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ABSTRACT
 

Quantitative analytical procedures for relating selected water
 
quality parameters to the characteristics of the backscattered
 
signals, measured by remote sensors, require the solution of the
 
radiative transport equation in turbid media. In this paper, we
 

present an approximate closed form solution of this equation and
 
based on this solution discuss the remote sensing of the sediments.
 
The results are compared with other standard closed form solutions
 
such as quasi-single scattering approximations.
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1.0 INTRODUCTION
 

The emergence of new environmental regulations restricting
 

coastal zone developments combined with the desirability of developing
 

coastal areas for energy and other important activities, and finally
 

expansion of coastal jurisdiction to a two hundred mile zone, make
 

fast response monitoring capabilities, possible by remote sensing
 

applications, an attractive option. The question may be raised, why
 

remote sensing is not employed on a larger than presently utilized
 

scale. The answer lies simply in the inadequacy of quantitative
 

procedures ior obtaining water quality information from remotely
 

sensed data. Presently several governmental, and industrial programs
 

are addressing these inadequacies. Among these is a laboratory
 

program at NASA-Langley Research Center (LaRC). The basic experimental
 

setup and the goals of this program are described below.
 

The purpose of the LaRC laboratory program is to determine
 

whether the spectral characteristic of the upwelling radiance can be
 

related to the amount and properties of the particulates and other
 

pollutants. In the LaRC experimental setup, the beam of a solar
 

simulator illuminates a large water tank filled with turbid water;
 

the water turbidity in the tank is generated by the stepwise intro

duction of known amounts of sediments and other materials of known
 

properties. An overhead detector system including a spectrometer,
 

electronics, and a camera, measures the strengths and the characteristics
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of the upwelling radiance signal in the wavelengths range of 300-1100
 

nm.
 

The Metrek Division of the Mitre Corporation has been assisting
 

LaRC in the area of radiative transfer modeling. In the past, Metr&k's
 

modeling approach has been based on Monte Carlo simulation techniques
 

[1,2]. These techniques-were originally selected to avoid mathe

matical complexities involved in the analytical solution to the radia

tive transport equation resulting from the inclusion of the geometry
 

of the tank, in which the LaRO's laboratory experiment is conducite&.
 

Recent applicatiln of Metrek's Monte Carlo simulation model has shown
 

that the inclusion of the tank geometry may not be necessary for high
 

-
turbidity levels (attenuation coefficient a > 4 meter ) of'interest
 

to the LaRC program. Other factors which may lead to the same
 

conclusion with regard to the tank geometry considerations are:
 

* 	Small reflectivity of the tank boundaries 
(= 3.0 percent) 

* 	Large dimensions of the tank (diameter = 2.6 meter,,,
 
height = 3 meter)
 

* 	Sma1 footprint of the overhead detector (circular
 
spot of radius = 3.5 cm).
 

The smallness of the footprint of the detector permits another
 

simplifying situation. With this, it may be assumed that the incident
 

radiation (spot size 30 em) behaves like a plane wave as far as the
 

radiation emerging through the footprint of the detector is concerned.
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The simplified geometry, and the plane-wave assumption, described
 

above, allow the derivation of an approximate solution to the radia

tive transfer equation in turbid water.
 

The present report discusses this closed form solution and
 

illustrates the variations in the upwelling radiance for-situations
 

whichare of interest in remote sensing applications. In order
 

to establish common notation the optical parameters-of the turbid
 

water are described in the next section.
 

1.1 Optical Parameters of Turbid Water,
 

In the absence of polarization the- followingparameters are
 

,necessary for optical characterization of turbid-water:
 

* Total absorption coefficient, a.
 

* 	Total scattering coefficient, s.
 

-1
 These coefficients have the dimension of mter . The attenuation
 

coefficient, a, is the sum of the absorption and scattering goeffi

cients. The single scattering albedo, W., is defined as the ratio of
 

total scattering to the total attenuation coefficient.
 

- Another parameter of' interest is the scattering phase function, 

P(6). This function specifies the angular pattern of the scattering
 

of a collimated beam from an infinitesimal volume of turbid water.
 

The scattering probability function 	PF6() for polar angle
, 


(8 = cos-1 V) is defined in terms of the scattering phase function
 

by:
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f P(p) dp
 

PFM 
 1 

f P(p) dp
-i 

for all p between -1 and +1.
 

1,2 Sunnary
 

The purpose of this work is to provide a closed form analytical
 

expression which will enable the Langley Researchers to verify their
 

experimental results, and/or to optimize their experimental para

meters without considerable theoretical calculations.
 

In Section 2,. themathematical,formalism applicable to the
 

radiative transport process is established for the geometry of the
 

light scattering relevant to the LaRC laboratory set up-experiment.
 

The analytical solution to the equation of radiative transfer is
 

4U 
then derived for the backscattered radiance, as a function, of wo' 

incident radiance I, and an appropriate representation of. the 

scattering phase function P(p) in the form P(j) = F 6(p-l) + B. 

This rep.resentation.adequately displays the properties of the 

scattering phase functions for turbid.water (i.e.,.a strong peak in. 

the forward direction), and at the same time allows derivation of 

a closed form solution to the radiative transfer equation. 

.In Section 3 the results on measured as well as calculated
 

scattering phase functions have 'been summarized. The measured phase
 

* 

F, and B are constants, and 6 is the Dirac Delta'function.
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functions represent a wide range of turbid water conditions. The
 

calculated scattering phase functions are arrived at utilizing the
 

Mie formalism for polydispersed suspensions-and the size distribution
 

measurements provided through the LaRC Laboratory program. Acceptable
 

values for B, are then obtained using measured as well as calculated
 

phase functions results. It is found that B varies between 0.007
 

(for a Feldspar particulate distribution calculated from the Mile
 

formilism) and 0.0585 (for measured San Diego Harbor Water). F can
 

be shown to be related to B by F = 2-2B (see Section 2.2).
 

Section 4 presents the numerical results determined from the
 

solution of the radiative transfer equation obtained in Section 2.0.
 

The backscattered radiance is calculated for various values of W
 
0
 

and B. wn is the single scattering albedo and varies with wavelength-,
 
O 

X. Typical values of the a/s ratio at 550 nm mAy vary between 0.06
 

(for quartz particles) and 0.20 for natural waters [3]. The a/s
 

ratio for sediments as a function of wavelength may vary between
 

0.20 at A = 550 nm and 0.50 at X = 370 nm [4]. The results generated 

in this work are compared-with those of Gordon [5], who used a 4uasi

single scattering approximation solution. For smaller values of
 

B(= 0.02), and w0(= 0.80) the difference in the two results is of
 

the order of 15 percent. At higher values of wo (= 0.95) and B(= 0.06),
 

the difference in the two results is significant.
 

* s(X) 1 a(A))-1
Specifically Wo = s(A) + a(A) (i r s() , where A is the wavelength. 
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2.0 	 SOLUTION TO THE RADIATIVE TRANSFER EQUATION
 

2'.1 Radiative Transfer Equation For An Idealized Geometry .Case
 

The radiative transfer equation in any medium may be written as
 

f1 	 VI(r,T) f a() I(r,n) = 41 .df( ) P(n,n ) I(ri ) (4 

where'(r,n),, '(see Figure 2.1) represents the radiance of a given 

Jfrequency, at the -position defined by r and in the.direction destg

-nated 'by the unit vector -1. -P(n,n ) is 'the .scattering phase -function, 

-and njis the scattering angle. P(n,n ) does not include any polari

zation "effects and satisfies the condition: 

(la)d(nP(9 d ) i 

,dS(n ) denotes the differential solid angle about n . A'rigorous 

derivation .of Equation (1) together with-a discussion of its range,
 

of'validity may be found in the literature [7,8].
 

Equation (l) may be specialized for-an ideal case -of afi incident 

plane 	wave..in which the incident light is unpolarized and is normally
 

falling on a homogeneous half space. 'The-homogeneous half-space is
 

represented'by 'an attenuation coefficient, a,-and a scattering 

coefficient, s. Under'these conditions Equation (1) becomes:
 
I~z ) 	+ I'l(z,p) 2
 

+ 	 I = - P(p,<') I(z,v') dWi (2) 
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p is the cosine of angle 6 shown in Figure 2-1. Extensions to
 

the geometries other than the one considered here are straight
 

forward and will not be discussed in this report.
 

Using the transformation az=r, and defining wo -, we obtain
 

(p- + 1) .. r,p) - P(,<P) I(T,') djf . (3) 

2.2 The Scattering Phase Function P(i,p)
 

The phase function P(v,p') for a variety of turbid waters have
 

been studied in a previous report [i]. In general, these functions
 

show a very strong peak in the forward direction. As a result of
 

this the standard method of'solution to the equation of radiative
 

transfer, which is based on the expansion of P(Ii,1Y) in terms of
 

Legendre polynomials is not practical. Legendre polynomial expan

stions involve large number of terms and result in a large number of
 

coupled differential equations.
 

A representation which displays the properties of the phase
 

functions for turbid water and at the same time enables us to
 

seek an analytical solution to the radiative transport equation is
 

given by the distribution:
 

P(p,') = F 6(p-1p) + B (4) 

where 6 is the Dirac delta function, B < < F, and 

F + 2B 2 (4a) 
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Equation (4a) is the result of substituting Equation (4) in
 

Equation (la).
 

2.3 	Treatment of Multiple Scattering
 

Upon substitution of Equation (4) in Equation (3) it may be shown
 

that
 

SIi-+I(,v) [ = -- f ITV) dW" 	 (5a) 

On taking the Laplace transform of both sides, we obtain
 

here 'p1~) fj (Tr,P)eTs d , and 

0 

o(S) = f (s,p) dci 
-i 

Rearranging terms in Equation (5b) results in
 

o B o_(s) + Tl(oBj) 
= 2 (6a)

1 + us - w F/2 
0 

Integrating both sides w.r.,t. ji we get 
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to F
 

o(S)  lu (6b) 

1-2s 0 in. --- 2 +s I 2 s) 

Equation (6b) can be further simplified if it is considered that
 

I(o,p) = I 0 6(-N-l) for p > o 

= r-(oP) to be determined for V < o 

This means that the radiance just below the water surface and traveling 

in the water is the same as the incident radiance. I(o,g) for p < 0 

is determined from the relationship between #i° and L(o,p) obtained 

from Equation (6a) by substituting s = - - , and may be 

written as 

[-t2
I(o,p) - 0T (7)
 

Equation, (6b) then reduces to: 

/B-< oFl dw 00 

ru 2 F d% 

1- +-s fl 2P
 
O()2 +1132 8) 

1 2s _-i21 - 2 s 
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2.4 Quasi-Single Scattering Approximation
 

Before we discuss a more complete solution to'Equation (8) we
 

show how quasi-single shattering approximation can be derived from
 

the present formulation, and study the assumptions underlying this
 

approximation.
 

The quasi-single scattering approximation as -eveloped by
 

Gordon'[5] corresponds to neglecting terms which include B in
 

Equation '(8), i.'e., 

(S) = (l --- + (9)
 

which upon making use of Equation (7) results in: 

BwI 
I~o=~ ( 0AI) ( 0 .~)(10) 

A further assumption in'the derivation of the quasi-single scattering
 

approximation is the substitution of B in Equatton (10) by P(- jI
14.
 

Considering this the resultant quasi-single scattering approximation
 

becomes
 

I(olp) 0
 

2 (1 - %OF/2) (1 +
 

The Fresnel transmission coefficient which takes into account the
 

refiraction due to the transmission from water into the air has been
 

left out of Equation (11). 
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2.5 Derivation of a Simplified Multiple Scattering Solution
 

Here the Equation in point is (8). The denominator of Equation
 

(8) displays complex singularity characteristics (because of the
 

branches of the log-function) in the physical range of the variables 

of interest. The derivation of the solution of interest is thus 

based on .an analytical continuation technique. In what follows we 

discuss the characteristics of the various terms in Equation (8) 

which may be re-written as: 

(2 FF+ S ) G(s) 	 (12) 
s
2 ) 1o B0 In 1 o0 + 0 _ 

-2s 2 SV 1-2 $) 

where
 

1 0oF/2
w B w F 
G s 2 2 u dp (13)G(s) = I° - -- fi 2 +d 	 (13 

-1 
 1 -o 
 + 
s
 

The observations which can be made at this point are:
 

F
 wo
 
-0
(1) G(s) is regular for Re(s) < 


(2) o(s) 	is regular for Re(s) > o (by definition),
 

(3) 	( + has azero at s = - -0, 

2 -) 2 
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(0) 2 n 1 1 -0- + - s)] is regular2 --- in 

the strip
 

The question to be answered now, concerns the zeros of the
 

denominator of Equation (12). Two cases are to be distinguished (a)
 

31 -1 i < B which is satisfied only by a scattering medium with 

negligible absorption, and (b) 3(+ - i) > B.- Only case (b) has 

physical significance for the case of radiative transfer in turbid
 

water and is discussed in this report.
 

(1a)

Define T(s) = - - in . - 0F + ( 2 

which may be re-written as
 

= (S)- nn - w~sF + j j- + 0 ln - W F (15b)0S 

2
s 

2
 
2
For s~o, the term in the capital brackets goes to zero like s
 

and the second term approaches the value - 2) . This implies that 

N0F/2 
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T(s) is analytic and non zero in the strip - 0F < Re(s) <
 

(1- kE). Furthermore, the function T(s) + I as IsI + in this 

strip. 

The function T(s) can be factored as [9] 

T+(s)

T(s) -= (--- (16)
 

where r (s) = Exp log T(z) dz (17a) 

2Ti fZ-S 

with T+(s) regular for Re(s) < 0, and T-_(s) regular for Re(s) < -,S
 

for some o < < 1. - Further, there exists a constant C1 > o
 

and a number V such that 

> C- for Re(s) <V <S 

(17b)
 
r_(s) > C- for Re(s)- > V> 

Substitution of Equation (16) in Equation (12) results in 

O (s )  
i F + _ 
G (s)
@2 + T_(s) T+(s) (18) 

The function 0(s) is regular for Re(s) > o, and T (s) is regular and 

non zero for Re(s) > -5. Thus the left hand side of Equation (18) 
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____ 

is regular for Re(s) > o. Furthermore, G(s) is regular for Re(s) <
 

(1 - OF), and is regular and non zero for Re(s) < $. Hence 

the right side of Equation (18) is regular for Re(s) < 6. Since
 

0 > o these two domains of regularity overlap, and in the strip
 

o < Re(s) < a the right and left sides of Equation (18) are equal
 

(see Figure 2.2). Therefore they are equal everywhere. From the
 

principles of analytical continuation each side of Equation (18) is 

equal to a function H(s) which is regular in the entire complex 

s-plane. Since G(s)/T+(s) is bounded for Isl - , then from 

Liouville's theorem [10], the function H(s) = constant C and 

Equation (18) results in,
 

S(s) = C (19)
1 - w F/2 + s 

By letting s o in Equations (19) and (6b) we have
 

~0 C 2 ) 0lie - (s)} {lim T(s)} (20) 
s 


S) 
, 


and lim. 4,(s) = 

0 (21)
 

Substitution of Equations (20) and (21) in Equation (19) results in
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+(s) 2 + s) 

Re(s) = 0 Re(s) = 

FIGURE 2.2
 
DOMAINS OF REGULARITY
 



(i- 0F/2) I0 _(s) 1
00o(S) U T_(') (2 

=( - '1-F/2 + s) lim 'rs)} (22) 

0 0 s +0L I 

From this equation, information about I(op) may be obtained. In view
 

of this we shall next determine r_(s) and lim T_(s).
 

s o
 

The function T_(s) is written as (see Equation 17a):
 

T_(s) Exp 1 inl (z) dz 

or
 

S w - w F/2 +
 
¢ in 1- 2- in
 

in T(s) = L I - F/2 dz (23)in T_()
2 iz-s
 

____ - -ico 

To put in i_(s), Re(s) > o in a form more convenient than in Equation 

(23); we make use of the Canchy Goursat theorem (ii). From the 

application of this theorem the path is shifted from the line -a + ly 

(- - < y < -) to the imaginary axis indented as shown in Figure 2.3. 

The contribution from the semicircle at z=o goes to zero when s#o. 
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--- 

Since s#o in Equation (23), therefore we obtain 

in in o _-F2[ 
IF/2
-
in 


I 1 - woF/2 -
In T_(s) =2- i dz (24) 

z - s 

Let z = ix
 

r f an -i x 
in 1 - tan _ 

then in1 (s)F J( L I dx (25) 
ix - s 

for x > o, and tan W L xNow substitute tan W = x 

1- F/2 I -W F/2 
0 0
 

for x < o. It will result in
 

1/2

f 
1 to0F/2 t n W w'0F e 2W d 

In T_ (s) i [ o sec2WdW
 
- J21r 1- W F/2) tan W - s 

0 

72 
In i 

B 

1 
wf 2
 

+- 0 sec2W dW 
2 1 w F/2) tan W - s 

0 

or
 

( -I - w F/2 tan W( 
in T (s) = . 2 2inW2 dW (26) 

(I-- F/2)2 Sin-W +s Cos2W
 

2-14 



and 

wF in 0 
0 ) 0 W 2[s(iT_(s) = Exp - { I Fi t W} ] (27) 

?rGas 0 Sin2W + a2Cos 2 W W ] 

To evaluate lim T_(s),:we' first consider lir FC(s),, which 
s oo L i 

from Equation (24) is given by 

[ Bw 1-m'F/2+ z1 

f in 1 2z in 
± - w F/2 - z)] 

lim In xs = -- dz (28) 

To take into account the contribution from the semicircle at z=o,
 

Equation (28) may,be rewritten .as
 

-is ' 

B in 2 

lim Tr ~ inii- 2 dzJS 

(nli-w z--_ 

_ __2 dz _f in _ _ 

s + o. o _i

2 2z2-15:} 



wE
 

Bw- I NO +z__I F 
1- 2z in
in 


2wi 2 dz (29) 

z 
ic
 

Let" z=-ix in the first integral, and z=ix in the third integral of
 

the right hand side of Equation (29). It will result in
 

-is BwI- WF/
 

in 

J 
in 1 - z 

2z 1 

-

lim 2-1- dz=
 
in o- - go z} d
 
e 0 z 1-~F2

-i.
 0100 

BI°1IoF/
"i 1 2z "I 

1 to F/2 z 
- li. 2-1i dz (30) 

c - 0 J z 
is 

Therefore,
 

J 2 F/2 

lim Iln T_(s) lia o dz (31) 
2(Si
s + oo 

-is
 

iw 
Upon substitution of z = s e , we,obtain 

- n i o 
 (32)

lit fIn 'njS)} 2 in (32
 
s 2 {fI$" F}
 

w2
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Thus
 

a { l F/2 

0 02(33) 

We may now return to Equation (22), and substitute in this equation
 

Equation (33). This results in
 

r Cs)[ l3/2
F/2 o() (34)


00o 
 - w 0F/2+s 

Recall that (from Equation 7), I(o,p) = - B- 0o '-0 for 

all p between -1 and 0. This making use of Equation (34) gives us 

p (35a)0B~~p1/
° 

-~FT(o,vi) = -- I - F/2 (- -/ 

The function - may be evaluated from Equation (27) and 

results in 

%2 WBmo 

1i F/2F 2 W an [3 
Exp-Ex2 P)f= 2 SiJS 2 W+ 2 Cos2W w J (35b) 

0 
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Finally, I(o,p) is given by
 

l(o'P) = 2
I° 
 il0
 

I/ 2 

SB W Cot 

. . .. [. . . . d (36) 

LI j O2 Sin2W + s 2 Cos2W 

for all p between -1 and 0. The I(o,p) represents the backscattered
 

radiance received by the overhead detector in a remote sensing appli

cation. The integral involved in Equation (36) may easily be evaluated
 

for a specific scattering angle.
 

Upon examination of Equation (36), it is evident that for a given
 

scattering angle p, the backscattered radiance depends on the scattering
 

phase function (P() = f(B,F)), and the single scattering albedo w0
 

The functional relationship between I(o,p) and w in our result
 

(Equation 36) is different than the functional dependence of I(o,p)
 

on w in the results obtained from quasi-single scattering approxi

mation [5]. The difference in the two results becomes large as wn
 

takes the values close to 1. The numerical results obtained from
 

Equation (36) and their differences from quasi-single scattering
 

approximation are reported in Section 4.
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3.0 SCATTERING PHASE FUNCTIONS
 

In this section we have summarized (1) the available information
 

on the measurements of the scattering phase functions, and (2) the
 

calculated scattering phase functions utilizing the Mie formalism 

for polydispersed suspensions on the basis of size distribution
 

measurements provided to us through the LaRC laboratory program.
 

The compilation of this information is primarily done to determine
 

the constants B, and F for the phase function P(p). These constants
 

are required to evaluate Equation (36) in Section 2.
 

3.1 Measured Scattering Probability Functions
 

Several in-site, as well as in vitro measured scattering phase
 

functions covering turbid to clear water conditions have earlier
 

been reported in Reference [2]. Reference [2] presents (1) observa

tions made in lake water [12], coastal waters [13], Atlantic surface
 

water [14], Pacific near coastal water [15], Mediterranean [16], and
 

Sargasso Sea water [17], (2) measurements taken by the Scripps
 

Institution of Oceanography [18] in deep clear oceanic water (Tongue
 

of the Ocean), near shore ocean water (off shore of Southern
 

California), and very turbid harbor water (San Diego Harbor,) (3) the
 

observation taken in vitro by Petzold [18] to determine the effect of 

adding scattering and absorbing materials in the water.
 

From these observations, a set of scattering probability function
 

PF(8), have been obtained, and are shown collectively in Figure 3-1.
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3.2 Calculated Scattering Probability Functions
 

The extension of Mie theory to the case of polydispersed
 

suspensions has been thoroughly discussed in Reference [2] along
 

with the computational methods used to calculate the scattering
 

phase functions. Empirical cumulative size distribution for the 2
 

samples, Ball Clay, and Feldspar were provided by NASA/LaRC. These
 

two distributions differed radically from each other, and thus
 

allowed a reasonable investigation of the effect of different size
 

distributions on the scattering phase functions. For both the
 

distributions, the index of refraction (M) was chosen to have real
 

as well as imaginary part. In order to determine the effect of
 

absorption, the imaginary part of the index of refraction was set
 

to zero.
 

The scattering probability functions obtained from lie theory
 

calculations utilizing these two distributions are presented in
 

Figures 3-2 to 3-5. Two cut off limits, 100 Um and 10 pm were
 

considered to be appropriate for the computations. The different
 

cut off limits allow to investigate the effect of sediment settling
 

in the water.
 

3.3 The Constants, B and F
 

From the definition of the scattering probability function, 

pF(8), the scattering phase function P(p) is given by [see Section 1.1]: 
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J P~p)dp 

P F-E. cos-1 0,an

F)¢ = 1 , 1 = co ,and -l 1ji. 

f P(p) di 
-1
 

Substitution of P(?) = F+(-1) ± B (see Equation 4) results in 

1 

f [FS(p-l) + B] du 
pF(e) = p F+B - Bp (37) 

F + 2B F + 2B ( 

=1
The condition, F6(v-l) ± B ]dp implies
 

F+2B =2 

and 

2-2PF(0)
B =(38) 

1 +V
 

The numerical values of B as determined from PF() illustrated 

in Figures 3-1 to 3-5 are presented in Tables 3-I and 3-II Four 

water qualities, San Diego Harbor, Tongue of the Ocean, offshore 

Southern California, and fresh water + scattering + absorbing 

material were chosen to calculate the range of the values for B in 

Table 3-I. San Diego Harbor water represents the most turbid water 

of all, and gives an upper bound on the value of B(= 0.06) for the 

measured scattering probability functions. The upper bound on B as 

determined from the calculated scattering probability functions
 

utilizing Mie theory formulation is 0.041.
 

3-8
 



TABLE 3-1
 

B THE FRACTION BACKSCATTERED DETERMINED FROM IN SITU AND IN VITRO EXPERIMENTS
 

WATER QUALITY
 

Angle of San Tongue of Offshore Fresh Water 
Incidence p = Cose Diego The Southern + scattering 

e Harbor Ocean California + absorbing 
material 

450 0.707 0.0585 0.0585 0.Q585 0.0468
 

600 0.S 0.05333 0.05333 0.05333 0.0266 

700 0.324 0.0447 0.0447 0.0447 0.0223 

o800 0.173648 0.0341 0.0341 0.0341 0.0170 

900 0.0 0.03 0.03 0.03 0.010
 



H 

0 

Angle of 
Incidence 

0 

450 

60 

700 

800 

900 

TABLE 3-11
 

B THE FRACTION BACKSCATTERED CALCULATED FROM MIE THEORY
 

'Sediments
 

Feldspat Ball Clay
 

Cos e 100 110 1100 110 p 

cut off cut off cut off cut off 

0.707 .041 .039 .041 ..039 

0'. 50 .038 .037 .038 .037 

0.342 .03. .028' .031 .029
 

0.173648 .02 .017 .021 .018
 

0.0 .008 .007 .008 .007
 



4.0 RESULTS 

In this section we describe our numerical results on the back

scattered radiance determined from the solution of the radiative
 

transport equation. Before this is done, however, we present the
 

closed form analytical solution derived earlier and describe
 

some of the parameters involved. The normalized backscattered
 

radiance may be written as (see Equation 36):
 

B 
o lu wF ) 2-3/2 i 

0 

B °wWCot w1 

f p2 Sin2 W + S 2 Cos2Wd 

0 

Where I = Incident radiance
 
0 

to0o = Single scattering albedo = a = s+a- s
 

S = Total scattering coefficient
 

a = Total attenuation coefficient
 

a = Total absorbing coefficient
 

p = CosO, B is the scattering angle 

B, and F are the parameters used to represent the 

phase function P(p) = FS(w-l) + B 

The range of the values of B have been determined from the
 

measured as well as calculated phase functions and is found to
 

vary between 0.007 and 0.06. F is computed from B by a
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relationship F = 2-2B, determined in Section 2.
 

The integration involved in Equation (39) was performed utilizing
 

a computer code given in Appendix A. The computer program makes use of
 

a Lobatto [19] integration algorithim.
 

To investigate the effect of wavelength, the single scattering
 

albedo, wdO was varied between 0.6 and 0.95. These limits on m0 were 

arrived at from the limits on the a/s ratio which is a function of 

the wavelength. The a/s ratio for sediments varies between 0.20 at 

A = 550 nm and 0.50 at X = 370 nm [4]. Typical Values of a/s ratio
 

at 550 nm are between 0.06 (for quartz particles) and 0.20 for
 

environmental waters.
 

The results of the calculations for backscattered radiance per
 

unit incident radiance are presented in Figures 4-1A to 4-1G, and
 

indicate that the backscattered radiance received by an overhead
 

detector is very sensitive to the changes in (1) the scattering phase
 

function P() (P(p) = f(B,F)), and (2) the single 'scattering albedo,
 

o 
0
 

Another observation which can be made from Figure 4-1A to 4-iG
 

is that (o, ) >> I(o,) i.e., for a given scattering phase
 
3m
 

0
 

function, the incremental change in the backscattered radiance w.r.t.
 

w is much larger than the incremental change in the backscattered
 

radiance w.r.t. the scattering angle, p. At the same time the function
 

a, varies slowly for smaller values of W0 (up tom = 0.80), and 
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attains a large value for wo close to unity. For example, for
 

= 
= 0.95, and P(p) 1.88 6(-l) + 0.060, the received backscattered
 

radiance is as large as 80% of the incident radiance.
 

4.1 	Comparison of Metrek's Results with Quasi-Single Scattering
 

Approximation
 

The quasi-single scattering approximation results were earlier
 

reported by Gordon [5]. The backscattered radiance from his results
 

is given by (see Equation 11)
 

o ) I
 
IQ(O, ) = W P-1)
 

2(1- Ok2 

As described in Section 2.4, the above equation is equivalent to
 

IW 0B
IQO) o 	
0 

- O (40) 

In that case, from equations (39) and (40), we obtain 

I(owi) = FACTOR . IQ(0,) (41) 

where
 

/2
 

( -	 i - F/2

J 	 2
=)/ WAO - 3/2 E it 0o P22 i WW + ssCsWCdW (42) 

The FACTOR was evaluated for' 0 ranging from 0'60 to 0.95, and B 

ranging from 0.007 to 0.06. The results are presented in Tables 4-1 to 4-VII. 
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TABLE 4-1 

FACTOR FOR B = 0.007 AND F/2 = 0.993 

o 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

0.1 
0.2 
0.3 

0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

1.017 
1.018 
1.018 

1.018 
1.019 
1.019 
1.019 
1.019 
1.019 
1.019 

1.021 
1.022 
1.022 

1.023 
1.023 
1.023 
1.024 
1.024 
1.024 
1.024 

1.027 
1.028 
1.028 

1.029 
1.029 
1.029 
1.030 
1.030 
1.030 
1.030 

1.034 
1.035 
1.036 

1.037 
1.038 
1.038 
1.038 
1.039 
1.039 
1.039 

1.046 
1.047 
1.049 

1.049 
1.050 
1.051 
1.051 
1.052 
1.052 
1.052 

1.065 
1.067 
1.069 

1.070 
1.071 
1.072 
1.073 
1.073 
1.074 
1.074 

1.104 
1.108 
1.111 

1.113 
1.114 
1.116 
1.117 
1.118 
1.119 
1.119 

1.224 
1.233 
1.239 

1.244 
1.247 
1.250 
1.253 
1.255 
1.257 
1.259 



TABLE 4-I1 

FACTOR FOR B = 0.010 AND F/2 = 0.990 

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

0.1 
0.2 

1.024 
1.025 

1.030 
1.031 

1.038 
1.039 

1.049 
1.051 

1.066 
1.068 

1.093 
1.097 

1.150 
1.155 

1.324 
1.338 

0.3 1.026 1.032 1.040 1.052 1.070 1.099 1.159 1.347 
0.4 
0.5 

1.026 
1.027 

1.033 
1.033 

1.041
1.042 

1.053
1.054 1.0711.072 1.1011.103 1.1621.165 1.3541.360 

0.6 1.027 1.034 1.042 1.054 1.073 1.104 1.167 1.365 
0.7 1.027 1.034 1.043 1.055 1.074 1.105 1.169 1.369 
0.8 1.028 1.034 1.043 1.055 1.074 1.106 1.170 1.372 
0.9 1.028 1.034 1.043 1.056 1.075 1.106 1.171 1.375 
1.0 1.028 1.035 1.043 1.056 1.075 1.107 1.172 1.377 



00,
 

TABLE 4-111 

FACTOR FOR B = 0.020 AND F/2 = 0.980 

0.60 0.65 0.70 0.75 0.80 . 0.85 0.90 0.95 

0 1 1.049 1.061 1.077 1.099 1.133 1.190 1.306 1.680 
0.2 1.051 1.063 1.080 1.103 1.138 1.197 1.319 1.711 
0.3 1.052 1.065 1.082 1.105 1.141 1.202 1.328 1.733 
0.4 1.053 1.066 1.083 1.107 1.144 1.206 1.335 1.750 
0.5 1.054 1.067 1.084 1.109 1.146 1.209 1.340 1.764 
0.6 1.054 1.068 1.085 1.110 1.148 1.212 1.344 1.775 
0.7 1.055 1.068 1.086 1.111 1.149 1.214 1.348 1.785 
0.8 1.055 1.069 1.087 1.112 1.151 1.216 1.351 1.793 
0.9 1.056 1.069 1.087 1.113 1.152 1.217 1.354 1.800 
1.0 1.056 1.070 1.088 1.11i 1.152 1.219 1.356 1.806 



TABLE 4-IV 

FACTOR FOR B = 0.030 AND F/2 = 0.970 

o 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

0.1 1.074 1.092 1.116 1.150 1.201 1.289 1.470 2.065 
0.2 
0.3 

1.077 
1.079 

1.095 
1.098 

1.120 
1.123 

1.155 
1.159 

1.209 
1.215 

1.300 
1.309 

1.491 
1.505 

2.117 
2.156 

0.4 1.080 1.099 1.126 1.162 1.219 1.315 1.516 2.185 
0.5 1.081 1.101 1.127 1.165 1.222 1.320 1.525 2.209 
0.6 1.082 1.102 1.129 1.167 1.225 1.324 1.532 2.229 
0.7 1.083 1.103 1.130 1.169 1.227 1.328 1.538 2.246 
0.8 1.084 1.104 1.131 1.170 1.229 1.331 1.543 2.261 
0.9 
1.0 

1.084 
1.085 

1.105 
1.105 

1.132 
1.133 

1.171 
1.172 

1.231 
1.232 

1.333 
1.335 

1.548 
1.552 

2.273 
2.285 



TABLE 4-V 

FACTOR FOR B = 0.040 AND F/2 = 0.960 

\ 0 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

0.1 
0.2 

1.099 
1.103 

1.123 
1.128 

1.155 
1.161 

1.201 
1.209 

1.271 
1.282 

1.391 
1.407 

1.641 
1.670 

2.476 
2.555 

0.3 
0.4 

1.105 
1.107 

1.131 
1.133 

1.166 
1.169 

1.215 
1.219 

1.290 
1.296 

1.419 
1.428 

1.691 
1.707 

2.612 
2.657 

0.5 
0.6 
0.7 

1.109 
1.1i0 
1.111 

1.135 
1.137 
1.138 

1.171 
1.173 
1.175 

1.222 
1.225 
1.227 

1.300 
1.304 
1.307 

1.435 
1.441 
1.445 

1.720 
1.730 
1.739 

2.694 
2.725 
2.751 

0.8 1.112 1,139 1.176 1.229 1.310 1.450 1.747 2.773 
0.9 1.113 1.140 1.178 1.231 1.312 1.453 1.753 2.793 
1.0 1.113 1.141 1.179 1.232 1.314 1.456 1.759 2.810 

o0. 



TABLE 4-VI 

FACTOR FOR B = 0.050 AND F/2 = 0.950 

WO 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

0.1 1.124 1.154 1.195 1.253 1.342 1.495 1.818 2.914 
0.2
0.3 1.129

1.132 1.160
1.165 1.203

1.208 1.264
1.271 1.357

1.367 1.517
1.532 1.857

1.885 3.022
3.101 

0.4 1.135 1.168 1.213 1.276 1.374 1.544 1.906 3.164 
0.5 1.137 1.170 1.216 1.281 1.380 1.553 1.923 3.216 
0.6 1.T38 1.172 1.218 1.284 1.385 1.561 1.938 3.259 
0.7 1.140 1.174 1.221 1.287 1.389 1.567 1.950 3.296 
0.8 1.141 1.176 1.222 1.290 1.393 1.573 V.960 3.328 
0.9 1.142 1.177 1.224 1.292 1,396 1.578 1.969 3.357 
1.0 1.143 1.178 1.226 1.294 1.399 1.582 1.977 3.381 



TABLE 4-VII 

FACTOR FOR B = 0.060 AND F/2 = 0.940 

0.60 0.65 0.70 0.75 0,80 0.85 0.90 0.95 

0.1 1.150 1.186 1.236 1.306 1.415 1.603 2.002 3.376 
0.2 1.155 1.194 1.245 1.319 1.433 1.630 2.051 3.517 
0.3 1.159 1.199 1.252 1.328 1.445 1.649 2.087 3.622 
0.4 1.162 1.203 1.257 1.335 1.455 1.664 2.114 3.705 
0.5 1.165 1.206 1.261 1.340 1.462 1.675 2.136 3.774 
0.6 1.167 1.208 1.264 1.344 1.468 1.685 2.155 3.832 
0.7 1.169 1.210 1.267 1.348 1.474 1.693 2.171 3.882 
0.8 1.170 1.212 1.269 1.351 j.478 1.701 2.184 3.925 
0.9 1.171 1.214 1.271 1.354 1.482 1.707 2.196 3.963 
1.0 1.172 1.215 1.273 1.356 1.485 1.712 2.206 3.997 

ci 

N td 
mtc 



'u 

It is apparant that for smaller values of B(=0.02), as well as w
 

(=0.80), the difference in the METREK and Gordon's results is of the
 

order of 15 percent. At higher values of W (=0.95), and B(=0.06), 

the difference in the two results becomes significant and is of the 

order of many magnitudes. 

It must be noted that the value t0 = 0.95 signifies almost a
 

totally scattering medium and in the absence of no absorption, one
 

may expect to receive back all the radiance incident on the surface
 

of the water. Such situations may occur in the middle of the ocean
 

where the waters are almost turbidity free. For the LaRC experimental
 

facility the values of wn larger than 0.80 are not expected. The
 

water tank bottom at the LaRC's facility absorbs-some of the light
 

photons, and w remains-mostly under 0.80, in which case the results
 

computed for w > 0.80, and presented in this section may become
 

meaningless.
 

In conclusion, in this report: 

1) We have presented a mathematical formalism applicable 
to the radiative transport process for the geometry 
of the light scattering relevant to the LaRC labora
tory experiment set up. Then an analytiial solution 
to this equation has been derived to determine the 
backscattered radiance as a function of the single 

scattering albedo n0 , incident radiance Io, and the 

scattering phase function P(p). 

2) 	The results measured as well as calculated scattering
 
phase functions for a wide range of turbid water
 
conditions are summarized to determine the lower and
 
upper bounding scattering phase functions. The
 
bounding scattering phase functions have been used to
 
obtain a better estimate of the ranges of the para
meters involved in the scattering phase function
 
formulation.
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3) The solution derived for the radiative transport 
equation is numerically evaluated for a range of 
scattering phase functions, and also for a range 
of single scattering albedo. 

Finally, 

4) METREK's results are compared with the already 
reported results in the literature on quasi-single 
scattering approximation.
 

The differences between the two results have been discussed
 

in Section 4.1.
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APPENDIX A
 

LOBATTO INTEGRATION COMPUTER CODE
 

A-I
 



C MAIN PROGRAM 'QUADD'
 
C THIS PROGRAM PERFORMS THE DESIRED INTEGRATION AND DETERMINES
 
C THE ktESULTANT RADIANCE RECEIVED BY THE REMOTE SENSOR.
 
C 
C LOBATTO INTEGRATION
 
C DESCRIPTION OF PARAMETERS
 
C A- LOWER LIMIT
 
C B- UPPER LIMIT
 
C E- PRECISION
 
C FCT- SUBROUTINE FCT(X,Y)
 
C Y=F(X) 
C USE EXTERNAL ECT IN MAIN PROGRAM
 
C N- SET EQUAL TO 200
 
C AUX- STORAGE FOR CALCULATED VALUES OF FCT,DIMENSION TO 400
 
C ICHELK- <0, NOT CCNVERGED WITH REQUIRED PRECISION
 
C >0, CONVERGED, NO. OF CYCLES REQUIRED
 
C V- ANSWER
 
C ARRAX- ARRAY OF PARAMETERS IN FCT, USE COMMON ARRAY IN FCT
 
C IPARA- NO. OF PARAMETERS IN ARRAY
 
C 

IMPLICIT REAL*8 (A-E,O-Z)
 
DIMENSION AUX(5000) ,BBB(7),TA(10,8),AU(10) ,RAD(10,8),AAA(8) 
COMMON/XXX/ARRAY (20)
 
PI=3.14159
 
BBB (1) =0.007 
BBB(2)=0.01
 
BBB(3)=0.02
 
BBB (4) =0.03
 
EBB(5) =0.04
 

EBB(6)=0.05
 
BBB (7) =0.06
 
AAA (1) =0.60
 
AAA (2)=0.65
 
AAA (3) 0.70
 
AAA (4)=0.75
 
AAA (5)=0.80
 
AAA (6) =0.85 
AAA (7)=0.90
 
AAA (8)=0.95
 
DO 35 J=1,7
 
BB=BBB (J) 
F=2* (I.-BB)
 
FF=F/2.
 
WRITE (6,99)BB,FF
 

99 FORNAI(1*,///,15X,'B =',F6.3,5x,'F/2 =',F6.3,////)
 
L=0
 
DO 25 K=1,8
 

A-2 ORIGINAL PAU- M 

OF POOR QUALITY 

http:BBB(3)=0.02
http:BBB(2)=0.01


oOORr, PAGB IS
 

OMEGA=AAA (K) 
E=0. 000001
 
Do 25 1=1,10
 
IPARA=4
 
A=O. 000001
 
B=PI/2.
 
E=0.000001
 
ARRAY 1) =FLOAT(I)/10.
 
ARRAY (2)=BB
 
ARRAY (3)=OMEGA
 
ARRAY (4)=F
 
AU (1) =FLOAT (1) /10.
 
EXTERNAL FCT
 
v=2000
 
CALL SPINT(A,B,E,FC,N,AUX,ICHECK,V,ODE)
 
AS=-ARAY(1) *V/PI 
S1=DEzP (AS)
 
S1=$1* ((1.-OMEGA*F/2.) **1. 5)/C (1.-OMEGA) **1.5)
 
S2=1/j1.+ARRAY(1))
 
S3=$2/(1.-OMIEGA*F/2.)
 
S4=S3*OMEGA*BB/2.
 
$5=S4*$11
 
TAU (I,L) =Sl 1
 
RAD (I,L)=5
 
WRITE(7,115)ARRAY(1) ,S5
 

115 FORMAT(218.5)
 
25 CONTINUE
 

DO 116 1=1,10
 
116 WRITE6,117)AU(I),(TAU(I,),L=1,8)
 
117 FORMAT(2X,F5.1,8(2X,F8.3))
 

WRITE (6,119) 
119 FORMAT(////) 

DO 118 I=1,10 
118 WRITE(6,117) AU(I), (RAD(I,L),L=1,8) 
35 CONTINUE 

STOP
 
END
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C 
C 

SUBBOUTINE SPINT (A,BEE,FCT,N,AUX,ICHECK,V,iODE)
 
,lPITCIT aEAL*8 (A-H,O-Z)
 

DIMENSION AUX(1)
 
1 IF(N.±T.12) N=12
 

IF(A.EQ.B) GOTO 650
 
1K= (N-4) /8 
IDV=2
 
IX=IK+2
 
IP=2*lK+3
 
IFM=4*IK+3
 
IFE=6*IK+3
 
VC= 1. u0 
AA=A
 
BB=B 
IF(A.LT.B) GOTO 10 
AA=B
DD=A 
VC=- .DO 

10 	A0=O.U476190476190476DO
 
A=0. z768260473615659DO
 
A2=0. 4317453812098626D0
 
A3=0. 487619047b 190476D0
 
T5=0.ts302238962785669D0
 
T4=0.4688487934707142D0
 
T2=- '4
 
Tl=-Ta 

C
 
FIRST INTERVAL (A TO B) 
C=0.50* (BB-AA) 
D=AA+C
 
Xl=C*1I+D
 
X2=C*1'2+D
 
X4=C*T4+D
 
X5=C*r5+D
 
CALL tCT(AA,AUX(IFE+1)) 
CALL rCT(X1,F1) 
CALL FCT(X2,F2)
 
CALL FCT(D,AUX(IFM+1))
 
CALL FCT(X4,F4)
 
CALL FCT(X5,F5)
 

CALL zCT(BB,AUX(IFE+2))
 
V0=C* LAO* (AUX (IFE+1) +AUX (IFE+2)) +A1* (Fl+F5) +A2* (F2+F4) +A3*AUX (IFM+


11))
 

C SPLIT FIRST INTERVAL
 
K=l
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C=O. 5O*C
 
V=O. DO
 
AUX(XiE+3) =AUX(IFE+2)
 
AUX (IFE+2) =AUX (IFM+1)
 
DO 100 1=1,2
 
D=AA+FETOAT (i+I-1) *C
 
X1=C*T1+D
 
X2=C*1t2+D
 
X4=C*T14+D
 
X5=C*15+D
 
CALL FCT(X1,F)
 
CALL FCT(X2,F2)
 
IFMI=IFM+I
 
CALL fCT(D,AUX(IFMI))
 
CALL kCT(X4,F4)
 
CALL iCT(x5,F5)
 
IFEI=IFE+1
 
1P1=I1+I 

iUX (II) =C* (AO* (AUX (IFEI) +AUX (IFEI+I)) +Al* 
1X (IF:44 ) 

10 V=V+AUX (1PI) 
C 
C 	 CHECK CONVERGENCE
 

IF(V.ZQ.VO) GOTO 9000
 
AUX (li)V+I) =V-VO 
VA=DABS (V) 
!F(VN.EQ.0.0) VA=DABS(V0) 
IF(DABS(AUX(TDV+1))/VA . LT.E) GOTO 9000 
IF(IK.EQ.l) GOTO 500 

C 	 END OF INITIAL CALCULATIONS
 
C 
C 	 BEGIN SELECTIVE SPLITTING PROCESS
 

SDS=?AUX (IDV+ 1)
 
AUX (!X+ 1) =AA
 
AUX (IX+2) =BB
 
I T=1
 

C 
C RESET VALUES
 
1000 K=K+1
 

IB=IT+1
 
II=IB+1
 
IXIT=IX+IT
 
C=0. 125D0* (AUX (IXIT+I)-AUX (IXIT)) 
VO=V
 
IDVIT=IDV+IT
 
SDS=SDS-AUX (IDVIT)
 
IR=IT+IT-1
 
IPIR=IP+IR
 

ORIGNAL PAGEOF POoR QUAL IS 

(Fl+F5) +A2* (F2+F4) +A34A 
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V=V-AUX(IPIR)-AUX (IPIR+I) 
IXK=IX+K
 
ALUX (IX-K+1)-=AUX (IXK) 
KTW=2*K+1
 
IFEKTW=IFE+KTW
 
AUX (IEKTW) =AUX (If-EKTW-2) 
IF(K.EQ.IB) GO0 105
 
DO 104 I=I,K
 
L=K+I1-I
 
IXL=IX+I
 
AUX (ItL) =AUX (IXL-1)
 
IDVL=lDV+L 
AIUX(Ii)VL) =AUX(IDVL-1) 
IZ=2*L- 1 
IFEIZ=IFE+IZ
 
AUX (IUEIZ) =AUX (IFEIZ-2) 
AUX (IEEIZ+1) =AUX (IFEIZ-1) 
IFMIZ=IFM+IZ
 
AUX (IFkiIZ) =AUX (IFrIIZ-2) 
AUX (IiIIZ+ 1) =AUX (IFIIIZ-1) 
IPIZ=i2+IZ
 
AUX (:!IZ) =AUX (IIZ-2) 

104 AUX (IIZ+1)=AUX(IPIZ-1) 
105 AUX(ILIT+1)=AUX(IXIT)+4.*C 

C 
C SPLIT LOOP 

IFEIR=IFE+IR 
AUX (IkEIR+2) =AUX (IFEIR+I1)
 
IFMIR=IFM+IH
 
AUX (IFEIR+ 1) =AUX (IFlhIR)
 
AUX (I!EIR+3) =AUX (IF'iR+1)
 
AUX (1) =AUX (IPIR) 

UX (2) =AUX (IPIE+1) 
L=0
 
DO 300 J=1,2
 
SAO. DO 
DO 200 1=1,2
 

LV=IT+IT-2+L
 
D=AUX (IXIT) +FLOAT (L+L-i) *C 
X1=C* I+D 
X2=C*T2+D
 
X4=C*T4+D 
X5=C*Tc5+D
 
CALL ICT(X1,F1)
 
CALL FCT(X2,F2)
 
IFMLV=IF[1+LV
 
CALL !CT(D,AUX(IFMLV))
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ORIGImAL PAcGy
 
,EF POOR QUALITy
 

CALL )CT(X4,F4)
 
CALL FCT(X5,F5)
 
IFELV=lFE+LV
 
AI=C* A0* (AUX (IFELV)+AUX (IFELV+1) )-+A1 *(Fl +F5) +A2* (F2+F4)+A3*AUX (IF
 

1ILV) )

SA=SA+A1
 

IPLV=iP+LV
 
200 AUX (ItIV)=AI
 

V=V+.SA
 
JIT=IT+J-1
 
IDVJTL=IDV+JIT
 
AUX (IDVJIT =SAL-AUX (J)
 

300 SDS=SDS+AUX (IDVJIT)

C
 

C 	 CHECK CONVERGENCE
 
IF(V.EQ.VO) GOTO 9000
 
V=DADS (V) 
IF(VA.IFQ.0.0) VA=DABS(VO)
 
IF(DAnS(SDS)/VA.LT.E) GOTO 9000
 
IF(K.tQ.IK) COTO 500
 

C 
C 	 FIND tARGErT DELTA (WHERE TO SPLIT NEXT) 

DViAX=DABS (AUX (IDV+ 1)) 
DO 400 I=1,K 
IDVI=.DV+I 
ADV=DABS (AUX(-IDVI) 
IF(ADV.LT.DV!AX) GOTO 400 
DVriAX=ADV
 
IT=I
 

400 	CONTINUE
 
COTO 1000
 

9000 	V=V*VC
 
ICHECK=K
 
RETURN
 

500 	V=V*VC
 
ICHECK=-K
 
RETURN
 

650 	V=0.DO
 
RETURN
 
END
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C 
C 

SUBROUTINE ECT-(X, Y) 
IMPLICIT REAL*8(A-f,O-Z) 

COMMON/XXX/ARRAY (20)
ZI=ARRAY (1) *ARRAY (1) *DSIN (X) *DSI (X) +DCOS (X) *DCOS (X) 
Z2=ARRAY (2) *ARRAY (3)/(I.-ARRAY (3) *ARRAY (4)/2.)-
Z3=X/DTAN (X) 
Z4=DLOG (1.-Z2*Z3) 
Y=Z4/Z1 
RETURN 
END 

A-8
 



REFERENCES 

(1) A.H. Ghovanlou, J.N. Gupta, and R.G. Henderson, "Determination 
of Scattering Functions and Their Effects on Remote Sensing 
of Turbidity in Natural Waters.," The MITRE Corporation, NASA 

CR-145239, July 1977. 

(2) A.H. Ghovanlou, J.N. Gupta, R.G. Henderson, and L. Poole, 
"Radiative Transfer Model For Remote Sensing of Suspended 
Sediments in Water," presented at the 4th Joint Conference 

on Sensing of Environmental Pollutants, November 6-11, 
New Orleans, LA. 

(3) A.H. Ghovanlou, et.al., "Laser Transmission Studies of East 
Coast Waters, Technical Report No. 2, sponsored jointly by 
Office of Naval Research, Geography Branch, and The National 
Ocean Survey, Engineering Department Laboratory,'and The 
U.S. Geological Survey, March 1973. 

(4) A.H. Ghovanlou, "Analytical Model For Remote Sensing of 
Water Turbidity," The MITRE Corporation, NASA CR-145050, 
September 1976. 

(5) H.R. Gordon, "Simple Calculation -of the-Diffuse Reflectance 

of The Ocean," Applied Optics, Vol. 12, No. 12, December 1973. 

(6) V. Granatstein, M. Rhinewine, A. Levine, D. Feinstein, M. 
Mazurowski, and K. Piech, "Multiple Scattering of Laser 
Light From A Turbid Medium," Applied Optics, Vol. 11, 

No. 5, May 1972. 

(7) K.M. Watson, J. Math, Phys., 10, 688, 1969. 

(8) Y.N. Barabanekov and V. Finkelbery, Soviet Physics JETP 26, 
587, 1968. 

(9) G. Miltonwing, An Introduction To Transport Theory, John 

Wiley and Sons, Dec., New York, 1962. 

:10) E. Titchmarsh, The Theory of Functions,. The Clarendon Press, 
Oxford, 1932. 

:11) R.V. Churchill, Complex Variables and Applications, McGraw 
Hill Book Company, New York, 1960. 

:12) S.Q. Duntly, "Light in the Sea," J. Opt. Soc. America, Vol. 53, 
No. 2, February 1963. 

B-1 



REFERENCES (Concluded) 

(13) G. Kullenberg, Rep'Inst, Fys, Oceanog., 5, 16. Kobehhauns 
Universitet., 1969. 

(14) N.G. Jerlov, Medd. Oceanog, Inst. Goteborg, 30, 1961. 

(15) J.E. Tyler, Limm, and Oceanog., 6, 1961. 

(16) G. Kullenberg and 0. Berg, Rep. Inst. Fys. Oceanog., 19, 40, 
Kobenhavns Universitet, 1972. 

(17) G. Kullenberg, Deep Sea Res., 15, 1968. 

(18) T.J. Petzold, "Volume Scattering Functions for Selected Ocean 
Waters," AD-753474, Scripps Institution of Oceanography, 
October 1972. 

(19) M. Abramowitz, and I. Stegum, Editors, "Handbook of Mathematical 
Functions," Dover Publications, Inc., New York, 1970. 

B-2
 



A-10 


G. MacDonald 


D-10 


,S.Blum 

W. Gouse 

C. Zraket 


D-II 


W. Sievers 


D-12 


H. Benington 

C. Grandy
 
A. Tachmindji 


W-50 


R. Greeley 

R. Ouellette 

J. Golden 

R. Pikul
 
R. Foreman 

D. Sluyter 


W-51 


E. Sharp
 
L. Gsellman 


W-52
 

M. Scholl 

G. Bennington
 
S. Goldstein 


DISTRIBUTION LIST
 

C-I
 

W-53
 

T. Wright
 
E. Ward
 

Ali Ghovanlou (10)
 

W. Flury
 
T. Kuch
 
M. Barbier
 
0. Farah
 

E. Friedman
 
J. Gupta (10)
 

E. Keitz
 
R. Henderson
 
N. Lord
 

W-54
 

E. Krajeski
 

w-55
 

A. Challis**
 
N. Coates
 
J. Stone
 

W-56
 
L. Thomas
 

S. Lubore
 
G. Erskine
 

W-57
 

S. Lewis
 

W-50 Library (5)
 

Metrek Library
 

Technical Report Center (2)
 

Document Control (8)
 

Westpart Storage* (15)
 



EXTERNAL DISTRIBUTION LIST 

No. of 
Copies 

NASA Langley Research Center 
Hampton, VA 23665 
Attn: Report & Manuscript Control Office 

Mail Stop 180A 
Lamont R. Poole, Mail Stop 272 

2 
59 

NASA Ames Research Center 
Moffett Field, CA 94035 
Attn: Library, Mail Stop 202-3 1 

NASA Dryden Flight Research Center 
P. 0. Box 273 
Edwards, CA 93523 

Attn: Library 1 

NASA Lyndon B. Johnson Space Center 

2101 Webster Seabrook Road 
Houston, TX 77058 
Attn: JM6/Library 1 

NASA Marshall Space Flight Center 
Marshall Space Flight Center, AL 
Attn: Library, AS61L 

35812 
1. 

.Jet Propulsion Laboratory 
4800 Oak Grove Drive 
Pasadena, CA 91103 
Attn: Library, Mail Stop 111-113 1 

NASA Lewis Research Center 
21000 Brookpark Road 
Cleveland, OH 44135 
Attn: Library, Mail Stop 60-3 1 

NASA John F. Kennedy Space Center 
Kennedy Space Center, FL 32899 
Attn: Library, NWSI-D 

National Aeronautics & Space Administration 
Washington, D.C. 20546 
Attn: ER 

C-2 



EXTERNAL DISTRIBUTION LIST (Concluded) 

No. of 
Copies 

NASA Scientific & Technical Information Facility 
6571 Elkridge Landing Road 
Linthicum,Heights, MD 21090 30 

C-3
 


