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NOMENCLATURE:

P(x)	 thickness distribution

H(\)	 distribution of camber

hi. of	 the height of	 A i ;	 2h i =	 r i + (Ii

1	 - ri^ 2
K transonic similarity parameter, K = ---

4/ 3 6 2/ 3M

?1 numbo r of	 intervals into which the airfoil is divided by
rectangular elements

M free-strum Mach number

n number of rectangular elementr4 or mesh points

P (x,y)

P i =	 (xi9yd

U -	 (^' O

q i magnitude of the difference between	 y i	 and the y-coordinate

of the bottom edge of	 Ai

r i magnitude of the difference between 	 y i	and	 the y-coordinate
of	 the top edge of	 Ai

velocity components in the tangential and transverse directions,

respectively,	 u =	
ax	

V	
aŶ

^—^U,	 v velocity components in the transformed plane, u=
ax ,
	 v =

Y

u i tangential velocity at the ith mesh point

rectangular Cartesian coordinates in the physical plane

x.,y rectangular Cartesian coordinates in the transformed plane,

X = x,	 y = Sy

xi ,y i coordinatep of the ith mesh point

Y+ (x), Y_ (R) upper and lower airfoil profiles,	 respectively

Y + (x)
-

modified airfoil profile,	 Y^(x) = Y Y+(x)3/?
A -
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a angle of attack,	 deg

(i Prandtl-Glauert	 parameter,	 R

ratio of	 specific	 heats

y(x) vortex strength,	 y(x)	 = u(x,+(l)	 -	 u(x,-0)

Y 
=	 Y(xi)

Au ` (x,y) =	 u•' ( x . y )	 -	 u2(x,-y)

dY+	dY-

n^ C (^) =	 dF	 d&

A the ith rectangular element

d thickness ratio

d i half	 the width of	 Ai

E half the width of	 a
E

\ aspect ratio of	 a
E

2(y +	 1)
u

_

SK3/2

rectangular Cartesian coordinates

a E the vanishing rectangular cavity

T measure of thz distribution of camber

O(x,y) perturbation velocity potential

O(x,y) modified perturbation velocity potential,

(Y 
+ 1)M^?

_ _ _

C x , y ) =	 — m(x,Y)
3 2

Q L (x,y) contribution to potential due to lifting effects

^L i =	 m. (xi,yi)

tN (x,y) contribution to potential due to nonlifting effects

^Ni = ^N(xVyi)

iv



SOLUTION OF TRANSONIC FLOWS BY AN

IN'I'ECRO-DIi'FEKI:NTIAI. EQUATION METHOD

Wandera Ogana"

Ames Research Center

SUMMARY

For free-stream Mach numbers less than unity, steady transonic flow past
a two-dimensional airfoil is described by a singular integro-differential
equation which involves the tangential derivative of the perturbation veloc-

it y potential. The integro-differential equation ran be transformed into a
nonlinear system of algebraic equations involving numerical evaluation of a

first-order derivative. Subcritical flows are solved by a central difference
approximation of the derivative everywhere. For supercritical flows with
shucks, central differences are taken in locally subsonic flow regions and
backward differences in locally supersonic flow regions. A normal shock con-
dition is applied. A condition is enforced at the sonic point which ensures
smooth transition from subsonic to supersonic velocities. The region of inte-
gration is partitioned into rectangular elements whose sizes can he adjusted
in order to minimize the number of mesh points. The method is applied to a
nonlifting parabolic-arc airfoil in both subcritical and supercritical flows,
and to a subcritical flow over a lifting NACA 0012 airfoil. Although a small
number of mesh points is used, the results compare favorably with finite dif-
ference results. For lifting flows, a modified boundary condition should be
applied to improve the accuracy of the results at the leading edge of the

airfoil.

INTRODUCTION

The transonic small perturbation equation for steady, two-dimensional
flows is transformable to a singular integro-differential equation which can
be differentiated to yield a singular integral equation in the tangential
velocity (refs. 1 and 2). Solutions of the integral equation have been

obtained for subcritical flows (refs. 3-6) and for embedded supersonic regions
with shock waves (refs. 3, 4 and 7). The transonic integro-differential equa-
tion has not been solved numerically. A related linear integral equation for
three-dimensional subsonic flows has been studied by Morino and Kuo (ref. S).
The present method solves the integro-differential equation using a technique
which Ogana (refs. 6 and 9) developed for the transonic integral equation.
Solutions for supercritical flows with shocks can be determined by taking

*NRC Research Associate (1976-1977). Presently a Lecturer at University
of Nairobi, Department of Mathematics, P.O. Box 30197, Nairobi, Kenya.
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central differences in local suh son ic flew regions and backward differences

in local supersonic flew regions as proposed by Merman and Cole (ref. 10).
Special consideration is given to sonic .ind shock points. An advantage of
the integro-differentia, equation method over the integral equation method is

that the shock conditions can be introduced in a simple direct mint.

1NTEGRO-DIFFERENTIAL EQUATION

We consider steady, two-dimensional transonic flew past a thin airfoil
of thickness ratio d, and measure of the amount of camber t, at a small
angle of attack n. For subsequent convenience of notation, the rectangular
Cartesiaa coordinates in the physical plane are taken to be (x,y'). Let the
upper airfoil profile be described by

Y+ (x) = 8F(X) + rH(R) - aX 	 (la)

and the lower profile by

Y- 00 = -6F(x) + TH(x) - ax	 (lb)

where F(x) and H(R) are the thickness and camber distributions, respectively.

Let ^(_c,y) be the perturbation velocity potential. The perturbation
velocities in the tangential and transverse directions are given by u = m-

and v = ^y, respectively. The transonic small perturbation equation for

m is

	

11 - Mro2 - (_Y
	 1)M_2

OY103ZX 
+ myy = 0	 (2)

where M., is the free-stream Mach number and y is the ratio of specific
heats.

Equation (2) is solved subject to the Kutta condition, the body boundary
condition,

_ _	 dY+
v(X,*0)	

dx	
(3)

and the condition that u and v vanish at infinity.

The following shock jump conditions hold (ref. 10):

M. 2 (y + 1)
((i - Mm 2 )5 -	 u`	 (dy) F - ( v) (dz), = 0	 (4a)

	

2	
1.

( 3 )(dv) F + (u)(dz) 1. = 0	 (4h)

where ( ) denotes the jump in a quantit y across the shock, and the subscript

E refers to an element on the shock surface.

2



The transformations, 
(42 

= 1 - M	 x , x, y = f y,
w(x,v) - I( ) + 1)M_2 /G'I^(X+y), u(x,)') = a1/ -)x and v(x,v) = ^14, /Iv,
reduce (eqs. (2) and (3)) to

(1 - ^x ) ^xx + QYY =- 0	 (5)

dY+

v(x, ±n ) =

	

	 (6)
dx 

where Y,(x) = ((y + 1)/6K3/2]Y+(z) defines the modified airfoil profile and
K = (1 - M^2)/M_4/362/3 is the transonic similarity parameter.

For a normal shock, equations (4a) and (4b) become

(u - 1 u	 0
	 (7)

Let (11'.0 be the running coordinates in the integration; then, for
M_ < 1, application of Green's theorem converts (eqs. (5)-(7)) to the follow-
ing singular integro-differential equation (refs. 1, 2 and 11):

^( x ,Y)	 N(x,v) + O L ( x ,Y) + ff  %f 	 x,r, - Y)	 (8)(8)

S

where yN , ^L and -A' are defined below.

The contribution to the potential due to nonlifting effects is

1

^ N ( x ,Y) = 2n
 fo

^^(F,),n((^ - x) r
 + y2]1/ df
	 (9)

where

dY *	 dY-

4 m F (F) = dF	 dF	
(10)

The contribution to the potential due to lifting Effects is ^ ,,Jx,y) and
"an be written in the following form after an integration by parts (ref. 11):

4^ 1 (x,y) = Z^
	

I zsgn(y) - arc tan	 - X l y(&)dF	 (11)
l	 Yfo , /

where

Y(F) = u(F,+O) - u(f„ -0)	 (12)

defines the local strength of the vortices distributed along the chord. For

a nonlifting airfoil, y(F) - 0, hence ^ L (x,y) = 0.

OR/ SAL, PAGE [b
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The kernel of the integro-differential equation is

i^' ( F - x, - Y) = --	 x -- 4	 --	 ( 1 3 )4n((:-x)2+U-y)']
The singular point of the kernel is enclosed in a vanishing rectangular

cavity, j,_, of aspect ratio A (fig. 1). The significance of this cavity was
reported in a previous article by Ugana and Spreiter (ref. 2).

NONLIFTING EFFECTS

From equations (1) and (10) we deduce that A^ 4 (F,) = (2( ) + 1)W/2]F'(E).
If this relation is substituted in equation (9) and an integration by Parts
performed, then for an airfoil of unit chord we obtain

1	 _

m ( x ,Y) = 
Y + 1	 x	

F (F WE
N	 nK3/2fo (E - 

x
)2 + y2

IIFTING EFFECTS

For lifting airfoils, equation (8) can be solved only after y(E) in
equation (11) has been determined. To do this we differentiate both sides of
equation (8) with respect to y to find

1	 1
v(x,Y) = 1 

fo	
y	 Am (E)dE + f--  	 xY(E)dF

2 " 	 (E - x)2 + Y2	
2n 	 (E - x)2 + y2

+ av ^f ti (E - x,	 - y)u 2 (E,^)dS
	

(15)

S

We now take the limit as y - +0 and y -0 on both sides of equation

(15), add the two results and perform an integral inversion. The procedure,
described in appendix A, yields the result

Y(X) 
uu^ x̂

x + Au2(x,0)
 4

+ 	 X _X T
1 1
	 X 1 Z7 E dE	 (16)

0
where

u = 20 + IW O /2 = constant

4
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a

t1

Au^ (x,v) = u'(x,_v) - 11 (x, - y)	 (1')

(F) _ f/ X (x - h,Y)Au 2 (x,Y)dx dy	 (18)

S

From equation (A6) we can deduce

X(x - ;,Y)	
4n[(^Y(^x)Zx+ 212	

(19)	
i

Y

MATRIX EQUATION

Let P - (x,v), Q	 and .WkQ,P) _ -X(l - x, t - y). Equation
(8) can be written

	
fT

W(Q ' P)u'(Q)dSW) _ ^N (P) + O L (P) + 	 (20)

S

where

u(Q) = ar; [^(Q) )	 (21)

The region of integration, S, is now divided into n rectangular ele-

ments, labelled A l , A 2 , . . ., An .	 In each A i there is a mesh point
P i (x i ,y i ), located as shown in figure 1. The mesh points are concentrated
near the airfoil and become fewer as the elements grow larger (fig. 2). It
is now assumed that the flow quantities are constant within each element.

For a mesh point, P i , equation (20) becomes

n

	

m(P i ) _ ^N ( Pd + m l ( P i ) +
	

fl-N, (Q, P i ) u2 (Q) dS 	(22)

j-1 Aj

Unless otherwise stated it will ho assumed that the subscripts i, j = 1,

2,	 . . , n.

Let

m(Pi), mN i = mN(Pi). ^Li
	

^DL(Pi), u12 = u 2 (P j )	 (23)

and define *he matrix [b ij ] by

bii = fx(Q,P i 
)dS 	 (24)

Al

5
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Then equation (22) becomes

I

P i = Q^, i + ^
1 i +
	 bi . u.`	 (25)

l J
j=]

When the right-hand side of equation (21) is evAtiated numerically, uj
Is expressed as a function of the discrete values of the perturbation poten-
ti.il. Equation (25) can then be regarded ar, a system of nonlinear algcbraiu
equations in '1 9 '2,	 fin- Define the component g i (m) of the vect-ir

R() by
j	 n

gi(r) 	 ONi + 41 +	 bij 
U 
	 (26)

j=1

where

In matrix form, equation (25) becomes

= 80)	 (27)

= fm l , m^,	 11	 (''8a)n

90) = 191(4). g,(0-	 gn(WT	 (28b)

Equation (14) shows that for a given airfoil protiie, 
^Ni 

can be ev,ilu-

	

atc•d immediately by some suitable numerical integration scheme. Before solu- 	 a
tions of equation (27) can be obtained, certain matrices have to he evaluates:.
Suppose the airfoil is divided into M intervals by the rectangular elements.
Using equation (11) we can write SLi as

M

mLi	 a gikyk	 (29)

k=1

wlivre

Yk = Y ( xk )	 :4•1

fx Xk+6 k f - xi
1

q i k = ?n	
sgn(yi) - arc tan	 d',	 (3^)

k-8 k	 yi

The matrix elements, q ik , are evaluated in sec. 1 of appendix B.

To obtain Yk we let S2(x,y) = Au 2 (x,y) and `2k - ^i(xk ,y k ). Equation

(16) yields

6
	 s



1 - x 	
S1 
	 l - xk	

^l

Y k = uo	 --	 + _4 +	 x 	
kc Gk	

(31 )
:k	

k	
1

where

^x2+5o

ekc	
ofx -d	

, df xk	 1 f	 (i_'i

t ^

Expressions for the matrix elements, e kQ , are derived in sec. 2.1 of
appendix B.

In order to evaluatey k in equation (31), we require G I G^,	 (:R1.
Using equations (18) and (19) we can obtain

n

G _

	

	 d p, 
j 0_i
	

(33)

j=1

where

y(x k - x)

	

dcI 
- ff ( r	

y2^2 dx dv	 (3+)

The matrix elements, d qj , are determined in sec. 2.2 of appendix B.

Tb- matrix defined by equation (24) is associated with the nonlinear con-
tributL.on to the potential. It can be written as

b i . =JJ X1 2 — C	 d d^	 (33)

.7j

Expressions for the matrix elements, b ij , are derived in sec. 3 of appen-
dix B.

SOLUTION OF THE MATRIX EQUATION

Define ^N = ( ^N	 ^N	 ^N I T . Equation (27) is solved by the
1	 n

Jacobi iteration as follows:

-+(0) _ (P N	
(36a)

^(m+1) = R [S
(m) ], m = 0, 1, 2,	 (361))

where the superscript refers to the iteration number.

7



:hen solving, cnu.it ion ('7) we :ire confronted with

(37)
x ! aild r. _ Y j

Numerical evaluation of this derivative depends on the nature of the
IOeal flow as dctcrmined by the sil;n of the coefficient of Oxx ill
(5).	 Whi-n (1 - " X )	 0, equation (5) is elliptic and describes a local sub-

sonic flan,; when (1 - fi x ) = 0, 1t is parabol ic and describes a local s''ni(

flo •. ,i; and when (1 - p x ) • 0, it is h y perbolic and describes :i local supersonic
flow. The diffcr^ ,nce scheme proposed b y Murman and cle (ref. 1n) is designed
to solve this t ype of mixed flow equation. The main fc:trure of the scheme is
th.:t, in the tangential di-ection, contra] differences ire taken in locally

,uhsonic flow regi,ns and backward differences in loc;illy supersonic flow

regions. We cstend these ideas to the present method.

To simplif y the anal y sis, we assume that the r•.ctani;ular el_•meiits are
quaI within .+ given strip parallel to the x-axis (fig. _'). 	 file\ , can differ
in size Cram one strip to another. The mesh points are numbered so that

x;+I	 xi.	 Ix 	 Ax be the width of each element, then xj+1 - N 1 = Gx, for

:I; I	 <	 in the strip.

W define the following two operators at a mesh point Pj:

V= 1 - -1+1. --^--1
 2.1x

(38)
E	 2.1x

V	 -	 - ^ j 	Dj-2	 (39)
H	 2Ax

During an iteration, V F and VH are computed at each mesh point, P 1 . If

V E > 0, th- flow at P i is subsonic and equation (37) is evaluated by rile

central difference formula; i.e.,

	

2 A
	 (40)

If VE < 0 and VH < 0, the flow at Pj is supersonic and equation (37)

is evaluated b y the backward difference formula; i.e.,

t ' =	 2GxJ

As the flow accelerates through sonic velocit y from snbtionic to super-
sonic velocities, a point is reached where Vg < 0 and \'H > 0. Using the fact

that for a locall y sonic flow, 1 - ^ = 0, we set
U.	 1	 (42)
1

8

(41)
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This is analogous to the parabolic point operator (rL	 . I? and 13).

As the flow decelerates across the shock t r,^m tiupersoni^ t, ' -;uht;'mic
velocities, a point is reached where V F > 0 and V ii	 O. Murm.in (rof. 14)
introduced a shock-point operator to be applied at such a point. We use a
different approach since it is impractical to extend the shock-point operator

concept to the present system. We assume that the mesh point, P i , where-
VF > 0 and V H < 0, is located just downstream of the shock. The adjacent
mesh point, located upstream of the shock, is P j _ 1 . From equation (7) it
can be deduced that

U J
-1	 i

+ u = 2
	

(41)

If u j-1 is given, then uj can he determined from this equation. The

use of u j-1 to determine u j is based o,i the fact that information propa-
gates downstream in a locally supersonic flow region.

In equations (38) through (41), we could use unevenly spaced grids where
appropriate ana apply tine difference formulas given by Baile y (ref. 15), for

instance.

For mesh points adjacent to the far field boundary, equation (37) is
evaluated using a method whir;, Ames (ref. 16) described for derivatives near
a boundar y .	 If the f,. :field boundary is infinitely far from the airfoil,
the potential on it could be held fixed through all iterations. The computa-
tional region does not, in practice, extend ver y far. Consequently, it is
best to update the potential on the far field boundary after a few iterations.

Before solving equation (27), it is important to give careful considera-
tion to the number of mesh points required. Figure 2 shows the elements
growing larger the farther they are from the airfoil. This type of partition-

ing en.l;les computation to be performed in a large region of integration
while using a small number of mesh points. It also ensures that the S ignif-
icant contribution from mesh points near the airfoil is not dispersed in
unusually large elements. For a given distribution of the elements, tie
computational region can he extended by increasing the aspect ratios of the

elements.

RESULTS AND i0ISCUSSION

Figures 3 and 4 show the coefficient of 	 -essure plots for a nonlitting

parabolic-arc airfoil of thickness ratio d	 '1.06 at free-stream Mach num-

bets 0.825 and 0.87, respectively. Figure 5 shows the coefficient of pressure

plots for a NACA 0012 at a = 2° and M W = 0.63. The results for the present
method are compared with those of a finite difference scheme by Ballhau-,,

Jameson and Albert (ref. 17) in figure 5. The finite difference method uses
a 67:{41 mesh point network; convergence is achieved in 40 to 100 iterations,

depending on the free-stream Mach number.

9



in comparison, the present method uses about ?00 mesh points located in

rectangul.ir elements whose aspect ratio:. range from 2 to 8. 	 Iteration pro-
ceeds until the largest difference between successive iterates is smaller

than some speCified tolerance; i.e.,

max Q, (m+l ) -	 (m)	 t
	

(44)

where t is the tolerance.

The rate of convergence for the present method, applied to the parabolic-
arc :airfoil, is shown in the following tabulation for two tolerance values.

M Tolerance

0.825 10-3

10-'

0.870 i	 10-
3

___ 
_7Iterations

The results presented are obtained when the potential on the far field
boundary is updated after each iteration. If the potential on thy boundary

is held fixed, there is a noticeable effect on values near the boundary, but
that effect diminishes in the interior.

Near the leading edge of a lifting airfoil, the accuracy of the method

could be improved by applying a modified boundary condition described by

Nixon (refs. 7 and 18).

CONCLUDING REMARKS

The present study indicates that the integro-differential equation method
can provide rapid and reliable solutions for transonic flow problems. Con-

trary to what happens in the integral equation schemes, the shock conditions
are enforced in a simple and straightforward manner. Although a relativelv
small number of mesh points is used, the results agree well with finite dif-

ference computations.

Exten3ion to three-dimensional lifting flows can be made provided it is
possible to determine the equivalent of the integral inversion that yields an
expression for the vortex strength. There should be no fundamental problems
in applving the present scheme to nonlifting three-dimensional flows.

, Pq F:1 n	 n^ ^'L)r^R



APPENDIX A

VORTEX STRENGTH

The vortex strength, y(x), is determined by solving the following; linear

integral equation

v(X,V) - 1x1 (^ - i.)	 A C.(y)d^ T 1 J l	 , 	 , '^( )ds1
^ - ^.) u2 (E^^)dS

(15)

where Ai r (&) is given by equation (10) and .W(^ - x. ^ - y) by Pquation (13).

We now take the limit as y - A on both sides of equation (15) and

add the two results.

Karamcheti (ref. 19) shows that

1

lim 1	
y±1 

A^ (x)
	 (A1)

y i ,
0 2n 	 - x) 2 + y 2	 2 C

0

Mangler ( ref. 20) shows that

1	 1

lim	
2ir f	 2x	 2 y (E)dE = 2tt	 Y(C)x d^	 (A2)

0	 0

where the right-hand side is a Cauchy integral.

Nixon and Hancock (ref. 5) have evaluated the last term in equation (15)
as y - ±0. From equations (1) and (6) we deduce

v(x,+0) + v(x,-0) = u[TH'(x) - a]	 (A3)

where the constant u = 2(y + ]l/6K3/2.

Using equation (A3) together with the results obtained when y - ±0

on the right-hand side of equation (15) we conclude

11



I	 I

2n	 x	 5	 2n	 4(x	 )

0	 fl

(A4)

+ ffk (F. - x, t,) Au ` (i ,r,) dS

S
^: h^^ re

I
i

,1u •, (^. t) = u •,	 t.) - u ` (F,- 4) 	 (A5)

4n [(S - x) + 4`

When the terms are suitably arranged, equation (A4) can he inverted
Lo	 j VC an t'spliL'it expression for ti(x).	 We define

W(i) = ti (F)	
_ Au` 4^ , 0) (A7)

c7(x) =
ffx

 ( - x, 4) Au g (E,, 0 dr, d4 (AR)

S

W , , (X) =	
2 u 

[rH 	 (x) - Ct	 - G(x) (A9)

Substitution of	 equations (A7)	 - (A9)	 into equ	 tion	 (A4)	 yields

W O (x) _ - ,in ^XW(^^ d 3; (A10)

0

Ashley and Landahl (ref. 21) show that equation (A10) can be
inverted to give

1

W (l;)
AW(x)	 n	 f xo-	 df,	 (A11)

0

We consider an airfoil without camber and use the following result

from Ashley and Landahl (ref. 21):

12



I
1	

-1(Al2)
fx d

0

Substituting for AW(x) and W o (f,), we obtain the expression

1

y (x) _ }, n	
l x x + !1u  1

4x 
0) +	 x x	

(n	 E	 x	 1 f	 ,	 f 3)

)	
df	 ( 1

. -
0

13



APPENDIX B

MATRIX ELEMENTS

In this appendix we derive expressions for tiOMC matrix elements which

are required in the numerical solution of the integro-differential equation.

1. Matrix associated with the ('ontribution of lift to the Potential

The matrix associated with the contribution of lift to the potential
at a mesh point P i (x i ,y i ) is Riven by

1 xk+5 k	 - xi
i	 qik	 2f-	

.1
 sgn(y i ) - arc tan	 d'	 (30)

k 1k	 yi

where	 i	 1,2,. . . ,n, k = 1,2,. . . ,M, and v i # 0 .

Equation (30) can be evaluated at once to give

-x.+
q ik	 I	

R6 k sgn(y i) - ( x k - x i + 6 k ) arc tan(x k	 x — k

+ ( xk - x i - 6 k ) arc tan xk— xl	
k- S

yi

+ y  ^n Yi2 + ( xk - x i + dk)^
(B1)

2
	
y i 2 + ( xk - x i - Sk)2

for y i = 10.

We have to consider separately three values of x i , namely, xi	 xk,
x i = xk and x i > x k . Integration of equation (30) yields the result

0,	 xi

1

yik =
	 2 6k s hn (y i ),	 xi

6k sgn(yi),	 xi

14

xk

= x k	 lB2)

xk
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2. Matrices Associated with the Vortex Strength

There are two matrices associated with the vortex strength; one arises
from a double integral before an inversion is performed and the other arises
from a line integral after the inversion.

i	 2.1 Matrix from the Line Integral

The matrix element is given by

ek2	 2	 ds	 1	
Z,k = 1,2,	 ,M	 (32)

x k -d i 	k

Let t = & - xk , b = xk , a = 1 - xk , t ', = x , - xk + ,S R , t l = x Q - x k - d.

Equation (32) is transformed to

t2

e = 
2dt 

V 
b + t	

(B3)
k k	 n	 t	 a- t

tl

The substitution r 2 = (b + t)/(a - t) converts the integral to one

which can be evaluated easily to give

eko	
n 
[T(t

- )  - T(t,)]	 (B4)

where

b+t I Vb	 (ab+t) - 3b(a - t)

	

T(t) = arctan	
a	

t + 2a Rn	 (BS)
a(^ + 3b(a - t)

2.2 Matrix from the Double Integral

The matrix element is given by

y(x^ - x)

	

d Q = ff .ff

	 2 dx dy	 (3G)

34 [( xR - x)2 

+1 2

A

where Z = 1,2, . . . ,M and j = 1,2, . . . ,n

15
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Coord in,rtes of P and P	 not Identical

If the coordinates of P 1 (x^,y e ) and P.(x.,y 
J
.) .ire not identical,	 1

1
then equ.tion (34) involves a non-singular integral which can he evaluated
at once. Substitution of the limits of integration yields

y j +r^	 x^ +Sj

r	
v(xr, - x)

d 'J	
J — -- z -- dx dy	 (B6)

Y-1 (IX i 	J
	 7T (X 	 x)	 + v ]

Hence

d9j = -(1/1677) Rn (N/D)	 (117)

whe re

N = [Yj + r j ) 2 + (xj - x i - A j ) 2
1 flYJ	 qj)2 + (x j 	x v. 

+ 6^)2

D =	 Y 	 q^)' + ( x j - x  - 6j) 
J 

r(y j + r j ) 2 + ( x i - x  +

The quantities 6 1 , r j and q	 are defined as shown in figure 1.

Let lh j he the height of A j , then

2h
i = r 'j + q .j	 (BB)

The quantities rj and q -j are chosen as follows:

(B9)r •j =	 q ,j = hi

if	 P , at	 the center of	 A •j ; or

r •j = 21, j and q^ = 0	 (BIO)

if P j is at the bottom edge of A j ; or

ri = 0 and q j = 2h ,j	 (B11)

if P
i 

is at the top edge of Aj.

Coordinates of P Q and P_j Identical

The coordinates of P Q (xe,ye) and P -j (x •j ,y j ) can be identical even

if Q # _j. This occurs if P k and P,j are both on the airfoil, 'gave the
same x-coordinate, but are situated on opposite sides of the airfoil.
If the coordinates of Pr and P .j are identical, equation (34) contains

a single integral. Following the method by Ogana k"refs. 6 and 9), the

16
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IF

integral is evaluated after enclosing the singularity in a vanishing

retangular cavity, o f (fig. 1); i.e.,

	

d^jlim [ff	—	 — 2 dx dy	 (R12)

e ►0	 41T [( x k - x)

7

 + y<]
Ai -0c

G

Substitution of the li.Ats of integration and subsequent evaluation

yields

did = 0	 (1113)

3. Matrix Associated with the Nonlinear Contribution to the Potential

The matrix associated with the contribution of the nonlinear effects

to the potential at a mesh point P i (x i ,y i ) is

X i - &

	

bii _ff 41	 -	 2 — -	 dF dr,	 (35)
A	 Orr [(^	 xil + ( 4	 Yi)

Diagonal Elements

If Aj contains P i , then P, - P;j and diagonal elements are

obtained. fhe integral in equation (35) becomes singular at Pi(xi,yi).
Following the method by Ogana (refs. b and 9), integration is performed
after enclosing the singularity in a vanishing rectangular cavity, of
(fig. 1). Equation (35) is consequently defined as follows:

	

dC dC	 (B14)

- ^i	
--	b ii = lim	 — ---

X i

	

E-►0	 4n [(^ - x i ) I +
c i -a E	 L

The appropriate integration steps yield

b ii = 0	 (B15)

Off-diagonal Elements

If P i does not belong in AP off-diagonal elements are obtained

by evaluating equation (35) written in the form

►

17



v +r	 ' +i	 j	 )	 )

ki^ ~
f 0	—' '---- ----------- — dd 	 (ol^)
 ~^ ^ 4n[^ - «i)^ + (r.- Vi) l

y] - qj ,}- j 	 ^

Si"wc t\^`r~ are no ,ingo\aritics, this integral ,an be evaluated
at	 to Ai,,

F.	 l

d`,ry

|	 (xj - x i + 6 j ) 2 + (yj - y i + r])
A | ~ Z (y] - y i + r j ) ^o

l	 (»j - x i - 6 j )' + (yj - yl - qJ)
A 	 2 (vi - v i - q j) ^n '----------------------^'--------.]

] -y t +c ] -"i-q
A	 ~	 (^	 ^	 + a»	 ]	 -	 i	 j) 'r'	 ^^,(" -'

\ ^-^^ ^-
arr ^xn^ ^---'-'---'

^xj	
- u i + S i y

A 4	~	 (xj	
- x i	-	 ) j ^

K~

/r.,	 cxu
\^]

- y t	 -n;
^- ~^ --^^--	 - ^rc ,.m^^--^^^^-^

"^y'

^
yi+r

\	 1	 -^	 /|̂

whore	 r \	` xnJ	 q ) are chosen uoc.`rJin^ to eua^ions	 (KM)	 -q (fill)..

18
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Figure 2.- Distribution of mesh points and rectangular elements in the

upper half plane.
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Figure 3.- Coefficient of pressure for a parabolic-arc airfoil of thickness
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W
cc
D
N
N
W
cc
d
U.

Z
W_

U
U-
u_
W
O
U

0	 .2	 .4	 . r	 8	 1.0
x

Figure 4.- Coefficient of pressure for a parabolic-arc airfoil of thickness

ratio 0.06, at M. = 0.87.

24



1. it

-.8

6

w
LIL

Z)

cr

N
w	

.4
CL

LL

O

Z
w

U _.2
LL
LL
w
O
U

0

2

AND

4 u.	 i

0	 .2	 .4	 .6	 .8	 1.0

x

Figure 5.- Cooft iricnt ut pressure for NACA 0012 ;it `1^ - 0.63 and % _ `°.

25



I	 Heport No 2	 Government Accession No 3	 Recipient's Catalog No

NASA TM-78490

5	 Report Date4	 Title and Subtitle

SOIUTION OF TRANSONIC FLOWS BY AN
INTEGRO-DIFFERENTIAL EQUATION METHOD

6	 Performing Organ zaUOn Code 

7	 Authorlsl 8	 Performing Organization Report No

Wandera Ogana* A-7434

10, Work Unit No

505-06-119	 Performing Organization Name and Address

NASA Ames Research Center 11	 Contract or Grant No

Moffett Field,	 Calif.	 94035
13	 Type of Report and Period Covered

Technical Memc,randum12	 Sponsoring Agency Name and Address

National Aeronautics and Space Administration 14	 SponsorngAgenc^ Code

Washington,	 D.C.	 20546

15	 Supplementary Notes

*National Research Council Research Associate 	 (1976-1977).	 Presently a
Lecturer at University of Nairobi,	 Department of Mathc=.matics,

P.O.	 Box 30197, Nairobi, 	 Kenya.

15	 Abstract

Solutions of steady transonic flow past a two-dimensional airfoil are

obtained from a singular integro-differential equation which involves a
tangential derivative of the perturbation velocity potential. 	 Subcritical

I
flows are solved by taking central differences everywhere. 	 For super-

critical	 flows with shocks, central differences are taken in subsonic flow
regions and backward differences in supersonic flow regions. 	 The method

is applied to a nonlifting parabolic-arc airfoil and to a lifting NACA 0012
airfoil.	 Results compare favorably with those of 	 finite-difference schemes.

17	 Key Words (Suggested by Author(s)) 18	 Distribution Statement

Transonic flow Unlimited
Integro-differential equation

STAR Category— 34

19	 Security Classif 	 (of this report) 20	 Security Classtf	 lof this Pagel 21	 No	 of Pages 22	 Price'

Unclassified Unclassified 30 $4.00

'For sale by the National Tr:hrictil 1nformaGnn Service, Springfield, V,rguua 22161

QgI(' TN A,L F AG F 1f

of w K ► Q ' AI A I-1,


	GeneralDisclaimer.pdf
	0023A01.pdf
	0023A02.pdf
	0023A03.pdf
	0023A04.pdf
	0023A05.pdf
	0023A06.pdf
	0023A07.pdf
	0023A08.pdf
	0023A09.pdf
	0023A10.pdf
	0023A11.pdf
	0023A12.pdf
	0023A13.pdf
	0023B01.pdf
	0023B02.pdf
	0023B03.pdf
	0023B04.pdf
	0023B05.pdf
	0023B06.pdf
	0023B07.pdf
	0023B08.pdf
	0023B09.pdf
	0023B10.pdf
	0023B11.pdf
	0023B12.pdf
	0023B13.pdf
	0023B14.pdf
	0023C01.pdf
	0023C02.pdf
	0023C03.pdf

