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SUMMARY 

This is the report of research conducted in NASA Grant NSG-3106 

for the period May 15, 1976 to May 15, 1977. The reserach efforts and 

the report are divided into two broad categories, 1) lubricant visco- 

elastic (or glass) transitions and lubricant rheological behavior, 

and 2) lubricant behavior in a simulated elastohydrodynamic contact. 

Both categories of effort are containuations of previous efforts in 

this laboratory. 

The studies of lubricant viscoelastic transition and lubricant 

rheological behavior have fallen into several categories. These include 

additional low shear rate pressure viscosity measurements of the 

naphthenic mineral oil (Nl) and the polyphenyl ether (5P4E) to pressures 

as high as 0.6 GPa. Viscosities as high as lo7 Pas (10" cp) have been 

measured and are reported. The viscoelastic transition of several lub- 

ricants has been measured by volume dilatometry to pressures as high as 

1.75 GPa. Dielectric transitions have been measured at atmospheric 

pressure on five fluids in a frequency of 0.2 to 500 kHz and on two of 

those fluids in the same frequency range to pressures as high as 0.55 

GPa. The dielectric transition work clearly demonstrates the shift of 

transition with frequency. The line of constant frequency or rate 

transition on a pressure-temperature diagram is essentially parallel 

to the curve for viscoelastic transition based on the dilatometry 

experiments. In addition, it has demonstrated that lines of constant 

viscosity also plot essentially parallel to both of the above mentioned 

transitions on a temperature-pressure plot. Two fluids were also 
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examined at elevated pressure for their viscoelastic transition based 

on light scattering techniques. The pressure range of the light 

scattering experiments was from 0.1 to 0.7 GPa. Lubricant shear 

stress-shear strain behavior in the amorphous glassy state was also 

measured to pressures of 0.7 GPa. Three fluids were examined at two 

pressures and various temperatures from the glass transition temperature 

based on dilatometry to approximately 60C below that temperature. All 

of these fluids demonstrated classical elastic-plastic behavior of an 

amorphous solid. They clearly exhibited an elastic shear modulus for 

strains less than approximately three percent and nearly constant 

ultimate shear strengths for shearing strains greater than three percent. 

The elastic shear modulus of one of the fluids, polyphenyl ether (5P4E), 

agrees well with measurements based on ultrasonic techniques that are 

available in the literature. The limiting shear stress of the materials 

range up to 90 MPa with a clear difference in this property among 

the three fluids examined. It appears from these investigations that 

many lubricants undergo viscoelastic and viscoplastic transitions in 

typical EHD contacts. Only in contacts with very low slide-roll ratio 

will the strain in the lubricant be small enough (less than 3%) for the 

elastic shear strain response of the lubricant to be important in deter- 

mining the contact traction. In contacts with larger slide-roll ratios, 

and therefore larger shear strain in the lubricant, the viscoplastic 

transition and limiting shear stress of the material will determine the 

traction transmitted in the contact. 

The elastohydrodynamic simulator studies conducted under this 

contract have consisted of infrared temperature measurement work for 



both thick film and thin film elastohydrodynamic contacts with both 

sliding and rolling kinematics. Surface temperature measurements with 

the naphthenic mineral oil (Nl) have been made for slide-roll ratios 

from -2 to +2 with film thicknesses larger than the composite surface 

roughness. This work has permitted the determination of the surface 

temperatures of the slower moving and stationary surfaces in sliding 

and rolling contacts. As expected the surface temperature of the 

stationary contact in a sliding contact is higher than that of the 

moving contact. For slide-roll ratios less than approximately 0.8 the 

surface temperatures as a function of slide-roll ratio are essentially 

symmetric about a zero slide-roll ratio. Measurements of surface 

temperature, film thickness and traction for polyphenyl ether (5P4E) 

have been made for slide-roll ratios of 0 to 2. In both of the above 

mentioned EHD studies the Hertz pressure was approximately 1 GPa. In 

addition, surface temperature measurements have been made in sliding 

contacts where the film thickness was equal to or less than the composite 

surface roughness. This research was in part a continuation of the 

rough surface temperature measurement research reported in the previous 

contract report. Analysis of the data has allowed the recommendation of 

a correction factor on flash temperature theory calculations for rough 

surfaces. The correction factor, based on regression analysis of the 

surface temperature measurement, is very similar to that recommended 

by the American Gear Manufacturer's Association. 

Further rough surface temperature measurements were made with a 

severely starved sliding elastohydrodynamic contact. These experiments 

appeared to show that the scoring failure on a severely loaded contact 



is stochastic in nature and isolated to small areas of the contact 

surface. Once the local scoring has occurred, local instantaneous 

temperatures as high as 1100 to 12OOC were measured. The locally 

scored area will persist with high temperatures for many revolutions 

of the ball. It was observed that the high local temperatures were 

flashing synchronously with the rotation of the ball. Over the 

remaining area of the ball during a revolution the temperatures were 

relatively low (300C). 

The EHD temperature measurements were subjected to a regression 

analysis to develop predictive equations for surface temperatures in 

elastohydrodynamic contacts. These equations were compared with the 

predictions from the Blok-Archard flash temperature analyses available 

in the literature. In general, the measured temperatures were less 

than those predicted by the Blok-Archard theories. This is thought 

to be because the Blok-Archard theories assumed that all energy transfer 

processes occur only in the Hertzian zone of the contact while in the 

experimental measurement system there is usually fluid surrounding the 

Hertzian zone to which energy is transferred. The fluid surrounding 

the Hertzian zone tends to act as a coolant to the Hertzian zone thereby 

lowering the surface temperatures in that region. As a general observa- 

tion, the maximum surface temperature measured in the Hertzian zone is 

approximately equal to the average temperature predicted by the Blok- 

Archard theory. Therefore the surface temperatures in a starved contact 

would be expected to be higher than those observed in the contact sur- 

rounded by the lubricant. 

The principal investigators wish to acknowledge the contributions 

4 



of several investigators to the res.earch reported here; specifically 

Drs. Alsaad, O'Shea and Medina to the light scattering transition 

work, Mr. Scott Bair to the remaining rheological investigations and 

to the EHD equipment, and Dr. H. S. Nagaraj to the EHD investigations. 



I. GLASS TRANSITION AND GLASSY STATE 

BEHAVIOR OF LUBRICANTS 

The work started in the prevjous contract year has been continued 

and extended. The limiting low rate viscoelastic (glass) transition 

measurements by dilatometry and light scattering have been extended to 

additional lubricants and, for dilatometry, to higher pressures. A 

limited number of high rate transitions with light scattering have also 

been obtained. An apparatus for measuring dielectric transitions has 

been developed and used to obtain data on seven fluids at atmospheric 

pressure and two of them at high pressure. Another apparatus has been 

developed to measure the shear stress-strain behavior of lubricants under 

pressure and in the amorphous glassy state. This apparatus has been used 

to obtain data on three lubricants. Lastly, a falling body, low shear, 

pressure viscometer has been developed which is capable of pressures to 

0.6 GPa, temperatures to 150C and viscosities to lo7 Pas. 

A. Transitions by Light Scattering 
1 

The light scattering technique presented in the previous contract 

report (1) was employed to obtain data on two additional fluids (MCS- 

1218, a cycloaliphatic hydrocarbon, and N2, a polymer blend consisting 

of Nl + 2.2 wt. % polybutene polymer). Fluid property descriptions are 

1 The efforts of Dr. Il. Alsaad and Professor D. O'Shea in con- 
ducting the work discussed in this section are acknowledged and 
appreciated. 
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found in Appendix A. Details of the experimental technique and under- 

lying theory can be found in (1 and 2). These will be summarized here 

along with the results most relevant to elastohydrodynamic lubrication. 

More detailed data can be found in Alsaad [2]. For completeness, data 

on all four fluids will be included here. 

A.1 L_ight Scattering Theory --___ 

When a laser beam passes through a transparent medium, a small 

portion of the light is scattering in all directions due to the optical 

inhomogeneities in the medium. The inhomogeneities are the result of 

fluctuations of the dielectric constant brouqht about by fluctuations 

of the density of the medium due to random thermal motion of the 

molecules [3]. The fluctuations in the dielectric constant can be 

separated into entropy fluctuations at constant pressure and pressure 

fluctuations at constant entropy. The adiabatic pressure fluctuations 

can be described by means of plane sound waves of thermal origin 

propagating in all directions. The interaction of a light wave of wave 

length, X, with the sound waves in a media with refractive index, n, 

leads to Brillouin scattering of light by sound waves of a particular 

wavelength, A, in the direction given by the scattering angle 8 and 

satisfying the Bragg condition: 

2 A sin 0/Z = + . (1) 

Moreover, as a consequence of the movement of the sound waves, the 

frequency of the incident light is altered by the Doppler effect with 

respect to the original value, w 
0' 

This effect was first predicted by 
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Bruillouin [4] as 

WB 
= 2(nV sin 8/2)/X 

which can be written as 

WA 
B 

' = 2n sin 8/2 * 

(2) 

(3) 

Equation (3) shows that the sound velocity, V, can be determined if 

monochromatic light strikes the material and the frequency shift, wB, 

of the scattered light is measured fora fixed scattering angle. 

In recent years, Brillouin scattering has been used in the study 

of polymers above and below the glass transition temperature. A change 

in slope of the velocity as a function of temperature or pressure, like 

density or specific heat, defines the glass transition and has been 

observed by many workers [5-g]. The change in the temperature and 

pressure coefficients of the sound velocity, indicating the occurrence 

of glass transition was observed in all lubricants investigated in this 

study. 

A.2 Experimental Technique 

The schematic arrangement of the basic components of the light 

scattering experiment is shown in Figure la and consists of an argon 

ion laser having a power of about 200 mw in single mode operation at 

8 



A = 0.5145 !.lm, a high pressure scattering cell* (Fiqure lb) contain- 

ing the lubricant sample to be investigated, and a detector which permits 

the spectroscopic analysis of the scattered light. The scattered light 

is collimated by a lens and analyzed by a Fabry-Perot interferometer 

operating in triple pass geometry. The ring pattern from the inter- 

ferometer is focused on a screen which has a pinhole in front of a 

photomultiplier tube (PMT), so that only the center frequency of the 

ring pattern is detected. One of the Fabry-Perot plates is attached 

to three piezoelectric stacks and can be swept in and out, thus 

changing the frequency that passes through the pinhole. The output 

signal from the PMT can be processed by a standard counting system 

and stored in a multichannel analyzer. The multichannel analyzer was 

triggered off the Rayleigh line to avoid broadening that results from 

drifts of the incident laser frequency relative to the interferometer 

pass frequency. The spectrum can also be plotted on an X-Y recorder 

and/or punched on paper tape. 

The high pressure equipment consists of a scattering cell which 

was used to pressures of 0.69 GPa, a strain gage pressure transducer, 

a hand pump, and a 9:1 area ratio intensifier. 

The four lubricants investigated were: naphthenic base oil 

(Nl), Nl blended with 2.2 percent high molecular weight polybutene 

(N2), polyphenyl ether (5P4E), and cycloaliphatic hydrocarbon (MCS-1278). 

These oils were selected because they represent typical commercially 

available lubricants and research materials of current interest in 

*Designed by W. B. Daniels of the University of Delaware. 
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the'field of EHD lubrication. The fluids were passed through a 

millipore filter which substantially reduced parasitic light scatterinq 

and made it possible to obtain the Brillouin spectra. More detailed 

descriptions of the oils can be found in Appendix A. 

A.3 Experimental Procedure and Data Reduction Technique 

Two standard procedures were adopted to form the glass of the 

materials investigated. In formation history A, the glass was formed 

by pressurizing the samples at room temperature from atmospheric 

pressure until the glassy state was reached. Brillouin spectra were 

taken at pressure intervals of about 0.02 to 0.03 GPa. The spectra 

were taken 20 minutes after the pressure change was imposed. In 

formation history B, the pressure was increased from atmospheric to 

a reference pressure while the sample temperature was increased such 

that it remained in the liquid state. When a temperature of about 15C 

above the assumed glass transition for the corresponding pressure was 

reached, the pressure and temperature were kept constant for about 30 

minutes. The sample was then cooled at constant pressure and frequency 

spectra were recorded at 2 or 3C intervals. Twenty minutes were allowed 

for the temperature to reach equilibrium before each spectrum was 

recorded. 

This procedure was repeated at different pressures. The sample 

temperature was changed by controlling the voltage input to a resis- 

tance heater tape wrapped around the intensifier-cell assembly which 

was enclosed in an oven. The temperature was measured with a copper- 

constantan thermocouple in conjunction with a direct reading digital 

10 



thermometer referenced to an ice bath. The temperature was controlled 

to better than i O.lC. 

All spectra were recorded at a fixed scattering angle of 90'. 

Light scattering.results of the naphthenic base oil (Nl) were selected 

to explain the data reduction technique. Results of other experi- 

mental oils investigated were obtained in a similar manner and only 

their transition diagrams will be reported here. 

The Brillouin spectrum of Nl recorded at 0.277 GPa and 24.4C 

(History A) is shown in Figure 2. It is typical in general appearance 

of all spectra obtained. The Fabry-Perot plate separation was 0.40 cm 

corresponding to a free spectral range of 37.5 GHz. The frequency 

shift was determined from the position of the Brillouin peaks and the 

sound velocity was calculated from equation (3). The refractive index 

needed in equation (3) was measured as a function of temperature by 

using a precision Abbe "60" refractometer (sodium D, line, X=0.5896 urn). 

Since it was not possible to measure the variation of the refractive 

index with pressure, it was assumed that $ for all experimental oils 

investigated has a constant value of 2.9 x 10B4 per MPa. This value 

was estimated from information available in the literature [lo] for 5P4E. 

Any other estimate for $ will only shift the velocity of sound up or 

down without changing the location of the glass transition. 

A.4 Experimental Results 

Figure 3 shows the variation of the frequency shift and the 

sound velocity with pressure for Nl (History A). The sound velocity 

and frequency shift increase with increasing pressure and a change in 

t - : 
\ 
4 -. _ 
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the slope is apparent at 0.474 GPa. This change of slope represents 

the glass transition Pg [5-7,9]. Results obtained by History B at 

different constant formation pressures are shown in Figure 4. At 

constant pressure the sound velocity increases as the temperature 

is decreased and a change in slope is observed for each formation 

pressure. The two portions of the sound velocity curves of Figures 3 

and 4 were fit by least square regression to straight lines and were 

solved for their intersection to determine the glass transition. 

Figure 4 shows that Tg shifted to a higher temperature as the formation 

pressure was increased. The glass formation temperature-pressure com- 

binations resulted in the transition diagram in Figure 5. Also included 

in this figure are the transition diagrams of the other experimental 

fluids obtained by the data reduction technique discussed above. 

The glass transition temperatures and pressures for each oil 

were least square fitted to a straight line and the expressions 

obtained are given in Table I. They show that the rate of increase 

of Tg with pressure for Nl has the lowest value (1 120 C/GPa) while 

that of MCS-1218 has the largest value (z 200 C/GPa). The glass 

transition data obtained by History A are also shown in Figure 5 but 

were excluded from the fit due to the different history by which the 

glass was formed. However, in general, the transition obtained by 

History A falls on or near the transition line obtained by History B. 

Figure 5 also shows the effect of the viscosity-index improver 

blended with the naphthenic base oil on the glass transition behavior 

of the blend relative to the base oil. The glass transition pressure, 

P 
cl' 

at room temperature for the blend occurred at 0.438 GPa compared 
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with 0.475 GPa obtained for the base oil. The glass transition 

temperature, T g, for N2 occurred at 7.5C higher than that of Nl at 

0.69 GPa. As seen from Table I, the rate of increase of Tq with 

pressure increased by about 10 percent from 120 to 134 C/GPa. 

The longitudinal velocity of sound in the temperature and 

pressure rangejs investigated was 2300 to 3400 m/s for Nl and N2 fluids, 

2200 to 2900 m/s for 5P4E and 2600 to 3500 m/s for MCS-1218. This 

data can be used to determine the secant bulk modulus 

sound velocity = (modulus/density) l/2 

The velocity of sound as a function of pressure for 5P4E at 

comparable temperatures and history A where consistently about 3 to 4 

percent higher than those reported by Dill et al. [lo]. 

A.5 Error Analysis 

The uncertainties in the absolute value of the sound velocity 

which arise from the uncertainties in the scattering angle, 8, the 

frequency shift, uB, and the refractive index, n, are not of qreat 

concern in the present work as the absolute value of the sound velocity 

is not our main concern. The quantity of interest is the intersection 

of the sound velocity versus temperature or pressure curves in the 

liquid and glassy regions which represents the glass transition for the 

material. This quantity is not strongly influenced by any of the 

above uncertainties. In obtaining all frequency spectra for each 

experimental fluid at different constant formation pressures, the 
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position of the scattering cell remained fixed and a sinqle separation 

distance of the Fabry-Perot mirrors was chosen to cover the expected 

frequency range of the calculated velocities. This arrangement ensured 

that the error in the calculated velocities due to the uncertainties 

mentioned above for each constant formation pressure is the same for 

all other pressures. The influence of the above errors on the measure- 

ments is to shift the velocity-temperature or the velocity-pressure 

curves to higher or lower velocities without chanqing the location 

of the glass transition temperature or pressure. 

The error in the location of Tg and Pg is the most important 

uncertainty in this work. A statistical method qivina the confidence 

limits of the abscissa of the interseciton of two linear regressions 

is described in Reference [ll]. This method can be used to determine 

the confidence limits on Tg using the liquid and the glassy linear 

regression expressions of the form 

V=a+bT (4) 

Using the equal variance assumption, the confidence limit, ATa, is 

equal to the difference of the two roots of the followinq quadratic 

equation 

AT;+BTg+C=o (5) 

14 



where the coefficients A, B and C are given in Reference [ll]. The 

95 percent confidence limits of Tq were calculated for all lubricants 

investigated ATg ranged from a low of 0.7 to l.lC for N7 to a high of 

from 0.7 to 3.6C for 5P4E. 

An additional possible source of error in these experiments is 

the determination of sample pressure when the sample has gone into the 

glassy state. Although the pressure transducer is calibrated, it is 

connected to the sample cell by a passage with a small diameter. 

Because of fluid compressibility and transducer deformation (both small) 

as the pressure is increased in the sample cell some fluid motion along 

the passage to the transducer is required to change the pressure at the 

transducer. The sample scattering cell is between the pressure intensi- 

fier and the pressure transducer. Therefore as the pressure is increased 

in the intensifier for history A or flow from the intensifier is required 

to maintain constant pressure in history B, it first increases in the 

sample cell and then in the pressure transducer. When the material goes 

into the glassy state movement between the sample cell and pressure 

transducer is inhibited resulting in the transducer indicatinq a lower 

pressure than occurs in the cell. The magnitude of this effect is dif- 

ficult to estimate and any error would be primarily in the glassy reqion. 

A.6 Characteristic Frequency of Light Scattering Experiments -- 

The viscoelastic or glass transition response of a material is 

dependent upon the frequency of the imposed environmental changes on the 

material. For example, in cooling experiments the glass transition 

temperature increases as the cooling rate is increased. For a steady 

periodic stress imposed on the material an increase in frequency of the 
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Preliminary examination of two fluids in the light scattering 

experiment at higher temperatures and atmospheric pressure (Nl and 

5P4E ) has been conducted. This allowed the estimation of the high 

rate ( LlO'O s -') t ransition temperatures for these fluids. These 

data are shown in Figure 12 in which they are seen to agree well with 

general relationship of transition temperature with frequency from the 

dielectric experiments. These data have also been entered in Figures 

30 and 31. These data are preliminary in nature and more complete data 

will be obtained during the next year. 

imposed stress shifts the transition to higher temperatures. The amount 

of shift with rate varies for different materials. 

In the experiments described in this section on light scattering 

two widely different rates are present: a) the very low rate cooling 

process, and b) the high frequency inherent density fluctuations. The 

characteristic frequency of the density fluctuations is equal to the 

Brillouin frequency shift, mB. The characteristic time of these fluc- 

tuations is one the order of 10 
-10 

s while the characteristic time of 

the superposed low rate cooling is greater than 103s. The difference 

in transition temperatures for these two quite different rates is large: 

about 60C for 5P4E and 16OC for Nl. Because of the magnitude, and 

limited range, of the temperatures of the experiments reported in this 

section, the transitions observed and reported are those corresponding 

to the low rate cooling process and would normally be referred to as 

the glass transition temperatures. The typical full range of sound 

velocity as a function of temperature and frequency would be like that 

shown in Figure 6. 
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B. Dielectric Relaxation Transition Measurements - 

All properties of liquids undergo a transition in response 

which is a function of temperature, pressure and rate of application. 

Measurements described elsewhere in this report are concerned with 

the properties, density, viscosity, shear stress, and refractive index 

in the measurement of the transition. As suggested by Harrison [12] 

the measurement of the transition in dielectric response of the 

material may afford a convenient way of determining the transition 

characteristics of liquids over a wide frequency range. Although the 

correlation between mechanical property response (important to EHD) 

and dielectric transition is not well established [12], the relative 

ease with which a wide frequency range can be covered justifies the 

examination of the dielectric transition. Therefore an apparatus was 

developed in which the dielectric transitions can be measured. Five 

fluids (MCS 1218, Santotrac 50, Krytox, Fyrquel, Diester) have been 

studied at atmospheric pressure over a frequency range from 0.2 to 

500 kHz and two fluids (5P4E and Nl) have been studied from atmospheric 

pressure to 0.55 GPa over the same frequency range. Detailed descrip- 

tions of these f luids can be found in Appendix A. 

B.1 Equipment 

The dielectric relaxation of several lubricants was observed 

in the apparatus shown schematically in Figure 7. The pressure vessel 

was made of 4340 alloy steel. The coaxial cylindrical capacitor was 

calibrated in air. One terminal of the capacitor extended through an 

electrode of special design and the other connected to the body of the 
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cell. The atmospheric pressure data was taken with the capacitor removed 

from the pressure vessel. The high pressure dat.a was taken with the 

cell in the high pressure vessel fitted with an isolating piston. 

A General Radio impedance bridge with an accuracy of one percent 

in the frequency range of 20 Hz to 20 kHz was used to measure the loss 

factor and the capacitance of the capacitor-sample combination. Measure- 

ments were taken to 500 kHz with reduced accuracy. A twenty liter 

constant temperature bath provided steady temperature control. 

B.2 Technique 

The cell containing a fluid sample was pressurized to the desired 

test pressure while a temperature of about 60C above the expected 

transition temperature was maintained. Capacitance and loss factor of 

the capacitor were measured at various frequencies at approximately 

3C intervals as the sample was cooled at the rate of approximately 

0.5C/minute. The sample temperature was measured with a thermocouple 

in the cell wall. 

B.3 Experimental Results 

The permittivity and the loss tangent were plotted versus 

temperature. Typical examples are shown in Figures 8 and 9, respectively. 

The temperature at which the loss tangent was maximum at a given 

frequency was recorded as the transition temperature for that frequency 

and pressure. This transition temperature corresponded well with the 

midpoint temperature of the change in permittivity in most cases 

(Figure 8). 

Dielectric transition data for N7 and 5P4E at atmospheric and 
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elevated pressure are shown in Figures 10 and 11, respectively. These 

data are also shown as lines of constant frequency along with lines of 

constant low shear rate viscosity on Figures 30 and 31 which show the 

low rate dilatometry data. 

The data at atmospheric pressure for all seven fluids are shown 

in Figure 12 where they are compared with low rate dilatometry data 

and tenative high rate light scattering transition data. 

C. Transitions Measured by Dilatometry 

The capability in this area described in the last contract report 

[l] has been extended by the construction of a new apparatus capable of 

pressures to 1.75 GPa. This instrument is similar to those reported 

before [l] and is shown schematically in Figure 13. Changes in the sample 

volume are measured mechanically by a dial indicator attached to the 

piston to an accuracy of 2 p m. The piston is equipped with Bridgeman 

seals at both the large and small diameter ends. The high pressure 

cylinder is constructed of 4340 alloy steel. Kerosene at up to 0.55 GPa 

is introduced into the large-bore cylinder and its pressure measured with 

a Heise bourdon gauge. After calibrating the equipment for seal friction, 

the sample pressure is calculated from the kerosene pressure and the 

piston area ratio. The entire dilatometer is immersed in a constant 

temperature bath. A temperature range of -40C to 130C is possible. 

The bath temperature is maintained by electric heaters and a two stage 

refrigeration unit. Liquid nitrogen is used for rapid cooling. 

Temperatures are measured both in the bath and in the high pressure 

cylinder wall with a thermocouple. Isothermal compression and isobaric 
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cooling experiments were conducted in the high pressure apparatus. 

The low pressure (0.014 to 0.42 GPa) dilatometer [1] was 

modified to improve accuracy and ease of operation. It provides high 

volume sensitivity for cooling experiments. Sample pressure in this 

apparatus is measured by a Heise bourdon gauge actuated by kerosene 

which is separated from the sample by an isolator piston equipped with 

an O-ring seal. No seal friction correction is necessary. Volume 

change is measured by a magnetic core attached to the isolator piston. 

A linear variable differential transformer indicated the position of 

the core. 

The atmospheric pressure dilatometer [1] was used over a tempera- 

ture range of -110 to OC. Volume changes were measured with a pipette 

in the top of the sealed sample holder. Methanol was used as an 

indicator in the pipette and was separated from the sample by a silicone 

diaphragm when there was the possibility of the methanol mixing with 

the sample. Cooling was accomplished in a methanol bath cooled by liquid 

nitrogen. Sample temperature was measured with a copper-constantan 

thermocouple in the aluminum cylinder wall. 

C.l Technique 

Isothermal compression experiments were performed with the 

dilatometer in a constant temperature (+ 0.5 C) bath. Initial pressure 

is either atmospheric or well below the transition pressure estimated 

from previous data. Pressure increases are in steps of from 0.03 to 

0.1 GPa. Final pressure and volume measurements are made after apparent 

equilibrium is reached (2 to 15 min.). Pressure is increased until 

three or four points are obtained in the glassy state where pressure 
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increased linearly with decreasing volume. The transition pressure 

is determined by extrapolating the linear portions of the pressure- 

volume curve to their intersection. 

Isobaric cooling is performed by lowering the temperature 

of a propanol bath continuously with liquid nitrogen. The initial 

temperature is chosen well above the transition temperature estimated 

from previous data. Constant pressure is maintained manually to + 1.4 

MPa. The sample is then cooled and sample volume measured as a function 

of temperature. The transition temperature is determined by extrapola- 

tion of the linear portions of the temperature-volume curve to their 

intersection. 

C.2 Experimental Results 

In addition to the fifteen fluids reported in the previous contract 

report [1] the data for some fluids was extended to higher pressure and 

data on additional fluids were obtained. The glass transition tempera- 

tures at atmospheric pressure for several fluids based on cooling 

experiments are shown in Table II. The elevated pressure data are shown 

in Figures 14, 15 and 16. The general behavior is similar to that 

reported before [l]. 

D. Lubricant Shear Stress-Strain Behavior 
in the Amorphous Glassy Reqion 

If lubricants undergo glass (or viscoelastic) transitions in 

EHD contacts and behave as amorphous solids in the contacts, then their 

large strain, shear stress-shear strain behavior in the amorphous state 

should be examined. An average particle in a typical EHD contact under- 

goes large strain (1 10%) and therefore behavior in small strain 
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oscillatory experiments may not be relevant to EHD. Therefore 

experiments were conducted to measure the shear stress shear strain 

behavior of liquid lubricants under pressure and in the amorphous 

glassy state. 

The sample was sheared to strains large enough to determine 

both the elastic shear modulus of the material at small strain and the 

ultimate or limiting shear stress. These properties were found to be 

functions of formation pressure and temperature below the transition 

temperature. Both properties continue to increase as the pressure is 

increased and as the temperature decreases until they begin to level 

off at about 50C below the transition temperature for a given formation 

pressure. Data has been taken on three fluids: Nl, 5P4E and Santotrac 

50. These limited data suggest that the maximum traction in a EHD 

contact is determined by the ultimate shear stress in the fluid when 

pressure and temperature conditions in the contact cause the material 

to be in the glassy state. 

D.l Equipment and Technique 

An apparatus has been constructed to measure the mechanical shear 

properties of glassy lubricant samples to pressures of 0.7 GPa. It is 

shown schematically in Figure 17. The glassy sample is formed in an 

annular groove by cooling at elevated pressure. The groove is kept 

filled by a sample reservoir which is sealed from the working fluid 

(gasoline) by an isolator piston. The glassy material can be sheared 

along the midplane of the annulus by the development of a pressure 

difference across the driving piston. This differential pressure is 
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measured by two pressure transducers. The sample strain is determined 

by the displacement of the driving piston measured with an LVDT. Sample 

temperature is determined by a thermocouple imbedded in the pressure 

vessel wall. 

At moderate working temperatures, such as those for 5P4E .(-20 

to 3X), and elevated pressures, the seal friction is negligible and 

no shearing force across the piston can be maintained when the test 

material is not below its glass transition temperature. However, with 

Nl the temperature required to go into the glassy region at moderate 

pressures is so low (-40C) that a correction for seal friction must be 

employed. The seal friction at low temperature was calibrated by using 

gasoline as the test fluid which has very low viscosity at the test 

temperature and pressure. Therefore, at the low shearing rate of the 

experiment, the driving force on the piston was assumed to be due to 

seal friction. 

D.2 Experimental Results - 

A typical set of data taken from the x-y recorder is shown in 

Figure 18. The data shown are for 5P4E at 275 MPa (40 kpsi) for which 

the low rate glass transition temperature is 35C. The sample is first 

heated to 45C and pressurized to 275 MPa and then cooled to -35C. The 

shear stress-strain curves are then generated as the sample is allowed 

to heat up. As is readily observed both the shear modulus and the 

ultimate shear stress (maximum shear stress sustained) approach zero 

as the transition temperature is approached. 

The elastic shear modulus from the data in Figure 18 is plotted 
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in Figure 19 and is seen to approach a constant value at about 50 to 60C 

below the transition temperature. It should also be noted that the value 

approached agreed well with the limiting shear modulus G, obtained from 

ultrasonic experiments [12]. 

It is believed, however, that the ultimate shear stress data is 

more relevant to EHD traction. These data are shown in Figure 20 for the 

5P4E stress-strain curves in Figure 18. These data show that the ultimate 

stress for 5P4E has little dependence on formation pressure but increases 

with temperature below the transition temperature to a nearly constant 

value at 50C below. 

Similar experiments were performed on Nl and Santotrac 50. Only 

the ultimate shear stress has been plotted in Figures 21a, 21b and 22 

for Nl and Santotrac 50 respectively. The pattern of behavior appears 

to be similar to that of 5P4E except the Nl values seem to be more 

dependent on formation pressure and thos.e of Santotrac 50 increase more 

rapidly with decrease in temperature below Tg and are in general higher. 

Figures 23 and 24 compare the ultimate stress of the three lubricants 

at two different formation pressures and as a function of subcooling. 

D.3 High Pressure Viscometry 

A high pressure viscometer of the falling body type has been 

constructed to operate to 0.63 GPa and 150C. It is shown schematically 

in Figure 25. A constant shear stress of about 100 Pa is applied to 

the sample by a cylindrical magnetic sinker housed in a non-magnetic 

vessel. A linear variable differential transformer indicates the 

position of the sinker on a recorder. The sample is separated from the 

pressurizing liquid by an isolator piston. Temperature is maintained 
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in an air-oven. The entire viscometer is inverted to position the 

sinker for a test. Viscosity is determined from the time for the 

sinker to fall a standard distance. A correction is applied for the 

change in buoyancy of the sinker as the sample density changes with 

pressure and temperature. Since the vessel bore diameter changes with 

temperature and pressure , calibration must be carried out over the 

entire range of conditions that are to be encountered. The instrument 

was calibrated with bis-2-ethyl hexyl sebecate (Plexol 201 Rohm and 

Haas Company) using data from the ASME Pressure-Viscosity Report [13]. 

Viscosities to lo7 Pas (10" cp) have been measured. 

This instrument has been used to measure the pressure-viscosity 

isotherms of fluids Nl, 5P4E and Brayco'. These data are shown in 

Figures 26, 27, and 28. Descriptions of the fluids are found in 

Appendix A. 

E. Discussion of Resu'its 

The glass (or viscoelastic) transition for several fluids has 

been measured over a wide range of frequencies by three different methods 

(dilatometry, dielectric permittivity and light scattering). The 

processes involved in these three methods differ in the characteristic 

rate at which the process and the material interact. Therefore the 

transition states should be continuous functions of the characteristic 

frequency. Figure 12 is a plot of characteristic frequency versus the 

'The Brayco fluid was supplied by K. Demorest of NASA-Marshall 
Space Flight Center, Huntsville and the work performed under this 
contract. 
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reciprocal of the transition temperature for several lubricants at 

atmospheric pressure. The bulk of the data shown is from the dielectric 

experiments. Preliminary high frequency light scattering data* is shown 

for only two fluids. The dilatometry data is plotted along the ordinate 

and the characteristic frequency for these data is not clear although it 

is estimated to be less than 10B3 or10 
-4 -1 

S . The data therefore cover 

a rate range of up to 10 14 , or 14 orders of magnitude. The agreement in 

trend for a fluid over this range appears to be very good. If the char- 

acteristic frequency of an EHD contact is known the temperature at which 

transition is expected could be determined. It must be kept in mind that 

the data in Figure 12 is all at atmospheric pressure and that the tran- 

sition temperatures are not only functions of frequency but also pressure. 

It has been argued [14] that the glass transition, and therefore 

conditions of constant relaxation time, should also be approximate 

conditions of constant low shear'viscosity. This is because the relaxa- 

tion time is essentially the ratio of the low shear viscosity and the 

limiting high rate shear modulus. The viscosity varies exponentially 

with both pressure and temperature while the limiting shear modulus 

varies only linearly and at a much lower rate. Hence the viscosity is 

the controlling variable. With the above in mind, low shear rate 

pressure-viscosity isotherms have been compared with dielectric relaxa- 

tion time isotherms as a function of pressure. These are shown in 

*These light scattering data are preliminary and should be repeated 
with more care to avoid high temperature degradation in an air environment. 
They are included because they appear to fit the pattern expected. 
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Figure 29 for 5P4E at 40C. The agreement in trend is obvious although 

the ratio of them is not constant. 

A corollary of the above is that the pressure-temperature 

dependence of low shear viscosity should be the same as that of 

dielectric or mechanical relaxation time. The temperature-pressure 

transition diagrams from the dilatometry experiments are curves of 

constant relaxation time for the low rate dilatometry experiments. 

It is instructive to superpose on these diagrams lines of constant low 

shear viscosity and lines of constant dielectric relaxation time. This 

has been done for Nl and 5P4E in Figures 30 and 31, respectively. Also 

added to these figures are the tentative high rate light scattering 

data at atmospheric pressure. 

The slopes of these curves appear to be the same for a given 

fluid at a particular pressure. The slopes have been determined at 

atmospheric pressure and one elevated pressure as a function of tempera- 

ture and plotted in Figures 32 and 33 for Nl and 5P4E, respectively. 

The agreement between the experimental methods is very good particularly 

considering the various methods involved in obtaining these data. It 

is expected that high rate mechanical relaxation times will also fit the 

same general pattern. The slope for constant viscosity is, of course, 

the ratio of the pressure viscosity coefficient, ~1, to the temperature 

viscosity, 6, coefficient. 

Although the above data, and apparent relationships, may not be 

precise, they do suggest that there may be many ways of obtaining an 

approximate mapping of the low shear viscosity, the relaxation times, 
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and transition behavior of lubricants. Any of these can then be used 

to estimate whether a given lubricant will behave as an amorphous solid 

in a given EHD contact and therefore indicate which type of mechanical 

shear behavior of the material is most relevant for the application: 

low shear viscosity or ultimate shear stress of the amorphous solid. 

Both of these properties are functions of temperature and pressure. 

With these properties, and possibly the limiting elastic shear modulus, 

a suitable rheological model should be developed to use in EHD analysis. 
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II. FURTHER EXPERIMENTS IN AN EHD SIMULATOR 

Four studies into the behavior of lubricated EHD contacts were 

conducted during this grant year which extended the previous efforts 

in this area. These consist of(l) temperature, film thickness and 

traction behavior of 5P4E over a slide-roll ratios of 0 to 2, 

(2) temperature measurements with the naphthenic mineral oil (Nl) with 

negative slide-roll ratios which permit the measurement of the station- 

ary surface in a sliding contact, (3) additional experiments and data 

analysis of temperatures during asperity interactions, (4) several 

starvation failure experiments to measure temperature excursions during 

local scuffing failures. These four efforts will be discussed in order. 

A. EHD Contact Behavior of 5P4E .--_--_ 

Film thickness, traction and surface temperature measurements 

were made on fluid 5P4E using the same equipment and technique as used 

in the previously reported studies of a naphthenic base fluid [l]. All 

measurements were taken using the smooth ball (0.011 urn Ra surface 

finish). This resulted in a value for A (ratio of film thickness to 

composite surface roughness) much greater than 2. Therefore, no asperity 

interaction was expected and none was observed. 

The following property data for 5P4E at 25C was used in the data 

reduction: refractive index is 1.6306 at atmospheric pressure and 

1.872 at 1 GPa, density is 1150 kg/m3 at atmospheric pressure and 1470 

kg/m3 at 1 GPa. The viscosity at 37.8 C and atmospheric pressure is 

3.63 x 10B4 m2/s. This relatively high value for inlet viscosity meant 

that the fluid could not be circulated through the constant temperature 
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bath. Therefore, the lubricant reservoir was continuously replenished 

and its temperature monitored. 

The experimental technique was essentially that used for the 

naphthenic fluid investigation [l]. The two surface velocities were 

individually controlled so that both rolling speed and the slide/roll 

ratio C could be varied. The normal load on the contact was obtained 

using a dead weight loading mechanism. Traction was measured by means 

of a strain gage load cell. Lubricant film thickness was determined 

using a dichromatic optical interference technique. Ball surface 

temperatures were measured using the infrared radiation technique previ- 

ously discussed [l]. The wide band filter previously used and having 

a pass band from 3.3 to 5.0 urn was also used in this study. However, 

absorption spectra for 5P4E revealed a moderately strong absorption 

at 4.2 pm. This meant that the fluid, which is hotter than the ball 

surface, will contribute to the radiation received by the detector. 

In order to account for this additional radiation source, a separate 

experiment was performed. A very thin layer (- 40 pm) of fluid 5P4E 

was placed on the upper surface of the sapphire. This fluid layer 

absorbed the lubricant radiation (emitted at 4.2 urn) and did not 

re-emit because of the low temperature level. An estimate of the effect 

of the lubricant emission on the ball surface temperature was then made 

by measuring the radiation both with and without this additional fluid 

layer present. It was determined that the measured ball su.rface tem- 

peratures could be in error up to 1OC by neglecting the fluid radia- 

tion. In this estimate it has been assumed that the absorption in the 

fluid layer is sufficient to remove all of the contact fluid radiation. 
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In order toverify this, transmittance curves for fluid samples at two 

different temperatures were taken. No significant change in the 

secondqry absorption band at 4.2 urn was observed. Therefore, since 

the ball surface radiation was measured using the wide band filter, 

the resulting surface temperatures will be higher (up to 1OC) than the 

actual values. This is because there will be a radiation peak at 

4.2 urn (caused by lubricant emission) which will raise the total radia- 

tion level falling on the detector. 

Table IIIa shows the results of the temperature and traction 

measurements for fluid 5P4E. The table contains two sets of data: 

rolling velocities equal to 0.36 m/s and 0.50 m/s. The slide-roll 

ratio, 1, was varied over a range of 0 to 2 (C = 2 refers to the case 

of a stationary sapphire and moving ball surface). The ball surface 

temperatures are then the moving surface temperatures. For values of 

C < 0.28, the sapphire had to be driven by a separate motor. Sufficient 

traction was developed for cases in which C > 0.28 such that a separate - 

motor was not required. Experiments could not be conducted at speeds 

higher than 1.0 m/s because of lubricant inlet starvation. The star- 

vation resulted in a significantly diminished film thickness and subse- 

quent scratching of the ball surface. It is believed that starvation 

occurs at the higer speeds because there is insufficient time for this 

relatively viscous fluid to replenish the track created on the ball 

surface as the surface leaves the contact region. 

Table IIIb shows the results of film thickness measurements for 

5P4E under the same conditons as reported in Table IIIa except for a 

slight difference in lubricant bath temperatures. 
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The data given in Table III have been plotted in Figures 34 

to 37. Figure 34 shows the variation of traction coefficient with 

slide-roll ratio for two different but constant rolling velocities. 

The accuracy of C has been estimated to be +0.04. Traction increases - 

rapidly with C up to about C = 0.3. Further increases in C result in 

only a slight increase in traction. The peak in traction usually 

observed for nominal line contacts was not seen. Other investigations 

of point contacts [15,16], also show traction increasing throughout 

the range 0 < C < 2. - - 

Figure 35 shows the ball surface temperature rise as a function 

of slide-roll ratio at two different rolling velocities. The surface 

temperature is measured at the contact center. As expected the tempera- 

ture rise is relatively small (about 1OC) for small amounts of slip 

(C 5 0.3) but increases rapidly with further increases in C. The 

temperature rises shown in the figure are somewhat higher than those 

observed for the naphthenic fluid under similar conditions. It is 

interesting to note that for 0 < C < 0.3 the traction coefficient is - - 

increasing rapidly whereas the ball surface temperature remains essen- 

tially constant. On the other hand, for 0.3 < C 5 2.0 the traction 

coefficient is essentially constant whereas the surface temperature is 

rapidly increasing. 

Figure 36 shows a plot of the film thickness values at the con- 

tact center and at the minimum film thickness location as a function 

of slide-roll ratio. The rolling velocity is held constant in each 

case. The large decrease with increasing amounts of slip is believed 
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to be due to the thermal reduction of the contact inlet viscosity of 

5P4E. The decrease of film thickness with increasing C is much more 

pronounced than observed for fluid Nl [l]. 

Figure 37 shows the variation of traction coefficient with 

respect to the average shear rate in the Hertzian plateau region. The 

data shown here is the same as shown in Figure 34. Since heat generation 

in the fluid film is proportional to the square of the shear rate, the 

plot in Figure 37 indicates the variation of traction with thermal effects 

in the film. It can be seen from this figure that traction reaches its 

maximum value for shear rates 10s -I , and thereafter remains nearly 

constant. 

It has been proposed by the authors that many lubricants go into 

a glassy state under normal EHD conditions [l]. Comparing the glass 

transition data for fluid 5P4E, presented previously in this report, 

with the measured surface temperatures at the contact center, it appears 

that under all operating conditions reported in the present work, fluid 

5P4E is in the glassy state. If this is true, the fluid rheological 

property of interest is not viscosity, but rather the ultimate shear 

strength of the glassy 'lubricant. For the data reported here and the 

corresponding glass formation conditions, the calculated value of 

average ultimate shear stress (using the measured values of traction 

coefficient) agrees well with the measured values of ultimate shear 

strength of the 5P4E glass formed under similar conditions (45 to 50 

MPa). Further, it has been observed that the traction coefficient for 

fluid 5P4E is about 15 to 20 percent higher than for fluid Nl under 

similar conditions of operation. Knowing that both fluids were 
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glass-like under the above operating conditions, it can be speculated 

at this point that the higher TC for 5P4E is due to higher values of 

measured ultimate shear strength for 5P4E compared with the values 

for the fluid Nl. 

B. Additional Investigations of the EHD Behavio_r 
of a Naphthenic Base Oil 

B.l Results for Negative Slide-Roll Ratios 

In the previous contract report [1] the steady state ball surface 

temperatures were reported for a naphthenic base oil at 1.02 GPa Hertz 

pressure and both 0.75 and 1.00 m/s rolling velocity. Figures 38 and 39 

show these results. Various amounts of sliding were introduced in these 

studies to cover a range of slide-roll ratio (0 5 C 5 2). The value of 

zero corresponds to equal ball and sapphire surface velocities, while 

C = 2 refers to a stationary sapphire and a moving ball surface. 

During the past year this study of the naphthenic base oil has 

been extended to include negative slide-roll ratios (-2 2 C 5 0). 

The value of C = -2 refers to the condition of a stationary ball surface 

and a moving sapphire surface. Although the kinematics of the C = -2 

and C = +2 cases are similar, the results reported for IR temperature 

measurements should not be the same. At C = +2 the recorded tempera- 

ture is that of the moving surface in a pure sliding contact, whereas 

C = -2 results in the stationary surface temperature in a pure sliding 

contact. Other than the values of Z, all conditions are the same as 

used in the previous investigation. The results are shown in Figures 

40 through 43. In all cases, the smooth ball (0.011 urn Ra) was used at 
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a Hertz pressure level of 1.02 GPa. Comparing Figures 38 to 40 and 

39 to 41, it can be seen that the temperature levels are higher for 

the negative C cases and that the shape of the temperature profiles 

have been altered. In the cases in which C = +2, the maximum ball 

surface temperature rise typically occurred downstream of the contact 

center. When C = -2, the maximum temperature rise occurred at the 

contact center. 

Figures42and 43 show contact temperature rises for the entire 

slide-roll ratio range (-2 2 C 5 +2). However, only the values at the 

contact center and the maximum values along the centerline are shown. 

It should be noted that results for < = -2 (Figures 40 to 43) depart 

significantly from the trends established by C > -2 data. The reason 

is simply that the results for C = -2 represent temperatures at a 

stationary point in the EHD contact. In all other cases, the ball 

surface being monitored is moving, both through the contact and through 

the detector's field of view. 

Finally, Table IV and Figure 44 show the results of a number of 

pure sliding experiments. In all cases the temperature rise is that 

of the stationary surface with a stationary heat source. Figure 44 

shows that the increase in temperature with sliding speed is less than 

linear. The energy dissipation rate in the contact is the product of 

traction force and sliding velocity and the temperature rise should be 

proportional to the dissipation rate, all other quantities remaining 

constant. The trend shown in Figure 44 can be explained if the traction 

force decreases with sliding speed. This is exactly what does occur 

[17,18]. 
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B.2 The Influence of Asperity Interactions 

The studies reported previously [l] using three different 

roughness levels for the steel balls have also been extended. Balls 

having roughness of 0.011 pm Ra and 0.38 urn Ra were used in traction 

and surface temperature rise studies. As before, proper combinations 

of ball roughness, rolling velocity and normal load resulted in a 

range of values for A(ratio of contact film thickness to composite 

surface roughness) from less than 1 to about 20. 

A set of experiments was performed to see if the traction force 

would change significantly as the film thickness was reduced to allow 

asperity interactions. Figure 45 shows the traction coefficient plotted 

against A. As expected, the traction coefficient remained nearly 

constant for full film conditions but increased rapidly as more and 

more asperities carried the load. 

Usinq both new and previously obtained contact temperature data 

a correlation with other experimental observations was undertaken. 

Surface roughness effects have been considered in the flash tempera- 

ture formulas recommended by the American Gear Manufacturer's Associ- 

ation (AGMA) in their gear scoring criterion [19]. A multiplicative 

factor of l/(1 - 0.8Ra) has been used for this purpose with the range 

of Ra being from 0.25 w to 0.75pm. In the literature [20-221, factors 

similar to the one mentioned above have been used with the coefficient 

accompanying Ra varying from 0.62 to 0.89. The percent increase in 

flash temperature predicted by these factors with surface roughness is 

shown plotted in Figure 46. The applicable range for the AGMA factor 
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is indicated in this figure. Three values of R, corresponding to the 

three different types of balls used, are marked in the same figure. 

It can be seen that up to 40 percent increase is predicted for the 

rough ball (0.38 urn Ra) whereas about 7% is predicted for the medium 

rough ball (0.076 urn Ra). Finally, a 0.7 to 1% increase is predicted 

for the smooth ball (0.011 pm Ra) as compared to an ideally smooth 

one. An approximate comparison of the measured values with the pre- 

dicted percent increase reveals a satisfactory agreement. 

In order to determine an expression for the measured ball surface 

temperature at contact center, a surface roughness factor of the form 

l/O - alRa) discussed above, was used. A multiple regression analysis 

of 181 data points for all three ball roughnesses resulted in the 

following expression for the ball surface temperature at contact center 

ATb = 41.6 P;'73V-42 
S 

, _ ; 7R 
. 

a 

It is interesting to note that the surface roughness factor l/(1 - 0.7 Ra) 

obtained from the experimental data (equation (6)) is in good agreement 

with the factor recommended by AGMA (Curve (2) of Figure 46). In fact, 

the surface roughness factor obtained lies in between curves (3) and 

(4) in Figure 46. 
" 

For the case of the smooth ball (Ra = 0.011 urn), the 

surface roughness factor is close to unity and the expression for ATb 

from the equation (6) can be compared with the similar expression for 

ATb derived earlier [l]. Even though a satisfactory agreement between 

the two expressions is observed, an exponent of 1.73 on PH is obtained 

in equation (6) whereas an exponent of 1.34 was obtained earlier. The 
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apparent discrepancy between the two values is due to a considerable 

scatter in the data when PH, V,, and R, are all considered as variables. 

However, when the exponents on PH and V, from equation (6) are compared 

with the theoretical pred ctions a reasonable agreement is found. 

A surface roughness factor of the form (40R, + 1) 
a2 is more 

convenient for correlating the experimental data. Even though there 

appears to be no special advantage of using the above form for the 

surface roughness factor, it is possible to use such a form simply for 

convenience. A multiple regression analysis of the same data with the 

surface roughness factor of the above form yielded the following 

expression for AT6 at contact center: 

ATb = 37.8 P;.84 Vs3' (40R, + 1)*18 . (7) 

The lubrication situation described in this section is charac- 

terized by the coexistence of elastohydrodynamic fluid film and inter- 

acting asperities. Such a situation is usually designated as partial 

elastohydrodynamic lubrication. In addition to many important param- 

eters describing the contact, normal load sharing between asperities 

and EHD film is directly influenced by the degree of asperity inter- 

action characterized by the lambda ratio (A). i'. 

Figure 47 taken from a report of two years ago [23] shows the 

difference between the DC and AC modes of operation of the IR detector. 

For A < 1 the AC signal results in an upper and a lower curve. It is 

believed that the upper curve corresponds to the temperature developed 

at an interacting asperity. The lower curve in the same figure 
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corresponds to the temperature of the fluid pocket (relatively low 

pressure region) in the neighborhood following an asperity. It can 

be seen from Figure 47 that the temperature of the fluid pocket 

(lower curve) increases up to a certain value of peak Hertz pressure 

tp,) 3 reaches a maximum, and then decreases with further increase in 

pH' 
This can be explained as follows: even though the total load on 

the contact is increased, beyond a certain load, the average fluid 

pressure begins to decrease because the asperities share an increasing 

portion of the total load. In order to determine the exact proportion 

of the total load sheared by the asperities, normal load sharing cal- 

culations have been performed using Tallian's approach [24]. 

Table V shows the calculated value of the portion of load 

carried by the EHD film (WEHD ) and the corresponding average fluid pressure 

(PEHD) at various normal loads for two different asperity slopes (ue). 

The area of fluid pockets is assumed to be equal to the Hertzian area. 

This assumption is valid since the area of the contacting asperities is 

indeed small [25]. It can be seen (Table V) that the average fluid 

pressure increases with the normal load up to a certain value, reaches 

a maximum (depending on a,), and then decreases with further increase 

in normal load. 

Figure 48 shows a plot of average fluid pressure versus peak 

Hertz pressure for the medium rough ball at a sliding velocity of 1.0 

m/s, corresponding to the results shown in Table V. The dotted line 

represents the conditions when the entire load is supported by the EHD 

film. At low values of Hertz pressure, the A ratio is greater than one 
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and therefore, the entire load is supported by the EHD film. As the 

Hertz pressure is increased, A decreases below one and the curve falls 

below the dotted line. The influence of the asperity slopes is apparent 

at this stage. With further increase in PH, the average fluid pressure 

reaches a peak and then starts decreasing. Even though the exact value 

of a8 for the medium rough ball was not measured, the two values of 

0.035(8 = 2') and 0.122 (8 = 7') appear to be reasonable. 

It therefore appears that the temperature of the fluid pocket 

increases with normal load up to a certain value, reaches a maximum 

and then decreases with further increase in normal load. This phenomenon 

is due to an increasing portion of the load shared by the asperities 

when the normal load on the contact is increased. 

C. Starvation Failure Experiments 

In a bearing system moving toward failure several regimes are 

usually encountered. A typical sequence might be full film EHD, 

partial EHD, boundary lubrication and finally, system failure by 

scoring or scuffing. Rozeanu [26] maintains that the final step to 

failure is always instantaneous and occurs within a few microseconds. 

He sees the seizure process as depending on the gradients of tempera- 

ture, lubricant viscosity and the shear strength in the upper layers 

of the solid surfaces. Low values of these gradients promote scuffing; 

high values prevent it. 

The experiments reported in this section were specifically 

directed towards determininq how rapidly the final step to failure 

occurs. The failure criterion chosen was a local rise in temperature 
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above a certain level. The approach to failure was accelerated by 

severely starving the EHD contact. 

The same experimental apparatus used in the previously 

reported EHD studies was used. The infrared microscope is used to 

measure the ball surface temperature at the contact center in a fast 

response mode. The fluid used in this study is the naphthenic base 

mineral oil Nl. The balls were made of AISI 52100 with 0.011 urn 

Ra finish. The present investigation was limited to simple sliding 

with a stationary sapphire and moving ball surface. The following 

experimental procedure was used; 

1. The system is brought into steady state operation 
(steady state 1) at the given speed and load con- 
ditions. The ball surface temperature at the 
center of the contact is measured using the IR 
temperature measurement technique. The traction 
coefficient and bath temperature also measured. 
This regime is comparable to that used for all 
previous EHD data given in this research. 

2. The microscope is switched to operate in a high 
frequency response mode (AC mode), keeping it 
focused at the center of the contact. The oscil- 
loscope is set to trigger with the signal at a 
level of l/2 volt and the oscilloscope camera 
shutter is kept open for recording the trace. 

3. The lubricant circulation and supply is stopped, 
thereby severely starving the contact. Still, 
some lubricant appears to adhere to the ball 
surface. With a clean cotton swab, the ball 
surface is cleaned as it approaches the contact. 

4. This brings the system into the starved state 2. 
Due to increased traction under these conditions, 
the ball surface velocity decreases to the values 
used in Table VI. Operation under these conditions 
was found to be unsteady. 
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5. Shortly (approximately 15 to 30 seconds) after the 
system reaches the unsteady starved state 2, local 
failure occurs and the temperature level increases. 
This increase in temperature level triggers the 
trace on the oscilloscope. The camera shutter is 
closed after recording the trace. The transient 
temperature level is estimated by using the calibra- 
tion chart for the infrared microscope. 

6. Immediately after the local failure, the system 
reaches a state referred to as post failure state 3. 
This state again appears to be unsteady, in that, 
local failure may occur any time in the future. 
In fact, temperature flashes appear corresponding 
to the spot on the ball where initial failure 
occurred. Under these conditions the time averaged 
ball surface temperature and traction coefficient 
are much higher than their values in stead,y state 1. 
Due to a further increase in traction, the ball surface 
velocity decreases even further compared to starved 
state 2. 

The major results from these experiments are shown in Table VI. 

Five different experiments are reported with sliding speeds ranging 

from 1.5 to 4.26 m/s and two different loads of 67 and 118.3 N. 

Load is maintained constant throughout each experiment and the bath 

temperature is monitored by a thermocouple. The ball surface velocity 

decreased during the test for each experiment and this is perhaps 

attributable to the significant increase in friction coefficient to 3 

or 4 times the starting value. Because of the slow response of the 

velocity readout and the traction load cell, the transient values of 

velocity and friction coefficient could not be measured. Both the 

transient and the time averaged values of ball surface temperature 

were measured (See Table VI). Since the microscope was set to trigger 

with the transient temperature rise, the temperature during unsteady 

starved state 2 could not be recorded. It can be seen in TableVI 

that the transient temperature reaches very high values - sometimes 
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up to 1100 c. The level of transient temperature increases with 

increasing speed and load, as can be expected. 

In addition to noting the values of the transient temperatures, 

an oscilloscope trace of the fast rise and decay of the transient 

temperature was recorded. It was found that the initial rise in 

temperature takes place in approximately 8 us. This time span, when 

translated to distance on the surface, corresponds to the width of a 

sing 1 e asperity. It therefore appears that failure has first occurred 

at a single asperity. If the system is allowed to run under these 

cond i tions, it apepars likely that many asperities may begin to fail 

in j U st the same manner, leading to an inoperable system. 

These findings support Rozeanu's conjecture that the final step 

to failure is essentially instantaneous occurring within a few micro- 

seconds . The logical question arises, however, as to how does a 

failure in a steel/sapphire system relate to the stee l/steel system. 

The fai lure of the steel/steel system should be more immediate than 

the other based on considerations of the relative interfacial forces 

present in the two cases [16,27]. 

In order to verify this possibility, experiments were run for a 

steel-on-steel system. The sapphire disc was replaced with a polished 

(0.006 urn Ra) AISI 52100 steel disc. Experiments were conducted at 

sliding speeds ranging from 0.8 to 5.0 m/s at increasing loads until 

scoring was encountered. For this system, scoring occurred at a sliding 

speed of 2.7 m/s and at a load corresponding to a peak Hertz pressure 

of 1.51 GPa. Under these operating conditions, and in fact even at 

the higher peak Hertz pressure of 1.89 GPa, the sapphire-on-steel system 
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was running without any signs of scoring. Indeed, the system was 

undergoing a successful running-in process. Figure 49 shows the 

location of scoring failure witnessed with a steel-on-steel system. 

The figure also contains information on ball surface temperature rise 

for a sapphire-on-steel system. 

These results indicate that a system with similar materials 

is subject to scoring failure more readily than a system with dis- 

similar materials. They also emphasize the requirement of using a 

similar material system for studying the scoring phenomenon, which 

otherwise may lead to erroneous conclusions. 
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III. CONCLUSIONS 

The glass, viscoelastic or viscoplastic transition of lubricants 

has been measured over a wide range of pressures, temperatures and rates 

for several lubricants. The different methods agree well and clearly 

show the change in transition temperature with pressure and frequency. 

The stress strain behavior of the material in the glassy state has been 

observed and is similar to a classical elastic-plastic model. The 

elastic shear modulus increases with decreasing temperature and approaches 

that measured by high rate ultrasonic experiments. The ultimate or 

maximum shear stress also increases with decreasing temperature and is 

believed to be the controlling shear stress in the EHD contact. The 

elastic portion of the curve is confined to strains of less than 5%, 

usually no more than 3%. 

A new high pressure falling body viscometer has also been con- 

structed which permits low shear rate viscosity measurements to 

greater than lo7 Pas [lo" cp]. 

Several investigations in the EHD simulator have resulted in 

data on the behavior of 5P4E and Nl for slide-roll ratios ranging from 

-2 to +2. These data include traction, film thickness and surface 

temperature. They permit, for the first time in our temperature 

measuring research, the determination of the temperature of the slower 

moving surface with sliding and rolling combined. The stationary 

surface temperature was also determined. This work clearly shows that 

the stationary surface temperature is much higher than that of the 

moving surface. This results in conduction of thermal energy forward 

into the inlet zone of the contact. This can result in an inlet fluid 

45 



temperature rise and reduced film thickness particularly at high loads. 

An adjustment factor for surface roughness effect on contact 

surface temperature was obtained from curve-fitting a large amount 

of data. It was found to be very similar to that recommended by the 

AGMA in their gear scoring criteria [19]. 

A limited number of experiments were performed in which local 

surface scuffing occurred and for which the local temperature excur- 

sion was measured. Very high temperatures (to 1lOOC) were observed 

in 8 1-1s or less. 
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APPENDIX 

DESCRIPTION OF EXPERIMENTAL FLUIDS 

The following table summarizes the oils investigated in this 

research and gives characteristic data for each oil. 

Experimental Fluids 

Symbol Description 

Nl Naphthenic Base Oil (R-620-15) 

N2 Nl + 2.2 percent Polybutene (LF-5346) 

N3 Blend of Nl and 4% Polyalkylmethacrylate (PL-4523) 

Nap 2 Naphthenic Base 011 (R-620-16) 

Pl Paraffinic Base Oil (R-620-12) 

FN 2961 Super Refined Naphthenic Mineral Oil 

XRM 177F Synthetic Paraffinic Hydrocarbon 
(lot 4) 

Mobil 1 Synthetic Paraffinic Motor Oil 

Santotrac 50 Synthetic Cycloaliphatic Hydrocarbon Traction Fluid 

5P4E Five-ring Polyphenyl Ether 

MCS 418 Modified Polyphenyl Ether (C-ether) 

MCS 460 Synthetic Hydrocarbon 

MCS 1218 Cycloaliphatic Hydrocarbon 

FYRQUEL 150 Tri-Aryl Phosphate ester 
R&O 

DN-600 Polyalkyl Aromatic 

Sl-Diester Diester-Plexol 201 di-2-ethyl hexyl sebecate (PL 5159) 

s2 Polybutene (LF-5193) 

Krytox 143-AB Perfluorinated polyether 

Brayco, Perfluorinated polyether 
Micronic 8512 

Advanced Based on Pentaerythritol 
Ester (Aeroshell Turbine Oil 555 Base Oil) 
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Symbol: 

Source: 

Type: 

Properties: 

Symbol: 

Type: 

Blend 
properties: 

Source of 
Polymer: 

Properties 
of Polymer: 

Nl 

Sun Oil Company 

Naphthenic Base Oil R-620-15 

Viscosity at 37.8C, m2/s 

Viscosity at 98.9C, m2/s 

Viscosity Index (ASTM D-2270) 

Flash Point, C 

Pour Point, C 

Density at ZOC, Kg/m3 

Average Molecular Weight 

N2 

Blend of Nl and 2.2% Polybutene (LF-5346) 

Viscosity at 37.7C, m2/s 81.6 x lo-6 

Viscosity at 98.8C, m2/s 11.9 x lo6 

American Oil Company 

Density at 25C, Kg/m3 

Viscosity at 37.7C, m2/s 

Viscosity at 98.8C, m2/s 

Viscosity Index 

Flash Point, C 

Diluent Oil Content, percent 

Diluent Oil Viscosity at 37.7C, m2/s 

Polymer number average molecular weight 

24.1 x lO-6 

3.73 x 1o-6 

-13 

157 

-43 

915.7 

305 

365.6 

8040 x 10 
-6 

637 x lo6 

123.5 

240 

80 

18 x lO-6 

25,000 



Symbol: 

Type: 

Blend 
properties: 

Source of 
Polymer: 

Properties 
of Polymer: 

Symbol: 

Source: 

Type: 

Properties: 

N3 

Blend of Ni and 4% Polyalkylmethacrylate 
(PL-4523) 

Viscosity at 37.7C, m2/s 

Viscosity at 98.8C, m2/s 

Pressure viscosity coefficient 
(atmospheric pressure slope) 

at 37.7C, GPa -1 

at 98.8C, GPa -1 

Rohm and Haas Company 

Viscosity Average Molecular Weight 

Viscosity m2/s at 98.9C 

Consists of 19% Polymer in solution 
with a paraffinic hydrocarbon 

Nap 2 

Sun Oil Company 

Naphthenic Base Oil R-620-16 

Viscosity at 37,8C, m2/s 

Viscosity at 98.9C, m2/s 

Viscosity Index (D2270) 

Density at ZOC, Kg/m3 

Average Molecular Weight 

Refractive Index 

Pour Point C 

182 x lO-6 

27 x lo-6 

10.7 

8.27 

1.65 x lo6 

773 x 1o-6 

114 x 1o-6 

8.08 x lo-6 

<o 

930.3 

357 

1.5173 

-23 
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Symbol: Pl 

Source: Sun Oil Company (~-620-12) 

Type: Paraffinic Base Oil 

Properties: Viscosity at 37.8C, m2/s 

Viscosity at 98.9C, m2/s 

Density at 25C, Kg/m3 

V.I. (ASTM D-2270) 

Pour Point, C 

Average molecular weight 

Flash point, C 

Symbol: FN 2961 

Source: Humble Oil and Refining Company 

Type: Super Refined Naphthenic Mineral Oil 

Properties: Viscosity at 37.8C, m2/s 

Viscosity at 98.9C, m2/s 

Viscosity at 148.9(3, m2/s 

Density at 15.6C, Kg/m3 

Pour Point, C 

33.7 x lo6 

5.4 x 1o-6 

860.2 

103 

-15 

404 

216 

78 x lo6 

8.2 x 1O-6 

3.3 x 1o-6 

887 

-34 
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Symbol: XRM-177-F (Lot 4) 

Source: Mobil 

Type: Synthetic Paraffinic Hydrocarbon 

Properties: Viscosity at 37.8C, Pas 

Viscosity at 98.9C, Pas 

Pour Point, C 

Density 37.8C, Kg/m3 

Symbol: Mobil 1 

Type: Synthetic Paraffinic Hydrocarbon 

Source: Mobil Oil Company 

Properties: Viscosity at 204.4C, m2/s 

Viscosity at 148.9C, m2/s 

Viscosity at 98.9C, m2/s 

Viscosity at 37.8C, m2/s 

Viscosity at -17.8C, m2/s 

Viscosity at -28.9C, m2/s 

Viscosity at -4OC, m2/s 

376 x 10-3 

31.6 x lO-3 

< -40 

838.9 

1.69 x lO-6 

3.04 x lo6 

7.50 x lo6 

44.67 x lo6 

1.284 x lO-3 

3.812 x lo-' 

14.122 x lO-3 
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Symbol: Santotrac 50 

Source: Monsanto Company 

Type: Synthetic Cycloaliphatic Hydrocarbon Traction Fluid 

Properties: Viscosity at 37.8C, m2/s 34 x 1o-6 

Viscosity at 98.9C, m2/s 5.6 x 1O-6 

Pour Point, C -37 

Density at 37.8C, Kg/m3 889 

Flash Point, C 163 

Fire Point, C 174 

Specific Heat at 37.8C, J/Kg-K 2332 

Additive package includes: Antiwear (zinc dialkyl 
dithiophosphate), Oxidation inhibitor, Antifoam, VI 
Improver (Polymethacrylate). 

Symbol: 5P4E 

Type: Five-ring Polyphenyl Ether 

Source: Monsanto Company 

Properties: Viscosity at 37.8C, m2/s 

Viscosity at 98.9C, m2/s 

Density at 22.2C, Kg/m3 

Density at 37.8C, Kg/m3 

Flash Point, C 

Pour Point, C 

363 x lO-6 

13.1 x 1o-6 

1205 

1190 

288 

4.4 
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Symbol: MCS-418 

Type: Modified Polyphenyl Ether (C-ether) 

Source: Monsanto Company 

Properties: Viscosity at 38C, m2/s 

Viscosity at 99C, m2/s 

Density at 38C, kg/m3 

Density at 99C, kg/m3 

Pour Point 

Symbol: MCS-460 

Source: Monsanto Company 

Type: Synthetic Hydrocarbon 

Properties: Viscosity at 37.8C, m2/s 

Viscosity at 98.9C, m2/s 

Viscosity at 148.9C, m2/s 

Pour Point, C 

Density 25C, Kg/m3 

25 x lO-6 

4.1 x 10-6 

1180 

1140 

-29 

37.2 x lO-6 

4.0 x lo6 

1.9 x lo-6 

-29 to -32 

932.7 

Symbol: MCS-1218 

Source: Monsanto Company 

Type: Cycloaliphatic Hydrcarbon 

Properties: It is a combination of two components each have a 
molecular weight less than 1000. 

Viscosity at 37.8C, m2/s 1418 x lo6 

Viscosity at 98.9C, m2/s 18.37 x 1O-6 

Density at 23.9C, Kg/m3 940 
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Symbol: FYRQUEL 150 R & 0 

Type: Tri-Aryl Phosphate 

Source: Stouffer Chemical Company 

Properties: Density at 15.6C, kg/m3 

Pour Point, 

Viscosity at 37.8C, Pas 

Viscosity at 98.9C, Pas 

Symbol: DN-600 

Source: Continental Oil Company 

Type: Polyalkyl Aromatic 

Properties: Viscosity at 37.8C, m2/s 

Viscosity at 98.9C, m2/s 

Viscosity at 148.9C, m2/s 

Density at 37.8C, Kg/m3 

Pour Point, C 

Specific Heat at 37.8C, J/Kg K 

1165 

-23 

36.9 x 1O-3 

4.83 x 1O-3 

30 x 1o-6 

5.0 x 1o-6 

2.3 x 1o-6 

851 

- 60 

1624 
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Symbol: 

Source: 

Type: 

Properties: 

Symbol: 

Source: 

Type: 

Properties: 

Sl-Diester 

Rohm and Haas Company 

Diester-Plexol 201 di-Z-ethyl hexyl sebacate 
(PL 5159) 

Viscosity at -53.9C, m2/s 

Viscosity at 37.8C, m2/s 

Viscosity at 98.9C, m2/s 

cloud Point (ASTM D-2500) 

V.I. (ASTM D-974) 

Flash point, C 

Fire point, C 

Pour point, C 

Specific gravity 15.6C/15.6C 

s2 

American Oil Company 

Polybutene LF-5193 

Viscosity at -17.8C, m2/s 

Viscosity at 37.8C, m2/s 

Viscosity at 98.9C, m2/s 

Density at 25C, Kg/m3 

V.I. (ASTM ~-2270) 

Polymer Number Average Molecular Weight 

Diluent oil content 

7990 x lo-6 

12.8 x lo-6 

3.32 x lO-6 

below -54C 

150 

216 

232 

< -62 

0.912 

18,800 x 106 

109 x 1o-6 

10.6 x lO-6 

844.3 

87 

409 

0 
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Symbol: 

Type: 

Source: 

Properties: 

Symbol: 

Type: 

Source: 

Properties: 

Symbol: 

Source: 

Type: 

Properties: 

Krytox 143-AB (Lot 10) 

Perfluorinated polyether 

DuPont Company 

Viscosity at 37.8C, m2/s 

Viscosity at 98.9C, m2/s 

Density at 24C, kg/m3 

Density at 98.9C, kg/m3 

V.I. (ASTM ~-2270) 

Pour point, C 

Flammability 

Brayco, Micronic 8152 

Perfluorinated polyphenyl ether 

Bray Oil Company 

Viscosity 98.9C, m2/s 

Viscosity 37.8C, m2/s 

Density at 15.5C, kg/m3 

Pour point, C 

Advanced Ester 

Shell Oil Company 

Based on Pentaerythritol 
(Aeroshell Turbine Oil 555 Base Oil) 

Viscosity at 37.8C, m2/s 

Viscosity at 98.9C, m /s 

Viscosity at 148.9C, m2/s 

Density at 37.8C, Kg/m3 

Flash point, C 

59 

96.6 x 1O'6 

11.5 x lo-6 

1890 

1760 

116 

-40 

does not burn 

40 x 10 -6 

129 x lo6 

1866 

-73 

25.8 x lo6 

5.1 x lo-6 

2.3 x 1O-6 

979 

260 



Table I. Least-square Expressions for the Glass Transition 
Temperature as a Function of Pressure for Experi- 
mental Lubricants Based on Formation History B. 
Tg in C and Pg in GPa. 

Experimental Range of Measurements 
Lubricants GPa 

Least Square Expression 
for T 

9 

cn 
0 

5P4E 

MCS-1218 

Nl 

N2 

0.16 - 0.41 Tg = - 4.74 + 182.9 Po 

0.16 - 0.46 Tg = - 4.66 + 197.4 P 
g 

0.46 - 0.70 Tg = -32.79 + 120.8 P 
9 

0.43 - 0.70 Tg = -33.40 + 134.5 P 
9 



Table II. Glass Transition Temperature, Tg, 

At Atmospheric Pressure 

(Approximate cooling rates from 0.6 to 1.7 c/min.) 

T C a 

Nl 

N2 

N3 

Nap 2 

Pl 

FN 2961 

XRM 177F 

Mobil 1 

Santotrac 50 

5P4E 

MCS 418 

MCS 460 

MCS 1218 

Fyrquel 150 R&O 

DN 600 

Sl 

s2 

Krytox 

-81.5 

-81 

-82 

-73 

-96 

-72 

-96 

-92 

-83 

-30.5 

-67.5 

-71.5 

-49 

-60 

-95 

-127 

-82 

-81 
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Table IIIa. Temperature and Traction Measurements for Fluid 5P4E 
(Smooth ball: .Oll pm' R,, PH = 1.02 GPa). 

'b 'sa 
v c 

Tbath Tb ATb 
TC 

at center at center 
m/s m/s m/s C C C - --- 

.36 .36 .36 0 30 39 9 .029 

.38 .34 .36 .lll 30 39 9 .050 

.41 .31 .36 ,278 30 41 11 .064 

.72 0 .36 2 33 79 46 .070 

.5 .5 .50 0 31 41.5 10.5 .019 

.52 .48 .50 .08 31 41.5 10.5 .032 

.55 .45 .50 .2 31 42 11 .051 

-57 .43 .50 .28 31 42 11 .067 

1.0 0 .50 2 35 97 62 -070 
_._ ___ 

Table IIIb. Film Thickness Measurements for Fluid 5P4E (Smooth ball: 

.Oll pm Ra, PH = 1.02 GPa). 

‘b 'sa 
V c 

Tbath hC hm 

m/s m/s m/s ~ - - 
.36 .36 .36 

.38 .34 .36 

.42 .30 .36 

.72 0 .36 

.5 .5 .50 

.52 .48 .50 

.55 .45 .50 

.57 .43 .50 

1.0 0 .50 

0 32 

.lll 32 

.278 33 

2 36 

0 35 

.08 35 

.2 34 

.28 33 

2 35 

C p-in m u-in urn - - - - 
48.1 1.21 36.4 .91 

48.1 1.21 36.4 .91 

51.9 1.30 38.0 .95 

13.4 .34 5.4 .13 

48.1 1.21 36.4 .91 

48.1 1.21 36.4 .91 

48.1 1.21 36.4 .91 

55.1 1.38 36.4 .91 

13.4 .34 6.4 .16 
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I: 

i 
<. Table IV. Summary of Stationary Ball Surface Temperature 

(Smooth ball: 0.011 urn Ra, Fluid Nl, PH = 1.02 GPa, C = -2) 

'b 

m/s m/s 

0 0.82 

0 1.20 

0 1.24 

0 1.50 

0 1.70 

0 1.85 

0 1.98 

0 2.58 

V sa 

(= vs) 

Tbath 

C 

28 

28 

28 

28 

28 

26 

26 

28 

Tb 

@ Center 

ATb 

(=T > b,max (Tb - Tbulk )* 

C C 

92.5 50.5 

108 66 

109.5 67.5 

118 

125 

128 

131 

146 

76 

83 

86 

89 

104 

*T 
bulk 

= 42 C for all the experiments (Tbulk = Tb two to three 

Hertzian diameters before the contact). 
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Table V. Normal Load Sharing Between Asperities 
and the EHD Film 

(Medium rough ball: .076. pm Ra, Fluid Nl, Vs = 1.0 m/s, Vsa = 0) 

Contact Total 
(Both Lubricant Film 

Portion Supported by 
Lubricant Film for 

and Asperities) Stated Average Asperity Slope, cr8 

W P 
w 

N GPa GPa 

8.9 .52 .348 

17.8 .65 .435 

25.4 .74 .493 

40.0 .86 .573 

66.7 1.02 .678 

215 1.51 1.00 

222 1.52 1.02 

254 1.59 1.06 

293 1.67 1.11 

307 1.70 1.13 

A 

4.33 8.89 .348 

3 17.8 .435 

2.5 25.2 .489 

2 39.0 .559 

1.5 62.4 ,636 

1 192 .900 

.8 191 .876 

.6 208 .872 

.4 228 .866 

.33 234 .857 

53 = .0349 

W P 
w au 

N GPa 

53 = .122 

W P 
w w3 

N GPa 

8.86 .347 

17.7 .433 

24.7 .479 

36.8 .527 

54.3 .552 

152 .715 

142 .649 

144 .602 

146 .556 

146 .536 

64 



. . . --. 

Table VI. Experimental Study of Starvation Failure 
of a Sapphire on Steel Ball Contact 

(Smooth ball: 0.011 urn Ra, Fluid Nl, VSa = 0) 

Experiment Tbath W 
vS 

TC Tb 

o-l u-l 

1. Steady State 1 
Starved State 2 (unsteady) 
Transient 
Post failure State 3 (unsteady) 

2. Steady State 1 
Starved State 2 (unsteady) 
Transient 
Post failure State 3 (unsteady) 

3. Steady State 1 
Starved State 2 (unsteady) 
Transient 
Post failure State 3 (unsteady) 

4. Steady State 1 
Starved State 2 (unsteady) 
Transient 
Post failure State 3 (unsteady) 

5. Steady State 1 
Starved State 2 (unsteady) 
Transient 
Post failure State 3 (unsteady) 

03 (N) h/s> 

30 16:2 1.5 
(PH = GPa) 1.37 

1:1 

32 1?2 2.36 
(PH = GPa) 2.1 

1.75 

45 67 4.0 
(pH = 1.02 GPa) 3.7 

3111 

36 118.3 2.38 
(PH = 1.24 GPa) 1.95 

1:89 

53 118.3 4.26 
(PH = 1.24 GPa) 3.92 

3:87 

@ center 
(0 

0.06 

0.21 

0.05 

0.19 

0.04 

0116 

0.055 

92 

6;O 
135 

105 

690 
150 

133 

700 
185 

130 

012 

0.045 

or19 

850 
193 

165 

11;o 
240 
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Figure la. Schematic Arrangement of the 
Light-Scattering Experiment. 

66 



r’lhermocouple 
\ 

V-Seal \ 

------ I ronrmitted 
L Caht /- 

B8lloville Spring 
Washer 

Scatter 
Light 

-Through 
Hole 

I 

I 

t I 

1 
I 

1 
Adaptor- J 

-Sapphire 
Windows 

I 
Incident 

Light 

To Pressure 
Transducer L Push Piece 

J 

Figure lb. Schematic Arrangement of the Light-Scattering Cell. 
The Intensifier is attached Perpendicular to the Plane 
of the figure at the centerline of the cell. 
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Figure 2. Frequency Spectrum of Nl obtained by History A at 0.277 
GPa and 24C. B and R represents the Brillouin and Ray- 
leigh Components respectively (the two signal levels 
represent two system amplifications for clarity). 
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Figure 3. Variation of Frequency Shift (W,) and Sound Velocity (V) 

with Pressure at 24C for Naphthenic Mineral Oil (Nl) 

(History B). Arrows indicate glass transition pressure (P,). 
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Figure 5. Transition Diapram for Four Experimental Fluids. Solid and Open Symbols are for 

Histories A and B respectively. Glassy state is to the right and below Transition 
lines and liquid state is to left and above transition lines based on Liqht- 
Scattering Technique. 
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Figure 6. Typical Sound Velocity as a Function of Temperature and 
Frequency at Constant Pressure Vm and V, are limiting 
High and Low Frequency Sour~I Velocities Respectively. 
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Figure 7. Schematic of Dielectric Cell. 
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Figure 8. Permittivity (c') of Polyphenyl Ether (5P4E) at 0.414 GPa 
(60 kpsi). 
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Figure 9. Dielectric Loss Tangent (E") of Polyphenyl Ether (5P4E) at 0.414 GPa 
(60 kpsi). 
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Figure 12. Dielectric (10 5 Hz 5 106), Low Rate Dilatometry (arrows) and Light 

Scattering (Hz = 1010) Transition Data at Atmospheric Pressure. 
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Figure 13. Schematic of High Pressure Dilatometer 
(0.35 to 1.75 GPa). 
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Figure 14. Volume Dilatometry Transition Diagram for Polyphenyl Ether (5P4E), Naphthenic Mineral 
Oil (Nl), Synthetic Paraffinic Mineral Oil (XRM 177F). 
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Figure 15. Volume Dilatometry Transition Diagram for Perfluorinated Poly ether (Krytox 143-AB), 
Super refined Naphthenic Mineral Oil (FN 2961), Paraffinic Mineral Oil (Pl) Modified 
Polyphenyl Ether (C-ether) (MCS-418). 



80 

60 

-40 

-60 

-80 

x ADV. ESTER x ADV. ESTER 
0 DN600 0 DN600 

A MC3460 A MC3460 

u FYRQUEL 150 u FYRQUEL 150 

l SANTOTRAC SO l SANTOTRAC SO 

80 100 120 140 160 180 200KPSl 
I I I I I I I I 1 7-- 

I I I 1 I I I I 1 1 1 I a . 
1 I I I I I I I I I I I I I 

0 .l .2 -3 A .5 l 6 .7 .6 .6 1.0 Ll 1.2 L3 1.4 
PRESSURE GPO 

Figure 16. Volume Dilatometry Transition Diagram for Pentaerythritol (Advanced Ester), Polyalkyl 
aromatic (DN 600), Synthetic hydrocarbon (MCS 460), Tri-aryl phosphate ester (Fyrquel 150), 
Synthetic cycloaliphatic hydrocarbon (Santotrac 50). 
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Figure 18. Recorder Plot of Shear Stress versus Shear Strain for Polyp'henyl ether (5P4E) 
at 0.275 GPa.(40 kpsi) and Indicated Temperatures. 
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Figure 19. Elastic Shear Modulus of Polyphenyl Ether (5P4E) at 0.275 GPa 
in (40 kpsi) in Amorphous Glassy Region. 
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Figure 21a. Ultimate Shear Stress for Naphthenic Mineral Oil (Nl). 
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Figure 21b. Ultimate Shear Stress for Naphthenic Mineral Oil (Nl). 
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Figure 23. Ultimate Shear Stress for Synthetic Cycloaliphatic 
Hydrocarbon (Santotrac 50), Polyphenyl Ether (5P4E), 
Naphthenic Mineral Oil (Nl) at 0.48 GPa (70 kpsi). 
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Figure 25. Schematic of High Pressure Falling Body Viscometer 
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Figure 26. Pressure-Viscosity Isotherm Naphthenic Mineral Oil 
(Nl) at 40C. 
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Figure 27a. Pressure-Uiscosity Isotherms for Polyphenyl ether (5P4E). 
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Figure 27b. Pressure-Viscosity Isotherms for Polyphenyl ether (5P4E). 
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Figure 28. Pressure-Viscosity Isotherms for Perfluorinated Polyether 
(Brayco, 8152). 
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Figure 29. Low Shear Viscosity-pressure and Dielectric Relaxation Time 
Isotherms for Polyphenyl Ether (5P4E) at 40C. 
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Figure 30. Transition Diagram for Naphthenic Mineral Oil (Nl) and Several Methods. 
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Figure 31. Transition Diagram for Polyphenyl Ether (5P4E) and Several Methods. 
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Figure 32. Comparison of Pressure-temperature Dependence at Constant Viscosity (u) 
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Figure 34. Traction Coefficient versus Slide-roll Ratio for 
Polyphenyl ether (5P4E). 

102 



v= 

P”= 
.36 m/s 
1.02 GPa 

I I I I 1 
I 

.4 .8 1.2 1.6 2.0 
SLIDE -ROLL RATIO 

I I I I . I I 
;4 .8 1.2 1.6 2.0 

SLIDE-ROLL RATIO 

aT, C+ Contact 

Figure 35. Ball Surface Contact Center Temperature F?ise for 
Polyphenyl Ether (5P4E). 
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Figure 36. Film Thickness for Polyphenyl Ether (5P4E). 
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Figure 37. Traction Coefficient as a Function of Shear Rate,Polyphenyl 
Ether (5P4E). 
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Figure 38. Ball Surface Temperature Rise Alonq the Contact 
Centerline (.Oll urn Ra Roughness, P,, = 1.02 GPa, 

i = 0.75 m/s) for Naphthenic Mineral Oil (Nl). 
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Figure 40. Ball Surface Temperature Rise along the Contact 

Centerline (Smooth baJJ 0.011 pm Ra, P,, = 1.02 GPa, 

i = 0.75 m/s) for Naphthenic Mineral Oil (Nl). 
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Figure 41. Ball Surface Temperature Rise along the Contact 

Centerline (Smooth ball 0.011 Urn Ra, P,, = 1.02 GN/m', 

i = 1.0 m/s) for Naphthenic Mineral Oil (Nl). 
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Figure 42. Ball Surface Temperature Rise as a Function of Slide-roll 

Ratio (-2 to +2) (Smooth ball 0.011 vrn Ra, PH = 1.02 GPa, 

i = 0.75 m/s) for Naphthenic Mineral Oil (Nl). 
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Figure 43. Ball Surface Temperature Rise as a Function of Slide-Roll 

Ratio (Smooth ball 0.011 pm Ra, P,, = 1.02 GPa, 

i = 1.0 m/s) on Naphthenic Mineral Oil (Nl). 
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Figure 44. Stat ionary Ball Surface Temperature Rise, pure slidina, 
1.02 GPa Hertz Pressure with Naphthenic Mineral Oil (Nl), 
(See Table IV, p. 63). 
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.Figure 45. Traction Coefficient as a Function of A Ratio. Steel balls 
with roughnesses of 0.011, 0.076 and 0.38 urn Ra against 
sapphire flat, Naphthenic Mineral Oil, bulk temperature of 
27C, load and sliding speed varied to vary Lambda ratio (A). 
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(For R, = 0.011 urn increase less than 1%). 
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Figure 49. Maximum Ball Surface Temperature Rise versus Slidin 
Speed for Steel Ball/Sapphire Flat System (Rough Ba 9 1: 
0.38 urn Ra, Fluid Naphthenic Mineral Oil NJ, Flat Surface 

Stationary, A < 1 except as noted) with location of 
conditions for scoring failure with steel on steel system. 
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