately applied. 

Figure 9. Point distribution on a cylindrical fuselage section - constant 
increments in arc length. 

7.2.4 Cosine  Spacing 
Cosine spacing is a commonly-used  distribution,  dating from some of the 

classical two-dimensional theories  (reference 7). Its name  derives in an 
obvious  way from the usual formula for  the spacing 
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Xi/C - - 2 C 1  + cos[ ( i  - l)a/(N - 1)]> 1 (7.2.3) 

where  c i s   t h e  chord,  which i s  assumed t o  be pa ra l l e l   t o   t he   x -ax i s .  The 
s i g n i f i c a n c e   o f   t h i s  method,  as i l l u s t r a t e d   i n   f i g u r e  10, i s   t h a t   p o i n t s   a r e  
chosen having  the  x-coordinates  corresponding  to  equal  increments i n  angle 
around a c i rc le   c i rcumscr ibed  about   the  N- l ine  wi th   leading and t r a i l i n g  edges 
touch ing   the   c i rc le .   Th is   resu l ts  i n  very  f ine  spacing  near  leading and 
t r a i l i n g  edges  and coarse  spacing i n  regions away from  these edges. It i s  a 
useful   d istr ibut ion  opt ion  for   wing  sect ions  but  would  probably  not  be 
comnonly  used f o r   n o n l i f t i n g  components. 

I EOUAL INCREMENTS OF 

Figure 10. Method o f   d i s t r i b u t i n g   p o i n t s  on an N- l ine - cos ine   d is t r ibu t ion .  

Equation (7.2.3) i s   n o t   d i r e c t l y   u s e f u l   f o r   d e t e r m i n i n g   t h e   s p e c i f i e d  
arc- length  d is t r ibut ions  which  the method o f   t h i s  geometry package requires.  
To  do th is ,   the  wing  sect ion i s  f i r s t  scaled t o   u n i t  chord, t r a n s l a t e d   t o  
p u t   t h e   o r i g i n   o f   t h e   c o o r d i n a t e  system a t   t he   l ead ing  edge, and r o t a t e d   t o  
make the  chord  para1  le1  to  the  x-axis.  The angle ( 6 )  about the  superscribed 
c i r c l e   i s  then  ca lcu la ted   fo r  each po in t  on the  N- l ine  by  solv ing  the  equat ion 

X i / C  = 7 (1 + cos B )  1 (7.2.4) 

21 



using the transformed  values of  the x-coordinates. The arc-length  distribution 
corresponding to  the input points is also calculated. For both the  angle and 
arc-length calculations,  only the first N-line on a component is used (unless 
its length is zero, in which case  the second one is used). Given the values 
of  the arc-length  distribution and the  angle distribution for  the input 
coordinates,  and the desired  values of  the  angle distribution  for the output 
coordinates (uniform increments), the arc-length  distribution for  the output 
coordinates is determined by interpolation. 

Results of this  option for  the  same supercritical  wing  section used 
previously are shown in figure 1 1  . 

Figure 11. Point  distribution on a  supercritical  wing section -cosine 
distribution. 

7.2.5 Curvature - Dependent  Distribution 

The  accuracy and computational  efficiency of  the potential-flow method 
are both improved by using fine  spacing in regions of high curvature and 
coarser spacing in regions of low curvature. This  option produces a point 
distribution which depends on the  curvature distribution  along the first 
N-line of  the component (or the second if the length of  the first is  zero). 
If the component is of lifting type, the point distribution is also made  to 
be a function of  the proximity to  the trailing and leading edges in order  to 
allow  the trailing-edge Kutta condition  to be accurately satisfied and to 
keep the variation o f  the spacing smooth in the leading-edge region where  the 
curvature varies rapidly. 
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The  following  relationship  between  the  curvature and the  spacing  increments 
is employed : 

Asi = (1 - A S ~ ~ ~ / A S ~ ~ ~ ) ( ~  - ki/kmax) + AS mi n/Asmax'Asmax  (7.2.5) 

where  Asi is the ith increment in normalized  arc  length  between  adjacent 
points, ki is the  absolute  value  of  the  curvature at the  center  of  the ith 
segment, kmax is the  maximum  absolute  value  of  the  curvature on the N-line, 
and Asmin and Asmax are, respectively, the  minimum and maximum  allowable 
increments in arc length. In this  application, the ratio Asmin/~smax is 
specified to be 0.25. 

To implement  this  relationship  requires an iterative procedure. First 
the  arc-length and curvature  distributions  are  calculated.  Then,  if  the 
component is of  lifting  type,  the  variable  which plays the  role of  the 
curvature in equation (7.2.5) is modified  to  make its value at the trailing 
edge equal to its leading-edge  value and to make it vary linearly  from  the 
leading and trailing-edge  values  to  the values at 7.5 percent o f  the N-line's 
perimeter on either  side  of  the  leading and trailing-edge points. This 
modification  insures  that points will  be closely  spaced near the  trailing 
edge and that the  spacing will  not  vary abruptly  near  the leading and trailing 
edges. To start the iterations,  estimates of the  values  of bsmax and  all 
the values of  AS^ are required. These  are a1 1 taken  to be  equal to  the total 
length o f  the curve  divided by the  number of segments it contains. Given the 
estimated values o f  Asmax and  AS^, the  curvature  at  the  center o f  each 
segment (modified as  described  above) is determined by interpolation of  the 
curvature versus arc-length  relationship and  used in equation (7.2.5) to 
update  the  estimated values of  AS^. These values are then scaled to make 
their sum equal to  the total length of  the N-line and searched to  determine 
the  value of  AS,,,^^. These updated values of  AS^ and ~s~~~  are then used 
in the next iteration and the process is repeated  a  maximum of five  times or 
until the  required  scale  factor for  the lengths of  the increments is 
sufficiently  close  to unity. 

Results of this  opt 
are shown in figure 12. 
shown in figure 13. 

ion for the  supercritical wing section used  prev 
Results  for  a  section  of  a  nonlifting  component 

iously 
are 
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Figure 12. Point  distribution on a supercritical wing  section-curvature- 
dependent distribution. 

Figure 13. Point  distribution on a section of a nonlifting component- 
curvature-dependent distribution. 

7.2.6 User-Specified Distribution 

For N-lines o f  unusual shape or when  components  are located very close 
together, it  is possible that none of the options described  above will produce 
an adequate point distribution. To  account for  this possibility, provision 
has been made for the user to specify (as input data) values o f  the normalized 
arc lengths, which  are used directly  to  determine the augmented coordinates. 

7.3 Distribution of N-lines 

After  the points on the initial N-lines have been redistributed, each 
N-line on a component has the  same  number of points distributed in a similar 
manner. Connecting  corresponding points on a1 1 N-1 ines generates a set o f  1 ines 
designated "lines. Since the distribution of points is the  same on each N-line, 
the "lines are smooth and have fairly small curvature. The process o f  
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augmenting and redistributing the N-lines is accompllshed by augmenting and 
redistributing points  along these "lines. For these  calculations, i t  is 
required  that each "line have a total  length  greater  than  zero. 

There are  four  options  available  for the distribution Of "lines. They are: 

1. Input d i s t r i b u t i o n ,  una1 tered 

2. Input distribution, augmented i n  number 

3.  Constant  increments 

4. User-specified  distribution 

The descriptions of a1 1 four  options  are  completely  analogous t o  the descrip- 
tions of the  corresponding  options  for  distribution o f  points on N-lines 
described i n  section 7.2. 

There are two  modes of operation  of this portion of the geometry package. 
The f i r s t  (and most common)  mode i s  designated  the  planar-secti on mode and the 
second i s  termed the  arc-length mode i n  the  discussions which follow. 

7.3.1 The P1 anar-Section Mode 

The usual way of  i n p u t t i n g  data  to  the  potential-flow program is to  make 
the  N-lines on a component planar  cuts  perpendicular  to some axis of the 
component. For nonlifting components, this convention is just a convenience 
t o  the  user. For l i f t i n g  components, however, the  elements  are approximated 
by trapezoids, so that i f  the N-1 ines  are not  para1 le1 , the  accuracy of repre- 
sentation of the component by i t s  elements is not  as good. 

The planar  section mode of operation  redistributes  the  points on the 
"lines i n  such a way that  a l l  N-lines, except  perhaps the first and l a s t  ones 
on a component, are  parallel .  The  f i rs t  and l a s t  N-lines generally define the 
planform view of  the component, which is not  required  to be  composed only  of 
s t ra ight   l ines .  The method does not a l t e r  these N-lines dur ing  this portion  of 
the calculations. The distributions  described above generally  refer  to  the 
distances between the parallel  planes, normalized by the  distances between the 
f i rs t  and l a s t  N-lines. A t  the edqes  of the component, when the f i rs t  and l a s t  
N-lines  are  not  planar, the distributions  refer  to  distances between the f i rs t  
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p o i n t  on the   N- l ine  under  consideration and t h e   f i r s t   p o i n t  on t h e   f i r s t   N - l i n e  
o f  the component, reso lved  in   the   d i rec t ion   perpend icu la r   to   the   para l le l   p lanes  
and normalized  by  the  distance between t h e   f i r s t   p o i n t s  on t h e   f i r s t  and l a s t  
N- l ines   o f   the  component. The o r ien ta t i on   o f   t he   p lanes   i s   de f i ned   by   spec i f y -  
i n g  (as input   da ta)   the   d i rec t ion   cos ines   o f  a vector   perpendicu lar   to   the  p lanes.  
For t h i s   c a l c u l a t i o n ,   t h e  sense o f   t h e  normal vec to r   i s   no t   impor tan t .  However, 
i f  intersect ion  curves  are  calculated and the components are  subsequently  repan- 
eled,  then  the  vector must p o i n t   i n   t h e   d i r e c t i o n  o f  increas ing  N- l ines.  If the 
d i rect ion  cos ines  are  not   spec i f ied and the  p lanar   sect ion mode i s  used, d e f a u l t  

values o f  (1.0, 0.0, 0.0) f o r   n o n l i f t i n g  components  and (0.0, -1 .O, 0.0) f o r  lift- 
i n g  components are assumed. When the  defaul t   values  are used, N- l ines must be 
i npu t  from f r o n t   t o  back on n o n l i f t i n g  components and from t i p   t o  root  o f   l i f t i n g  
components. 

The f i r s t  step i n   d i s t r i b u t i n g   t h e   p o i n t s  on the   " l ines  i s  t o  determine 
the  equat ion  o f   the  p lanes  represent ing  the  N- l ines and the   in te rpo la t ing   po ly -  
nomials  representing  the  " l ine segments. The equations o f   t h e  planes o f  the 
N-1 ine2  are o f  form 

Ax + By t Cz t Di = 0 (7.3.1) 

where A, B, and C are  equal t o   t he  x, y, and z d i rec t ion   cos ines   o f  
the  vector  normal to  the  p lanes (and  hence are  the same f o r  a1 1 planes on the  
component). The values o f  Di ( d i f f e r e n t   f o r  each plane)  are  g iven by 

Di = Dl + Ki (D2 - Dl ) (7.3.2) 

where Dl and D2 are  the  coeff ic ients  of   the  p lanes  passing  through  the 
f i r s t  and l a s t  po ints ,   respect ive ly ,  on t h e   f i r s t   " l i n e   o f   t h e  component and 
Ki i s  the   va lue   o f   the   d is t r ibu t ion   parameter   fo r   the   N- l ine  under  consider- 

a t ion .  Dl i s  determined  from  the  relat ionship 

(7.3.3) 

where xl, y, , and z1 are  the  coordinates o f  t h e   f i r s t   p o i n t  on t h e   f i r s t  

" l ine .  De i s  determined i n  a s i m i l a r  manner, us ing   t he   l as t   po in t  on the 
f i r s t   " l i n e .  The in te rpo la t ing   po lynomia ls   fo r   the   " l ine  segments are 
determined  by  the  curve-fit  procedure  described i n   s e c t i o n  7.1. 
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The second step i n  d i s t r i b u t i n g  points on the "lines i s  to  determine which 
"line segments intersect which planes. For this step, i t  i s  assumed that  "line 
curvature is  small enough so  that   straight-l ine approximations to  the  "line seg- 
ments may be used. 

Then, knowing  which "line segments intersect which planes and  knowing the 
equations of the "line segments and the  planes,  the  coordinates of  each inter- 
section  point can be  computed. To  do this for  any point,  substitute  the  expres- 
sions  for  x,y,z  as a function of arc  length  along  the  "line segment (each 
having the form of equation  (7.1.2))  into  the  equation  of  the  plane  (7.3.1). This 
gives a single  cubic  equation w i t h  S i ,  the  arc  length  along  the  "line segment 
to  the  intersection  point,  as  the  only unknown. This i s  solved by Newton's 
method. Using the intersection  point of the p lane  and the  straight-line approx- 
imation to  the  "line segment to  determine  the  starting  point,  the method typi- 
cally  requires  only  three  or  four  iterations  to converge to  an adequate  solution. 

Figures 14 and 15 show the  top views of two typical wings both before 
and after  redistributing  the N-lines. Since the wing i n  figure 14 is trape- 
zoidal i n  planform and has a l inear twist distribution,  only  the  N-lines a t  
the t i p  and root  are needed i n  the   ini t ia l  geometric  representation.  Since 
the  initial  representations of the t i p  and root  sections  are  already  planar 
and all  "lines  are s t r a i g h t  l ines ,  the planar-section mode  and the  arc-length 
mode (described i n  the  next  section) produce identical  results. A more gen- 
eral  case,  for which the two  modes of  operation  should  give  very different 
results is shown i n  figure  15. In this case,  the  "lines on the entire  out- 
board half of the span are   s t ra ight   l ines ,  b u t  they are  curved on the  inboard 
portion.  Therefore,  the  multisection component option  described i n  section 7.1 
i s  used,  allowing  the  linear  portion  of  the geometry to  be represented using 
only two N-lines. Figure 16 shows the  top view of a fuselage  before and a f t e r  
redistributing the N-lines. This fuselage has a cylindrical  midsection w i t h  
semi-ellipsoidal  sections  fore and a f t .  Again, the  multisection component 
option  allows  the  linear  portion  to be represented using only two N-lines. In 
a l l   three of these  cases, the redistributed N-1 ines  are  equally spaced. 
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INITIAL ELEMENT 
DISTRIBUTION 

ELEMENT DISTRIBUTION 
AFTER  REPANELING 

Figure 14. Redistr ibut ion o f  elements on a trapezoidal  wing  {cosine  spacing 
chordwise,  constant  increments spanwi se,  planar-  secti'on mode). 
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INITIAL  ELEMENT 
DISTRIBUTION 

ELEMENT  DISTRIBUTION 
AFTER  REPANELING 

Figure 15. Redistribution o f  elements on a supercritical wing  (cosine spacing 
chordwise,  constant increments spanwise, planar-section mode, 
mu1 tisection  component option). 
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I N I T I A L  ELEMENT D I S T R I B U T I O N  

ELEMENT  DISTRIBUTION  AFTER  REPANELING 

Figure 16. Redistribution o f  elements on a fuselage (constant  increments  around circumference and in 
axial direction, planar-section  mode, multisection component option). 



7.3.2 The Arc-Length Mode 

In  some cases  the  N-line a t  the edge of a component may  be so highly  nonplanar 
tha t  a strip bounded by this N-line and  an adjacent  planar N-line would vary 
strongly i n  w i d t h ,  resulting i n  areas  too  sparsely covered w i t h  elements. An 
example of this i s  the under-wing pylon shown i n  figure  17(a). In this figure 
the  thickness  of  the wing has been exaggerated to  help  illustrate  the  point. In 
such cases  the  arc-length mode of d i s t r i b u t i n g  N-lines on the component should be 
used. In this mode the  specified  distribution  parameters  refer t o  fractions  of 
the  total  arc  lengths of the  “lines,  rather  than  to normalized distances between 
planes. The points on al l   “ l ines  o f  a component are d i s t r i b u t e d  i n  a similar 
manner, so that  the  N-lines i n  the vicinity o f  the  nonplanar edge of the compo- 
nent curve smoothly around to  create a more uniform distribution of the  elements, 
as  i l lustrated i n  figure  17(b). In this mode of operation,  the method of redis- 
t r i b u t i n g  points  along M-lines i s  completely  analogous to  the method of  redis- 
t r i b u t i n g  points  along  N-lines. 

(a)  Planar-Section Mode. ( b )  Arc-Length Mode. 

Figure 17. Comparison of planar-section and arc-length modes o f  distribution of 
N-lines - strut on a thick wing. 
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8.0 CALCULATION OF INTERSECTION CURVES 

8.1 General Features of the Method 

The second major operation performed by the geometry package i s  the  cal cu- 
lation  of  the  curves of intersection between body components. For this calcu- 
lation i t  is  assumed that  the  "lines of one of the components (designated  the 
intersecting component) pierce the surface of the  other component (designated 
the  intersected component). The final  solution is a set  of intersection  points, 
one for each augmented M-line on the intersecting component. In general , the 
method calculates  the  intersection  point o f  a curve and a surface and hence 
requires a surface-fit method as well as a curve-fit method. The surface-fi t  
method uses  the  theory of parametric  cubic  surface  patches  originated by  Coons 
(reference 8 )  and extensively developed and applied by a number of other 
investigators  (reference 9 ,  for  example). The curve-fi t method i s  the same 
one used i n  the  paneling of isolated components  and described i n  section 7.1. 

8.2 Restrictions and Limitations  of the Method 

The intersection method i s  designed to  handle  cases which occur  frequently 
i n  aircraft   applications,  such as  wing-fuselage  intersections, wing-pylon 
intersections,   etc.   I t  i s  not  designed for complex cases i n  which the inter-  
section  curve is discontinuous  or  for  cases  involving f i l l e t s   o r  smooth transi-  
tions from  one  component to  the  next. Use of the method i s  limited  to  cases 

I i n  which the  following  restrictions  apply: 

1. 

2. 

3. 

A dist inction can be made between intersecting and intersected 
components. 

A component can intersect  only one other component  and can be inter-  
sected by only one other component. If a body intersects or  is  
intersected by several  bodies, i t  must be divided up into  several 
components. A single component  can intersect one component  and  be 
intersected by another component, however. 

The "lines on the  intersecting component pierce the surface of the 
intersected component a t  a sharp  angle.  Surfaces  are  not  tangent 
where they meet. 
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4. 

5. 

6. 

The 
requi  res 

The “fines on the intersecting  component extend sufficiently far 
into the interior of  the intersected component to allow a  planar 
representation of the elements on the intersected component  to be 
used in the  process of searching for the  elements  which are inter- 
sected by the M-1 ines. 

The  intersecting  component has at least one N-line  which lies entirely 
in the interior of  the intersected component. 

No ”line on the intersecting  component  intersects the intersected 
component  more  than once. 

8.3 Details of the Method of Solution 

method of calculation of the intersection curve between two components 
that one component be assigned the role of the intersecting component 

I !  

and the other  component be assigned the  role of  the intersected component. 
This is done by the user in the input data to the geometry package. The inter- 
section curve is then defined by the set of intersection points between the 
“lines on the intersecting  component and the elements on the intersected 
component. In order to  define this curve at a  sufficient  number of points, 
every “line  on the intersecting  component (after redistributing and augmenting 
the points on the N-lines) is used. On the intersected component, in principle 
either  the original input  elements or the  elements  after  augmenting points on 
just the N-lines, or the elements after augmenting points on both N-lines and 
“lines could be  used for defining  surface patches which are intersected by the 
”lines of  the intersecting component. Since  parametric  cubic  surface patches 
are used, however, it is not necessary to use the  large  number of elements  that 
exist after augmenting points on both N-lines and “lines. Since the input 
points may vary in number from  one N-line to the next, and since  the distribu- 
tions may also be dissimilar, use of the original input elements could result 
in surface patches having much  more  extreme  curvature (and hence less accuracy) 
than use of either of  the  other  two sets of elements. Therefore,  the elements 
after augmenting points on the N-lines but before  augmenting points on the 
M-lines are used for the  formation of surface patches. 

One possible method for calculating  intersections 
surface might  operate as follows: Derive mathematical 

of an M-1 ine and a 
formulas to represent 

33 



each segment of the "line and each element of the surface and f i n d  the roots o f  
the  equations  obtained  by.equating  coordinate  values on the segments and the ele- 
ments. If  a particular  equation has no real   roots,   or i f  i t  does have real roots 
b u t  the  points  they  represent  fall  outside  the bounds of the  element or the seg- 
ment, then  the  element and the segment have no intersection points.  If  the equa- 
tion does have real  roots and the  points  they  represent do f a l l  w i t h i n  the bounds 
of both the  element and the surface,  then  the  roots  are  the  intersection  points. 
When a l l  such equations have  been solved,  the  intersection  points  are  grouped, 
somehow, to determine  the  intersection  curves. Such a method  would have to  solve 
a large number of equations  (a number equal to  the number of "line segments 
multiplied by the number  of surface  elements) and many of these  equations would 
f a i l   t o  have solutions. I t  would, therefore, be very uneconomical t o  use. 

A more economical approach,  adopted i n  the present method, f i r s t  compares 
maximum and minimum coordinate  values on the "line segments and the  surface 
elements and eliminates from consideration  those  combinations which obviously 
contain no intersection  points. Then  .an approximate  intersection method, 
w i t h  planar  element  representations, i s  used to determine which "line segments 
and surface  elements  contain  intersection  points and to  get approximate  values 
of the  intersection  point  coordinates. Then, mathematical representations  are 
obtained  only  for  those  elements  containing  intersection  points, and these  are 
used,together w i t h  the  representations  of  the M-1 ine segments, to  calculate 
the  intersection  points more accurately.  Details of this approach are given 
bel ow. 

8.3.1 The In i t ia l  Search for  "Line  Segments  and Surface Elements Conta in ing  
Intersection Poin ts  

The basic  information needed to conduct the i n i t i a l  stages of the  search 
incl udes the maximum and minimum values of each coordinate on each element of  
the  intersected component, on each strip of the  intersected component, on each 
segment of the  intersecting  "line, and on the  entire  intersecting  "line. 
Because i t  is  assumed that  the  intersecting  "lines extend some distance  into 
the body  and a planar  element  representation can  be used, i t  i s  legitimate  to 
assume that  the maximum and m i n i m u m  values on  an element must occur a t  one 
of i t s  corners. A quick comparison of the  coordinates  of  the  corner  points 
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t h u s  determines the extrema. Extreme values on a strip are  determined'by com- 
paring  the  extreme  values o f  each of i t s  elements. Values on the  "line segments 
are determined more accurately, assuming cubic  relationships between the coord- 
inate  values and the  straight-line  arc  lengths  along the "line (equations  (7.1.2) 
and (7.1.3)). Equation equation  (7.1.2) to  zero  (separately  for  x,y, and z) and 
solving  gives two values  of  arc-length  along  the  "line  (for  each  coordinate). 
The real  solutions which fa1 1 w i t h i n  the bounds of  the segment are used to  cal cu- 
late  coordinate  values which are compared, along w i t h  the  values a t   t he  ends o f  
the segment, to'determine  the extreme values. Maximum and minimum values on the 
entire  intersecting  "line  are determined by comparing the extreme values of each 
of i t s  segments. 

Having determined the extreme values of the  coopdinates on s t r ips  and 
elements of the  intersected component  and on segments and the  entirety of the 
intersecting  "line, the searching  procedure  begins by comparing the extreme 
coordinate  values on the f i r s t  strip of  the  intersected component w i t h  the 
values  for the entire "line. If the range  of any of the coordinate  values 
on the strip f a i l s   t o  include a t   l ea s t   pa r t  of the  range of the values of the 
same coordinate on the "line, then no intersection can possibly  occur on that 
strip. Successive strips are  compared w i t h  the  "line u n t i l  one i s  found 
which may possibly  contain  the  intersection  point. Then each element on the 
strip i s  compared w i t h  the  "line u n t i l  a possible  intersected element is  
found. Then each segment on the  intersecting  "line is compared w i t h  the  ele- 
ment u n t i l  a possible  intersecting segment i s  found. 

8.3.2 The Final  Search for  "Line  Segments  and Surface Elements Containing 
Intersection  Points and the Approximate Determination o f  the Inter- 
section  Points 

Having found an element on the intersected component  and a segment of 
the intersecting "line which share, a t   l eas t   par t ia l ly ,  the ranges of the i r  
x, y ,  and z-coordinates, a more careful check on whether or  not  they inter- 
sect  i s  made. If  the element i s  not  already  triangular, i t  is divided  into 
two triangles by drawing one of the diagonals  across the quadrilateral  region. 
Each element is  t h e n  represented by  two planar,  triangular subelements. The 
planar  coefficients of each subelement are determined, s tar t ing from the 
general form of the equation o f  a plane 
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A x +  By + Cz + D = 0 (8.3.1) 

by f i r s t   d i v i d i n g   t h r o u g h   b y  D ( i l l u s t r a t i n g   t h a t   t h e r e   a r e   o n l y   t h r e e  
independent unknowns i n  equation  (8.3.1)) and rear rang ing   to   ge t  

A/Dx + B/Dy + C/Dz = -1 (8.3.2) 

and then   subs t i t u t i ng   t he   coo rd ina tes   o f   t he   co rne r   po in ts   o f   t he  subelement 
in to   equat ion  (8.3.2) t o   o b t a i n  a third-order  system of l inear  equations  which 
i s   e a s i l y   s o l v e d   f o r  A/D, B/D, and C/D. A,  B, and C are  then  found  by 

mu l t i p l y ing   by  any a r b i t r a r i l y  chosen ( f in i te ,   nonzero)   va lue   o f  D. 

A check i s  then made t o  see if the ends o f   t h e   " l i n e  segment l i e  on 
opposi te  s ides  of   the  p lane.  This i s  done by  computing  the  directed  distance 
from each point   to   the  p lane,   us ing the.  formula 

dA2 + B2 + C2 
(8.3.3) 

where d i s   t he   d i s tance  and (xl , y1 , z1 ) are  the  coord inates  o f   the  po int .  
If the  va lue   o f  d has the same s ign   f o r   bo th  end points,   the segment does 
no t   in te rsec t   the   p lane o f  t he   t r i angu la r  subelement. If t h i s  i s  t r u e   f o r  
both  subelements on the  element,  the  element and the   " l ine  segment do not  
i n t e r s e c t  and the  next segment i s  considered. 

When an " l i ne  segment which does cross  the  p lane  of  one  of the subelements 
i s  found, the   po in t  o f  i n te rsec t i on  of the segment and the  plane i s  found  using 
the method described i n  sect ion 7.3.1. For   th is   ca lcu la t ion ,   the   " l ine  seg- 
ment i s  again  represented  by a cubic  polynomial.   Given  the  intersection  point, 

it i s  next  necessary t o  check  whether o r   n o t  it fa1 1s w i th in   t he   t r i angu la r  
reg ion   o f   t he  subelement. To  do th is ,   the  present  method  checks t h a t  each s ide 
o f   t h e   t r i a n g l e   l i e s  on the same s ide   o f   bo th   the   in te rsec t ion   po in t  and the 
opposite apex o f  the   t r iang le .  To determine  that two points,  A and B y  l i e  
on the same s i d e   o f  a l i n e   f r o m   p o i n t s  1 t o  2, the method takes  the  cross 
product   o f   the  vectors   f rom A t o  1 and from A t o  2 and the  cross 
product o f  the  vectors  from B t o  1 and from B t o  2 and checks  whether 
o r   no t   t he   do t   p roduc t   o f   t he  two r e s u l t i n g   v e c t o r s   i s   p o s i t i v e .  
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If  the p o i n t  does not f a l l  w i t h i n  the bounds of e i ther  t r i a n g u l a r  subele- 
ment, the  next segment of the  "line  is checked. I f  none of the segments 
intersects  the  element,  the  next element i s  checked i n  the above  manner. If  
no element on the  current strip contains  the  intersection p o i n t ,  the  entire 
procedure,  including  the in i t i a l  search  described i n  section 8.3.1 , i s  
repeated for the  next strip, and so on, u n t i  1 e i ther  an element of  the  inter-  
sected body and a segment of the  intersecting  "line which contain  the  inter- 
section p o i n t  are found, o r  all  possible combinations of elements and M-line 
segments are  exhausted.  If an approximate intersection poin t  is found i n  
this manner, i t  i s  used as a s ta r t ing  p o i n t  for the  i terative method des- 
cribed below, t o  determine  a more precise  intersection p o i n t .  I f  the method 
f a i l s  t o  f i n d  an approximate intersection p o i n t ,  calculations  continue, 
s ta r t ing  w i t h  the  next  "line on the  intersecting component.  In this  case, 
execution of the computer program i s  terminated after  the  intersection  calcu- 
lations  since  the  final  repaneling method requires  the  intersection curve t o  
be u n i  n terrupted and compl etel y def i ned . 

8.3.3 Derivation of a Mathematical Representation of the  Surface of an 
Element 

In order t o  compute a more accurate  intersection  point, i t  is necessary 
to  obtain an equation for  the  surface of the element.  This i s  done u s i n g  the 
theory of parametric  cubic  surfaces  described i n  references 8 and 9. The 
following discussion i s  a sumnary of relevant  portions of the  theory. 

Required  geometric quantities a t  each corner p o i n t  of  the-element under 
consideration  include  the  following (as well as  the  corresponding y and z 
Val ues ) : 

where the  subscripts  indicate  differentiation and u and w are  the param- 
e te rs  upon which the  surface f i t  is  based. On the boundary curves of an 
element, u represents a fraction of the  straight-l ine  arc  length between 
the two M-1 ine boundary curves and w represents a fraction of the  straight- 
1 ine  arc 1  ength between the two N-1 ine boundary curves. On the  interior of 
an element, u and w represent  quanti  ties analogous to  those  defined abov'e 
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b u t ,   f o r  elements w i t h  compound curvature,   the  phys ica l   in terpretat ion o f  the 
parameters i s   l e s s  obvious.  xu a t  a corner   ind ica tes   the   der iva t ive   o f  x 
wi th   respec t   to   s t ra igh t - l ine   a rc   leng th   a long  the   N- l ine   pass ing   th rough  the  
corner,   normal ized  by  the  straight- l ine  d istance between adjacent  points 
on the N-1 ine.  xw i nd i ca tes   t he   de r i va t i ve   w i th   respec t   t o   s t ra igh t - l i ne  

arc  length  along  the  " l ine  passing  through  the  corner,  normalized  by  the 
s t ra igh t - l i ne   d i s tance  between adjacent  points on the  " l ine.  xuw and  xwu 
ind ica te   c ross   der iva t ive  terms i n   t h e   d i r e c t i o n s   o f   t h e   " l i n e  and N-l ine.  
The f i r s t   d e r i v a t i v e  terms  (not  normalized)  were  previously  required  for  the 
c a l c u l a t i o n s   t o   r e d i s t r i b u t e  and augment po ints   a long  the  " l ines and N-l ines.  
They need on ly  be normal ized  by  the  proper  e lement  s ide  length  to be app l i c -  
able  here. The cross  derivative  terms xuw and xwu are  obtained  by numer- 
i c a l l y   d i f f e r e n t i a t i n g   t h e  unnormalized f i r s t   d e r i v a t i v e  terms 
along  the  " l ines and N-l ines,   respect ively,  and then  normalizing  by  the 
product  of   the  lengths  of   the  adjacent  e lement  s ides.  The two cross-der ivat ive 
values a t  each corner  are  then  averaged,  since  the  equation used to   represent  
the  surface  impl ies  that   they  are  equal .  

These geometr ic  quant i   t ies,   for  x, y , and z and f o r  each co rne r   o f   t he  
element, const i tu te   the  so-ca l led  "parametr ic   cubic   patch  coef f ic ients  i n  
geometric form." The c o e f f i c i e n t s  can  be arranged i n   m a t r i x   f o r m  as fo l lows 

(shown only   for   the x coordinates):  

I x10 xll xwlo xwl 

C G X l  = x X X 
" 

uoo uol uwoo uwol 
X 

I xulo x u l l  
X X 
uwl 0 uwl 1 

L 

(8.3.5) 

I n   t h i s   m a t r i x   t h e  u and w subscr ipts  again  represent  der ivat ives as  above. 
The 0 and 1 subscr ip ts   together   ind ica te   the   corner   o f   the  element  being 
considered,  the f i r s t   i n d i c a t i n g   t h e  N-1 i n e  and the  second ind i ca t i ng   t he  
" l ine .  The 0 indicates  the lower-numbered l i n e  on the  element and the 1 
indicates  the  h igher-numbered  l ine.   Simi lar   matr ices  are  a lso  formed  for   the 
y and z-coordinate  terms. 
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The matrix  of coefficients i n  geometric form, [G,], and the corresponding 
y and z matrices  contain a l l  the information needed t o  derive algebraic 
expressions  for the coordinates a t  any point on the  surface of the element i n  
terms of the parametric  variables. These expressions  are of the following form 
(again shown only fo r  the x coordinates): 

x(u,w) = w 3 3  [Axu + Bxu 2 + CXu + DX] 

+ w 2 3  [Exu + Fxu 2 + G,u + Hxl 

+ w [Ixu 3 + Jxu 2 + Kxu + Lx] 

+ [Mxu 3 + Nxu 2 + PXu + Px] 

The coefficients of equation  (8.3.6) can  be 
"matrix of coefficients i n  algebraic form," 

p x  Bx cx 

Ex Fx Gx 

IX Jx Kx 
CAX1 = 

L M X  Nx b, 
To show how the  matrix of coefficients 

(8.3.6) 

grouped t o  form the  so-called 
[A,] as follows: 

II L pX X 

(8.3.7) 

i n  geometric form may  be converted 
i n t o  the  matrix o f  coefficients i n  algebraic form, i t  i s  f i rs t  necessary t o  s tudy 
the  properties of equation  (8.3.6)  further. On the boundaries of the element 
one of the  parametric  variables i s  constant,  either  zero  or  one, and the other 
varies from zero t o  one. For definiteness, assume that  the  variable w i s  
equal to  zero. Equation (8.3.6) then  reduces to  a cubic  equation w i t h  u as 
the  only  independent variable. On the opposite  side of the element, w i s  
equal t o  one and equation (8.3.6) reduces to  another  cubic  equation,  again 
w i t h  u as the only  independent  variable. The entire  surface of the element 
can be considered t o  be a collection o f  cubic  curves w i t h  w constant and u 
variable. Each of these  curves has the form of  equation  (7.1.2), which  can  be 
converted to  the form 

f ( u )  = F 1 ( u ) f ( 0 )  + F 2 ( u ) f ( l )  + F3(u)f '(0) + F 4 ( u ) f ' ( l )  (8.3.8) 
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b y   s o l v i n g   f o r   t h e  second  and t h i r d   d e r i v a t i v e  terms i n  (7.1.2) as described i n  
sect ion 7.1. When t h i s   i s  done, the  terms F1 (u),  F2(u),  F3(u),. and F4(u)  are 
given  by 

F1 (u) = 2~ - 3~ + 1 3  2 

F2(u) = 02u + 3u 3  2 

F3(u) = u3 - 2u + u 2 

3 2  F4(u) = u - u 

where 

CMI = 

-2 +1  +1 
t 3  -2  -1 
0 + 1  0 
0 0 0  

In   mat r i x   no ta t ion ,   equat ion  (8.3.8) becomes 

F(u) = [F] - [f (0) f (1)  f ' ( 0 )  f'(l)lT 

(8.3.9) 

(8.3.10) 

(8.3.11 ) 

(8.3.12) 

= [u  3 2  u u 11  [MI [f(O)  f ( 1 )   f ' ( 0 )   f ' ( 1 ) I T  

where T indicates  that   the  t ranspose o f  t h e   m a t r i x   i s  t o  be taken. Now, using 
(8.3.12), the  equations for x(u) and xw(u) on the boundary  curves w = 0 

and w = 1 can be w r i t t e n  as 
3 2  

X(U,O) = [u u u 1 1  [MI . [xoo xl0 xu IT 
00 xulo 

Xw(U, l )  = [U u u 13 [MI 9 [X, 
3 2  

X X 
01 wll uwol xuwll 

IT 
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or  more compactly 

(8.3.14) 

Equation (8.3.12) can also be used to  derive the expression 

x(u,w) = [w 3 2  w W 11 [MI [ X ( U , O )  X(u,1) X w ( U , o )  xw(u , l ) lT  (8.3.15) 

or equivalently 

Combining (8.3.1.4) and (8.3.16)  gives 

x ( U , w )  = [u-? U2 u 11 [MI [G,] [MIT [w w w 13 3 2  T 

Since  equation (8.3.6) can  be rearranged and written  as 

X ( U , W )  = [u3 u2  u !I * LAXI [W w w 1 I 3 2  T 

(8.3.17) 

(8.3.18) 

the matrix  of coefficients i n  geometric form is  converted t o  the  matrix  of 
coefficients i n  algebraic form by the operation 

(8.3.19) 

Expressions for  the y and z coordinates  as  functions of the parameters u 
and w are  obtained i n  a  similar manner, u s i n g  the  matrices of geometric 
q u a n t i  t i e s  [G 1 and [G,]. 

Y 

Including  coefficients  for  all  three  coordinates,  there  are  forty-eight 
parametric  cubic  quantities  associated w i t h  each element. Except for  the 
coordinates  themselves (twelve of the forty-eight  quantities),  these  quanti- 
ties are  generally  not  shared by adjacent elements. However, these coeffici-  
ents a r e   a l l  derived from geometric  data which i s  continuous from element to  
element  and, therefore, i s  shared by adjoining  elements.  Therefore,  a  large 
reduction i n  the computer program storage  requirements can be made, a t  a 
small expense of additional computatjon time, by storing  all  data i n  the 
(unnormal ized)  geometric form  and converting  to the algebraic form of  equation 
(8.3.6) only when actually needed. Therefore, the coordinates, their deriva- 
tives along the N-lines, and "lines, their  cross-derivatives, and the arc  
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lengths between adjacent  points  are the only  geometric  data used i n  the present 
method. 

8.3.4 Computation of More Precise Values of the Coordinates  of  the  Inter- 
section P o i n t  

A t  this point,  analytic  expressions have been obtained  for  the  coordi- 
nates  along the intersecting M-line segment i n  terms  of s ,  the  arc  length 
along  the segment (equation  (7.1.2)) and for  the  coordinates on the  surface 
of the  element i n  terms  of the  parametric  variables u and w (equation 
(8.3.6)).  Designating  points on the surface by the  subscript s and points 
on the  "line segment by the  subscript E, expressions have  been obtained 
for  xQ(s),  y,(s), zQ(s) .  x S ( u , w ) ,  ys(uyw), and zs(u,w). A t  the  intersec- 
tion  point 

(8.3.20) 

Equation (8.3.20) represents a system of  three  simultaneous  nonlinear equa- 
tions i n  the three unknowns (u,w,s) .  

The s o l u t i o n  of this system  of  nonlinear  equations  requires an i te ra t ive  
procedure which must s t a r t  from some estimate of the  solution. An estimate 
o f  the  solution, i n  terms of  the  coordinates of the  intersection  point 
(xi , yi , z i )  was obtained d u r i n g  the  searching  procedure  to  determine which 
"line segment intersects which element of the  intersected component. An 
estimate of s i  , the  arc  length  along  the M-line segment to  the  intersection 
point, was also  obtained. The coordinate  data must be used t o  determine esti-  
mates of the values o f  the u and w variables  at  the  intersection  point 
( u i  , wi ) . In the  present method , the two pl anar  subelements are  converted 
into a single  planar  element and the  values of u and w i n  the  planar 
element are  then  determined. The planar  element i s  formed  from the  three 
corner  points  defining  the  subelement i n  which the approximation to  the  inter- 
section  point i s  located and a fourth  point  obtained by rotating the other 
corner  point of the  original element  about  the  line  separating the two sub- 
elements u n t i l  i t  lies i n  the  plane of the  other  three  points. 
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The parametric  coefficients of a point i n  a planar  element bounded by 
s t ra ight   l ines  can be determined most easily be f irst  noting  that  all  coef- 
f ic ients  of second- and third-order terms i n  equation (8.3.6) must vanish 
and then by f i n d i n g  the  other  four  coefficients  directly from the  properties 
of the sides of the element. The resul t  i s  that  equation (8.3.6) reduces t o  

x(u ,w)  = x00 + (x10 - x00)u + (x01 -xoo)w + (x11 - x10 - x01 + XO&W 

(8.3.21) 
Equations for  the y and z coordinates have similar form. Given the 
values of x,y and z a t  a point,  equation (8.3.21) and the  corresponding 
y and z equations  constitute a system  of three  equations  for  the two 
unknowns ( u  and w ) .  The nonlinear term uw is  eliminated from each equa- 
tion and then one equation i s  added to  each  of the  other two equations  to 
resul t ,   f inal ly ,  i n  a system  of two independent linear  equations  for  the two 
unknowns. 

Given the estimate of the  variables (si , u i  , w i )  a t  the  intersection 
point, Newton’s method i s  used to  solve  the  nonlinear system (8.3.20). The 
process  generally  takes  only  four  or  five  iterations  to converge to an error 
i n  the  square-root  of  the sum of the  squares o f  the  variables of less than  

for  a typical  case. When solved,  si can be used i n  equation (7.1.2) 
and  the  corresponding  equations  for y and z to  obtain the coordinates of 
the  intersection  point.  Alternatively, u i  and wi could be used i n  (8.3.6) 
and the  corresponding y and z equations. 

8.3.5 Test Cases for  the  Intersection Method 

In order  to  verify  the  accuracy of the present method, a number of t e s t  
cases were run. These are  not examples of r ea l i s t i c   a i r c ra f t  components, b u t  
they were chosen because their   intersection curves can be analytically  deter- 
mined. Figure  18 shows a relatively simple  case,  the  intersection  of two 
circular  cy\  inders, Using only  four  elements  to  represent each quadrant of 
each cylinder produces  remarkably good results.  There i s  no discernable d i f -  
ference between the  theoretical and the calculated  results  (to  the  scale 
plotted). This is  an especially  accurate  case  for any method, since  the 
intersecting  “lines  are  straight  l ines and the  elements on the  intersected 
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component  have cu rva tu re   i n   on l y  one d i rec t i on .  A more d i f f i c u l t  case, the  
i n te rsec t i on  o f  two spheres, i s  shown i n   f i g u r e  19. This case t e s t s   t h e   f u l l  
c a p a b i l i t y   o f   t h e   i n t e r s e c t i o n  method. The i n t e r s e c t i n g   " l i n e  segments a re  
c i r cu la r   a rcs .  The in te rsec ted  elements have curvature i n  both  d i rect ions and 
some of the  intersected  elements have zero-length  sides  ( i .e. , some elements 
are  t r iangular) .   Nevertheless,   the  present  method's  resul ts,   using 250 e le -  
ments on each sphere, a re   very   accura te ;   the   ca lcu la ted   in te rsec t ion .curve   i s  
o n l y   v e r y   s l i g h t l y   d i f f e r e n t   f r o m   t h e   t h e o r e t i c a l  one. Figure 20 shows the 
f i n a l   t e s t  case, t he   i n te rsec t i on   o f  two e l l i pso ids .   L i ke   t he  case o f   t h e  
two spheres, t h i s  case shows good resu l ts ,   us ing  250 elements  per  body. The 
method f a i l e d   t o   f i n d   i n t e r s e c t i o n   p o i n t s   f o r   t h e   " l i n e s   p a r a l l e l   t o   t h e  
x-axis i n   f i g u r e  20, since  these  "l ines meet the   in te rsec ted  component 
tangent ia l  ly. 

I n   o r d e r   t o   i l l u s t r a t e   t h e  method f o r  a conf igura t ion  more t y p i c a l  of 
a i r c r a f t   c o n f i g u r a t i o n s ,   f i g u r e  21 i s  included.  This shows a wing  intersect-  
i n g  a c y l i n d r i c a l   s e c t i o n   s i m i l a r   t o   t h e   m i d s e c t i o n   o f  a typical   fuselage. To 
g ive  the  in tersect ion  curve more character,  the  thickness  of  the  wing has  been 

greatly  exaggerated. 

7 - THEORETICAL  INTERSECTION CURVE 

CALCULATED INTERSECTION  POINTS 

J 

Figure 18. In te rsec t ion  method t e s t  case - i n t e r s e c t i o n   o f  two c i r c u l a r  
cyl inders  (s ide  v iew).  
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SIDE VIEW END VIEW 

THEORETICAL  INTERSECTION CURVE """ THEORETICAL  INTERSECTION CURVE 

0 CALCULATED INTERSECTION POINTS CALCULATED INTERSECTION  POINTS 

Figure 19. Intersection method test case - intersection o f  two spheres. 

Y 

Figure 20. Intersection method test case -intersection o f  two ellipsoids 
(side  view). 
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9.0 FINAL REPANELING OF COMPONENTS 

9.1 General Considerations 

The final major operation performed by the geometry package is the 
redistribution  of  points on a l l  components which intersect  other components. 
The point  spacing  requirements of the  potential-flow method for  intersecting 
bodies are  not  as well  understood as  those  forisolated  bodies. The accuracy 
of  surface-singularity  type methods i n  regions  near concave corners is  a 
matter  of dispute i n  two-dimensions (reference  10) and has not been exten- 
sively.studied i n  three dimensions. Some obvious  requirements can be identi- 
f ied,  however. One is  that  portions  of components  which fall  inside  other 
components should be eliminated,  or i n  certain  cases,  designated  as  extra 
s t r ips   o r  ignored  elements. Another i s  that  the  repanel i n g  should  not  cause 
abrupt changes i n  the element  spacing.  Therefore, the ent i re  component should 
be repaneled  to produce a smooth transition from the  paneling i n  the  region 
of the  intersection  curve  to  the  paneling i n  distant  regions,  rather t h a n  j u s t  
the  region o f  the  intersection curve  being  repaneled. I t  i s  also  possible 
that  future  potential-flow methods (such  as the method of reference 5) will 
require  the matching of  the  corners  of  the  elements  of  adjacent components to  
eliminate  or  at   least  reduce the  size of any gaps between elements. 

I t  i s  possible  to envis ion innumerable different types of intersections 
between bodies, each of which would have i t s  own special  paneling  require- 
ments. I t  i s  not possible  to develop a method sufficiently general to deal 
w i t h  them a l l .  However, plausible  paneling schemes can be developed for  cer- 
tain  frequently  occurring  configurations, such as wing-fuselage or wing-pylon 
cases,so  that  these  cases can be handled routinely. The present method 
divides  all components  which are  involved i n  intersections  into  three  distinct 
general  categories and provides  separate means of  dealing w i t h  each o f  them. 
A1 1 intersecting components (those wi t h  M-1 ines which pierce  other components) 
are  repaneled one way, w i t h  only minor variations (whether they  are l i f t i n g  
or  nonlifting).  Nonlifting  intersected components are repaneled differently,  
and l i f t i n g  intersected components are repaneled i n  a different way s t i l l .  
The methods used for  these  three  categories  are  described i n  the  following 
sections. 
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9.2 Intersecting Components 

Typical examples of intersecting components include  the wing i n  a wing- 
fuselage  case,  the pylon i n  a wing-pylon case,  the winglet i n  a wing-winalet 
case,  etc. A1 though a1 1 these examples are of 1 i f t ing  intersect ing components, 
they can also be n o n l i f t i n g  (struts, for example). L i f t i n g  and n o n l i f t i n g  
intersecting components are  repaneled i n  essent ia l ly  the same manner. There 
is  no redistribution o f  points  along  N-lines,  only a redistribution of N-lines. 
In every case, a new N-line  along  the intersection curve i s  added. If  the 
component is  of l i f t i n g  type and if  the  intersecting end of the component is  
designated  as having an extra   s t r ip ,  then  the  entire  area  inside  the  inter- 
sected component (from the  intersection curve to  the end N-line) is  made i n t o  
a single strip by eliminating  all  intervening  N-lines.  If  the component i s  o f  
n o n l i f t i n g  type, or i t  does not  have  an extra   s t r ip   a t   the   intersect ing end, 
then the port ion inside  the  intersected component i s  simply eliminated. In 
the simplest  cases, no other  redistribution of points or N-lines i s  necessary. 
In most cases, however, the  remaining  N-lines on the  exterior of  the component 
must be  moved i n  order t o  avoid i r regular i t ies  i n  the  widths o f  the  str ips.  
This is  done by simply scaling  the  specified  distances between N-lines by the 
fraction of the span of  the component  which l ies  outside  the  intersected 
component. To be  more precise,  the  specified  distances mentioned above are  
either  the normalized distances between the  planes of the N - 1  ines (for the 
planar-section mode of operation) or the  fraction of the  arc  lengths  along 
the  "lines (for the  arc-length mode o f  operation). The fraction of the span 
of the component  which l ies outs ide the  intersected component is the  fraction 
of  the  arc length a long  the  "line under consideration (for the  arc-length 
mode of operation) or the  fraction of the  arc  length  along  the f i r s t  M-1 ine 
of  the component (for the pl anar-section mode o f  operation). The numerical 
techniques  required t o  move the  N-lines i n  t h i s  manner involve  only  interpola- 
t i o n  procedures or  cubic  curve-plane  intersection  procedures which  were 
described i n  section 7 above. 

An example o f  the program capabilities  for  repaneling  intersecting 
components i s  shown i n  figure 22. Figure 22(a) shows a wing-fuselage  case 
w i t h  the elements  required for   the  ini t ia l  geometric  representation. In 
figure 22(b), the  isolated components  have  been repaneled,  the  intersection 



( a ) I N I T I A L  ELEMENT DISTRIBUTION 

.(b) ELEMENT DISTRIBUTION 
AFTER FINAL REPANELING OF WING 

Figure 22. Final  repaneling of intersect ing components -wing-fuselage  case. 
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curve has been made an N- l ine and a l l   e x t e r i o r   N - l i n e s  have  been r e d i s t r i b u t e d  
t o  produce a  smooth d i s t r i bu t i on .   I n   add i t i on ,   t he   a rea   i ns ide   t he   i n te rsec ted  
component  has  been made i n t o  an e x t r a   s t r i p ,   b u t   f o r   c l a r i t y   o f   p r e s e n t a t i o n ,  
t h e   e x t r a   s t r i p  has no t  been shown i n   t h e   f i g u r e .  

More complicated  cases, i n  which a  body i n te rsec ts  more than one o ther  

body , can a lso  be t rea ted  by t h i s  geometry  package. However, i n  these  cases , 
the   i n te rsec t i ng  body  must be d i v i d e d   i n t o  more than one  component. For 
example, i n   t h e  case of   the  wing- fuselage  wi th   t ip- tank shown i n   f i g u r e  23, 
the  wing i s  d i v i d e d   ( a t   f i f t y - p e r c e n t  semispan) i n t o  two  components,  an 
inboard component which  intersects  the  fuselage and  an outboard component 
which  intersects  the  t ip- tank.   Since  the same a lgor i thm was used f o r   d i s t r i -  
but ing  po ints  on the  N- l ines o f  each  component,  and s ince  po ints  on the  N-l ines 
o f  i n te rsec t i ng  components do n o t   g e t   r e d i s t r i b u t e d ,   t h e r e   i s  no mismatch i n  
the  elements a t  the  junct ion between the components.  Because of t h e   r e d i s t r i -  
bu t ion  o f  the  N-l ines, however, there i s  a smal l   d i f ference i n   t h e   w i d t h  of 
t h e   s t r i p s   i n   t h e   i n b o a r d  and outboard  portions o f  the  wing. Cases i n  which 
a  body completely  pierces  several  other  bodies can  be handled  by d i v id ing   t he  
i n t e r s e c t i n g  body i n t o  components i n  an obvious way. 

Figure 23. Fina l   repane l ing   o f   in te rsec t ing  components -wing-fuselage-t ip-tank 
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9.3  Nonlifting  Intersected Components 

Typical examples of nonl i f t i n g  intersected components include  the  fuselage 
i n  a  wing-fuselage  case,  the  tank i n  a  wing-tip-tank  case,  etc. The most common 
application is to  the  wing-fuselage  case.  Therefore,  the  repanel i n g  method i n  
this geometry package was conceived  primarily w i t h  fuselages i n  mind, b u t  i t  
should  also be useful  for  other  types  of  cases. 

Three options  are provided for  the  final  repaneling  of  nonlifting inter- 
sected components. The simplest  option i s  t o  do  no repaneling a t   a l l ,  i n  which 
case  the  final element distributions  are  as shown i n  figures 22 and 23. If this 
option i s  used, a  portion of the intersected component fa l ls   ins ide the inter-  
secting component. I f  the intersecting component is not  very  thick, an adequate 
potential-flow  solution may s t i l l  be obtained i n  spite of this .   I f  the inter-  
secting component covers  a  significant  area on the intersected component, then 
the  elements  inside  the  intersecting component should be designated  ignored  ele- 
ments (elements w i t h  no singularit ies and no boundary conditions).  Since  there 
i s  no repaneling, however, some elements  are  only  partially covered and the  deci- 
sion whether or  not  the  elements  should be ignored  requires some user judgment. 
For this reason, no  mechanism has been provided for  automatically  designating 
elements to  be ignored  elements on nonlifting  intersected components. If the 
user  desires  to use ignored  elements, he must repanel  the  configuration us ing  the 
geometry package, punch the  resulting  coordinates on cards, and terminate execu- 
tion of the program. Then  he must execute  the program a second time, u s i n g  the 
punched output from the  preceding  case  as i n p u t  data,  designating  the  ignored 
elements  himself w i t h  the  appropriate  flags, s k i p p i n g  the geometry package, and 
proceeding s t ra ight   to  the potential -flow calculations. 

W i t h  the f i r s t  option,  the  element  distribution on the intersected component 
is not  influenced by the  element  distribution on the  intersecting component. 
Experience w i t h  the method of  references  1 and 2 indicates  that  there is  no strong 
need to  repanel  fuselages is  most wing-fuselage  cases;  accuracy of the  potential- 
flow solution is usually  adequate u s i n g  a  distribution of elements  appropriate 
for an isolated  fuselage  case. However, i n  some cases even bet ter  accuracy is  
desired. Also the newer potential-flow methods, using surface  doublet d i s t r i b u -  
t ions,  may require  the  elimination  of the small  gaps which resul t  when the edges 
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of adjacent  elements are not carefully aligned. The second and third  options 
(both very similar) repanel nonlifting  intersected  components to produce element 
distributions  which depend strongly on the element  distributions on the inter- 
secting components. 

The calculations in both options  start by defining  a  leading-edge and a 
trailing-edge point on the intersection curve. The trailing-edge point is 
assumed to be the first  or last point on the intersection  curve, since this  curve 
is an N-line of the intersecting component and points on N-lines are input start- 
ing at the trailing edge, working around the perimeter, and ending back at the 
trailing edge. The leading-edge point is found by searching for the point on the 
intersection  curve which has the smallest projected distance in the axial direc- 
tion from the  front  of  the interesected component. Because of this,  nonlifting 
intersected  components  which are repaneled with one  of these two options must be 
input starting  at the upstream end, must have roughly  streamwise "lines, and 
must be paneled using the planar-section mode of operation. The axial direction 
is defined by the  direction  cosines of  the vector  perpendicular to the planes of 
the  N-lines. Planar  cuts are then  made through the leading and trailing-edge 
points on the intersection curve, perpendicular  to the axis of  the intersected 
component. The points of intersection of  these planes and the "lines of the 
intersected  component  define  new N-lines. All N-lines forward o f  the leading- 
edge point and all those  aft of the  trailing-edge point are then redistributed 
in a  manner similar to the redistribution of  the N-lines on intersecting  compo- 
nents. Forward of  the leading-edge point, this is done by scaling the projected 
distances in the axial direction  from  the front o f  the component by a factor 
equal to the ratio of  the distance from the front of  the component  to the leading- 
edge point and the distance  from the  front  of  the component to the first N-line 
aft of  the leading-edge point. Aft o f  the trailing-edge point, the redistribu- 
tion is done  the  same way, except that the back of  the component, the distance 
to the trailing-edge point and the distance to the  first N-line in front of the 
trai 1 i ng-edge poi nt are used. 

The two options  differ  only in the distribution of N-lines in the region 
between the leading and trailing-edge points on the  intersection curve. One 
of  the two options passes planar  sections  through each point on the inter- 
section  curve and uses the points of intersection o f  these planes and the 
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M-lines of the intersected component to  define new N-lines. T h i s  option can be 
used when  an element distribution w i t h  no gaps between adjacent  elements is  
desired. The other  option  passes  planar  cuts  through  every second point 
on the  intersection  curve,  starting w i t h  the  leading-edge  point and working 
a f t  on both upper and lower surfaces of the intersection  curve.  Since each 
surface may contain  either an even or  odd number of  points, i t  i s  possible 
that  planes will be passed  through two consecutive  points a t  the back of  the 
intersection  curve. T h i s  option can be used when gaps between adjacent 
elements can be tolerated, b u t  i t  is  desired  to keep their   size  fairly  small .  

Having redistributed  the N - 1  ines , i t  is next necessary  to redistribute 
the points on each N-line. The method for  doing this is the same for  both 
available  options. First, a search of the N-line  passing  through  the  leading- 
edge point on the intersection  curve is  conducted to f i n d  the  point  closest 
( i n  arc  length  along  the  N-line)  to  the  leading-edge  point. T h i s  point i s  
moved to  coincide w i t h  the  leading-edge p o i n t .  The other  points on this 
N-line  are  redistributed i n  a manner  which  makes the resulting arc-length 
distribution  reasonably smooth  and similar to  the  previous  distribution. For 
points on the N-line  before  the  point  closest  to  the  leading-edge  point on 
the  intersection  curve, this i s  done by scaling  the  arc l e n g t h  along  the 
N-line by a factor equal to the rat io  of the arc  length  to  the  leading-edge 
point and the  arc  length  to  the  point  closest  to  the  leading-edge  point. For 
points on the  N-line after  the  point.   closest   to  the leading-edge  point,  arc 
lengths  are  scaled  the same  way, b u t  us ing  arc  lengths from the  other end of 
the N-line. Having determined the  arc-length  distribution of the  redistributed 
points, the coordinates  are found by the same interpolation  procedure  described 
i n  section 7.1. Points  are  redistributed on N-lines  forward of the leading- 
edge point us ing  the same arc-length  distribution  as on the N-line which 
passes  through this point. Between leading-edge and trailing-edge  points, 
points on N-lines are  redistributed i n  a similar manner by scaling  the  arc 
lengths by a factor determined from the  ratio o f  the  distances  to  the  inter- 
section  point and to the point on the same M-1 i ne as the point  cl  osest t o  the 
leading-edge  point. Aft o f  the trailing-edge  point,  points on a l l  N-lines 
are  redistributed us ing  the same arc-length  distribution  as  the  redistributed 
points on the N-1 ine  passing  through the t r a i  1 ing-edge point. Because the 
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N-lines th rough  the  intersection  points between the  leading- and trailing-edge 
points  are broken by the  intersection  curve, i t  is  necessary t o  break the 
component i n t o  more than one component. Presently,  the program breaks the 
component in to  four  smaller components , one forward o f  the  leading-edge p o i n t ,  
one  below the  intersection  curve, one  above the  intersection  curve, and one 
a f t  of the  intersection  curve. 

A typical example o f  the  results of this  repaneling method is  shown i n  
figure 24. This  case shows a  wing-fuselage w i t h  the wing a t  zero  incidence, 
located  slightly above the axis of the  fuselage. In this  case, use has been 
made of the opt ion  which passes an N-line through every p o i n t  on the  inter- 
section  curve.  Figure 25 shows a similar  case,  .using  the same option. In 
this  case, however, the wing has ten  degrees of incidence,  illustrating  the 
p o i n t  t h a t ,  for such cases,  the  present method bunches points below the 
intersection curve and spreads them out  above the  intersection  curve. In  
extreme cases,  this may resu l t  i n  an unacceptable  .element distribution w i t h  
many elements bunched t i g h t l y  near the bottom of the component and very few 
elements  near  the top .  However, most cases  will probably be  much less 
extreme than the one  shown, for which the  element dis t r ibut ion  is  adequate. 
Figure 26 shows a wing-fuselage  case  similar t o  the one o f  figure 24, b u t  
w i t h  the wing located a t  the same level  as  the  axis of the  fuselage. In this  
case,  the opt ion  which passes  N-lines through every second p o i n t  on the 
intersection curve has  been used. 

9.4 L i f t i n g  Intersected Components 

The most common example of a 
i n  a wing-pylon o r  wing-with-strut 

As i n  the  case of nonlifting 
are  treated  three  different ways. 

l if t ing  intersected component i s  the wing 
case. 

intersected components, l i f t i ng  components 
Again, the  simplest opt ion  i s  t o  do no 

repaneling a t  a1 1.  In this  case, p a r t  of the  intersecting component covers a 
port ion of the  surface of the  intersected component and the remarks of sec- 
t i o n  9.3 concerning  accuracy of the  solutions,  the  desirability of using 
ignored  elements, and the mechanism for generating them again  apply. 
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TOP VIEW 

SIDE VIEW (fuselage only) 

Figure 24. Final repaneling of nonlifting intersected components - wing-fuselage 
case (zero-incidence wing, N-lines through  every point o f  intersec- 
tion curve). 

SIDE VIEW (fuselage only) 

Figure 25. Final repaneling of nonlifting intersected components -wing-fuselage 
case (wing with 10" incidence, N-1 ines through every point on inter- 
section curve). 
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TOP VIEW 

SIDE  VIEW 

Figure 26. Final  repaneling of nonlifting  intersection components -wing-fuselag: 
case  (zero-incidence wing, N-lines  through  every other  point on 
intersection  curve). 

In  some cases  the  intersecting component covers a significant  portion  of  the 
surface of the  intersected component, indicating a need for  the use o f  ignored 
elements, b u t  the  paneling of the  intersected component is  so coarse  that  large 
gaps would  be created by the i r  use. The geometry package provides an option whic; 
greatly  reduces  the  size of these gaps.  In this option a search is  conducted t o  
f i n d  the  points on the  intersection  curve having the minimum and  maximum projectel 
distance i n  the  axial  direction on the  intersected component  from the f i r s t  point 
on the f i r s t  N-line of the component. The intersected component  must  be paneled 
using  the  planar-section mode of  operation  for this calculation t o  be performed. 
The axial  direction  is  defined by the  direction  cosines of the  vector  perpendic- 
ular  to  the  planes of the  N-lines. New N-lines  passing  through  the minimum and 
maximum points on the  intersection  curve and lying i n  planes  perpendicular  to  the 
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axial  direction  are t h e n  created. The N-lines on ei ther  side of the intersection 
curve are  redistributed i n  a smooth  manner us ing  the same procedure as the  redis- 
tribution  of  N-lines upstream and  downstream of the  intersection  curve on a non- 
l i f t i n g  intersected component. No redistribution o f  points on the  N-lines i s  
performed. The elements  covered by the  intersecting component are  automatically 
designated  as  ignored  elements by the geometry package and i t  is possible t o  
proceed direct ly   to  the potential-flow  solution  without  checking  or changing the 
results of  the geometry package. Figure 27 shows the results of this repaneling 
option  for  the wing i n  a wing-pylon case. 

When more accuracy i n  the  region of the  intersection curve is desired, 
a t h i r d  option can be used, resulting i n  no gaps between elements. T h i s  
option first repanels  the  intersected component i n  a manner nearly  identical 
to  the one described above. The only  difference is  that  the  N-lines imnedi -  
a te ly  on ei ther   s ide of the  intersection curve do not  actually  pass through 
any o f  the  points on the  intersection  curve.  Instead, each is offset  a 
distance equal to  the thickness of the intersecting component (projected i n  
the  axial  direction). The elements covered by the  intersecting component are 
again  designated  to be ignored  elements. Now the method adds a new nonlifting 

Figure 27. Final  repaneling o f  l if t ing  intersected components -wing-pylon case. 
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component w i t h  elements  designed t o  f i l l  i n  the gaps  around the  intersection 
curve. The  new component  has only one strip (two N-lines). One of  the 
N-lines  coincides w i t h  the  intersection  curve. The other N-1 ine  follows  the 
boundaries of the  quadrilateral  region  containing  the  ignored  elements. 
Figure 28 shows the  resulting element distribution for a case w i t h  very sparse 
p o i n t  spacing on the  pylon. Because o f  the  correspondence o f  the numbers of 
points on the pylon and on the  boundaries o f  the  region  containing  the  ignored 
elements,  the  paneling produced only  quadrilateral  elements  (except a t  the  lead- 
ing and t r a i l i n g  edges of the  pylon). I f  the numbers do not  correspond  as i n  
figure 28, then one or the  other of the  N-lines on the new component contains 
repeated  points and t r iangular  elements are produced. Points  are  repeated i n  
such a way t h a t  the  length of  each "line on the new component is minimized. 
Figure 29 shows a case having more points on the pylon than on the  boundaries of 
the  region  containing  the  ignored  elements, showing the  repeated  points on one 
N-line and the  resulting  triangular  elements. 

N-lines which bound extra  strips  falling  inside  another component are n o t  
moved dur ing  the  repaneling of l i f t i n g  intersected components. Because o f  t h i s  
and because none of the  options  described above in this  section changes the 

BOlTOM VIEW 

REGION  CONTAINING 

Figure 28. Final repaneling of l if t ing  intersected components - wing-pylon case 
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BOTTOM VIEW 

REGION  CONTAINING 
IGNORED ELEMENTS AND 
EXTRA NONLIFTING ELEMENTS 

Figure 29. Final  repaneling of l i f t i n g  intersected components -wing-pylon case 
(more points on pylon than  surrounding  region on wing).  

point  distributions on N-lines, the  repaneling of a l i f t i n g  intersected compon- 
ent does nothing  to  destroy any  match-up of the  elements  along  the  curve  of  inter- 
section  of  the component w i t h  another component  which i t  pierces.  Therefore, one 
component can play  the  role  of both an intersected and  an intersecting component 
(although one component cannot intersect or be intersected by more than one 
other component). Figure 30 shows the  final element distribution  for a wing- 
fuselage-pylon  case. In this case,  the wing and pylon were f i rs t  repaneled  as 
intersecting components; t h e n  the fuselage and the wing were repaneled  as inter- 
sected components. 
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Figure 30. F ina l   e lement   d is t r ibut ion  on a  wing-fuselage-pylon  case. 
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10.0 CONCLUSIONS 

The geometry package described above provides a m a n s  for significantly 
reducing the effort required to prepare the input data for three-dimensional 
potential-flow calculations. Data may be input to the program using either 
the original input format of reference 4 or the  format of reference 5. 
Geometric input data generally consists of  the coordinates of sets of sparsely 
defined points. In most cases, the nunJ>er of points input can be at least an 
order  of magnitude less than the number of points required for the potential- 
flow calculations. Each component of the configuration is automatically 
paneled using one of several a1 gori thms provided by the method. The number of 
algorithms provided and the generality of some of them provide the user with a 
great deal of flexibility in determining the character of the resulting element 
distributions. Curves of intersection of components are automatically calcu- 
lated and all intersecting components are repaneled in a  suitable  manner for 
the potential-flow calculations. In many cases the  potential-flow  calculations 
can be performed in the same  computer run as  the geometry package calcula- 
tions, without interruption. To  allow for intermediate checking, however, and 
to provide for those cases which cannot be  run completely  without  interruption, 
provision has been made for  the punched output of the defining coordinate data 
at each stage of the geometry calculation in a  format  suitable for reinput to 
the program. 
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