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3.0 SUMMARY

The preparation of geometric data for input to three-dimensional potential-
flow programs is a very tedious, time-consuming (and therefore expensive) task.
This report describes a geometry package that automates and simplifies this
task to a large degree. Input to the computer program for the geometry pack-
age consists of a very sparse set of coordinate data, often with an order of
magnitude fewer points than required for the actual potential-flow calculations.
Isolated components, such as wings, fuselages, etc. are paneled automatically,
using one of several possible element distribution algorithms. Curves of inter-
section between components are calculated, using a hybrid curve-fit/surface-fit
approach. Finally, intersecting components are repaneled so that adjacent
elements on either side of the intersection curves 1line up in a satisfactory
manner for the potential-flow calculations. The geometry package has been
incorporated into the NASA Langley version of the 3-D 1ifting potential-flow
program and it is possible to run many cases completely (from input, through
the geometry package, and through the flow calculations) without interruption.
Use of this geometry package can significantly reduce the time and expense
involved in making three-dimensional potential-flow calculations.



4.0 INTRODUCTION

With the advent of modern high-speed computers, the aerodynamicist
gained the ability to study the effects of configuration changes in great
detail. Whereas before he might have been able to estimate the effects of
changes in such gross geometric parameters as sweep and aspect ratio on the
total 1ift of an isolated wing, he now can accurately calculate the effects
of changes of quite small details of the shape of very complex configurations
(wing-fuselage-nacelle-pylon cases, for example) on not only 1ift but also on
spanwise and chordwise load distributions, local pressures, flow angles, etc.
This gain in computational ability has made the preparation of input data for
describing configuration geometry a very tedious, time-consuming task. General
three-dimensional potential-flow programs, such as the Hess program,
(references 1 and 2) require the geometry to be input as the coordinates of
sets of points, which are grouped to form quadrilateral surface elements.
Many more elements are generally required to obtain accurate flow solutions
than the number required for adequate pictorial representation. For example,
the simple trapezoidal wing of figure 1, which can be represented fairly
accurately by twenty or so elements, requires on the order of two hundred
elements to obtain a reasonable flow solution. More complex configurations,
such as the wing-fuselage case of figure 2, might use nearly a thousand. A
case which was recently run by personnel of NLR, Amsterdam, using 1780
elements to represent an external-store configuration is shown in figure 3
(reference 3).

There is a clear need to automate as much as possible the preparation of
the input coordinates, both in order to reduce the number of points input to
the programs and in order to relax some of the restrictions on how the points
must be distributed. The main difficulty in doing this is that there are so
many logically different cases to consider. For example, a wing has different
spacing requirements than a fuselage; a fuselage has different requirements
than a nacelle, or a pylon, etc. Moreover, bodies of similar type may require
different numbers and distributions of points due to the proximity of other
bodies. If there are intersections between bodies, additional requirements
are imposed on the point distributions. A geometry package must be very
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Figure 2. Typical element distribution for a wing-fuselage case.



Figure 3. Surface elements used by NLR, Amsterdam, for an external store
configuration (1780 elements).

very flexible to apply to so many different cases, but it should not be so
flexible that it becomes cumbersome to use.

This report describes a geometry package developed for use with the
potential -flow program of references 1 and 2 and for extensions of the method
which may replace it in the future. Since the requirements of future pro-
grams are mostly speculative at the present, compatibility with the present
program is emphasized.

The geometry package has been incorporated into the NASA-Langley version
of the potential-flow program. This program accepts input either in the
original input format described in reference 4 (with minor modifications) or
in the format of the program described in reference 5. With a small amount
of additional input to control the geometry package, it is possible to run
a number of frequently occurring cases completely without human intervention.
For example, isolated wings or bodies may be input to the program with a
minimum number of points and the geometry package will augment and redistribute
the points to the number and distribution specified by the user. These
coordinates can then be punched on cards for use with automatic plotting
programs to inspect the results before proceeding, or the potential-flow
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program can proceed immediately to analyze the flow. Options are provided to
allow the user to tailor the distributions to the needs of his particular
problem, so it should also be possible to run cases having multiplie non-
intersecting wings or bodies with no human intervention. More difficult
cases, involving intersecting components, can also be treated by the geometry
package. Some of the simpler cases involving only two components, such as a
wing/fuselage case, can also be run completely without intervention, but more
complex cases almost certainly should be checked before proceeding with the
flow calculation. Some cases cannot be completely handled by the geometry
package, but in these cases, use of the geometry package to augment the point
distributions and to calculate intersection curves still results in a
significant reduction in the effort required to prepare the coordinate data.
An outline of the major features of the geometry package is given below.

0 Significant reduction in effort required to input a case to the
potential -flow program.

0 Two separate modes of program input available.

o} Complete compatibility with the potential-flow program — allowing many
cases to be run completely without interruption between the geometry
package calculations and the potential-flow calculations.

) Paneling of isolated components

] Allows very sparse input coordinate data.

o} Provides output coordinate data suitable for potential-flow
analysis.

0 Uses independent cubic curve-fits for interpolation in two
directions on surfaces (N-lines and M-lines).

) Provides six options for the point distributions on N-1ines
and four options on M-lines.

0 Allows all N-Tines on a component to 1ie in parallel planes,
if desired.

o Calculation of intersection curves
0 Requires a distinction between intersecting and intersected
components.



Intersecting components represented by their M-lines only.

o Intersected components represented by three-dimensional surface
fits.

s Intersection curves defined by arrays of intersection points
between the M-lines of the intersecting components and the fitted
surfaces of the intersected components.

0 Repaneling of intersecting and intersected components

0 Intersection curve made an N-line of the intersecting component.

0 Other N-lines on intersecting component shifted to restore a
smooth distribution.

) Extra strip inside intersected component automatically generated,
if desired.

0 Intersected components repaneled to insure that elements on
adjacent components line up along the intersection curves.

0 Simpler repaneling options also provided.

The remainder of this report documents the theory and operation of the
geometry package. Section 6 defines the geometric terms used in the later
sections and discusses the basic philosophy of the geometric input to the
method. Section 7 describes the paneling of isolated, non-intersecting
components, including the options available, the applicability and limitations
of the options, user requirements, methods used, and sample results. Section
8 covers the method of calculating curves of intersection between components,
including the theory, restrictions, and verification cases. Finally,
section 9 describes the methods that have been provided for repaneling
components after having calculated the curves of intersection between them.



M-1ine

N-1ine

5.0 SYMBOLS

Matrix of surface-fit coefficients in algebraic form.
Coefficients of the equation of a plane.

Algebraic surface-fit coefficients.

Local value of the chord of a component.

Straight-1ine distance between adjacent points on a curve.
Also used for the distance from a point to a plane.

Functions used to express a cubic curve in terms of the functional
values and first derivatives at the ends of the curve only.

Dummy variable used to express the general form of a function used
with several different variables.

Matrix of surface-fit coefficients in geometric form.
General subscript used in a variety of ways.

Parameter used in specifying the distribution of N-lines on a
component.

Curvature at a point on a curve.
Subscript denoting variables associated with a 1ine or curve.

Matrix of constants used in converting surface-fit coefficients
from gecmetric to algebraic form.

Curve on a component, generally running spanwise on lifting
components and in the axial direction on nonlifting components.

Total number of defining points on a curve.

Curve on a component, generally running chordwise on 1ifting
components and in the circumferential direction on nonlifting
components.

Total arc length of a curve.

Normalized point number of the point having index 1.

Arc length along a curve.



Arc lengths at béginning and end of a curve.
Subscript denoting a surface.

Superscript denoting the transpose of a matrix.
Parameters used in calculating surface fits.

Coordinates of a point in a Cartesian coordinate system. Also
subscripts referring to these coordinates.

Angle around a circle circumscribed about an airfoil section, used
in determining the cosine point spacing distribution.

Angle of a curve at the defining point having index 1.

Angle of a straight-line segment of a curve beginning at the
defining point having index 1.



6.0 NOMENCLATURE AND ARRANGEMENT OF INPUT POINTS

Before describing the geometry package itself, it is necessary to
discuss the general scheme for inputting points and for ordering the elements
that they form and to define some of the terms which are used frequently
throughout the remainder of the report. Most procedures and definitions are
identical to those described in references 1 and 2, but some (for example,
the definition of "ignored elements") have been changed slightly. Reference
should be made to figure 4 to clarify the discussion which follows.

STRIP ON
INTERSECTED
COMPONENT

N-LINES ON
INTERSECTED
COMPONENT

M-LINES ON
INTERSECTED
INTERSECTING
COMPONENT
ELEMENT ON ELEMENT ON

INTERSECTING INTERSECTED
COMPONENT COMPONENT
N-LINES ON
INTERSECTING
COMPONENT

M-LINES ON
INTERSECT ING
COMPONENT

Figure 4. Definition of frequently used terms.



A complete configuration (such as a wing-fuselage-nacelle-pylon case)
is assumed to be constructed of a number of components, each of which is a
set of associated points. Normally a single component is used to represent
a complete body (such as a wing or a fuselage), but any number of components
per body is allowed. There are two types of components — nonlifting and
lifting. Nonlifting components, such as fuselages or other blunt-ended bodies,
are represented by source distributions over their surfaces and hence have no
circulation. Lifting components, such as wings or other bodies with sharp
trailing edges, are represented by both surface source and dipole distribu-
tions. Circulation about any section of a 1ifting component is adjusted in
such a way as to satisfy the trailing-edge Kutta condition. Lifting
components also have associated dipole sheets which represent trailing vortex
wakes. Points on the wakes must be input to the program, as well as points
on the bodies, and are considered to belong to the same components as the
associated body points.

Each component consists of a set of points which can be connected in
such a way as to form a network of intersecting lines called N-lines and
M-1ines. N-Tines on lifting components are the lines running approximately
in the chordwise direction. They divide a wing, for example, into a number
of distinct sections. M-lines are the lines connecting corresponding points
on the N-1ines. On nonlifting components N-lines are generally those
surrounding the major axis of the body (if it is possible to define an axis
at all). In principle, the roles of the N-lines and M-lines on nonlifting
components can be reversed without adversely affecting the execution of the
program, but in most portions of the geometry package, it is assumed that the
N-Tines play the role described above. The potential-flow program does not
require that all N-lines on nonlifting components have the same number of
points. However since having variable numbers of points per N-line makes it
impossible to define M-Tlines, most applications of the geometry package require
each N-line to have the same number of points as each other N-line and each
M-line to have the same number of points as each other M-line. N-lines may
not cross other N-lines (though they may touch at a point); M-lines also may
not cross other N-lines (though they may also touch at a point).
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Points must be ordered so that all points on the first N-Tine (inclyding
wake points after the body points for Tifting components) are input con-
secutively, followed by all points on the second N-l1ine and so on. The first
N-1ine input may be the one at either extreme of the component, but the
choice determines the order of input of points along the N-lines. In general,
the order must be such that the negative of the cross product of the vector
from one point on an N-line to the next point on the N-1ine with the vector
from a point on the N-line to the corresponding point on the next N-Tine results
in a vector which is directed to the exterior of the component. This requirement
may be satisfied on a wing, for example, by ordering the N-lines from tip
to root and ordering points on the N~Tines from the trailing edge along the
lower surface to the leading edge and back along the upper surface to the
trailing edge. On a fuselage the requirement is satisfied by arranging the
N-1ines from front to back and the points on each N-line increasing counter-
clockwise (looking aft). The requirement is also satisfied by reversing both
the order of the N-lines and the order of the points on the N-lines. However
parts of the geometry package require that N-lines on fuselages start at the
front of the body, or more generally, that N-Tines on nonlifting components
start at the end farthest from the first M-Tine of any other components which
intersect the component.

The area between adjacent N-lines on a component is designated a strip.
Each strip on a 1ifting component has one characteristic value of the dipole
distribution and one location where the Kutta condition is satisfied. On
1lifting components, it is possible to specify that a strip have a dipole
distribution but no source distributions and no boundary conditions on any
of its elements. Such a strip, called an extra strip, is useful for avoiding
the abrupt ending of a dipole sheet (which would result in a concentrated
vortex) along the curve of intersection of two components and for controlling
the behavior of the dipole sheet near wing-tips when the piecewise linear
vorticity option is used. Refer to reference 1 for more details.

The area (generally quadrilateral) between adjacent M-lines on a strip
is termed an element. Each element has one control point where the boundary
conditions are satisfied and one characteristic value of the source

11



distribution. It is possible to designate some elements to be ignored elemerits.
These elements do not have source distributions and no boundary conditions
are applied to them. If the component is 1lifting, ignored elements do have
dipole distributions, however. References 1 and 2 allow for ignored elements
to be defined only for lifting components, but this restriction has been
lifted in the present program.

12



7.0 PANELING OF ISOLATED COMPONENTS
7.1 General Features of the Paneling Method

The first operation performed by the geometry package is to panel
(i.e., distribute the elements) the components as isolated bodies, whether or
not any of them intersect. Although the resulting element distributions on
intersecting components may not be useful for analyzing complete configu-
rations, they serve as a starting point for determining the final distributions
as well as allowing a configuration "build-up" to be performed (i.e., the
successive addition of components can be performed, in order to determine
interference effects). It is assumed that each component is completely
independent of all others. Since a single body may be composed of more than
one component, however, and since the close proximity of another body may
modify the element spacing requirements of a component, it is not always true
that individual components are completely independent. Sufficient flexibility
has been designed into the paneling method to allow points to be matched where
components meet (making their M-lines continuous) and to allow the user to
specify whatever distribution he deems appropriate to account for the
proximity of other components.

The paneling of an individual component is accomplished in two steps.
First the points on the initial N-lines are augmented in number and redistri-
buted according to the number and the spacing algorithm specified by the user.
For this calculation, the N-lines must be roughly chordwise on 1ifting
components and, if the later repaneling of intersected components is required,
the N-lines must be roughly circumferential about an axis on nonlifting
components. Points in the wake of an N-line of a 1ifting component are
distributed independently of the body points. Provision has been made to
allow the user to input different numbers of points on the initial N-lines
of a component. The process of redistributing points along the N-lines makes
the numbers of points equal, thus allowing M-lines to be formed. The second
step is to augment and redistribute the N-lines according to the number and
algorithm specified by the user. This is done by augmenting and redistributing
points along each M-line.

13



The process of redistributing points along either N-lines or M-lines
requires a method of interpolating along general curves in space. Since
these curves (particularly the N-lines) are not usually monotonic in either
XsY, Or z coordinates, some other parameter must be used as the independent
variable of interpolation. In the present method, the parameter chosen is
the arc length along the polygon formed by connecting straight-lines between
adjacent points. In the remainder of this report the term "arc length"
always refers to this straight-line approximation. Interpolation for a point
on a curve requires three separate interpolations, one for each coordinate,
Each separate interpolation is accomplished in two steps. In the first step,
numerical differentiation of the dependent variable with respect to the arc-
length is performed at each defining pointon the curve. In the second step, the
values of the function and its derivatives at the ends of the segments of the
curve are used to derive the coefficients of cubic interpolating polynomials.

The numerical differentiation is done using a "weighted-angle" approach
(see figure 5). In this approach, the lengths (d;) and angles (emi) of
straight-1ine approximations to segments of the curve are first calculated.
The angle at the midpoint of each segment is assumed to equal the angle of
the straight-line approximation to the segment. The angle at any of the
given points on the curve (65) is then determined by taking an average of the
angles of adjacent segments, weighted by the distances to the midpoints of the
segments,

83 = (d; omy_q + di_; o)/ (d + diy) (7.1.1)

Angles of the first and last points on a curve are determined by extrapolation,

assuming constant curvature between the first two and last two points. The
derivatives at the given points are then found by taking the tangents of the

calculated angles.

In order to facilitate the treatment of components having sections
bounded by straight lines, such as a wing with a kink in its trailing edge
or a fuselage with a cylindrical midsection, a multisection component option
is provided in the numerical differentiation procedure. With this option,

14



f(s)

Figure 5. Illustration of numerical differentiation procedure.

the curve is divided into several sections. At the ends of the sections,
extrapolations are used to determine the derivatives, just as they are at the
ends of the complete curve. Sections consisting of just two points are
represented by straight lines. The slopes of these straight Tines then
determine the derivatives at the ends of adjacent sections.

The values of the function and its derivative at each end of a curve
segment constitute four pieces of information which can be used to determine
the coefficients of a cubic polynomial approximating the curve. The form of
the polynomial is

F(S) = £(So) + (S - So) F'(So) + 3{S - Sg)% F'(S,) + §{S - So)° £'** (o)

(7.1.2)

where S 1is the independent variable (arc length ranging from values Sg
to Sy, f represents the dependent variable (x, y, or z coordinates), and
primes denote differentiation. The form of its derivative is

£1(3) = F'(So) + (S - Sp) F(Sy) * 3 (S = S0) £'''(5,) (7.1.3)

15



Given the values of f and f' at So and Sy, the simultaneous solution
of equations (7.1.2) and (7.1.3) yields the values of f"(So) and f"'(SO).
Equation (7.1.2) can then be used to determine the value of the function f(S)
at any value of S within the given curve segment.

This curve-fit method does not insure continuity of the second deriv-
ative of the function and thus is not a cubic spline fit in the usual sense
(reference 6). It was chosen rather than a spline method because of ‘its
consistently superior results in several test cases. For example, figure 6
shows a comparison between this method and a true cubic spline method.

The interpolated coordinates found by the present method are considerably
less wavy than those calculated using the spline method. Both methods
fail to represent the shape accurately in the after region of the body,
because of the higher local curvature and the proximity of the ends of the
curve. Other comparisons involving airfoils and more general shapes also
showed smoother results for the present method than the spline method, in

+ INPUT POINTS
INTERPOLATED POINTS (PRESENT METHOD)

g INTERPOLATED POINTS (SPLINE METHOD)

Figure 6. Comparison of curve-fit methods.
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spite of the alleged proof in reference 6 that, in general, a spline produces
the smoothest of all possible curve fits. The contradiction of this proof
may possibly be due to the unusual character of the independent variable (it
being defined as a quantity which varies smoothly along a nonsmooth curve)

or it may be due to the presentation of the results by a graph of one
interpolated result (the z-cocrdinates) as a function of other interpolated
results (the x-coordinates). '

7.2 Distribution of Points Along N-Lines

Each of the options for distributing points along N-lines (except the
trivial option of leaving the initial distribution unchanged) requires an
array of normalized arc lengths which applies to every N-line of the com-
ponent under consideration. The formulas for these arc-length distributions
are given below. Given the specified distributions, the method calculates
the distribution on each initial N-line and interpolates each coordinate
independently to determine the values at the desired locations. In some
cases all points on an N-line coincide (as at the end of a pointed body, for
example). Then the method does not attempt to interpolate, but simply
provides the specified number of points to that N-line. The following options
are available for distributing points on N-lines:

1. Input distribution, unaltered
Input distribution, augmented in number
Constant increments in arc length
Constant increments on the superscribed circle (cosine spacing)
Curvature-dependent distribution
User-specified distribution

[=2 TS L N - T FURN )
e e & 8

7.2.1 Input Distribution, Unaltered

With this option the method does no interpolation. It should be used
whenever the initial distribution already contains a sufficient number of
properly spaced points. If the N-lines of the component under consideration
are to be redistributed, or if the component is involved in an intersection with
another component, then the number of points input must be the same on each
component of the N-line. In addition, the distribution of points on adjacent
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N-lines should be fairly similar so that when corresponding points on N-lines
are connected, the resulting M-lines make smooth curves. This is the only.
option which may result in different numbers of points and different
distributions of points among the N-Tines of a component. Although no
interpolations are required, some calculations are still necessary to deter-
mine the derivatives with respect to arc length of the coordinates at each
point on each N-line. These are needed in later calculations to determine
intersection curves.

7.2.2 Input Distribution, Augmented in Number

This option results in a distribution which is similar to the initial
distribution, but contains a different number of points. The initial distri-
bution used in the calculation is the distribution for the first N-line on
the component, unless all points coincide on the first N-Tine. In that case
the distribution on the second N-l1ine is used. The method works by defining
a "normalized point number", p;j» ranging from zero to one,

p; = (G -1/ (N-T1) (7.2.1)

where 1 1is the index of the point and N is the total number of points.
Arrays of normalized point number are formed for both input and output dis-
tributions. The output arc-length distribution is determined by interpolating
the curve of input arc length versus input normalized point number to the
output values of the normalized point number. This procedure is illustrated
in figure 7. Suitable cases for this option include both 1ifting and non-
1ifting type components. It is especially useful for precisely controlling
the desired distribution without having to load a large number of points and
without having to determine in advance what the numerical values of the

arc lengths are. Typical results for a section of a supercritical wing are
shown in figure 8.
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Figure 7. Method of distributing points on an N-1ine — input distribution
augmented.

+ INPUT POINTS (N = 15) © OUTPUT POINTS (N = 25)

Figure 8. Point distribution on a supercritical wing section — input distribu-
tion, augmented.
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7.2.3 Constant Increments in Arc Length

This option results in points distributed uniformly according to the
formula

Si/P = (i -1)/(N-1) - (7.2.2)

where S 1is the arc length measured from the first point and P is the

total arc length around the perimeter of the N-line. It should be used for
smooth bodies which do not have large variations in curvature (for example,
the cylindrical fuselage section illustrated in figure 9. It should usually
not be used for wing sections, since, for a reasonable number of points, there
would be too few points to accurately define the shape near the leading edge
or other high-curvature regions and too coarse spacing at the trailing edge
for the Kutta condition to be accurately applied.

Figure 9. Point distribution on a cylindrical fuselage section — constant
increments in arc length.

7.2.4 Cosine Spacing

Cosine spacing is a commonly-used distribution, dating from some of the
classical two-dimensional theories (reference 7). Its name derives in an
obvious way from the usual formula for the spacing
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x;/c = % {1+ cos[(i - 1)n/(N - D]} (7.2.3)

where c¢ is the chord, which is assumed to be parallel to the x-axis. The
significance of this method, as illustrated in figure 10, is that points are
chosen having the x-coordinates corresponding to equal increments in angle
around a circle circumscribed about the N-Tine with leading and trailing edges
touching the circle. This results in very fine spacing near leading and
trailing edges and coarse spacing in regions away from these edges. It is a
useful distribution option for wing sections but would probably not be

commonly used for nonlifting components.
EQUAL INCREMENTS OF
A\\yARC-LENGTH ON CIRCLE

Figure 10. Method of distributing points on an N-Tine — cosine distribution.

Equation (7.2.3) is not directly useful for determining the specified
arc-length distributions which the method of this geometry package requires.
To do this, the wing section is first scaled to unit chord, translated to
put the origin of the coordinate system at the leading edge, and rotated to
make the chord parallel to the x-axis. The angle (B8) about the superscribed
circle is then calculated for each point on the N-1ine by solving the equation

xj/c = %-(1 + cos B) (7.2.4)
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using the transformed values of the x-coordinates. The arc-length distribution
corresponding to the input points is also calculated. For both the angle and
arc-length calculations, only the first N-1ine on a component is used (unless
its length is zero, in which case the second one is used). Given the values

of the arc-length distribution and the angle distribution for the input
coordinates, and the desired values of the angle distribution for the output
coordinates (uniform increments), the arc-length distribution for the output
coordinates is determined by interpolation.

Results of this option for the same supercritical wing section used
previously are shown in figure 11.

Figure 11. Point distribution on a supercritical wing section — cosine
distribution.

7.2.5 Curvature — Dependent Distribution

The accuracy and computational efficiency of the potential-flow method
are both improved by using fine spacing in regions of high curvature and
coarser spacing in regions of low curvature. This option produces a point
distribution which depends on the curvature distribution along the first
N-line of the component (or the second if the length of the first is zero).
If the component is of 1ifting type, the point distribution is also made to
be a function of the proximity to the trailing and leading edges in order to
allow the trailing-edge Kutta condition to be accurately satisfied and to
keep the variation of the spacing smooth in the leading-edge region where the
curvature varies rapidly.
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The following relationship between the curvature and the spacing increments
is employed:

) + As . /AS___}As (7.2.5)

As; = Q1 —'Asmin/AS max” ““max

)(.I - k'i/k

where As; 1is the ith increment in normalized arc length between adjacent
points, ki is the absolute value of the curvature at the center of the ith
segment, kmax is the maximum absolute value of the curvature on the N-line,
and As and As are, respectively, the minimum and maximum allowable
increments in arc length. In this application, the ratio As

min max
/AS is
specified to be 0.25.

max max min

min’ ““max

To implement this relationship requires an iterative procedure. First
the arc-length and curvature distributions are calculated. Then, if the
component is of 1ifting type, the variable which plays the role of the
curvature in equation (7.2.5) is modified to make its value at the trailing
edge equal to its leading-edge value and to make it vary linearly from the
leading and trailing-edge values to the values at 7.5 percent of the N-line's
perimeter on either side of the leading and trailing-edge points. This
modification insures that points will be closely spaced near the trailing
edge and that the spacing will not vary abruptly near the leading ahd trailing
edges. To start the iterations, estimates of the values of AS o x and all
the values of As; are required. These are all taken to be equal to the total
length of the curve divided by the number of segments it contains. Given the
estimated values of ASpax and ASys the curvature at the center of each
segment (modified as described above) is determined by interpolation of the
curvature versus arc-length relationship and used in equation (7.2.5) to
update the estimated values of AS;. These values are then scaled to make
their sum equal to the total length of the N-line and searched to determine
the value of ASpax® These updated values of AS ; and AS ax 2T® then used
in the next iteration and the process is repeated a maximum of five times or
until the required scale factor for the lengths of the increments is

sufficiently close to unity.

Results of this option for the supercritical wing section used previously
are shown in figure 12. Results for a section of a nonlifting component are
shown in figure 13.
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Figure 12. Point distribution on a supercritical wing section—curvature-
dependent distribution.

Figure 13. Point distribution on a section of a nonlifting component—
curvature-dependent distribution.

7.2.6 User-Specified Distribution

For N-Tines of unusual shape or when components are located very close
together, it is possible that none of the options described above will produce
an adequate point distribution. To account for this possibility, provision
has been made for the user to specify (as input data) values of the normalized
arc lengths, which are used directly to determine the augmented coordinates.

7.3 Distribution of N-lines

After the points on the initial N-lines have been redistributed, each
N-1ine on a component has the same number of points distributed in a similar
manner. Connecting corresponding points on all N-lines generates a set of lines
designated M-lines. Since the distribution of points is the same on each N-line,
the M-lines are smooth and have fairly small curvature. The process of
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augmenting and redistributing the N-lines is accomplished by augmenting and
redistributing points along these M-lines. For these calculations, it is
required that each M-line have a total length greater than zero.
There are four options available for the distribution of M-lines. They are:
1. Input distribution, unaltered
Input distribution, augmented in number

Constant increments

o W N

User-specified distribution

The descriptions of all four options are completely analogous to the descrip-

tions of the corresponding options for distribution of points on N-lines
described in section 7.2.

There are two modes of operation of this portion of the geometry package.
The first (and most common) mode is designated the planar-section mode and the
second is termed the arc-length mode in the discussions which follow.

7.3.1 The Planar-Section Mode

The usual way of inputting data to the potential-flow program is to make
the N-lines on a component planar cuts perpendicular to some axis of the
component. For nonlifting components, this convention is just a convenience
to the user. For 1ifting components, however, the elements are approximated
by trapezoids, so that if the N-lines are not parallel, the accuracy of repre-
sentation of the component by its elements is not as good.

The planar section mode of operation redistributes the points on the
M-lines in such a way that all N-lines, except perhaps the first and last ones
on a component, are parallel. The first and last N-lines generally define the
planform view of the component, which is not required to be composed only of
straight lines. The method does not alter these N-lines during this portion of
the calculations. The distributions described above generally refer to the
distances between the paraliel planes, normalized by the distances between the
first and last N-1ines. At the edges of the component, when the first and last
N-lines are not planar, the distributions refer to distances between the first
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point on the N-Tine under consideration and the first point on the first N-Tine
of the component, resolved in the direction perpendicular to the parallel planes
and normalized by the distance between the first points on the first and last
N-Tines of the component. The orientation of the planes is defined by specify-
ing (as input data) the direction cosines of a vector perpendicular to the planes.
For this calculation, the sense of the normal vector is not important. However,
if intersection curves are calculated and the components are subsequently repan-
eled, then the vector must point in the direction of increasing N-lines. If the
direction cosines are not specified and the planar section mode is used, default
values of (1.0, 0.0, 0.0) for nonlifting components and (0.0, -1.0, 0.0) for 1ift-
ing components are assumed. When the default values are used, N-Tines must be
input from front to back on nonlifting components and from tip to root of lifting
components.

The first step in distributing the points on the M-lines is to determine
the equation of the planes representing the N-lines and the interpolating poly-
nomials representing the M-line segments. The equations of the planes of the
N-1lines are of form

Ax + By + Cz + Di =0 (7.3.1)
where A, B, and C are equal to the x, y, and z direction cosines of
the vector normal to the planes (and hence are the same for all planes on the
component). The values of D, (different for each plane) are given by

Di = D] + K1.(D2 —-D]) (7.3.2)

whare D-I and D2 are the coefficients of the planes passing through the
first and last points, respectively, on the first M-line of the component and
Ki is the value of the distribution parameter for the N-line under consider-
ation. D-l is determined from the relationship

Dy = -(Ax] + By, + Cz]) (7.3.3)

where X1s Yo and z, are the coordinates of the first point on the first
M-Tine. D2 is determined in a similar manner, using the last point on the
first M-Tine. The interpolating polynomials for the M-line segments are
determined by the curve-fit procedure described in section 7.1.
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The second step in distributing points on the M-lines is to determine which
M-line segments intersect which planes. For this step, it is assumed that M-line
curvature is small enough so that straight-line approximations to the M-line seg-
ments may be used.

Then, knowing which M-1ine segments intersect which planes and knowing the
equations of the M-line segments and the planes, the coordinates of each inter-
section point can be computed. To do this for any point, substitute the expres-
sions for x,y,z as a function of arc length along the M-Tine segment {each
having the form of equation (7.1.2)) into the equation of the plane (7.3.1). This
gives a single cubic equation with S;, the arc length along the M-line segment
to the intersection point, as the only unknown. This is solved by Newton's
method. Using the intersection point of the plane and the straight-line approx-
imation to the M-line segment to determine the starting point, the method typi-
cally requires only three or four iterations to converge to an adequate solution.

Figures 14 and 15 show the top views of two typical wings both before
and after redistributing the N-lines. Since the wing in figure 14 is trape-
zoidal in planform and has a linear twist distribution, only the N-lines at
the tip and root are needed in the initial geometric representation. Since
the initial representations of the tip and root sections are already planar
and all M-lines are straight lines, the planar-section mode and the arc-length
mode (described in the next section) produce identical results. A more gen-
eral case, for which the two modes of operation should give very different
results is shown in figure 15. In this case, the M-lines on the entire out-
board half of the span are straight lines, but they are curved on the inboard
portion. Therefore, the multisection component option described in section 7.1
is used, allowing the 1inear portion of the geometry to be represented using
only two N-lines. Figure 16 shows the top view of a fuselage before and after
redistributing the N-Tines. This fuselage has a cylindrical midsection with
semi-ellipsoidal sections fore and aft. Again, the multisection component
option allows the linear portion to be represented using only two N-lines. In
all three of these cases, the redistributed N-1ines are equally spaced.
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INITIAL ELEMENT
DISTRIBUTION

ELEMENT DISTRIBUTION
AFTER REPANELING

Figure 15. Redistribution of elements on a supercritical wing (cosine spacing

chordwise, constant increments spanwise, planar-section mode,
multisection component option).
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INITIAL ELEMENT DISTRIBUTION

ELEMENT DISTRIBUTION AFTER REPANELING

Figure 16.

Redistribution of elements on a fuselage (constant increments around circumference and in
axial direction, planar-section mode, multisection component option).



7.3.2 The Arc-Length Mode

In some cases the N-1ine at the edge of a component may be so highly nonplanar
that a strip bounded by this N-line and an adjacent planar N-line would vary
strongly in width, resulting in areas too sparsely covered with elements. An
example of this is the under-wing pylon shown in figure 17(a). In this figure
the thickness of the wing has been exaggerated to help illustrate the point. In
such cases the arc-length mode of distributing N-lines on the component should be
used. In this mode the specified distribution parameters refer to fractions of
the total arc lengths of the M-lines, rather than to normalized distances between
planes. The points on all M-lines of a component are distributed in a similar
manner, so that the N-lines in the vicinity of the nonplanar edge of the compo-
nent curve smoothly around to create a more uniform distribution of the elements,
as illustrated in figure 17(b). 1In this mode of operation, the method of redis-
tributing points along M-lines is completely analogous to the method of redis-
tributing points along N-lines.

P4\

(a) Planar-Section Mode. (b) Arc-Length Mode.

Figure 17. Comparison of planar-section and arc-length modes of distribution of
N-Tlines — strut on a thick wing.
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8.0 CALCULATION OF INTERSECTION CURVES

8.1 General Features of the Method

The second major operation performed by the geometry package is the calcu-
lation of the curves of intersection between body components. For this calcu-
lation it is assumed that the M-lines of one of the components (designated the
intersecting component) pierce the surface of the other component (designated
the intersected component). The final solution is a set of intersection points,
one for each augmented M-Tine on the intersecting component. In general, the
method calculates the intersection point of a curve and a surface and hence
requires a surface-fit method as well as a curve-fit method. The surface-fit
method uses the theory of parametric cubic surface patches originated by Coons
(reference 8) and extensively developed and applied by a number of other
investigators (reference 9, for example). The curve-fit method is the same
one used in the paneling of isolated components and described in section 7.1.

8.2 Restrictions and Limitations of the Method

The intersection method is designed to handle cases which occur frequently
in aircraft applications, such as wing-fuselage intersections, wing-pylon
intersections, etc. It is not designed for complex cases in which the inter-
section curve is discontinuous or for cases involving fillets or smooth transi-
tions from one component to the next. Use of the method is limited to cases
- in which the following restrictions apply:

1. A distinction can be made between intersecting and intersected
components.

2. A component can intersect only one other component and can be inter-
sected by only one other component. If a body intersects or is
intersected by several bodies, it must be divided up into several
components. A single component can intersect one component and be
intersected by another component, however.

3. The M-lines on the intersecting component pierce the surface of the
intersected component at a sharp angle. Surfaces are not tangent
where they meet.
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4, The M-lines on the intersecting component extend sufficiently far
into the interior of the intersected component to allow a planar
representation of the elements on the intersected component to be
used in the process of searching for the elements which are inter-
sected by the M-lines.

5. The intersecting component has at least one N-line which lies entirely
in the interior of the intersected component.

6. No M-line on the intersecting component intersects the intersected
component more than once.

8.3 Details of the Method of Solution

The method of calculation of the intersection curve between two components
requires that one component be assigned the role of the intersecting component
and the other component be assigned the role of the intersected component.

This is done by the user in the input data to the geometry package. The inter-
section curve is then defined by the set of intersection points between the
M-Tlines on the intersecting component and the elements on the intersected
component. In order to define this curve at a sufficient number of points,
every M-1ine on the intersecting component (after redistributing and augmenting
the points on the N-lines) is used. On the intersected component, in principle
either the original input elements or the elements after augmenting points on
just the N-lines, or the elements after augmenting points on both N-lines and
M-1ines could be used for defining surface patches which are intersected by the
M-1ines of the intersecting component. Since parametric cubic surface patches
are used, however, it is not necessary to use the large number of elements that
exist after augmenting points on both N-Tines and M-lines. Since the input
points may vary in number from one N-line to the next, and since the distribu-
tions may also be dissimilar, use of the original input elements could result
in surface patches having much more extreme curvature (and hence less accuracy)
than use of either of the other two sets of elements. Therefore, the elements
after augmenting points on the N-lines but before augmenting points on the
M-lines are used for the formation of surface patches.

One possible method for calculating intersections of an M-line and a
surface might operate as follows: Derive mathematical formulas to represent
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each segment of the M-line and each element of the surface and find the roots of
the equations obtained by equating coordinate values on the segments and the ele-
ments. If a particular equation has no real roots, or if it does have real roots
but the points they represent fall outside the bounds of the element or the seg-
ment, then the element and the segment have no intersection points. If the equa-
tion does have real roots and the points they represent do fall within the bounds
of both the element and the surface, then the roots are the intersection points.
When all such equations have been solved, the intersection points are grouped,
somehow, to determine the intersection curves. Such a method would have to solve
a large number of equations (a number equal to the number of M-Tine segments
multiplied by the number of surface elements) and many of these equations would
fail to have solutions. It would, therefore, be very uneconomical to use.

A more economical approach, adopted in the present method, first compares
maximum and minimum coordinate values on the M-line segments and the surface
elements and eliminates from consideration those combinations which obviously
contain no intersection points. Then an approximate intersection method,
with planar element representations, is used to determine which M-line segments
and surface elements contain intersection points and to get approximate values
of the intersection point coordinates. Then, mathematical representations are
obtained only for those elements containing intersection points, and these are
used,together with the representations of the M-line segments, to calculate
the intersection points more accurately. Details of this approach are given
below.

8.3.1 The Initial Search for M-Line Segments and Surface Elements Containing
Intersection Points

The basic information needed to conduct the initial stages of the search
includes the maximum and minimum values of each coordinate on each element of
the intersected component, on each strip of the intersected component, on each
segment of the intersecting M-line, and on the entire intersecting M-line.
Because it is assumed that the intersecting M-lines extend some distance into
the body and a planar element representation can be used, it is legitimate to
assume that the maximum and minimum values on an element must occur at one
of its corners. A quick comparison of the coordinates of the corner points
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thus determines the extrema. Extreme values on a strip are determined by com-
paring the extreme values of each of its elements. Values on the M-line segments
are determined more accurately, assuming cubic relationships between the coord-
inate values and the straight-line arc lengths along the M-line (equations (7.1.2)
and (7.1.3)). Equation equation (7.1.2) to zero (separately for x,y, and z) and
solving gives two values of arc-length along the M-line (for each coordinate).

The real solutions which fall within the bounds of the segment are used to calcu-
late coordinate values which are compared, along with the values at the ends of
the segment, to determine the extreme values. Maximum and minimum values on the
entire intersecting M-line are determined by comparing the extreme values of each
of its segments. .

Having determined the extreme values of the coordinates on strips and
elements of the intersected component and on segments and the entirety of the
intersecting M-Tine, the searching procedure begins by comparing the extreme
coordinate values on the first strip of the intersected component with the
values for the entire M-line. If the range of any of the coordinate values
on the strip fails to include at least part of the range of the values of the
same coordinate on the M-line, then no intersection can possibly occur on that
strip. Successive strips are compared with the M-line until one is found
which may possibly contain the intersection point. Then each element on the
strip is compared with the M-line until a possible intersected element is
found. Then each segment on the intersecting M-l1ine is compared with the ele-
ment until a possible intersecting segment is found.

8.3.2 The Final Search for M-Line Segments and Surface Elements Containing
Intersection Points and the Approximate Determination of the Inter-
section Points

Having found an element on the intersected component and a segment of
the intersecting M-1ine which share, at least partially, the ranges of their

X, ¥, and z-coordinates, a more careful check on whether or not they inter-

sect is made. If the element is not already triangular, it is divided into

two triangles by drawing one of the diagonals across the quadrilateral region.

Each element is then represented by two planar, triangular subelements. The

planar coefficients of each subelement are determined, starting from the

general form of the equation of a plane
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Ax + By + Cz+D =0 (8.3.1)

by first dividing through by D (illustrating that there are only three
independent unknowns in equation (8.3.1)) and rearranging to get

A/Dx + B/Dy + C/Dz = -1 (8.3.2)

and then substituting the coordinates of the corner points of the subelement
into equation (8.3.2) to obtain a third-order system of linear equations which
is easily solved for A/D, B/D, and C/D. A, B, and C are then found by
multiplying by any arbitrarily chosen (finite, nonzero) value of D.

A check is then made to see if the ends of the M-line segment lie on
opposite sides of the plane. This is done by computing the directed distance
from each point to the plane, using the formula

Axy + By, + Cz; + D
d=— 1 1 (8.3.3)

\lAz + 82 + 02
where d 1is the distance and (xl, Yy 21) are the coordinates of the point.
If the value of d has the same sign for both end points, the segment does
not intersect the plane of the triangular subelement. If this is true for
both subelements on the element, the element and the M-line segment do not
intersect and the next segment is considered.

When an M-line segment which does cross the plane of one of the subelements
is found, the point of intersection of the segment and the plane is found using
the method described in section 7.3.1. For this calculation, the M-line seg-
ment is again represented by a cubic polynomial. Given the intersection point,
it is next necessary to check whether or not it falls within the triangular
region of the subelement. To do this, the present method checks that each side
of the triangle lies on the same side of both the intersection point and the
opposite apex of the triangle. To determine that two points, A and B, lie
on the same side of a line from points 1 to 2, the method takes the cross
product of the vectors from A to 1 and from A to 2 and the cross
product of the vectors from B to 1 and from B to 2 and checks whether
or not the dot product of the two resulting vectors is positive.
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If the point does not fall within the bounds of either triangular subele-
ment, the next segment of the M-line is checked. If none of the segments
intersects the element, the next element is checked in the above manner. If
no element on the current strip contains the intersection point, the entire
procedure, including the initial search described in section 8.3.1, is
repeated for the next strip, and so on, until either an element of the inter-
sected body and a segment of the intersecting M-line which contain the inter-
section point are found, or all possible combinations of elements and M-line
segments are exhausted. If an approximate intersection point is found in
this manner, it is used as a starting point for the iterative method des-
cribed below, to determine a more pfecise intersection point. If the method
fails to find an approximate intersection point, calculations continue,
starting with the next M-1ine on the intersecting component. In this case,
execution of the computer program is terminated after the intersection calcu-
lations since the final repaneling method requires the intersection curve to
be uninterrupted and completely defined.

8.3.3 Derivation of a Mathematical Representation of the Surface of an
Element
In order to compute a more accurate intersection point, it is necessary
to obtain an equation for the surface of the element. This is done using the
theory of parametric cubic surfaces described in references 8 and 9. The
following discussion is a summary of relevant portions of the theory.

Required geometric quantities at each corner point of the-element under
consideration include the following (as well as the corresponding y and z
values):

Xs Xyps X Xuw® Xwu

where the subscripts indicate differentiation and u and w are the param-
eters upon which the surface fit is based. On the boundary curves of an
element, u represents a fraction of the straight-1ine arc length between
the two M-line boundary curves and w represents a fraction of the straight-
line arc length between the two N-line boundary curves. On the interior of
an element, u and w represent quantities analogous to those defined above
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but, for elements with compound curvature, the physical interpretation of the
parameters is less obvious. X, at a corner indicates the derivative of x
with respect to straight-line arc length along the N-line passing through the
corner, normalized by the straight-line distance between adjacent points

on the N-line. X, indicates the derivative with respect to straight-line
arc length along the M-line passing through the corner, normalized by the
straight-line distance between adjacent points on the M-line. Xuw and XU
indicate cross derivative terms in the directions of the M-line and N-Tine.
The first derivative terms (not normalized) were previously required for the
calculations to redistribute and augment points along the M-lines and N-lines.
They need only be normalized by the proper element side length to be applic-
able here. The cross derivative terms X and Xqu are obtained by numer-
ically differentiating the unnormalized first derivative terms

along the M-lines and N-lines, respectively, and then normalizing by the
product of the lengths of the adjacent element sides. The two cross-derivative
values at each corner are then averaged, since the equation used to represent

the surface implies that they are equal.

These geometric quantities, for x, y, and z and for each corner of the
element, constitute the so-called "parametric cubic patch coefficients in
geometric form." The coefficients can be arranged in matrix form as follows
(shown only for the x coordinates):

%0 % X X

00 Yo
X X X
10 1 Ny, xwH
[6G.] = (8.3.5)
X X X X X
Yoo Y91 Yoo WMo
Xu X

X X
10 Y1 Uy “W11J

In this matrix the u and w subscripts again represent derivatives as above.
The 0 and 1 subscripts together indicate the corner of the element being
considered, the first indicating the N-line and the second indicating the
M-Tine. The 0 indicates the lower-numbered line on the element and the 1
indicates the hfgher-numbered line. Similar matrices are also formed for the
y and z-coordinate terms.
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The matrix of coefficients in geometric form, [Gx], and the corresponding
y and z matrices contain all the information needed to derive algebraic
expressions for the coordinates at any point on the surface of the element in
terms of the parametric variables. These expressions are of the following form
(again shown only for the x coordinates):

2

3 3
x(u,w) = w [Axu + Bu” + Cou+ Dx]

2

-+

2 3
W [Exu + qu + Gxu + Hx]

2 (8.3.6)
+ Kxu + Lx]

+

3
W [Ixu +J,u
3 2
+ [qu + Nu® 4+ ¢xu + Px]

The coefficients of equation (8.3.6) can be grouped to form the so-called
"matrix of coefficients in algebraic form," [AX] as follows:

AX BX CX DX
E, F, G H
[ag=1{>* * x X (8.3.7)
IX JX KX LX
_MX NX ﬂX PX_

To show how the matrix of coefficients in geometric form may be converted
into the matrix of coefficients in algebraic form, it is first necessary to study
the properties of equation (8.3.6) further. On the boundaries of the element
one of the parametric variables is constant, either zero or one, and the other
varies from zero to one. For definiteness, assume that the variable w is
equal to zero. Equation (8.3.6) then reduces to a cubic equation with u as
the only independent variable. On the opposite side of the element, w is
equal to one and equation (8.3.6) reduces to another cubic equation, again
with u as the only independent variable. The entire surface of the element
can be considered to be a collection of cubic curves with w constant and u
variable. Each of these curves has the form of equation (7.1.2), which can be
converted to the form

fu) = F(u)F(0) + Fp(u)f(1) + Fa(u)f'(0) + Fp(u)f* (1) (8.3.8)
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by solving for the second and third derivative terms in (7.1.2) as described in
section 7.1. When this is done, the terms F,(u), F,(u), F5(u), and Fplu) are

given by
3 2

F1(u) = 2u” — 3u” + 1
F2(u) = ﬂ2u3 + 3u2
(8.3.9)
Falu) = W —2u? 4y
_ .3 _ 2
F4(u) =u u
or in matrix notation
[F1 = [F,(u) Fy(u) Fylu) Fyp(u)] = [wd w? w13 - [M] (8.3.10)
where
+2 -2  + +1—
mp=|3 ¥ -2 - (8.3.11)
0 0 +1 0
+1 0 0 0_J
In matrix notation, equation {(8.3.8) becomes
- . ] 1 T
F(u) = [F] - [£(0) £(1) £'(0) £'(1)] (8.3.12)

(v u? w1l - M1 - [F(0) £Q1) £'(0) £ (1)1

where T indicates that the transpose of the matrix is to be taken. Now, using
(8.3.12), the equations for x(u) and xw(u) on the boundary curves w = 0
and w =1 can be written as

3 2
x(u,0) = fu” u” u 1] » [M] * [X.q Xqp X X
00 ™10 Uso Y10

x(u,1) = [ud ¥ w1l - M7 - [xo1 X4 “ugy xu11]T (8.3.13)

2 T
(u,0) = [W3udull - Ml-[x x x x ]
W Yoo W10 Wpp U

3 2 T
X (u,1) = [’ u“ul1] - [M] . [x X X X ]
" Yor " Wor "
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or more compactly

[x(u,0) x(u,1) x,(u,0) x,(u,1)] = [u3 u? u1l - M1 - [6,] (8.3.14)

Equation (8.3.12) can also be used to derive the expression
x(uw) = [wS wo w11 - [M] + [x(u,0) x(u,1) X, (us0) xw(u,l)]T (8.3.15)

or equivalently

x(u,w) = [x(u,0) x(u,1) x,(u,0) x (u,1)] - 1T - W we w1l (8.3.16)
Combining (8.3.14) and (8.3.16) gives

x(uw) = [u¥ u? w11 - M- [e ] T - WP WP w1l (8.3.17)
Since equation (8.3.6) can be rearranged and written as

x(uw) = [ud u?u 1l - (A" Wi wiwt T (8.3.18)

the matrix of coefficients in geometric form is converted to the matrix of
coefficients in algebraic form by the operation

.
(A =M1 - [6,1 - [M] (8.3.19)

Expressions for the y and z coordinates as functions of the parameters u
and w are obtained in a similar manner, using the matrices of geometric
quantities [Gy] and [Gz].

Including coefficients for all three coordinates, there are forty-eight
parametric cubic quantities associated with each element. Except for the
coordinates themselves (twelve of the forty-eight quantities), these quanti-
ties are generally not shared by adjacent elements. However, these coeffici-
ents are all derived from geometric data which is continuous from element to
element and, therefore, is shared by adjoining elements. Therefore, a large
reduction in the computer program storage requirements can be made, at a
small expense of additional computation time, by storing all data in the
(unnormalized) geometric form and converting to the algebraic form of equation
(8.3.6) only when actually needed. Therefore, the coordinates, their deriva-
tives along the N-lines, and M-lines, their cross-derivatives, and the arc
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lengths between adjacent points are the only geometric data used in the present
method.

8.3.4 Computation of More Precise Values of the Coordinates of the Inter-
section Point

At this point, analytic expressions have been obtained for the coordi-
nates along the intersecting M-line segment in terms of s, the arc length
along the segment (equation (7.1.2)) and for the coordinates on the surface
of the element in terms of the parametric variables u and w (equation
(8.3.6)). Designating points on the surface by the subscript s and points
on the M-line segment by the subscript &, expressions have been obtained
for xQ(s), yl(s), zl(s), xs(u,w), ys(u,w), and zs(u,w). At the intersec-
tion point

xR(s) —-xs(u,w) =0
Yo (s) =y (usw) =0 (8.3.20)
=0

zz(s) —-zs(u,w)

Equation (8.3.20) represents a system of three simultaneous nonlinear equa-
tions in the three unknowns (u,w,s).

The solution of this system of nonlinear equations requires an iterative
procedure which must start from some estimate of the solution. An estimate
of the solution, in terms of the coordinates of the intersection point
(Xi’ Yss Zi) was obtained during the searching procedure to determine which
M-Tine segment intersects which element of the intersected component. An
estimate of Sis the arc length along the M-line segment to the intersection
point, was also obtained. The coordinate data must be used to determine esti-
mates of the values of the u and w variables at the intersection point
(ui, wi). In the present method, the two planar subelements are converted
into a single planar element and the values of u and w in the planar
element are then determined. The planar element is formed from the three
corner points defining the subelement in which the approximation to the inter-
section point is located and a fourth point obtained by rotating the other
corner point of the original element about the line separating the two sub-
elements until it lies in the plane of the other three points.
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The parametric coefficients of a point in a planar element bounded by
straight lines can be determined most easily be first noting that all coef-
ficients of second- and third-order terms in equation (8.3.6) must vanish
and then by finding the other four coefficients directly from the properties
of the sides of the element. The result is that equation (8.3.6) reduces to

x(usw) = x99 + (x79 = Xgo)u + (x5 = Xgo)W + (x79 = %19 — Xy + Xgg)uw

(8.3.21)
Equations for the y and 2z coordinates have similar form. Given the
values of x,y and z at a point, equation (8.3.21) and the corresponding
y and z equations constitute a system of three equations for the two
unknowns (u and w). The nonlinear term uw is eliminated from each equa-
tion and then one equation is added to each of the other two equations to
result, finally, in a system of two independent linear equations for the two
unknowns .

;
point, Newton's method is used to solve the nonlinear system (8.3.20). The

process generally takes only four or five iterations to converge to an error
in the square-root of the sum of the squares of the variables of less than
107° for a typical case. When solved, s; can be used in equation (7.1.2)

Given the estimate of the variables (Si’ Us, wi) at the intersection

and the corresponding equations for y and z to obtain the coordinates of
the intersection point. Alternatively, u; and W could be used in (8.3.6)
and the corresponding y and z equations.

8.3.5 Test Cases for the Intersection Method

In order to verify the accuracy of the present method, a number of test
cases were run. These are not examples of realistic aircraft components, but
they were chosen because their intersection curves can be analytically deter-
mined. Figure 18 shows a relatively simple case, the intersection of two
circular cylinders. Using only four elements to represent each quadrant of
each cylinder produces remarkably good results. There is no discernable dif-
ference between the theoretical and the calculated results (to the scale
plotted). This is an especially accurate case for any method, since the
intersecting M-lines are straight lines and the elements on the intersected
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component have curvature in only one direction. A more difficult case, the
intersection of two spheres, is shown in figure 19. This case tests the full
capability of the intersection method. The intersecting M-line segments are
circular arcs. The intersected elements have curvature in both directions and
some of the intersected elements have zero-length sides (i.e., some elements
are triangular). Nevertheless, the present method's results, using 250 ele-
ments on each sphere, are very accurate; the calculated intersection.curve is
only very slightly different from the theoretical one. Figure 20 shows the
final test case, the intersection of two ellipsoids. Like the case of the
two spheres, this case shows good results, using 250 elements per body. The
method failed to find intersection points for the M-lines parallel to the
x-axis in figure 20, since these M-Tines meet the intersected component
tangentially.

In order to illustrate the method for a configuration more typical of
aircraft configurations, figure 21 is included. This shows a wing intersect-
ing a cylindrical section similar to the midsection of a typical fuselage. To
give the intersection curve more character, the thickness of the wing has been
greatly exaggerated.

THEQRETICAL INTERSECTION CURVE
®  CALCULATED INTERSECTION POINTS

Figure 18. Intersection method test case — intersection of two circular
cylinders (side view).
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SIDE VIEW END VIEW

THEORETICAL INTERSECTION CURVE —————— THEORETICAL INTERSECTION CURVE
o CALCULATED INTERSECTION POINTS o CALCULATED INTERSECTION POINTS

Figure 19. Intersection method test case — intersection of two spheres.

THEORETICAL INTERSECTION CURVE
(0] CALCULATED INTERSECTION POINTS
o POINT AT WHICH METHOD FAILED

Figure 20. Intersection method test case — intersection of two ellipsoids
(side view).
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9.0 FINAL REPANELING OF COMPONENTS

9.1 General Considerations

The final major operation performed by the geometry package is the
redistribution of points on all components which intersect other components.
The point spacing requirements of the potential-flow method for intersecting
bodies are not as well understood as those forisolated bodies. The accuracy
of surface-singularity type methods in regions near concave corners is a
matter of dispute in two-dimensions (reference 10) and has not been exten-
sively -studied in three dimensions. Some obvious requirements can be identi-
fied, however. One is that portions of components which fall inside other
components should be eliminated, or in certain cases, designated as extra
strips or ignored elements. Another is that the repaneling should not cause
abrupt changes in the element spacing. Therefore, the entire component should
be repaneled to produce a smooth transition from the paneling in the region
of the intersection curve to the paneling in distant regions, rather than just
the region of the intersection curve being repaneled. It is also possible
that future potential-flow methods (such as the method of reference 5) will
require the matching of the corners of the elements of adjacent components to
eliminate or at least reduce the size of any gaps between elements.

It is possible to envision innumerable different types of intersections
between bodies, each of which would have its own special paneling require-
ments. It is not possible to develop a method sufficiently general to deal
with them all. However, plausible paneling schemes can be developed for cer-
tain frequently occurring configurations, such as wing-fuselage or wing-pylon
case3,so that these cases can be handled routinely. The present method
divides all components which are involved in intersections into three distinct
general categories and provides separate means of dealing with each of them.
A11intersecting components (thosewith M-Tines which pierce other components)
are repaneled one way, with only minor variations (whether they are lifting
or nonlifting). Nonlifting intersected components are repaneled differently,
and Tifting intersected components are repaneled in a different way still.

The methods used for these three categories are described in the following
sections.
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9.2 Intersecting Components_

Typical examples of intersecting components include the wing in a wing-
fuselage case, the pylon in a wing-pylon case, the winglet in a wing-winglet
case, etc. Although all these examples are of lifting intersecting components,
they can also be nonlifting (struts, for example). Lifting and nonlifting
intersecting components are repaneled in essentially the same manner. There
is no redistribution of points along N-lines, only a redistribution of N-lines.
In every case, a new N-line along the intersection curve is added. If the
componént is of 1ifting type and if the intersecting end of the component is
designated as having an extra strip, then the entire area inside the inter-
sected component (from the intersection curve to the end N-line) is made into
a single strip by eliminating all intervening N-lines. If the component is of
nonlifting type, or it does not have an extra strip at the intersecting end,
then the portion inside the intersected component is simply eliminated. In
the simpiest cases, no other redistribution of points or N-lines is necessary.
In most cases, however, the remaining N-lines on the exterior of the component
must be moved in order to avoid irregularities in the widths of the strips.
This is done by simply scaling the specified distances between N-Tlines by the
fraction of the span of the component which 1lies outside the intersected
component. To be more precise, the specified distances mentioned above are
either the normalized distances between the planes of the N-lines (for the
planar-section mode of operation) or the fraction of the arc lengths along
the M-Tines (for the arc-length mode of operation). The fraction of the span
of the component which lies outside the intersected component is the fraction
of the arc length along the M-1ine under consideration (for the arc-length
mode of operation) or the fraction of the arc length along the first M-line
of the component (for the planar-section mode of operation). The numerical
techniques required to move the N-lines in this manner involve only interpola-
tion procedures or cubic curve-plane intersection procedures which were
described in section 7 above.

An example of the program capabilities for repaneling intersecting
components is shown in figure 22. Figure 22(a) shows a wing-fuselage case
with the elements required for the initial geometric representation. In
figure 22(b), the isolated components have been repaneled, the intersection
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curve has been made an N-line and all exterior N-lines have been redistributed
to produce a smooth distribution. In addition, the area inside the intersected
component has been made into an extra strip, but for clarity of presentation,
the extra strip has not been shown in the figure.

More complicated cases, in which a body intersects more than one other
body, can also be treated by this geometry package. However, in these cases,
the intersecting body must be divided into more than one component. For
example, in the case of the wing-fuselage with tip-tank shown in figure 23,
the wing is divided {at fifty-percent semispan) into two components, an
inboard component which intersects the fuselage and an outboard component
which intersects the tip-tank. Since the same algorithm was used for distri-
buting points on the N-lines of each component, and since points on the N-Tines
of intersecting components do not get redistributed, there is no mismatch in
the elements at the junction between the components. Because of the redisiri-
bution of the N-lines, however, there is a small difference in the width of
the strips in the inboard and outboard portions of the wing. Cases in which
a body completely pierces several other bodies can be handled by dividing the
intersecting body into components in an obvious way.

Figure 23. Final repaneling of intersecting components — wing-fuselage-tip-tank
case.
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9.3 Nonlifting Intersected Components

Typical examples of nonlifting intersected components include the fuselage
in a wing-fuselage case, the tank in a wing-tip-tank case, etc. The most common
application is to the wing-fuselage case. Therefore, the repaneling method in
this geometry package was conceived primarily with fuselages in mind, but it
should also be useful for other types of cases.

Three options are provided for the final repaneling of nonlifting inter-
sected components. The simplest option is to do no repaneling at all, in which
case the final element distributions are as shown in figures 22 and 23. If this
option is used, a portion of the intersected component falls inside the inter-
secting component. If the intersecting component is not very thick, an adequate
potential-flow solution may still be obtained in spite of this. If the inter-
secting component covers a significant area on the intersected component, then
the elements inside the intersecting component should be designated ignored ele-
ments (elements with no singularities and no boundary conditions). Since there
is no repaneling, however, some elements are only partially covered and the deci-
sion whether or not the elements should be ignored requires some user judgment.
For this reason, no mechanism has been provided for automatically designating
elements to be ignored elements on nonlifting intersected components. If the
user desires to use ignored elements, he must repanel the configuration using the
geometry package, punch the resulting coordinates on cards, and terminate execu-
tion of the program. Then he must execute the program a second time, using the
punched output from the preceding case as input data, designating the ignored
elements himself with the appropriate flags, skipping the geometry package, and
proceeding straight to the potential-flow calculations.

With the first option, the element distribution on the intersected component
is not influenced by the element distribution on the intersecting component.
Experience with the method of references 1 and 2 indicates that there is no strong
need to repanel fuselages is most wing-fuselage cases; accuracy of the potential-
flow solution is usually adequate using a distribution of elements appropriate
for an isolated fuselage case. However, in some cases even better accuracy is
desired. Also the newer potential-flow methods, using surface doublet distribu-
tions, may require the elimination of the small gaps which result when the edges
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of adjacent elements are not carefully aligned. The second and third options
(both very similar) repanel nonlifting intersected components to produce element
distributions which depend strongly on the element distributions on the inter-
secting components.

The calculations in both options start by defining a leading-edge and a
trailing-edge point on the intersection curve. The trailing-edge point is
assumed to be the first or last point on the intersection curve, since this curve
is an N-Tine of the intersecting component and points on N-lines are input start-
ing at the trailing edge, working around the perimeter, and ending back at the
trailing edge. The leading-edge point is found by searching for the point on the
intersection curve which has the smallest projected distance in the axial direc-
tion from the front of the interesected component. Because of this, nonlifting
intersected components which are repaneled with one of these two options must be
input starting at the upstream end, must have roughly streamwise M-lines, and
must be paneled using the planar-section mode of operation. The axial direction
is defined by the direction cosines of the vector perpendicular to the planes of
the N-lines. Planar cuts are then made through the leading and trailing-edge
points on the intersection curve, perpendicular to the axis of the intersected
component. The points of intersection of these planes and the M-lines of the
intersected component define new N-Tines. A1l N-lines forward of the Teading-
edge point and all those aft of the trailing-edge point are then redistributed
in a manner similar to the redistribution of the N-Tlines on intersecting compo-
nents. Forward of the leading-edge point, this is done by scaling the projected
distances in the axial direction from the front of the component by a factor
equal to the ratio of the distance from the front of the component to the leading-
edge point and the distance from the front of the component to the first N-line
aft of the leading-edge point. Aft of the trailing-edge point, the redistribu-
tion is done the same way, except that the back of the component, the distance
to the trailing-edge point and the distance to the first N-line in front of the
trailing-edge point are used.

The two options differ only in the distribution of N-lines in the region
between the leading and trailing-edge points on the intersection curve. One
of the two options passes planar sections through each point on the inter-
section curve and uses the points of intersection of these planes and the
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M-lines of the intersected component to define new N-lines. This option can be
used when an element distribution with no gaps between adjacent elements is
desired. The other option passes planar cuts through every second point

on the intersection curve, starting with the leading-edge point and working

aft on both upper and lower surfaces of the intersection curve. Since each
surface may contain either an even or odd number of points, it is possible

that planes will be passed through two consecutive points at the back of the
intersection curve. This option can be used when gaps between adjacent
elements can be tolerated, but it is desired to keep their size fairly small.

Having redistributed the N-lines, it is next necessary to redistribute
the points on each N-line. The method for doing this is the same for both
available options. First, a search of the N-line passing through the leading-
edge point on the intersection curve is conducted to find the point closest
(in arc length along the N-line) to the leading-edge point. This point is
moved to coincide with the leading-edge point. The other points on this
N-line are redistributed in a manner which makes the resulting arc-length
distribution reasonably smooth and similar to the previous distribution. For
points on the N-1ine before the point closest to the leading-edge point on
the intersection curve, this is done by scaling the arc length along the
N-Tine by a factor equal to the ratio of the arc length to the leading-edge
point and the arc length to the point closest to the leading-edge point. For
points on the N-Tine after the point closest to the leading-edge point, arc
lengths are scaled the same way, but using arc lengths from the other end of
the N-line. Having determined the arc-length distribution of the redistributed
points, the coordinates are found by the same interpolation procedure described
in section 7.1. Points are redistributed on N-lines forward of the leading-
edge point using the same arc-length distribution as on the N-1ine which
passes through this point. Between 1eéding-edge and trailing-edge points,
points on N-lines are redistributed in a similar manner by scaling the arc
lengths by a factor determined from the ratio of the distances to the inter-
section point and to the point on the same M-line as the point closest to the
leading-edge point. Aft of the trailing-edge point, points on all N-lines
are redistributed using the same arc-length distribution as the redistributed
points on the N-line passing through the trailing-edge point. Because the

53



N-lines through the intersection points between the leading- and trailing-edge
points are broken by the intersection curve, it is necessary to break the
component into more than one component. Presently, the program breaks the
component into four smaller components, one forward of the leading-edge point,
one below the intersection curve, one above the intersection curve, and one
aft of the intersection curve.

A typical example of the results of this repaneling method is shown in
figure 24. This case shows a wing-fuselage with the wing at zero incidence,
located slightly above the axis of the fuselage. In this case, use has been
made of the option which passes an N-line through every point on the inter-
section curve. Figure 25 shows a similar case, using the same option. In
this case, however, the wing has ten degrees of incidence, illustrating the
point that, for such cases, the present method bunches points below the
intersection curve and spreads them out above the intersection curve. In
extreme cases, this may result in an unacceptable element distribution with
many elements bunched tightly near the bottom of the component and very few
elements near the top. However, most cases will probably be much less
extreme than the one shown, for which the element distribution is adequate.
Figure 26 shows a wing-fuselage case similar to the one of figure 24, but
with the wing located at the same level as the axis of the fuselage. In this
case, the option which passes N-lines through every second point on the
intersection curve has been used.

9.4 Lifting Intersected Components

The most common example of a 1ifting intersected component is the wing
in a wing-pylon or wing-with-strut case.

As in the case of nonlifting intersected components, Tifting components
are treated three different ways. Again, the simplest option is to do no
repaneling at all. In this case, part of the intersecting component covers a
portion of the surface of the intersected component and the remarks of sec-
tion 9.3 concerning accuracy of the solutions, the desirability of using
ignored elements, and the mechanism for generating them again apply.
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TOP VIEW

SIDE VIEW (fuselage only)

Figure 24. Final repaneling of nonlifting intersected components ~ wing-fuselage

case (zero-incidence wing, N-Tines through every point of intersec-
tion curve).

SIDE VIEW (fuselage only)
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Figure 25. Final repaneling of nonlifting intersected components — wing-fuselage

case (wing with 10° incidence, N-lines through every point on inter-
section curve).
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TOP VIEW

SIDE VIEW
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Figure 26. Final repaneling of nonlifting intersection components — wing-fuselag:
case (zero-incidence wing, N-lines through every other point on
intersection curve).

In some cases the intersecting component covers a significant portion of the
surface of the intersected component, indicating a need for the use of ignored
elements, but the paneling of the intersected component is so coarse that large
gaps would be created by their use. The geometry package provides an option whic
greatly reduces the size of these gaps. In this option a search is conducted to
find the points on the intersection curve having the minimum and maximum projecte:
distance in the axial direction on the intersected component from the first point
on the first N-Tine of the component. The intersected component must be paneled
using the planar-section mode of operation for this calculation to be performed.
The axial direction is defined by the direction cosines of the vector perpendic-
ular to the planes of the N-lines. New N-lines passing through the minimum and
maximum points on the intersection curve and lying in planes perpendicular to the
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axial direction are then created. The N-lines on either side of the intersection
curve are redistributed in a smooth manner using the same procedure as the redis-
tribution of N-Tines upstream and downstream of the intersection curve on a non-
1ifting intersected component. No redistribution of points on the N-lines is
performed. The elements covered by the intersecting component are automatically
designated as ignored elements by the geometry package and it is possible to
proceed directly to the potential-flow solution without checking or changing the
results of the geometry package. Figure 27 shows the results of this repaneling
option for the wing in a wing-pylon case.

When more accuracy in the region of the intersection curve is desired,
a third option can be used, resulting in no gaps between elements. This
option first repanels the intersected component in a manner nearly identical
to the one described above. The only difference is that the N-lines immedi-
ately on either side of the intersection curve do not actually pass through
any of the points on the intersection curve. Instead, each is offset a
distance equal to the thickness of the intersecting component (projected in
the axial direction). The elements covered by the intersecting component are
again designated to be ignored elements. Now the method adds a new nonlifting

BATTOM VIEW

REGION CONTAINING
IGNORED ELEMENTS

Figure 27. Final repaneling of 1ifting intersected components — wing-pylon case.
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component with elements designed to fill in the gaps around the intersection
curve. The new component has only one strip (two N-Tines). One of the

N-Tines coincides with the intersection curve. The other N-line follows the
boundaries of the quadri1atera1 region containing the ignored elements.

Figure 28 shows the resulting element distribution for a case with very sparse
point spacing on the pylon. Because of the correspondence of the numbers of
points on the pylon and on the boundaries of the region containing the ignored
elements, the paneling produced only quadrilateral elements (except at the lead-
ing and trailing edges of the pylon). If the numbers do not correspond as in
figure 28, then one or the other of the N-lines on the new component contains
repeated points and triangular elements are produced. Points are repeated in
such a way that the length of each M-line on the new component is minimized.
Figure 29 shows a case having more points on the pylon than on the boundaries of
the region containing the ignored elements, showing the repeated points on one
N-Tine and the resulting triangular elements.

N-Tines which bound extra strips falling inside another component are not
moved during the repaneling of 1ifting intersected components. Because of this
and because none of the options described above in this section changes the

BOTTOM VIEW

REGION CONTAINING
IGNORED ELEMENTS
AND EXTRA NONLIFTING
ELEMENTS

i

Figure 28. Final repaneling of 1ifting intersected components — wing-pylon case
(sparse element distribution on pylon).
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Figure 29. Final repaneling of 1ifting intersected components — wing-pylon case
(more points on pylon than surrounding region on wing).
point distributions on N-lines, the repaneling of a 1ifting intersected compon-
ent does nothing to destroy any match-up of the elements along the curve of inter-
section of the component with another component which it pierces. Therefore, one
component can play the role of both an intersected and an intersecting component
(although one component cannot intersect or be intersected by more than one
other component). Figure 30 shows the final element distribution for a wing-
fuselage-pylon case. In this case, the wing and pylon were first repaneled as
intersecting components; then the fuselage and the wing were repaneled as inter-
sected components.
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Figure 30.

Final element distribution on a wing-fuselage-pylon case.



10.0 CONCLUSIONS

The geometry package described above provides a means for significantly
reducing the effort required to prepare the input data for three-dimensional
potential-flow calculations. Data may be input to the program using either
the original input format of reference 4 or the format of reference 5.
Geometric input data generally consists of the coordinates of sets of sparsely
defined points. In most cases, the number of points input can be at least an
order of magnitude less than the number of points required for the potential-
flow calculations. Each component of the configuration is automatically
paneled using one of several algorithms provided by the method. The number of
algorithms provided and the generality of some of them provide the user with a
great deal of flexibility in determining the character of the resulting element
distributions. Curves of intersection of components are automatically calcu-
lated and all intersecting components are repaneled in a suitable manner for
the potential-flow calculations. In many cases the potential-flow calculations
can be performed in the same computer run as the geometry package calcula-
tions, without interruption. To allow for intermediate checking, however, and
to provide for those cases which cannot be run completely without interruption,
provision has been made for the punched output of the defining coordinate data
at each stage of the geometry calculation in a format suitable for reinput to
the program.
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