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ABSTRACT 

An integral boundary layer procedure has been developed for the com­
putation of viscous and secondary flows along the annulus walls of a,n 
axial compressor. The procedure is an outgrowth and extension of the 
pitch-averaged methods of Heller and Horlock. In the present work sec­
ondary flow theory is used to develop approximations for the velocity 
profiles inside a rotating blade row and for the blade force deficit 
terms in the momentum integral equations. The computer code based on 
this procedure has been iteratively coupled to a quasi-one-dimensional 
model for the external inviscid flow. Computed results are compared with 
measurements in a compressor cascade. 
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NOHENCLATURE 

profile parameters, eq. (9) 

• 
angular blade spacing, fig. 2 

axial projection of blade chord 

entrainment coefficient, eq. (19) 

skin friction coefficients, eq. (18) 

force deficits, eqs. (16) and (17) 

law of wall function, eq. (25) 

external and local values of blade force 

power-law exponent, eq. (10) 

external and local static pressure 

components of friction velocity 

radius vector from axis 
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intrinsic coordinates, fig. 2 

componen ts of I~heel speed il x ~ 

rotational velocity field, l~ - t 
external and local absolute velocitip,s 

exteraal and local relative velocities 

magnitude Iwl of velocity W 

cylindrical coordinatos, fig. 1 

arc tangent of end-wall slope, fig. 1 

external flow angle, fig. 2 

pressure difference across pitch, P2 - Pl 

shear layer thickness 

displacement thickness, eq. (14) 

~ " pm;er-law .!lunction, eq. (10) 

na y integral of vorticity component 

* na integral of lla' eq. ,(7) 

v 
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momentum t1lickness, eq. (14) 

intrinsic curvatures, eq. (15) 

cylindrical curvatures 

reciprocal length, n/~b cos S) 

vorticity parameter, eq. (35) 

thickness integral, eq. (23) 

density 

T scaled e coordinate 

" ,. Oa Nall shear-stress component 

velocity potential of external flOI, , eq. (1) 

vector potential for velocity 
.> 
u, eq. (1) 
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n angular rotation vector 

.)-

w absolute vorticity 

Subscripts: 

o denotes value at end wall, y = 0 

1,2 denotes value at blade surface 

Superscripts: 

denotes pitch:-average 

+ Denotes average of blade surface values 

1. IN'rRODUGTION 
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The three-dimens:tonal viscous flows alo'Ag the annulus walls of an 
axial compressor are known to play a major role in the performance of the 
machine. The t';;;iling of ,the ,shear layers by the blades and the relative 
motion between the end wall and the unshrouded blade tips produce secon­
dary flows most of whose energy is ultimatelY lost. The displacement 
effects of the viscous layers can produce substantial local modifications 
in the pressure field of the external inviscid flow. The prediction of 
the significant features of these fbws is the goal of the present work. 

Host of" the existing analyses of end-wall flows have followed one 
of two approaches. The" firs t employs secondary flow theory in the small­
shear 1arge-dioturbancb', approximation. An upstream primary vorticity is 
convected and distorted by a turning irrotationa1 flow. lhe resulting 
streamwise vorticity component induces secondary velocities which are 
calculated by a stream function solution in a cross,-sectiona1 plane. 
Work in this area has been reviewed by Hor1ock and,Lakshminarayana 
(ref. 1) and more recently by Hodoe!'. (ref. 2). This technique can give 
quite acceptable values for the distribution of flow angle downstream of 
a blade row, but it cannot predict the blockage and loss associated with 
the end-wall f10\~. 

The second approach, developed by Hellot:,and l~ood (ref. 3) and 
Horlock and Perkins (ref. 4), employs integral boundary layer techniques. 
The three-dimensional equations of motion are averaged across the blade 
pitch and then integr,C~ed across the shea:c layer normal to the end wall. 
l'lli1e the usual boundary-layer approximation is applied to the shear 
stress, the pressure variation normal to the end wall is not neglected 
since the blade spacing may be comparable to the shear layer thickness. 
In principle these equations can predict both the blockage and loss in 
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the end-wall regil)n; however, in common with all integral prncedures, 
many approximatioi'IS are required to evaluate important terms in the 
equations. One prumising approach, which has been ,investigated by 
Hurlock (refs. 4 and 5), is to use secondary flow theory to model some 
of the terms arising from three-dimensional effects. To ddte the in­
tegral proceduros have supplied useful predictions of the overall effects 
of end-wall flow oil blade-row performance. They have not, however, pro­
vided the inform&','ion on conditions within a blade pailsage needed in our 
expanded efforts to calculate the flow through a compressor stage. 

In the present work secondary flow theory is employed in a number 
of ways to improve the integral boundary layer technique. First the 
velocity profiles inside a rotating or stationary blade passage are ex­
pressed in terms of integrals of the pitch-averaged absolute vorticity 
components, which are in turn approximated by simple parametized forms. 
The velocity profiles are used not only to evaluate the various integral 
thicknesses, ,'but also to calculate the effects of the pressure gradient 
normal to the end wall. Finally, the small-shear large-disturbance 
approximation is used to obtain the streamwise vorticity near the outer 
edge of the shear layer. Additional auxiliary information is provided 
by th ree-dimensional extensions to the law of the wall and to Head's 
entrainment equation (ref. 6). 

The solution of the resulting ordinary differential equations for a 
multi-stage axial compressor has been developed into a computer code. 
Initial calculations with this code were pe'rform,~d for the case of the 
compressor cascade of Papailiou, Flot, and ~!atheu (ref. 7). l'he external 
flow was obtained from an inviscid calculation (ref. 8) in which the 
blockage was dis tributed approximately In accord with the measured values. 
The resulting end-wall predictions were ,extremely sensitive to the assumed 
blockage variation inside the blade passage; an interactive calculation 
was apparently necessary. For simplicity in checking out the end-wall 
code a quasi-one-dimensional model was devised to represent the external 
inviscid flow (ref. 9). The axial velocity depends on the combined end­
wall and blade blockage and the tangential velocity varies at a rate de­
te,rm:f.ned primarily by the turning of the blade ;r.eancamber line. Hhen 
this model is allowed to interact iteratively with the end-wall calcula-

"tion, a satisfactory prediction scheme results. Comparisons between 
theory and experiment are ["resented for the data of reference 7. 

2. BASIC ASSUHPTIONS 

i
e

. The" fluid equations are written for a reference frame fixed with 
respect tl' a rotating blade row. The two coordinate systems used in this 
frame are shown in figures 1 and 2. One is a cylindrical system \vith x 
along a sur£a~e meridion, e circumferential, and y normal to the end­
wall. The se,c:ond is an intrinsic system with sand t, respectively, 
along and transverse to the streamlines of the external inviscid flow. 

->-
The variations of the external velocity H with y and flow angle a 
with e and yare neglected. 

, ' 
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In the evaluation of the secondary fl.ow, and subsequently, the 
blade force deficit, the blade spacing rb is taken to lie of the same 
order as the shear layer thickness o. Hence, we assume~hat velocity 
gradients in the y and t directiol\8 are both large c'Jmpared to those 
in the s direction with the possible exception of a small reglon near 
the blade leading edge. Both <I and rb a1:(! assumed smull compared to 
the b lade heigh t. 

In the vicinity of the blades we neglect the blade boundary layers 
and assume slip flow along each surface. Downstream of a blade row we 
neglect th~ viS,t:!oua w\~keB and assume the secondary flow- to be confined 
by vortex shee ts whic~: follow the external flow streamlines from the 
trailing edge. At the leading edge of a following bl,ane row the pitch­
averaged vorticity and velocity components are taken to be continuous. 
Although mlative motion is permitted bet"aen the b1a.d(la and the end­
wall, no allowance is made for finite tip-clearance flows. 

Finally, we note that compressibility is included by allowing the 
external density p to vary with x. The variations of p with y 
and 0 are neglected. 

3. VELOCITY PROFILES AND SECONDARY FLOI' 

In this section an approximate solution for secondary flO\~ is used 
to develop expre~sions for the velocity profiles. The analysis is an 
extensior. of a Rimilar one by Horlock (ref. 5). A more detailed presen­
ta~1on is given'in reference 9. 

_> . i, 
-> .,.The.,velocity_>- w rela.!i.ive to.': the blades is split into tl~O parts, 
w = I' - II, "ith 111 and u expressed as 

(1) 

+ 
and u + a for y» 
tl:~ vector potential 

+ 
§. Id th 'l' 1jJ = O. 
~ are related by 

The absolute vorticity + 
III and 

(2) 

He neglect B!;.rnouli surface rotation and set Illy ~ tPy ~ O. Then the com­
ponents of u can-be written 

"here T = 2(8 - 8m)/b 
Now a/ax = cos a a/as 
approximated by 

(3) 

and the partial a/ax is taken at constant T. 
and I~e assume a/as::: 0, hence equation (2) is 
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(4) 

with A" 'If/(rb cos Il). The approximate solution for ljis is 

(5) 

*~ -AY fli ,I" = n ue -"'s 8 

Y 

(6) 

(7) 

where .pa is the averagp. of .pIX IIcr08S the pitch and an.;/ay ~ wa with 
l1a .. 0 for y > Ii. The primary component 1/lt is simply approximated by 
its average value 

Equations (2) and (5) to (8) can be combined to give velocity profiles 
once npproximations for the vorticity components are established. 

Absolute Vorticity 

(8) 

Consider first an axisymmetric boundary layar on a stationary end~ 
l~a11 upstream of a rotor. For this case A = O. "rhe components llt I 
and 'ne I in the abSb1uto frame are approximated by 

(9) 

with 

l;" [<y/o)l/
n

, 

\:. 
y 5.. /) 

(10) 
y > Ii 

I 
I' 

I 
I ' 
r I 

I ' 
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The parameters Ii, n, A, and" n will be permitted to vary with x. 'l1H! 
stremnwise componer-t va' has been given a simple power-law profile and 
the cross-flow Vtl approximates Johnston's triangular form (ref • 10) 
whenever A and Il have the same sign. 

The components Ill:" and 118 in the relative frame are given by 

nt ~ -(W + Us) (1 - ~) - Ut(l - ~)'[A(l - t) + n~l} 
(11) 

l1il • -(W + Us) (1 - ~)~[A(l - ~) + nz;] + Ut(l - r,) 

.. -> 
where Ua are components of the wheel speed fI" r. Inside the rotor 
>. :0 0 and H varies with. as well as x. He retain equations (11) 
but re;"Qgnize that the velocity profiles obtained from them will not in 
gener",,"' satisfy no slip at the walL Tht s is especially true at a rotat­
ing rotor hub. 'fhe no slip condition is''llet by introdUcing a very thin 
region adj aeent to y ~ 0 in which the velocity profiles are matched to 
a three-dimensional law of the wall. The mechanics of this are taken up 
in the section on wall shear stress. 

Leading-Edge Region 

Hhenever there is significant cross-flow relative to the blades up­
stream of the leading edge, the assumption alas:: 0 i~ invalid. The 
cross-flow must be turned by lhe blade, and it is only after some dis­
tance inside the blade row that the passage vortex represented by equa­
tion (6) is formed. This situation can be modeled by the addition of a 
term in x and y to 1)Js in equation (6). For the case of a rotor 
tip, as describod in the preceding section, this term has the value 
n:o[l - exp(-AY)] at the leading edge and it can be ~epresented as a 
Fourier integral inside the blade row (ref. 9). The displacement effect 
arising from this term can be shown to decay exponentially with distance 
x from the leading edge. This might be used to obtain a suitable approx­
imation to the Fourier integral. '£hi5 possibility is being investigated. 

4. VISCOUS EQUATIONS 

The momentum integral equation,; in the intrinsic system together 
with the ,entrainment equation are I~rit.r"en in a form simflar to that of 
Hirsch (ref. ll). A complete derivation is given in reference 9. In 
this section the preceding velocity profiles are used to develop approxi­
mations to the blade force deficit, lOall shear stress, and entrainment 
rate. 

The momentum integral equations are 
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de 
d

BX + e dd 1n(rbpW2) 
x ax x 

+ J:..:(o * 3H + IJ* .lli.) w B as t at 

where 

- * W 15 ~ 
s ex 

-0 sin x 

J '" 
o 

K = - ~ + K cos a, s at;: x 

i:i2 -1 d J'" - -Ox ~ -(pH) dx (P - p)dy ~ 

o 

+ :. HO~) w 6. 

K sin e 
x 

-1 d ap J '" 
-(piJ2) - - y dy dx By 

U 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

with K = -ar/r ax, ij = U/W, and f = ~flP/(rb cos a). Here flP ~ P
Z

-P
1 x t 

is the pressure difference across the pitch. The upper limit on y is 
taken very large b",cause the secondary flow extends well beyond the edge 
of the shear layer, y = o. 

The entrainment equation is written 
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d: (0 COil a - ~= + 6:) + (6 COil a - 6: + ~) d~ In(rbpW) "~ (19) 

where CEI~ is the entrainment rate at ~ ~ /I and 

(20) 

" The integral thicknesb!!s are evaluated from the profiles of equa-
-tions (3), (6), (8), and (11) in reference 9. Th~era.ae!!. in equa­
tiono (12) and (13) are approximated by setting wawll ~ wawll' Estimatos 
()f the neglected terms indicate that they contribute less than ten per­
cen t even for high,',y loaded blades. 

Force Deficits 

Let alas 'be of order one, 0(1), and assume that 171> ill O(Il) , 
then from the y momentum equation 

( WZ)-l 3i' ~ 0(1) 
p 3y , 

Hhen these relations are substituted into equations (16) and (17), it is 
seen that Dx is 0(02) and Dt is 0(0). Since equations (12) and (13) 
are only correct to 0(0) we neglect Dx. An equation for f t is ob­
tained by evaluating t:e y momentum equation at the blade surful'es 
where wt " O. 

+ 
AWs 3w 1 a + 

+ - -X. + - -- (w rb ax rb <q y 

(21) 

where w + = 1. (w + w ) and Ky = -ar/r lly. The integrand in equa-I,a 2 al a2 
tion (1/) is only Significant for y of 0(0) or larger I~here 
wt ~ H+ = Ii and the viscous terms in equation (21) are small. Also from 
equation~ (3) and (5), aI~ay from the leading edge, I~; . 0, The first 
term on the right of equation (21) must be retained, howover, since 
8Wy = Wy2 - Wyl is OeWt). With these Approximations, oubstitution of 
equation (21) lnto equation (17) givec 
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(22) 

with 

(23) 

l~e thicknesses va are evaluated in reference 9. 

Wall Shear Stress 

We assume the flow in a thin I:t:llion adj acent to y" 0 is collateral 
and obeY!l~ tl three-dimensional law -;f the wall, 

\~here 

and waO 
blades. 
loci ties 
(11) giv" 

are the 
The skin 
qa by 

(24) 

(25) 

components of the end-wall velocity relative to the 
friction coefficients 'alie related to the friction ve­
Cfa ~ 2qqa/W2. At y 4' 0, equaCi,ons (3), (6), (8), and 

Hatching equations (24) and (26) at y/6 =:; gives 

qi(Y+) • -(Us + \~sO) + [(H + Us) - UtAlyl/n l 
qtf(y+, • -CUt + wtO) + (Ao)n: + [(W + Us)A + Ut]yl/n J! 

(27) 

with y = Ycq/v. Equations (27) can be solved iterativ"ly for q and 
qt. Thts formulation enables the flow to respond to sudden change~ in 
the end-wall velocity such as those which occur at a rotor hub. Note 
that y .. 0.1 gives a good value for Cf in a Wo-dimensional boundary 
layer. 

I 
I 
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ilntrainment Rat·,: 

In tllo-dimensional Howa tllu elltrailllllent rute CEW ill given by 
(ref .·12) 

(28) 

wheru "'r. is the eddy viscollity. Since 
Bradshuw (ruf. 13) that the IHlnle relation 
If we approximate \I'r by 

eil ill II sculur, \~e assume with 
holds in th ree-d:Lmensional flow. 

where 
give 

JiH is the 1I1ixing length, tll!!n equutions (11) und (29) as 

(29) 

(30) 

~ 

with V ~ v/w. The uxprellllio'l l;.Jr (vT)ZD is not uccurute enough to be 

used in equation (28). lienee, its derivative is replaced by Head's empir­
icul relution (ref. 6). Thus, I~e upproximate ell by 

(31) 

14ith 
H* ~ 1.535(H - 0.1)-2.715 + 3.3 (32) 

It '" 1 + 2/n (33) 

Equation (33) for the streullll~i!l(! shupe fucttlr H follo\~s £J:om the po\~er­
law relution equation (10). 

5. VOR'l'Iern: 'rRANS1'ORT 

In the outer purt of the sheur layer, Ileur y ~ /), I~e nsaume thut 
streUlll\dse vorticity Ills is convected by the externul flO\~ \~ith only the 
primury component wt directly uffected by viscous dif:£usiOlt. This model 
is similar to that of Louis (ref. 14). In uddition pres~ure and density 
ure taken to be the sUllie as in the external flow I~here l' = pCp). For 
these conditions the trnnsport equation for Ws is (ref. 9) 

a (Ills) pH - -- ::; as P I -
aN 

IJJ "" + 2wt("cl; - " U) s uS x 
(34) 
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Equation (34) ill evaluated with aVllragll value!! for wa und I~. From 
UtlulltionlJ (11), us Y'" /) and t"> 1, 

" (1 + Ua) + UtB, (1 + Us)lJ 
. 

lit U " - U 
<l t 

I~i th Ua " Uu/~l. Note that 'I IIIUB t bli much lell8 than Q blifore ~ 

(35) 

(36) 

de-
purts significalltly from one. Finally, equations (34) to (36) ure co:n'" 
bined to give 

d ("B) 1 dP. ~ n - - "U - - + 2 Bec S \l (II: - i<; U) d)t n !I 11 d)t t t )t 
(37) 

6. IN'rEGJ\ATlON OF 11m GOVEllNING EQUATIONS 

The integral and vorticity equutions ure written in a combined im­
plicit fo tlll 

i '" 1 to 4 (38) 

1be overbare ure dropped and all quantities are understood to tuke their 
average values. From equations (12), (13), (19), (22), and (37) we wdte 

1'1 "' ~ COB a _ 0" + IJw F ". } x x' 2 !lll 

em 
1'3 '" II tll + \j y cos S. 1'4 u \JaIn 
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G
1 

.. -F ~ 1n(rbpW) + CE 1 dx 

G .. -6 ~ In(rbpW2) - 0* ! dW + ~tets - ~sett 2 ax dx x W dx 

" /J 

G3 .. -atx d~ In(rbPW
2) + KsG tB 

(40) 

":\ 

, , , 
Numerical Procedure 

Equations (38) are rewritten in an explicit u.atrix form 

or 

where 
aF/ay" 
erenc.e 
method 

H(x,Y) ~~ ~ G(x,Y) - Fx(x,Y) (41) 

(42) 

Y is the unknown vector (Il ,n ,A,B) ,H is the Jacobian matrix 
and Fx = aF/ax. 'l'he elements of Hand FX are given in ref-
9. Equation (42) is integrated by the fourth-order Runge-Kutta 
with Gausslan elimination used to find D at each step. 

7. DISCUSSION OF RESULTS 

The end-wall theory has been used to predict the 10\~ speed flow 
through a linear cascade of compressor blades as reported in reference 7. 
A detailed set of data for the heavily loaded case B has been obtained 
from the authors (ref. 15). In this flol< fJ set of NACA 65-(12AlO)-10 
blades at 30 degrees stagger IMs used to turn the flO\~ from B = 56.6 
degrees to S = 25.2 degr.ees. The data taken upstream of the cascade re­
veal the presence of a significant cross-flol< extending to mid-span. The 
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,shear layer. however. is confined to a thickness of less than one fourth 
the blade height. Since the theory. in its present form. is incapable 
of properly treating this situation. the computatiC1n was performed with 
the upstream cross-flow set to zero. 

'1'he comparison between theery and experiment is shown in figures 3 
to 6. Figures 3 and 4 show the tangent of the flow angle a and the 
axial velocity Vx against dimensionless distance x/Ca. where Ca is 
the axial proj::.ction of the blade chord. as ob tllined from the quasi-one­
dimensional model of the inviscid flow. 'fhe turning rate inside the 
blade row has been adjus ted to produce the agreement in tan S shown 
in figure 3. However. the figure also shows that the re,al flow 'undergoes 
significant turning before it encounters the leading ed~e at x = O. The 
under prediction of Vx in figure 4 indi!.ates that the real flow en­
counters somewhat greater blockage than predicted in the computation. 
Figure 5 shows the streamwise displacement and momentum thicknesses. 
o:/Ca and 6ss /Ca • against x/Ca' While the close agreement for o~ 
inSide the blade row is probably fortuitous. the general trends for both 
curves are highly encouraging. There is no point in comparing cross-flow 
thicknesses. since the ups tream cross-flow has been neglected in the com-
putation. Finally. figure> 6 shows the blade force deficit Dt against 
x/Ca' Although there is qualitative agreement. the predicted value is 
too small by Illote than a fac1:or of two. The inclusion of a leading edge 
model which can properly account for the rapid turning of the upstream 
crOS6 flow should go s long way toward removing this dis crepancy. 

8. CONCLUSIONS AND RECONHENDATIONS 

In its present form the end-wall prediction scheme has been shOlm to 
give at least qualitatively correct results for th .. pitch-averaged flow 
through a linear cascade of compressor blades. N1lLurally many more com­
parisons with internal flow "Ieasurements are needed. However. at least 
three things mus t be added before the theory can be used to predict the 
end-wall flows in an axial compressor: 

1. A leading edge model which can treat the rapid turning of an up­
stream cross-flow and its contribution to the blade force; 

2. A model for tip clearance flows and their effect on boundary layer 
growth; 

3. Coupling of the end-wall prediction to a multi-stage though-flow 
calculation for the inviscid flow. 
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