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ABSTRACT

An integral boundary layer procedure has been developed for the com-
putation of viscous and secondary flows along the annulus walls of an
axlial compressor. The procedure is an outgrowth and extension of the
piteh-averaged methods of Mellor and Horlock. In the present work sec-
ondary flow theory is used to develop approximations for the velocity
profiles inside a rotating blade row and for the blade force deficit
terms 1in the momentum integral equations, The computer code based on
this procedure has been iteratively coupled to a quasi-one-dimensional
model for the external inviscid flow, Computed results are compared with
measurements in a compressor cascade.

NOMENCLATURE

A,B profile p&rameters, eq. (9)

b angular blade spacing, fig. EJ

Ca axial projection of blade chord

Ch entrainment coefflecient, eq. (195
cfs’cft skin friction coefficlents, eq. (1Bj
Dt’Dx force defieits, eqs. (16) and (17)
E(yt) law of wall function, eq. (25)

Ft’ft .- external and local values of blade force
n .power;law exponent, eq. (10)

P,p external and local statle pressure
9y 9, components of friction velocity

4 radius vector from axis
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2
intrinsic covrdinates, ffé. 2
components of wheel speed fx7¥
rotational veloelty fileld, W-w
external and local absolute veloeities
external and local relative veloelties
magnitude (ﬁi of veloedity W
cvlindrical coordinates, fig. 1
arc tanéent of end-wall slope, fig, 1
external Elow angle, £ig, 2
presgure differencé across pitch, Py = Py
shear layer -thickness
digsplacement thickness, eq. (14)
pover—law Bunction, eq. (10)
y dntegral of veorticlty component
integral of Mg eq.?ﬁ7)
momentum thilckness, eq. (14)
intrinsiec curvatures, eq. (15)
cylindrical curvatures
reciprocal length, n/¢b cos B)
vorticity parameter, eq. (35)
thickness integral, eg. (23)
density
scaled © coordinate
wall ghear—stress component
velocity potential of external flow, eq. (1)

>
vector potential for veloeity —u, eq, (1)-

#



b angular rotation vector

ﬁ absolute vorticity

Subscripts: )
0 denotes vniue at end wall, y = 0

1,2 denotes vaglue at blade surface
Superscripts:

—

denotes pitch-average

* Denotes average of blade surface yalues

1. INTRUDUCTION
The three-dimensional viscous flows aloag the annulus walls of an

axial compressor are known to play a major role in the performance of the
machine. The *uining of the Shear layers by the blades and the relative
motion between the end wall and the unshrouded blade tips produce secon-
dary flows most of whose energy is ultimately lost. The displacement
effects of the viscous layers can produce substantial local modifications
in the pressure fleld of the éxternal inviscid flow. The preddction of
the significant features of these flows is the goal of the present work.

Most of" the existing analyses of end-wall flows have followed one
of two approaches, The first amploys secondary flow theory in the small-
shear large-disturbance approximation, An upstream primary vortiecity is
convected and dlstorted by a turning irrotational flow. The resulting
streamwise vorticity component induces secondary velocities which are
calculated by a stream function solution in a cross-sectional plane.
Work in this area has been reviewed by Horlock and:Lakshminarayana
(ref. 1) and more recently by Horlock (ref. 2). This technique can give
quite aceceptable values for the distribution of flow angle downstream of
a blade row, but it cannot predict the blockage and loss associated with
the end-wall flow.

The second approach, developed by Mellor and Wood (ref. 3) and
Horlock and Perkins (ref. 4), employs integral boundary layer techniques.
The three-dimensional equations of motion are averaged across the blade
pitch and then integrzted across the shear layer normal to the end wall.
While the usual boundary-layer approximacion is applied to the shear
stress, the pressure variation normal to the end wall 1s not neglected
pince the blade spacing may be comparable to the shear layer thickness,
In principle these egquations can prediet both the blockage and loss in
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the end-wall regipn; however, in common with all integral procedures,
many approximatioiis are required to evaluate important terms in the
equations, Ope premising approach, which has been dnvestigated by
Horlock (refs. 4 anil 5), is to use secondary flow theory to model some

of the terms arising from three-dimensional effects, To date the in-
tegral procedures have supplied useful predictions of the overall effects
of end-wall flow.oa blade~row performance. They have not, however, pro-
vided the information on conditions within a blade passage needed in our
expanded efforts to calculate the flow through a compressor stage,

In the present work szcondary flow theory i1s employed in a number
of ways to improve the integral boundary layer technique. First the
velocity profiles Inside a rotating or stationary blade passage are ex-
pressed in terms of integrals of the piltch-averaged absolute vorticity
components, which are in turn approximated by simple parametized forms.
The velocity profiles are used not only to evaluate the various integral
thicknesses , . ‘but also to calculate the effects of the pressure gradient
normal to the end wall. Finally, the small-shear large-disturbance
approximation is used to obtain the astreamwise vortilicity near the outer
edge of the shear layer. Additional auxiliary information is provided
by three~dimensional extensions to the law of the wall and to Head's
entrainment equation (ref, 6).

The golution of the resulting ordinary differvential equations for a
multi-stage axial compressor has been developed into a computer code.
Initial calculations with this code were performed for the case of the
compressor cascade of Papailiou, Flot, and Matheu (ref. 7). The external
flow was obtained from an inviseid calculation (ref. 8) in which the-
blockage was distributed approximately in accord with the measured values.
The resulting end-wall predictions were .éxtremely sensitive to the assumed
blockage varilation inside the blade passage; an Interactive calculation
was apparently necessdry. For simplieity in checking out the end-wall
code a quasi-one-dimensional model was devised to represent the external
inviseid flow (ref. 9), The axial veloelty depends on the combined end-
wall and blade blockage and the tangentlal velocity varies at a rate de-
termined primarily by the turning of the blade mean camber line. When
this model is allowed to interact iteratively with the end-wall calcula-

tion, a satisfactory prediction scheme results. Comparisons between

theory and experiment are oresented for the data of reference 7.

2. BASTC ASSUMPTIONS

The. fluid equations are written for a reference frame fixed with
respect to a rotating blade row. The two coordinate systems used in this
frame are shown in Figures L and 2. One is a cylindricel system with x
along a surface meridion, 8 ecircumferential, and 'y normal to the end-
wall. The second is an intrinsic system with s and t, respectively,
along and transverse to the streamlines of the external invmscid flow.
The varilations of the external velocity W with ¥y and flow. angle B.
with 6 and ¥y are neglected, i
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In the evaluatlon of the secondary flow, and subsequently, the
blade force deficit, the blade spacing rb d4s taken to jje of the same
order as the shear layer thickness 6. Hence, we assume “that veloclty |
gradients in the y and t directions are both large tompared to those
in the s direction with the possible éxcegtion of a smail reglon near
the blade leading edge, Both & and b are assumed small compared to
the blade height.

In the vicinity of the blades we neglect the blade boundary layers
and assume slip flow along each surface. Downstream of a blade row we
negleet the viseous wukEb and assume the scecondary flow-te be confined
by vortex sheets whick follow the external flow streamlines From the
tralling edge. At the leading edge of a following blade row the pltch-
averaged vorticity and veloclty components are taken to be continuous,
Although ralative motilon 18 permitted betwzen. the blades and the end-
wall, no allowance 1¢ made for finite tip-clearance flows,

Finally, we note that compressibility is included by sllowing the
external density p. to vary with x. The variations of p with y
and © are neglectad.

3. VELOCITY PROFILES AND SECONDARY FLOW

In this section an approximate solution for secondary flow is used
to develop expreusions for the veloeclty profiles. The analysis is an
extension of a similar one by Horlock (ref. 5). A more detailed presen-
tatlon is given in reference 9.

TheqyelociLy J 7rela&ive to. the blades is split into two parts,
=W - u, with W and u expressed as

W= vé -8 x ?, W=y ox $ (1)
-+ - >
and u >0 for y >> § with V - ¢ = 0. The absolute vorticity w« and
the vector potential are related by ' .
T (2)
We neglect Bernouli surface rotation and set u_ = ¥ = 0, Then the com-
ponents of 4 can-he written y y
o s o AT S TP S
s~ 3y ! Yt T By y  Ax Th ©°C¢ P 37

where T = 2(8 - 8p)/b and the partial 3/9x i1s taken at constant T,
Now 3/9x = cos # 3/98 and we assume. 9/35 = 0, lhence equation (2) is
approximated by
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with A = n/(rb cos 8). The approximate solution for Py 1s

b, = 5 b (¥) cos 3 (5)
o ;
¥, = s - ng(y)dy; (6)
Jy
§ .
n: = %‘f ng (y)dy (7
y .

where_'E& is the average of Y, scross the pltch and on. ol 8y 2 Uy with
ng = 0 For y > &. The primary component ;. 18 simply approximated by

its average value
y
L f n.(ydy, (8)
0

Equations (2) and (5) to (8) can be combined to glve velocity profiles
once approximations for the vortielty components are established.

Absolute Vortieity

Consider filrst an axisymmetric boundary layer on a stationary end=
wall upstream of a rotor. For this case A = 0., The components Mgt
and mgt din the absoluts frame are approximated by

nee = =V -9.,) ~ V(1 ~0)
_ _ - (9)
nsl = "th z =V(L - g)zfa(l - ) + Bt
with
ol oy s
i g = (10)

l._ y> 8
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The parameters 6, n, n, and- B will be permitted to vary with x. 'The
gtreamwise component Vy' has been given a simple power-law profile and
the cross~-flow Vit approximates Johnston's triangular form (ref, 10)
whenever A and B have the same sign. ]

The components ne and ng in the relative frame are given by

ne s =0+ U ~2) - U (L = 2)g[AL - 5) + BE)
. T “{11)
= =W+ UL - 2)glall - §) + Bg] + U.(1 - 5)

whaere U, are components of the wheel speed Q x ¥. Inside the rotor
A>0 and W vardes with 1 as well as x. We retaln equations (11)
but rerognize that the velocity profiles obtained from them will not in
generss ‘satisfy no slip at the wall. This is especially true at a rotat-
ing rotor hub. The no slip condition is'het by introducing a very thin
region adjacent to y = 0 d4n which the velocity profiles are matched to
a three-dimensional law of the wall. The mechanies of this are taken up
in the section on wall shear stress.

Leading~Edge Reglon

Whenever there is significant cross-flow relative to the blades up-
stream of the leading edge, the assumption 3/8s = 0 iy invalid, 7The
cross—f£low must be turned by the blade, and it is only after some dis-

. tanee inside the blade row that the passage vortex represented by equa-
tion (6) is formed, This_situation can be modeled by the addition of a
term dn x and y to wg in equation (6). TFor the case of a rotor
tip, ag described dn the preceding section, this term has the value
ng 6[1 -~ exp(-Ay)] at the leading edge and it can be represented as a !
Ihurier integral inside the blade row (ref. 9). The displacement effect
ariging from this term can be shown to decay exponentially with distance
x from the leading edge¢ This miglit be used to obtain a sultable approx-
imation to the Fourier integral. This possibility 1s belng investigated.

4, VISCOUS EQUATIONS

The momentum integral equations in the intrinsic system together
with the entralnment equation are writren in a form similar to that of
Hirsch (ref. 11}, A complete derivation is given in reference 9. In
this section the preceding velocity profiles are used to develop approxi-
mations to the blade force deficit, wall shear stress, and entrainment
rate.

The momentum integral equations are
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tX |, o= 5 = 1 TaF
- + etx d 1n(rbpw ) ts + Kt(ass + = WSB)”
“ % Sl
- kaU6B % -Dx gin + Dt + E’cft
where
o w0 \
_ % _ _ .
wssu = \4/r\ (wa - wa)dy = \,/[\ u, dy
U 0 \
/
[} o
e W Yo, dy = 6N d
W af o Vo'V @Y o B Uats y
0 § - 0 w,
BB Y =1 -?;& -
Ky = = 3¢ +inx cos #, Ke 7 55 ~ Ky gin B
T T S B 5 e u _(am2yl A 3e
D= -(pW )~ oy (F - p)dy = -(pW") ~ — \J/f\ 5y ¥ Y
0 "] .
D, = (W) (F, - £)dy = (oW ) - Ey Y Wy
0 0
C naT2 -1 —
Gfu 2(pW } T0g

with K = -3r/r 9x, U= U/W, and fr = =APf(rb cos f). Here AP =P

(12)

(13)

2

(24)

(15)

(16)

(171

(18)

..Pl

is the pressure difference across the pitch. The upper limit on y is
taken very large because the secondary flow extends well beyond the edge

of the shear layer, y = §.

The entrainment equation is written

wr s i e . . . ‘ BT TR P L s P S PO PO
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P o d -
o (S cos B - 8 o+ 6) + (8 cos B -8 +6) o In(ebeld) = Gy (19)

where Géﬁ' 18 the entrainment rate at y = § and

.- =3 2
. P _ .
W, \_/r\ ‘R, = wg)dy \d/r\ u, dy (20?
$ § :

The integral thicknesses are evaluated from the profiles of equa~
+ions (3), (6), (8), and (11) in reference 9. The averages in equa-
tlons (12) and (13) are approximated by setting wgwg s wgwg. Estimatos
of the neglected terms indicate that tliey contribute less than ten per-
cent even for highly loaded blades.

Force Deficité

Let 3/98 “be of oxder one, 0(1), and assume that b is 0(8),
then from the y momentum equation

=1 3P —3.~1 "t 1
)~k 2B w2yl t . ..)

When these relations are substituted into equations (16) und (17), it is
seen that D_ is 0(52) and Dy is ©(8). Since equations (12) and (13)
are only corfect to 0(8) we neglect Dy. An equation for £, 1s ob-
tained by evaluating the y momentum equation at the blade surfaces
where wg = 0,

. + o
af w Aw 9w
1t .8 3 s _y., 1
p 8y " rb 9x (Aw ) + rb  9x % Tb by (w B )sec ¢
Aw a
- + 2ry(w + UJ tan B 4+ viscous terms

(2L)

where W: = é—(w + Wuz) and Ky = ~3r/r 8y. The integrand in equa-

tion (17) 1is only significant for y of 0(8) or larger where

* W ® W and the viscous terms in equation (21) are small. Also from
equati@ns (3) and (5), away from the leading edge, w' = 0,. The first
term ot the right of equation (21) must be retained, however, since
fwy = Wyp = Wy 1s -0(Wg). With these appxowimationh, substitution of
equation (21)" Into equation (17) givec

ey ey e o e e S R G R A SR



D, z‘_‘,\-coa 8 e \Jj cos B T In(rb¥W cos R) =~ ?Ey(sin g + U)‘\JlB gin 8 "
| o (22).
with

| ~& K %
S a s -1 _ - 2 - __
WY b cos B) ‘-/ A(Wcl wu)y dy 2 f&uay dy (23)
0 0

The thicknesses v, are evaluated in reference 9.

Wall Shear Stress

We assume the flow in a thin wvagion adjacent to y = 0 1s collateral
dnd obeys a three-dimensional law £ the wall, :

Ty =Wy ® QB0 W =g v g ) (24)
where
£y, = 6.14_1 Iny, + 3, Y4 = valy (23)

and W,y are the components of the end-wall velocity relative to the
blades, The skin friction coefficients ‘are related to the friction ve-
locitles g by Cgy = ?.qqﬁ/w Aty -+ 0, equations (3), (6), (8), and
(11) give :

Wy "W ® -(Uu‘ 4 WU) + [(W + US) - UtA]z:

8
_ N _ (26)
W = W © -(u, * ww) + (h&)ns + [(W + Us)A + Ut]z;
Matching equations (24) and (26) at y/6 =y gives
Q£ = =(Ug +w ) + [W+U) -0 A]“]‘/“
(27)
~1/n

qtf(y+) x (u + Wto) + (As)n + [(W+ U )A + U ]y

with = y8q/v. Equatioms (27) can br_; gsolved iterative.ﬁy for q_ and
[/ Tl{:ts formulation enables the flow to respond to sudden changes in
the end—wall velocity such as those whiceh ocecur at a rotor hub, -Note-
that ¥ = 0. 1 glves a good value for Cf 1in a two-dimensional boundary
layer.
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Entrainment Ru;ﬁu

In two-dimenasfional flows the entrainment rate CEWL is glven by

(refu ,12)
- a1 lay dv,,
G = i’(%GX75§") ° (E§$> (26)
o y':'ﬁ yn@

where vyq is the eddy viscosity. Since Cp 18 o scalar,: we assume with
Bradshaw (ref. 13) that the some velation holds in three~dLmenaicnal £low,
IL wiz upproximutn vy by

1/2
2 (2 -
Vo =y ( + wt) (29)

where &y is the mixing length, then equations (11) and (29) as y + §
give

2 W
M ny

112

¥ (vp) mvu + 12) (V) = & (30)

Vi
T

with V = V/W. The expression ot <VT)2D is not accurate enough to be
uged in cquation {28). lence, its derivative is replaced by Head's empir-
icul relation (ref. 6). Thus, we approximate Cp by

~0,6535 1/2

6 * 0.0306¢" - 3) V(1 + 182) (31)

with N .
1Y = 1,535 - 0.7) "% 719 4 5.5 (32)
Bel+ 3/n . {33)

Equation:(33) for the streamwise shape factor H follows from the power-
law relation equation (10).

5. VORTICITY TRANSPORT

In the outer part of the shear layer, near y = &, we assume that
streamwise vorticity i, 18 convected by the external flow with only the
primary counponent w, directly affected by viscous diffusion, This nodel
is simllar to that oE Louis (ref, 14). In addition prus%ure and density
ave taken to be the same as in the external flow where P z P(p). TFor
these conditions the transport equation for w, dis (ref. 9)

3 ws) W ‘
DW ';é"é" ("E‘) j _-x.-ﬂ_"}g %E‘ + ?;wt()ftw - ng) (3{')

T m——
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Equation (34) {s evaluated with average values for w, and W, From
equations (11), as y > & ond g =+ 1,

] W, * u@w/ny (35)
mow (LU + 08, owoe QHUIE - U (36)

with U, = Uy/fi, Note that y must be much less than § before & de-
parts significantly from one. Finally, equations (34) to (36) are com=
bined to glve

v .
d {8 1de S e T
n EQ‘(TT) v, S E§-+ 2 pae B ut(wt xxU) (37)

G. INTEGRATLON OF THE GOVERNING EQUATIONS

The lutegral and vortlelty equations are written in a combined im-
plicit form ‘

d \ .
ax Py Gy s i=1 to4 {58)

The overbars are dropped and sll quantities are understoocd te take thelr
sverage values, From equations (12), (13), (19), (22), and (37) we write

y . #* p o
Fl = § cos B - ﬁx + éx, Tz SBK
(39)
I?‘-3 <8t vy cos 8, ¥, @ uS/n
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. . . i} : _dd . ﬁ ~
Gy F) T In(rboW) + Cp
2 _ -];El-{i a1
Gy = 'esx dx n(xbpW™) - ¢ x Wax T ReIes KgOee
~ % 1
Gy = =0, & In(bow?) + k8, - K (0,  + 60 + Ze T ) 40
3 tx dx t 'ss 8 “tx g
)
-y eos B 4 In{rbW) - 2k (sin25=+ U v+ z'--G
y dx Ty 8 'g 2 Vft
H N -
= .5 Lde _t -
G, T % + 2 sec B (k, = k1) J
; Numerical Proceduré
Equations (38) are rewritten In an explicit matrix form
MCx,Y) SE = G(x,¥) - F(x,Y) (41)
) dx ’ ®
or
aY _ wlem _wy o= 5
i - A (G Fx) gD (42)

where Y is the unknown vector (8,n,A,B), M is the Jacoblan matrix
8F/9Y, and Fy = 9F/3x, The elements of M and F, are given in ref-
erence 9, Equation (42) 4s integrated by the fourth~order Runge-Kutta
method with Gausslan elimination used io find D at each step.

7. DISCUSSION OF RESULIS

The end-wall theory has been used to predict the low speed flow
through a linear cascade of compressor blades as reported in reference 7,
A detalled set of data for the heavily loaded case B has been obtained
from the authors (ref. 15). In this flow g set of NACA 65-(12410)-10
blades at 30 degrees stagger was used to-turn the flow from R = 56.6
degrees to B = 25.2 degrees. The data taken upstream of the cascade re-
veal the presence of a significant cross-flow extending to mid-span. The
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;8hear layer, however, is confined to a thickness of less than one fourth
the blade helght., Since the theory, in its present form, is incapable
of properly treating thisg situation,; the computatinn was performed with
the upstream cross~flow get to zero,

The comparison between thecry and experiment is shown in figures 3
to 6. TFigures 3 and 4 show the tangent of the flow angle £ and the
axial velocity V, against dimensionless distance x/C,, where C; is
the axial prujsction of the blade chord, as obtained from the quasi-one-
dimensional model of the inviscld £low. The turning rate inside the
blade row has been adjusted to produce the agreement in tan B shown
in figure 3. However, the flgure also shows that the real flow undergoes
gighificant turning before it encounters the leading edue at x = 0. The
under prediction of V, in figure 4 indiiates that the real flow en-
counters somewhat greater blockage than predicted in the computation,
rigure 5 ghows the streamwise displacement and momentum thicknesses, %

85 /C and 844/C,, against x/C,. While the close agreement for &g
inside the blade row is probably Eortuitous, the general trends for both
curves are highly encouraging. There is no peint in comparing cross-flow
thicknesses, since the upstream cross-flow has been neglected in the com-
putation. Finally, figure 6 shows the blade force deficit Dy apgalnst
x/C,. Although there is qualitative agreement, the predicted value is
too small by more than a factor of two. The inclusion of a leading edge
nodel which can properly account for the vapld turning of the upstream
cross f£low should go a long way toward removing this discrepancy.

8. CONCLUSIONS AND RECOMMENDATIONS

In its present form the end-wall predictien scheme has been shown to
give at least qualitatively correct results for the pltch-averaged flow
through a linear cascade of compressor blades. Naiurally many more com-
parisons with internal flow measurements are needed. However, at least
three things must be added before the theory can be used to predict the
end-wall £lows in an axial compressor:

1. A leading edge model which can treat the rapid turning of an up-

_Mi stream cross—-flow and its contribution to the blade force;

2. A model for tip clearance flows and their effect on -baundary layer
growth ;

3. Coupling of the end—wall'ﬁrediction to a mﬁlti—stage though~-flow
caleculation for the dnviscid flow. '
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